[6.5]

Nome

Matricola

1. a. Lo studente fissi un sottospazio W di \mathbb{R}^5 di dimensione 3 contenente il vettore $\underline{v}=(3,1,0,1,3)$, esibendone due basi $\mathcal{B}=[\underline{u}_1,\underline{u}_2,\underline{u}_3]$ e $\mathcal{B}'=[\underline{u}_1',\underline{u}_2',\underline{u}_3']$. Se possibile, scegliere, \mathcal{B} e \mathcal{B}' in modo che nessuna delle due contenga \underline{v} .

b. Si calcolino le componenti del vettore $\frac{1}{2}\underline{u}_2' - \underline{u}_3'$ in una delle due basi scelte.

c. Stabilire per quali $c \in \mathbb{R}$ il vettore $\underline{w} = (0, 0, 0, c, 0)$ appartiene a W. [7]

2. Fissato un riferimento ORTOGONALE $(O, [\underline{i}, \underline{j}])$ del piano tale che $|\underline{i}| = 1$ e $|\underline{j}| = 2$, scrivere l'equazione cartesiana della retta r passante per il punto $P \equiv (\sqrt{3}, 0)$ e parallela a \underline{j} . Esibire poi un vettore parallelo a una bisettrice degli assi del riferimento [3.5]

3. Fissato un riferimento nello spazio, è data la retta

$$s) \begin{cases} x + y + 4z = 0 \\ y = 1 \end{cases}.$$

Scrivere le equazioni parametriche della retta s^\prime passante per l'origine e parallela a s.

Determinare, poi, un'equazione cartesiana del piano π contenente l'asse y e parallelo alla retta s. [4.5]

4. Al variare di $c \in \mathbb{R}$ sono dati gli omomorfismi

$$f_c: (x_1, x_2, x_3) \in \mathbb{R}^3 \longmapsto (-x_3, +3x_2, cx_1 - x_3) \in \mathbb{R}^3.$$

i) Per quali $c \in \mathbb{R}$ l'endomorfismo f_c non è iniettivo? In questo caso, calcolare una base del sottospazio Ker f_c .

ii) Per quali c la terna (1,2,3) appartiene a Im f?

iii) È vero che per c=12 l'endomorfismo è diagonalizzabile? In ogni caso, esibire almeno un autovettore per f_{12} . [8.5]

5. Si classifichino le coniche di equazione

$$\Gamma_k$$
) $x^2 - 2kxy + y^2 - 6y + 8 = 0$.

e si disegni, poi, quella che si ottiene per k = 1.