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Abstract—This paper investigates joint adaptive target detec-
tion and direction of arrival (DOA) estimation via a uniform rect-
angular array (URA) affected by mutual coupling. Capitalizing
on a bespoke linearization of the array manifold and leveraging
the banded symmetric Toeplitz block Toeplitz structure for the
coupling matrix description, a vectorial model of the useful target
echo return is proposed and used to formulate the detection
problem. Two decision rules are designed, i.e., the generalized
likelihood ratio (GLR) and multifamily likelihood ratio test
(MFLRT), with the latter aimed at handling an unknown number
of active mutual coupling coefficients. Both demand the joint
maximum likelihood (ML) estimates of the coupling coefficients
and the target angular displacement parameters which can be
obtained solving a non-convex optimization problem. Toward
this goal, an iterative procedure based on the minorization-
maximization (MM) algorithm is developed. At the analysis
stage, the performance of the proposed methods is assessed
in terms of detection probability (Pd) and DOA root mean
square error (RMSE) in comparison with benchmarks and
standard strategies that do not account for the mutual coupling
phenomenon. The results demonstrate the effectiveness of the
proposed approaches to overcome signal mismatches induced by
both the DOA uncertainty and mutual coupling.

Index Terms—Adaptive radar detection, mutual coupling,
uniform rectangular arrays, GLRT, MFLRT.

I. INTRODUCTION

Among the several challenges that modern antenna array
signal processing algorithms [1] are faced with, the pres-
ence of mutual coupling (MC) is definitely a very crucial
issue [2]–[7]. In fact, elements of an antenna array may
electromagnetically interact with their neighbors, altering their
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electromagnetic characteristics. This unwanted effect depends
on a multitude of factors, including the number, type, and
relative orientation of each antenna element, as well as their
distance and position [5], [8], [9]. As a result, the actual
received steering vector could be possibly mismatched with
respect to (w.r.t.) the ideal manifold model assumed at the
design stage by standard algorithms, eventually causing a sig-
nificant performance degradation [2], [10]–[13]. Despite of the
potential measurement campaigns to quantify and compensate
accurately the MC, some residual effects due to an unavoidable
imperfect measurements are often present. Moreover, the MC
effect is not necessarily stationary [2], making it challenging
to keep the array properly calibrated over time. In this regard,
a frequent calibration process to ensure optimal performance
is time-consuming and complex, effectively wasting valuable
radar time. Therefore, it is crucial to investigate adaptive
signal processing methods capable of realizing an on-the-fly
compensation of the MC (or its residual, if a initial calibration
stage has been performed).

An interesting aspect of MC is that the magnitude of
the coupling coefficient describing the interaction between
two radiating elements decreases rapidly with the distance
between them, and it is substantially the same between any
two elements that are at the same distance [8]. This property,
together with special symmetries induced by the array geo-
metrical configuration, yields a special structure in the MC
matrix (MCM) which can be capitalized at the design stage
of bespoke signal processing schemes [2], [14]–[18].

To proceed further, let us now frame the aforementioned
issue within a typical radar context, with emphasis on adaptive
target detection [19]–[24] and direction of arrival (DOA)
estimation [25]–[28]. In [13], assuming a uniform linear array
(ULA) affected by MC, the problem of jointly detecting the
target and estimating its bearing is addressed while accounting
for MC and the DOA uncertainty along the design phase. This
is achieved by modeling the actual steering vector as the prod-
uct of a MCM and an approximated steering vector depending
affinely on the unknown DOA displacement (w.r.t. the look-
ing direction) [29]. The target detection problem, formulated
assuming a homogeneous radar interference environment, is
addressed by resorting to the generalized likelihood ratio test
(GLRT) [30], [31] and the multifamily likelihood ratio test
(MFLRT) [32] strategies, with the latter employed when an
a-priori knowledge on the number of active mutual coupling
coefficients is unavailable (also referred to as the unknown
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model order case).
Following the guidelines of [13], this work aims at si-

multaneously detecting and estimating the two-dimensional
(2D) DOA with a uniform rectangular array (URA) in the
presence of MC. Specifically, the main innovative technical
achievements as compared to [13] can be summarized as
follows:

• For URA, the MCM demands a different structural model
w.r.t. the ULA case. Specifically, a banded symmetric
Toeplitz block Toeplitz MCM [18] is necessary instead
of the banded symmetric Toeplitz matrix used for the
ULA. From the analytic viewpoint this involves different
numbers of parameters to estimate and tailored matrix
manipulations to capitalize on the developed matrix
model.

• After an appropriate concentration of likelihood functions
exploiting the estimates of the interference-plus-noise
covariance matrix and the MC coefficients, to handle
the joint detection and estimation problem for the URA
case it is required the solution of a two-dimensional opti-
mization problem, unlike the ULA sensing scenario [13]
involving a one-dimensional problem. The subsequent
application of the minorization-maximization (MM) opti-
mization framework for the URA entails solving, at each
iteration, a new two-variable box-constrained quadratic
optimization problem, wherein its optimal solution is
provided in closed form.

• For the URA configuration, the performance of the
devised methods is numerically assessed in terms of
probability of detection (Pd) and root mean square error
(RMSE) of the 2D DOA estimates, via Monte Carlo
simulations. The results are also compared with bench-
marks and counterparts available in the open literature. In
addition, a robustness analysis is conducted to evaluate
the effectiveness of the proposed strategies in case of mis-
matches in the MC model, namely when the actual MCM
does not fully exhibit the banded symmetric Toeplitz
block Toeplitz structure assumed at the design stage.

The paper is organized as follows. The signal model for
URA with MC effect is given in Section II. In Section III,
the design of decision statistics and parameters estimation
processes for known and unknown model order cases are
addressed. Numerical simulations are provided in Section IV.
Finally, conclusions as well as future research activities are
discussed in Section V.

A. Notations

Boldface is used for vectors a (lower case), and matrices
A (upper case). The (k, l)-entry (or l-entry) of a generic
matrix A (or vector a) is indicated as [A]k,l (or [a]l). I
and 0 denote respectively the identity matrix and the matrix
with zero entries (their size is determined from the context).
Moreover, diag(x) indicates the diagonal matrix whose i-th
diagonal element is [x]i. The transpose and the conjugate
transpose operators are denoted by the symbols (·)T and (·)†,
respectively. The determinant and the trace of the matrix
A ∈ CN×N are indicated with |A|, tr{A}, respectively. ⊗
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Fig. 1: System configuration of a URA having M × N elements arranged in the xoy-
plane.

denotes the Kronecker product. RN and CN are the sets of
N -dimensional column vectors of real and complex numbers,
respectively. HN and HN

++ represent the set of N × N
Hermitian matrices and Hermitian positive definite matrices,
respectively. The letter j represents the imaginary unit (i.e.,
j =

√
−1). For any complex number x, |x| indicates the

modulus of x and Re{x} denotes its real part. Moreover, for
any x ∈ CN , ∥x∥ denotes the Euclidean norm, whereas the
Frobenius norm of a matrix A is indicated as ∥A∥F . Let f(x)
be a real-valued function, ∇xf(x) denotes the gradient of
f(·) w.r.t. x, with the partial derivatives arranged in a column
vector. Furthermore, for any x, y ∈ R, max(x, y) returns
the maximum between the two argument values. Finally, the
symbol O(·) denotes the computational complexity in terms
of basic operations.

II. SIGNAL MODEL

A. Signal Model with Unknown MC

Let us consider a radar system equipped with a URA
consisting of M ×N antenna elements on the xy-plane with
inter-element spacing equal to d (see Fig. 1).

Assume that a point-like target is located in the far-field
with the range R0, azimuth ϕ0, and elevation θ0. The radar
received echo after down-conversion, pulse compression, fast-
time sampling, and measurement gathering at the instant of
interest, is given by

ap(u0, v0) = apu(u0)⊗ pv(v0), (1)

where a ∈ C denotes the unknown complex coefficient
accounting for target backscattering as well as the other
terms involved in the two-way radar equation, p(u0, v0) =
pu(u0) ⊗ pv(v0) ∈ CMN is the 2D spatial steering vector
p(u, v) evaluated at (u0, v0), with u0 = cos(ϕ0) sin(θ0) and
v0 = sin(ϕ0) sin(θ0) the target location parameters in the
space of directional cosines [22], and

pu(u) =
[
1, ej2π

d
λ0

u, . . . , ej2π
d
λ0

(M−1)u
]T

∈ CM (2)

pv(v) =
[
1, ej2π

d
λ0

v, . . . , ej2π
d
λ0

(N−1)v
]T

∈ CN (3)
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Fig. 2: Representation of the MC in a URA between the (m,n)-th antenna element and
its 4P (P − 1) nearest elements.

the spatial steering vectors pertaining to the u and v domains.
Up to now, an ideal array manifold has been considered.

In practice, the MC phenomenon within the array elements
is almost unavoidable and demands a bespoke description at
the modeling stage so as to be appropriately handled at the
information extraction level. Therefore, the coupling effects
can be accounted for by representing the actual steering vector
as

pm(u0, v0) = Cp(u0, v0), (4)

where C∈ CMN×MN is the MCM.
To effectively model C, it is assumed that the MC between

any pair of elements at the same distance is essentially the
same1, whereas it decreases rapidly as their distance increases.
Moreover, it can be practically ignored for elements fairly
separated in distance from each other [8]. Recently, this
standard MCM model, originally developed for linear and
circular arrays [2], [15]–[17], [34]–[36], has been extended
to the planar array case [18]. Thereby, assuming that for each
radiating element the MC effect is induced only by elements
within a specific grid/neighborhood around it [18], P − 1
outgrowing squares could be conceived (see Fig. 2 where
different colors represent distinct geometric symmetries in the
electromagnetic field leakage), resulting in a total of 4P (P−1)
nearest elements mutually coupled with the (m,n)-th (m =
1, . . . ,M , n = 1, . . . , N ) element. Accordingly, the MCM
is represented accurately as a banded symmetric Toeplitz
block Toeplitz matrix [37], whereby each block, denoted by
Ci ∈ CN×N , describes the intercolumn and intracolumn MC
for i = 1 and i ≥ 2, respectively, experienced by the elements

1Notice that the assumption is realistic for modern phased array radar
systems with plenty of elements. Specifically, it reasonably holds true for
internal elements but could not be ensured for those close or exactly on to
the edges [33].

of one column of the URA induced by those lying in the
(i− 1)-th adjacent column, if present. Therefore, each matrix
block is a banded symmetric Toeplitz matrix. Formally,

C =



C1 C2 · · · CP 0 · · · · · · · · · 0
C2 C1 C2 · · · CP 0 · · · · · · 0

...
. . . . . . . . . . . . . . . . . . . . .

...
CP · · · C2 C1 C2 · · · CP · · · 0

0
. . . . . . . . . . . . . . . . . . . . .

...
...

. . . CP · · · C2 C1 C2 · · · CP

...
. . . . . . . . . . . . . . . . . . . . .

...
0 · · · · · · 0 CP · · · C2 C1 C2

0 · · · · · · · · · 0 CP · · · C2 C1


, (5)

where

Ci =



[ci]1 [ci]2 · · · [ci]P · · · 0

[ci]2 [ci]1 [ci]2 · · ·
. . .

...
... [ci]2 [ci]1

. . . · · · [ci]P

[ci]P · · ·
. . . . . . [ci]2

...
...

. . . [ci]2 [ci]1 [ci]2
0 · · · [ci]P · · · [ci]2 [ci]1


= [ci]1IN +

P−1∑
m=1

[ci+1]mJm,

(6)

is in one-to-one mapping with ci = [[ci]1, [ci]2, . . . , [ci]P ]
T ∈

CP , i = 1, 2, . . . , P, whereas Jm is defined as an N × N
matrix having 1s on its m-th (m = 1, 2, . . . , P −1) upper and
lower diagonals, and zeros otherwise, i.e.,

[Jm]p,q =

{
1, |p− q| = m
0, otherwise

, p, q = 1, . . . , N. (7)

It is interesting to observe that when the Toeplitz-block-
Toeplitz matric C (5) can be factored as Cu⊗Cv (with Cu and
Cv banded Toeplitz matrices), multiplying C by the steering
vector (4), yields Cp = Cupu ⊗Cvpv , which is analytically
equivalent to the factored model used in [38] and [39] for
Multiple Input Multiple Output (MIMO) systems.

Exploiting the structural features of the overall MCM C, it
can be further decomposed as

C = IM ⊗C1 +

P−1∑
i=1

Di ⊗Ci+1 =

P−1∑
i=0

Di ⊗Ci+1, (8)

with D0 = IM and Di ∈ CM×M , i = 1, . . . , P −1, a matrix
having 1s on its i-th upper and lower diagonals, and zeros
otherwise.

To further assess the influence of the MC effect, in the
following the angle cosine (cosine similarity) [40] between
the ideal and the actual steering vectors is analyzed, by means
of

cosm(u, v) =
|p†

m(u, v)p(u, v)|
∥pm(u, v)∥∥p(u, v)∥

. (9)

As a study case, let us consider a URA with M = 5 and
N = 6 experiencing the MC phenomenon, which is modeled
assuming P = 3, with the matrices C1, C2, and C3 defined as
in (6) using the following vectors c1 = [1, 0.75+0.48j, 0.67+
0.32j]T, c2 = [0.58 + 0.29j, 0.42 − 0.35j, 0.39 + 0.24j]T,
and c3 = [0.03 + 0.45j, 0.12 − 0.31j, 0.09 − 0.18j]T, re-
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Fig. 3: Cosine similarity (9) between the ideal and the actual steering vectors.

spectively. In Fig. 3, (9) is plotted versus θ and ϕ. Its
inspection highlights that a symmetric response is obtained
w.r.t. ϕ = 180◦. Moreover, in some regions the mismatch
induced by the MC is quite severe. This is for example the
case of (θ, ϕ) ∈ [30◦, 55◦]×[65, 75]. In such instances, there is
a strong mismatch between the actual and the ideal model as
testified by the considerable low values of the cosine similarity.

B. Signal Model via Linearized Array Manifold

Following the guidelines of [29], the ideal received steering
vector p(u, v) can be approximated via a first order Taylor
expansion around the pointing direction (ū, v̄) with a resulting
functional dependency of the linearized array manifold on the
offsets ∆u = u0 − ū and ∆v = v0 − v̄, namely

p(u0, v0) ≈ pa(∆u,∆v) = p+ p̂u∆u+ p̂v∆v, (10)

where p = p(ū, v̄), p̂v = ṗu ⊗ pv(v̄), and p̂v = pu(ū)⊗ ṗv

with ṗu and ṗv the vectors whose entries contain the derivative
of pu and pv w.r.t. u and v evaluated at ū and v̄, respectively
(See Appendix A).

Now, letting pu = pu(ū), pv = pv(ū), and including the
coupling effects, the echo signal can be expressed as

apam(∆u,∆v) = aCpa(∆u,∆v) = Bpa(∆u,∆v)

= H(∆u,∆v)b,
(11)

with pam(∆u,∆v) = Cpa(∆u,∆v) ∈ CMN the approx-
imated actual steering vector encompassing the MC effect,

B = aC =
P−1∑
i=0

Di ⊗ aCi+1∈ CMN×MN , whereas the

specific definitions of H(∆u,∆v) ∈ CMN×P 2

and b ∈ CP 2

are provided in Appendix B.
Before concluding this section, it is worth mentioning that

following the same line of reasoning of [13], it can be
shown that a a sufficient condition for the identifiability of

the unknowns in (11) is given by MN ≥ 3P 2, namely
H1 =

[
H0, H̃, Ĥ

]
∈ CMN×3P 2

being full rank.

III. TARGET DETECTION PROBLEM

The target detection problem is formulated as a binary hy-
pothesis test aimed at ascertaining the target presence/absence
within the cell under test. Assuming the availability of K sec-
ondary data free of any useful target signal (with K > MN ),
it can be cast as

H0 :

{
r = n

rk = nk, k = 1, . . . ,K

H1 :

{
r = H(∆u,∆v)b+ n

rk = nk, k = 1, . . . ,K

, (12)

where
• r ∈ CMN and rk ∈ CMN , k = 1, . . . ,K, are the vectors

of primary and secondary data, respectively;
• H(∆u,∆v) is functionally dependent on the unknown

target DOA displacements w.r.t. the array pointing direc-
tion;

• b represents the unknown vector accounting for both
the complex received target echo return a and the P 2

complex MC coefficients;
• n ∈ CMN and nk ∈ CMN , k = 1, . . . ,K, denote

the interference plus noise components of the received
snapshots, modeled as statistically independent, complex,
zero-mean, circularly symmetric Gaussian random vec-
tors with unknown positive definite covariance matrix,
i.e., M = E[nn†] = E[nkn

†
k] ∈ HMN

++ , k = 1, . . . ,K.
Accordingly, the joint probability density functions (PDFs)

of the observations under H0 and H1, can be written respec-
tively as

fHi
(r, r1, . . . , rk|M)

=

[
1

πN |M |
e− tr{M−1Ti}

]K+1

, i = {0, 1}
(13)

with

T0 =

rr† +
K∑

k=1

rkr
†
k

K + 1
(14)

and

T1 =

(r −H(∆u,∆v)b)(r −H(∆u,∆v)b)† +
K∑

k=1

rkr
†
k

K + 1
.

(15)
The optimal Neyman-Pearson detector for the hypothesis

testing problem (12), i.e., the LRT, cannot be implemented
without the knowledge of ∆u, ∆v, b, and M . Moreover,
another complication connected with the design of a practical
detector relies on the fact that the number of unknowns in
the array coupling coefficients, namely P 2 − 1, can be either
assumed known or unknown. In this respect it is possible to
explore GLRT-based detectors when the number of coupling
coefficients is known at the design stage, while the case of
unknown model order can be studied resorting to the MFLRT
criterion.
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A. Decision Statistic for Known P

In the following, the target detection problem (12) is ad-
dressed under the assumption of P known at the design stage.
In this context, resorting to the GLRT criterion, the following
decision rule can be defined

max
M∈HMN

++ ,b∈CP
2

∆u∈A,∆v∈B

fH1
(r, r1, . . . , rk|M , b,∆u,∆v)

max
M∈HMN

++

fH0
(r, r1, . . . , rk|M)

H1

≷
H0

γ, (16)

where γ is the detection threshold set to ensure a desired
Pfa, A denotes the uncertainty set associated with ∆u, i.e.,
[−α, α], and B denotes the uncertainty set associated with
∆v, i.e., [−β, β]. In this context, α and β are used to
control the uncertainty region related to the unknown target
DOA. It is important to emphasize that their values must
be carefully chosen to guarantee a high level of accuracy of
the array manifold approximation (10). To this end, a viable
choice entails setting them to the 3dB single-side beamwidth
(u3dB , v3dB) ≜ (0.891/N, 0.891/M) of a planar array when
pointing in the boresight direction2.

Maximizing both the numerator and the denominator of (16)
over M and taking their logarithm yields the decision statistic
(after standard manipulation),

lG = 2(K + 1) log

 |T0|
min

b, ∆u∈A,∆v∈B
|T1|


= 2(K + 1)

1 + r†wrw

1 + min
b, ∆u∈A,∆v∈B

∥rw −Hw(∆u,∆v)b∥2
,

(17)

where Hw(∆u,∆v) = S−1/2H(∆u,∆v) ∈ CMN×P 2

and
rw = S−1/2r ∈ CMN are the quasi-whitened counterparts
of H(∆u,∆v) and r respectively, with S =

∑K
k=1 rkr

†
k ∈

CMN×MN .
Hence, letting ∆θ = [∆u,∆v]

T ∈ R2, the optimization
problem in (17) is equivalent to

min
b,∆θ∈S

∥rw −Hw(∆θ)b∥2, (18)

where S = [−α, α]× [−β, β] denotes the nonempty and com-
pact feasible set for ∆θ. Let us now consider the optimization
w.r.t. b in (18),

b̂ =argmin
b

∥rw −Hw(∆θ)b∥2 = Ho
w(∆θ)rw, (19)

where3

Ho
w(∆θ) =

(
H†

w(∆θ)Hw(∆θ)
)−1

H†
w(∆θ) (20)

2Remarkably, a viable way to control the linearization-induced errors entails
considering a partition of the 2D DOA uncertainty set in sub-intervals whereby
bespoke linearization of the steering vector could be performed.

3Notice that the assumption of H1 being full rank implies that, for any
∆θ, H(∆θ) is full rank as well. As an immediate proof, assuming by
contradiction H(∆θ) not full-rank, i.e., there exists a ∆θ for which at
least one of its columns is a linear combination of the others, then one of the
columns of H1 becomes a linear combination of the others, which contradicts
the hypothesis of H1 being full rank.

is the Moore-Penrose inverse of Hw(∆θ). Thus, by substi-
tuting the optimizer of b into (17) leads to

τGLRT−LAM =
max
∆θ∈S

g(∆θ)

1 + ∥rw∥2
, (21)

where g(∆θ) = r†wPH(∆θ)rw and PH(∆θ) =
Hw(∆θ)Ho

w(∆θ) ∈ HMN
++ is the projector onto the range

span of Hw(∆θ).
It remains to optimize (21) w.r.t. ∆θ. To this end, let us

recast the objective function in (21) as

g(∆θ) = y†A−1y

∣∣∣∣ y=H
†
w(∆θ)rw

A=H
†
w(∆θ)Hw(∆θ)

= ḡ(y,A)

∣∣∣∣ y=H
†
w(∆θ)rw

A=H
†
w(∆θ)Hw(∆θ)

(22)

where y ∈ CP 2

, A ∈ HP 2

++, and ḡ(y,A) is jointly convex
w.r.t. A and y.

In order to tackle the challenging optimization problem at
hand, an MM-based method [41]–[46] is developed, which
is an iterative procedure consisting of two distinct steps.
The former involves the computation of an appropriate tight
minorant (surrogate function) based on the current tentative
solution. The latter entails its optimization, generating an
updated estimate of the unknowns.

Following the same line of reasoning as in [13], the tangent
plane ḡa(y,A|y0,A0) to ḡ(y,A) in (y0,A0) is an appro-
priate choice as surrogate function for the problem at hand.
Precisely, it is defined as [13]

ḡa(y,A|y0,A0) = y†
0A

−1
0 y0

+ 2Re{∇y ḡ
†(y0,A0)(y − y0)}

+ tr{∇Aḡ(y0,A0)(A−A0)},
(23)

where
∇y ḡ(y,A) = A−1y (24)

and
∇Aḡ(y,A) = −A−1yy†A−1 (25)

are the gradients of ḡ(y,A) w.r.t. A and y, respectively.
As a result, denoting by ∆θ⋆(h−1) =

[∆u⋆(h−1),∆v⋆(h−1)]T the output of the MM algorithm
at the (h− 1)−th iteration, it yields,

g(∆θ)

≥ ḡa(y,A|y(h−1)
0 ,A

(h−1)
0 )

∣∣∣∣ y=H
†
w(∆θ)rw

A=H
†
w(∆θ)Hw(∆θ)

= ga(∆θ|∆θ⋆(h−1)),

(26)

with y
(h−1)
0 = H†

w(∆θ⋆(h−1))rw and A
(h−1)
0 =

H†
w(∆θ⋆(h−1))Hw(∆θ⋆(h−1)) while the equality in (26)

holds when ∆θ = ∆θ⋆(h−1). Then, exploiting the current
estimated point ∆θ⋆(h−1), the optimization w.r.t. ∆θ at the
h-th iteration can be obtained according to the maximization of
the right-hand side (RHS) of (26), namely (after some algebra)

∆θ⋆(h) = argmax
∆θ∈S

ga(∆θ|∆θ⋆(h−1)) (27)
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Algorithm 1 A solution to (27) via MM

Input: rw,H0w = S−1/2H0, H̃w, Ĥw, ū, v̄, α, β, ε1.
Output: A solution ∆̂θ

⋆
to Problem (27) .

1. Set h = 0, ∆θ(h) = [∆u(h),∆v(h)]T = 0, P (h) = ∞.
2. repeat
3. h = h+ 1;
4. Compute Hw(∆θ(h−1)) = H0w + H̃w∆u(h−1) +

Ĥw∆v(h−1);
5. Compute y

(h−1)
0 = H†

w(∆θ(h−1))rw and A
(h−1)
0 =

H†
w(∆θ(h−1))Hw(∆θ(h−1));

6. Obtain ∆θ(h) via Proposition 1;
8. Evaluate P (h) = ga(∆θ(h)|y(h−1)

0 ,A
(h−1)
0 );

9. until |P (h) − P (h−1)| < ε1.
10. Output ∆̂θ

⋆
= ∆θ(h) = [∆̂u

⋆
, ∆̂v

⋆
]T.

with ∆θ⋆(h) being the global (unique) optimum of the objec-
tive function at hand (the proof is reported in Appendix C).
Moreover, the optimal solution to (27) is obtained according
to the following proposition:

Proposition 1: The optimal solution ∆θ⋆(h) to (27) is given
by the global optimal point for the unconstrained version
of (27), i.e.,

∆θ⋆(h) = ∆θ1 = [∆̃u, ∆̃v]T, (28)

if this solution is feasible, i.e., ∆θ1 ∈ S with ∆̃u and ∆̃v given
in Appendix D. Otherwise, the optimal solution is obtained by
restricting the objective function to the boundaries of S and
selecting the maximum among the finite set {θ1, . . . ,θ5} of
optimal candidate solutions, i.e.,

∆θ⋆(h) = argmax
∆θ∈{∆θi}5

i=2

ga(∆θ|∆θ⋆(h−1)), (29)

where

∆θ2 = [∆u∗
+, β]

T, ∆θ3 = [∆u∗
−,−β]T,

∆θ4 = [α,∆v∗+]
T, ∆θ5 = [−α,∆v∗−]

T,
(30)

with
∆u∗

± = max(min(−b′±β/(2a
′), α),−α), (31)

∆v∗± = max(min(−b′′±α/(2a
′′), β),−β), (32)

a′, b′±β , a′′, and b′′±α are defined in Appendix D.

Proof: See Appendix D.

A summary of the MM is reported in Algorithm 1, whereby
the exit condition is assumed

|P (h) − P (h−1)| < ε1, (33)

where
P (h) = ga(∆θ⋆(h)|∆θ⋆(h−1)) (34)

is the objective function at the h-th iteration and ε1 > 0 is a
user-defined exit threshold.

Therefore, exploiting the result of Algorithm 1, the GLRT
for Linearized Array Manifold (GLRT-LAM) statistic is de-

fined by

τGLRT−LAM =
r†wPH

(
∆̂u

⋆
, ∆̂v

⋆
)
rw

1 + ∥rw∥2
. (35)

Furthermore, as long as the number of iterations involved in
the MM procedures is limited, the computational complexity
is dominated by the evaluation of the sample covariance
matrix S, that is O(MNK). As a final remark, following
the same approach as in [13] for the case of ULA, it is
straightforward to prove that the derived GLRT-LAM detection
architecture verifies the bounded-constant false alarm rate
(CFAR) property.

B. Decision Statistic for Unknown P

In this subsection, the target detection problem is addressed
for the case where the actual number of MC coefficients is
unknown. This entails an additional complexity in the devel-
opment of a tailored processing scheme for target information
extraction. To deal with this problem, a multiple composite
alternative hypothesis testing problem is formulated, with
each alternative hypothesis pertaining to a given number of
unknown signal parameters. Formally,

H0 :

{
r = n

rk = nk, k = 1, . . . ,K

Hi :

{
r = Hi(∆u,∆v)bi + n

rk = nk, k = 1, . . . ,K
, i = 1, . . . , N̄

, (36)

where N̄ ≤ MN/2 is the maximum4 allowed model order,

Hi(∆u,∆v) = H0i + H̃i∆u+ Ĥi∆v, (37)

and
b = [b̄T1 , b̄

T
2 , . . . , b̄

T
i ], (38)

with

• H0i = [D0pu ⊗ Jv,D1pu ⊗ Jv, . . . ,Di−1pu ⊗ Jv];
• H̃i = [D0ṗu ⊗ Jv,D1ṗu ⊗ Jv, . . . ,Di−1ṗu ⊗ Jv];
• Ĥi =

[
D0pu ⊗ J̇v,D1pu ⊗ J̇v, . . . ,Di−1pu ⊗ J̇v

]
.

Remarkably, since the alternative hypotheses are nested
in (36), i.e., Hi ⊂ Hj , i < j, a viable solution to handle (36)
is to resort to the MFLRT framework [32]. Thus, the target
presence can be established according to the decision rule

τMFLRT =

max
1≤i≤N̄

{[
l
(i)
G − 2(i2 + 1)

(
log

(
l
(i)
G

2(i2 + 1)

)
+ 1

)]

u

(
l
(i)
G

2(i2 + 1)
− 1

)}
> γ̄,

(39)
where

4An appropriate upper-bound N̄ to the maximum model order can be
reasonably considered, supported by physical or empirical considerations. It
is also worth noting that N̄ ≤ MN/2 ensures model identifiability.
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• 2(i2+1) is the number of unknown parameters under the
Hi hypothesis5;

• l
(i)
G is the GLRT-like statistic (17) derived assuming P =
i;

• γ̄ is the threshold guaranteeing the demanded Pfa;
• u(t) is the unit step function, i.e., u(t) = 1 as long as

t ≥ 0 and zero otherwise.

Specifically, denoting by ∆̂θ
(i)

MM the estimate of the directional
cosines displacements provided by Algorithm 1 assuming
P = i,

l
(i)
G = 2(K + 1)

1 + r†wrw

1 + ∥rw∥2 − r†wPH

(
∆̂θ

(i)

MM

)
rw

. (40)

Finally, by following the same methodology used in [13]
for ULA, it can be easily proven that the derived MLRT-LAM
detector (39) also satisfies the bounded-CFAR property.

IV. SIMULATION RESULTS

In this section, numerical examples are provided to eval-
uate both the detection and estimation capabilities of the
proposed processing schemes for a URA with M = 5 and
N = 6 in the presence of MC. The inter-element spacing
among the antennas is set to half wavelength and the number
of secondary data is K = 4MN = 120. Moreover, the
uncertainty set where the unknown target DOA is assumed
lying is defined by α = u3dB ≜ 0.891/M = 0.1782 and
β = v3dB ≜ 0.891/N = 0.1485, where u3dB and v3dB are
the 3 dB single-side beamwidth of a planar array pointing at
the boresight direction. It is also assumed that the pointing
direction is (θ, ϕ) = (33◦, 73◦). As to the target location pa-
rameters, two cases are analyzed. The former considers cosine
mismatches [∆u,∆v]T = [0, 0]T, whereas the latter assumes
[∆u,∆v]T = [0.03, 0.05]T. Consequently, the robustness of
the developed methods to MC is mainly evaluated through the
former analysis, whereas the latter highlights their capabilities
to handle mismatches induced by both MC and DOA displace-
ment jointly. Furthermore, to model the MC between the array
elements, the following values of the coupling coefficients are
supposed in the simulations, assuming P = 3:

• c1 = [1, 0.75 + 0.48j, 0.67 + 0.32j]T,
• c2 = [0.58 + 0.29j, 0.42− 0.35j, 0.39 + 0.24j]T,
• c3 = [0.03 + 0.45j, 0.12− 0.31j, 0.09− 0.18j]T.
Moreover, in order to assess the detection performance,

the Pd is used as evaluation criterion, computed resorting to
NMC = 5000 Monte Carlo runs and assuming a Probability of
False Alarm (Pfa) equals to 10−4. In this respect, 100

Pfa
Monte

Carlo trails are evaluated to set the detection thresholds of
the considered detectors. As to the estimation performance,
needless to say evaluated under H1, the RMSE is considered
as figure of merit. It is computed as

RMSE∆u =

√√√√ 1

NMC

NMC∑
r=1

∣∣∣∆u− ∆̂ur

∣∣∣2,
5Under the Hi hypothesis, the total number of unknowns are given by the

two DOA displacements ∆u and ∆v, and the i2 complex MC coefficients.

and

RMSE∆v =

√√√√ 1

NMC

NMC∑
r=1

∣∣∣∆v − ∆̂vr

∣∣∣2,
where ∆̂ur and ∆̂vr are the estimates provided at the r-th
trial by a given technique.

Furthermore, the SINR is defined as

SINR = |a|2p†
m(u0, v0)M

−1pm(u0, v0). (41)

For the evaluation of the MFLRT-based methods, N̄ ∈
{2, 3, 4} is analyzed, where the value of N̄ is specified as
subscript. Furthermore, the two-stage (referred to as “2S”) ar-
chitectures of both the derived GLRT-based and MFLRT-based
methods is also implemented, namely, after a first computation
of the unknown angular displacement ∆̂θ

⋆
= [∆̂u

⋆
, ∆̂v

⋆
]T

(as described in Section III), the ideal steering vector (8) is
re-linearized around (ū + ∆̂u

⋆
, v̄ + ∆̂v

⋆
) and the estimation

procedure is executed once again.
For comparison, the following detectors are also included:

• the GLRT using the actual array manifold with known
target DOA and known coupling coefficients

τGLRT-ben =
|p†

m(u0, v0)S
−1r|2

(1 + r†S−1r)p†
m(u0)S−1pm(u0, v0)

; (42)

• the GLRT using the ideal array manifold (not encompass-
ing the MC phenomenon) with known target DOA

τGLRT-ben-NC =
|p†(u0, v0)S

−1r|2

(1 + r†S−1r)p†(u0, v0)S−1p(u0, v0)
; (43)

• the GLRT using the actual array manifold with known
target DOA but with the useful target steering vector
affected by the MC phenomenon

τGLRT-ben-DOA =
r†wPHt,w

rw

1 + ∥rw∥2
, (44)

where PHt,w = Ht,w

(
H†

t,wHt,w

)−1

H†
t,w with

Ht,w = S−1/2 [D0pu(u0)⊗ Jv0 , . . . ,DP−1pu(u0)⊗ Jv0
]

and Jv0 = [pv(v0),J1pv(v0), . . . ,JP−1pv(v0)];
• the standard GLRT using the ideal array manifold with

the nominal pointing direction (ū, v̄) (which refers to a
fully mismatched case) [20]

τGLRT-mis =
|p†(ū, v̄)S−1r|2

(1 + r†S−1r)p†(ū, v̄)S−1p
; (45)

• the Subspace Detector (SD) [47], namely a mismatched
GLRT detector using as useful signal directions those
given by the columns of HSD, i.e.,

τSD =
r†S−1HSD

(
H†

SDS−1HSD

)−1

H†
SDS−1r

1 + r†S−1r
, (46)

with HSD = [p, p̂u, p̂v].

In the reported simulations, three different scenarios are
examined. First, the useful signal is assumed buried in white
Gaussian noise; then, a jamming interference situation is
assessed. Finally, within this last context, random perturbations
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Fig. 4: Pd (left figures) and RMSE (right figures) versus SINR in the background of Gaussian white noise, assuming (a) and (b) [∆u,∆v]T = [0, 0]T; (c) and (d) [∆u,∆v]T =
[0.03, 0.05]T.

in the elements of the MCM are considered.

A. Gaussian White Noise Case

In this case study, the disturbance covariance matrix is
modeled as M = σ2

nIMN with σ2
n the internal noise power

level, which is assumed, without loss of generality, equal to 0
dB.

The Pd curves versus SINR obtained in the aforemen-
tioned scenario for [∆u,∆v]T = [0, 0]T and [∆u,∆v]T =
[0.03, 0.05]T are plotted in Figs. 4(a) and 4(c), respectively,
with the corresponding RMSE versus SINR curves displayed
in Figs. 4(b) and 4(d). Not surprisingly, the Pd results pertain-
ing to the first analyzed DOAs scenario, depicted in Fig. 4 (a),
reveal that the GLRT-ben and the GLRT-ben-DOA yield upper
bounds to the performance of all the considered detectors.
As to the devised strategies, both the GLRT-LAM and the
MFLRT (but for the case N̄ = 2, where an undersized model
order is considered), are able to provide satisfactory detection
results, yielding performance close to that of the GLRT-ben-
DOA. Specifically, the gap between the corresponding curves
is less than 1 dB at Pd = 0.9. As already slightly pinpointed,
inspection of the figure highlights that using N̄ = 2 for
the computation of the MFLRT entails an inadequate signal

model that leads to a SINR loss, at Pd = 0.9, in the
order of 3 dB w.r.t. the GLRT-LAM. Furthermore, the second
stage of processing is unable to provide any improvement
in the detection performance, with a negligible loss w.r.t.
the corresponding one stage curves. This is not surprising,
as the best expansion point has already been used in the
first linearization. Finally, the performance of the detectors
that do not account for the coupling phenomenon, i.e., ben-
GLRT-NC and GLRT-mis, is unsatisfactory, with the only
exception of the SD, which is instead capable to deliver
acceptable performance, although inferior compared to the
proposed strategies. This behavior reinforces the need for the
development of tailored signal processing schemes to cope
with the challenges posed by the MC. The capabilities of
the devised strategies are also corroborated by the analysis of
the estimation performance reported in Fig. 4 (b), within the
∆u and ∆v domains, respectively. In particular, looking over
the plots highlights that both the GLRT and MFLRT methods
(with the exception of the MFLRT2) yield reliable estimates
of the DOA displacements. Moreover, the 2S variants of
the GLRT and MFLRT architectures deliver almost the same
estimation performance, with slight improvement only in the
high SINR regime.
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Fig. 5: Pd (left figures) and RMSE (right figures) versus SINR in an interference background, assuming (a) and (b) [∆u,∆v]T = [0, 0]T; (c) and (d) [∆u,∆v]T = [0.03, 0.05]T.

Regarding the other DOAs scenario, i.e., [∆u,∆v]T =
[0.03, 0.05]T, illustrated in Figs. 4 (c) and (d), the detec-
tion performance of the devised methods remains relatively
unchanged as compared to the previously analyzed case,
indicating that they are able to severely handle the mismatch
caused by DOA uncertainty and to endow robustness to the
joint detection and estimation process in the presence of MC
effects. Furthermore, both the MFLRT2 (and its 2S variant)
and the SD scheme experience a performance loss, compared
to the case presented in Fig. 4 (a), of approximately 1 dB
at Pd = 0.9, reasonably due to the stronger mismatch on
the signal model. The highlighted behavior of the devised
methods is also pinpointed by the inspection of the RMSE
curves, depicted in Fig. 4 (d). At low and medium SINR
regimes, the achieved estimation performance is quite similar
to that analyzed in the previous DOAs scenario, with some
significant differences especially at high SINR. In particular,
the estimates of ∆u obtained with the 1S version of the
proposed methods saturate, while those obtained with the 2S
variants perform considerably better. In fact, the GLRT-LAM-
2S provides increasingly accurate estimation performance as
the SINR increases. This improvement is difficult to observe
in the Pd curves since it is attained for SINR values where
the detection performance of the aforementioned methods has

substantially already achieved saturation.

B. Interference Case

In this section, the radar system is assumed affected
by some interference from two narrowband jammers,
angularly located at (u1, v1) = (0.4698, 0.1710) and
(u2, v2) = (0.5567, 0.6634), respectively. As a consequence,
the interference-plus-noise covariance matrix can be modeled
as [48]

M =

2∑
i=1

σ2
i pm(ui, vi)p

†
m(ui, vi) + σ2

nIMN , (47)

where pm(ui, vi) denotes the actual steering vector of the i-th
(i = 1, 2) interference source with σ2

1 and σ2
2 the correspond-

ing powers. Moreover, it is assumed that the Jammer to Noise
Ratio (JNR) of the two emitters is JNR1 ≜ σ2

1/σ
2
n = 30 dB

and JNR2 ≜ σ2
2/σ

2
n = 40 dB, respectively.

The effectiveness of the methods under consideration are
analyzed in Fig. 5, using the same simulation setup considered
in Fig. 4 but for the interference scenario which is now mod-
eled according to (47). Specifically, the Pd curves evaluated
assuming [∆u,∆v]T = [0, 0]T are displayed in Fig. 5 (a),
which shows no significant differences as compared to the
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Fig. 6: Pd (left figures) and RMSE (right figures) versus SINR in an interference background and perturbations in the actual MCM, assuming [∆u,∆v]T = [0.03, 0.05]T.

corresponding white noise case. As a result, all detectors main-
tain their rankings. Still, a clear performance advantage over
the mismatched and SD detectors is present, corroborating
the effectiveness of the proposed strategies. Furthermore, the
estimation performance, depicted in Fig. 5 (b), is consistent
with the white noise disturbance situation as well, with only a
slight loss (experienced by all the methods) on the inference
of ∆u, especially at the high SINR regime.

On the other hand, regarding the Pd behavior for
[∆u,∆v]T = [0.03, 0.05]T DOAs case, displayed in Fig. 5
(c), it is possible to observe detection performance similar
to the case related to Fig. 4 (c), although with a slight im-
provement obtained by the 2S variants over the corresponding
1S counterparts. As a matter of fact, the RMSE curves in
Fig. 5 (d) indicate a corresponding interesting performance
improvement at high values of SINR. Specifically, starting
from 22 dB in the ∆u domain and 15 dB in the ∆v domain,
some advantages of our refined 2S processing scheme can
be observed. Notably, being at this SINR regime the Pd

not yet achieved saturation, detection gains are experienced
too. Remarkably, the 2S strategy exploits the DOA estimation
obtained in the first stage and provides, with the second stage,
a more accurate approximation of the actual array manifold,
resulting in improved performance and yielding accurate DOA
estimates without saturation.

C. Perturbations in the actual MCM

In practice, some perturbations on the nominal banded
symmetric Toeplitz block Toeplitz structure of the MCM could
be experienced, as for instance induced by radome reflection
effects, sensor position misplacements, as well as changes in
the environment (e.g., due to the movement of metal objects
near the antenna array) [2] that might induce deviations in
the nominal conditions of the radar system. To this end,
possible random perturbation can be accounted for via the
MCM model6

Ĉ = C +Npert, (48)

6To keep the physical meaning of the MCM, the diagonal elements of Ĉ
are set to 1.

where Npert ∈ CN×N ∼ CN (0, ξI) is a random perturbation
matrix whose complex entries are modeled as independent and
identically distributed zero-mean circularly-symmetric com-
plex Gaussian random variables, with variance ξ ≥ 0.

Within the same setup of Figs. 5 (c) and (d) correspond-
ingly, in particular, to [∆u,∆v]T = [0.03, 0.05]T, the aim
of the subsequent analysis is a robustness analysis of the
devised GLRT- and MFLRT-based signal processing strategies
considering, at each Monte Carlo trial, a different realization
of the random perturbation term Npert, assuming ξ = 0.1. The
results, presented in terms of Pd and RMSE versus SINR, are
shown in Fig. 6. A comparison of the detection and estimation
results with those obtained in the absence of perturbations,
analyzed in Figs. 5 (c) and (d), shows that the perturbations
induce a detection performance degradation of approximately
1 dB at Pd = 0.9 for all considered methods. Moreover,
unlike the corresponding ideal case, the MFLRT4 and its 2S
variant exhibit detection capabilities quite close to the ben-
GLRT-DOA, with a slight advantage over the GLRT-LAM and
GLRT-LAM-2S counterparts. This is attributed to the MFLRT
capability to leverage higher model orders, which induces
more degrees of freedom for the subsumed array manifold
inference, thereby counteracting the effects of perturbations
in the structure. This behavior is also reflected in the RMSE
curves depicted in Fig. 6 (b). Specifically, at a low SINR
regime, the MFLRT4 yields the best performance in both
∆u and ∆v domains while at high SINR values, it achieves
the best performance only for the ∆v estimation, showing a
performance saturation in the estimation of ∆u. Still, in the
high SINR regime, only the GLRT-LAM and its 2S variant
do not experience a performance saturation in both the ∆u
and ∆v domains, likely due to their prior knowledge of the
number of active MC coefficients. Summarizing, the proposed
techniques exhibit a good level of robustness to perturbations
in the banded symmetric Toeplitz block Toeplitz structure of
the MCM, providing performance levels that are comparable
to the nominal case, assumed at the design stage, where the
MCM is modeled according to (5).
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V. CONCLUSION

Simultaneous target detection and 2D DOA estimation for
a URA affected by MC has been addressed. At the modeling
stage, a suitable description of the actual echo return has
been developed accounting for the unknown target 2D angular
displacements w.r.t. the pointing direction and an unknown
structured matrix that embeds the effects of MC and target
backscattering. Leveraging this bespoke model, the target de-
tection problem in Gaussian interference has been formulated
and tackled by resorting to two sub-optimal criteria, i.e., the
GLRT and the MFLRT. The former is adopted for the known
model order case whereas the latter considers the situation
where the number of actual coupling coefficients is unknown.
The practical implementation of the detectors has demanded
the joint ML estimates of the unknown angular displacements
and coupling coefficients which stem as the solution to a non-
convex optimization problem. To get a good quality solution,
an ad-hoc iterative procedure based on the MM algorithm
has been designed. It involves at each iteration the solution
of a box-constrained quadratic optimization problem whose
optimal point has been obtained in a closed form. Remark-
ably, both the GLRT and the MFLRT ensure the bounded-
CFAR property. At the analysis stage, the performance of
the proposed signal processing strategies has been assessed in
terms of Pd and DOA RMSE in different scenarios, including
the presence of jammers as well as random perturbations in
the coupling matrix structure assumed at the design stage.
Comparisons with benchmark detectors and some counterparts
that do not encompass the MC phenomenon have also been
conducted. The results have highlighted the effectiveness of
the devised architectures showing performance levels compa-
rable to the benchmark that assume known target DOA and
model order.

Possible future research avenues might include the analysis
on real (or on high-fidelity electromagnetically simulated)
phased array data to assess possible discrepancies with the
theoretical results, the derivation of additional decision statis-
tics based on different criteria, such as Adaptive Matched
Filter (AMF) [49], Rao, and Wald tests [31], as well as
the application of the devised framework in a pulse-Doppler
scenario accounting, at the design stage, for both the Doppler
uncertainty and the MC effect. Finally, the extension to the
multi-polarization case [50] could be definitely an interesting
complement to this work.

APPENDIX

A. First order derivatives of the URA spatial steering vector

According to (1), the derivatives of p w.r.t. u and v,
evaluated respectively at ū and v̄, can be calculated as

p̂u =
∂p(u, v)

∂u

∣∣∣∣
u=ū

=
∂pu

∂u

∣∣∣∣
u=ū

⊗ pv(v̄)

= j2π
d

λ0
Eupu(ū)⊗ pv(v̄)

= ṗu ⊗ pv(v̄),

(49)

and

p̂v =
∂p(u, v)

∂v

∣∣∣∣
v=v̄

= pu(ū)⊗
∂pv

∂v

∣∣∣∣
v=v̄

= pu(ū)⊗ j2π
d

λ0
Evpv(v̄)

= pu(ū)⊗ ṗv,

(50)

with ṗu = j2π d
λ0
Eupu(ū), ṗv = j2π d

λ0
Evpv(v̄),

Eu = diag
(
[0, 1, ...,M − 1]T

)
∈ CM×M and Ev =

diag
(
[0, 1, ..., N − 1]T

)
∈ CN×N .

B. Derivations of (11)

Expression (11) can be recast as

apam(∆u,∆v) = Bpa(∆u,∆v)

= Bp+Bp̂u∆u+Bp̂v∆v.
(51)

The first term in (51) can be written as

Bp =

(
P−1∑
i=0

Di ⊗ aCi+1

)
(pu ⊗ pv)

=

P−1∑
i=0

Dipu ⊗ aCi+1pv =

P−1∑
i=0

Dipu ⊗ Jvb̄i+1

=

P−1∑
i=0

(Dipu ⊗ Jv)b̄i+1 = H0b,

(52)

where
• H0 = [D0pu ⊗ Jv,D1pu ⊗ Jv, . . . ,DP−1pu ⊗ Jv] ∈

CMN×P 2

;
• Jv = [pv,J1pv, . . . ,JP−1pv] ∈ CN×P ;
• b = [b̄T1 , b̄

T
2 , . . . , b̄

T
P ]

T ∈ CP 2

with b̄l =
[acl,0, acl,1, . . . , acl,P−1]

T ∈ CP , l = 1, . . . , P .
Similarly, the second term in (51) can be expressed as

Bp̂u∆u =

(
P−1∑
0=1

Di ⊗ aCi+1

)
(ṗu ⊗ pv)∆u

=

(
P−1∑
i=0

(Di ⊗ Jv)(ṗu ⊗ b̄i+1)

)
∆u

= H̃b∆u,

(53)

where H̃ = [D0ṗu ⊗ Jv,D1ṗu ⊗ Jv, . . . ,DP−1ṗu ⊗ Jv] ∈
CMN×P 2

.
Moreover, the third term in (51) becomes

Bp̂v∆v =

(
P−1∑
i=0

Di ⊗ aCi+1

)
(pu ⊗ ṗv)∆v

=

(
P−1∑
i=0

(Di ⊗ J̇v)(pu ⊗ b̄i+1)

)
∆v

= Ĥb∆v,

(54)

where
• Ĥ =

[
D0pu ⊗ J̇v,D1pu ⊗ J̇v, . . . ,DP−1pu ⊗ J̇v

]
∈

CMN×P 2

;
• J̇v = [ṗv,J1ṗv, . . . ,JP−1ṗv] ∈ CN×P .

This article has been accepted for publication in IEEE Transactions on Radar Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRS.2023.3289991

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

Hence, by substituting (52)-(54) into (51), it yields

apam(∆u,∆v) = H0b+ H̃b∆u+ Ĥb∆v

= H(∆u,∆v)b
(55)

with H(∆u,∆v) = H0 + H̃∆u+ Ĥ∆v ∈ CMN×P 2

.

C. Proof of strict concavity of the objective function in (27)

The existence of the global maximizer of (27) is guaranteed
by the Weierstrass theorem [51], being the objective function
in (27) continuous and the feasible set S non-empty and
compact. It is also worth noting that the Hessian matrix of
the objective function in (27) w.r.t. ∆θ can be calculated as
He = −2Ĥe with Ĥe given by

Ĥe =

[
y†
AH̃

†
wH̃wyA Re{y†

AH̃
†
wĤwyA}

Re{y†
AH̃

†
wĤwyA} y†

AĤ
†
wĤwyA

]
(56)

where H̃w = S−1/2H̃ , Ĥw = S−1/2Ĥ , and yA =
(A

(h−1)
0 )−1y

(h−1)
0 ∈ CP 2

. Then, the determinant of Ĥe is
calculated as

|Ĥe| =
(
y†
AH̃

†
wH̃wyA

)(
y†
AĤ

†
wĤwyA

)
− Re2

{
y†
AH̃

†
wĤwyA

}
>
∣∣∣y†

AH̃
†
wĤwyA

∣∣∣2 − Re2
{
y†
AH̃

†
wĤwyA

}
≥ 0,

(57)

where the first inequality holds for the Cauchy-Schwarz in-
equality7 applied to the first term. Hence, He ≺ 0, indicating
that ga(∆θ|∆θ⋆(h−1)) is strictly concave in ∆θ.

D. Proof of Proposition 1

Proof: Let us define for simplicity:

• ga = ga(y,A|y(h−1)
0 ,A

(h−1)
0 );

• ∇A = ∇Ag(y
(h−1)
0 ,A

(h−1)
0 ) = −yAy

†
A;

• ∇y = ∇yg(y
(h−1)
0 ,A

(h−1)
0 ) = yA,

then according to the first order optimality conditions, the
optimal points can be obtained by forcing the gradient of ga
w.r.t. ∆u and ∆v to be zero, i.e., ∂ga

∂∆u = 0 and ∂ga
∂∆v = 0,

which yields

2Re

{
∇†

y

∂y

∂∆u

}
+ tr

{
∇A

∂A(∆θ)

∂∆u

}
= 0,

2Re

{
∇†

y

∂y(∆θ)

∂∆v

}
+ tr

{
∇A

∂A(∆θ)

∂∆v

}
= 0,

(58)

with

•
∂y(∆θ)
∂∆u = H̃†

wrw and H̃w = S−1/2H̃;
•

∂y(∆θ)
∂∆v = Ĥ†

wrw and Ĥw = S−1/2Ĥ;
•

∂A(∆θ)
∂∆u = (H̃†

wH0w + H†
0wH̃w) + 2H̃†

wH̃w∆u +

(H̃†
wĤw + Ĥ†

wH̃w)∆v;
•

∂A(∆θ)
∂∆v = (Ĥ†

wH0w + H†
0wĤw) + 2Ĥ†

wĤw∆v +

(Ĥ†
wH̃w + H̃†

wĤw)∆u.

7Note that the first inequality in (57) is strict as a direct consequence of
the full rank assumption of H1, which entails H̃ and Ĥ being linearly
independent.

After some calculations, (58) becomes

c1 + c2∆u+ c3∆v = 0
d1 + d2∆u+ d3∆v = 0

, (59)

where

• c1 = Re
{
y†
AH̃

†
wrw − y†

AH̃
†
wH0wyA

}
;

• c2 = −y†
AH̃

†
wH̃wyA;

• c3 = −Re
{
y†
AH̃

†
wĤwyA

}
;

• d1 = Re
{
y†
AĤ

†
wrw − y†

AĤ
†
wH0wyA

}
;

• d2 = c3;
• d3 = −y†

AĤ
†
wĤwyA.

Hence, a unique stationary point to (27) is obtained as

∆θ1 = [∆̃u, ∆̃v]T, (60)

where

∆̃u =
c1d3 − c3d1
c23 − c2d3

and ∆̃v =
c1d2 − c2d1
c2d3 − c23

.

Note that if ∆θ1 is feasible, then it is the global optimal
solution to the optimization problem (27). Otherwise, the
optimal solution can be found on the boundaries of the feasible
set, S, namely determining for each edge the corresponding
maximizer.

Case A: Upper and lower edges (∆v = ±β).

Letting H±β = S−1/2
(
H0 + Ĥ(±β)

)
, the optimization

problem in (27) boils down to

∆u⋆(h) = argmax
∆u∈A

ga(∆u; ∆v = ±β|y(h−1)
0 ,A

(h−1)
0 )

∣∣∣∣ y(h−1)
0 =y(∆θ⋆(h−1)),

A
(h−1)
0 =A(∆θ⋆(h−1))

,

(61)

whose objective function of (61) can be written as

a′ ∆u2 + b′±β ∆u+ c′±β , (62)

with
a′ = −y†

AH̃
†
wH̃wyA, (63a)

b′±β = 2Re
{
y†
AH̃wrw − y†

AH̃
†
wH±βyA

}
, (63b)

and c′±β the constant terms independent of ∆u.

Since a′ = − tr
{
A−1

0 y0y
†
0A

−1
0 H̃†

wH̃w

}
< 0, (62) is a

concave optimization problem, whose optimal solution is given
by

∆u∗
± = max(min(−b′±β/(2a

′), α),−α), (64)

leading to the candidate optimal solutions associated with the
up and down edges, namely

∆θ2 = [∆u∗
+, β] (65)

and
∆θ3 = [∆u∗

−,−β]. (66)

Case B: Left and right edges (∆u = ±α).

Similar to Case A, letting H±α = S−1/2
(
H0 + H̃(±α)

)
,
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the optimization problem (27) is equivalent to

∆v⋆(h) = argmax
∆v∈B

ga(∆v; ∆u = ±α|y(h−1)
0 ,A

(h−1)
0 )

∣∣∣∣ y(h−1)
0 =y(∆θ⋆(h−1)),

A
(h−1)
0 =A(∆θ⋆(h−1))

,

(67)

whose optimal solution is given by

∆v∗± = max(min(−b′′±α/(2a
′′), β),−β) (68)

with
a′′ = −y†

AĤ
†
wĤwyA, (69a)

b′′±α = 2Re
{
y†
AĤwrw − y†

AĤ
†
wH±αyA

}
. (69b)

As a consequence, the candidate optimal solutions associ-
ated with the left and right edges are

∆θ4 = [α,∆v∗+] (70)

and
∆θ5 = [−α,∆v∗−]. (71)
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