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in the Presence of Unknown Mutual Coupling

Augusto Aubry, Senior Member, IEEE, Antonio De Maio, Fellow, IEEE, Lan Lan, Member, IEEE, and Massimo
Rosamilia, Student Member, IEEE

Abstract—This paper deals with joint adaptive radar detection
and target bearing estimation in the presence of mutual coupling
among the array elements. First of all, a suitable model of the
signal received by the multichannel radar is developed via a
linearization procedure of the Uniform Linear Array (ULA) man-
ifold around the nominal array looking direction together with
the use of symmetric Toeplitz structured matrices to represent
the mutual coupling effects. Hence, the Generalized Likelihood
Ratio Test (GLRT) detector is evaluated under the assumption
of homogeneous radar environment. Its computation leverages
a specific Minorization-Maximization (MM) framework, with
proven convergence properties, to optimize the concentrated
likelihood function under the target presence hypothesis. Be-
sides, when the number of active mutual coupling coefficients
is unknown, a Multifamily Likelihood Ratio Test (MFLRT)
approach is invoked. During the analysis phase, the performance
of the new detectors is compared with benchmarks as well as
with counterparts available in the open literature which neglect
the mutual coupling phenomenon. The results indicate that it
is necessary to consider judiciously the coupling effect since
the design phase, to guarantee performance levels close to the
benchmark.

Index Terms—Adaptive target detection, mutual coupling,
GLRT, MFLRT, Cramér-Rao lower Bound.

I. INTRODUCTION

Target detection is a long-standing key task in standard
radar/sonar applications [1]–[4]. It has been the subject of
plenty of articles in the open literature, mainly devoted to
the development of adaptive detectors (as well as to their
analysis) capable of operating in the presence of undesired
disturbance, hostile interference, and clutter. [1]–[12]. Gen-
erally, to accomplish the detection task, at the design stage
the received signal (under the assumption of target presence)
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is deemed as the superposition of the target echo and the
interference-plus-noise contribution, which is usually modeled
as the realization of a zero-mean Gaussian process with an
unknown and possibly structured covariance matrix. Besides,
the standard homogeneous radar environment assumption is
invoked, where a set of secondary (training) data, free of useful
contributions from the target, enables the estimation of the
unknown interference covariance matrix and the derivation of
adaptive architectures [3]–[5], [7]–[10]. Under the mentioned
circumstances, the target detection problem is formulated in
terms of a binary statistical hypothesis test, whose optimal
solution (in the Neyman-Pearson sense) is given by the Likeli-
hood Ratio Test (LRT) [1], [3], [13], [14]. However, it demands
perfect knowledge of the likelihood functions under the two
hypotheses including their parameters tied up to either the
target characteristics or the interference covariance matrix. In
practical situations, such parameters are unknown and demand
an estimation procedure. This pushes toward the development
of implementable detection architectures based on sub-optimal
approaches, such as for instance the Generalized Likelihood
Ratio (GLR), where the unknowns are replaced by their
Maximum-Likelihood (ML) estimates [14], [15].

Once the presence of the target is established in the Cell
Under Test (CUT), the estimation process of the target bearing
could be accomplished by means of monopulse [16], general-
ized monopulse [17] or other bespoke techniques, construing
detection and estimation as two different signal processing
tasks [18], [19]. However, it is worth pointing out that in
the open literature some architectures implementing jointly
detection-estimation have been successfully derived, to reveal
the target presence and simultaneously provide its accurate
angular bearing state [20], [21]. The successful achievement
of the detection/estimation processes requires handling some
challenges. Among them, the angular uncertainty of the re-
ceived signal with respect to (w.r.t.) the pointing direction as
well as the presence of mutual coupling effects within the
array, both introducing mismatches between the actual and the
presumed steering vector [11], [22]–[26]. As to the former,
it can be accounted for at the design level by linearizing
the array manifold around the look-direction and modeling
the target steering vector as the superposition of the pointing
direction signature plus another term due to the actual angle
offset w.r.t. the nominal array looking direction [21]. As
to the latter, in phased arrays the fields radiated by one
antenna can be received by the other elements, engendering the
phenomenon of mutual coupling. This involves an alteration
of the electromagnetic characteristics of each array element
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caused by leakage phenomena from the radiating elements
in its vicinity. Mutual coupling is affected by a plurality of
factors, including number, type, and relative orientation of
each antenna element, as well as inter-element distance [27].
In the seminal paper [28], the author conducted a thorough
analysis of the mutual coupling effects on the behavior of the
radiating elements of a Uniform Linear Array (ULA). The key
findings can be summarized as follows.

• The magnitude of the coupling coefficients decreases
rapidly with the distance between the radiating elements.

• The coupling is essentially the same along the elements
of the diagonal of the Mutual Coupling Matrix (MCM).

• A good approximation of the MCM can be obtained using
the banded Toeplitz structure.

Based on these findings, the banded Toeplitz structure is
deemed as a good approximation for MCM and is employed
by many papers from the open literature, e.g., [29]–[34].

That said, the presence of mutual coupling among the
radiating elements could affect the radar performance, degrad-
ing radar resolution capability, robustness to interference of
adaptive algorithms, and target Direction of Arrival (DOA)
estimation accuracy [27], [35]. In the open literature, sev-
eral studies address the effects of mutual coupling on radar
detection [36], [37], sidelobe blanking [38], and adaptive
beamforming [39]–[41]. Furthermore, [42] is focused on the
impact of coupling on the performance of Space-Time Adap-
tive Processing (STAP) techniques, whereas [43] refers to
wideband DOA estimation. Several references dealing with
narrowband target DOA estimation problem in the presence
of mutual coupling can be found in [29], [44]–[48].

Nevertheless, the problem of jointly detecting the target and
estimating its bearing while accounting for mutual coupling
and the DOA uncertainty has not yet been addressed in the
open literature. Aiming at filling this gap, a simultaneous
detection and target bearing estimation procedure, developed
for a ULA affected by mutual coupling, is proposed in this
paper. To accomplish the two tasks simultaneously, both the
unknown DOA displacement (w.r.t. the looking direction) and
the coupling phenomenon are suitably modeled at the design
phase, namely, the actual steering vector is expressed as the
product of a mutual coupling matrix and an approximated
steering vector depending linearly on DOA displacement. As
to the mutual coupling matrix, it can be well described by a
symmetric banded Toeplitz matrix leveraging the assumption
that the mutual coupling coefficients are inversely proportional
to the distance between elements and may be neglected
for sufficiently spaced antennas [29], [33], [49], [50]. The
identifiability of the unknown parameters for the developed
signal model is also investigated.

Then, the target detection problem is formulated assuming
a homogeneous radar interference environment and addressed
resorting to the Generalized LRT (GLRT) [3], [14] and the
Multifamily LRT (MFLRT) [51] strategies. The former re-
quires perfect knowledge of the number of mutual coupling
coefficients, while the latter can be framed as a generalization
of the GLRT which incorporates the unknown model order
inference. The derived architectures demand for the ML esti-
mation of both the coupling coefficients and the target DOA

displacement, which are computed by means of an ad-hoc
iterative procedure based on the Minorization-Maximization
(MM) framework. The convergence properties of the devised
procedure are also formally proven. In addition, the Constant
False Alarm Rate (CFAR) behavior of the proposed decision
strategies is investigated, proving that they ensure the bounded
CFAR property. Last but not least, the extension of the
methods to include a second processing stage, leveraging
an additional linearization of the array manifold around the
current bearing estimate, is also presented.

During the analysis phase, the performance of the proposed
adaptive architectures is assessed in terms of Probability of
Detection (Pd) and Root Mean Square Error (RMSE) of
target bearing. As to the detection capabilities, benchmark and
standard detection architectures are included for comparison
purposes. The estimation performance is compared to the
Cramér-Rao Bound (CRB), computed for both the actual and
the linearized array model. The numerical results highlight the
potentialities of the proposed architectures to realize both the
detection and the estimation task simultaneously, corroborating
the capabilities of the devised strategies to counteract steer-
ing vector mismatches induced by the mutual coupling phe-
nomenon. Besides, the two-stage processing schemes show a
general improvement of detection and estimation performance
as compared with the single stage counterparts.

The paper is organized as follows. The signal model ac-
counting for the presence of mutual coupling and target DOA
uncertainty is given in Section II. The design of the joint
detection-estimation architectures and their relevant properties
are addressed in Section III. Section IV deals with the compu-
tation of the CRB for both the actual and the linearized array
manifold case. The detection and estimation performance of
the proposed techniques is analyzed in Section V, whereas
conclusions and future research avenues are discussed in
Section VI.

A. Notation

Boldface is used for vectors a (lower case), and matrices A
(upper case). The (k, l)-entry (or l-entry) of a generic matrix
A (or vector a) is indicated as A(k, l) (or a(l)). I and 0
denote respectively the identity matrix and the matrix with
zero entries (their size is determined from the context). The
transpose and the conjugate transpose operators are denoted
by the symbols (·)T and (·)†, respectively. The trace of the
matrix A ∈ CN×N is indicated with tr{A}. RN and CN

are respectively the sets of N -dimensional column vectors of
real and complex numbers. HN

++ represents the set of N ×N
Hermitian positive definite matrices. TBS

P represents the set
of banded symmetric Toeplitz matrices of order P. The letter
j represents the imaginary unit (i.e., j =

√
−1). For any

complex number x, |x| indicates the modulus of x. Moreover,
for any x ∈ CN , ∥x∥ denotes the Euclidean norm. Let
f(x,y) ∈ R be a real-valued function, ∇xf(x,y) denotes the
gradient of f(·) w.r.t. x, with the partial derivatives arranged
in a column vector.
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II. SIGNAL MODEL

Let us consider a monostatic radar equipped with an an-
tenna array that collects spatial data using a narrow-band
ULA composed of N elements. After down-conversion, pulse
compression, and fast-time sampling, the echo signal from a
prospective target at distance R and azimuth θ0, with respect
to the array boresight, is given by

ap(u0), (1)

where a is an unknown complex parameter embedding target
backscatter and channel propagation effects, u0 denotes the
angular position of the target in the space of directional cosine,
i.e., u0 = sin(θ0), and p(u0) indicates the spatial steering
vector p(u) evaluated at u0. Specifically,

p(u) = [1, ej
2π
λ0

du, . . . , ej
2π
λ0

(N−1)du]T ∈ CN , (2)

where λ0 is the radar operating wavelength and d is the inter-
element spacing (typically set as d = λ0/2).

Following the same approach as in [21], the steering vector
of the received echo signal can be approximated via the Lin-
earized Array Manifold (LAM) at the nominal array looking
direction ū, with a resulting functional dependency of the array
manifold on the directional cosine offset ∆u = u0−ū, namely

p(u0) ≃ pa(∆u) ≜ p(ū) + ∆u
∂p(u)

∂u

∣∣∣∣
u=ū

= p+ ṗu∆u

(3)
with p = p(ū) and ṗu = ∂p(u)

∂u

∣∣∣
u=ū

, respectively.
So far, an ideal steering vector has been considered. How-

ever, in practice, the actual steering vector experiences mutual
coupling, which could lead to some mismatches between the
ideal array manifold considered at the design stage and the
actual one [11]. To address this issue, the coupling effects
must be accounted for at the signal processor design level,
which entails modeling the actual steering vector as [33]

pm(u0) = Cp(u0)∈ CN , (4)

where

C =



1 c1 · · · cP−1 0 · · · · · · · · · 0
c1 1 c1 · · · cP−1 0 · · · · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
...

cP−1 · · · c1 1 c1 · · · cP−1 · · · 0

0
. . . . . . . . . . . . . . . . . . . . .

...
...

. . . cP−1 · · · c1 1 c1 · · · cP−1

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · · · · 0 cP−1 · · · c1 1 c1
0 · · · · · · · · · 0 cP−1 · · · c1 1


(5)

represents the N × N banded symmetric Toeplitz matrix of
mutual coupling [29], [33], [50], with ci∈ C, i = 1, . . . , P−1,
the i-th mutual coupling coefficient. Model (4) is supported
by empirical and physical considerations. In fact, the coupling
effects between two sensors reduce as their distance increases,
and can be practically considered negligible for sensors whose
separation is large enough, i.e., according to (5), P times the
inter-element spacing [29], [33]. With reference to a ULA,
in Fig. 1, a pictorial representation of the mutual coupling

effects between the i-th antenna and its 2(P −1) nearest array
elements (assumed present) is illustrated. In particular, the
different colors reflect the symmetries in the electromagnetic
field leakage. Before proceeding further, let us consider as case
study a ULA composed of N = 16 elements with P = 3,
c1 = 0.7 and c2 = 0.4. The cosine similarity (also angle
cosine between two non-zero complex vectors) [52] between
the ideal and the actual steering vector, i.e.,

coss(u) =
|pm(u)†p(u)|

∥pm(u)∥∥p(u)∥
, (6)

versus u is reported in Fig. 2. Inspection of the figure
reveals that for some u, corresponding approximately to θ ∈
[−60◦,−30◦]∪[30◦, 60◦], the mismatch induced by the mutual
coupling is considerable, with values of coss(u) < 0.8. In this
circumstance, the performance of standard signal processing
architecture could degrade severely. Hence, it becomes manda-
tory the development of robust adaptive strategies accounting,
at the design stage, for the possible presence of mutual
coupling between the array elements. To further investigate
the effects of the mutual coupling when the nominal receive
direction lies in one of the previously mentioned angular
regions, let us consider the cosine similarity between the actual
steering vector at u0 = sin(35◦) and the ideal one, i.e.,

coss(u;u0) =
|pm(u0)

†p(u)|
∥pm(u0)∥∥p(u)∥

, (7)

computed for several values of the directional actual target
DOA cosine u. The result is reported in Fig. 3 assuming the
same scenario as in Fig. 2. The curve highlights that there is a
displacement of −1.38◦ between the peak angle of the cosine
similarity and the true DOA, which pinpoints the influence
of mutual coupling on the DOA estimation process if it is
not properly modeled in the processing architecture. It is also
worth mentioning that, in general, the coefficients ci and their
number, i.e., P − 1, might not be known at the design level.

Now, considering the linearization of the steering vector
in (4) around the radar pointing direction in conjunction with
the coupling effects, (4) can be approximated as

pam(∆u) = Cpa(∆u) = Cp+Cṗu∆u. (8)

This implies that the useful echo signal (1) can be written
as

apam(∆u) = aCpa(∆u) = Bpa(∆u)

= H(∆u)b ∈ CN ,
(9)

where

B = aC = b0I +

P−1∑
m=1

bmDm ∈ CN×N , (10)

with Dm the N ×N matrix having 1s on its m-th upper and
lower diagonals, and zeros elsewhere,

H(∆u) = (D̃ +∆uḊ), (11)
D̃ = [p,D1p, . . . ,DP−1p] ∈ CN×P , (12)
Ḋ = [ṗu,D1ṗu, . . . ,DP−1ṗu] ∈ CN×P , (13)
b = [a, a c1, . . . , a cP−1]

T ∈ CP . (14)
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Fig. 1: A notional representation of the mutual coupling effects between the i-th antenna
and its 2(P − 1) nearest array elements (assumed present).
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Fig. 2: Cosine similarity (6) between the ideal and the actual steering vectors vs u. A
ULA with N = 16 elements, P = 3, c1 = 0.7, and c2 = 0.4, is considered.

A. Model Identifiability

Let us analyze the identifiability of the unknown parameters
in the signal model (9) by considering the equation

H(∆u)b = H(∆u⋆)b⋆, (15)

with ∆u⋆ and b⋆ being the true values of the parameters. To
claim model identifiability, (15) must admit the only solution
∆u = ∆u⋆, b = b⋆. In this respect, a sufficient condition for
solution uniqueness is that P ≤ N/2 and H1 = [D̃, Ḋ] is
full rank. In fact, let us observe that (15) is equivalent to{

H1b1 = H1b
⋆
1

b1 = [bT,∆ubT]T
, (16)

where b⋆1 = [b⋆T,∆u⋆b⋆T]T. The first equation (16) can be
cast as

H1(b1 − b⋆1) = 0, (17)

which is a homogeneous system of equations admitting as
unique (due to the full rank assumption on H1) solution the
trivial one, i.e., b1 = b⋆1, which is also feasible to (16). Based
on the above considerations, in the following it is supposed
that H1 is full column rank.

III. TARGET DETECTION PROBLEM

Assuming that the radar operates in a standard homogeneous
environment [4], [5], [8], [10], [11], [21], [24], [53] (and
references therein), which allows for the collection of a set of
K secondary data (free of any useful target signal) with the
same interference plus noise covariance matrix as the primary
data, the binary hypothesis testing problem, pertaining to the
target presence/absence within the Cell Under Test (CUT), can
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Fig. 3: Cosine similarity (7) between p(u)|u=sin(θ) and pm(u0) vs θ, assuming u0 =
sin(35◦). A ULA with N = 16 elements, P = 3, c1 = 0.7, and c2 = 0.4, is
considered. The true DOA and the peak angle of the cosine similarity are highlighted as
the blue and red vertical lines, respectively.

be formulated as
H0 :

{
r = n

rk = nk k = 1, . . . ,K

H1 :

{
r = H(∆u)b+ n

rk = nk k = 1, . . . ,K

, (18)

where
• r and rk, k = 1, . . . ,K, denote the primary and the

secondary data vectors, respectively;
• H(∆u) is function of the unknown target DOA displace-

ment w.r.t. the array pointing direction;
• b is the unknown vector accounting for both the complex

received target echo return a and the P − 1 complex
mutual coupling coefficients cm’s;

• n and nk, k = 1, . . . ,K, are the interference plus
noise components of the received snapshots, modeled as
statistically independent, complex, zero-mean, circularly
symmetric Gaussian random vectors with unknown pos-
itive definite covariance matrix

M = E[nn†] = E[nkn
†
k] ∈ HN

++, k = 1, . . . ,K.
(19)

The standard strategy based on the Neyman-Pearson cri-
terion can be used to determine the best decision statistic
for the hypothesis-testing problem (18), that is, to obtain a
detector able to maximizing the Pd for a desired Probability of
False Alarm (Pfa). Unfortunately, the resulting decision rule
requires the perfect knowledge of the unknowns in the PDFs
under both the hypotheses, which is clearly unavailable in real
application contexts. In other words, there is no Uniformly
Most Powerful (UMP) test for this problem. Consequently,
it is necessary to design practically implementable detection
architectures using suboptimal criteria, such as the GLRT,
which leverages the ML estimation of the unknown parameters
under both hypotheses.

Note that the number of unknowns connected with the
array coupling coefficients, namely P − 1, can be either
assumed known, i.e., it can be periodically measured exploit-
ing calibration procedures or predicted by means of some
electromagnetic considerations, or modeled as an additional
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unknown parameter. Therefore, in the following the GLRT
is first developed assuming that the number of coupling
coefficients is known at the design stage. Then, the case of
unknown model order is considered and a decision rule is
derived by means of the MFLRT criterion [51], [54].

A. Decision Statistic for Known Model Order

Assuming P known, the target detection problem (18) can
be handled resorting to the GLRT criterion

max
M∈HN

++,B∈TBS
P ,|∆u|≤α

fH1(r, r1, . . . , rk|M , a,B,∆u)

max
M∈HN

++

fH0
(r, r1, . . . , rk|M)

H1

≷
H0

γ,

(20)
where γ is the detection threshold set to ensure a desired Pfa,

fH0
(r, r1, . . . , rk|M) =

[
1

πN |M |
e− tr{M−1T0}

]K+1

(21)

and

fH1(r, r1, . . . , rk|M , b,∆u) =[
1

πN |M |
e− tr{M−1T1}

]K+1 (22)

represent the likelihood function of the observations under the
H0 and H1 hypothesis, respectively, with

T0 =
1

K + 1

(
rr† +

K∑
k=1

rkr
†
k

)
(23)

and

T1 =
1

K + 1

(
(r −H(∆u)b)(r −H(∆u)b)† +

K∑
k=1

rkr
†
k

)
.

(24)

Let us now describe the procedure necessary to perform the
optimizations at the numerator and the denominator of (20).

1) Optimization w.r.t. M : Based on standard argumenta-
tion [5], concentrating the likelihood functions (21) and (22)
over M and taking their logarithm, the decision statistic in
(20) is equivalent to

lG = 2(K + 1) log

 |T0|
min

b, |∆u|≤α
|T1|


= 2(K + 1)

1 + r†wrw

1 + min
b, |∆u|≤α

∥rw −Hw(∆u)b∥2
,

(25)

where Hw(∆u) = S−1/2H(∆u) and rw = S−1/2r are the
quasi-whitened counterparts of H(∆u) and r respectively,
with S =

∑K
k=1 rkr

†
k.

2) Optimization w.r.t. b: The optimal solution b̂ in (25) is
given by1

b̂ =argmin
b

∥rw −Hw(∆u)b∥2 = Ho
w(∆u)rw, (26)

where

Ho
w(∆u) =

(
H†

w(∆u)Hw(∆u)
)−1

H†
w(∆u) (27)

is the Moore-Penrose inverse of Hw(∆u).

Thus, concentrating (25) over b and ignoring irrelevant
constants yields

τGLRT−LAM =

max
|∆u|≤α

r†wPH(∆u)rw

1 + ∥rw∥2
, (28)

where PH(∆u) = Hw(∆u)Ho
w(∆u) is the projector onto

Hw(∆u).

3) Optimization w.r.t. ∆u: Given the decision statistic (28),
it is crystal clear that the heart of the problem is the derivation
of a solution to the constrained optimization problem at the
numerator, i.e., solving

∆̂u = argmax
|∆u|≤α

r†wPH(∆u)rw. (29)

Unfortunately, the objective function in (29) is non concave
and a closed-form solution cannot be derived. Besides, an
accurate exhaustive discrete line search would entail a high
computational complexity which could not be compliant with
the timeline of a typical radar processor. Note also that the
optimal solution can be conceptually derived nulling the first
order derivative of the objective function in (29). Now, since
this latter can be cast as the ratio of two polynomials, the
optimal solution can be basically obtained finding the roots of
a polynomial. However, both the evaluation of the polynomial
coefficients and (more important) the execution of the root
finding procedure are computationally expensive. Besides, the
latter may suffer of numerical instabilities thus affecting the
overall strategy reliability.

In order to account for the aforementioned issues, in the
following, the optimization problem (29) is tackled resorting to
the MM framework [55]–[57]. In a nutshell, MM method is an
iterative procedure, used to tackle a challenging optimization
problem in an efficient and scalable way [58]. Specifically,
each iteration of the method is composed of two steps.
The former involves the computation of an appropriate tight
minorant (surrogate function) [58], which approximates the
objective function around the optimized solution derived at
the previous iteration. In the latter, the minorant is optimized
and an updated optimized point is obtained.

Before proceeding further, let us rewrite the objective
function in (29) in terms of the auxiliary variables y =

1Notice that the assumption of H1 being full rank implies that, for any
∆u, H(∆u) is full rank as well. As an immediate proof, assuming by
contradiction H(∆u) be not always full-rank, i.e., there exists a ∆u for
which at least one of its columns is a linear combination of the others, then
one of the column of H1 becomes a linear combination of the others, which
contradicts the hypothesis of H1 being full rank.
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H†
w(∆u)rw ∈ CP and A = H†

w(∆u)Hw(∆u) ∈ HP
++ as

f(∆u) = y†A−1y

∣∣∣∣ y=H
†
w(∆u)rw,

A=H
†
w(∆u)Hw(∆u)

. (30)

As a first step of the MM framework, it is necessary to find a
minorant to the objective function f(∆u). In this respect, let
us start from the functional extension of the Right-Hand Side
(RHS) of (30) considering it as an unrestricted function of y
and A, i.e.,

f(y,A) = y†A−1y, (31)

which is jointly convex w.r.t. y and A. Given a point (y0, A0),
and computing the tangent plane fa(y,A|y0,A0) to f(y,A)
in (y0,A0), the following inequality holds true

f(y,A) ≥ fa(y,A|y0,A0), (32)

where

fa(y,A|y0,A0) = y†
0A

−1
0 y0

+ 2Re{∇yf
†(y0,A0)(y − y0)}

+ tr{∇Af(y0,A0)(A−A0)}
(33)

with
∇Af(y,A) = −A−1yy†A−1 (34)

and
∇yf(y,A) = A−1y (35)

denote the gradient of f(y,A) w.r.t. A and y, respectively.
Now choosing y0

(h−1) = H†
w(∆u∗(h−1))rw and A0

(h−1) =
H†

w(∆u∗(h−1))Hw(∆u∗(h−1)), with ∆u∗(h−1) the output of
the MM algorithm at the (h− 1)−th iteration, yields

f(∆u) ≥

fa(y,A|y0
(h−1),A0

(h−1))

∣∣∣∣ y0
(h−1)=H

†
w(∆u∗(h−1))rw,

A0
(h−1)=H

†
w(∆u∗(h−1))Hw(∆u∗(h−1))

= fa(∆u|∆u∗(h−1)),
(36)

with equality if ∆u = ∆u∗(h−1).
As per the second step of the MM algorithm, it demands,

at the h-th iteration, the maximization of the RHS of (36),
namely (after some algebra) the solution to

∆u∗(h) = argmax
|∆u|≤α

ρ|∆u|2 + ζ∆u+ γ, (37)

where

ρ = tr{∇Af(y0
(h−1),A0

(h−1))Ḋ†
wḊw}, (38)

ζ =2Re{∇yf
†(y0

(h−1),A0
(h−1))Ḋ†

wrw}
+ tr{∇Af(y0

(h−1),A0
(h−1))(Ḋ†

wD̃w + D̃†
wḊw)}

,

(39)
and γ is a constant value functionally independent of ∆u, with
Ḋw = S−1/2Ḋ and D̃w = S−1/2D̃.

It is now worth noting that, since ρ < 0, the objective
function in (37) is strictly concave in ∆u; therefore the
optimal solution is given either by the global optimum for
the unconstrained version of (37), i.e.,

∆̃u = −ζ/(2 ρ), (40)

Algorithm 1 Angle displacement estimation via MM.

Input: r,S, ū, α,N, P, D̃, Ḋ, ε.
Output: ∆̂uLAM.

1. Compute rw = S−1/2r, D̃w = S−1/2D̃, and Ḋw =
S−1/2Ḋ;

2. Set h = 0, ∆u⋆(h) = 0
3. repeat
4. h = h+ 1;
5. Compute Hw0 = (D̃w +∆u∗(h−1)Ḋw);
6. Compute y0

(h−1) = H†
w0rw and A0

(h−1) =
H†

w0Hw0;
7. Find ∆u⋆(h) using (41);
8. until |f(y0

(h),A0
(h))− f(y0

(h−1),A0
(h−1))| < ε.

9. Output ∆̂uLAM = ∆u⋆(h).

if this solution is feasible, i.e., |∆̃u| ≤ α, or by the boundary
point, i.e., either α or −α, which maximizes (37). To sum-
marize, at the h-th iteration, the derived MM-based procedure
yields the following estimate

∆u∗(h) = max(min(∆̃u, α),−α). (41)

Observe that Problem (29) satisfies the following conditions:

C.1) the feasible set S = [−α, α] is closed and convex;
C.2) fa(∆u0|∆u0) = f(∆u0), ∀∆u0 ∈ S;
C.3) fa(∆u|∆u0) ≤ f(∆u), ∀(∆u,∆u0) ∈ S2;
C.4) fa(∆u|∆u0) is continuous in (∆u,∆u0),∀(∆u,∆u0) ∈

S2;
C.5) f ′

a(∆u|∆u0)|∆u=∆u0
= f ′(∆u)|∆u=∆u0

, ∀∆u0 ∈ S.

As consequence, due to [59, Theorem 1], any limit point
of the iterates generated by the MM algorithm is a stationary
point of Problem (29).

In conclusion, the above procedure, terminating with the
computation of (41), is iteratively repeated until the exit
condition |f(y0

(h),A0
(h)) − f(y0

(h−1),A0
(h−1))| < ε is

satisfied, with ϵ > 0 a user-defined exit threshold.

A summary of the procedure is reported in Algorithm 1,
where the method is initialized with ∆u⋆(0) = 0. Therefore,
denoting by ∆̂uLAM the output of Algorithm 1, the expression
of the devised GLRT decision statistic is given by

τGLRT−LAM =
1 + r†wrw

1 + r†wrw − r†wPH

(
∆̂uLAM

)
rw

. (42)

4) Bounded CFARness: It is now worth observing that the
derived GLRT decision statistic ensures the bounded CFAR
property. To prove this claim, let us start from the scaled
version of (25), i.e.,

τGLRT−LAM =
1 + r†wrw

1 + min
b1=[bT,∆ubT]T, |∆u|≤α

∥rw −H1,wb1∥2
,

(43)
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and notice that

τGLRT−LAM ≤ 1 + r†wrw

1 + min
b1∈C2P

∥rw −H1,wb1∥2

=
1 + r†wrw

1 + r†wrw − r†wPH1,wrw
= τP ,

(44)

where τP is a CFAR statistic [60], with H1,w = S−1/2H1

and PH1,w = H1,w

(
H†

1,wH1,w

)−1

H†
1,w the projector onto

the range span of H1,w.

B. Decision Statistics for Unknown Model Order

In some situations, the number of significant mutual cou-
pling coefficients P − 1 can often be unknown both at the
design and at the operative stage. In such a case, the target
detection problem can be framed as a multiple composite
alternative hypothesis testing problem, where each alternative
hypothesis Hi, i = 1, . . . , N̄ , pertains to a different number
of unknown signal parameters, i.e.,

H0 :

{
r = n

rk = nk k = 1, . . . ,K

Hi :

{
r = Bipa(∆u) + n

rk = nk k = 1, . . . ,K
, i = 1, . . . , N̄

, (45)

with N̄ ≤ N/2 the maximum2 allowed model order and

Bi = b0I +

i−1∑
m=1

bmDm. (46)

Remarkably, since the considered alternative hypotheses are
nested, i.e., Hi ⊂ Hj , i < j, the decision problem con-
nected with (45) can be tackled resorting to the MFLRT
framework [51]. Thus, the target presence can be established
according to the decision rule

τMFLRT−LAM =

max
1≤i≤N̄

{[
l
(i)
G − (2i+ 1)

(
log

(
l
(i)
G

2i+ 1

)
+ 1

)]

u

(
l
(i)
G

2i+ 1
− 1

)}
> γ̄,

(47)
where 2i+ 1 is the number of unknown parameters under the
Hi hypothesis, which are related to the useful component of
the received signal, i.e., the DOA displacement ∆u and the i

complex mutual coupling coefficients, l(i)G denotes the GLRT
statistic (25) derived assuming P = i, γ̄ is the threshold
guaranteeing the demanded Pfa, and u(t) is the unit step
function, i.e., u(t) = 1 as long as t ≥ 0 and zero elsewhere.

Specifically, denoting by ∆̂u
(i)

LAM the estimate of the offset

2Although from a mathematical point of view it should be considered
N̄ = N , in general it is reasonable (according to physical or empirical
considerations) to restrict the range of values for N̄ . Moreover, N̄ ≤ N/2
ensures model identifiability.

obtained with Algorithm 1 assuming P = i,

l
(i)
G = 2(K + 1)

1 + r†wrw

1 + ∥rw∥2 − r†wPH

(
∆̂u

(i)

LAM

)
rw

. (48)

Let us now investigate the bounded CFARness of (47). To
this end, let us preliminary observe that the transformation
involved in (47), i.e.,

gi(x) =

[
x− (2i+ 1)

(
log

(
x

2i+ 1

)
+ 1

)]
u

(
x

2i+ 1
− 1

)
,

(49)

which is function of i ∈ N and x > 0, exhibits two
properties [51]:

• for any i, gi(x) monotonically increases with x,
• gl(x)≤gk(x) for any l > k, with l, k ≤ N̄ and any x > 0.

Leveraging the above properties, denoting by τ
(N̄)
GLRT−LAM

and τ
(N̄)
P the Left-Hand Side (LHS) and RHS of (44) com-

puted assuming P = N̄ , respectively, the following inequality
holds

τMFLRT−LAM = max
1≤i≤N̄

{
gi(l

(i)
G )
}
≤ g1(l

(N̄)
G )

= g1(2(K + 1)τ
(N̄)
GLRT−LAM )

≤ g1(2(K + 1)τ
(N̄)
P ),

(50)

which shows that the detector (47) is bounded CFAR.

C. Two-Stage Detectors/Estimators

Algorithms exploiting a linearization of the array manifold
around the nominal search direction are well-know in open
literature (see for instance [16], [21]). Usually their perfor-
mance depends on the distance between the true direction
cosine value and that used for the expansion. For sufficiently
high values of the mentioned displacement, a saturation is
often experienced in the RMSE of the estimator when the
Signal to Interference plus Noise Ratio (SINR) is large enough.
To alleviate this phenomenon, a common (even if heuristic)
approach relies on the use of a second stage (also referred
to as double stage) of processing based on a re-linearization
of the array manifold around the output of the first stage
(single-stage) of processing (two-stage processing). Generally,
it yields some performance improvements w.r.t. the single-
iteration architecture. Therefore, for the case at hand, it is
of practical interest to study the capabilities of the designed
architectures when a further linearization stage is employed.
To enable the second stage, after the computation of the
angular displacement estimate ∆̂uLAM (as described in Sec-
tion III)3, the ideal steering vector (2) is re-linearized around
ū + ∆̂uLAM. Figs. 4 and 5 illustrate the flowchart of the
procedures with reference to the GLRT and MFLRT detectors
(with and without the second stage in red solid block and
green dashed block, respectively). Notice that the first iteration

3For the MFLRT-based procedure, ∆̂uLAM is the output of Algorithm 1
computed for P = î, with î the the index achieving the maximum in (47).
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Execute
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Algorithm 1
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Declare
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Fig. 4: Flowchart of the GLRT-based procedures. The green dashed line demarcates the single iteration method, whereas the red solid one refers to the two-iterations processing.

allows for the evaluation of τGLRT−LAM (τMFLRT−LAM )
and the immediate declaration of target presence/absence. In
addition, as it will be illustrated in the numerical results, the
detection and estimation tasks actually experience a perfor-
mance boost thanks to the two-stage architecture.

Before concluding this section, it is also worth mention-
ing that an alternative approach to the re-linearization could
rely on a partition of the DOA uncertainty interval in sub-
intervals where a bespoke linearization of the steering vector
is performed4. Thus, multiple starting points within the main
beam are utilized to initialize the estimation procedure (for
instance the centers of the sub-intervals). Then the best among
the outputs is selected as final estimate.

IV. CRBS FOR ULA WITH MUTUAL COUPLING

In this section, the CRB for the unknown target DOA
displacement ∆u is derived, which is a key tool for the
analysis of the statistical efficiency of the derived estimator
∆̂uLAM. It is also worth mentioning that the CRB expression
is obtained assuming known interference covariance matrix.
However, considering the case of unknown M , which is a
quantity functionally independent on the target parameters, it
will result in the same CRB expression for ∆u due to the
block-diagonal structure of the corresponding Fisher Informa-
tion Matrix (FIM).

In the following, the CRB is studied both for the actual array
manifold case (which provides a performance benchmark to
the estimation of ∆u = u0 − ū, with u0 the unknown to
estimate) and for the linearized case (which yields a lower
bound on the displacement estimation performance when the
linearized model is employed).

A. CRBs for the Actual Model

Let us consider the actual signal model (4)

r =apm(u0) + n = Bp(u0) + n = D̆(u0)b+ n (51)

where

D̆(u0) = [p(u0),D1p(u0), . . . ,DP−1p(u0)] ∈ CN×P .
(52)

4Considering the size of the mainbeam antenna, 4-5 sub-intervals might
represent a reasonable compromise between accuracy and computational
complexity.

𝑖 = 1

𝑖 ≤ %𝑁 ?

YES

NO

Execute
Algorithm 1 with 𝑃 = 𝑖

!Δ𝑢!"#
(%)

Compute 𝑙!
(#)

𝑖 = 𝑖 + 1

𝜏*+,-./,0*

Declare
Target absence

Declare
Target presence

Compute 𝜏%&'()*'+%
and obtain 2Δ𝑢,-./0*.1,

Set 5𝑢 =
5𝑢 +2Δ𝑢,-./0*.1,

𝑖 = 1

𝑖 ≤ %𝑁 ?

YES

NO

Execute
Algorithm 1 with 𝑃 = 𝑖

!Δ𝑢!"#
(%)

Compute 𝑙!
(#)

𝑖 = 𝑖 + 1

𝜏6789:/8;6,=>? @A

Compute 𝜏%&'()*'+%
and obtain 2Δ𝑢,-./0*.1,,345 #6

Declare
Target absence

Declare
Target presence

Fig. 5: Flowchart of the MFLRT-based procedures. The green dashed line demarcates the
single iteration method, whereas the red solid one refers to the two-iterations processing.

Denoting by θ = [u0, b
T
R, b

T
I ]

T ∈ R2P+1 the vector of the
real-valued unknowns, the FIM F ∈ R(2P+1)×(2P+1) can be
computed using the Slepian-Bangs formula [13, p. 927, eq.
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8.34], as follows

F = 2R


(
∂D̆(u0)b

∂θT

)†

M−1

(
∂D̆(u0)b

∂θT

)
= 2R

{[
˘̇D(u0)b, D̆(u0), jD̆(u0)

]†
M−1[

˘̇D(u0)b, D̆(u0), jD̆(u0)
]}

,

(53)

where bR = R {b}, bI = I {b}, and ˘̇D(u0) =
[ṗu(u0),D1ṗu(u0), . . . ,DP−1ṗu(u0)] ∈ CN×P the deriva-
tive of D̆. Thus, the CRB for the target DOA is given
by the first diagonal element of F−1 or alternatively, after
partitioning F as

F =

[
Fuu Fub

F †
ub Fbb

]
, (54)

it can be computed as [13]

CRB(∆u) =
[
Fuu − FubF

−1
bb F †

ub

]−1

, (55)

where
Fuu = 2R

{
b† ˘̇D

†
M−1 ˘̇Db

}
, (56)

Fub = 2R

{
b† ˘̇D

†
M−1

[
D̆, jD̆

]}
, (57)

and
Fbb = 2R

{[
D̆, jD̆

]†
M−1

[
D̆, jD̆

]}
. (58)

B. CRB for the Linearized Signal Model

Assuming the useful target echo in the primary data mod-
eled as in (9) and invoking again the Slepian-Bangs formula
[13, p. 927, eq. 8.34], the CRB for the unknown DOA
displacement ∆u is given by

CRBLIN(∆u) =
[
F∆u∆u − F∆ubF

−1
bbLINF †

∆ub

]−1

, (59)

where
F∆u∆u = 2R

{
b†Ḋ†M−1Ḋb

}
, (60)

F∆ub = 2R
{
b†Ḋ†M−1

[
D̃ +∆uḊ, j(D̃ +∆uḊ)

]}
, (61)

and

FbbLIN = 2R

{[
D̃ +∆uḊ, j(D̃ +∆uḊ)

]†
M−1[

D̃ +∆uḊ, j(D̃ +∆uḊ)
]}

,

(62)

with D̃ and Ḋ defined as in (12) and (13), respectively.

V. PERFORMANCE ANALYSIS

In this section, numerical examples are provided to evaluate
both the detection and estimation capabilities of the devised
processors for a ULA experiencing mutual coupling among
its array elements. In the considered experiments, N = 16,
K = 3N = 48, and α = u3dB ≜ 0.891/N = 0.0557.

The choice of α is a compromise between DOA uncertainty
and quality of the linear approximation [21]; although a
specific value can be considered for each looking direction
to account for the resulting Single-Side Beam Width (SSBW),
a reasonable option could be considering the 3 dB SSBW
u3dB of the ULA pointing at the boresight direction, regardless
of the actual looking angle. It is also assumed that the array
pointing direction is set to θ = 35◦, i.e., ū = 0.5736, while
the actual direction of the target is u0 = 0.6085; therefore
∆u = 0.0349.

Let us model the interference scenario assuming two
narrow-band jammers located at u1 = 0.866 and u2 =
−0.342, respectively. As a consequence, the interference-plus-
noise covariance matrix is

M = ΣJ + σ2
nIN (63)

with σ2
n the internal noise power level (assumed without loss

of generality equal to 0 dB) and

ΣJ =

2∑
i=1

σ2
i pm(ui)p

†
m(ui), (64)

where σ2
1 and σ2

2 denotes the powers of interferers, with
σ2
1/σ

2
n = 30 dB and σ2

2/σ
2
n = 40 dB, respectively, while

pm(ui) indicates the actual steering vector of the i-th (i =
1, 2) interfering source.

As to the mutual coupling, P = 3 and the model coefficients
are given by the vector [c1, c2]

T
= [0.7, 0.4]T.

Finally, the SINR is defined as

SINR = |a|2p†
m(u0)M

−1pm(u0). (65)

The detection performance, reported in terms of Pd versus
SINR, is evaluated resorting to 1000 Monte Carlo (MC) runs,
with Pfa set to 10−4. In this regard, 100/Pfa MC trails are
used to evaluate the detection thresholds. Furthermore, the
angular estimation performance is assessed using the RMSE
as figure of merit, computed as

R̂MSE =

√√√√ 1

MC

MC∑
l=1

∥∥∥∆u− ∆̂ul

∥∥∥2, (66)

where ∆̂ul is the displacement estimate at the l-th trial and
MC = 1000. In this context, for the estimation capability of

the GLRT detector ∆̂ul = ∆̂uLAM, whereas ∆̂ul = ∆̂u
îl

LAM

is considered for the MFLRT processing with îl the estimated
model order at the l-th trial, i.e., the maximizer of (47). The
MFLRT-based detector is implemented assuming four different
values of N̄ , i.e., N̄ ∈ {2, 4, 6, 8}. Moreover, the two-stage
(referred to as “2S”) version of both the GLRT and MFLRT
is also considered. In the figures, the value of N̄ , employed
for the execution of the MFLRT-based detectors, is specified
as subscript.

Finally, for comparison purposes, the following detectors
have been contemplated:

• the GLRT using the actual array manifold with known
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target DOA and known coupling coefficients

τben-GLRT =
|r†S−1pm(u0)|2

(1 + r†S−1r)p†
m(u0)S−1pm(u0)

; (67)

• the GLRT using the ideal array manifold (no coupling)
with known target DOA

τben-GLRT-NC =
|r†S−1p(u0)|2

(1 + r†S−1r)p†(u0)S−1p(u0)
; (68)

• the GLRT using the actual array manifold with known
target DOA and estimated coupling coefficients

τben-GLRT-DOA =
r†wP D̄w

(u0)rw

1 + ∥r∥2
, (69)

where P D̄w
(u0) = D̄w

(
D̄†

wD̄w

)−1
D̄†

w with D̄w =
S−1/2[p(u0),D1p(u0), . . . ,DP−1p(u0)];

• the standard GLRT using the ideal array manifold with
the nominal pointing direction ū (which refers to a fully
mismatched case) [5]

τGLRT =
|r†S−1p|2

(1 + r†S−1r)p†(ū)S−1p
; (70)

• the Subspace Detector (SD) [60], namely a GLRT de-
tector which uses the ideal linearized array manifold (no
coupling) and estimates the target displacement without
imposing any constraints on ∆u

τSD =
r†S−1HSD

(
H†

SDS−1HSD

)−1

H†
SDS−1r

1 + r†S−1r
,

(71)
with HSD = [p, ṗu].

A. Detection and Estimation Performance for Different num-
ber of Secondary Data

In Fig. 6 the detection and estimation capabilities of the
proposed signal processing architectures are provided in terms
of Pd and RMSE versus SINR. Specifically, Figs. 6(a) and 6(b)
consider K = 32 secondary data, while Figs. 6(c) and 6(d)
refer to K = 80. Inspection of the Pd curves reveals that the
performance of the single-stage GLRT-LAM and the MFLRT-
based detectors is very close to each other (apart from the
case of N̄ = 2) with a loss, for Pd = 0.9, of about 3 dB
w.r.t. the ben-GLRT and in the order of 2 dB when compared
with the ben-GLRT-DOA. This pinpoints the capability of
the devised methods to accomplish the detection task with
satisfactory performance. Additionally, the results reveal the
performance boost obtained by the two-stage versions of the
GLRT-LAM and the MFLRT, with a reduction, in terms of
SINR required to achieve Pd = 0.9, greater than 1 dB
w.r.t. the single-stage counterparts5. Not surprisingly, for both
single and double stage schemes, the devised GLRT-based
detectors show a performance improvement w.r.t. the MFLRT
counterparts, due to the capitalization of the prior knowledge

5For ease of visualization, in Figs. 6 and 7 only the MFLRT-2S8 is
displayed. However, the MFLRT-2S detectors with N̄ = {2, 4, 6} exhibit
similar performance improvements w.r.t. their single stage counterparts as
those resulting for the MFLRT with N̄ = 8.

on the model order. Furthermore, in all the analyzed cases,
the detection architectures neglecting the effect of mutual
coupling, i.e., SD, GLRT and ben-GLRT-NC, are unable to
provide adequate detection capabilities even at a high SINR
regime, further stressing the need for tailored decision statistics
that can compensate for the unwanted effect induced by mutual
coupling.

Analysis of the estimation performance shows that the
estimates provided by the devised single-stage methods deviate
from the CRB for the linearized model and saturate in the
high SINR regime. Remarkably, the two-stage versions of the
GLRT-LAM and the MFLRT overcome such a shortcoming
(by reducing the possible bias of the estimators) yielding
RMSEs superimposed to the CRB for SINR ≥ 20 dB. Besides,
the figures also show a gap (in the order of 2 dB) between the
CRB curves for the actual and the linearized model, reflecting
the presence of a signal modeling approximation.

It is also worth noting that the MFLRT with N̄ = 2
cannot provide a satisfactory detection performance due to
its unavoidable underestimation of the model order which
also causes a degradation in the estimation of the DOA
displacement.

Finally, as expected, a comparison between Figs. 6(a) and
6(c) as well as Figs. 6(b) and 6(d), show that increasing
the number of secondary data, the performance of all the
reported procedures improve, due to the better estimate of the
covariance matrix. More specifically, by comparing the results
for K = 80 to those achieved for K = 32, the detection
performance improvement is about 3 dB for all the analyzed
methods, while for the estimation task the gain is in the order
of 1 dB.

B. Detection and Estimation Performance for Different ∆u

Fig. 7 reports the detection and estimation performance for
the same scenario as in Fig. 6 but assuming K = 48 and two
different values for the displacement, i.e., ∆u = 0 in Figs. 7(a)
and 7(b), ∆u = 0.0349 in Figs. 7(c) and 7(d). The results
highlight that for the case of ∆u = 0 (Figs. 7(a) and 7(b)), the
Pd curves pertaining to the GLRT-LAM and the MFLRT with
N̄ ∈ {4, 6, 8} are almost superimposed to the ben-GLRT-DOA
and are quite close to the ben-GLRT performance, showing a
loss in the order of 1 dB at Pd = 0.9. For this case study,
the two-stage detectors experience a slight performance loss,
which is totally in line with the rationale leading to the design
of the two-stage architectures, since for this case study the
best possible point of the expansion is already used at the first
stage.

The effectiveness of the methods is also corroborated by
the RMSE versus SINR curves, reported in Fig. 7(b), which
show an estimation performance close to the CRB (but for
the MFLRT approaches with N̄ = 2). Moreover, for the
considered case study, the CRB computed for the actual signal
model is overlapped with that obtained for the linearized
one. Interestingly, the MFLRT with N̄ = 2 can still provide
adequate detection performance, with a SINR loss smaller
than 2 dB as compared to the GLRT-LAM. The case of
∆u = 0.0349 is illustrated in Figs. 7(c) and 7(d), which
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Fig. 6: Detection and estimation performance for a ULA with N = 16 assuming P = 3, c1 = 0.7, and c2 = 0.4. Figs. (a) and (c) report Pd vs SINR while Figs. (b) and (d)
depict RMSE (dB) vs SINR. Besides, Figs. (a) and (b) consider K = 32, whereas (c) and (d) K = 80.

highlight a detection and estimation performance similar to
that in Fig. 6, which refers to a different sample support size
K, i.e., K = {32, 80}. Again, in the analyzed scenarios,
the SD, the GLRT, and the ben-GLRT-NC detectors show
underwhelming detection performance due to the disregard of
the mutual coupling phenomenon at the design stage.

C. Cosine Similarity between the Actual and Estimated Steer-
ing Vectors

To further assess the estimation capabilities of the devised
architectures, assuming the same configuration as in Fig. 6,
Fig. 8 reports, for K ∈ {32, 48, 80}, the average cosine
similarity in the whitened signal space versus SINR between
the actual steering vector and the one computed using the
estimates of both the angular mismatch and the coupling
coefficients involved in the evaluation of the GLRT-LAM and
the MFLRT-based detectors. Specifically, for a given SINR,
the average cosine similarity is evaluated over 1000 MC trials
as

cosest =
1

MC

MC∑
l=1

|pm(u0)
†M−1p̂m(ûl)|

∥M−1/2pm(u0)∥∥M−1/2p̂m(ûl)∥
, (72)

where, at the l-th trial, p̂m(ûl) = Ĉlp(ûl) is the estimated
steering vector with ûl = ū+ ∆̂ul and Ĉl the estimate

of the coupling matrix using the coupling coefficient vector
ĉl = b̂l/b̂l(1). The developed analysis shows that, regardless
of the number of secondary data, in the high SINR regime,
all the devised methods, with the exception of the MFLRTs
with N̄ = 2, are able to provide an adequate estimation of the
steering vector, with values of the cosine similarity greater then
0.9. Notably, the two-stage version of each procedure leads to
cosine similarity values close to 0.99, which corroborates the
ability of the devised methods to perform an accurate estimate
of both the DOA displacement and the mutual coupling coef-
ficients. Finally, it is not surprising that, for a given SINR, as
the secondary data increases, the covariance matrix estimates
become more reliable leading to higher levels of the achieved
cosine similarity (e.g., see Table II).

D. Bounded CFARness

Numerical analysis is presented in the following to corrobo-
rate the bounded CFAR behavior of the developed techniques.
The same operative scenario as in Fig. 6 is considered, with
a nominal Pfa of 10−3 and K = 80. First, 1000/Pfa Monte
Carlo trials (under H0) are carried out to compute the detection
thresholds of the GLRT-LAM, MFLRT4, MFLRT8, as well as
those pertaining to the CFAR statistics τP , defined as in (44),
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Fig. 7: Detection and estimation performance for a ULA with N = 16 assuming P = 3, c1 = 0.7, c2 = 0.4, K = 48, and Figs. (a) and (b) ∆u = 0, Figs. (c) and (d)
∆u = 0.0349. Moreover, Figs. (a) and (c) report Pd vs SINR while Figs. (b) and (d) illustrate RMSE (dB) vs SINR.

and
τCFAR(N̄) = g1(2(K + 1)τ

(N̄)
P ) (73)

with N̄ = {4, 8}. Then, another set of 1000/Pfa data still in
the absence of a target is considered, and the resulting Pfa of
the detectors is estimated using both the actual and the CFAR
thresholds. Specifically, for the GLRT-LAM detector, the num-
ber of times the statistic exceeds the threshold is calculated
using both the GLRT-LAM threshold and the one pertaining
to τCFAR. For the MFLRT detectors, the cases N̄ = {4, 8}
are considered and again the Pfa is estimated using both the
corresponding thresholds and those for τCFAR(N̄) , N̄ = 4 and
N̄ = 8.

In Table I, the estimated Pfas of the aforementioned detec-
tors are reported, using both the correct thresholds and those
corresponding to the CFAR statistics. The results clearly show
that when the actual thresholds are employed, the resulting Pfa

matches to the desired value, with a slight deviation due to the
random nature of the trials. Additionally, when the thresholds
estimated using the CFAR statistics are employed, the Pfa of
the developed detectors is lower than the desired value, thus
confirming the bounded CFAR behavior of these architectures
from a numerical perspective. Precisely, the change in the
actual Pfa due to the use of the CFAR threshold is almost
one order of magnitude. Finally, from the PD point of view,

TABLE I: Estimated Pfa of the devised detectors.

Estimated Pfa GLRT-LAM MFLRT4 MFLRT8

Actual Threshold 9.4 10−4 9.3 10−4 9.7 10−4

CFAR Threshold 4.4 10−5 5.6 10−5 9.0 10−6

TABLE II: Average cosine similarity in the whitened signal space between the actual
and estimated steering vector for SINR = 15 dB.

Method K = 32 K = 48 K = 80
GLRT-LAM 0.84 0.86 0.87
MFLRT N̄ = 2 0.62 0.65 0.66
MFLRT N̄ = 4 0.81 0.84 0.85
MFLRT N̄ = 6 0.79 0.82 0.83
MFLRT N̄ = 8 0.78 0.81 0.82
GLRT-LAM 2S 0.92 0.94 0.95
MFLRT N̄ = 8 2S 0.89 0.91 0.93

the use of the CFAR thresholds entails a performance loss
which for the considered detectors ranges between 1 and 2
dB for PD = 0.9.

VI. CONCLUSIONS

Assuming the presence of mutual coupling among the array
elements, joint adaptive detection and DOA estimation of a
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Fig. 8: Average cosine similarity in the whitened signal space between the actual steering
vector and the estimated one for (a) K = 32, (b) K = 48, (c) K = 80.

prospective radar target have been considered. To this end,
a bespoke model of the received signal has been developed,
leveraging array manifold linearization around the nominal
look direction as well as the description of the mutual coupling
effects via symmetric Toeplitz matrices. As to the latter aspect,
two situations have been considered so as to account for
different amounts of a-priori information available on the
mutual coupling phenomenon. The former assumes known the
model order whereas the latter refers to the case where the
coupling depth is unknown.

Hence, appropriate adaptive architectures to detect targets
and estimate the corresponding DOA have been designed for
each situation. Specifically, resorting to advanced optimization

tools, the GLRT detector has been synthesized when the
model order is known while the MFLRT is used when the
aforementioned information is not available. Notably, both the
strategies exhibit a bounded CFAR behavior.

Some interesting case studies have been illustrated to assess
the capabilities of the novel devised architectures also in com-
parison with clairvoyant benchmarks as well as with detectors
that do not model the presence of mutual coupling during
their design process. Both detection probability and RMSE
on the target bearing have been assessed, clearly highlighting
the performance benefits offered by the synthesized mutual
coupling robust detection architectures.

Possible future research avenues might be focused on the
extension of the framework to two-dimensional arrays [49] as
well as the analysis of the developed detectors in the presence
of real and/or synthetic data obtained with a high-fidelity
electromagnetic simulator accounting for mutual coupling.
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