next up previous contents
Next: 4.8.2 Numerical results Up: 4.8 Numerical Simulations of Previous: 4.8 Numerical Simulations of   Contents

4.8.1 Definition of the problem

We apply the above numerical technique to solve the $ \mu$-mag standard problem n. 4 (see Ref. [79]). This problem concerns the study of magnetization reversal dynamics in a thin-film subject to a constant and spatially uniform external field, applied almost antiparallel to the initial magnetization. The geometry of the medium is sketched in Fig. 4.1. The material parameters are $ A=1.3\times 10^{-11}$ J/m, $ M_s=8.0\times10^5$ A/m, $ K_1=0$ J/m$ ^3$ and $ \alpha =0.02$ (permalloy). The initial state is an equilibrium s-state (see Fig. 4.1, right) such as is obtained after applying and slowly reducing a saturating field along the $ [1,1,1]$ direction to zero. In all the numerical simulations the equilibrium condition has been chosen such that:

$\displaystyle \max_{l=1\ldots N} \left\vert \frac{\textbf{{m}}_l^{n+1} - \textbf{{m}}_l^{n}}{
  \Delta t}\right\vert <10^{-5} \quad,$ (4.61)

i.e. the maximum of the (normalized) torque across the body has been checked for equilibrium. Moreover, the stopping criterion of the quasi-Newton iterative procedure has been chosen

$\displaystyle \max\vert$F$\displaystyle _q(\mathbf{y}_k)\vert<10^{-14} \quad,\quad q=1,\ldots,3N
 \quad.$ (4.62)

where F$ _q(\mathbf{y}_k)$ is the $ q$-th components of the vector $ \mathbf{F}(\mathbf{y}_k)$, and the index $ k$ indicates the number of quasi-Newton iterations. Two switching events will be calculated using fields applied in the x-y plane of different magnitude and direction. In the first case the external field is applied at an angle of $ 170^\circ$ off the $ x$ axis with $ x-y$ components such that $ \mu_0$   M$ _$s   h$ _{ax}=-24.6$ mT, $ \mu_0$   M$ _$sh$ _{ay}=4.3$ mT and $ \mu_0$   h$ _a=25$ mT. In the second case the external field is applied at an angle of $ 190^\circ$ off the $ x$ axis with $ x-y$ components such that $ \mu_0$   M$ _$sh$ _{ax}=-35.5$ mT, $ \mu_0$   M$ _$s   h$ _{ay}=-6.3$ mT, and $ \mu_0$   M$ _$sh$ _a=36$ mT. In both cases the cell edges are $ d_x=3.125$ nm, $ d_y=3.125$ nm, $ d_z=3 $nm and therefore the number of cells is $ N=160\times 40 \times 1=6400$.
next up previous contents
Next: 4.8.2 Numerical results Up: 4.8 Numerical Simulations of Previous: 4.8 Numerical Simulations of   Contents
Massimiliano d'Aquino 2005-11-26