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Abstract—The problem of adaptive radar detection with a
polarimetric Frequency Diverse Array Multiple-Input Multiple-
Output (FDA-MIMO) radar is addressed in this paper. At the
design stage, the target detection problem is formulated as a
composite hypothesis test, with the unknowns given by the target
angle, incremental range (target displacement with respect to the
center of the occupied range cell), and scattering matrix, as well
as the interference covariance matrix. The formulated detection
problem is handled by resorting to sub-optimal design strategies
based on the Generalized Likelihood Ratio (GLR) criterion. The
resulting detectors demand, under the H1 hypothesis, the solution
of a box-constrained optimization problem for which several
iterative techniques, i.e., the Linearized Array Manifold (LAM),
the Gradient Projection Method (GPM), and the Coordinate
Descent (CD) algorithms, are exploited. At the analysis stage,
the performance of the proposed architectures, which ensure
the bounded CFAR property, is evaluated via Monte Carlo
simulations and compared with the benchmarks in both white
and colored disturbance.

Index Terms—Polarimetric FDA-MIMO radar, target detec-
tion, array manifold linearization, coordinate descent algorithm,
gradient projection method.

I. INTRODUCTION

In recent decades, the detection of point-like targets ex-
ploiting polarimetric diversity techniques has been a popular
and extensively studied topic [1–7]. This interest is moti-
vated by the observation that multi-polarimetric measurements
might enhance the detection performance of the conventional
pulse-Doppler radars in challenging conditions where Doppler
discrimination is problematic. This is the case of Doppler
ambiguous targets, or targets that move slowly or tangentially
and are masked by the clutter environment. In [8], two adaptive
detectors based on the Generalized Likelihood Ratio Test
(GLRT) and the Wald test, respectively, accounting for the
presence of Gaussian clutter with unknown covariance matrix,
are derived by capitalizing on the polarization diversity and the
spillover of the target energy in consecutive range samples.
In [9], the target detection problem is addressed in the context
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of compound-Gaussian clutter with an unknown covariance
matrix, highlighting some interesting and promising improve-
ments on the detectability of small and slowly moving targets
in heavy heterogeneous clutter. Remarkably, the derived detec-
tor ensures the Constant False Alarm Rate (CFAR) property
with respect to (w.r.t.) the texture statistics [9]. Usually, in
the open literature, the design of detectors exploiting the
polarimetric domain has been mainly focused on traditional
single channel radars, phased array radars, and Multiple-Input
Multiple-Output (MIMO) architectures [5, 8, 10–13].

Due to the range-angle-dependent beampattern, achieved
via appropriate frequency shifts across the transmit antenna
elements [14–16], the Frequency Diverse Array (FDA)-MIMO
radar has recently received considerable interest from the
radar community [16–19]. This configuration provides several
benefits, such as the robustness to suppression of mainlobe de-
ceptive jammers [20], as well as improved multipath mitigation
performance compared with conventional MIMO systems [17].
As a matter of fact, the joint estimation of angle and range
has been widely investigated in FDA-MIMO with different
array configurations [21, 22], via the Maximum Likelihood
(ML) method [18, 23], compressive sensing approaches [24],
the Estimation of Signal Parameters via Rational Invariance
Techniques (ESPRIT) [25], and the Multiple Signal Classi-
fication (MUSIC) algorithm [26]. As to the detection task,
the assessment of the performance for a FDA-MIMO radar
has been analyzed in [27], assuming perfect knowledge of
target range and angle, as well as the interference covariance
matrix. Besides, in [28], the moving target detection problem
has been investigated with a FDA-MIMO radar operating in
a background of unknown Gaussian interference without any
requirement of training data.

Some attempts to extend the plain FDA-MIMO architecture
to incorporate polarimetric information have been also pursued
in the open literature [29–31], using arrays of dual polarized
antennas. In [29], the estimation of the target parameters,
i.e., angle, range, and scattering matrix, is accomplished
via the ESPRIT algorithm. Moreover, a sparse polarization
sensitive FDA-MIMO radar is introduced in [30], exploiting
co-prime frequency offsets to improve the range resolution
without affecting the maximum unambiguous range. To the
best of the authors’ knowledge, the target detection problem
with a polarimetric FDA-MIMO radar has only received a
limited attention. This motivates the study presented in this
paper, where the synthesis of adaptive detectors accounting
for a disturbance covariance matrix with unknown spectral
characteristics, is investigated. At the design stage, the target
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detection problem is formulated as a binary hypothesis test,
where the target parameters, i.e., angle, incremental range
within the radar cell [23, 32], and scattering matrix, along
with the interference covariance matrix, are assumed unknown.
Since a Uniformly Most Powerful (UMP) test cannot be
derived, some sub-optimal detection architectures based on the
GLRT and Two-Step GLRT (2SGLRT) criteria are proposed.
Their implementation demands the solution of an optimization
problem involving the concentrated log-likelihood functions
under the target presence hypothesis. To come up with some
practical detectors, the problem at hand is tackled in a sub-
optimal but effective way by means of three specific solution
techniques:

• the Linearized Array Manifold (LAM) method [33],
which solves an equivalent optimization problem lever-
aging a tailored linearization procedure to represent the
target steering vector as the superposition of the pointing
direction term plus two contributions that account for
the actual angle and incremental range offsets w.r.t. the
nominal array steering;

• the Gradient Projection Method (GPM) [34], which iter-
atively updates the unknown target location parameters,
in the concentrated log-likelihood function under the
alternative hypothesis, along the current ascent direction
(using either a constant stepsize or an adaptive one via
the backtracking procedure) from an initial guess until a
stationary point is reached;

• the Coordinate Descent (CD) procedure [35], composed
of an alternating sequence of one-dimensional (1-D)
searches (conducted over discretized intervals) w.r.t. one
target location parameter (either angle or incremental
range) while keeping the other fixed.

Besides, the bounded CFAR property as well as the computa-
tional complexity of the aforementioned GLRT-based detectors
are discussed. At the analysis stage, their detection perfor-
mance is compared with both benchmark and mismatched
receivers, which exploit the true and nominal target location
parameters, respectively, in white noise and clutter (mixed or
trees) environment. The results highlight that the proposed
radar architectures can achieve a better probability of detection
(Pd) than the counterparts (also including the single polar-
ization receiver), representing viable solutions for practical
implementations.

The paper is organized as follows. The signal model for
the polarimetric FDA-MIMO radar is presented in Section II.
In Section III, the detection problem for a polarimetric FDA-
MIMO radar is formulated. Section IV investigates optimiza-
tion strategies for the computation of GLRT-based detectors
and studies the bounded CFARness as well as the computa-
tional complexity of the derived algorithms. The performance
analysis is addressed in Section V, whereas conclusions are
drawn in Section VI.

Notations: Boldface is used for vectors x (lower case),
whose n-th entry is x(n), and matrices A (upper case),
whose entry in the m-th row and the n-th column is Am,n.
The transpose, the conjugate, and the conjugate transpose
operators are denoted by the symbols (·)T, (·)∗, and (·)†,

respectively. diag(x) indicates the diagonal matrix whose i-
th diagonal element is the i-th entry of x. I and 0 denote
respectively the identity matrix and the matrix with zero entries
(their size is determined from the context). CN , RN , CN×M

and HN are respectively the sets of N -dimensional vectors
of complex numbers, N -dimensional vectors real numbers,
N ×M complex matrices, and N × N Hermitian matrices.
For any A ∈ HN , A ⪰ 0 means that A is a positive
semidefinite matrix. The determinant and the trace of the
matrix A ∈ CN×N are indicated respectively with det (A)
and tr(A). For any x ∈ CN , ∥x∥ denotes its Euclidian norm,
whereas the spectral norm of a matrix A is indicated as ∥A∥.
⊙ and ⊗ represent the Hadamard (element-wise) product and
the Kronecker product, respectively. The letter j indicates the
imaginary unit (i.e. j =

√
−1). For any complex number z,

R(z), I(z), and |z| are used to denote the real part, imaginary
part, and the modulus of z, respectively. [a, b] indicates a
closed interval of R. For any real number y, the function
sign (y) = −1 if y < 0 and 1 if y ≥ 0. Besides, ∇x[f(·)]
denotes the gradient of f(·) with respect to x, with the partial
derivatives arranged in a column vector. C2 indicates the
class of functions with continuous second-order derivatives,
whereas C1,1

L denotes the class of functions with Lipschitz
gradient with constant L. Finally, E[·] denotes the statistical
expectation.

II. SIGNAL MODEL FOR POLARIMETRIC FDA-MIMO
RADAR

Let us consider a colocated FDA-MIMO radar consisting
of M transmit and N receive pairs of crossed dipoles, which
are placed in a uniform linear array configuration for both
transmission and reception on the xy-plane with array’s inter-
element spacing equal to d (see Fig. 1). An elliptical elec-
tromagnetic polarization for both the transmitted and received
signals [36] is considered. It is also assumed that a point-like
target is located in the far-field at the angle θt and range Rt

in the yz-plane.
For the FDA configuration, a frequency increment ∆f is

introduced at each crossed dipole composing the transmit
array, with the first one being the reference. As a consequence,
the carrier frequency at the m-th (m = 1, . . . ,M ) transmitting
crossed dipole is [32]

fm = f0 + (m− 1)∆f, m = 1, 2, . . . ,M, (1)

where f0 indicates the reference carrier. Besides, each element
transmits a specific base-band phase-modulated pulse com-
posed of P subpulses. The resulting complex envelope of the
Radio Frequency (RF) signal radiated by the m-th crossed
dipole can be expressed as

sm(t) =

√
Et

P
xm(t)ej2πfmt, 0 ≤ t ≤ Tp, (2)

with Et the transmitted energy, Tp the radar pulse duration,
and

xm (t) =
1

√
τb

P∑
p=1

φm (p)u

[
t− (p− 1) τb

τb

]
, m = 1, . . . ,M,

(3)
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Fig. 1: Illustration of the polarimetric FDA-MIMO radar system.
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Fig. 2: Signal processing chain at the n-th polarimetric receiver with multiple match-
filters.

where τb =
Tp

P , u(t) is the asymmetric rect function, i.e.,
u(t) = 1 as long as 0 ≤ t ≤ 1 and zero elsewhere, and
φm(p) = ejϕm(p), with ϕm(p) ∈ [0, 2π] the p-th entry of the
phase code on the m-th transmit array element.

A. Received Signal for Polarimetric FDA-MIMO radar

Let us consider the far-field target having a constant polari-

metric scattering matrix Σt =

[
ΣHH ΣVH

ΣHV ΣVV

]
∈ C2×2 over

the FDA-MIMO radar bandwidth, with Σrt, r, t ∈ {H,V} the
complex target scattering amplitude assuming a polarization
‘t’ on transmit and a polarization ‘r’ on receive1.

As shown in Fig. 2, the H and V components received
on the n-th polarimetric-spatial channel, i.e., yn (t, θt) =[
yHn (t, θt) , y

V
n (t, θt)

]T ∈ C2, n = 1, . . . , N , are firstly multi-
plied by e−j2πf0t, and then processed through a bank of M
matched filters hl(t) = x∗

l (−t) ej2π∆f(l−1)t (l = 1, . . . ,M ).
Moreover, after sampling at the range gate of interest and
under some mild technical conditions (see Appendix A of [32]
for the single polarization case), the received polarimetric
signal from the target can be expressed as a 2MN × 1-

1For co-polarized channels r = t, and for cross-polarized channels r ̸= t.
For a reciprocal medium (e.g., no Faraday rotation of polarization), ΣVH =
ΣHV [37].

dimensional vector2

yS(θt,∆τ) =
[
ỹT
1,1 (t

⋆, θt) , . . . , ỹ
T
1,M (t⋆, θt) , . . . ,

ỹT
N,1 (t

⋆, θt) , . . . , ỹ
T
N,M (t⋆, θt)

]T
= α⊗ (b (θt)⊗ [c (θt)⊙ a (∆τ)])

= α⊗ s(θt,∆τ),

(4)

where3

• t⋆ = τ0+∆τ denotes the time instant when the data from
the CUT are collected, with ∆τ the unknown incremental
delay w.r.t. the sampling time associated with the target
range cell [32] and τ0 = 2Rt

c the envelope time delay,
respectively;

• ỹn,l (t
⋆, θt) =

[
ỹHn,l (t

⋆, θt) , ỹ
V
n,l (t

⋆, θt)
]T

∈ C2, l =

1, . . . ,M, n = 1, . . . , N , is obtained by filtering the out-
put of the n-th polarimetric channels (after multiplication
by e−j2πf0t) with the l-th matched filter and sampling the
resulting signal in the Cell Under Test (CUT);

• α = Σte
√

(Et/P ) ∈ C2;
• e = [EH, EV]

T ∈ C2, with EH and EV the horizontal
and vertical components of the electric field impinging
on the target, respectively;

• s(θt,∆τ) = b (θt) ⊗ [c (θt)⊙ a (∆τ)]∈ CMN the
transmit-receive steering vector;

• b (θt) =
[
1, ej2π

d
λ0

sin(θt), . . . , ej2π
d
λ0

(N−1) sin(θt)
]T
∈ CN

the angle-dependent receive steering vector, with λ0 = c
f0

the reference carrier wavelength;
• c (θt) = RTd (θt) ∈ CM the angle-dependent transmit

steering vector;
• R ∈ CM×M is the transmit waveforms correlation

matrix, i.e., Rm,l =
∫ Tp

0
xm (s)x∗

l (s)ds, (m, l) ∈
{1, ...,M}2;

• d (θt) =
[
1, ej2π

d
λ0

sin(θt), . . . , ej2π
d
λ0

(M−1) sin(θt)
]T
∈ CM

the angle-dependent transmit steering vector;
• a (∆τ) =

[
1, ej2π∆f∆τ . . . , ej2π∆f(M−1)∆τ

]T ∈ CM

the range-dependent steering vector.
Furthermore, letting u = sin (θt) and δ = 2∆f∆τ (satisfy-

ing |δ| ≤ ∆f
B ), s(θt,∆τ) can be further expressed as [23, 32]

s(θt,∆τ) = s(u, δ)

= b (u)⊗ [c (u)⊙ a (δ)] ,
(5)

where
• b (u) =

[
1, ej2π

d
λ0

u, . . . , ej2π
d
λ0

(N−1)u
]T

∈ CN ;

2It is worth mentioning that FDA-MIMO radars generalize MIMO, and
hence Frequency Division Multiplexing (FDM)-MIMO, architectures, since
any MIMO signalling can be framed as FDA-MIMO waveform with a zero
frequency-offset, i.e., ∆f = 0. That said, to the best of Authors’ knowledge,
the main advantage of the FDA-MIMO is represented by its capability
to embed in a simple way information on the actual target location into
the data observed at the never ideal sampling time. Indeed, FDA-MIMO
directly accounts for the unavoidable sampling time mismatches via the
phase offsets on the different carriers imprinted on the probing waveforms.
Such an exploitation is potentially feasible with an arbitrary set of MIMO
waveforms, but would demand a deep comparison between the samples
extracted on the different channels and the correlation matrix function of the
actual transmitted signals, which is generally quite difficult to realize from a
practical prospective.

3Note that the vector α can be also expressed in terms of the polarization
auxiliary angle and phase difference [4, 38].
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• c(u) = RTd(u) ∈ CM ;

• d(u) =
[
1, ej2π

d
λ0

u, . . . , ej2π
d
λ0

(M−1)u
]T

∈ CM ;

• a (δ) =
[
1, ejπδ . . . , ejπ(M−1)δ

]T ∈ CM .

Hence, defining the steering matrix H(u, δ) =[
s(u, δ) 0

0 s(u, δ)

]
∈ C2MN×2, the useful polarimetric

target echo (4) can be recast as

yS(u, δ) = α⊗ s(u, δ) = H(u, δ)α. (6)

III. FORMULATION OF THE DETECTION PROBLEM FOR
POLARIMETRIC FDA-MIMO RADAR

This section investigates the problem of detecting a prospec-
tive target using a radar system equipped with a polarimetric
FDA-MIMO. Let us define the received observation vector
from the CUT (under the target presence) as r ∈ C2MN ,
which contains the superposition of the polarimetric echo
signal (6) of a prospective target and the interference plus
noise contribution [39, 40]. Therefore, it can be cast as

r = H(u, δ)α+m, (7)

where u, δ, and α are regarded as unknown parameters and
m ∈ C2MN is modeled as a zero-mean complex circularly
symmetric Gaussian random vector, i.e., m ∼ CN (0,M),
with M ∈ H2MN the positive definite polarimetric covariance
matrix of the interference plus noise term. Let us also assume
that a set of K ≥ 2MN secondary data rk ∈ C2MN ,
k = 1, 2, . . . ,K, free of useful target returns and with
the same spectral characteristics as the interference from
the CUT (homogeneous environment)4, i.e., E[rkr†k] = M ,
k = 1, 2, . . . ,K, is available. As a consequence, the target
detection problem can be formulated as a binary hypothesis
test where the null hypothesis H0 indicates the situation of
target absence and H1 represents the alternative, i.e.,

H0 :

{
r = m

rk = mk, k = 1, 2, . . . ,K

H1 :

{
r = H(u, δ)α+m

rk = mk, k = 1, 2, . . . ,K

. (8)

Notably, the joint probability density functions (PDFs) of the
observations under H0 and H1 are respectively given by

f(r, r1, . . . , rK |M ;H0)

=

{
1

π2MN det (M)
e−tr(M−1R0)

}K+1 (9a)

and

f(r, r1, . . . , rK |α, u, δ,M ;H1)

=

{
1

π2MN det (M)
e−tr(M−1R1)

}K+1

,
(9b)

4It worth mentioning that often a data selection stage of the rk is also
foreseen. This preprocessing is aimed at censoring from the training set data
vectors containing possible outliers (sources of deviations from homogeneous
assumption). The interested reader can refer to [41–43].

with R0 and R1 defined as

R0 =

rr† +
K∑

k=1

rkr
†
k

K + 1
(10a)

and

R1 =

(r −H(u, δ)α)(r −H(u, δ)α)† +
K∑

k=1

rkr
†
k

K + 1
. (10b)

Invoking the Neyman-Pearson framework [44], the opti-
mal solution to the hypothesis testing problem (8), i.e., the
Likelihood Ratio Test (LRT), cannot be implemented due to
the unknowns α, u, δ, and M . In this respect, some sub-
optimal and practically implementable architectures, based on
the subspace GLRT [45] and 2SGLRT [46] frameworks, are
proposed in subsection III-A and III-B, respectively.

A. Detection with GLRT
In this subsection, the design of a detector based on sub-

space GLRT framework [47] is investigated. In particular, the
GLRT over the unknowns computes the decision statistic

ΛGLRT =

max
α,u∈A,δ∈B,M

f(r, r1, . . . , rK |α, u, δ,M ;H1)

max
M

f(r, r1, · · · , rK |M ;H0)
,

(11)
where, according to [23], A denotes the uncertainty set asso-
ciated with u, i.e., [−1, 1], and B that on δ, i.e.,

[
−∆f

B , ∆f
B

]
.

Maximizing both the numerator and the denominator of (11)
over M yields (according to standard argumentation) [45]

τGLRT =

1 + r†S−1r

1 + min
α,u∈A,δ∈B

(r −H(u, δ)α)†S−1 (r −H(u, δ)α)

H1

≷
H0

ξ,

(12)

where S =
K∑

k=1

rkr
†
k ∈ C2MN×2MN and ξ denotes the de-

tection threshold, set to ensure the desired probability of false
alarm (Pfa). Letting for notation simplicity H(u, δ) = H ,
replacing α with its ML estimate yields

1 + r†S−1r

1 + r†S−1r − max
u∈A,δ∈B

g(u, δ)

H1

≷
H0

ξ, (13)

where5

g(u, δ) = r†S−1H
[
H†S−1H

]−1
H†S−1r. (14)

Evidently, (13) is statistically equivalent to

τGLRT =
1

1 + r†S−1r
max

u∈A,δ∈B
g(u, δ)

H1

≷
H0

ξ. (15)

B. Detection with 2SGLRT
In this subsection, using the conventional approach of

assuming the interference covariance matrix known at the

5With some abuse of notation, the same ξ is used to denote the different
detection thresholds for both the GLRT and the 2step-GLRT decision statis-
tics (12), (13), (15), (19), (20), (22), and (23).
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design stage, an Adaptive Matched Filter (AMF)-like detector
(also known as the 2SGLRT) is derived. Precisely, the GLRT
decision statistic for known covariance matrix is given by [46]

Λ =

max
α,u∈A,δ∈B

f̄(r|α, u, δ,M ;H1)

f̄(r|M ;H0)
, (16)

where

f̄(r|M ;H0) =
1

π2MN det (M)
e−r†M−1r (17a)

and

f̄(r|α, u, δ,M ;H1)

=
1

π2MN det (M)
e−(r−H(u,δ)α)†M−1(r−H(u,δ)α).

(17b)

Hence, substituting the ML estimate of the unknown α, i.e.,

α̂ =
[
H†M−1H

]−1
H†M−1r. (18)

into (16), the following decision rule is obtained

τ2SGLRT =

max
u∈A,δ∈B

r†M−1H
[
H†M−1H

]−1
H†M−1r

H1

≷
H0

ξ.
(19)

Finally, using the sample covariance matrix M̂ = 1
KS in lieu

of M yields

τ2SGLRT = max
u∈A,δ∈B

g(u, δ)
H1

≷
H0

ξ. (20)

IV. OPTIMIZATION PROBLEM (20)

This section is devoted to the development of some opti-
mization strategies to handle

max
u∈A,δ∈B

g(u, δ), (21)

namely, to compute the ML estimate of the target location
parameters under the H1 hypothesis. To this end, let us pre-
liminary observe that (21) falls in the class of box-constrained
optimization problems. Moreover, an approximated solution
based on a 2-D grid search is characterized by a high and
often impractical computational cost if the grid size is suffi-
ciently dense to get a close to optimum objective value. This
motivates the design of some optimization methods pursuing
reduced-complexity sub-optimal solutions. In this regard, three
strategies are developed:

1) the LAM procedure [33];
2) the GPM [34];
3) the CD Method [35].
Denoting by (û, δ̂) the estimate of the unknowns using

one of the aforementioned LAM, GPM, and CD methods, it
follows that the actual decision rules, based on the GLRT and
2SGLRT criteria, are given by

τGLRT =
1

1 + r†S−1r
g(û, δ̂)

H1

≷
H0

ξ (22)

and

τ2SGLRT = g(û, δ̂)
H1

≷
H0

ξ, (23)

respectively.

A. Linearized Array Manifold (LAM) Method

Resorting to the array manifold linearization approach
proposed in [33], a sub-optimal and approximated solution
method to the optimization problem in (21) is derived. To this
end, let us observe that (21) is equivalent to

min
α,u∈A,δ∈B

(r −H(u, δ)α)†S−1(r −H(u, δ)α), (24)

namely, given a maximizer u⋆
1, δ

⋆
1 of (21), an optimal solution

to (24) is given by

α⋆
2 =

[
H(u⋆

1, δ
⋆
1)

†S−1H(u⋆
1, δ

⋆
1)
]−1

H(u⋆
1, δ

⋆
1)

†
S−1r,

(25a)
u⋆
2 = u⋆

1, (25b)

δ⋆2 = δ⋆1 . (25c)

In a similar manner, given the minimizer α⋆
2, u

⋆
2, δ

⋆
2 of (24),

an optimal solution to (21) is u⋆
1 = u⋆

2 and δ⋆1 = δ⋆2 .
Now, given the nominal angle and incremental range ū and

δ̄, the actual mismatch w.r.t. the true target parameters values
can be accounted by performing a tailored linearization of
the array steering matrix H(u, δ) around ū and δ̄. To this
end, denoting by (∆u,∆δ) the angle and range offsets, i.e.,
∆u = u − ū, ∆δ = δ − δ̄, the array steering matrix can be
approximated at the first order as

Ha(∆θ) = Ha(∆u,∆δ)

≃ H(ū, δ̄) +
∂H(u, δ)

∂u

∣∣∣∣
(ū,δ̄)

∆u+
∂H(u, δ)

∂δ

∣∣∣∣
(ū,δ̄)

∆δ

= H̄ + H̄u∆u+ H̄δ∆δ,
(26)

with ∆θ = [∆u,∆δ]T ∈ R2. Detailed expressions for Hu =
∂H(u,δ)

∂u and Hδ = ∂H(u,δ)
∂δ are reported in Appendix A.

Hence, resorting to the linearization procedure, an optimized
solution to (24) can be obtained solving

min
α,∆θ∈C

(r −Ha(∆θ)α)†S−1(r −Ha(∆θ)α), (27)

where C = [−κ, κ] × [−ρ, ρ], with κ = 1 and ρ = ∆f
B ,

is the nonempty and compact feasible set6. In this respect,
a CD-based procedure is proposed to solve the optimization
problem (27) by alternatively optimizing α and ∆θ up to
convergence. In the following, the analytical solutions to the
resulting optimization problems, at the h-th iteration, are
derived.

a) Optimization w.r.t. α.
At the h-th iteration, the optimization problem w.r.t. α
is given by

min
α

(r −Ha(∆θ(h−1))α)†S−1

(r −Ha(∆θ(h−1))α),
(28)

6Note that the accuracy of the approximation can be improved considering
a partition of the original feasible set C into D subsets, Ci, i = 1, . . . , D, and
performing the linearization of the steering matrix around different nominal
points (ūi, δ̄i), i = 1, . . . , D, each associated to a specific uncertainty set
Ci, i = 1, . . . , D.
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whose optimal solution is

α(h) =
(
H†

a

(
∆θ(h−1)

)
S−1Ha

(
∆θ(h−1)

))−1

H†
a

(
∆θ(h−1)

)
S−1r.

(29)
b) Optimization w.r.t. ∆θ.

At the h-th iteration, the optimization w.r.t. ∆θ yields

min
|∆u|≤κ
|∆δ|≤ρ

(r − (H̄ + H̄u∆u+ H̄δ∆δ)α(h))†S−1

(r − (H̄ + H̄u∆u+ H̄δ∆δ)α(h))

= min
∆θ∈C

(r̃ − H̃∆θ)†S−1(r̃ − H̃∆θ)

= min
∆θ∈C

(r̂ − Ĥ∆θ)†(r̂ − Ĥ∆θ),

(30)

where
• r̃ = r − H̄α(h);
• H̃ =

[
H̄uα

(h), H̄δα
(h)

]
;

• r̂ = S−1/2r̃;
• Ĥ = [ĥu, ĥδ] = S−1/2H̃ .

The following proposition provides an optimal point to (30).
Proposition 1: An optimal solution ∆θ(h) to (30) is

∆θ1 =
[
R{Ĥ†Ĥ}

]−1

R{Ĥ†r̂} (31)

if it is feasible. Otherwise, it can be computed as

∆θ(h) = argmin
∆θ∈{∆θi}5

i=2

(r̂ − Ĥ∆θ)†(r̂ − Ĥ∆θ), (32)

where ∆θi, i = 2, . . . , 5 are candidate solutions given by

∆θ2 = [κ,∆δ∗+]
T, ∆θ3 = [−κ,∆δ∗−]

T,

∆θ4 = [∆u∗
+, ρ]

T, ∆θ5 = [∆u∗
−,−ρ]T,

(33)

with

∆u∗
± = min

(
κ,max

(
R{(r̂† − ĥ†

δ(±ρ)) ĥu}
∥ĥu∥2

,−κ

))
(34)

and

∆δ∗± = min

(
ρ,max

(
R{(r̂† − ĥ†

u(±κ)) ĥδ}
∥ĥδ∥2

,−ρ

))
. (35)

Proof: See Appendix B.
A summary of the devised procedure to determine a solution

to (27) is reported in Algorithm 1, where the exit condition
is set as |P (h) − P (h−1)| < ε1, with ε1 > 0 and

P (h) =(r −Ha(∆θ(h))α(h))†S−1

(r −Ha(∆θ(h))α(h)).
(36)

Now, given the output of Algorithm 1, an estimate of the
target angle and incremental range can be obtained as ũLAM =
ū + ∆u⋆ and δ̃LAM = δ̄ + ∆δ⋆, respectively, with ∆u⋆ and
∆δ⋆ the resulting mismatch estimates w.r.t. the nominal values
ū and δ̄, respectively. However, [ũLAM, δ̃LAM]T could not be a
feasible solution to (21). To this end, the final estimate of the
target location parameters undergoes a projection in the feasi-

ble set by ĥLAM =
[
ûLAM, δ̂LAM

]T
= PC

(
[ũLAM, δ̃LAM]T

)
,

where PC is the projection operator onto the constraint set C,

Algorithm 1 FDA-LAM
Input: r,S, ū, δ̄, κ, ρ, ε1.
Output: ĥLAM.

1. Set h = 0, ∆θ(h) = [∆u(h),∆δ(h)]T = 0,
P (h) = ∞.

2. repeat
3. h = h+ 1;
4. Compute α(h) via (29);
5. Compute ∆θ(h) via Proposition 1;
6. Evaluate

P (h) = (r −Ha(∆θ(h))α(h))†S−1(r −Ha(∆θ(h))α(h))

7. until |P (h) − P (h−1)| < ε1.
8. ∆θ⋆ = [∆u⋆,∆δ⋆]T = ∆θ(h)

9. Output ĥLAM = PC
(
[ū+∆u⋆, δ̄ +∆δ⋆]T

)
.

i.e.,

PC

(
[ũ, δ̃]T

)
=

[
min {max {ũ,−κ} , κ}
min

{
max

{
δ̃,−ρ

}
, ρ
} ]

, ũ, δ̃ ∈ R.

(37)

B. Gradient Projection Method (GPM)

A procedure to tackle the maximization problem (21) is de-
vised resorting to an ascent direction method. Specifically, an
estimate of h could be computed iteratively via the projected
gradient technique [34]. Accordingly, at the k-th iteration,
an updated estimate is obtained moving from the previously
estimated point hk−1 along the current ascent direction (given
by the gradient evaluated at hk−1) and then projecting the
resulting point onto the considered convex set C. Precisely,

hk = PC (hk−1 + ηkg△(hk−1)) , (38)

where
• h0 ∈ R2 is the initial vector;
• hk−1 = [uk−1, δk−1]

T ∈ R2 with uk−1 and δk−1 the
estimates at the (k − 1)-th iteration;

• ηk the step size;

• g△(hk−1) =
[
∂g(u,δ)

∂u , ∂g(u,δ)
∂δ

]T∣∣∣∣
(uk−1,δk−1)

the gradient

of g(u, δ) evaluated at uk−1 and δk−1 (see Appendix C
for its computation);

• PC is defined as in (37).
Note that ηk can be either a constant stepsize η̄ ∈ (0, 2

L ),
with L the smallest Lipschitz constant for g(h) = g(u, δ),
or chosen adaptively by means of the backtracking proce-
dure [34], i.e.,{

ηconsk = η̄, constant stepsize
ηbackk = sβik , backtracking , (39)

where ik the smallest nonnegative integer satisfying

g(h̃(ik))− g(hk−1) ≥ ζsβik

∥∥∥∥G 1

sβik

(hk−1)

∥∥∥∥2 , (40)

with s > 0, ζ ∈ (0, 1), and β ∈ (0, 1) algorithm tuning
parameters,

h̃(ik) = PC
(
hk−1 + sβikg△(hk−1)

)
(41)
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Algorithm 2 FDA-GPM
Input: r,S, ū, δ̄, s, β, ζ, ε2.
Output: ĥGPM.

1. Set k = 0, hk = h0 = [ū, δ̄]T.
2. repeat
3. k = k + 1;
4. Update ηk using either a constant or adaptive (via

backtracking strategy) stepsize (39);
5. Compute hk via (38);
6. until ∥hk − hk−1∥ < ε2.

7. Output ĥGPM =
[
ûGPM, δ̂GPM

]T
= hk.

and
Gκ(h) = κ

[
h− PC

(
h+

1

κ
g△(h)

)]
(42)

the gradient mapping with κ > 0.
Algorithm 2 summarizes the gradient projection procedure,

where the exit condition is set as ∥hk − hk−1∥ < ε2, with
ε2 > 0. Besides, the resulting estimate is denoted by ĥGPM =[
ûGPM, δ̂GPM

]T
.

Remark 1. Before concluding this subsection, the conver-
gence of the GPM is examined via the following lemma [34,
Th. 9.14], reformulated for the case of a maximization prob-
lem.

Lemma 4.1: Consider the optimization problem

P

{
max g(h)

s.t. h ∈ C
, (43)

where g(h) ∈ C1,1
L is bounded above and C is a closed

and convex set. Let {hk}k≥0 be the sequence generated by
the GPM w.r.t. problem P using either constant or adaptive
(backtracking) stepsize. Then

• the sequence {g(hk)}k≥0 is nondecreasing and g(hk) >
g(hk−1) unless hk−1 is a stationary point of P;

• any limit point h⋆ of {hk}k≥0 is a stationary point of P .
■

Exploiting the above result, the convergence of Algorithm 2
to a stationary point of problem (21) is guaranteed, provided
that g(u, δ) ∈ C1,1

L (see Appendix D for the detailed proof).

C. Coordinate Descent (CD) Method

The CD method [35, 48] is an iterative procedure that
exploits a series of 1-D searches, with one variable optimized
at a time while keeping the other constant. Precisely, the
searches w.r.t. u and δ are respectively conducted over Iu
and Iδ (corresponding to the discretized versions of A and
B with (Nu + 1) and (Nδ + 1) points, respectively), defined
as [23]

Iu =

{
−1 +

2i

Nu
, i = 0, . . . , Nu

}
(44a)

and

Iδ =

{
−∆f

B
+

2i

Nδ

∆f

B
, i = 0, . . . , Nδ

}
. (44b)

Algorithm 3 FDA-CD
Input: r, S, ū, δ̄, Iu, Iδ , ε3.
Output: ĥCD.

1. Set k = 0, ûk = ū, δ̂k = δ̄, gk = g(ûk, δ̂k)
2. repeat (optimization for initial search direction given by

u)
3. Find ûk+1 = argmax

u∈Iu

g(u, δ̂k);

4. Find δ̂k+1 = argmax
δ∈Iδ

g(ûk+1, δ) and set gk+1 as the

corresponding maximum value;
5. k = k + 1;
6. until |gk − gk−1| < ε3;
7. gx = gk ; ûx = ûk ; δ̂x = δ̂k;
8. Set k = 0;
9. repeat (optimization for initial search direction given by

δ)
10. Find δ̂k+1 = argmax

δ∈Iδ

g(ûk, δ);

11. Find ûk+1 = argmax
u∈Iu

g(u, δ̂k+1) and set gk+1 as the

corresponding maximum value;
12. k = k + 1;
13. until |gk − gk−1| < ε3;
14. gy = gk ; ûy = ûk ; δ̂y = δ̂k;
15. if gx > gy

16. Output ĥCD =
[
ûCD, δ̂CD

]T
= [ûx, δ̂x]

T.
17. else
18. Output ĥCD =

[
ûCD, δ̂CD

]T
= [ûy, δ̂y]

T.
19. end

Remarkably, since the order of the optimization could lead
to different solutions, both the instances of optimizing first u
and then over δ, and first δ and then over u, are implemented,
with the optimal estimate chosen between the resulting two
solutions.

Denoting by gk = g
(
ûk, δ̂k

)
and setting the nominal values

as initial estimates, i.e., û0 = ū and δ̂0 = δ̄, u and δ can be
updated according to Algorithm 3, where the exit condition is
set as |gk−gk−1| < ε3, with ε3 > 0. Hence, the final solution

using the CD method is obtained as ĥCD =
[
ûCD, δ̂CD

]T
.

Note that for any initial search direction, i.e., along the u
or δ domain, the CD approach (starting from the second itera-
tion) coincides with the Maximum Block Improvement (MBI)
policy [49]. Therefore, invoking the convergence properties
of MBI [49–51], any limit point resulting from Algorithm 3
(assuming an exact optimization at each step) is a stationary
point to Problem (21), although its convergence to the optimal
value cannot be claimed [35].

D. Bounded CFARness Analysis of the Derived Detectors and
Computational Complexities

In this subsection, the bounded CFAR property of the pro-
posed detection architectures is studied. First of all, from (12)
it is straightforward to see that the GLRT decision statistic is
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Fig. 3: Detection performance for white noise, assuming K = 320 and the parameters of Table I. Fig. (a) considers the GLRT-based detectors, whereas Fig. (b) reports the
2SGLRT-based counterparts.

upper bounded by a CFAR detector, i.e.,

τGLRT ≤ 1 + r†S−1r = τCFAR. (45)

Similarly, with reference to the 2SGLRT detector (20), the
following inequality applies, i.e.,

1 + τ2SGLRT ≤ τCFAR. (46)

As a consequence, the devised decision architectures ensure
the bounded CFAR property, i.e.,

Pfa,GLRT =Pr(τGLRT > ξ|H0)

≤ Pr(τCFAR > ξ|H0),
(47)

and
Pfa,2SGLRT =Pr(τ2SGLRT+1 > ξ|H0)

≤ Pr(τCFAR > ξ|H0).
(48)

Hence, for each considered decision strategies, it is always
possible to set a universal threshold ξ (based on just the system
parameters) for which Pr(τCFAR > ξ|H0) achieves a desired
upper bound P̄fa to the actual Pfa. Evidently, this property
holds true also for an approximated implementation of the
decision statistics in (12) and (20), when possible sub-optimal
solution methods are employed to estimate the unknown target
parameters α, u, and δ.

Finally, as long as the number of iterations involved in the
three optimization procedures keeps quite limited, the com-
putational complexity is dominated by the evaluation of the
sample covariance matrix S, which demands O

(
M2N2K

)
operations, regardless of the adopted optimization strategy.

V. SIMULATION RESULTS

In this section, numerical examples are provided to evaluate
the performance of the proposed target detection methods
for the polarimetric FDA-MIMO radar. In the following,
orthogonal baseband signals are assumed, i.e., R = I .

The Pd is used as figure of merit to assess the detection
performance, which is estimated resorting to 1000 independent
Monte Carlo (MC) runs assuming a Pfa = 10−4. Besides, the
detection thresholds are computed using 100/Pfa independent

trials. The SINR is defined as

SINR = E[α†H†M−1Hα] = γ2tr(ΣtH
†M−1H), (49)

where E[αα†] = γ2Σt, with Σt =

[
1 ϵt

√
δt

ϵ∗t
√
δt δt

]
∈

C2×2 and γ rules the target strength, respectively. Besides, in
the reported results it is assumed that α ∼ CN (0, γ2Σt). The
parameters involved in the simulations are listed in Table I,
including both the nominal and the actual target angle and
incremental range.

Two benchmark detectors (devised assuming a perfect
knowledge of H and resorting to the GLRT and 2SGLRT
decision statistics, respectively) are considered for comparison
purposes, i.e.,

Λben−GLRT(u, δ) =

1

1 + r†S−1r
r†S−1H

[
H†S−1H

]−1
H†S−1r

(50)

and

Λben−2SGLRT(u, δ) = r†S−1H
[
H†S−1H

]−1
H†S−1r.

(51)
Besides, two additional decision strategies, respectively based
on the GLRT and 2SGLRT criteria and using the nominal
values of u and δ (thus referred to as mismatched detectors),
i.e.,

Λmis−GLRT(ū, δ̄) =

1

1 + r†S−1r
r†S−1H̄

[
H̄†S−1H̄

]−1
H̄†S−1r

(52)

and

Λmis−2SGLRT(ū, δ̄) = r†S−1H̄
[
H̄†S−1H̄

]−1
H̄†S−1r.

(53)
are also included. Moreover, the single polarization (SP)
counterparts of (50), (51), (52), and (53), exploiting the data
received by the HH channels, are also reported. Their decision
statistics are respectively given by

Λben−GLRT−SP =

∣∣s† (u, δ)S−1r
∣∣2

(1 + r†S−1r) s† (u, δ)S−1s (u, δ)
, (54)
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TABLE I: Simulation Parameters of the FDA-MIMO Radar

Parameter Value Parameter Value
transmit elements M 4 receive elements N 10

bandwidth B 1 MHz frequency increment ∆f 0.5 MHz
angle of the target u 0.891

2(N+M)
incremental range of the target δ 0.6∆f

2B

nominal angle of the target ū 0 nominal incremental range of the target δ̄ 0
target polarimetric parameter ϵt 0.28 target polarimetric parameter δt 1

Λben−2SGLRT−SP =

∣∣s† (u, δ)S−1r
∣∣2

s† (u, δ)S−1s (u, δ)
, (55)

Λmis−GLRT−SP =

∣∣s† (ū, δ̄)S−1r
∣∣2

(1 + r†S−1r) s†
(
ū, δ̄

)
S−1s

(
ū, δ̄

) , (56)

and

Λmis−2SGLRT−SP =

∣∣s† (ū, δ̄)S−1r
∣∣2

s†
(
ū, δ̄

)
S−1s

(
ū, δ̄

) . (57)

In the considered simulations, the parameters ε1, ε2, and
ε3, involved in Algorithms 1, 2, and 3, respectively, are set as
ε1 = ε2 = ε3 = 10−4. For Algorithm 2, s = 1, β = 0.5, ζ =
0.5, whereas for Algorithm 3, Nu = Nδ = 250. Additionally,
9 initial points (ū, δ̄), picked up within the constraint set C, i.e.,
{−1/2, 0, 1/2}×{−∆f

2B , 0, ∆f
2B } are used for the execution of

the algorithms7. Then, the best achieved estimate in likelihood
sense is selected.

In the reported simulations, three different interference
scenarios are examined. In the first one, the useful signal
is buried in white Gaussian noise; in the last two, clutter
disturbance is considered.

1) White noise interference case: Figs. 3(a) and 3(b) show
the Pd curves of the proposed detectors (assuming K = 320
secondary data) in a scenario dominated by white Gaussian
noise, i.e., with the covariance matrix modeled as

M = σ2
nI ∈ H2MN , (58)

where, without loss of generality, the noise power level σ2
n is

assumed to be 0 dB.
Inspection of the figures highlights that the LAM detectors

achieve the best performance, with a loss w.r.t. the benchmarks
of almost 1 dB at Pd = 0.9. Furthermore, the GPM and
CD methods exhibit nearly an identical behavior, with a gap
smaller than 1 dB when compared with the LAM curve. The
results confirm both the capabilities of the considered lin-
earization technique to approximate the actual steering vector
correctly and of the iterative ascent algorithms to provide
close-to-optimum solutions to the optimization problem (21).
A clear performance advantage over the mismatched detectors
(which rely on the nominal parameters to derive the decision
statistics) is highlighted, corroborating the effectiveness of the
proposed strategies. The plots also reveal that, at Pd = 0.9, the
benchmark SP detectors experience a performance degradation
w.r.t. the full polarized counterparts of 7 dB for the GLRT-
based detector and of 5 dB for the 2SGLRT one, pinpointing
the advantage of the devised architectures to leverage the

7It is worth noting that several feasible initial vectors can be employed for
the execution of the algorithms to minimize the risk of being trapped in a
local maximum.

polarimetric diversity. Finally, a direct comparison between
Figs. 3(a) and 3(b) does not reveal significant performance
differences between the GLRT and 2SGLRT methodologies.

2) Clutter interference case: In this situation, the useful
target echo return is assumed buried in clutter plus noise, with
covariance matrix M ∈ H2MN modeled as

M = σ2
cΣc ⊗Mc + σ2

nI, (59)

where σ2
c is the clutter power level, Mc ∈ CMN×MN is an

exponentially-shaped matrix with 1-lag correlation coefficient
ρc accounting for the covariance between the returns from the

same polarimetric channel, and Σc =

[
1 ϵc

√
δc

ϵ∗c
√
δc δc

]
∈

C2×2 indicates the clutter normalized polarimetric scattering
matrix. Besides, without loss of generality σ2

n = 0 dB is
assumed and a Clutter to Noise Ratio (CNR), i.e., CNR =
σ2
c/σ

2
n, of 30 dB is considered. Typical values of ϵc and δc

for different clutter models are summarized in Table II (see
also [1, 9, 52]).

The detection performance for two different clutter envi-
ronments and a sample support size of K = 320 are reported
in Figs. 4, 5, and 6. Specifically, assuming ρc = 0.4 and
mixed clutter (see Table II), the Pd versus SINR curves of
the GLRT-based detectors are displayed in Fig. 4(a), whereas
the 2SGLRT counterparts are given in Fig. 4(b). The results
show that the proposed adaptive techniques achieve almost the
same detection performance in the high SINR regime, with
a degradation, w.r.t. the benchmarks, of 1 dB at Pd = 0.9.
Precisely, the LAM-based and GPM-based detectors almost
achieve the same (and closest to the optimum) performance,
with a very slight advantage over the CD counterparts. This
behavior represents a first confirmation of the effectiveness
of the considered techniques to handle a challenging clutter-
dominated scenario. On the contrary, the mismatched detectors
exhibit a clear performance degradation w.r.t. the benchmarks,
with a gap between the curves in the order of 6 dB. A
further inspection of the figures also highlights that, for this
challenging scenario, the SP detectors are not able to provide
an adequate detection performance, further corroborating the
need to devise appropriate detection strategies leveraging the
polarimetric diversity techniques.

In Fig. 5, the same scenario as Fig. 4 but for ρc = 0.9, is
considered. Inspection of the figure reveals that the proposed
detectors achieve almost the same performance. Nonetheless,
the mismatched detectors exhibit a noticeable performance
degradation in a clutter environment with ρ = 0.9 w.r.t.
the ρ = 0.4 case, especially with reference to the GLRT
configuration. In this regard, it is worth analyzing the simi-
larity θsim between the true and the nominal array steering
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Fig. 4: Detection performance for a mixed clutter environment (see Table II) with ρc = 0.4, assuming K = 320 and the parameters of Table I. Fig. (a) considers the GLRT-based
detectors, whereas Fig. (b) reports the 2SGLRT counterparts.
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Fig. 5: Detection performance for a mixed clutter environment (see Table II) with ρc = 0.9, assuming K = 320 and the parameters of Table I. Fig. (a) considers the GLRT-based
detectors, whereas Fig. (b) reports the 2SGLRT counterparts.
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Fig. 6: Detection performance for a clutter trees environment (see Table II) with ρc = 0.9, assuming K = 320 and the parameters of Table I. Fig. (a) considers the GLRT-based
detectors, whereas Fig. (b) reports the 2SGLRT counterparts.
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TABLE II: Typical parameters for polarimetric clutter characterization [9]

Clutter Models δc ϵc ρc
Trees 0.89 0.64 0.9
Mixed 1.08 0.57 0.9

matrices,measured as

θsim =
|tr(H̆t

†
H̆))|√

tr(H̆t
†
H̆t)

√
tr(H̆

†
H̆)

, (60)

with H̆t = M−1/2H(u, δ) and H̆ = M−1/2H(ū, δ̄).
Specifically, for the case of ρ = 0.4, the similarity is θsim =
0.5715, whereas for the ρ = 0.9 scenario, θsim = 0.0930,
which corroborates the larger performance loss experienced
by the mismatched detectors in the latter scenario w.r.t. the
former one.

In Fig. 6 an additional clutter model, i.e., clutter from trees
(whose parameters are reported in Table II) with ρc = 0.9
is considered for the interference simulation. Analysis of the
curves highlights the absence of noticeable differences when
compared with the mixed clutter case of Fig. 5.

In Fig. 7, the performance of the detectors is compared for
different sample support sizes in a scenario of mixed clutter
interference with ρc = 0.9. In this regard, Figs. 7(a), 7(c),
and 7(e) report the performance of the GLRT-based detectors,
whereas Figs. 7(b), 7(d), and 7(f) those related to the 2SGLRT-
based strategies. Specifically, assuming K = 320, K = 240,
and K = 120 secondary data to estimate the covariance ma-
trix, the case of LAM-based detectors is displayed in Figs. 7(a)
and 7(b), that of the GPM-based strategies in Figs. 7(c) and
7(d), and the situation related to the CD-based detectors is
analyzed in Figs. 7(e) and 7(f). As expected, capitalizing on a
larger number of secondary data leads to a clear performance
gain, owing to a better estimate of the covariance matrix.
Remarkably, even with a reduced sample support size, the
performance loss between the proposed receivers and the
corresponding benchmarks (either with K = 320, K = 240,
or K = 120) remains almost acceptable, with a gap smaller
than 2 dB for Pd = 0.9, for all the considered architectures.
Besides, regardless of the number of secondary data, all the
proposed detectors achieve a better detection performance
than the SP benchmarks, stressing again the benefit of the
polarimetric domain.

To summarize, the detectors based on either the LAM or
GPM procedures provide the best solutions (in terms of Pd for
a given Pfa) to the target detection problem for all the ana-
lyzed case studies. Additionally, the proposed methods exhibit
substantially the same computational complexity provided the
number of iterations is small enough.

VI. CONCLUSION

This paper has considered the design of adaptive detectors
for a polarimetric FDA-MIMO radar in a scenario character-
ized by the presence of interference with unknown spectral
properties. The detection problem, formulated in terms of a
binary hypothesis test, has been handled by resorting either
to the GLRT or to the 2SGLRT criterion, demanding the ML

estimation of the interference covariance matrix and, under the
H1 hypothesis, also of the unknown target parameters. To get
computationally efficient even though sub-optimal solutions
to the resulting optimization problem, three iterative strategies
have been proposed. First, a procedure has been developed
leveraging a LAM technique, which capitalizes on the target
location offsets w.r.t. the nominal array steering. Then, a
GPM technique has been considered, that iteratively updates
the parameters according to the gradient of the objective
function. Finally, a CD approach has been investigated, which
sequentially optimizes one variable while keeping the other
fixed. Noticeably, the proposed detectors ensure the so-called
bounded CFAR property. At the analysis stage, the perfor-
mance of the receivers has been numerically assessed also in
comparisons with benchmarks. The results, for both white and
clutter interference (either mixed or trees), have pinpointed the
effectiveness of the devised architectures to provide a detection
performance close to the clairvoyant structure. Furthermore, a
clear performance advantage over both mismatched detectors
and the single polarization counterparts has been underlined,
corroborating the strength of the proposed detectors.

Future research studies might include the design of ad-
ditional decision strategies according to other sub-optimal
criteria, e.g., Rao [53] and Wald [54] tests, as well as the
extension of the framework to different scenarios such as
compound Gaussian disturbance [55], structured interference
covariance matrix, as well as the case of extended targets
occupying multiple range cells.

APPENDIX

A. Expressions for Hu and Hδ

Denoting by su∈ CMN and sδ∈ CMN the derivative func-
tions of s(u, δ) w.r.t. u and δ, respectively, they are given by
[23]

su =
∂s(u, δ)

∂u
=

∂b (u)

∂u
⊗ [c (u)⊙ a (δ)]

+ b (u)⊗
[
∂c (u)

∂u
⊙ a (δ)

] (61)

and

sδ =
∂s(u, δ)

∂δ
= b (u)⊗

[
c (u)⊙ ∂a (δ)

∂δ

]
, (62)

where
•

∂b(u)
∂u = j2π d

λ0
ET b (u);

•
∂c(u)
∂u = j2π d

λ0
RTERd(u);

•
∂a(δ)
∂δ = jπERa (δ).

with
• ET = diag

(
[0, 1, ..., N − 1]T

)
∈ RN×N ;

• ER = diag
(
[0, 1, ...,M − 1]T

)
∈ RM×M .

Therefore,

Hu =

[
su 0
0 su

]
(63)

and
Hδ =

[
sδ 0
0 sδ

]
, (64)
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Fig. 7: Detection performance of the LAM, GPM, and CD methods for different sample support sizes, i.e., K = 320, K = 240, K = 120, assuming a mixed clutter environment
(see Table II) with ρc = 0.9 and the parameters of Table I. Figs. (a), (c), and (d) report the performance of the GLRT-based decision statistics; Figs. (b), (d), and (f) that of the
2SGLRT rules.
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B. Proof of Proposition 1

Proof: The existence of the global minimizer of (30)
is guaranteed by the Weierstrass theorem [35], being the
objective function (30) continuous and the feasible set C non-
empty and compact. Besides, the stationary points of the
objective function in (30) are obtained by nulling the objective
gradient, namely by solving the equation

∇∆θ

[
(r̂ − Ĥ∆θ)†(r̂ − Ĥ∆θ)

]
= 0. (65)

After some algebra, equation (65) can be expressed as

R{Ĥ†r̂} −R{Ĥ†Ĥ}∆θ = 0, (66)

meaning that the unique stationary point is obtained as

∆θ1 =
[
R{Ĥ†Ĥ}

]−1

R{Ĥ†r̂}. (67)

Remarkably, if it is feasible, i.e., ∆θ1 ∈ C, it is the optimal
solution to the optimization problem (30). Otherwise, an
optimal solution can be found restricting the objective function
to the boundaries of C and determining, for each edge, the
corresponding minimizer.

Case A: Left and right edges (∆u = ±κ).
Denoting by r̂±κ = r̂ − ĥu(±κ), the optimization prob-

lem (30), restricted to ∆u = ±κ, boils down to

min
|∆δ|≤ρ

(r̂±κ − Ĥδ∆δ)†(r̂±κ − Ĥδ∆δ). (68)

The objective function of (68) can be written as

a′ ∆δ2 − 2b′±κ ∆δ + c′±κ, (69)

where
a′ = ∥Ĥδ∥2, (70a)

b′±κ = R{r̂†±κĥδ}, (70b)

c′±κ = ∥r̂±κ∥2. (70c)

Since a′ > 0, (68) is a convex optimization problem, whose
optimal solution is given by

∆δ∗± = min(ρ,max(b′±κ/a
′,−ρ)). (71)

Therefore, the two candidate optimal solutions associated with
the right and left edges are given by

∆θ2 = [κ,∆δ∗+] (72)

and
∆θ3 = [−κ,∆δ∗−]. (73)

Case B: Upper and lower edges (∆δ = ±ρ).
Similarly to the Case A, denoting by r̂±ρ = r̂ − ĥδ(±ρ),

the candidate optimal solutions associated with the superior
and inferior edges are given by

∆θ4 = [∆u∗
+, ρ] (74)

and
∆θ5 = [∆u∗

−,−ρ], (75)

where
∆u∗

± = min(κ,max(b′′±ρ/a
′′,−κ)) (76)

with
a′′ = ∥ĥu∥2, (77a)

b′′±ρ = R{r̂†±ρĥu}. (77b)

As a consequence, an optimal solution to the optimization
problem (30) is given by

∆θ(h) = argmin
∆θ∈{∆θi}5

i=1

(r̂ − Ĥ∆θ)†(r̂ − Ĥ∆θ). (78)

C. Computation of g△(u, δ)

Denoting by r̄ = S− 1
2 r ∈ C2MN and Ȟ = S− 1

2H ∈
C2MN×2, g(u, δ) can be rewritten as

g(u, δ) = r̄†Ȟ
[
Ȟ†Ȟ

]−1
Ȟ†r̄

= r̄†P̄Ȟ r̄
(79)

where P̄Ȟ = Ȟ
[
Ȟ†Ȟ

]−1
Ȟ† ∈ C2MN×2MN .

Therefore, the first derivatives of g(u, δ) w.r.t. u and δ, are
given by [Eq. A.394, [56]]

∂g(u, δ)

∂x
= r̄†

∂P̄Ȟ

∂x
r̄ , x ∈ {u, δ}, (80)

where
•

∂P̄Ȟ

∂x = P̄⊥
Ȟ
ȞxȞ

† +
(
P̄⊥

Ȟ
ȞxȞ

†)† with Ȟx =

S−1/2Hx ∈ C2MN×2, x ∈ u, δ ;
• P̄⊥

Ȟ
= I − P̄Ȟ ∈ C2MN×2MN .

As a consequence, the gradient of g(u, δ) is given by

g△(u, δ) =

[
∂g(u, δ)

∂u
,
∂g(u, δ)

∂δ

]T
. (81)

D. Proof of g(u, δ) ∈ C1,1
L

Before proceeding with the proof, let us first introduce the
following lemma [34], which provides a sufficient condition
for a function to be in C1,1

L .
Lemma A.1: Let f(x) belongs to C2 with f△△(x) its

Hessian matrix; if there exists L > 0 such that ∥f△△(x)∥ ≤ L
holds true for any x ∈ Rn, then f(x) ∈ C1,1

L . ■
Therefore, in order to exploit the above result, in the fol-

lowing, the function g(u, δ) is proved to fulfill the conditions
required by Lemma A.1. To this end, let us report again, for
easy of reference, the detailed expression of s(u, δ), i.e.,

s(u, δ) = b(u)⊗ [c(u)⊙ a(δ)]∈ CMN (82)

with

b(u) =
[
1, ej2π

d
λ0

u, . . . , ej2π
d
λ0

(N−1)u
]T
∈ CN , (83a)

c(u) = RTd(u) ∈ CM , (83b)

d(u) =
[
1, ej2π

d
λ0

u, . . . , ej2π
d
λ0

(M−1)u
]T
∈ CM , (83c)

a(δ) =
[
1, ejπδ . . . , ejπ(M−1)δ

]T
∈ CM . (83d)

From equations (83), it is straightforward to see that b(u),
c(u), d(u), and a(δ) belong to C2 and hence s(u, δ) belongs
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to C2. Therefore, assuming S ≻ 0, which occurs almost surely
being K ≥ 2MN ,

g(u, δ) = r†S−1H
[
H†S−1H

]−1
H†S−1r (84)

belongs to C2 since

H = H(u, δ) =

[
s(u, δ) 0

0 s(u, δ)

]
∈ C2MN×2 (85)

belongs to C2 and it is full rank.
Then, it can be verified that ∥g△△(u, δ)∥ is continuous and

periodic, with

g△△ =

[
guu(u, δ) guδ(u, δ)
gδu(u, δ) gδδ(u, δ)

]
,

since ∥A∥ is a continuous function w.r.t. A ∈ HN and the
second derivatives of g(u, δ), i.e., gxy(u, δ), x, y ∈ {u, δ} are
continuous and periodic functions with period Tu = λ0/d
and Tδ = 2 along u and δ directions, respectively (see Ap-
pendix E). Therefore, invoking the Weierstrass theorem [35],

∥g△△(u, δ)∥ ≤ max
u∈[0,Tu],δ∈[0,Tδ]

∥g△△(u, δ)∥ = L < ∞.

(86)

E. Proof that the second derivatives of g(u, δ) are periodic
functions

This Appendix is composed of two parts: first, s(u, δ)
and g(u, δ) are proved to be periodic functions. Then, the
periodicity of the first and second order derivatives of g(u, δ)
is analyzed.

From equations (83), it is easy to verify that s(u, δ) is
a periodic function with period Tu and Tδ along u and δ
directions, respectively, being

• b(u) periodic with period Tu;
• d(u) and c(u) periodic with period Tu;
• a(δ) periodic with period Tδ .

As a consequence, g(u, δ) shares the same periodicity as
s(u, δ).

Now, the periodicity of the first and second order derivatives
can be established resorting to the following lemma.

Lemma A.2: Let f(x, y) : R2 → R be a continuous,
derivable, and periodic function with period Tx and Ty along
the x and y directions, respectively. Then, fx(x, y) =

∂f(x,y)
∂x

and fy(x, y) =
∂f(x,y)

∂y are periodic functions with the same
periodicities as f(x, y).

Proof: Denoting by x1 = x+N1Tx and y1 = y+N2Ty ,
with N1, N2 ∈ N,

fx(x1, y1) = fx(x+N1Tx, y +N2Ty)

= lim
h→0

f(x+N1Tx + h, y +N2Ty)− f(x+N1Tx, y +N2Ty)

h

= lim
h→0

f(x+ h, y)− f(x, y)

h
= fx(x, y).

Therefore, fx(x, y) is periodic as f(x, y). Along the same line,
it is straightforward to prove that fy(x, y) shares the same
periodicity as f(x, y).
Exploiting the above result, gu(u, δ) and gδ(u, δ) are periodic
functions with the same period as g(u, δ). Then, resorting

again to Lemma A.2, guu(u, δ) and guδ(u, δ), as well as
gδu(u, δ) and gδδ(u, δ), share the same periodicity as gu(u, δ)
and gδ(u, δ), respectively. As a result, the first and second
order derivatives of g(u, δ) are periodic functions as g(u, δ).
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