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Abstract—This paper deals with the problem of adaptive radar
detection in a context with missing-data where the complete
observations (i.e., downstream information loss mechanisms) are
characterized by homogeneous Gaussian disturbance with an un-
known but possibly structured covariance matrix. The detection
problem, formulated as a composite hypothesis test, is tackled
by resorting to sub-optimal design strategies, leveraging the
generalized likelihood ratio (GLR) criterion demanding appro-
priate maximum likelihood estimates (MLEs) of the unknowns
under both hypotheses. Capitalizing on some possible a-priori
knowledge about the interference covariance matrix structure,
the optimization problems involved in the MLEs computation
are handled by employing the expectation-maximization (EM)
algorithm or its expectation-conditional maximization (ECM)
and multi-cycle EM (M-EM) variants. At the analysis stage,
the performance of the devised architectures is assessed both
via Monte Carlo simulations and on measured data for some
covariance matrix structures of practical interest.

Index Terms—Adaptive Radar Detection, EM-algorithm, Miss-
ing Data

I. INTRODUCTION

Adaptive radar detection has long been a popular and widely
discussed topic in signal processing [1]–[6]. Significant efforts
have been made in the last decades to conceive practical
detectors for point-like targets embedded in additive Gaussian
interference (due to for instance thermal noise plus clutter
and/or jammers) with unknown spectral properties [7]–[9].

In multi-channel sensor array setting, most of the devised
procedures have been designed under the ideal conditions that
all the data at the output of the array would be available. Nev-
ertheless, in practical radar systems, measurement errors due
to acquisition equipment, random sensor failure [10] caused by
impulsive noise [11], range ambiguous echo returns affecting
useful signal samples [12], as well as reception failures (e.g.,
in distributed radar architecture [13], [14]), can determine
the lack of some observations. It becomes mandatory to
address the design of adaptive detection architectures capable
of operating in such non-ideal conditions, accounting for the
presence of missing-data [15]–[18]. To this end, several studies
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have addressed missing-data situations, as for instance [19]
and [20] in the context of synthetic aperture radar (SAR), [21]
for subspace tracking (subspace estimation from a data matrix
corrupted by outliers and missing observations), and [22] for
nonparametric complex spectral estimation. Besides, a struc-
tured covariance matrix estimator, accounting for missing-data
and leveraging possible a-priori structural knowledge, has been
recently proposed in [23].

In this paper, the problem of detecting a prospective target
embedded in Gaussian interference with unknown (but possi-
bly structured) covariance matrix is addressed for a missing-
data context. It is assumed the existence of a secondary data
set, i.e., returns free of useful target echoes gathered from
range cells spatially adjacent to that under test. Complete
primary and secondary data share the same interference second
order statistics, which is tantamount to considering the so-
called homogeneous environment [24]–[30].

The detection problem is formulated as a composite hy-
pothesis test characterized by different unknowns under the
two hypotheses. The presence of these unknowns precludes
the implementation of the optimum solution (in the Neyman-
Pearson sense), given by the likelihood ratio test (LRT). In
detection theory jargon, this means that a uniformly most
powerful (UMP) test does not exist and hence, to come up
with practical detector, a sub-optimal generalized likelihood
ratio test (GLRT) architecture is designed. Besides, a variation
of the conventional GLRT, i.e., the adaptive matched filter
(AMF) [3] test (also known as the two-step GLRT), is derived,
too. In the absence of missing-data and for unstructured inter-
ference covariance matrix,the AMF receiver is commonly used
in radar detection, due to its performance level comparable to
Kelly’s GLRT as well as its low computational complexity and
higher robustness to useful signal mismatches [31]. The two-
step GLRT only requires the maximum likelihood estimate
(MLE) of the covariance matrix under the null hypothesis,
which can be computed from secondary data, and the MLE
of the complex target echo amplitude, assuming known the
interference covariance matrix.

The devised detectors demand the optimization of appro-
priate observed-data likelihood functions over the unknowns
(under one or both the hypotheses), for which closed-form so-
lutions could not exist. Precisely, under the null hypothesis, the
MLE of the interference covariance matrix is required. To this
end, resorting to the expectation-maximization (EM) [32]–[34]
framework, an effective iterative covariance estimator capable
of managing diverse covariance structures is devised in [23].
On the other hand, the alternative hypothesis (with reference
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to the GLRT receiver) involves the joint ML estimation of
the complex target echo parameter and the covariance matrix.
To handle this challenging task, an EM-based framework is
proposed to determine optimized solutions, with some quality
guarantees, to the maximization problem at hand. The result-
ing procedure involves only closed-form expressions for the
cases of unstructured estimation and covariance matrix with a
centro-Hermitian structure. For the case of the covariance
matrix with a more general structure, the plain EM leads to
an optimization problem where closed-form solutions could
not be available. Therefore, this case is addressed using two
EM variations, i.e., the expectation-conditional maximization
(ECM) and multi-cycle EM (M-EM) techniques, requiring the
optimization of individual subsets of the unknowns at a given
loop [35]–[37], each of them updated in closed-form for some
covariance structures of practical interest.

At the analysis stage, the performance of the devised
detectors is assessed in terms of probability of detection (PD)
versus the signal-to-interference-plus-noise ratio (SINR) on
both simulated and measured data. This latter evaluation is
critical for validating the robustness of the proposed detection
strategies on real data, including potential mismatches (due
to hardware imperfections) that are not taken into account
at the design stage. For comparison purposes, two additional
detectors are considered. The former is a benchmark that
assumes direct access to the complete-data set, whereas the
latter replaces the missing values via linear interpolation.

Summarizing, the main contributions of this paper are as
follows.
• The development of adaptive architectures for target

detection in the presence of missing-(complex) data, ac-
counting for uncertainty sets of practical interest for radar
signal processing applications1. Specifically, two adaptive
detectors are derived, resorting to the GLR and AMF
criteria, respectively. To the best of our knowledge, there
are no similar works in the open literature addressing the
target detection problem in the presence of missing-data
and capitalizing on specific covariance matrix structures.

• The devised detectors demand the ML estimate of the
complex target echo parameter α, which rules the expec-
tation term under the H1 hypothesis, and the structured
covariance matrix M . Computing the estimate of the
aforementioned unknowns, capitalizing on the general
EM framework and encompassing possible covariance
matrix structure, is one of the main technical contri-
butions of the paper. In this regard, some attempts to
estimate mean and covariance matrix in a context with
missing-data can be found in the statistical literature [34],
with reference to real valued observations/unknowns and
without a structured mean. In contrast, this paper focuses
on the estimation problem for the case of complex
parameters and deals with a structured mean (due to the
possible target echo return in the received signal) and

1In radar signal processing, the geometry (for instance uniform linear array
or other regular array structures) and the characteristics of the acquisition
system (for instance knowledge of the thermal noise level, or the available
number of bits that induces an upper bound to the covariance condition
number), impose specific structures of the covariance matrix.

a constrained covariance matrix. The proposed estimates
are then exploited to address challenging radar detection
problems.

• Finally, the performance of the proposed decision archi-
tectures are investigated both numerically and on mea-
sured data, assuming some covariance matrix uncertainty
sets of practical relevance.

The paper is organized as follows. The data model and target
detection problem with missing-data are presented in Section
II. In Section III, the detection problem is addressed resorting
to sub-optimal design criteria, i.e., one-step and two-step
GLR, which demand the optimization of appropriate observed-
data likelihood functions under the two hypotheses. Hence,
in Section III, an EM-based framework is also devised to
tackle the resulting optimization problems and derive practical
detectors. The performance of the mentioned detectors is
analyzed in Section IV, whereas conclusions are drawn in
Section V.

A. Notation

Boldface is used for vectors a (lower case), and matrices A
(upper case). The (k, l)-entry (or l-entry) of a generic matrix
A (or vector a) is indicated as A(k, l) (or a(l)). I and 0
denote respectively the identity matrix and the square matrix
with zero entries (their size is determined from the context).
Besides, diag(x) indicates the diagonal matrix whose i-th
diagonal element is x(i). RN , CN , and HN are respectively
the sets of N -dimensional column vectors of real numbers,
of N -dimensional column vectors of complex numbers, and
of N × N Hermitian matrices. The transpose, the conjugate,
and the conjugate transpose operators are denoted by the
symbols (·)T, (·)∗, and (·)†, respectively. The determinant
and the trace of the matrix A ∈ CN×N are indicated with
det (A) and tr{A}, respectively. The curled inequality symbol
� (and its strict form �) is used to denote generalized matrix
inequality: for any A ∈ HN , A � 0 means that A is a
positive semi-definite matrix (A � 0 for positive definiteness).
The letter j represents the imaginary unit (i.e., j =

√
−1).

For any complex number x, R(x), I(x), and |x| are used to
denote the real part, the imaginary part, and the modulus of x,
respectively. Furthermore, for any x, y ∈ R, max(x, y) returns
the maximum between the two argument values. Finally, E[·]
stands for statistical expectation.

II. PROBLEM FORMULATION

Let us consider a radar system collecting spatial data via a
linear array composed of N antennas and operating in the
presence of noise and interference, with unknown spectral
characteristics.

Under the ideal conditions of complete access to the set of
space-time observations, the problem of detecting a prospec-
tive target located at range R and elevation θ0 with respect to
the array boresight (under the narrowband radar probing signal
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assumption), can be formulated as the following composite
binary hypothesis testing problem

H0 :

{
r = n

ri = ni, i = 1, . . . ,K

H1 :

{
r = αp+ n

ri = ni, i = 1, . . . ,K

(1)

where r is the primary data, α is an unknown complex param-
eter which accounts for the target reflectivity and the channel
propagation effects, whereas p denotes the spatial steering
vector evaluated at θ0, which is assumed known at the design
stage. Besides, a set of secondary data ri, i = 1, . . . ,K, free
of the useful signal and with the same covariance matrix as the
primary data (homogeneous environment) [2], [3], [38], [39],
is supposed available. The interference plus noise components
n and ni, i = 1, . . . ,K, are modeled as independent and
identically distributed (iid) zero-mean circularly symmetric
Gaussian random vectors, with unknown (but possibly struc-
tured) covariance matrix given by

M(θ) = E[nn†] = E[nin
†
i ], i = 1, . . . ,K (2)

where θ denotes the vector of the unknowns parameterizing
the structure of M .

Let us now frame the detection problem in a context with
missing-data caused by random failures of some array ele-
ments [10], [11], [40], [41] or possible transmission-reception
faults experienced by distributed radar systems (DRS) [13] or
wirelessly networked aperstructure digital phased array radars
(WNADPARs) [14], etc. For the case at hand, the observed
primary data is modeled as

z = Ar (3)

where A is an appropriate p×N selection matrix; specifically,
denoting by κ1, κ2, . . . , κN−p ∈ {1, . . . , N} the indices of the
channels where a missing-data occurs in the snapshot from the
cell under test (CUT), A is obtained from the N ×N identity
matrix, by deleting the rows indexed by (κ1, κ2, . . . , κN−p).
Similarly, each secondary observed snapshot can be modeled
as

zi = Airi, i = 1, . . . ,K (4)

with Ai the pi × N selection matrix of the i-th snapshot
which is defined similarly to A. In the following, the vectors
r, ri, i = 1, . . . ,K, and z, zi, i = 1, . . . ,K, will be
referred to as the complete and the observed data, respectively.
Accordingly, the variables p and pi indicate the number of
the actual available channels, i.e., the number of observed
elements, in the primary r and the i-th secondary snapshot
ri, i = 1, . . . ,K, respectively2.

Hence, leveraging the observed-data model in (3) and (4),
the target detection problem in the presence of missing-data

2From a physical point of view, the selection matricesA andAi, associated
with r and ri, i = 1, . . . ,K, respectively, provide the components of the
complete-data vectors into the observed-data space. As a result, the number
of rows p (pi) of the selection matrix A (Ai) denotes the dimension of the
complex space where the observed-data in the considered (i-th secondary)
snapshot lies.

can be cast as
H0 :

{
z = An

zi = Aini, i = 1, . . . ,K

H1 :

{
z = αAp+An

zi = Aini, i = 1, . . . ,K

(5)

where the unknowns are θ under H0 and α, θ under H1.

III. DESIGN OF DECISION RULES

Pursuing the classical approach based on the Neyman-
Pearson criterion, the optimal decision statistic to the hy-
potheses testing problem (5), i.e., maximizing PD for a
given PFA, could be devised. Unluckily, the resulting LRT,
relies on the complete knowledge of the probability density
functions (PDFs) under both hypotheses which requires a
perfect knowledge of the parameters α and θ, reasonably not
available in practical situations. As a result, a UMP test for
the aforementioned problem does not exist. Hence, practically
implementable receivers have to be designed resorting to
sub-optimal criteria, such as GLR, which demands the ML
estimation of the parameters under both hypotheses.

In this respect, it is worth pointing out that the existence
of affordable low-complexity optimal solutions to the opti-
mization problems involved in the estimation process under
the two hypotheses is essential for the design of practically
implementable detectors. Unfortunately, quite often, closed-
form solutions are not available [42].

In light of the above considerations, the EM framework rep-
resents a viable means to determine approximated MLE of the
parameters from the observed-data. Specifically, it alternates
between an expectation (E)-step (in which the conditional
expectation of the more analytically tractable complete-data
likelihood is evaluated using the current estimate of the param-
eters) and a maximization (M)-step, in which the E-step score
function is optimized in order to update the estimates. The
above steps are then repeated until a convergence condition is
achieved.

An iterative EM-based solution θ̂EM,0 to the optimization
problem under H0 has been devised in [23]. More specifically,
accounting for some possible a-priori knowledge on the co-
variance matrix structure, estimator devised in [23] involves
only closed-form updates, at each iteration of the procedure,
for a wide class of covariance structures. Detailed analysis on
the convergence properties, as well as on the convergence rate,
are also provided in [23].

The work in [23], however, does not address the opti-
mization problem under H1, which is necessary to solve the
detection problem (5). This challenging step is here addressed,
yielding an EM-based framework for the joint estimation of
α and M . From an optimization theory point of view this
represents the main innovation of this paper.

A. Parameters estimation under H1

The EM procedure starts with an initial guess of the
parameters, i.e., θ̄(0) = [α(0),θ(0)

T
]T, and iterates between

the E-step and the M-step, until convergence [32]. Specifically,
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at the h-th iteration, the E-step involves the evaluation of the
score function

Q
(
α,θ|α(h−1),θ(h−1)

)
= E[Lr(α,θ,H1)|z,Z,A,A1, . . . ,AK , α

(h−1),θ(h−1),H1]

(6)

where

• Z = {z1, . . . ,zK} is the set of observed secondary data;
• α(h−1) and θ(h−1) are the estimates at the (h − 1)-th

iteration;
• Lr(α,θ,H1) is the complete-data log-likelihood given

by

Lr(α,θ,H1)

= −(K + 1) [N ln(π) + ln(det(M(θ)))]

− tr
{
M(θ)−1[(r − αp)(r − αp)† + S]

} (7)

• S =
∑K
i=1 rir

†
i is proportional, via K, to the conven-

tional secondary data sample covariance matrix.

Computing the conditional expectation involved in (6) yields
(see Appendix A for details on the statistical expectation
evaluation)

Q
(
α,θ|α(h−1),θ(h−1)

)
= −(K + 1) [N ln(π) + ln(det(M(θ)))]

− tr
{
M(θ)−1[(µ(h−1) − αp)(µ(h−1) − αp)† + Σ(h−1)]

} (8)

where (the detailed expression is provided in (46) and (47))

µ(h−1) = E[r|z,A, α(h−1),θ(h−1),H1] (9)

and (see (48)-(56) for the detailed derivation)

Σ(h−1) =

(
K∑
i=1

E[rir
†
i |zi,Ai,θ

(h−1)]

)
− µ(h−1)µ(h−1)† + E[rr†|z,A, α(h−1),θ(h−1),H1].

(10)

After the computation of the E-step, the M-step is per-
formed, i.e., the score function (8) is maximized providing
the following updated estimate of the unknowns(

α(h),θ(h)
)

= argmax
α, θ:M(θ)∈C

Q
(
α,θ|α(h−1),θ(h−1)

)
. (11)

Still, as in the H0 case [23], different solution strategies to the
optimization problem (11) are connected to diverse feasible
sets C. In this regard, some relevant cases of interest are
analyzed in the following.

1) Unconstrained estimation: For this special and relevant
case, the optimal solution to the M-step is available in closed-
form, i.e., [2]

α(h) =
p† [Σ(h−1)]−1 µ(h−1)

p† [Σ(h−1)]−1 p
(12)

and

M(θ(h)) =
(µ(h−1) − α(h)p)(µ(h−1) − α(h)p)† + Σ(h−1)

K + 1
. (13)

2) Centro-Hermitianity constraint: Centro-Hermitian is a
particular matrix structure, commonly satisfied by covariance
matrices encountered in many radar signal processing ap-
plications, e.g., radar systems utilizing standard rectangular,
hexagonal, uniform circular, or cylindrical array [33].

Enforcing this structure is tantamount to considering M
belonging to the following constraint set [43]

C =

{
M = JM∗J
M � 0

(14)

with J the N ×N permutation matrix given by

J =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

1 0 · · · 0 0

 . (15)

Following the same line of reasoning as in [44] and modeling
p as a persymmetric vector [45], i.e., p = Jp∗, the E-step (8)
can be recast as

Q
(
α,θ|α(h−1),θ(h−1)

)
= −(K + 1) [N ln(π) + ln(det(M(θ)))]

− tr
{
M(θ)−1[P + Σ

(h−1)
FB ]

} (16)

where

P =
1

2

[
(µ(h−1) − αp)(µ(h−1) − αp)†

+J
(

(µ(h−1) − αp)(µ(h−1) − αp)†
)∗
J
] (17)

and
Σ

(h−1)
FB =

1

2

[
Σ(h−1) + J

(
Σ(h−1)

)∗
J
]

(18)

which plays the role of a forward-backward (FB) averaged
estimator [33].

Expression (16) allows the computation of the optimizers
for the M-step in closed form as

α(h) =
p† [Σ

(h−1)
FB ]−1 µ(h−1)

p† [Σ
(h−1)
FB ]−1 p

(19)

and

M̂(θ(h)) =
P (h) + Σ

(h−1)
FB

K + 1
(20)

with

P (h) =
1

2

[
(µ(h−1) − α(h)p)(µ(h−1) − α(h)p)†

+J
(

(µ(h−1) − α(h)p)(µ(h−1) − α(h)p)†
)∗
J
]
.

(21)

3) General structured covariance matrix: For the case of an
arbitrary constraint set C, closed-form expressions for the joint
estimation of α and θ, as involved in each M-step, could not
be available. To this end, variations of the plain EM strategy
are demanded, for which the resulting update step is easier to
handle. Two relevant methods are analyzed in the following,
i.e., the ECM and M-EM [35], [36] which turn out to be very
useful when the marginal optimization of the E-step score
function over a single or sub-groups of unknowns can be
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conducted in closed form. In the former, which is a particular
GEM algorithm [35], [37], the E-step is given by (8), while
the M-step demands a sequence of conditional maximizations
(CM), where in each of them a parameter is optimized while
the others are held fixed. Formally, the CM over α is cast as

α(h) = argmax
α

Q
(
α,θ(h−1) | α(h−1),θ(h−1)

)
(22)

whose solution is given by (12), whereas

θ(h) = argmax
θ:M(θ)∈C

Q
(
α(h),θ | α(h−1),θ(h−1)

)
(23)

is the CM related to the parameter vector θ.

As to the M-EM procedure, each iteration consists of several
“cycles”, each focused on the optimization over a single
parameter. Specifically, in the m-th cycle of the i-th iteration,
the m-th variable is updated by maximizing the E-step score
function computed with respect to the currently available
parameters estimate. For the problem at hand, two cycles are
considered. In the first, the E-step is given by evaluating the
score function (6) at the point (α,θ(h−1)), i.e.,

Q
(
α,θ(h−1)|α(h−1),θ(h−1)

)
=

E[Lr(α,θ(h−1),H1)|z,Z,A,A1, . . . ,AK , α
(h−1),θ(h−1),H1]

(24)

whereas the M-step yields

α(h) = argmax
α

Q
(
α,θ(h−1)|α(h−1),θ(h−1)

)
(25)

with the optimal solution provided by (12).

As to the second, the E-step is cast as the score function (6)
evaluated at the point (α(h),θ) given the knowledge of α(h)

and θ(h−1), i.e.,

Q
(
α(h),θ | α(h),θ(h−1)

)
=

E[Lr(α(h),θ,H1)|z,Z,A,A1, . . . ,AK , α
(h),θ(h−1),H1]

(26)

while the M-step is given by

θ(h) = argmax
θ:M(θ)∈C

Q
(
α(h),θ | α(h),θ(h−1)

)
. (27)

A case study is analyzed in the following.

a) Constraint on the lower bound of the white noise
power level: Let us consider M belonging to the uncertainty
set

C =

M = σ2
nI +Re

Re � 0
σ2
n ≥ σ2

(28)

whereRe accounts for colored interference and clutter, σ2
n > 0

is the power of the white disturbance term, and σ2 > 0 is a
known lower bound on σ2

n.

Denoting by UΛΣU
† the eigenvalue decomposition (EVD)

of

Σ
(h−1)
1 =

(µ(h−1) − α(h)p)(µ(h−1) − α(h)p)† + Σ(h−1)

K + 1

and by λ̃v, v = 1, . . . , N , its eigenvalues, the Fast ML (FML)
procedure [39], [46] provides the solution to the optimization

problems (23) and (27), i.e.,

M̂(θ(h)) = UΛFMLU
† (29)

with
ΛFML = diag(λ1,FML, . . . , λN,FML) (30)

and λv,FML = max(λ̃v, σ
2), v = 1, . . . , N .

Remark: Unitary invariant constraints. In many practical
cases, the covariance matrix belongs to the feasible set of
covariance matrices defined via unitary invariant continuous
functions of the matrix entries [47]. Interestingly, many of
these uncertainty sets can be described in terms of convex
functions of the covariance matrix eigenvalues, paving the
way for the development of tailored solutions to the ML
estimation problems (23) and (27). However, even for some
non-convex uncertainty sets, efficient algorithms can still be
derived [47]. Uncertainty sets defined via unitary invariant
functions encompass those resulting from an upper bound
on the covariance condition number or a constraint on the
maximum number of uncorrelated interfering sources, just to
mention a few [47].

B. Decision rules
This subsection provides practical detectors stemming from3

the GLR [2] and AMF [3] design criteria. Specifically, the
following detectors are considered:

1) GLRT detector

τGLRT-EM =
fz(z,Z; θ̄1,A,A1, . . . ,AK ,H1)

fz(z,Z; θ̄0,A,A1, . . . ,AK ,H0)

H1

≷
H0

T (31)

where fz(·) represents the likelihood function of the
observations (under the appropriate hypothesis), θ̄0 =
[0, θ̂EM,0], θ̄1 = [α̂EM , θ̂EM,1] with θ̂EM,0 and θ̂EM,1

the estimates of θ under H0 and H1, respectively, pro-
vided by the bespoke EM-based procedures, and T is an
appropriate detection threshold4 set to ensure a desired
Pfa. Equation (31) is statistically equivalent to

τGLRT-EM =Lz(z,Z; θ̄1,A,A1, . . . ,AK ,H1)

− Lz(z,Z; θ̄0,A,A1, . . . ,AK ,H0)
H1

≷
H0

T
(32)

where, for h = 0, 1,

Lz(z,Z; θ̄h,A,A1, . . . ,AK ,Hh)

= log fz(z,Z; θ̄h,A,A1, . . . ,AK ,Hh)

= −

(
p+

K∑
i=1

pi

)
ln(π)− ln(det(AM(θ)AT))

− tr{(AM(θ)AT)−1Ch}

−
K∑
i=1

[
ln(det(AiM(θ)AT

i ))

+tr{(AiM(θ)AT
i )−1ziz

†
i }
]

(33)

3Notice that other sub-optimal criteria, such as Rao [25] and Wald [48]
tests, can be pursued as well.

4With a slight abuse of notation, the same symbol is used to denote the
detection threshold and its possible modifications introduced later, see, e.g.,
(32) and (34).
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with C0 = zz† and C1 = (z−α̂EMAp)(z−α̂EMAp)†.
2) AMF counterpart to (31), also referred to as two-step

GLRT (it computes the GLRT of the observed primary
data over the parameter α and then substitutes in the
resulting GLRT the estimate of the covariance parameters
obtained from the secondary data)

τAMF-EM =

∣∣∣∣z† (AM(θ̂EM,2)AT
)−1

Ap

∣∣∣∣2
p†AT

(
AM(θ̂EM,2)AT

)−1
Ap

H1

≷
H0

T (34)

where θ̂EM,2 indicates the estimate of θ obtained via the
EM algorithm fed by secondary data only.

IV. PERFORMANCE ANALYSIS

In this section, the effectiveness of the detectors devised to
counteract the presence of missing-data is assessed. Specifi-
cally, the observables (subjected to downstream information
loss mechanisms) are considered gathered by a radar system
employing a uniform linear array (ULA) pointing at the
boresight direction (θ0 = 0). The array comprises N = 16
antennas, unless otherwise stated, separated by dx = λ0/2,
with λ0 the radar operating wavelength. For each complete-
data snapshot, the information provided by the output of L = 3
randomly selected channels is assumed missed. Therefore,
each selection matrix (including A of the primary data and
Ai of the i-th secondary data snapshot, i = 1, . . . ,K) is
constructed removing, independently from the other snapshots,
L rows from the identity matrix, with the subset of L indexes
randomly picked up from {1, . . . , N} without replacement.

The performance of the detectors is analyzed in terms of PD
estimated via standard Monte Carlo counting techniques over
104 independent trials. Besides, the detection thresholds of the
receivers are set to guarantee Pfa = 10−4 and are evaluated
using 100/Pfa independent Monte Carlo trials.

In the reported case studies, the disturbance covariance
matrix is modeled as M = MJ +σ2

aI , where σ2
a is the noise

power level (assumed without loss of generality equal to 0 dB)
and

MJ =

JNB∑
l=1

σ2
l p(θl)p(θl)

† (35)

is the covariance contribution of JNB uncorrelated narrow-
band jammers, with

p(θl) = [1, ej
2π
λ0
dx sin(θl), . . . , ej(N−1)

2π
λ0
dx sin(θl)]T ∈ CN (36)

the steering vector in the direction θl of the l-th jammer and σ2
l

the power, or jammer to noise ratio (JNR) σ2
l /σ

2
a, of the l-th

jammer. Moreover, the complete-data SINR is defined as [5]

SINR = |α|2p†M−1p. (37)

Finally, denoting by z̃ and z̃i, i = 1, . . . ,K, the observed
primary and secondary data snapshots with missing values
replaced by zero-elements, the devised EM-based estimation
procedures are initialized with

α(0) =
p† S−11 z̃

p† S−11 p
(38)

and
θ(0) = S1 (39)

where5 S1 = 1/K
∑K
i=1 z̃iz̃

†
i .

The values of the system parameters involved in the ana-
lyzed case studies are summarized in Table I.

TABLE I
SIMULATION PARAMETERS.

Parameter L dx θ0 σ2
a JNR1 JNR2 θ1 θ2

Value 3 λ0/2 0◦ 1 30 dB 40 dB −10◦ 15◦

A. Unconstrained estimation

Fig. 1 reports the PD curves of the devised EM-based
detection strategies6 versus SINR for the case of unconstrained
interference covariance, with K = 48 and K = 64 in
Figs. 1(a) and 1(b), respectively. As benchmarks, the GLRT
and AMF detectors, with direct access to the complete-data set,
are included for comparison. Besides, two additional heuristic
counterparts, comprising the Kelly’s GLRT and AMF detectors
computed on a data set where the missing values are replaced
by linear interpolation (LI) (in the following referred to as
GLRT-LI and AMF-LI, respectively) are reported too (see
Appendix B for details).

The curves highlight that the devised procedures attain
almost the same PD levels, with performance comparable to
the benchmarks, i.e., a loss of 4 dB for K = 48 and smaller
than 2 dB for K = 64 at PD = 0.9. As expected, if the sample
support size increases, higher PD levels can be achieved, with
performance closer and closer to the benchmarks. The results
reveal that for the considered unstructured case, the devised
two-step as strategy is an effective and less computational
demanding detector compared with the GLRT architecture.
Indeed, it only requires the estimation of the covariance matrix
under H0. As to the LI-based methods, they achieve PD
levels far below the benchmarks, with a significant loss in
all the analyzed scenarios. This confirms the requirement to
develop appropriate detection procedures capable of dealing
with missing-data.

B. Centro-Hermitianity constraint

Fig. 2 presents the detection performance of the proposed
receivers assuming the uncertainty set (14) for a symmetric
ULA composed of N = 15 antennas, i.e.,

p(θ) = [ej
2π
λ0
x0 sin(θ), ej

2π
λ0
x1 sin(θ), . . . ,

ej
2π
λ0
xN−1 sin(θ)]T ∈ CN

(40)

where xi = dx
(
i−
(
N−1
2

))
, i = 0, 1, . . . , N − 1.

5It is worth noting that some selection matrix configuration can lead, with
non-zero probability, to a rank-deficient S1. The considered Monte Carlo
trials do not include such realizations.

6For covariance regularization purposes, a diagonal loading of 10−2 is
applied to M(θ̂EM,0), M(θ̂EM,1), and M(θ̂EM,2).
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Fig. 1. Detection performance for an ULA with N = 16 antennas and
unconstrained estimation. Different sample support sizes are considered, i.e.,
(a) K = 48 and (b) K = 64.

Specifically, two different sample support sizes are consid-
ered, i.e., K = 30 in Fig. 2(a) and K = 45 in Fig. 2(b).
For comparison purposes, tailored GLRT and AMF detec-
tors, leveraging the centro-Hermitianity (CH) structure for
the estimation of the covariance matrix, are reported, too.
Specifically, those computed on the complete-data set serve
as benchmarks, whereas those evaluated on the observed-data
set, with missing-data replaced by appropriately interpolated
values, are considered as counterparts.

Inspection of the results shows that the proposed detectors
ensure performance levels close to the benchmark with a
gap between the curves less than 2 dB at PD = 0.9 and
K = 30. This is an indirect proof that capitalizing on the
centro-Hermitian structure, accurate estimation of the un-
knowns could be obtained under both hypotheses, resulting in
improved detection performance even with a reduced number
of secondary data. Besides, both the devised one-step and two-
step strategies achieve similar performance levels, with PD
values closer and closer to the benchmark as K increases,
further corroborating the effectiveness of the bespoke de-
tectors. Summarizing, the proposed detectors outperform all

the considered (practically implantable) counterparts in the
analyzed scenarios, confirming the capabilities of the devised
adaptive architectures to operate in contexts with missing-data
and structured covariance matrix.

C. Lower bound of the white noise power level constraint

The performance of the devised detectors assuming a ULA
with N = 16 antennas and the uncertainty set (28) is
depicted in Fig. 3. Specifically, Figs. 3(a) and 3(b) consider
K = 24 and K = 48, respectively. The performance of two
GLRT detectors, using respectively the ECM and M-EM for
the estimation of the parameters under H1 hypothesis, are
analyzed. In addition, a tailored (covariance structure aware)
two-step receiver, using the EM-based structured procedure
devised in [23] for the covariance matrix estimation under the
H0 hypothesis and referred to in the following as AMF-EM-
FML, is also reported. Besides, the clairvoyant receiver, based
on a perfect knowledge of the covariance matrix, is considered
as benchmark.

The curves show that the devised architectures provide
detection probabilities quite close to the optimum, highlighting
the capabilities of the proposed detectors to leverage a-priori
knowledge about the covariance matrix structure to keep the
loss due to missing-data. The results are in line with the
centro-Hermitian case and confirm the intuition that a-priori
knowledge exploitation represents a viable means to perform
an improved adaptation process, especially in the presence
of missing observations. More specifically, for K = 24, the
loss with respect to the clairvoyant is less than 1 dB for
the AMF-EM-FML and less than 2 dB for the two GLRT-
based receivers. Besides, as K increases, the loss reduces
progressively more and more, as depicted in Fig. 3(b).

D. Analysis on measured data

In this subsection, the performance of the devised detectors
is analyzed on the measured data set collected in [49]. Specif-
ically, the test-bed used for the acquisition process consists
of
• a low-cost software defined radio (SDR) coherent re-

ceiver made up of four RTL-SDR dongles (based on the
RTL2832U chipset manufactured by Realtek [50]) that
share the same clock source;

• a standard personal computer, used to calibrate the de-
vices and run algorithms;

• a ULA comprising four dipole antennas with an inter-
element space of λ0/2.

The data recording process has been conducted in an anechoic
chamber using two SDR transmitters (each feeding a horn
antenna with an azimuth beamwidth of 90◦, at the considered
operating frequency 1 GHz) to mimic the presence of two
jammers occupying different spectral intervals and located at
θ1 = 0.5◦ and θ2 = 14.5◦, respectively [51].

In [49], the data set have been used to validate the effective-
ness of the covariance matrix estimator proposed in [23] on
measured data. Here, the measured data set is used to validate
the robustness to missing-data endowed by the proposed de-
tection strategies. To this end, 9 prospective point-like targets
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Fig. 2. Detection performance for a symmetric ULA with N = 15 antennas assuming the covariance matrix with a centro-Hermitian structure, see (14).
Different sample support sizes are considered, i.e., (a) K = 30 and (b) K = 45.
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Fig. 3. Detection performance for a ULA with N = 16 antennas assuming the uncertainty set in (28). Different sample support sizes are considered, i.e., (a)
K = 24 and (b) K = 48.

causing echo returns with a SINR of 20 dB are synthetically
simulated and injected in the dataset. The angle positions
and ranges of the considered targets are reported in Table II.
Furthermore, for the analyzed case studies, the missing-data
context is emulated considering a missing element at the
output of a channel (chosen at random) for each observed
snapshot.

TABLE II
TARGETS RANGE AND ANGLE LOCATIONS.

Range cell 30 40 78 85 120 145 180 245 280

Angle 7◦ 9◦ 9◦ 8◦ 9◦ 9◦ 8◦ 7◦ 9◦

Figs. 4 and 5 display the decision statistics of one-step and
two-step strategies versus time/range resolution cell index, for
a window of 300 bins. Besides, K snapshots, selected from
a distinct but homogeneous temporal window, are used as a

secondary data set. Fig. 4 report the behavior of the considered
detectors in the unstructured case, assuming K = 40. The
output of the GLRT-EM detector is depicted in Fig. 4(a),
whereas the output of the two-step counterpart strategy is
shown in Fig. 4(b). Inspection of the results clearly reveals
the presence of the targets, with peak levels higher than the
interference-only floor level. Precisely, the GLRT-EM exhibits
peaks greater than the floor of 2 dB in the worst case,
whereas 5 dB peak gains are reached by the AMF-EM. The
results corroborate the effectiveness of the proposed detectors
highlighting their robustness on measured data.

In Fig. 5, the analysis is conducted assuming a sample
support size of K = 24 and the covariance matrix belonging
to the uncertainty set in (28). Fig. 5(a) shows the one-step
decision strategies based on the ECM and M-EM meth-
ods (whose performance curves are substantially overlapped),
while the output of the AMF-EM-FML detector is illustrated
in Fig. 5(b).

As in the unstructured case, it is evident the presence of
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visible peaks located in correspondence of the targets range.
In particular, peak levels greater than interference-only floor
of at least 1 dB are reached by the two GLRT detectors (apart
from the target at 180 where the peak strength is about 0.5
dB), whereas the AMF-EM-FML detector provides peak gains
larger than 5 dB. The results highlight that also on measured
data reliable detection performance can be obtained with a re-
duced number of secondary data if bespoke a-priori structural
knowledge is exploited, corroborating the capabilities of the
devised detection strategies also on a measured data scenario.

V. CONCLUSION

In this paper, adaptive detection architectures accounting for
the presence of missing-data, have been proposed. Specifically,
the problem of detecting a potential target echo return buried
in Gaussian interference with a possibly structured covariance
is formulated as a composite hypothesis test. The problem is
handled via the GLR criterion, leading to the design of one-
step and two-step GLRT detectors, which require the maxi-
mization of proper likelihood functions. Leveraging specific
covariance structures, tailored estimation procedures relying
upon the EM framework are developed. Specifically, for some
covariance structures of practical interest, the optimization
procedures involve only closed-form solutions at each itera-
tion. Conversely, the case of a quite arbitrary constraint set is
addressed resorting to ECM and M-EM frameworks, yielding
more tractable optimization problems than classic EM strat-
egy. The performance of the devised detection strategies has
been assessed via Monte Carlo simulations for some a-priori
structural covariance models. The results have highlighted the
potentialities of the proposed detectors showing a performance
level comparable to the benchmarks, which assume access to
the entire set of observables. Besides, the effectiveness of the
detectors has been validated on measured data, collected in
a controlled environment using an inexpensive four-channel
receiver.

Future research studies might concern the extension of the
framework to the case of distributed (range-spread) targets,
the inclusion of other relevant covariance structures as well
as the generalization of the devised architectures to the par-
tially homogeneous and heterogeneous environment scenarios.
Finally, it would be of great interest to consider the case of a
multistatic radar where the different sensors observe the same
scene but the missing data are diverse from sensor to sensor.

APPENDIX

A. Closed-form expression of the score function (8)

Let us first rewrite equation (7) as

Lr(α,θ,H1) = −(K + 1) [N ln(π) + ln(det(M(θ)))]

− tr
{
M(θ)−1

[
rr† + |α|2pp† − 2R{αpr†}+ S

]}
.

(41)

It follows that

Q
(
α,θ|α(h−1),θ(h−1)

)
=

− (K + 1) [N ln(π) + ln(det(M(θ)))]

− tr
{
M(θ)−1

[
E[rr†|z,A, α(h−1),θ(h−1),H1]

+|α|2pp† − 2R{αpµ(h−1)†}+X(h−1)
]}

=

− (K + 1) [N ln(π) + ln(det(M(θ)))]− tr
{
M(θ)−1[

(µ(h−1) − αp)(µ(h−1) − αp)† + Σ(h−1)
]}

(42)

where

X(h−1) =

K∑
i=1

E[rir
†
i |zi,Ai,θ

(h−1)] (43)

and

Σ(h−1) = X(h−1) − µ(h−1)µ(h−1)†

+ E[rr†|z,A, α(h−1),θ(h−1),H1].
(44)

To proceed further, let us denote

B = [AT ĀT]T (45)

where Ā is the N − p × N selection matrix complementary
to A (obtained removing from I the p rows not removed in
the definition of A) and BTB = I . Hence [34],

µ(h−1) = BTE[Br|z,A, α(h−1),θ(h−1),H1]

= BT[zT, ζ(h−1)
T

]T
(46)

where

ζ(h−1) = E[Ār|z,A, α(h−1),θ(h−1),H1]

= ĀM(θ(h−1))AT(AM(θ(h−1))AT)−1(z − α(h−1)Ap)

+ α(h−1)Āp.

(47)

Besides,

E[rr†|z,A, α(h−1),θ(h−1),H1]

= BT E[Brr†BT|z,A, α(h−1),θ(h−1),H1]B.
(48)

As to the expectation term,

E[Brr†BT|z,A, α(h−1),θ(h−1),H1]

=

[
zz† zζ(h−1)

†

ζ(h−1)z† E
[
Ārr†ĀT|z,A, α(h−1),θ(h−1),H1

]] (49)

where

E
[
Ārr†ĀT|z,A, α(h−1),θ(h−1),H1

]
= G+ ζ(h−1)ζ(h−1)

†
(50)

with

G = ĀM(θ(h−1))ĀT − ĀM(θ(h−1))AT

(AM(θ(h−1))AT)−1AM(θ(h−1))ĀT.
(51)
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Fig. 4. Detection performance for a ULA with N = 4 antennas and unconstrained estimation assuming K = 40 secondary data. Target locations are indicated
by black dotted lines.
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Fig. 5. Detection performance for a ULA with N = 4 antennas assuming the uncertainty set in (28) and K = 24 secondary data. Target locations are
indicated by black dotted lines.

Therefore,

BTE[Brr†BT|z,A, α(h−1),θ(h−1),H1]B

= ATzz†A+ ĀTζ(h−1)z†A+ATzζ(h−1)
†
Ā

+ ĀT(G+ ζ(h−1)ζ(h−1)
†
)Ā

= (ATz + ĀTζ(h−1))(ATz + ĀTζ(h−1))† + ĀTGĀ.

(52)

Finally, denoting by Āi the N − pi × N selection matrix
defined similarly to Ā, equation (43) can be recast as

X(h−1) =

K∑
i=1

C
(h−1)
i (53)

where

C
(h−1)
i =(AT

i + Āi
T
Γi)ziz

†
i (A

T
i + Āi

T
Γi)
†

+ Āi
T
GiĀi

(54)

with

Γi = ĀiM(θ(h−1))AT
i (AiM(θ(h−1))AT

i )−1 (55)

and

Gi = ĀiM(θ(h−1))ĀT
i − ΓiAiM(θ(h−1))ĀT

i . (56)

B. Detailed expressions for LI-based detectors

In order to formally define the adopted LI procedure, let us
observe that given two vectors (x1, y1) and (x2, y2) belonging
to R2, the equation of the line connecting these two points is

y = y1 +
(y2 − y1)

x2 − x1
(x− x1). (57)

Hence, the value at a point x∗ can be predicted via interpola-
tion as

y∗ = y1 +
(y2 − y1)

x2 − x1
(x∗ − x1). (58)
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For the case at hand, based on the location x̂ of the missing el-
ement within the snapshot, the two points (x1, y1) and (x2, y2)
with closest spatial locations to x̂ are used to interpolate the
value at point x̂. For the two special cases when x̂ is located
at the beginning (the end) of the array, the sample points are
chosen as the first two (last two) elements of the observed-
data snapshot, respectively. Moreover, due to complex-valued
nature of the data, each missing element is estimated by lin-
early interpolating real and imaginary components separately.
Then, denoting by ži ∈ CN , i = 1, . . . ,K, the interpolated
secondary data snapshot, the following detectors, based on the
GLR and AMF criteria, respectively, can be implemented, i.e.,

τGLRT−LI =
1

1 + z†
(
AŠAT

)−1
z

∣∣∣z† (AŠAT
)−1

Ap
∣∣∣2

p†AT
(
AŠAT

)−1
Ap

(59)

and

τAMF-LI =

∣∣∣z† (AŠAT
)−1

Ap
∣∣∣2

p†AT
(
AŠAT

)−1
Ap

(60)

where Š =
∑K
i=1 ži ž

†
i .
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