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Introduction

The study of magnetization processes in magnetic materials has been in the last

fifty years the focus of considerable research for its application to magnetic record-

ing technology. In fact, the design of nowadays widespread magnetic storage

devices, such as the hard-disks which are within computers on our desktops, re-

quires the knowledge of the “microscopic” phenomena occurring within magnetic

media. In this respect, it is known that some materials, referred to as ferromag-

netic materials, present spontaneous magnetization at room temperature, which

is the result of “spontaneous” alignment of the elementary magnetic moments

that constitute the medium. Roughly speaking, from a phenomenological point

of view, one has a medium whose magnetization state can be changed by means of

appropriate external magnetic fields. The magnetic recording technology exploits

the magnetization of ferromagnetic media to store information.

The first example of magnetic storage device was the magnetic core mem-

ory prototype, realized by IBM in 1952, and used in the IBM 405 Alphabetical

Accounting Machine. The working principle of magnetic core memories is very

simple. One can think about several cores placed at the nodal positions of an

array-type structure made with horizontal and vertical wired lines, as sketched

in Fig. 1. Each core is basically a bistable unit, capable of storing one bit (binary

digit), which is the smallest piece of binary-coded information (can be let’s say

“0” or “1”). In Figure 1, on the right, it is illustrated the writing mechanism of

the IBM 2361 Core Storage Module. Basically, the target magnetic core can be

“switched”, from 0 to 1 or viceversa, by addressing it with the horizontal and

vertical current lines which pass through the core. The currents flowing in the

addressing wires generate a magnetic field that can change the magnetic state

of the core. Nevertheless, the magnetic field produced by the single current line

is designed to be not sufficient to switch a core. Therefore, the only core that

switches is the only one traversed by two currents, namely the one addressed by

the horizontal and the vertical current lines. It turns out that a collection of mag-

netic cores can store a sequence of bits, namely can record a piece of information.

After magnetic core memories, magnetic tapes (or, equivalently, floppy disks)
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Figure 1: (left) The first magnetic core memory, from the IBM 405 Alphabetical
Accounting Machine. The photo shows the single drive lines through the cores
in the long direction and fifty turns in the short direction. The cores are 150 mm
inside diameter, 240 mm outside, 45 mm high. This experimental system was
tested successfully in April 1952. (right) Writing mechanism of magnetic cores
memory.

have been used, but the most widespread magnetic storage device is certainly the

hard-disk.

In this respect, it is evident from the photography in Fig. 1 that the first

prototypes of magnetic storage devices had dimensions in the order of meters.

The progress made by research activity performed worldwide in this subject has

led to exponential decay of magnetic device dimensions. In fact, modern recording

technology deals with magnetic media whose characteristic dimensions are in the

order of microns and submultiples. It is sufficient to mention that commercial

hard disks are capable of storing more that 100 Gbit (gigabit ∼ 109 bits) per

square inch!

Recently the possibility to realize magnetic random access memories (from

now on MRAMs), similar in principle to magnetic core memories, has been in-

vestigated, but, at the moment no commercial realization of MRAMs is present

on the market. However, both hard disks and MRAMs rely on flat pieces of mag-

netic materials having the shape of thin-films. Typically, the information, coded

as bit sequences, is connected to the magnetic orientation of these films, which

have dimensions in the order of microns and submultiples.

Let us now consider the simple scheme of principle of hard disk, depicted in

Fig. 2. The recording medium is a flat magnetic material that is thin-film shaped.

The read and write heads are separate in modern realizations, since they use

different mechanisms. In fact, as far as the writing process is concerned, one can

see that the writing head is constituted by a couple of polar expansions made of
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Figure 2: Simple representation of Read/Write magnetic recording device present
in hard disks realizations.

soft materials, excited by the current flowing in the writing coil. The fringing field

generated by the polar expansions is capable to change the magnetization state of

the recording medium. Generally the recording medium is made with magnetic

materials that have privileged magnetization directions. This means that the

recording medium tends to be naturally magnetized either in one direction (let’s

say ‘1’ direction) or in the opposite (‘0’ direction). In this sense, pieces of the

material can behave like bistable elements. The bit-coded information can be

therefore stored by magnetizing pieces of the recording medium along directions

0 or 1. The size of the magnetized bit is a critical design parameter for hard

disks. In addition, for the actual data rates, magnetization dynamics cannot be

neglected in the writing process.

The reading mechanism currently relies on a magnetic sensor, called spin

valve, which exploits the giant magneto-resistive (GMR) effect. Basically, the

spin valve is constituted by a multi-layers structure. Typically two layers are

made with ferromagnetic material. One is called free layer since its magnetization

can change freely. The other layer, called pinned layer, has fixed magnetization.

If suitable electric current passes through the multi-layers, significant changes

in the measured electric resistance can be observed depending on the mutual

orientation of the magnetization in the free and pinned layer. Let us see how this

can be applied to read data magnetically stored on the recording medium.

Basically, the spin valve is placed in the read head almost in contact with the

recording medium [1]. Then, when the head moves over the recording medium,

the magnetization orientation in the free layer is influenced by the magnetic field

produced by magnetized bits on the recording medium. More specifically, when
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Figure 3: Typical array structure for magnetic random access memories
(MRAMs).

magnetization in the free layer and magnetization in the pinned layer are parallel,

the electrical resistance has the lowest value. Conversely, the antiparallel con-

figuration of magnetization in the free layer and pinned layer yields the highest

value of the resistance. Thus, by observing the variation in time of the electrical

resistance (that is, the variation of the read current passing trough the multilay-

ers) of the GMR head, the bit sequence stored on the recording medium can be

recognized.

It is possible to say something also about MRAMs prototypes. The magnetic

random access memories follow a working principle very similar to the older

magnetic core memories. In fact, they present the same cell array structure

as their predecessors, but each cell is constituted by a magnetic multi-layers

structure rather than a magnetic core (see Fig. 3). The reading mechanism is

based on GMR effect, whereas the writing process is conceptually analogous to

the one seen for magnetic core memories. Thus, an MRAM cell can be switched by

addressing it with the current lines (bit lines in Fig. 3). The switching is realized

by means of the magnetic field pulse produced by the sum of horizontal and

vertical current. This magnetic field pulse can be thought as applied in the film

plane at 45◦ off the direction of the magnetization. In this situation, the magnetic

torque, whose strength depends on the angle between field and magnetization,

permits the switching of the cell. This behavior is simple in principle, but it is

very hard to realize in practice on a nanometric scale. In fact, the array structure

must be designed such that the magnetic field produced by only one current line

cannot switch the cells. Conversely, the field produced by two currents must be
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Figure 4: Magnetic Recording Disk Technology: Practical Challenges in Deliver-
ing the Areal Density Performance [2].

such that it switches only the target cell.

Recently, to circumvent the problems of switching MRAMs cells with mag-

netic field, the possibility of using spin-polarized currents, injected directly in

the magnetic free layer with the purpose to switch its magnetization, has been

investigated. In particular, this possibility has been first predicted by the theory

developed by J. Slonczewski in 1996 (see Ref. [44]) and then observed experi-

mentally [45, 46, 48]. The interaction between spin-polarized currents and the

magnetization of the free layer is permitted by suitable quantum effects. From a

“macroscopic” point of view, these effects produce a torque acting on the mag-

netization of the free layer. The resulting dynamics may indeed exhibit very

complicated behaviors.

The above situations are only few examples of technological problems which

require to be investigated by means of theoretical models. Now, referring to

hard disk technology, at the present time the main challenges and issues can be

summarized as follows:

1. Higher areal density.

2. Improved thermal stability of magnetized bits.

3. Increasing read/write speed in recording devices (< 1 ns)
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The first two points are strongly connected, since the smaller is the size of the bit,

the stronger are the thermal fluctuations which tend to destabilize the configu-

ration of the “magnetized bit”. For this reasons, as far as the bit size decreases,

it has been recognized that the use of perpendicular media, constituted of grains

in which the bit is magnetized in the direction normal to the film plane, leads to

better thermal stability. In fact, by looking at Fig. 4, the future perspectives in

hard disk design show that the use of perpendicular media, patterned media and

heat-assisted magnetic recording technology will possibly yield [2] areal densities

towards 1 Terabit/in2 by the year 2011. Thus, being the spatial scale of magnetic

media in the order of, more or less, hundred nanometers, magnetic phenomena

has to be analyzed by theoretical models with appropriate resolution. This is

the case of micromagnetics, which is a continuum theory that stands between

quantum theory and macroscopic theories like mathematical hysteresis models

(Preisach, etc.).

Moreover, as far as the read/write speed increases (frequencies in the order of

GHz and more), dynamic effects cannot be neglected. Therefore, as a result, the

design of modern ultra-fast magnetic recording devices cannot be done out of the

framework of magnetization dynamics. This is the motivation for the research

activity that will be illustrated in the following chapters.

In chapter 1 the micromagnetic model and the Landau-Lifshitz-Gilbert (LLG)

equation will be introduced to describe magnetization phenomena in ferromag-

netic bodies. First, an approach in terms of the free energy associated with the

magnetic body will be presented to derive the static equilibrium conditions for

magnetization vector field. Then, the dynamic effects due to the gyromagnetic

precession will be introduced. Both Landau-Lifshitz and Landau-Lifshitz-Gilbert

equation will be presented. Phenomenological Gilbert damping will be analyzed

in terms of Rayleigh dissipation function.

In chapter 2 the study of magnetization dynamics in uniformly magnetized

particles will be addressed. In particular, first the static Stoner-Wohlfarth model

and then magnetization switching processes will be analyzed. In addition, novel

analytical techniques to study magnetization dynamics under circularly polarized

external fields and magnetization dynamics driven by spin-polarized currents will

be introduced and deeply discussed. In this respect, it will be shown how some

behaviors indeed observed in experiments, can be explained in terms of bifurca-

tions of fixed points and limit cycles of the LLG dynamical system.

As a further step, in chapter 3, the assumption of magnetization spatial uni-

formity will be removed and the problem of studying thin-films reversal processes
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of technological interest will be addressed. In this respect, as preliminary step,

the issue of the computation of magnetostatic fields, which is still the bottleneck

of micromagnetic simulations, will be illustrated together with the mostly used

methods at this time. Then, a comparison of damping and precessional switching

processes in thin-films will be performed, showing that fast precessional switch-

ing can be considered spatially quasi-uniform and, therefore, its crucial aspects

can be analyzed by means of uniform mode theory discussed in chapter 2. Fi-

nally, a uniform mode analysis will be applied to the fast switching of granular

tilted media which represents one of the most promising solutions for high density

magnetic storage in future hard disks.

In chapter 4, the problem of the geometrical numerical integration of LLG

equation will be considered. In particular, mid-point rule time-stepping will be

applied to the LLG equation. In fact, it will be shown that the fundamental

properties of magnetization dynamics, embedded in the continuous model, are

reproduced by the mid-point discretized LLG equation regardless of the time

step. In addition, since the resulting numerical scheme is implicit, special and

reasonably fast quasi-Newton technique will be developed to solve the nonlinear

system of equations arising at each time step. The proposed mid-point technique

will be validated on the micromagnetic standard problem no. 4 which concerns

with thin-films reversal processes. Finally, discussion on numerical results and

computational cost will be performed.

In the end, some conclusions about the results obtained and the possible

future work will be drawn.
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Chapter 1

The Micromagnetic Model and The

Dynamic Equation

In this chapter a brief overview of the micromagnetic model [3, 4] is presented.

The discussion starts with the introduction of the different interactions that oc-

cur within ferromagnetic bodies at different spatial scales. The expressions of

the energies related to each analyzed interaction are reported. As second step,

the Brown’s equations are derived by imposing micromagnetic equilibrium as a

‘stationary point’ of the free energy functional. As a further step, the semi-

classical dynamic model for damped gyromagnetic precession, described by the

Landau-Lifshitz and Landau-Lifshitz-Gilbert equations [3, 18], is introduced on

the basis of physical considerations on spin magnetic momentum of electrons and

the well-known relationship with angular momentum through the gyromagnetic

ratio. The dimensionless form of the free energy and Landau-Lifshitz-Gilbert

equation is presented. The fundamental properties of magnetization dynamics,

magnetization magnitude conservation and energy balance, are derived. General

introduction of the phenomenological Gilbert damping is also explained.

1.1 Micromagnetic Free Energy

In this section we introduce a continuum model, in terms of magnetic polarization

per unit volume, and characterize the state of a generic ferromagnetic body by

means of its free energy.

1.1.1 Continuum Hypothesis

Let us consider a region Ω occupied by a magnetic body. Let us now focus on

a ‘small’ region dVr within the body, denoted by the position vector r ∈ Ω. The

word ‘small’ here indicates that the volume dVr is large enough to contain a huge

number N of elementary magnetic moments µj , j = 1, . . . , N , but small enough

in order that the average magnetic moment varies smoothly. In this respect,
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dV1 dV2

short range

dV1 dV2

Long range

Figure 1.1: Different kinds of magnetic interactions depending on the distance
between dipoles.

we define the magnetization vector field M(r), such that the product M(r) dVr

represent the net magnetic moment of the elementary volume dVr:

M(r) =

∑N
j µj

dVr
. (1.1)

Moreover, we assume that the magnetization is also a function of time t:

M = M(r, t) . (1.2)

First of all, it is important to recall that the micromagnetic model [3, 4, 5] is inter-

ested in magnetic phenomena which arise in a wide spatial scale, going from few

nanometers (nm) to few microns (µm). The micromagnetic framework includes

short and long-range (maxwellian) interactions between magnetic moments. In

this respect, we shall start the discussion from the short-range exchange and

anisotropy interactions introduced with phenomenological approach. Finally, we

will introduce the long-range magnetostatic interactions due to ‘maxwellian’ mag-

netic fields. All the these interactions can be described in terms of the free energy

of the body. In the next section a brief overview of basic thermodynamic laws

and definitions is reported before each contribution to the micromagnetic free

energy is analyzed in some details.

1.1.2 Basic Thermodynamics for magnetized media. Thermodynamic

potentials

We consider now a small volume dV of magnetic material which is subject to

an external magnetic field Ha and is in contact with a thermal bath at constant

temperature T . We introduce the quantity M = MdV such that µ0M is the

net magnetic moment present in the volume dV . We assume that no volume

changes due to thermal expansion and magnetostriction occur. The First Law



1.1 − Micromagnetic Free Energy 11

of thermodynamics states that for any transformation between two equilibrium

states A and B, it happens that:

∆U = UB − UA = ∆L+∆Q , (1.3)

where ∆U is the variation of the internal energy U , ∆L is the work performed

on the system and ∆Q is the heat absorbed by the system. The magnetic work,

under constant external magnetic field Ha, has the following form:

∆L = µ0Ha ·∆M . (1.4)

The Second Law of thermodynamics for isolated systems states that, for any

transformation between equilibrium states A and B, the following inequality is

satisfied [7]:

∆S = SB − SA ≥ 0 , (1.5)

where S is the entropy. In Eq. (1.5) the equal sign holds in case of reversible

transformations. In this respect, reversible transformations occur when the sys-

tem passes through a sequence of thermodynamic equilibrium states. The second

law (1.5) has to be interpreted as follows. Referring to our magnetic body, let

us imagine that it is prepared in a certain initial state A by using appropriate

constraints which allow to keep fixed, for instance, the magnetic moment of the

body. Then, the constraints are partially or totally removed and the system is

left isolated (no work, no heat is exchanged with the system). In this situation,

the system relaxes toward a new equilibrium state B, and therefore the magnetic

moment approaches a new value too. The remarkable fact is that the new equi-

librium state B will be necessarily characterized by a value of the entropy SB

greater than SA.

The Second Law of thermodynamics can be also written for non-isolated sys-

tems in the following way [7]:

∆S ≥ ∆Q

T
. (1.6)

where the equal sign still holds in case of reversible transformations. Moreover,

to study transformations occurring at constant temperature, appropriate thermo-

dynamic potentials can be introduced. For instance, the Helmholtz free energy

F (M, T ) can be defined by means of suitable Legendre transformation [6]:

F = min
S

[U − TS] . (1.7)

The inequality (1.6) leads to suitable inequality involving the Helmholtz free

energy F . In fact, for constant temperature, the variation of F between two
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equilibrium states A and B can be written as:

∆F = ∆U − T ∆S . (1.8)

Now, by taking into account that T∆S ≥ ∆Q, according to the second law (1.6),

and the first law (1.3), one obtains:

∆F ≤ ∆L . (1.9)

where the equal sign holds for reversible transformations. In addition, if no work

is done on the system, the latter equation becomes

∆F = FB − FA ≤ 0 , (1.10)

meaning that, if the system is prepared in a certain equilibrium state with certain

constraints, the removal of constraints implies that the Helmholtz free energy has

to decrease towards a minimum.

Another thermodynamic potential is the Gibbs free energy G(Ha, T ), which,

for constant temperature and constant external field Ha can be written as [6]:

G = min
M

[F − µ0M ·Ha] . (1.11)

By following very similar line of reasoning to the one done for the Helmholtz free

energy, one can easily derive that, for constant external field and temperature,

the transformation between equilibria A and B, induced by the removal of the

constraints, satisfies the following inequality:

∆G = GB −GA ≤ 0 , (1.12)

meaning that also the Gibbs free energy has to decrease towards a minimum. The

Gibbs free energy is very useful as far as experiments are considered where one

can somehow control the external field, since it is instead very difficult controlling

the magnetic moment µ0M.

In addition, for reversible transformations at constant temperature, one can

easily derive that:

dF = δL = µ0Ha · δM , (1.13)

dG = −µ0M · dHa . (1.14)

This leads to the following relationship holding for equilibrium states:

1

µ0

[

∂F

∂M

]

T

= Ha ,

[

∂G

∂Ha

]

T

= −µ0M . (1.15)
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We observe that the Gibbs free energy (1.11) depends by definition only on

(Ha, T ). This means that the value of M has to be expressed through the equa-

tion of state:

M = M(Ha, T ) , (1.16)

which is well-defined at thermodynamic equilibrium. In other words, at thermo-

dynamic equilibrium, for given (Ha, T ), the state variable M is uniquely deter-

mined.

If we consider now the case of a ferromagnetic body, this property is not ful-

filled anymore, that is, a given value of (Ha, T ), is not sufficient to determine

uniquely the state variable M. In fact, we deal with a system whose free energy

has many local minima corresponding to metastable equilibria [20]. This frame-

work is known as non-equilibrium thermodynamics and is not yet well-established

from theoretical point of view. Nevertheless, many contributions in this sense

have been developed. In this respect, the presence of many metastable state can

be taken into account, as result of a deeper analysis in the framework of non-

equilibrium thermodynamics, by the following generalized Gibbs1 free energy

G(Ha, T,M) = F (M, T )− µ0Ha · M . (1.17)

We observe that the free energy (1.17) coincides with the Gibbs free energy (1.11)

at thermodynamic equilibrium. The explicit dependance on M expresses some-

how the distance of the system from thermodynamic equilibrium when the state

variable assumes the particular value M, as if it were an external constraint.

In this framework, one can determine the (metastable) equilibrium condition by

imposing that the free energy (1.17) is stationary2 with respect to M:

[

∂G

∂M

]

Ha,T

=

[

∂F

∂M

]

T

− µ0Ha = 0 . (1.18)

In the latter equation, the first of Eqs. (1.15) has been used. It is important to

underline that, from this analysis, one cannot say which metastable state the sys-

tem will reach, given an initial state. The only way to determine this information

is to introduce dynamics. Therefore, an appropriate dynamic equation must be

considered to describe the evolution of the system.

The above considerations can be extended to the case of an inhomogeneous

system, where the state variables and the thermodynamic potentials are also

1In Ref. [20] this free energy is called Landau free energy GL to distinguish from the Gibbs
free energy G. Here we perform an abuse of notation.

2It can be shown that metastable equilibria are minima of the free energy (1.17). In this
sense the minimization of the free energy (1.17) generalizes the minimization of the Gibbs free
energy that holds in equilibrium thermodynamics.
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space-dependent functions, under the hypothesis that the body is in local thermo-

dynamic equilibrium3. Therefore, the state functions can be well-defined within

each elementary volume and thermodynamic relations which are valid for homo-

geneous bodies, can be written point-wise as balance equations. Moreover, the

thermodynamic potentials become functionals of the state variables which, in

turn, are space functions.

In the following sections we analyze the contributions to the free energy func-

tional for ferromagnetic bodies. In this respect, the role of the state variable

will be played by the magnetization vector field M and the equilibrium condition

will be computed by imposing that the variational derivative of the free energy

functional G(M,Ha), with respect to M, vanishes according to Eq. (1.18). Fi-

nally, in section 1.3 we shall introduce the appropriate dynamic equation which

is necessary to describe the evolution of the system, as seen before.

1.1.3 Exchange interaction and energy

Now we will discuss the exchange interactions in ferromagnetic bodies. This

interaction should be analyzed by means of quantum theory, since it strongly

concerns with spin-spin interactions. More specifically, on a scale in the order

of the atomic scale, the exchange interaction tends to align neighbor spins. In

view of a continuum average analysis in terms of magnetization vector field, we

expect that the exchange interactions tends to produce small uniformly magne-

tized regions, indeed observed experimentally and called magnetic domains. In

this respect, the existence of domains [8] was postulated by Weiss in the early

1900s to explain the inverse temperature dependance of susceptibility for ferro-

magnetic materials investigated by Curie. This theory was partially validated by

the work of Barkhausen (1915), in which the emergence of irreversible jumps in

magnetization reversal was connected to the Weiss domains. Successively, exper-

imental observations [9] based on Faraday and Kerr effect measurements, defi-

nitely stated the existence of magnetic domains. However, in 1931 Heisenberg [10]

described ferromagnetic bodies in terms of exchange interactions, justifying the

Weiss theory on molecular field. In the following sections a brief summary of

paramagnetism and classical Weiss molecular field is presented before deriving

the phenomenological expression of exchange free energy used in micromagnetics.

3although the whole body is not in equilibrium, one assumes that each elementary volume is
in equilibrium
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Paramagnetism

It is well known that most of the materials, subject to magnetic fields, exhibits

either diamagnetic or paramagnetic behavior [5]. This reflects in a value of the

magnetic permeability slightly different from the vacuum permeability µ0. Con-

versely, few materials, like Fe, Ni, and Co behaves differently and are referred to

as ferromagnetic materials. In the following, we will briefly explain the param-

agnetism, since it is helpful for describing ferromagnetic materials.

Thus, let us consider a medium whose elementary particles possess magnetic

moment. Let us suppose that no external field is applied, and that the body is

in thermodynamic equilibrium. Due to the random orientation of the elementary

magnets, the magnetization vector M is zero everywhere in the medium. When

an external field Ha is applied, an equilibrium between the tendency of dipoles

to align with the field and the thermal agitation establishes. This produces the

magnetization of the body in the same direction and orientation as the external

field. If we call m0 the permanent magnetic moment of the generic dipole and

θ the angle between m0 and Ha, the contribution dM to the total magnetic

moment of the body, given by the single dipole, is the component of m0 along

the field direction

dM = m0 cos θ . (1.19)

Now we have to determine the distribution of the dipoles with respect to the

angle θ and then to compute the average value of m0 cos θ. To this end, we can

use Boltzmann statistic which gives the probability p(E) for a dipole to have

suitable potential energy E as:

p ∝ exp

(

− E

kBT

)

, (1.20)

where kB is the Boltzmann constant and T is the temperature. The potential

energy of a dipole subject to the field Ha is:

E = −µ0m0 ·Ha . (1.21)

If N is the number of dipoles per unit volume, the total magnetic momentM per

unit volume can be expressed as the following statistical average:

M =

∫ Emax

Emin
Nm0 cos θ p(E) dE
∫ Emax

Emin
p(E) dE

=

=

∫ Emax

Emin
Nm0 cos θ exp

(

µ0m0Ha cos θ
kBT

)

d(−µ0m0Ha cos θ)

∫ Emax

Emin
exp

(

µ0m0Ha cos θ
kBT

)

d(−µ0m0Ha cos θ)
. (1.22)
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In Eq. (1.22) the denominator takes into account the fact that the probability

density function p(E) has to be normalized to unity. With the positions

x = cos θ , β =
µ0m0Ha

kBT
, (1.23)

Eq. (1.22) becomes:

M =Ms

(

cothβ − 1

β

)

=Ms L(β) , (1.24)

where Ms = Nm0 is the saturation magnetization, corresponding to the case in

which all the dipoles are aligned, and L(β) is the Langevin function. Generally,

in experiments on paramagnetic substances, typical temperatures and fields are

such that

β =
µ0m0Ha

kBT
≪ 1 . (1.25)

Since the Langevin function can be developed in Taylor series

L(β) = β

3
+O(β2) , (1.26)

for small β we can take the first order expansion and rewrite Eq. (1.24) as

M =
µ0Msm0

3kBT
Ha = χHa . (1.27)

where the magnetic susceptibility χ is in the order of 10−4 for typical values of the

parameters. One can clearly see that Eq. (1.27) explains the inverse dependance

of the susceptibility on the temperature observed experimentally by Curie.

Ferromagnetism. Weiss molecular field

Some materials present very strong magnetization, typically in the order of the

saturation magnetization, also in absence of external field, i.e. they present spon-

taneous magnetization. This kind of materials are referred to as ferromagnetic

materials (Fe, Co, Ni, Gd, alloys, etc.). Typical properties of some ferromagnetic

materials can be found in Appendix A. The behavior of very small regions of

ferromagnetic materials can be treated by following the same line of reasoning

used for paramagnetism. With respect to the continuum model introduced in sec-

tion 1.1.1, we are now dealing with phenomena occurring inside our elementary

volume dVr, which involve the interactions between single spins. Here we report

the theory developed by Weiss which is very similar to the one used for param-

agnetism. In fact, the main difference stays in the postulation of an additional

magnetic field Hw whose non magnetic (Maxwellian) origin is not investigated.

This field was called molecular field by Weiss [8]; by adding the field Hw = NwM
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Figure 1.2: Typical behavior of spontaneous magnetization as function of tem-
perature.

(Nw is characteristic of the material) to the external field in Eq. (1.24), one ends

up with the following equation:

M =Ms L
(

µ0m0(Ha +NwM)

kT

)

. (1.28)

The latter equation can be linearized for high temperatures, which corresponds to

small β as seen before. Then, one can find the well-known Curie-Weiss law that

once again expresses the dependance of the susceptibility on the temperature

χ ∝ 1

T − Tc
, Tc =

µ0Msm0Nw

3k
, (1.29)

where Tc is the Curie temperature, characteristic of the material. Thus, for tem-

peratures T > Tc the ferromagnetic materials behave like paramagnetic. For

temperature T < Tc, one can use Eq. (1.28) to derive the relationship between

the saturation magnetization Ms and the temperature T . The resulting relation-

ship Ms = Ms(T ) behaves like in Fig. 1.2. This behavior qualitatively matches

with experimental observations [5]. In addition, the phenomenological approach

of molecular field was theoretically justified when Heisenberg introduced the ex-

change interaction on the basis of quantum theory (1931).

Nevertheless, the Weiss theory gives information about the magnitude of mag-

netization, but nothing can be said about the direction. In this respect micro-

magnetics has the purpose to find the direction of magnetization at every location

within the magnetic body. In this respect, for constant temperature, the magne-

tization vector field M(r, t) can be written as

M(r, t) =Msm(r, t) , (1.30)

where m(r, t) is the magnetization unit-vector field.
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Microscopic model

Now we have to investigate how the exchange interactions play on a larger spatial

scale, namely how the elementary magnetic moments M dVr exchange-interact

with one another. We follow the derivation proposed by Landau and Lifshitz in

1935, reported by W.F. Brown Jr. in Ref [12]. In this respect, an energy term

which penalizes magnetization disuniformities is introduced in the free energy.

This term, in the isotropic case (i.e. cubic cell) is consisted of an expansion in

even power series of the gradients of magnetization components [11]. If one stops

the expansion to the first term, the disuniformity penalization assumes the form:

fex = A[(∇mx)
2 + (∇my)

2 + (∇mz)
2] , (1.31)

where the constant A, having dimension of [J/m], has to be somehow determined.

One way is to identify the exchange constant from experiments, but it is also

possible to estimate it with a theoretical approach. In fact, let us consider a cubic

lattice of spins, with interaction energy given by the Heisenberg Hamiltonian:

W = −2J
∑

Si · Sj , (1.32)

where the sum is extended to the nearest neighbors only and Si, Sj are the spin

angular momenta, expressed in units of ~, associated to sites i and j, and J is the

nearest neighbor exchange integral. We assume that the forces between spins are

sufficiently strong to keep the neighbor spins almost parallel. Thus, if mi is the

unit-vector in the direction −Si, such that Si = −Smi (S is the spin magnitude),

and if θi,j is the small angle between the directions mi and mj , one can rewrite

Eq. (1.32) as

W = −2JS2
∑

cos θi,j ≃ −2JS2
∑

(

1− 1

2
θ2i,j

)

=

= const. + JS2
∑

θ2i,j ≃ const. + JS2
∑

(mj −mi)
2 ,

(1.33)

since for small θi,j , |θi,j | = |mj − mi|. We now assume that the displacement

vector mj −mi can be written in terms of a continuous function m such that:

mj −mi = ∆rj · ∇m , (1.34)

where ∆rj = rj − ri is the position vector of neighbor j with respect to site i.

Then, if m = mxex +myey +mzez,

W = const. + JS2
∑

(∆rj · ∇m)2 = (1.35)

= const. + JS2
∑

[(∆rj · ∇mx)
2 + (∆rj · ∇my)

2 + (∆rj · ∇mz)
2] .
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Now we sum over j and multiply by the number of spins per unit volume n in

order to obtain the energy per unit volume fex. It is important to notice that, if

∆rj = xjex+yjey+zjez, due to the cubic symmetry it happens that
∑

j xjyj = 0,

and
∑

j x
2
j = 1

3

∑

j ∆r2j . By using these properties and neglecting the constant

term, one ends up with:

fex = A[(∇mx)
2 + (∇my)

2 + (∇mz)
2] , (1.36)

where A is the exchange constant:

A =
1

6
nJS2

∑

∆r2j , (1.37)

which can be particularized for different lattice geometries (body-centered, face-

centered cubic crystals). Typical values of A are in the order of 10−11 J/m.

Finally, one can write the contribution of exchange interactions to the free

energy of the whole magnetic body by integrating Eq. (1.36) over the region Ω:

Fex =

∫

Ω
A[(∇mx)

2 + (∇my)
2 + (∇mz)

2] dV . (1.38)

It is important to notice that, in this case, the exchange interaction is isotropic

in space, meaning that the exchange energy of a given volume ∆V is the same for

any orientation of the magnetization vector, provided that its strength remains

the same. In this respect, the expression (1.38) for the exchange energy puts this

consideration into evidence.

1.1.4 Anisotropy

In ferromagnetic bodies it is very frequent to deal with anisotropic effects, due

to the structure of the lattice and to the particular symmetries that can arise

in certain crystals. In fact, in most experiments one can generally observe that

certain energy-favored directions exist for a given material, i.e. certain ferromag-

netic materials, in absence of external field, tend to be magnetized along precise

directions, which in literature are referred to as easy directions. The fact that

there is a “force” which tends to align magnetization along easy directions can

be taken into account, in micromagnetic framework, by means of an additional

phenomenological term in the free energy functional.

To this end, let us refer to an elementary volume ∆V , uniformly magnetized

and characterized by magnetization unit-vector m = M/Ms. The magnetization

unit-vector m = mxex +myey +mzez can be expressed in spherical coordinates
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by means of the angles θ and φ such that:

mx = sin θ cosφ

my = sin θ sinφ (1.39)

mz = cos θ .

The anisotropy energy density fan(m) can be seen as a function of the spherical

angles θ and φ, and the anisotropy energy as

Fan(m) =

∫

Ω
fan(m) dV . (1.40)

In this phenomenological analysis, it turns out that the easy directions corre-

spond to the minima of the anisotropy energy density, whereas saddle-points and

maxima of fan(m) determine the medium-hard axes and the hard axes respec-

tively.

Uniaxial anisotropy

The most common anisotropy effect is connected to the existence of one only

easy direction, and in literature it is referred to as uniaxial anisotropy. Thus, the

anisotropy free energy density fan(m) will be rotationally-symmetric with respect

to the easy axis and will depend only on the relative orientation of m with respect

to this axis. We suppose, for sake of simplicity, that the easy direction coincides

with the cartesian axis z. Therefore, we can write the expression of fan(m) as

an even function of mz = cos θ, or equivalently using as independent variable

m2
x + m2

y = 1 − m2
z = sin2 θ. This expression, developed in series assumes the

following form:

fan(m) = K0 +K1 sin
2 θ +K2 sin

4 θ +K3 sin
6 θ + . . . (1.41)

where K1, K2, K3, . . ., are the anisotropy constants having the dimensions of

energy per unit volume [J/m3].

Here we will limit our analysis to the case in which the expansion (1.41) is

truncated after the sin2 θ term:

fan(m) = K0 +K1 sin
2 θ . (1.42)

In the latter case, the anisotropic behavior depends on the sign of the constant

K1. When K1 > 0, the anisotropy energy admits two minima at θ = 0 and θ = π,

that is when the magnetization lies along the positive or negative z direction with

no preferential orientation. This case is often referred to as easy axis anisotropy

(see Fig. 1.3). Conversely, when K1 < 0 the energy is minimized for θ = π/2,
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Figure 1.3: Uniaxial anisotropy energy density. (left) easy axis anisotropy (K1 >
0). (right) easy plane anisotropy (K1 < 0).

meaning that any direction in x− y plane corresponds to an easy direction. For

this reason, this case is often referred to as easy plane anisotropy. In the sequel,

referring to uniaxial anisotropy, we will intend to use the following anisotropy free

energy, derived from the integration over the whole body of the energy density

Eq. (1.42):

Gan(m) =

∫

Ω
K1[1− (ean(r) ·m(r))2] dV , (1.43)

where ean(r) is the easy axis unit-vector at the location r and the constant part

connected to K0 has been neglected.

Cubic anisotropy

This is the case when the anisotropy energy density has cubic symmetry, mostly

due to spin-lattice coupling in cubic crystals. Basically it happens that three

privileged directions exist. A typical expansion of the anisotropy energy density

in this case is, in cartesian coordinates:

fan(m) = K0 +K1(m
2
xm

2
y +m2

ym
2
z +m2

zm
2
x) +K2m

2
xm

2
ym

2
z + . . . (1.44)

As before, let us neglect terms of order grater than fourth (i.e. K2 = 0, etc.).

When K1 > 0, there are six equivalent energy minima corresponding to the

directions x, y, z, both positive and negative (see Fig. 1.4). Conversely, when

K1 < 0 a more complex situation arises. In fact, there are eight equivalent

minima along the directions pointing the vertices of the cube (e.g. the direction

[1,1,1]) and the coordinate axes directions become now hard axes. This case

has been inserted for sake of completeness, but in the sequel cubic anisotropy

will be not considered anymore. It is important to underline that the character
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Figure 1.4: Cubic Anisotropy energy density. (left) coordinate axes are easy axes
(K2 > 0). (right) coordinate axes are easy axes (K2 < 0).

of anisotropy interaction is local, that is, the anisotropy energy related to an

elementary volume dVr′ depends only on the magnetization M(r′).

1.1.5 Magnetostatic interactions

Magnetostatic interactions represent the way the elementary magnetic moments

interact over ‘long’ distances within the body. In fact, the magnetostatic field at

a given location within the body depends on the contributions from the whole

magnetization vector field, as we will see below. Magnetostatic interactions can

be taken into account by introducing the appropriate magnetostatic field Hm

according to Maxwell equations for magnetized media:



















∇ ·Hm = −∇ ·M in Ω

∇ ·Hm = 0 in Ωc

∇×Hm = 0

, (1.45)

with the following conditions at the body discontinuity surface ∂Ω







n · [Hm]∂Ω = n ·M
n× [Hm]∂Ω = 0

. (1.46)

In Eqs. (1.45)-(1.46), we have denoted with n the outward normal to the boundary

∂Ω of the magnetic body, and with [Hm]∂Ω the jump of the vector field Hm across

∂Ω.

Magnetostatic energy

Now we will provide the expression for the contribution of magnetostatic interac-

tions to the free energy of the system. The derivation of such expression is quite
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straightforward if one assumes that the energy density [14] of magnetostatic field

is given by:

Um =

∫

Ω∞

1

2
µ0Hm

2 dV , (1.47)

where Ω∞ is the whole space. In fact, by expressing the magnetostatic field as

Hm =
Bm

µ0
−M , (1.48)

Eq. (1.47) becomes:

Um =

∫

Ω∞

1

2
µ0Hm ·

(

Bm

µ0
−M

)

dV . (1.49)

The first term in Eq. (1.49) vanishes owing to the integral orthogonality of the

solenoidal field Bm and the conservative field Hm over the whole space [14]. The

remaining part, remembering that M is nonzero only within the region Ω, is the

magnetostatic free energy:

Fm = −
∫

Ω

1

2
µ0M ·Hm dV . (1.50)

We observe that magnetostatic energy expresses a nonlocal interaction, since the

magnetostatic field functionally depends, through the boundary value problem

(1.45), on the whole magnetization vector field, as we anticipated in the beginning

of the section. The latter equation has the physical meaning of an interaction

energy of an assigned continuous magnetic moments distribution, namely it can

be obtained by computing the work, made against the magnetic field generated

by the continuous distribution, to bring an elementary magnetic moment µ0M dV

from infinity to its actual position within the distribution [15]. Discussion on the

choice of the magnetostatic field energy density can be found in Ref. [14] and

references therein.

1.1.6 The External Field. Zeeman Energy

Until now, we have treated the case of magnetic body not subject to external

field. Therefore, all the energy terms introduced in the previous sections can be

regarded as parts of the Helmholtz free energy functional. When the external

field is considered, it is convenient to introduce the Gibbs free energy functional.

In this respect, the additional term (see Eq. (1.17)) related to the external field

Ha, is itself a long-range contribution too. In fact, it can be seen as the potential

energy of a continuous magnetic moments distribution [15] subject to external

field Ha:

Ga = −
∫

Ω
µ0M ·Ha . (1.51)

This energy term is referred in literature to as Zeeman energy.
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1.1.7 Magnetoelastic interactions

Ferromagnetic bodies are also sensible to mechanical stress and deformations.

This means that when they are subject to an external field, mechanical stresses,

due to the interaction with the field, arise within the bodies and consequent

deformations of the bodies themselves can be observed (magnetostrictive materi-

als). Viceversa, if one deforms a ferromagnetic body, the consequent mechanical

stress affects the state of magnetization of the body. In other words, there is

interaction between magnetic and elastic processes. Therefore, in our framework

based on energy aspects, an additional term to describe this magneto-mechanical

coupling should be inserted in the free energy (see Ref. [19] for details). Here we

neglect magnetoelastic interaction, for sake of simplicity, but in principle it can

be treated, apart from mathematical complications, in the same way as the other

free energy terms, as we will see in the following sections.

1.1.8 The Free Energy Functional

Now we are able to write the complete expression for the free energy of the

ferromagnetic body. In fact, by collecting Eqs. (1.38), (1.40), (1.50) and (1.51),

one has:

G(M,Ha) = Fex + Fan + Fm +Ga =

=

∫

Ω

{

A[(∇mx)
2 + (∇my)

2 + (∇mz)
2] + fan+

− 1

2
µ0M ·Hm − µ0M ·Ha

}

dV , (1.52)

which can be put in the compact form by expressing the exchange interaction

energy density as A(∇m)2:

G(M,Ha) =

∫

Ω

[

A(∇m)2 + fan + − 1

2
µ0M ·Hm − µ0M ·Ha

]

dV , (1.53)

1.2 Micromagnetic Equilibrium

In section 1.1.2 we recalled the fact that, for constant external field and tem-

perature, the equilibria (i.e. metastable states) are given by the minima of the

free energy (1.53). Remembering that M = Msm, the unknown will be the

magnetization unit-vector field m.

1.2.1 First-order Variation of the Free Energy

In the following we impose that the first-order variation δG vanishes for any

variation δm of the vector field m, compatible with the constraint |m+ δm| = 1
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(which in turn corresponds to |M + δM| = Ms). This will allow us to derive

the equilibrium condition [4] and, therefore, the equilibrium configuration for

magnetization within the body. We approach separately each term of the free

energy (1.53).

Exchange

Let us take the first-order variation of Eq. (1.38):

δFex = Fex(m+ δm)− Fex(m) =

∫

Ω
2A∇m · ∇δm dV , (1.54)

where ∇m · ∇δm is a compact notation for ∇mx · ∇δmx +∇my · ∇δmy +∇mz ·
∇δmz. Now we proceed in the derivation for the x component, the remaining

y, z can be treated analogously. By applying the vector identity

v · ∇f = ∇ · (fv)− f∇ · v , (1.55)

in which we put f = δmx and v = ∇mx, one obtains:
∫

Ω
∇mx · ∇δmx dV =

∫

Ω

[

∇ · (δmxA∇mx)− δmx∇ · (A∇mx)
]

dV . (1.56)

By using the divergence theorem, the first term can be written as surface integral

over the boundary ∂Ω
∫

Ω
∇mx · ∇δmx dV =

∫

∂Ω
δmxA

∂mx

∂n
dS −

∫

Ω
δmx∇ · (A∇mx) dV . (1.57)

By substituting the latter equation and the analogous for the y, z components

into Eq. (1.54), one ends up with:

δFex = −
∫

Ω

[

2∇ · (A∇m) · δm
]

dV +

∫

∂Ω

[

2A
∂m

∂n
· δm

]

dS , (1.58)

which is the exchange contribution to the first-order variation of the free energy

functional.

Anisotropy

As far as anisotropy is concerned, taking the first-order variation of the energy

Fan is equivalent to write the following equation:

δFan =

∫

Ω

∂fan
∂m

· δm dV . (1.59)

For instance, referring to the case of uniaxial anisotropy and, therefore, to Eq. (1.43),

the latter equation becomes

δFan =

∫

Ω
−2K1(m · ean)ean · δm dV . (1.60)
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Magnetostatic energy

By taking the first-order variation of the free energy functional (1.50), one has:

δFm = −
∫

Ω

1

2
µ0Ms δm ·Hm dV −

∫

Ω

1

2
µ0Msm · δHm dV . (1.61)

The above two integral term are identical as stated by the reciprocity theorem [4,

5] and then the latter equation can be rewritten in the following form:

δFm = −
∫

Ω
µ0MsHm · δm dV . (1.62)

Zeeman energy

Since the applied field does not depend on the magnetization, the first-order

variation of the Zeeman free energy (1.51) is:

δGa = −
∫

Ω
µ0MsHa · δm . (1.63)

1.2.2 Effective Field and Brown’s Equations

Thus, to summarize the previously derived results, we can write the expression

for the first-order variation of the free energy functional (1.53):

δG = −
∫

Ω

[

2∇ · (A∇m)− ∂fan
∂m

+ µ0MsHm + µ0MsHa

]

· δm dV+

+

∫

∂Ω

[

2A
∂m

∂n
· δm

]

dS = 0 .

(1.64)

Now we claim the fact that the variation δm has to satisfy the constraint |m +

δm| = 1. For this reason, it can be easily observed that the most general variation

is a rotation of the vector field m, that is

δm = m× ~δθ , (1.65)

where the vector ~δθ represents an elementary rotation of angle δθ. By substituting

this expression in Eq. (1.64) and remembering that v · (w × u) = u · (v ×w) =

−u · (w× v), one obtains:

δG =

∫

Ω
m×

[

2∇ · (A∇m)− ∂fan
∂m

+ µ0MsHm + µ0MsHa

]

· ~δθ dV+

+

∫

∂Ω

[

2A
∂m

∂n
×m

]

· ~δθ dS = 0 .

(1.66)

Since the elementary rotation δθ is arbitrary, Eq. (1.66) can be identically zero

if and only if:














m×
[

2∇ · (A∇m)− ∂fan
∂m

+ µ0MsHm + µ0MsHa

]

= 0

[

2A
∂m

∂n
×m

]

∂Ω

= 0

. (1.67)
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In the second equation the fact that ∂m
∂n ×m = 0 implies that ∂m

∂n = 0, as the vec-

tors m and ∂m
∂n are always orthogonal; in fact, the only way their vector product

can vanish is that ∂m
∂n is identically zero. We introduce now the effective field

Heff =
2

µ0Ms
∇ · (A∇m)− 1

µ0Ms

∂fan
∂m

+Hm +Ha , (1.68)

where the first two terms take into account the exchange and anisotropy inter-

jections. In other words, these interactions effectively act on the magnetization

as they were suitable fields:

Hexc =
2

µ0Ms
∇ · (A∇m) , (1.69)

Han =
1

µ0Ms

∂fan
∂m

. (1.70)

Eqs. (1.67) can be rewritten as











µ0Msm×Heff = 0

∂m

∂n

∣

∣

∣

∣

∂Ω

= 0
Brown’s Equations. (1.71)

The Brown’s equations allow one to find the equilibrium configuration of the

magnetization within the body. The first equation states that the torque exerted

on magnetization by the effective field must vanish at the equilibrium. It is im-

portant to notice that Eqs. (1.71) are nonlinear, since the effective field (1.68) has

a functional dependance on the whole vector field m(·). As we will discuss later,

the existence of exact analytical solutions is subject to appropriate simplifying

assumptions. For this reason, in most cases numerical solution of Eqs. (1.71) is

required. In addition, as mentioned in section 1.1.2, the model must be completed

with a dynamic equation to properly describe the evolution of the system. This

will be done in the following section.

1.3 The Dynamic Equation

Up to now, we have presented a variational method based on the minimization

of the free energy of a ferromagnetic body. This method allows one to find the

equilibrium configurations for a magnetized body, regardless of describing how

magnetization reaches the equilibrium during time. Recently, the challenging re-

quirements of greater speed and areal density in magnetic storage elements, has

considerably increased the effort of the researchers in the investigation of magne-

tization dynamics. Most of the analysis are based on the dynamic model proposed

by Landau and Lifshitz [3] in 1935, and successively modified by Gilbert [18] in

1955. In this section we will present both Landau-Lifshitz and Gilbert equations
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as a model for magnetization ‘motion’. The differences between them are em-

phasized and the properties of magnetization dynamics are shown in view of the

discussions and results presented in the following chapters.

1.3.1 Gyromagnetic precession

It is known from quantum mechanics that there is a proportionality relationship

between the magnetic spin momentum µ and angular momentum L of electrons.

This relationship can be expressed as

µ = −γL , (1.72)

where γ = 2.21× 105 m A−1 s−1 is the absolute value of the gyromagnetic ratio

γ =
g |e|
2me c

; (1.73)

g ≃ 2 is the Landé splitting factor, e = −1.6 × 10−19 C is the electron charge,

me = 9.1 × 10−31 kg is the electron mass and c = 3 × 108 m/s is the speed of

light. By applying the momentum theorem one can relate the rate of change of

the angular momentum to the torque exerted on the particle by the magnetic

field H:
dL

dt
= µ×H . (1.74)

By using Eq. (1.72), one ends up with a model which describes the precession of

the spin magnetic moment around the field:

dµ

dt
= −γµ×H . (1.75)

The frequency of precession is the Larmor frequency

fL =
γ H

2π
. (1.76)

Eq. (1.75) can be written for each spin magnetic moment within the elementary

volume dVr:
dµj

dt
= −γµj ×H , (1.77)

where now the magnetic field H is intended to be spatially uniform. Now, by

taking the volume average of both sides of the latter equation, one has:

1

dVr

d
∑

j µj

dt
= −γ

∑

j µj

dVr
×H , (1.78)

and, therefore, recalling the definition (1.1) of magnetization vector field M, we

end up with the following continuum gyromagnetic precession model:

∂M

∂t
= −γM×H . (1.79)
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Figure 1.5: (left) Undamped gyromagnetic precession. (right) Damped gyromag-
netic precession.

1.3.2 The Landau-Lifshitz equation

The first dynamical model for the precessional motion of the magnetization was

proposed by Landau and Lifshitz in 1935. Basically, this model is constituted

by a continuum precession equation (1.79), in which the presence of quantum-

mechanical effects and anisotropy is phenomenologically taken into account by

means of the effective field Heff given by Eq. (1.68). Then, the Landau-Lifshitz

equation is:
∂M

∂t
= −γM×Heff . (1.80)

First of all, we observe that if the magnetization rate of change ∂m/∂t vanishes,

Eq. (1.80) expresses the equilibrium condition given by the first of the Brown’s

equations (1.71). In addition, since Eq. (1.80) is an integro-partial differential

equation, the Neumann boundary condition given by the second Brown’s equation

is used [4].

We observe that Landau-Lifshitz equation (1.80) is a conservative (hamilto-

nian) equation.

Nevertheless, dissipative processes take place within dynamic magnetization

processes. The microscopic nature of this dissipation is still not clear and is

currently the focus of considerable research [16, 17]. The approach followed by

Landau and Lifshitz consists of introducing dissipation in a phenomenological

way. In fact, they introduce an additional torque term that pushes magnetization

in the direction of the effective field (see Fig. 1.5). Then, the Landau-Lifshitz

equation becomes:

∂M

∂t
= −γM×Heff − λ

Ms
M× (M×Heff) , (1.81)

where λ > 0 is a phenomenological constant characteristic of the material. It

is important to observe that the additional term is such that the magnetization
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magnitude is preserved according to the micromagnetic constraint |M| = Ms.

This can be seen by scalar multiplying both sides of Eq. (1.81) by M.

1.3.3 Landau-Lifshitz-Gilbert equation

An in principle different approach was proposed by Gilbert [18] in 1955, who

observed that since the conservative equation (1.80) can be derived from a La-

grangian formulation where the role of the generalized coordinates is played by

the components of magnetization vectorMx,My,Mz. In this framework, the most

natural way to introduce phenomenological dissipation occurs by introducing a

kind of ‘viscous’ force, whose components are proportional to the time deriva-

tives of the generalized coordinates. More specifically, he introduces the following

additional torque term:
α

Ms
M× ∂M

∂t
, (1.82)

which correspond to the torque produced by a field − α
γMs

∂M
∂t , where α > 0 is the

Gilbert damping constant, depending on the material (typical values are in the

range α = 0.001÷ 0.1). We observe that, similarly to the case of Landau-Lifshitz

equation, the additional term introduced by Gilbert preserves the magnetization

magnitude4. In the following section, when we will analyze the fundamental

properties of magnetization dynamics, we will show that the Gilbert damping is

connected to the assumption of a suitable Rayleigh dissipation function. There-

fore, the precessional equation (1.80), modified according to Gilbert’s work, is

generally referred to as Landau-Lifshitz-Gilbert equation:

∂M

∂t
= −γM×Heff +

α

Ms
M× ∂M

∂t
. (1.83)

There is substantial difference between Landau-Lifshitz and Landau-Lifshitz-

Gilbert equations although they are very similar from mathematical point of

view. For instance, Landau-Lifshitz equation (1.81) can be obtained easily from

Gilbert equation. In fact, by vector multiplying both sides of Eq. (1.83) by M,

one obtains:

M× ∂M

∂t
= −γM× (M×Heff) +M×

(

α

Ms
M× ∂M

∂t

)

; (1.84)

remembering the vector identity a × (b × c) = b(a · c) − c(a · b) and observing

that M · ∂M
∂t = 0 (see section 1.3.5), one ends up with:

M× ∂M

∂t
= −γM× (M×Heff)− αMs

∂M

∂t
. (1.85)

4We will discuss this aspect in section 1.3.5
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By substituting the latter equation in the right hand side of Landau-Lifshitz-

Gilbert equation (1.83), one has:

∂M

∂t
= −γM×Heff − γα

Ms
M× (M×Heff)− α2∂M

∂t
. (1.86)

The latter equation can be appropriately recast to obtain the following expression:

∂M

∂t
= − γ

1 + α2
M×Heff − γα

(1 + α2)Ms
M× (M×Heff) , (1.87)

which is commonly referred to as Landau-Lifshitz equation in the Gilbert form.

One can immediately notice that Eq.(1.87) and Eq. (1.81) are mathematically

the same, provided that one assumes:

γL =
γ

1 + α2
, λ =

γα

1 + α2
. (1.88)

Moreover, the work of Podio-Guidugli [82] has pointed out that both Landau-

Lifshitz and Landau-Lifshitz-Gilbert equations belong to the same family of

damped gyromagnetic precession equations. Nevertheless some considerations

about the meaning of the quantity γ, which indeed is the ratio between physical

characteristics of the electrons like mass and charge, are sufficient to say that

Eqs. (1.81) and (1.83) express different physics and are identical only in the limit

of vanishing damping. Moreover, first Kikuchi [30] and then Mallinson [29] have

pointed out that in the limit of infinite damping (λ→ ∞ in Eq. (1.81), α→ ∞ in

Eq. (1.83)), the Landau-Lifshitz equation and the Landau-Lifshitz-Gilbert equa-

tion give respectively:

∂M

∂t
→ ∞ ,

∂M

∂t
→ 0 . (1.89)

Since the second result is in agreement with the fact that a very large damp-

ing should produce a very slow motion while the first is not, one may conclude

that the Landau-Lifshitz-Gilbert (1.83) equation is more appropriate to describe

magnetization dynamics. In this thesis, from now on, we will use the Landau-

Lifshitz-Gilbert equation (1.83).

1.3.4 Normalized equations

It is very useful to write the micromagnetic equations in dimensionless units.

This is helpful as soon as one wants to investigate which terms are prevalent

in given situations and moreover, the normalization considerably simplifies the

expressions. We start our discussion from the expression of the free energy (1.53).

By dividing both sides of Eq. (1.53) by µ0M
2
s V0 (V0 is the volume of the body)

one obtains:

g(m,ha) =
G(M,Ha)

µ0M2
s V0

=

∫

Ω

[

A

µ0M2
s

(∇m)2+
1

µ0M2
s

fan+− 1

2
m·hm−m·ha

]

dv ,

(1.90)
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where the normalized volume v is measured in units of V0. In this framework, we

can obtain the normalized effective field heff = Heff/Ms by taking the variational

derivative δg/δm of the normalized free energy:

heff =
2

µ0M2
s

∇ · (A∇m)− 1

µ0M2
s

∂fan
∂m

+ hm + ha . (1.91)

It is important to focus on the following quantity with the dimension of a length

in Eq. (1.90):

lex =

√

2A

µ0M2
s

, (1.92)

which is commonly referred to as exchange length. The exchange length gives an

estimation of the characteristic dimension on which the exchange interaction is

prevalent. For typical magnetic recording materials lex is in the order of 5÷10 nm.

Therefore, one expects that on a spatial scale in the order of lex the magnetiza-

tion is spatially uniform. This is very important when spatial discretization of

micromagnetic equations has to be preformed. In fact, one should be sure that

the mesh characteristic dimension is smaller than lex.

Now let us consider the Landau-Lifshitz-Gilbert equation (1.83). By dividing

both sides by γM2
s one obtains:

1

γM2
s

∂M

∂t
= − 1

M2
s

M×Heff +
α

γM2
s Ms

M× ∂M

∂t
. (1.93)

Now, remembering that

m =
M

Ms
, heff =

Heff

Ms
(1.94)

and by measuring the time in units of (γMs)
−1, Eq. (1.93) can be rewritten in

the following dimensionless form:

∂m

∂t
= −m× heff + αm× ∂m

∂t
. (1.95)

In the case of Ms ≃ 796 kA/m (µ0Ms = 1 T), the dimensionless time unit

corresponds to (γMs)
−1 ≃ 5.7 ps.

1.3.5 Properties of magnetization dynamics

Magnetization magnitude conservation

Let us now briefly recall the fundamental properties of Landau-Lifshitz-Gilbert

(LLG) dynamics. By scalar multiplying both sides of the LLG equation (1.95)

by m one can easily obtain:

d

dt

(

1

2
|m|2

)

= 0 , (1.96)
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which implies that, for any t0, t and r ∈ Ω, it happens that:

|m(t, r)| = |m(t0, r)| . (1.97)

Thus, any magnetization motion, at a given location r, will occur on the unit

sphere.

Energy balance equation

It is convenient to recast the normalized Landau-Lifshitz-Gilbert equation (1.95)

in the following form:

∂m

∂t
= −m×

(

heff − α
∂m

∂t

)

. (1.98)

Now by scalar multiplying both sides of Eq. (1.98) by heff − α∂m
∂t one ends up

with:
∂m

∂t
·
(

heff − α
∂m

∂t

)

= 0 . (1.99)

The effective field and the time derivative of the free energy are related by the

following relationship:

dg

dt
=

∫

Ω

[

δg

δm
· ∂m
∂t

+
δg

δha
· ∂ha

∂t

]

dv =

=

∫

Ω

[

−heff · ∂m
∂t

−m · ∂ha

∂t

]

dv . (1.100)

By integrating Eq. (1.99) over the body volume Ω and by using the latter equa-

tion, one obtains:

dg

dt
= −

∫

Ω
α

∣

∣

∣

∣

∂m

∂t

∣

∣

∣

∣

2

dv −
∫

Ω
m · ∂ha

∂t
dv . (1.101)

Equation (1.101) is the energy balance relationship for magnetization dynam-

ics. An interesting case occurs when the applied field is constant in time and,

therefore, ∂ha

∂t = 0. The energy balance equation becomes:

dg

dt
= −

∫

Ω
α

∣

∣

∣

∣

∂m

∂t

∣

∣

∣

∣

2

dv , (1.102)

meaning that the free energy is a non-increasing function of time, since α ≥ 0.

This property is often referred to as Lyapunov structure [82] of LLG equation.

In particular, for α = 0, one can observe that the free energy conservation holds:

g(t) = g(t0) ∀ t, t0 . (1.103)

The properties expressed by (1.97), (1.101) and (1.103) are very important con-

straints for magnetization dynamics. Since the solution of LLG equation cannot

be obtained in exact analytical form, except some very particular cases, it is fun-

damental to derive numerical models that can reproduce this properties also in

discrete dynamics. This issue will be addressed in detail in chapter 4.
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Classical treatment of dissipation

It is possible to give a generalized form for introducing the dissipation in magne-

tization dynamics, through the so-called Rayleigh dissipation function. We focus

now the attention on the case when ∂ha

∂t = 0, without affecting the generality of

the analysis. Let us suppose to assign the following function:

R
(

∂m

∂t

)

=
1

2

∫

Ω

∂m

∂t
· A · ∂m

∂t
dv , (1.104)

whereA is a symmetric positive-definite second order tensor. Now, we can rewrite

the Landau-Lifshitz-Gilbert equation (1.98) in the following way:

∂m

∂t
= −m×

(

− δg

δm
− δR
δ ∂m∂t

)

, (1.105)

where the variational derivative of the Rayleigh function determines the ‘viscous

force’ acting during magnetization motion. The important property of this for-

mulation lies in the fact that equilibrium configurations remain unchanged after

the introduction of the dissipation, as one can see from the observation of the

Rayleigh function (1.104). Now, if we scalar multiply both sides of Eq. (1.105)

by δg
δm + δR

δ ∂m
∂t

and integrate over the volume Ω, we end up with:

dg

dt
= −

∫

Ω

δR
δ ∂m∂t

· ∂m
∂t

dv . (1.106)

By applying Euler’s theorem on homogeneous functions, the latter equation be-

comes:
dg

dt
= −2R = −

∫

Ω

∂m

∂t
· A · ∂m

∂t
dv . (1.107)

The choice of Gilbert damping corresponds to assume

A = αI , (1.108)

where I is the identity tensor and α is the Gilbert damping constant. Such an

approach can be generalized if A is a self-adjoint operator in a suitable function

space. An example of this is considered in Ref. [82], where an additional term is

considered in the Rayleigh function involving the time derivative of the spatial

gradient of magnetization vector field. Moreover, in Ref. [82] the most general

gyromagnetic precessional equation is reported, which includes both the cases of

Landau-Lifshitz and Landau-Lifshitz-Gilbert equations.



Chapter 2

Uniformly magnetized particles

The purpose of this chapter is to show that some dynamical magnetic phenomena

which are connected with technological applications, as for example magnetic

storage, can be studied with analytical approach. More specifically, the control

parameters, namely the quantities that the experimenter can vary at his will, can

be found as analytical expression.

The only assumption of this approach is that no space dependance of the

magnetization vector field m is considered. In other words, we suppose to deal

with uniformly magnetized particles.

In this respect, the first model to explain the hysteretic behavior of suitable

uniformly magnetized particles was proposed by Stoner and Wohlfarth in 1948.

With this model it is possible to derive equilibrium configurations of magnetiza-

tion, when the particle is subject to an external field. In the following we will

describe briefly the basic ideas of the Stoner-Wohlfarth model, which is a static

model as well as Brown’s equation presented in the previous chapter.

Then, the problem of switching the magnetization in thin-films is analyzed.

In this respect, two different magnetization switching processes are presented.

For both of them analytical predictions are present in literature, which will be

briefly reported. Next, the issue of finding quasi-periodic solutions of LLG equa-

tion under circularly polarized field is addressed. This situation commonly arises

when typical ferromagnetic resonance experiments are considered. Finally the

self-oscillating behavior of LLG equation with spin-transfer torque term is inves-

tigated and analytical results regarding critical values of the control parameters

are derived. This topic has been recently under the focus of considerable research

for its applications to magnetic recording devices and microwave electronics.

2.1 The uniform mode approximation

In many technological applications, where the size of the magnetic media has

reached the nanometric scale, it is reasonable to assume that the exchange in-
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teraction is prevalent with respect to the others and, therefore, that the particle

tends to be uniformly magnetized. In other words, the uniform mode is energy-

favored with respect to disuniformities as soon as the characteristic dimension

of the body is comparable or even smaller than the exchange length. In this

framework, it does make sense to neglect non-uniform modes and consider the

particle as uniformly magnetized. This has considerable simplifications as far as

the mathematical model is concerned, but nevertheless the uniform mode anal-

ysis can give, in certain applications, very interesting analytical indications and,

in some cases, the predictions are also very accurate with respect to non-uniform

micromagnetic simulations, as we will see in the following chapter. Last but not

least, the uniform mode analysis has been used for long time in the design of mag-

netic recording devices. In our analysis we will use quite extensively the tools

provided by dynamical systems theory [43], since in the case of single domain

particle we deal with low dimensional systems (2D and 3D).

2.2 The static model. Stoner-Wohlfarth theory

We start our discussion from the static model proposed by Stoner and Wohl-

farth [77] in 1948. Basically it can be obtained from the study of the Brown’s

equations in the case of appropriate single domain particle. Below we summarize

the basic hypotheses of this model:

1. Single domain particle

2. Spheroidal geometry

3. Uniaxial anisotropy along the rotational-symmetry axis.

First, assuming uniform magnetization within the body, the exchange energy

(1.38) gives zero contribution to the free energy. Next, the ellipsoidal geometry

permits a significant simplification in the computation of magnetostatic field,

since it can be shown that it can be expressed by a straightforward tensorial

relationship with magnetization [12]:

Hm = −N ·M , (2.1)

where N is the so-called demagnetizing tensor which is always positive semidef-

inite. By expressing N with respect to its principal axes x, y, z, which coincide

with the principal axes of the ellipsoid, one can rewrite Eq. (2.1) in the following

way:








Hx

Hy

Hz









= −









Nx 0 0

0 Ny 0

0 0 Nz









·









Mx

My

Mz









, (2.2)
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where Nx, Ny, Nz are the demagnetizing factors such that Nx + Ny + Nz = 1.

Then, the assumption of uniaxial anisotropy implies that the corresponding en-

ergy term is quadratic. For instance, if the easy axis is the z−axis, then ean = ez

and the anisotropy energy (1.43) becomes:

Fan(m) = K1(1−m2
z)V0 , (2.3)

where V0 is the volume of the spheroidal particle. Finally, the hypothesis of

rotational symmetry implies that

Nx = Ny = N⊥ . (2.4)

Under these assumptions, the expression of the free energy is the following:

G(m,Ha) = K1(1−m2
z)V0 +

1

2
µ0M

2
sm · N ·mV0 − µ0Msm ·Ha V0 . (2.5)

From now on, we will carry out the derivation with dimensionless quantities.

Thus, by dividing both sides by µ0M
2
s V0 and remembering that 1−m2

z = m2
x+m

2
y,

one obtains:

g(m,ha) =
K1

µ0M2
s

(1−m2
z) +

1

2
N⊥(1−m2

z) +
1

2
Nzm

2
z −m · ha , (2.6)

where the expression of magnetostatic energy has been explicitly developed. By

collecting terms in m2
z one ends up with:

g(m,ha) =
K1

µ0M2
s

+
1

2
N⊥ +

(

1

2
Nz −

K1

µ0M2
s

− 1

2
N⊥

)

m2
z −m · ha . (2.7)

By neglecting constant terms (which disappear in a minimization procedure) and

by factorizing the expression in parenthesis we end up with:

g(m,ha) = −1

2

(

N⊥ +
2K1

µ0M2
s

−Nz

)

m2
z −m · ha . (2.8)

With the position:

keff = N⊥ +
2K1

µ0M2
s

−Nz , (2.9)

the latter equation assumes the simple form:

g(m,ha) = −1

2
keffm

2
z −m · ha . (2.10)

It is important to notice that, in the case of rotationally-symmetric ellipsoidal

particle, magnetostatic interaction energy is a quadratic form in mz as uniaxial

anisotropy energy. For this reason it is often said in literature that the quantity

keff takes into account shape and crystalline anisotropy, although they have very
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Figure 2.1: Free energy as a function of angle θ, keff > 0. (a) for ha = 0 two
minima θ = 0, π and two maxima θ = ±π/2 exist. (b) for small ha with given
θh 6= 0 there still exist two minima and two maxima. (c) a critical value hSW(θh)
of ha exist such that a saddle point appears in place of one minimum and one
maximum. (d) for ha > hSW(θh) only one minimum and one maximum remain.

different physical meanings1. We observe that, for symmetry reasons, at the

equilibrium the magnetization lies in the plane defined by the easy axis ez and

the applied field ha. At this point, it is useful to introduce the spherical angles

θ, θh between m, ha and ez, respectively. In this respect, one has:

mz = cos θ , m · ha = ha cos(θh − θ) . (2.11)

By using these expressions in Eq. (2.10) one obtains:

g(θ, θh) = −1

2
keff cos

2 θ − ha cos(θh − θ) =

= −1

2
keff cos

2 θ − ha cos θh cos θ − ha sin θh sin θ =

= −1

2
keff cos

2 θ − haz cos θ − ha⊥ sin θ , (2.12)

where haz and ha⊥ are respectively the parallel and perpendicular component

of the applied field with respect to z−axis. Let us now suppose that no field is

1The term shape anisotropy recalls the fact that magnetostatic field depends on the geometry
of the body, whereas the crystalline anisotropy depends on the lattice structure of the material.
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applied and that the particle is initially magnetized along the positive z−axis

(θ = 0). In this situation, the particle minimizes its energy and therefore this is

an equilibrium position, as well as the reversed orientation θ = π (see Fig. 2.1a).

The energy is instead maximum for θ = ±π/2. Now, if we apply a small external

field, opposite to the initial magnetization (θh = 0), the free energy (2.10) will

still have two minima and two maxima. By further increasing ha we arrive at

a critical configuration for which one minimum and one maximum disappear.

We call hSW the applied field value corresponding to this critical situation. If

we increase ha > hSW only one minimum and one maximum of the free energy

will exist. This means that for fields ha < hSW the particle will remain in the

initial configuration along z, whereas as soon as ha > hSW the magnetization

will switch to the only remaining energy minimum, corresponding to the reversed

orientation.

It is important to underline that, in the general case (see Fig. 2.1), the criti-

cal field hSW will be a function of θh. Thus, the idea of Stoner-Wohlfarth model,

is to represent, in the control plane (ha, θh in polar coordinates, or equivalently

haz, ha⊥ in cartesian coordinates), the separating curve between the region where

two minima exist and the region where only one minimum remains. This bifurca-

tion line justifies the switching behavior. It can be found analytically by means

of the following relationship:

∂g

∂θ
= 0 ,

∂2g

∂θ2
= 0 , (2.13)

which determines the saddle points of the free energy in the haz, ha⊥ plane. By

imposing the above conditions, one ends up with the following equations:










ha⊥
sin θ

− haz
cos θ

= keff

ha⊥

sin3 θ
+

haz
cos3 θ

= 0

(2.14)

By solving these equations one ends up with the parametric expression of the

bifurcation line, which is referred to as the Stoner-Wohlfarth astroid :






haz = −keff cos3 θ
ha⊥ = keff sin

3 θ
(2.15)

The curve defined by the latter equations is represented in Fig. 2.2. The polar

representation can be also found:

ha = keff(sin
2/3 θh + cos2/3 θh)

−3/2 . (2.16)

In the particular case of θh = 0, one can easily verify that

hSW = keff = N⊥ +
2K1

µ0M2
s

−Nz . (2.17)
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Figure 2.2: The Stoner-Wohlfarth astroid in the haz, ha⊥ plane.

Thus, when the external field has components such that the point (haz, ha⊥)

lies outside the astroid, only one minimum of the free energy is present and

magnetization will end up there. For example, in the case of initial magnetization

m = ez, the application of an external field along ez with amplitude ha greater

than the critical value computed from Eq. (2.17), the switching of the particle

occurs. In fact, the initial configuration is no longer stable and the only minimum

of the free energy (stable equilibrium) remains m = −ez.

Conversely, as soon as the field is such that the point (haz, ha⊥) lies inside

the astroid, the situation is more complicated since there exist still two minima

of the free energy, namely two stable equilibria. Which one will be reached by

magnetization depends on the dynamics of magnetization motion, which is not

described by the Stoner-Wohlfarth model. In this situation, one can say that the

switching from one minimum to the other is not precluded, but is not guaranteed.

Recently, the possibility to obtain magnetization switching with field amplitudes

below the Stoner-Wohlfarth limit has been investigated. We will discuss this

possibility in the following sections and in chapter 3.

2.3 Uniform mode magnetization dynamics

The Stoner-Wohlfarth model has been extensively used to explain the occurrence

of hysteresis loops in the M −H relationship for magnetic recording media (see

Fig. 2.3). Nevertheless, as far as magnetic storage devices are required to be faster

and faster, and on the other hand the dimensions of magnetic media decrease more

and more, the inclusion of dynamical effects in the switching analysis becomes

unavoidable. For this reason, we start our analysis from uniform mode dynamics,
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Figure 2.3: Stoner-Wohlfarth model. Picture of hysteresis loops from the original
paper [77] for different applied field directions. The external field in abscissa is
measured in units of keff. Magnetization in ordinate is measured in units of Ms.

which is governed by the Landau-Lifshitz-Gilbert equation (1.95) rewritten in case

of spatial magnetization uniformity:

dm

dt
= −m× heff + αm× dm

dt
, (2.18)

where the effective field and the free energy have now the simple expressions:

heff(m, t) = − ∂g

∂m
= −Dxmxex −Dymyey −Dzmzez + ha(t) , (2.19)

g(m,ha) =
1

2
Dxm

2
x +

1

2
Dym

2
y +

1

2
Dzm

2
z − ha ·m . (2.20)

The coefficients Dx, Dy, Dz take into account shape and crystalline anisotropy.

Assuming that the uniaxial anisotropy is along the x axis, the relationship of

the D coefficients with material parameters and demagnetizing factors is the

following:

Dx = Nx −
2K1

µ0M2
s

, Dy = Ny , Dz = Nz . (2.21)

In this framework the LLG equation defines a dynamical system evolving on the

unit-sphere |m| = 1, according to property (1.97). If we assume that the external

field ha is constant, LLG equation (2.18) describes an autonomous dynamical

system whose phase space is 2D, and therefore, it cannot exhibit chaotic be-

havior [22, 23]. Moreover, by recalling the Lyapunov structure (1.102) of LLG

equation for constant field, which states that energy is a decreasing function of

time (α > 0), one can immediately conclude that the only steady solutions are

fixed points. The number of these fixed points is at least two and in any case is

even, due to Poincaré index theorem [43]. Thus, any bifurcation of fixed points
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involves two equilibria at the same time. The fixed points of the dynamics can

be computed from the following equations:







m× heff(m) = 0 ⇔ heff(m) = λm ,

|m| = 1 ,
(2.22)

in the four scalar unknowns m = (mx,my,mz) and λ. Conversely, if the ap-

plied field is time-varying the onset of chaos and self-oscillating behavior can-

not be excluded in principle [24], but there exist particular cases in which the

non-autonomous system can be reduced to an autonomous one by means of ap-

propriate change of the reference frame. An example of this occurrence will be

examined in section 2.5 when the dynamics of rotationally-symmetric particles

subject to circularly polarized field will be analyzed.

In the following sections, extensively use of the phase portraits [43] of dynam-

ical system (2.18) will be made. In many cases it is convenient to project the

unit-sphere on the plane to visualize the structure of the LLG vector field. This

can be done by means of the stereographic projection which maps the coordinates

mx,my,mz onto w1, w2 according to the following transformation:

w1 =
mx

1 +mz
, w2 =

my

1 +mz
. (2.23)

This stereographic projection has a geometric interpretation, sketched in Fig. 2.4

for the case of α = 0. The points along x−axis m = (±1, 0, 0) are mapped to

(w1, w2) = (±1, 0), while the points along y−axis m = (0,±1, 0) are mapped to

(w1, w2) = (0,±1). The north pole m = (0, 0, 1) is mapped to (w1, w2) = (0, 0),

whereas the south pole m = (0, 0,−1) is mapped towards infinity onto the plane.

Moreover, image through Eq. (2.23) of closed curves on the unit-sphere remain

closed, and also angles are preserved. In the derivation of phase portraits of the

dynamical system (2.18) we will need to perform numerical integration of LLG

equation. We will adopt the numerical semi-implicit scheme proposed in Ref. [25],

which in spite of low computational effort, preserves the magnetization magnitude

conservation property (1.97). Geometric integration of Landau-Lifshitz-Gilbert

equation will be discussed deeply in chapter 4.

2.4 Magnetization switching process

In this section we will present the analysis, in the framework of dynamical sys-

tems theory, of some relevant technological applications connected with magnetic

recording devices. In particular, we will focus our attention on magnetization

reversal processes, commonly referred to as magnetization switching processes.



2.4 − Magnetization switching process 43

w
2 w

1

Figure 2.4: Stereographic projection of the unit-sphere on the plane for the case
of α = 0.

Basically, if we assume that initially the magnetization is aligned in the positive

easy axis direction (for example corresponding to the bit value 0), the switching

problem consists in manipulating the control variables in order to drive defi-

nitely magnetization into the opposite orientation (bit 1). At present time, there

are more than one way to achieve switching. The conventional way obtains the

switching by using magnetic field produced by external currents, and this tech-

nique is mostly used in hard disks realizations. Recently, the possibility of using

spin-polarized currents, injected directly into the ferromagnetic medium, has been

investigated both experimentally and theoretically. This way to control switching

has considerable applications in MRAMs technology, since in this way it is pos-

sible to circumvent the difficulty of generating magnetic fields that switch only

the target cell. The spin-polarized current driven switching will be analyzed in

section 2.6.

2.4.1 Critical parameters for magnetization switching

Before starting to analyze specific kinds of switching processes, it is convenient

to indicate what we mean with critical parameters. In this respect, let us refer

to the case of switching with external magnetic fields. Generally, at time instant

t = 0, a field pulse is applied to realize switching. Referring for sake of simplicity

to a rectangular pulse (see Fig. 2.5), we can say that our critical parameters are:

• Applied field direction.
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Figure 2.5: Design parameters for external field pulse amplitude.

• Minimum field pulse amplitude hc to obtain successful switching.

• Minimum field pulse duration Tp to obtain successful switching.

• Switching time, namely the time instant Ts at which magnetization is ap-

proximately in the reversed orientation.

Generally, given an applied field direction, the critical pulse amplitude hc can

be found as a function of material parameters K1,Ms and shape parameters

Nx, Ny, Nz (or equivalently coefficients Dx, Dy, Dz). Then, the time Tp, as well

as the time instant Ts, will be a function of the field amplitude hc.

Next we report some recent results present in literature regarding two different

ways to achieve magnetization switching: the so-called “damping switching” and

“precessional switching”. We refer to the derivations worked out in Refs. [26, 27]

for the former and in Refs. [28, 35] for the latter. These results are very important

since in chapter 3 we will demonstrate that some of them can be used to predict

the values of control parameters in micromagnetic (non-uniform) simulations of

switching processes for thin-films having spatial dimensions of technological in-

terest.

2.4.2 Damping switching

The traditional mode to realize the switching is the one sketched in Fig. 2.6 and

it is here referred to as “damping switching” following a terminology introduced

by Mallinson [26]. The switching is realized by applying the external field in the

direction opposite to the initial magnetization state. If the field is strong enough

(the threshold field can be computed by the Stoner-Wohlfarth theory) the initial
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Figure 2.6: Typical mode of operation in damping switching: the field is applied
against the initial magnetization.

magnetization state becomes unstable and magnetization dynamics tends to relax

toward the new minimum of energy in the direction of the applied field. In the

following, the analytical treatment of damping switching proposed in Ref. [27]

will be presented. This is possible indeed only in the special case in which the

magnetic body is rotationally symmetric around a certain axis and the external

field is applied exactly along the symmetry axis. If the symmetry axis is ez, the

effective field is given by the formula

heff = −D⊥(mxex +myey)−Dzmzez + hazez (2.24)

Here, coefficients D⊥ = N⊥ and Dz = Nz − (2K1)/(µ0M
2
s ) account for demag-

netizing fields and crystalline anisotropy, while haz is the applied field, which is

assumed to be constant during the pulse duration. R. Kikuchi [30] considered a

similar problem for the case of isotropic ferromagnetic sphere when the effective

field is defined by the formula:

heff = −Dm+ hazez (2.25)

The difference in the mathematical forms of the effective fields (2.24) and (2.25)

results in the profound difference in the physical phenomena of magnetization

switching. In the case of effective field (2.25), there exists an infinite set of

equilibrium states for haz = 0 and no critical field is required to switch from one

equilibrium state to another. In the case of effective field (2.24), there are only

two equilibrium states for haz = 0 with mz = 1 and mz = −1, respectively, and

the switching from one equilibrium state to another is only possible if the applied

field haz exceeds some critical field hc.

J. Mallinson [26] studied the problem with the effective field given by the

formula (2.24). His analysis is based on the solution of LLG equation in spherical

coordinates. Conversely, the following approach exploits the rotational symmetry

of the problem.
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It is apparent that the mathematical form of LLG equation with the effective

field equation given by Eq. (2.24) is invariant with respect to rotations of coor-

dinate axes x and y around z axis. As a results of this rotational symmetry, it is

expected that dmz/dt depends only on the z-component of m. Indeed, by using

simple algebra, it is easy to find that:

(m× heff) · ez = 0 , [m× (m× heff)] · ez = (haz − hcmz)(1−m2
z) , (2.26)

where

hc = D⊥ −Dz = hSW , (2.27)

is the classical Stoner-Wohlfarth field (see Eq. (2.17)). Thus from LLG equation

and from Eqs. (2.26), we derive the following equation

dmz

dt
=

α

1 + α2
(hcmz − haz)(1−m2

z) (2.28)

It is clear from Eq. (2.28) that the magnetization switching from the statemz = 1

to the state mz = −1 (or vice versa) is driven exclusively by damping: in the

conservative case α = 0 the z-component of magnetization remains constant. In

this sense, this switching can be regarded as “damping” switching. It seems from

Eq. (2.28) that no switching is possible if magnetization is in equilibrium state

mz = 1. However, due to thermal effects, magnetization m slightly fluctuates

around the above equilibrium state. As a result, the value of mz at the instant

when the applied field is turned on may be slightly different from 1 and the

switching process can take place.

This argument justifies the solution of Eq. (2.28) with the initial condition:

mz(t = 0) = mz0 (2.29)

where mz0 is close to 1. It is apparent from Eq. (2.28) that if haz > hc then

dmz/dt < 0 and the switching to the equilibrium state mz = 1 will proceed for

any mz0. On the other hand, if haz < hc, then for mz0 sufficiently close to 1

it can be found from Eq. (2.28) that dmz/dt > 0 and no switching is possible.

This clearly reveals that hc has the meaning of critical field. In the sequel, it is

assumed that haz > hc.

By separating variables in Eq. (2.28), we obtain:
∫ mz

mz0

dmx

(1−m2
z)(hcmz − haz)

=
α

1 + α2
t . (2.30)

Performing integration, one obtains:

1

2(haz − hc)
ln

1−mz

1−mz0
− 1

2(haz + hc)
ln

1 +mz

1 + mz0
+

+
hc

h2c − h2az
ln

haz − hcmz

haz − hcmz0
=

α

1 + α2
t (2.31)
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By using the last equation, the minimal pulse time needed for switching can be

found. Indeed, if the duration of magnetic field pulse is such that a negative

value of mz is reached, then the magnetization will be in the basin of attraction

of the equilibrium state mz = −1, and the switching will be achieved. This can

be clearly seen by setting mz = 0 into Eq. (2.28), which implies dmz/dt < 0

for haz > hc. Thus, the minimal time can be found from Eq. (2.31) and the

condition mz = 0. By taking into account formula (2.31) and the fact that time

and magnetic field in this formula are normalized by γMs and Ms , respectively,

we derive the following expression for the minimal pulse time Tp mentioned in

section 2.4.1:

Tp =
1 + α2

αγ

[

ln(1− cos θ0)

2(Hc −Haz)
+

ln(1 + cos θ0)

2(Hc +Haz)
+

Hc

H2
c −H2

az

ln
Haz

Haz −Hc cos θ0

]

.

(2.32)

Here Hc = (D⊥ −Dz)Ms and mz0 = cos θ0, where θ0 is the angle formed by the

initial magnetization with z-axis.

It is interesting to point out that for the typical case of small angles θ0,

the minimal pulse time Tp is very close to the actual switching time Ts (see

section 2.4.1) at whichmz reaches a value almost equal to −1. This is because, for

sufficiently small mz (large angles θ), mz decreases much faster (see Eq. (2.28))

than when mz is close to its equilibrium values. This assertion is supported

by numerical calculations, performed by using the analytical expression for mz

extracted from formula (2.31) and shown in Fig. 2.7.

It is apparent from this figure that the initial (near equilibrium) dynamics of

mz is very slow and takes most of the time, while the magnetization dynamics

away from equilibrium is very fast. Thus, the switching time is close to the

minimal pulse field time, calculated above:

Ts ≃ Tp . (2.33)

It is also apparent from formula (2.32) that for the typical case of very small initial

angles θ0, the first term in the right hand side of formula (2.32) is dominant. Thus,

by neglecting two other terms and using simple trigonometry, one can derive the

following expression for the minimal pulse time (switching time):

1

Tp
=

1

ln(
√
2/θ0)

αγ

(1 + α2)
(Haz −Hc) . (2.34)

It turns out from Eq. (2.34) that, for short pulse duration Tp, the value of applied

field needed for switching increases inversely proportional to Tp, i.e. Haz ∼ 1/Tp.

In this sense, one may say that the dynamic (short-time) coercivity appreciably

exceeds the static coercivity Hc. The last formula is also similar to the one that
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Figure 2.7: Evolution of mz with time for different initial angles θ0 = 0.3o, 1o, 3o.
Haz/Hc = 1.2.

has been observed in numerous experiments [31], [32], [33]. It is usually written

in the form:
1

Tp
=

1

S
(Haz −Hc) . (2.35)

The switching time (see formulas (2.32), (2.34)) depends on the value of initial

angle θ0. An expected value of this angle can be evaluated by using Maxwellian

equilibrium distribution for θ0:

ρ(θ0) = c sin θ0 exp

[−g(m)

kT

]

= c sin θ0 exp

[

−µ0(D⊥ −Dz)M
2
sV0 cos θ0

kBT

]

,

(2.36)

where kB is the Boltzmann constant, c an appropriate constant to normalize

the integral of the distribution, µ0 the vacuum magnetic permeability, and V0

is the volume of the magnetic body. If we assume that the magnetic body is

a Permalloy film with dimension (0.5 µm, 0.5 µm, 10 nm), the typical expected

value of θ0 is 0.5
o. The expected value of θ0 is increased as the volume dimensions

are decreased.

2.4.3 Precessional switching

Precessional switching is a new strategy to realize magnetization reversal which

has been recently the focus of considerable research [34, 37]. In the usual switch-

ing process, the external field is applied in the direction opposite to the initial
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Figure 2.8: (left) Magnetic thin film subject to in-plane applied field. (right)
Example of precessional motion of magnetization for in-plane applied field.

magnetization and the reversal is achieved after several precessional oscillations

due to dissipative effects [26]. In precessional switching, the field is applied at

a certain angle (usually orthogonal) with respect to initial magnetization in or-

der to use the associated torque to control magnetization precessional motion.

In fact, this torque pushes the magnetization out-of-plane, creating a strong de-

magnetizing field in the direction perpendicular to the film plane. Then the

magnetization start to precess around the demagnetizing field (see Fig. 2.8). The

reversal is obtained after half precessional oscillation and it is realized by switch-

ing the external field off precisely when the magnetization is close to its reversed

orientation. This kind of switching is usually much faster and it requires lower

applied fields with respect to the traditional switching. However, the switching is

realized only if the field pulse duration is accurately chosen. In the following, the

derivation of the analytical formula that provide this information is reported [28].

We assume that the magnetic body has a thin-film like shape with ez normal to

the film plane (see Fig. 2.8).

Since the film is assumed to be very thin, the demagnetizing factors in the

film plane Nx, Ny and perpendicular to the film Nz are practically equal to zero

and −1, respectively. This leads to the following expression for the effective field:

heff(m) = (Dmx − hax)ex + hayey −mzez , (2.37)

where D = 2K1/(µ0M
2
s ) accounts for the in-plane x-axis anisotropy, and hax,

hay are normalized components2 of the applied magnetic field that is assumed to

be constant during the pulse duration.

The magnetic free energy corresponding to the effective field (2.37) has the

2The external field is supposed to be ha = −haxex + hayey, with hax > 0.
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Figure 2.9: Sketch of the conservative phase portraits in the stereographic plane.
(left) zero applied field. (right) the external field is applied along the y axis.

form

g(m) = −1

2
Dm2

x +
1

2
m2

z + haxmx − haymy . (2.38)

The precessional switching process consists of two stages: in the first stage the

magnetization precesses under the influence of the applied external field until its

orientation is almost reversed, in the second stage the external field is switched

off and the magnetization undergoes relaxation oscillations toward the nearby

equilibrium point. In the first part of the process, the magnetization dynamics

is typically so fast that dissipative effects can be neglected. On the other hand,

dissipation has to be taken into account during the relaxation process. For this

reason, we shall first analyze the precessional switching dynamics in the conser-

vative case α = 0. The conservative phase portraits of the LLG equation, which

can be obtained by plotting the contour lines of the energy function (2.38), can

be conveniently represented in the plane by using the stereographic projection

defined by Eqs. (2.23). The result is schematically depicted in Fig. 2.9.

In the case of zero applied field (Fig. 2.9 on the left), the phase portrait is

characterized by 6 equilibrium points: the 4 centers C+
1 , C−

1 , C+
3 , C−

3 = +∞,

and the two saddles S+
2 , S

−
2 doubly connected by heteroclinic trajectories. All

trajectories, except the heteroclinic ones, circle around the centers. The two

centers in the shaded regions are low energy states (m along the easy axis) while

the centers C+
3 , C−

3 = +∞ are high energy states. Notice that when no field is

applied there is no way to reverse magnetization from one shaded region to the

other.

In the case of field applied along the y axis, (see Fig. 2.9 on the right), the
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Figure 2.10: Sketch of the phase portrait on the stereographic plane in the case
of zero applied field and α > 0.

heteroclinic trajectories break into two homoclinic structures, one for each saddle.

In this situation, along with trajectories that circle around centers, a new type

of trajectories appears: the ones that encircle the saddle homoclinic structure

(e.g. the dashed curve in Fig. 2.9, right). This type of trajectory allows the

magnetization to move from one shaded region to another and, thus, to realize

the switching. However, for a given initial condition, it is necessary a certain

field amplitude (critical field for switching) for realizing the situation that the

trajectory starting from that initial condition will enter the target shaded region.

This aspect will be discussed later.

Once that magnetization has entered the target shaded region, the field can

be switched off and the magnetization remains trapped around the target equi-

librium. After certain time, the relaxation process will bring magnetization to

the equilibrium. This stage of the switching process has to be analyzed in the

dissipative case α > 0. In this case, the phase portrait of LLG equation on the

stereographic plane is sketched in Fig. 2.10. It can be observed that, with the

introduction of damping, the Landau-Lifshitz-Gilbert equation (2.18) has now

two stable equilibrium points F±
1 with m = ±ex, two saddle points S±

2 with

m = ±ey, and two unstable equilibrium points F±
3 with m = ±ez. In Fig. 2.10,

shaded regions are the regions where the magnetic free energy is below the energy

of the saddle points, while in white regions the energy is above the energy of the

saddle points. Since the dissipation results in the decrease of the magnetic free

energy, it can be concluded that the time evolution of magnetization within any

shaded region inevitably leads to the focus inside that region. If the magnetiza-
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Figure 2.11: Numerically computed entangled structure of the basins of attraction
for LLG equation with no applied field. The black region is the high energy
portion of the basin of attraction of F−

1 while the white region is the high energy
portion of the basin of attraction of F+

1 .

tion motion starts in white regions, then depending on the initial conditions it

may relax to one of the two stable foci in the shaded regions. This is because

in the high energy (white) regions magnetization trajectories leading to different

foci are closely entangled resulting in entangled basins of attractions [35] (see

Fig. 2.11).

By using the phase portraits shown in Figs. 2.9-2.10, the essence of the pre-

cessional switching can be summarized as follows. The applied magnetic field

creates the torque that tilts magnetization up (or down) with respect to the film

plane. This results in a strong vertical demagnetizing field that forces magneti-

zation to precess in the film plane. When this precession brings magnetization

from one shaded region to another, the applied field is switched off. Then, due to

the damping, magnetization relaxes to the new equilibrium that coincides with

the focus of the latter shaded region. It is clear that the precessional switching

is accomplished if the applied field is above some critical field necessary to bring

the magnetization from one shaded region to another and if the applied field

is switched off at appropriate times. Thus, the knowledge of critical magnetic

fields and appropriate duration of applied magnetization field pulses is crucial for

proper controlling of precessional switching. Before proceeding to the discussion

of critical fields and timing of switching-off, it is worthwhile to note that if mag-

netic field is switched off when the magnetization is in the high energy (white)

regions, the result of subsequent (damping driven) relaxation of magnetization
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is practically uncertain. This is due to a very convoluted and close entangle-

ment in the high energy regions of magnetization trajectories leading to different

equilibria (see Fig. 2.11). The smaller the damping, the more pronounced this

entanglement in the high energy regions. This entanglement may lead to seem-

ingly stochastic nature of precessional switching if the applied magnetic field is

switched off when magnetization is in the high energy regions. This seemingly

stochastic nature of precessional switching has been experimentally observed (see

Figure 1 in Ref. [37]).

Next, the issue of finding critical fields for precessional switching is addressed.

Since the magnetization precession is typically (i.e. for short-time field pulses and

small damping) so fast that dissipative effects can be neglected, magnetization

motion in the first stage of the switching can be studied by using the conservative

LLG equation
dm

dt
= −m× heff(m) . (2.39)

We recall that this equation has two integrals of motions (see section 1.3.5):

m2
x +m2

y +m2
z = 1 , (2.40)

−1

2
Dm2

x +
1

2
m2

z + haxmx − haymy = −1

2
D + hax . (2.41)

The second integral of motion is the conservation of the free energy (1.103) in the

case where the initial magnetization is at m = ex. From Eqs. (2.40) and (2.41)

one can see that on (mx,my)-plane, the precessional magnetization motion occurs

along the elliptic curve:

(1 +D)m2
x +m2

y − 2haxmx + 2haymy = (1 +D)− 2hax . (2.42)

confined within the unit circle:

m2
x +m2

y ≤ 1 . (2.43)

The possible elliptic magnetization trajectories on (mx,my)-plane are shown in

Fig. 2.12. Here, the shaded regions correspond to the low energy (shaded) regions

of the stereographic plane (see Fig. 2.9), while two high energy (white) regions of

stereographic plane are projected into the same high energy region on (mx,my)-

plane confined by the following ellipse:

(1 +D)m2
x +m2

y = 1 . (2.44)

The components of the applied field hax and hay, determine the type of elliptic

trajectories. In fact, some elliptic trajectories consist of a single piece of elliptic
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Figure 2.12: “Single-piece” and “Disjoint” trajectories on (mx,my)-plane.

curves (for example, trajectory 0-1-2), while other elliptic trajectories can be

made of two disjoint pieces of elliptic curves (for instance, trajectories 0-5 and

6-7).

As far as magnetization motion is concerned, one can see that every piece

of elliptic trajectories on (mx,my)-plane corresponds to periodic motion on the

unit spherical surface. In fact, magnetization oscillates back-and-forth along the

curves located on the surfaces of positive (mz > 0) and negative (mz < 0) hemi-

spheres. In addition, since these curves are symmetric with respect to (mx,my)-

plane, the back and forth pieces of actual magnetization trajectories are orthog-

onally projected into the same pieces of elliptic trajectories on (mx,my)-plane.

Thus, it turns out that the precessional switching may only occur along the

“single-piece” elliptic trajectories that intersect the unit circle (2.43) at negative

values ofmx. The “disjoint” elliptic trajectories are separated from “single-piece”

elliptic trajectories by the elliptic trajectory 0-3-4 that is tangential to the unit

circle. It can be shown [28] that the condition of tangency of the elliptic trajectory

to the unit circle leads to the following relation:

Dmxmy − haxmy − haymx = 0 . (2.45)

At the point 3 of tangency (see Fig. 2.12), equations (2.42), (2.43) and (2.45)

are satisfied. These three equations define the curve hay vs hax that separates

the values of hax and hay that correspond to single-piece and disjoint elliptic

trajectories, respectively. A parametric representation of this hay vs hax curve

can be found by introducing the polar angle θ such that

mx = cos θ , my = sin θ . (2.46)
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(a) (b)

Figure 2.13: (a) Separating curve on (hax, hay)-plane; (b) region corresponding
to single-piece elliptic trajectory intersecting the unit-circle at negative mx.

In fact, by substituting Eq. (2.46) into Eqs. (2.42) and (2.45) and solving with

respect to hax and hay, the following parametric representation can be found:

hax = D cos θ cos2
θ

2
, hay = D sin θ sin2

θ

2
, (2.47)

The separating curve, defined parametrically by Eqs. (2.47), is valid only for

positive values3 of hax, which correspond to values of the parameter |θ| ≤ π/2.

For negative values of hax, it can be shown that all the elliptic trajectories starting

from point 0 (Fig. 2.12) intersect the unit circle only once.

Thus, the points (hax, hay) in the shaded region of Fig. 2.13(a) correspond to

“single-piece” elliptic trajectories, while the points (hax, hay) in the white region

correspond to “disjoint” elliptic trajectories.

In Ref. [28] the conditions on hax and hay that guarantee that “single-piece”

elliptic trajectories intersect the unit circle (2.43) at negative values are also

derived. The appropriate values of hax and hay correspond to the shaded regions

formed by the intersecting lines (see Fig. 2.13(b)).

hay = ± (hax −D/2) (2.48)

The values of hax and hay, that guarantee “single-piece” elliptic trajectories in-

tersecting the unit circle at negative values of mx, correspond to the points of

(hax, hay)-plane that belong to the intersection of the shaded regions shown in

Figures 2.13(a) and 2.13(b). This intersection is the shaded region shown in

Fig. 2.14. The boundary of this region corresponds to the critical fields for

precessional switching. It is useful to notice that, in the case of field applied

3We recall that the applied field is expressed here as ha = −haxex + hayey.
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Figure 2.14: Switching region in (hax, hay)-plane.

orthogonally to the x axis, that is ha = hayey, the critical field for precessional

switching is

hc =
D

2
, (2.49)

which is half the critical value provided by Stoner-Wohlfarth theory in the case

N⊥ = 0 (see4 Eq. (2.17)). In this respect, this is an example of magnetization

switching with external field below the Stoner-Wohlfarth limit. As we mentioned

in section 2.2, the switching is not guaranteed with the only application of the

external field, but one has to take care of magnetization motion to realize suc-

cessful reversal by switching the field off at the right time. Interestingly enough,

precessional switching dynamics is less energy-consuming than traditional one.

It has been previously mentioned that in the case of precessional switching

the timing of switching-off the applied magnetic field is crucial in the sense that

there exists a certain time-window during which this switching-off must occur.

One can be convinced from Fig. 2.12 that this time-window is the time interval of

the back-and-forth motion between the points 1 and 2 on a single piece trajectory,

as for instance the trajectory 0-1-2. To find this time-window [28], one can write

the Eq. (2.42) of this elliptic trajectory in parametric form

mx = ax +
p

k
sinu , my = ay + p cosu (2.50)

where u ∈ [0, 2π] is the parameter, k2 = 1 + D, ax = hax/(1 + D), ay = −hay,
p2 = h2ay+(1+D)[1−hax/(1+D)]2. From the conservative LLG equation (2.39),

one obtains:
dmx

dt
= (my + hay)mz . (2.51)

4Notice that here the role of easy axis z is played by the x axis.
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By substituting Eq. (2.50) into (2.51), one has

du
√

1− (ax + (p/k) sinu)2 − (ay + p cosu)2
= kdt . (2.52)

By using the last formula, the time-window t1 < t < t2 for switching the applied

field off can be derived:

t1 =

∫ u1

u0

du

k
√

1− (ax + (p/k) sinu)2 − (ay + p cosu)2
, (2.53)

t2 − t1 = 2

∫ u2

u1

du

k
√

1− (ax + (p/k) sinu)2 − (ay + p cosu)2
, (2.54)

and u0, u1 and u2 correspond to points 0,1 and 2 in Fig. 2.12, respectively. The

values of the parameters u0, u1, u2 can be determined by finding the intersec-

tions of the unit circle (2.43) with the elliptic trajectory (2.42) and by using

the parametric representation (2.50) of the ellipse. Moreover, one can derive the

time instant at which magnetization is in the closest position with respect to

the reversed orientation. This position is determined by the intersection of the

single-piece ellipse with the unit disk occurring at negative mx. We denote this

instant as

Ts =

∫ u2

u0

du

k
√

1− (ax + (p/k) sinu)2 − (ay + p cosu)2
=
t2 + t1

2
. (2.55)

Thus, to summarize, in the conservative case, t1 is the time instant at which the

magnetization enters the potential well around the reversed state and t2 is the

time instant at which magnetization goes out from that potential well. With the

notations introduced in section 2.4.1 we have:

Tp = t1 . (2.56)

In presence of a small damping, the separation between the high energy

regions and the low energy regions is very close to that in the conservative

case. Therefore, one reasonably expects that switching the applied field off when

t1 < t < t2 lets the magnetization relax towards the reversed state. This analy-

sis works very well in the case of uniformly magnetized particles. In Chapter 3

we will remove this simplifying assumption and we will demonstrate with micro-

magnetic simulations that precessional switching process, for thin-films having

dimensions and material parameters of technological interest, is a quasi-uniform

process, whereas damping switching is not. Moreover, we will show that the

evaluation of the switching time window t1, t2 with Eqs. (2.53)-(2.54) gives very

accurate results also in non-uniform cases.



58 Uniformly magnetized particles

2.5 LLG dynamics under circularly polarized field

The Landau-Lifshitz-Gilbert (LLG) equation has also played a central role in

the interpretation of ferromagnetic resonance (FMR) phenomena [38]. Typi-

cal experiments involve small particles and thin-disks with rotational symmetry

with respect to an axis (say z−axis). A DC external field is applied along the

z−axis and a circularly polarized radio-frequency field is then applied in the

x − y plane. In this condition it has been shown that the absorbed power ex-

hibits a maximum for a suitable resonance frequency. Analytical derivation of

the resonance frequency for uniformly magnetized ellipsoidal particles was found

by Kittel in 1948 [39] under the hypothesis of harmonic magnetization motion

in mx,my plane, which occurs for small angles of m with respect to the z−axis.

In generic conditions the LLG equation has to be solved numerically. In fact,

exact analytical solution can be derived in few cases and are generally obtained

by linearizing the equation around some given state. In a new approach recently

proposed [40], exact analytical solutions were derived for the full nonlinear LLG

equation with damping in the case when the magnetic body is an ellipsoidal par-

ticle with rotational symmetry around a certain axis and the external field is

circularly polarized. In this situation, one can prove that exact solutions of LLG

equation always exist. These solutions are characterized by uniform magnetiza-

tion rotating at the angular velocity ω with certain lag angle with the respect to

the rotating applied field. The rotational invariance of this system and the fact

that LLG equation conserves magnetization amplitude, permit one to reduce the

problem to the study of an autonomous dynamical system on the unit sphere.

This reduction is achieved by introducing an appropriate rotating frame of ref-

erence. The resulting autonomous dynamical system may exhibit various phase

portraits characterized by equilibrium points and limit cycles [40]. The limit

cycles in the rotating frame correspond to uniform quasiperiodic magnetization

motions in the laboratory frame, deriving from the combination of the rotation

of the frame and the periodicity of the limit cycle. The study of these quasiperi-

odic solutions is then reduced to the study of limit cycles of a vector field on

the sphere. Despite the simplicity of the system, this study is extremely difficult

and no general technique is available. In this respect, our purpose is to present

a technique to predict the existence, the number, the form and the stability of

these limit cycles (and therefore of the quasiperiodic magnetization modes) in the

special case, often encountered in the applications, of small value of the damping

constant in the LLG equation. The analysis is carried out by using an appropri-

ate perturbation technique which is generally referred to as Poincaré-Melnikov
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Figure 2.15: Trajectories of magnetization on the unit sphere in the laboratory
(left) and the rotating frames (right).

function technique (see Appendix B and Ref. [43]).

2.5.1 Equation of motion

We consider an uniformly magnetized thin film or spheroidal particle subject

to a time-varying external magnetic field. The magnetization dynamics is gov-

erned by the LLG equation which is written in the usual dimensionless form (see

section 2.3),
dm

dt
− αm× dm

dt
= −m× heff(t,m) . (2.57)

The effective field is given by

heff(t,m) = −D⊥m⊥ −Dzmzez + hazez + ha⊥(t) (2.58)

where ez is the unit vector along the symmetry axis z, the subscript “⊥” de-

notes components normal to the symmetry axis, D⊥, Dz describe (shape and

crystalline) anisotropy of the body. The applied field has the dc component haz

along the z-axis and the time-harmonic component ha⊥(t) uniformly rotating

with angular frequency ω in the plane normal to the symmetry axis:

ha⊥(t) = ha⊥ [cos(ωt)ex + sin(ωt)ey] , (2.59)

where ex, ey are the unit vectors along the axis x and y respectively. The dy-

namical system defined by Eq. (2.57) is non autonomous (heff explicitly depends

on time) and it is characterized by magnetization dynamics with |m| = 1. In

other words, Eq. (2.57) defines a non autonomous vector field on the unit sphere.

The analysis of this system is greatly simplified when Eq. (2.57) is studied in the

reference frame rotating at angular velocity ω around the symmetry axis ez. By
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choosing an appropriate origin of the time, we can obtain that in the rotating

frame ha⊥ = ha⊥ex and

heff(m) = −D⊥m⊥ −Dzmzez + hazez + ha⊥ex . (2.60)

In addition, in passing to the new frame, the derivative of m(t) transforms ac-

cording to the rule
dm

dt

∣

∣

∣

∣

lab

7→ dm

dt

∣

∣

∣

∣

rot

+ ωez ×m , (2.61)

and thus Eq. (2.57), written in the rotating reference frame, takes the following

autonomous form:

dm

dt
− αm× dm

dt
= −m× (heff(m)− ωez + αωm× ez) . (2.62)

Equation (2.62) describes an autonomous dynamical system evolving on the sur-

face of the unit sphere |m| = 1. The fixed points of the dynamics can be computed

from the following equations similar to Eqs. (2.22):






heff(m)− ωez + αωm× ez = λm ,

|m| = 1 .
(2.63)

It is interesting to notice that equilibria in the rotating frame correspond to

periodic solutions in the laboratory frame while limit cycles in the rotating frame

correspond to quasiperiodic magnetization solutions in the laboratory frame (see

Fig. 2.15). The quasiperiodicity derives from the combination of the rotation

of the frame with angular frequency ω and the periodicity of the limit cycle

in the rotating frame with angular frequency self-generated by the dynamical

system (and in general not commensurable with ω). Notice also that chaos is not

permitted in this dynamical system, despite the presence of a driving sinusoidal

field, due to the rotational symmetry and the consequent reduction to a dynamical

system on a 2D manifold.

2.5.2 Quasiperiodic solutions of LLG dynamics under circularly po-

larized field

Let us focus our analysis on the quasiperiodic solutions (limit cycles in the ro-

tating frame). In order to establish the existence, the number and the locations

of the limit cycles we can exploit the fact that α is generally a small parameter

. 0.1. Thus, we can start our analysis by considering the case α = 0 which

can be easily treated because the dynamical system (2.62) admits the following

integral of motion (similar to energy conservation (1.103)):

g(m) =
1

2
Dzm

2
z +

1

2
D⊥m

2
⊥ − ha⊥mx − (haz − ω)mz. (2.64)



2.5 − LLG dynamics under circularly polarized field 61

−4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

w
1

w
2 S 

C
1

C
2

Γ
1
 

Γ
2

g=g
0;Q

2

 

g=g
0;Q

1

 

Figure 2.16: Phase portrait of conservative system on the stereographic plane
w1 = mx/(1 +mz), w2 = my/(1 +mz). Value of the parameters: α = 0, Dz = 1,
D⊥ = 0, haz = 0.6, ha⊥ = 0.15, ω = 1.1.

It is interesting to notice that the function g(m) satisfies the following equation

along the trajectory of the dynamical system

dg

dt
= α

[

ω(m× ez) ·
dm

dt
−
∣

∣

∣

∣

dm

dt

∣

∣

∣

∣

2
]

= −αP(m) , (2.65)

where P(m) is the “absorbed power” function which is defined by the opposite

of the above expression in square bracket. This function will be instrumental in

the following to give an energy interpretation of limit cycles.

The phase portrait for α = 0 is given by the contour lines of the function

g(m). To give a planar representation of the phase portraits, we use the stereo-

graphic variables w1, w2 introduced in section 2.3. In Fig. 2.16, the phase portrait

is represented on the (w1, w2)-plane for the case of a thin film. This phase por-

trait is characterized by three centers C1, C2 and C3 (outside Fig. 2.16) and

a saddle S with two homoclinic orbits Γ1 and Γ2. When the small damping

is introduced, almost all closed trajectories around centers are slightly modified

and collectively form spiral-shaped trajectories toward attractors. There are only

special trajectories which remain practically unchanged under the introduction

of the small damping. Two of these trajectories are indicated by Q1 and Q2 in

Fig. 2.16. These trajectories can be found by using a perturbation technique

which is generally called Poincarè-Melnikov function method [43]. This pertur-

bative approach is reported, for a generic 2D dynamical system, in Appendix B.

In order to apply this technique it is convenient to transform Eq. (2.62) in the
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Figure 2.17: Sketch of a portion of the phase portrait of LLG equation around a
center equilibrium.

following perturbative form (α is a small parameter).

dm

dt
= f0(m) + αf1(m, α) (2.66)

where

f0(m) = −m× (heff − ωez) = m×∇mg(m) (2.67)

f1(m, α) =
α

1 + α2
m× heff − 1

1 + α2
m× (m× heff) (2.68)

For α = 0 the dynamical system is integrable and trajectories are given by g(m) =

g0 with g0 varying in the appropriate range. In addition, the vector field f0(m) is

hamiltonian and, as it can be derived from Eq. (2.67), it is divergeless on the unit

sphere Σ : ∇Σ ·f0(m) = 0. The technique is based on the extraction of a Poincarè

map [43] (associated to an arbitrarly chosen line S transveral to the vector field,

as sketched in Fig. 2.17) of the perturbed system by using an expansion in terms

of the perturbation parameter α, around α = 0. The zero order term of this

expansion is the identity since for α = 0 all trajectories (except separitrices) goes

back to the initial point (see Fig. 2.16). The first order term of the expansion

with respect to α is proportional to the Melnikov function which, in the case of

divergenceless unperturbed vector field, is given by the following integral along

the trajectories of the unperturbed system (see Eq. (B.39) in Appendix B)

M(g0) =

∫ Tg0

0
f0(mg0(t)) ∧ f1(mg0(t), 0)dt (2.69)

where mg0(t) is the trajectory of the unperturbed system with g(mg0(t)) = g0,

Tg0 is its period and

f0(m) ∧ f1(m, 0) = m · (f0(m)× f1(m, 0)) . (2.70)
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Figure 2.18: Two branches of the Melnikov function vs the value of g0: g0;Q1
and

g0;Q2
correspond to conservative trajectories g = g0;Q1

and g = g0;Q2
in Fig. 2.16,

which become limit cycles Q1 and Q2 in the perturbed system.

By using the expressions of f0(m) and f1(m, 0) and appropriate algebraic manip-

ulations one can derive that:

M(g0) = −
∫ Tg0

0

[

ω(mg0 × ez) ·
dmg0

dt
−
∣

∣

∣

∣

dmg0

dt

∣

∣

∣

∣

2
]

dt . (2.71)

The last equation can be also transformed in the following line-integral form

which permits one to compute M(g0) without deriving the time dependence of

mg0(t):

M(g0) = −
∮

g=g0

m× heff · dm . (2.72)

Periodic orbits of the dissipative system are given by the zeros of the Melnikov

function. In Fig. 2.18, the Melnikov function computed from Eq. (2.69) is plotted

versus the value of g0 and the zeros ofM(g0), which correspond to the trajectories

g = g0;Q1
and g = g0;Q2

in Fig. 2.16, are emphasized. In Fig. 2.19, by sketching the

phase portrait for the dissipative case (α = 0.05), we have then verified that the

limit cycles (Q1, Q2) predicted by the theory are preserved under the introduction

of the damping. Let us notice that the introduction of damping transformed

centers in foci F1(unstable), F2(stable) and F3(unstable) and disconneted the

homoclinic trajectories (L1 and L2 are the separatrices). It is interesting to

notice that the Melnikov function given by Eq. (2.71) can be rewritten as

M(g0) =

∫ Tg0

0
P(mg0(t)) dt . (2.73)

In this respect, it is possible to give a physical interpretation of limit cycles: the

limit cycle arise from those unperturbed trajectories on which there is an average
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Figure 2.19: Phase portrait of dissipative system. The parameters are the same
as in Fig. 2.16 except for α = 0.05.

balance between “dissipation” (P(m) ≥ 0) and “absorption” (P(m) ≤ 0) of

energy.

By using the technique we have just illustrated, it is possible to predict the

existence and the number of the limit cycles in a certain interval of values of

α around α = 0. The stability of the limit cycles can be obtained by studying

the sign of the derivative of the Melnikov function at its zeros [43]: a limit cycle

is stable for positive derivative (in our case Q1 is stable, see Figs. 2.18-2.19),

unstable for negative derivative (in our case Q2 is unstable, see Figs. 2.18-2.19).

Finally the shape of the limit cycles can be estimated by taking, as first order

approximation, the unperturbed trajectories corresponding to the values of the

energy function g(m) where the Melnikov function vanishes.

2.6 Spin-transfer Effect and Current-induced Magnetization

Switching

It has been recently shown, both theoretically and experimentally, that a spin-

polarized current when passing through a small magnetic conductor can affect its

magnetization state. The interaction between spin polarized current and mag-

netization in small ferromagnetic bodies can produce steady state precessional

magnetization dynamics, that is self-oscillating behavior, or even the switching of

magnetization direction [44]-[46]. Both types of dynamical behavior have poten-

tial applications in magnetic storage technology and spintronics. In this respect,

it was predicted, and later confirmed, that spin-polarized current can lead to

current-controlled hysteretic switching in magnetic nanostructures. This kind of
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Figure 2.20: Sketch of Trilayers Co-Cu-Co structure.

behavior may become very important for applications such as current-controlled

switching of magnetic random access memory elements and stabilization of mag-

netic hard-disk read heads. Steady precessional oscillations of magnetization due

to spin polarized currents have also interesting potential applications for the real-

ization of current-controlled microwave oscillators integrable with semiconductor

electronics. This kind of oscillators could be used to realize a very new design of

clocks for synchronization of electronic devices.

Here spin-polarized current induced dynamics is studied in the case of a uni-

formly magnetized ferromagnetic thin film [47]. Magnetization dynamics is de-

scribed by the Landau-Lifshitz-Gilbert equation and the effect of spin-polarized

currents is taken into account through the additional torque term derived by Slon-

czewski in Ref. [44]. This model can be applied to describe the magnetization

dynamics in the free layer of trilayers structures constituted by two ferromagnetic

layers separated by nonmagnetic metal layer (typically the system is a Co-Cu-Co

trilayers as sketched in Fig. 2.20). One of the magnetic layer is “fixed”, namely

has a given and constant value of magnetization (indicated with p in Fig. 2.20)

while the second magnetic layer is a thin film where the magnetization is “free” to

change and where dynamics takes place. This kind of structure is traversed by an

electric current whose direction is normal to the plane of the layer (generally this

configuration in called “current perpendicular to plane (CPP) geometry”). The

fixed layer is instrumental to provide a controlled polarization (on the average

parallel to the fixed magnetization direction) of the electron spins which travel

across the trilayers, from the fixed to the free layer. It important to underline

that the effect of spin induced torque is predominant on the effect of the mag-

netic field generated by the current itself for structures which have small enough

transversal dimensions. By using reasonably estimate it has been predicted and

then verified experimentally that the effect of the current generated magnetic

field can be considered negligible for transversal dimension as small as 100 nm.
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2.6.1 Landau-Lifshitz-Gilbert equation with Slonczewski

spin-transfer torque term

In order to introduce a model equation for magnetization dynamics in presence

of spin polarized currents, let us first consider the model derived by Slonczewski

in Ref. [44]. In his paper, a five layers structure is considered. In this structure,

the first, the third and the fifth layers are constituted by paramagnetic conduc-

tors and the second and the fourth layers are ferromagnetic conductors (it is a

three layers structure as the one mentioned in the introduction with paramag-

netic conductors as spacer and contacts). The multilayers system is traversed by

electric current normal to the layers plane. The electron spins, polarized by the

fixed ferromagnetic layer (the second layer) are injected by passing through the

paramagnetic spacer into the free ferromagnetic layer (the forth layer) where the

interaction between spin polarized current and magnetization takes place. The

magnetic state of the ferromagnetic layers is described by two vectors S1 and S2

representing macroscopic (total) spin orientation per unit area of the fixed and

the free ferromagnetic layers, respectively. The connection of this two vectors

with the total spin momenta L1 and L2 (which have the dimension of angular

momenta) is given by the equations L1 = ~S1A, L2 = ~S2A, where A is the cross-

sectional area of the multilayers structure. By using a semiclassical approach to

treat spin transfer between the two ferromagnetic layers, Slonczewski derived the

following generalized LLG equation (see Eq.(15) in [44]):

dS2

dt
= s2 ×

(

γHuc · S2c− α
dS2

dt
+
Ieg

e
s1 × s2

)

(2.74)

where s1, s2 are the unit-vectors along S1, S2, γ is the absolute value of the

gyromagnetic ratio, Hu is the anisotropy field constant, c is the unit vector along

the anisotropy axis (in-plane anisotropy), α the Gilbert damping constant, Ie the

current density (electric current per unit surface), e is the absolute value of the

electron charge, g a scalar function given by the following expression

g(s1 · s2) =
[

−4 + (1 + P )3
(3 + s1 · s2)

4P 3/2

]−1

(2.75)

and P is the spin polarizing factor of the incident current which gives the percent

amount of electrons that are polarized in the p direction (see Ref. [44] for details).

The current Ie in Eq. (2.74) is assumed to be positive when the charges move

from the fixed to the free layer. Let us notice that in Eq. (2.74) the ferromagnetic

body is assumed to be uniaxial with anisotropy axis along c. In the sequel, we

will remove this simplifying assumption by taking into account the effect of the

strong demagnetizing field normal to the plane of the layer in order to consider
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the thin-film geometrical nature of the free layer. Our next purpose is to derive

from Eq. (2.74) an equation for magnetization dynamics. We will carry out this

derivation by using slightly different notation and translating all the quantities

in practical MKSA units.

First of all, let us introduce a system of cartesian unit vectors ex, ey ez,

where ez is normal to the film plane and pointing in the direction of the fixed

layer, and ex is along the in-plane easy axis (in the Slonczewski notation ex = c).

The current density will be denoted by Je (instead of Ie as in Eq. (2.74)), the

anisotropy field as Han and the function g(s1 · s2) in Eq. (2.75) will be denoted

with b to avoid confusion with the free energy and the Landé factor ge that will

be used in the following. In this reference frame the current density vector is

J = Jeez, which means that when Je > 0 the electrons travel in the direction

opposite to ez, namely from the fixed to the free layer.

By using these modified notations and by including the effects of the demag-

netizing field Hm and the applied field Ha , Eq. (2.74) becomes

dS2

dt
= s2 ×

(

γHan(ex · S2)ex − γ(Hm +Ha)S2 − α
dS2

dt
+
Jeb

e
s1 × s2

)

, (2.76)

where S2 = |S2|. The sum of the demagnetizing field Hm and the applied field

Ha will be indicated in he following by H to shorten the notation, i.e.

H = Hm +Ha . (2.77)

In order to check the correctness of the signs of precessional terms in Eq. (2.76),

let us transform this equation in a slightly different form, by factoring out from

the parenthesis the constant S2. For the sake of simplicity, we will carry out this

derivation in the case α = 0 and Je = 0. We have then the following equation

dS2

dt
= S2 × (γHan(ex · s2)ex − γ(Hm +Ha)) . (2.78)

We observe now that what is generally defined as effective anisotropy field is given

by

Han = −Han(ex · s2)ex . (2.79)

The minus sign in this equation is due to the fact that the direction of s2 is

opposite to the direction of magnetization. This issue will be discussed below.

By substituting Eq. (2.79) into Eq. (2.78) we obtain

dS2

dt
= −γS2 × (Han +Hm +Ha) = −γS2 ×Heff, (2.80)

where

Heff = Han +Hm +Ha = −Han(ex · s2)ex +Hm +Ha . (2.81)
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Equation (2.80) is the correct precession equation for the spin vector dynamics.

Next, we want to derive the dynamical equation for the magnetization vector

M associated with the free layer. In this respect, we have first to consider the

relation between S2 and M. The total magnetic moment ~µ associated with the

free layer is given by

~µ = −γL2 = −γ~S2A = −γ~S2A , (2.82)

where A has been introduced above and coincides with the area of the surface

of the film. The magnetization M is obtained by dividing the total magnetic

moment by the volume of the film V:

M =
~µ

V
=

~µ

Ad
(2.83)

where d is the free layer thickness, thus we obtain the following relations

M =
−γ~S2A

Ad
=

−γ~S2

d
=

−geµB
d

S2 (2.84)

where ge is the Landè factor for electrons, µB is the Bhor magneton, and the

relation γ = geµB/~ has been used. Let us notice that, as a consequence of

Eq. (2.84), we have

s2 = −m = −M

Ms
(2.85)

where Ms = |M| is the saturation magnetization and m is the unit vector along

M. By multiplying both sides of Eq. (2.76) by the factor −geµB/d and taking

into account Eq. (2.85), one ends up with the following equation

dM

dt
= −m×

(

γHan(ex ·M)ex + γHMs − α
dM

dt
+
geµBJeb

ed
s1 ×m

)

, (2.86)

which can be further normalized by dividing both sides by Ms, leading to

dm

dt
− αm× dm

dt
= −m×

(

γHan(ex ·m)ex + γH+
geµBJeb

edMs
s1 ×m

)

. (2.87)

In order to derive a time normalized form of the equation, we factor out from the

parenthesis the term γMs which has the dimension of a frequency, and thus we

have

dm

dt
− αm× dm

dt
= −γMsm×

(

κan(ex ·m)ex + h+
1

γMs

geµB
edMs

Jeb s1 ×m

)

,

(2.88)

where

κan =
Han

Ms
, h =

Hm +Ha

Ms
= hm + ha , (2.89)

where ha = Ha/Ms, hm = Hm/Ms. Finally, let us denote the direction of

magnetization in the fixed layer by p. According to the previous reasoning, this
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direction is opposite to s1, i.e. s1 = −p. We also define the following constant

which has the physical dimension of a current density:

Jp = γMs
eMsd

geµB
. (2.90)

By using the notations defined above, we arrive to the following form of Eq. (2.88):

dm

dt
− αm× dm

dt
= −γMsm×

(

κan(ex ·m)ex + h+
Je
Jp
bm× p

)

, (2.91)

where the scalar (and dimensionless) function b, in the new notations, is

b = b(m) =

[

−4 + (1 + P )3
(3 +m · p)

4P 3/2

]−1

. (2.92)

By measuring the time t in units of (γMs)
−1, and introducing the following

definitions,

heff = κan(ex ·m)ex + hm + ha , β = β(m) =
Je
Jp
b(m) , (2.93)

equation (2.91) can be written in the compact form

dm

dt
− αm× dm

dt
= −m× (heff + βm× p) . (2.94)

In the following, we will find convenient to recast LLG equation in the following

compact form:
dm

dt
− αm× dm

dt
= −m×Heff , (2.95)

where

Heff(m) = heff(m) + βm× p . (2.96)

Equation (2.95) is formally identical to LLG when there are no current-driven

torque term. With the definition of the generalized effective field Heff we included

the current-driven torque inside the effective field. The micromagnetic equilibria

including spin torque effect are now related to the following equations similar to

Eqs. (2.22):






m×Heff(m) = 0 ⇔ Heff(m) = λm ,

|m| = 1 .
(2.97)

The basic difference between the ordinary effective field heff(m) and the general-

ized effective field Heff(m) is that the first one can be derived by the gradient of

a free energy, while the second one cannot.

2.6.2 Discussion about units and typical values of parameters

In order to have an idea about the order of magnitude of the different terms of

Eq. (2.94), in the following we report values of relevant constants appearing in

the equations. The values of these constants will be specified in the SI (MKSA)

units.
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Fundamental constants and value of characteristic current density Jp

One of the fundamental constant of the LLG equation is the electron gyromag-

netic ratio which, in SI units, is generally given as the ratio between electron

charge e and mass me:

γe =
e

me
=

1.602 · 10−19C

9.109 · 10−31kg
= 1.7587 · 1011 s−1T−1 (2.98)

where it has been used the fact that (1 C)/(1 kg) = 1/(1 T × 1 s). The gyro-

magnetic ratio γ appearing in Eq. (2.91) (and previous equations) is measured in

such units that γMs should have the dimension of a frequency. We will use the

MKSA system and measure magnetization in A/m. To have the corresponding

measure in Tesla we have to multiply magnetization by µ0 = 4π · 10−7 F/m, i.e.

the magnetic permeability of vacuum. Therefore the value of γ to be used in

Eq. (2.91) is

γ = γe · µ0 = 2.21 · 105 s−1(A/m)−1 . (2.99)

As far as the value ofMs, if we assume that the free layer is constituted by cobalt,

we have

Ms = 1.42 · 106 A/m (Cobalt) −→ γMs = 3.14 · 1011 s−1 . (2.100)

This means that the unit time in the normalized equation (2.91) correspond to

τ =
1

γMs
= 3.2 ps = 3.2 10−12 s . (2.101)

Another fundamental constant involved in the characteristic current density (2.90)

is the Bhor magneton µB which, in SI units, has the following value

µB = 927.4 · 10−26 A m2 = 9.274 · 10−24 (A/m) ·m3 , (2.102)

namely, it has the physical dimension of a magnetic moment. In addition to µB,

it is necessary to specify the Landè factor ge which is a pure number very close

to 2. Finally, the characteristic current Jp is proportional to the thickness d of

the free layer. A sensible choice of this parameter should be in the range of the

nanometers. Let us choose d = 3 nm. Now, we can compute Jp :

Jp = γMs
eMsd

geµB
≈ 1.15 · 1013Am−2 = 1.15 · 109A cm−2 . (2.103)

This value of current is reference to establish if a current is small or big as far as

current induced spin torque is concerned. In this respect, it is useful to mention

that in most reported experiment in Co-Cu-Co pillars the largest injected current

densities are in the order of 107A m−2. Thus the factor β in Eq. (2.94) is at most

in the order of 10−2.
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Figure 2.21: Plot of b(χ) versus χ for different values of P .

Discussion about the function b(m)

Actually, the value of beta is generally even smaller due to the contribution of the

function b(m). Then, let us now analyze this function and its order of magnitude.

We denote with b(χ) the following function

b = b(χ) =

[

−4 + (1 + P )3
(3 + cos(χ))

4P 3/2

]−1

. (2.104)

where χ is the angle between m and p. It is evident that b(χ) is periodic function

of χ and it assumes its minimum at χ = 0 and its maximum at χ = ±π. If we

take as value of P the one indicated for Cobalt in the paper of Slonczewski,

we have P = 0.35. Plots of the function b(χ) versus χ are reported for three

different value of P in Fig. 2.21 . In the case P = 0.35 the function b assume a

minimum value b(0) ≈ 0.13 (parallel configuration of fixed and free layers) and a

maximum value b(π) ≈ 0.52 (antiparallel configuration of fixed and free layers).

With this further information we can estimate the value of β which according to

the treatment above is in the order of 10−3 ÷ 10−2.

The second parameter in the normalized equation (2.94) is α which is generally

considered also in the range 10−3 ÷ 10−2.

2.6.3 Analytical investigation of self-oscillating behavior

and current-induced switching

In the following we will present an analytical approach to study magnetization

self-oscillations and reversal in the free layer of a trilayers structure traversed by

a spin-polarized electric current perpendicular to the layers plane (see Fig. 2.20).
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According to the derivation performed in section 2.6.1, the model equation

which describe the dynamics of the free layer is:

dm

dt
− αm× dm

dt
= −m× (heff + βm× p) . (2.105)

which is written in dimensionless form with usual normalizations introduced in

section 1.3.4; p is the direction of spin polarization and β = β(m) is the dimen-

sionless function describing the intensity of the spin-transfer torque. We model

the free layer as a flat ellipsoidal particle in order that the effective field is given

by the usual expression

heff = ha −Dxmxex −Dymxey −Dzmzez , (2.106)

where ha is the applied field, ex, ey, ez, are cartesian unit vectors and Dx ≤
Dy ≤ Dz take into account both shape and crystalline anisotropy. As far as

the anisotropy field is concerned, most publications on Co-Cu-Co trilayers report

value of Han in the range of 10 ÷ 100 mT which correspond to value of the

normalized anisotropy constant κan around 10−2 ÷ 10−1.

In the analysis below we will assume that β is constant, which is a condition

reasonably verified for P ≤ 0.1. A more general analysis including the dependence

of β on m has been performed in Ref. [49].

To start our discussion, let us consider the energy balance equation associated

to Eq. (2.105):

dg(m)

dt
= −P(m) = −α

∣

∣

∣

∣

dm

dt

∣

∣

∣

∣

2

+ β (m× p) · dm
dt

, (2.107)

where

g(m) =
Dx

2
m2

x +
Dy

2
m2

y +
Dz

2
m2

z − ha ·m (2.108)

is the free energy of the magnetic body and P(m) is the “absorbed power” func-

tion. Equation (2.107) has very interesting implications: in appropriate condi-

tions the spin-transfer torque term may provide energy to the system and coun-

terbalance dissipation associated to the Gilbert term. If this is the case, the

dynamical system (2.105) may exhibit limit cycles i.e. periodic self-oscillation.

Perturbative technique

In order to establish the existence, the number, the stability and the locations of

these limit cycles we can exploit the fact that both α and β are small quantities (in

the order of 10−2 ÷ 10−3). Thus, we can study the dynamics under the influence

of spin-injection as perturbation of the case α = 0, β = 0. To this end, we
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introduce the perturbation parameter ǫ such that α = α0ǫ , β = β0ǫ, and write

Eq.(2.105) in the following perturbative form

dm

dt
= f0(m) + ǫf1(m) +O

(

ǫ2
)

, (2.109)

where

f0(m) = −m× heff (2.110)

f1(m) = −β0m× (m× p)− α0m× (m× heff) . (2.111)

The unperturbed dynamics described by the undamped LLG

dm

dt
= −m× heff , (2.112)

can be treated analytically [50], for any constant applied field, by using the fact

that conservative dynamics admits two integrals of motions (section 1.3.5):

m2
x +m2

y +m2
z = 1 (2.113)

g(m) = g0 , (2.114)

where g0 is a constant depending on initial conditions. Similarly to the analysis

performed in section 2.5, we will denote the trajectory of the unperturbed LLG

equation, corresponding to the value g0, with the notation mg0(t) and the corre-

sponding period with Tg0 . These trajectories are all closed and periodic (except

separatrices which begin and finish at saddles equilibria). When the perturba-

tion term ǫf1(m) is introduced, almost all closed trajectories are slightly modified

and collectively form spiral-shaped trajectories toward attractors. There are only

special trajectories which remain (at first order in ǫ) practically unchanged and

become limit cycles of the perturbed system, provided that ǫ is small enough. In

addition, each limit cycle is ǫ-close to the conservative trajectory from which it

has been generated. The value of energy of the unperturbed special trajectories

which generate limit cycles can be found from the zeros of the Melnikov function

(see Appendix and Ref. [43]):

M(g0) =

∫ Tg0

0
mg0(t) · [f0(mg0(t))× f1(mg0(t))] dt . (2.115)

In our case, by using straightforward algebra, one can prove that the function

M(g0) can be expressed as:

ǫM(g0) =

∫ Tg0

0
P(mg0(t))dt = αMα(g0) + βMβ(g0), (2.116)

where αMα(g0) and βM
β(g0) respectively correspond to the integral over one pe-

riod of the first and second terms at the right hand side of Eq. (2.107). The ex-

pression (2.116) of theM(g0) provides also a physical justification of the method:
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the existence of limit cycles requires an average balance between loss and gain

of energy. We observe that this result is analogous to the one discussed in sec-

tion 2.5.

Current-driven switching experiment. Analytical and numerical results

In the sequel, we apply the perturbation technique outlined above to a special case

relevant to the spintronics applications: self-oscillations and reversal of magneti-

zation driven by the current in absence of applied field (ha = 0). In the discussion

we will assume that the injected spin polarization p is aligned with the easy axis

of the magnetic free layer (p = ex). More general cases, with nonzero applied

field and arbitrary orientation of p, can be treated by following a very similar

line of reasoning [49].

We suppose that the system is initially in the potential well around the equi-

librium state m = ex. This region is characterized by magnetization states with

energies values
Dx

2
≤ g0 ≤

Dy

2
. (2.117)

In the latter equation g0 = Dx/2 is the energy of m = ex, while g0 = Dy/2

corresponds to the saddles points m = ±ey. The analytical solution of the

unperturbed dynamics in this region is given by [50]

mx(t) = kg dn(ΩLt, kL) , (2.118)

my(t) = (k′g/k
′) sn(ΩLt, kL) , (2.119)

mz(t) = −k′g cn(ΩLt, kL) , (2.120)

where sn(u, kL), dn(u, kL), cn(u, kL) are the Jacobi elliptic functions
5 of modulus

kL. The following relationship hold for the quantities appearing in Eqs. (2.118)-

(2.120):

k2g = (Dz − 2g0)/(Dz −Dx) , (2.121)

k2 = (Dz −Dy)/(Dz −Dx) , (2.122)

k′2g = 1− k2g , (2.123)

k′2 = 1− k2 , (2.124)

kL = (kk′g)/(kgk
′) , (2.125)

ΩL = kgk
′(Dz −Dx) . (2.126)

The period of the solution is given by the following formula:

Tg0 = 4K(kL)/ΩL , (2.127)

5See Appendix B.



2.6 − LLG dynamics driven by spin-transfer effect 75

−0.05 −0.04 −0.03 −0.02 −0.01 0
−1

−0.5

0

0.5

1

1.5
x 10

−3

ε 
M

(g
0)

g
0

β=−2.9x10−3

β=−3.0x10−3

β=−3.15x10−3

β=−3.338x10−3

β=−3.5x10−3

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35

x 10
−3

0

5

10

15

1/
T

g0
  [

G
H

z]

(a)

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35

x 10
−3

0

0.2

0.4

0.6

0.8

1

|β|

(b)

am
pl

itu
de

m
y

m
z

Figure 2.22: (left) Melnikov function for different values of β (α = 5 · 10−3,
Dx = −0.1, Dy = 0, Dz = 1). βc1 = −3 · 10−3, βc2 = −3.338 · 10−3. (right)
Frequency (1/Tg0) and amplitude of self-oscillations of the limit cycles vs the
value of |β| in the interval [βc1, βc2] (α = 5 · 10−3, Dx = −0.1, Dy = 0, Dz = 1).

where K(kL) is the complete elliptic integral of the first kind. By using the above

expressions in Eq. (2.116), the following analytical formulas can be derived

Mα(g0) = 4ΩL

[

K(kL)

(

k′ 2g
k′ 2

− 1

)

+ E(kL)

]

.

Mβ(g0) = 2π
1

k′
(2g0 −Dx)

(Dz −Dx)

(2.128)

where E(kL) is the complete elliptic integral of the second kind. Notice that

Mα(g0) and M
β(g0) are positive functions, zero only for g0 = Dx/2 (equilibrium

at m = ex). Plots of the M(g0) versus g0 for different values of β are reported

in Fig. 2.22. The interpretation of Melnikov function in terms of energy balance,

expressed by Eq. (2.107) and Eq. (2.116), can help one to qualitatively under-

stand the dynamics and the stability of limit cycles. In fact, zeros of the Melnikov

function determine trajectories on which there is average balance between power

dissipation and absorption. Conversely, a positive (negative) value of the Mel-

nikov function indicates, according to Eq. (2.107), that the system has to move

towards periodic trajectories with lower (upper) energy6.

It is clear from Fig. 2.22 that M(g0) has another zero for β negative and such

that |β| > |βc1| where βc1 is the value such that the derivative of M(g0) in Dx/2

is equal to zero. This corresponds to the condition of tangency of the Melnikov

function diagram at g0 = Dx/2:

dM

dg0
(Dx/2) = 0 . (2.129)

6We notice that a fixed point is a degenerate periodic trajectory.
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By using Eq. (2.128) and simple algebra one can derive that

βc1 = −α
2
[(Dz −Dx) + (Dy −Dx)] . (2.130)

This value of βc1 correspond to an Hopf bifurcation [43] of the equilibrium

m = ex: the equilibrium becomes unstable and a stable limit cycle around the

equilibrium is created (see Fig. 2.23). If we further increase the value |β| the zero
of M(g0) will move toward larger value of energy. Since the limit cycle is ǫ−close

to the conservative trajectory corresponding the zero of M(g0), we can derive

its properties from the property of the corresponding conservative trajectory. In

Fig. 2.22 the amplitude and the frequency of the limit cycle as function of |β|
are reported. Notice that due to the thin film geometry the amplitude of the

oscillation of mz(t) remains rather small. When |β| is increased further we arrive

to the value βc2 such that M(Dy/2) = 0, which is given by

βc2 = −αM
α(Dy/2)

Mβ(Dy/2)
. (2.131)

At this value of β the system undergoes an homoclinic connection bifurcation [43]

in which the limit cycle first degenerates in a homoclinic connection and then

is destroyed (see Fig. 2.24). The system then relaxes toward the equilibrium

m = −ex. In order to the test the accuracy of the perturbation technique we

have carried out numerical simulations of Eq. (2.105) for different values of β.

The results are presented in Fig. 2.25. Notice that the two bifurcations, Hopf

and Homoclinic connection, occur at critical values that are very close to the

ones predicted by the theory.
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Figure 2.23: Mechanism of the Hopf bifurcation. (up left) The focus F is a
stable equilibrium. (up right) For β = βc1 the limit cycle L coincides with the
equilibrium F . (bottom) For |β| > |βc1| the focus F becomes unstable and
a stable limit cycle L is created. This mechanism justifies the onset of self-
oscillations driven by the spin-transfer torque term.
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Figure 2.24: Mechanism of the homoclinic bifurcation. (up left) For |βc1| <
|β| < |βc2| there is a stable limit cycle L around the unstable equilibrium F .
(up right) For β = βc2 the limit cycle L disappears and a homoclinic connection
Γ+ ≡ Γ− ≡ L is created. (bottom) For |β| > |βc2| the homoclinic connection
disappears but the mutual position of the separatrices Γ+ and Γ− is exchanged.
The region around the unstable equilibrium F is now in the basin of attraction
of the reversed state. This mechanism permits the switching of the free layer.
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Chapter 3

Non-uniform Magnetization Dynamics in

thin-films reversal processes

When one wants to remove the simplifying hypothesis that the body is uni-

formly magnetized, some issues arise which considerably complicate the solution

of Landau-Lifshitz-Gilbert (LLG) equation. First of all, LLG equation becomes

an integro-partial differential equation in the unknown vector field m(r, t). More-

over, the LLG equation is nonlinear and this implies that, in general, it is not

possible to find exact analytical solutions. Therefore, the most general method

to solve LLG equation lies on appropriate numerical techniques. In this respect,

usually a semi-discretization approach is adopted. First, a spatial discretization

of the equation is performed, by using finite differences or finite elements meth-

ods [52]. As a result, a discretized version of the micromagnetic free energy and a

corresponding system of ordinary differential equations are derived. Finally, this

system of ordinary differential equations is numerically solved with appropriate

time-stepping schemes.

In this framework, many problems arise. One is the fact that micromagnetics,

although is applicable in principle to magnetic bodies within a broad spatial scale

(form few nm to many µm), cannot be practically used for dimensions exceeding

1 µm. In fact, for sub-micron particles, numerical simulations reasonably agree

with experimental results, whereas for increasing dimensions of the bodies the

agreement with experimental observations is only qualitative. Amikam Aharoni

pointed out few years ago [51] that the reasons of such a ‘failure’ can be found

in bad understanding of theoretical results, like nucleation theory [5], as well

as bad approximations and rough discretization in energy computations. More

specifically, regarding the latter point, he emphasized that the correctness of the

results strongly depends from an accurate computation of magnetostatic field. In

fact, once that magnetization becomes space-dependent and for arbitrary body

shape, the analytical expression (2.19) does not hold anymore. For these reasons,

few years ago, some researchers at NIST proposed a set of micromagnetic stan-
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dard problems [79], with simple rectangular geometries and material properties,

to test micromagnetic numerical codes. In this respect, the standard problem

no. 1, involving a 2 × 1 × 0.02 µm permalloy thin-film, represents the most ap-

propriate example of the above issues. In fact, the results provided by different

groups showed qualitative agreement between the computed hysteresis loops, but

the quantitative evaluations of coercive fields were different even for two orders

of magnitude! After that, much more attention has been paid to the correct

formulation of numerical models. It has been recognized that the bottleneck of

micromagnetic simulations is always the fast and accurate evaluation of the mag-

netostatic demagnetizing field. In the following sections we will present mostly

used methods for demagnetizing field computation. Afterwards, we will perform

a comparison between damping and precessional switching processes for rectan-

gular thin-film geometry and we will show that damping switching is intrinsically

a non-uniform process, involving domain nucleation and wall motion, whereas

precessional switching can be reasonably considered a quasi-uniform process also

for body dimensions of hundreds of nanometers. Finally, in the framework of

quasi-uniform magnetization dynamics, we will analyze the fast switching, below

Stoner-Wohlfarth field, of tilted media for magnetic recording.

3.1 Magnetostatic field computation

We recall that magnetostatic field is defined by the Maxwell equations (1.45)-

(1.46):


















∇ ·Hm = −∇ ·M in Ω

∇ ·Hm = 0 in Ωc

∇×Hm = 0

, (3.1)

with the following conditions at the body discontinuity surface ∂Ω







n · [Hm]∂Ω = n ·M
n× [Hm]∂Ω = 0

. (3.2)

From the simple inspection of the above equations, two important considerations

can be drawn:

1. There is a functional relationship between magnetization M and magneto-

static field Hm, that is, the value of Hm at a spatial location r depends on

the value of magnetization vector field at every location r′ within Ω. This

is a consequence of the nonlocal (long range) character of magnetostatic

maxwellian interactions. Each elementary dipole in the body contributes
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to produce the magnetostatic field at an assigned location within the body.

Quoting Aharoni, “...In a numerical computation of N unit cells, the long

range means the magnetostatic energy term includes an interaction of every

cell with all the other cells, thus involving N2 terms, whereas only N terms

are required for computing the other energy terms. Therefore, computing

the magnetostatic energy takes almost all the computer time in a typical

micromagnetic computation. It is also the energy term with the heaviest

demand on the computer memory, which means that it determines the limit

of the size of the body that a computer can handle...”.

2. The differential problem (3.1)-(3.2) is an open boundary problem, that is,

even if one is interested in the computation of magnetostatic field Hm at

locations r ∈ Ω, one has to solve Eqs. (3.1)-(3.2) in the whole space. This

means that, in the framework of numerical modeling, one should preform

in principle the discretization of the whole space, which is, of course, not

feasible. For this reason, numerical methods consistent with the continuum

model have to be used in numerical simulations.

In this respect, the methods based on truncation of the interaction range of

magnetostatic fields [61], mean-field approximation for distant particles [62], hi-

erarchical dipole interaction evaluation schemes [63] cause loss of accuracy and

indeed don’t save very much computational time. In general, all the methods for

the computation of the demagnetizing field have a cost scaling function that is

something in between the minimum O(N) and the maximum O(N2).

In the sequel, we will analyze two different methods which are commonly used

for magnetostatic field computations respectively in case of finite-differences and

finite elements spatial discretization [52].

3.1.1 FFT Discrete convolution method

This method is mostly used as soon as a spatial discretization based on Finite

Differences (FD) [52] can be defined over a structured mesh. This occurs for

example, if one considers a magnetic body with rectangular geometry and subdi-

vides it into a collection of square rectangular prisms with edges dx, dy, dz parallel

to the coordinate axes. To start our discussion we recall the fact that the solu-

tion of magnetostatic problem (3.1)-(3.2) can be obtained in terms of the scalar

potential ϕ such that Hm = −∇ϕ, solution of the following boundary value
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problem:


































∇2ϕ = ∇ ·M in Ω

∇2ϕ = 0 in Ωc

[ϕ]∂Ω = 0
[

∂ϕ

∂n

]

∂Ω

= −n ·M

. (3.3)

The boundary value problem (3.3) admits the following solution [13]:

ϕ(r) = − 1

4π

∫

Ω

∇′ ·M(r′)

|r− r′| dVr′ +
1

4π

∫

∂Ω

M(r′) · n
|r− r′| dSr′ . (3.4)

By using the divergence theorem, the surface integral can be rewritten as volume

integral. Equation (3.4) can be put in the compact form:

ϕ(r) =
1

4π

∫

Ω

[

−∇′ ·M(r′)

|r− r′| +∇′ ·
(

M(r′)

|r− r′|

)]

dVr′ . (3.5)

By using the fact that ∇ · (fv) = f∇ · v+ v · ∇f , one ends up with:

ϕ(r) =
1

4π

∫

Ω
∇′

(

1

|r− r′|

)

·M(r′) dVr′ . (3.6)

Thus, the magnetostatic field Hm is given by

Hm(r) = −∇ϕ = − 1

4π
∇
∫

Ω
∇′

(

1

|r− r′|

)

·M(r′) dVr′ =

= −
∫

Ω
N (r− r′) ·M(r′) dVr′ , (3.7)

where N (r−r′) is the demagnetizing tensor. The product −N (r−r′) ·M(r′) dVr′

gives the magnetostatic field produced at location r by an elementary magnetic

moment situated at location r′. The expression (3.7) remains formally unchanged

if one assumes suitable discretization over N elementary cells. For instance, if we

subdivide the magnetic body into N = nxnynz rectangular square prisms with

edges parallel to the coordinate axes, with nx, ny, nz cells along the x, y, z axis

respectively, each cell can be uniquely determined by means of three indexes i, j, k.

As far as magnetization within the cells is concerned, there are two approaches

proposed in literature. The first is often referred to as constant volume charges1

method, that is, ∇ ·M is supposed to be constant within each cell. The second

approach supposes the magnetization M uniform within each cell. A comparison

between these two approach has been performed in Ref. [53] with respect to the

solution of the standard problem no. 2 (see µ−mag website [79] for details).

1Recalling the Coulomb approach to magnetic materials, which is in term of equivalent
volume charges ρm = −∇ ·M and surface charges σm = M · n. See Ref. [13] for details.
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Thus, apart from this particular choice, one can rewrite Eq. (3.7) as a discrete

convolution:

Hm;i,j,k = −
∑

i,j,k 6=i′,j′,k′

Ni−i′,j−j′,k−k′ ·Mi′,j′,k′ dxdydz , (3.8)

where Np,q,r is the demagnetizing tensor associated to the prism cell (p, q, r):

Np,q,r =









Nxx Nxy Nxz

Nyx Nyy Nyz

Nzx Nzy Nzz









. (3.9)

The discrete convolution (3.8) can be computed by means of the Discrete Fourier

Transform (DFT), which can be implemented very efficiently with the well-known

algorithm referred to as Fast Fourier Transform [60]. In fact, the time-domain

convolution can be changed into a scalar product in frequency space using the

Fourier transform. To properly take care of the finite size effect of the system and,

therefore, to avoid circular convolution, the standard zero-padding techniques [64]

can be used. In fact, the inverse Fourier transform will yield the correct field in

real space, if the number of cells in each dimension after zero-padding is not less

than twice the number of physical cells. The latter requirement ensures that the

inferred periodic boundary condition of this enlarged region with padded zeros

will not affect the physical data in real space after the inverse FFT is performed.

In fact, to perform the FFT which does require overall periodicity, and yet not to

allow the cells in the simulated region to be affected by the fields in the extended

periods, the void buffer area between a physical cell and the first image cell in

the adjacent period must exceed the interaction force range given by the number

of the cells N [65].

Assuming that the dimensions of the zero-padded discretization grid are

2nx, 2ny, 2nz, along the directions x, y, z respectively, and referring for instance

to the x component of Hm, the discrete convolution (3.8) can be written as:

Hx;i,j,k = −
∑

i,j,k 6=i′,j′,k′

{x,y,z}
∑

η

Nxη;i−i′,j−j′,k−k′Mη;i′,j′,k′ dxdydz , (3.10)

where Hx,Mη,Nxη (η ∈ {x, y, z}) are 2nx × 2ny × 2nz matrices. The Discrete

Fourier Transform (DFT) Ĥx of Hx can be expressed as:

Ĥx(ωx, ωy, ωz) =

2nx−1
∑

i=1

2ny−1
∑

j=1

2nz−1
∑

k=1

Hx;i,j,k exp

[

2πι

(

ωxi

2nx
+
ωyj

2ny
+
ωzk

2nz

)]

,

(3.11)

where ι is the imaginary unit ι =
√
−1 and ωx, ωy, ωz are the frequency domain

variables. Analogous expressions can be written for M̂x and N̂xη. Therefore, the
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Figure 3.1: Computational cost scaling plot. Dashed line represents O(N2) scal-
ing. Dash-dotted line represents O(N) scaling. Solid line represents O(N logN)
scaling.

discrete convolution theorem states that Eq. (3.10) can be written in frequency

domain as sum of matrix element-by-element product:

Ĥx(ωx, ωy, ωz) =

{x,y,z}
∑

η

N̂xη(ωx, ωy, ωz)M̂η(ωx, ωy, ωz) . (3.12)

The x component Hx can be obtained by computing the inverse FFT of the

expression (3.12). Therefore, the cost of the evaluation of the demagnetizing

field can be summarized as follows:

• In the preprocessing stage of the simulation, the FFTs of the 9 demagne-

tizing matrices Nxη,Nyη,Nzη (η ∈ {x, y, z}) has to be evaluated and stored

in memory.

• For each computation of the demagnetizing field, six FFTs has to be com-

puted: three related to magnetization matrices, namely M̂x, M̂y, M̂z and

three inverse FFTs of the components Ĥx, Ĥy, Ĥz in frequency domain.

The cost of a single FFT evaluation scales according to the O(N logN) behavior.

Thus, by using the FFT method the computational cost for the calculation of

the magnetostatic field can be considerably reduced with respect to the O(N2)

scaling connected with the direct evaluation of the integral (3.7) (see Fig. 3.1).

3.1.2 Hybrid Finite elements-Boundary elements method

In this section we briefly describe a numerical method for the evaluation of the

demagnetizing field which is commonly used when spatial discretization based on
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Finite Elements (FE) Method is performed [52]. The main advantage of FE dis-

cretization lies in the possibility of simulating processes occurring in bodies with

in principle arbitrary geometry. This is crucial for the design of technological

devices, whose geometry is often very far from being approximated with a ’stair-

case’. Nevertheless, as mentioned in section 3.1, plain FE method would require

that the whole space was discretized. For this reason, many researchers have dealt

with the derivation of FE modifications to take into account the open-boundary

nature of the problem.

In fact, in order to impose the regularity condition at infinity, Chen suggests

that the FE mesh has to be extended over a large region outside the magnetic

particles (at least five times the extension of the particle [54]). Various other

techniques have been proposed to reduce the size of the external mesh or to

avoid a discretization of the exterior space. The use of asymptotic boundary

conditions [55] reduces the size of the external mesh as compared to truncation.

At the external boundary, Robbin conditions, which are derived from a series

expansion of the solution of the Laplace equation for outside the magnet and

give the decay rate of the potential at a certain distance from the sample, are ap-

plied [56]. A similar technique that considerably reduces the size of the external

mesh is the use of space transformations to evaluate the integral over the exterior

space. Among the various transformations proposed to treat the open boundary

problem, the parallelepipedic shell transformation [57], which maps the external

space into shells enclosing the parallelepipedic interior domain, has proved to be

most suitable in micromagnetic calculations. The method can be easily incorpo-

rated into standard FE programs transforming the derivatives of the nodal shape

functions. This method was applied in static three-dimensional micromagnetic

simulations of the magnetic properties of nanocrystalline permanent magnets (see

Refs. [58] and [59]).

An alternative approach was proposed by Fredkin and Koehler [70] in 1990.

The main idea, due to the linearity of Poisson problem, is to split the scalar

potential ϕ into ϕ1 and ϕ2 such that:

ϕ = ϕ1 + ϕ2 . (3.13)

The boundary value problem for the potential ϕ1 can be formulated as an internal

Neumann problem in the following way:






















∇2ϕ1 = ∇ ·M in Ω

ϕ1 = 0 in Ωc

∂ϕ1

∂n

∣

∣

∣

∣

∂Ω

= n ·M
. (3.14)
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By comparing the problem (3.14) with the original problem (3.3), we can derive

the boundary value problem for ϕ2:






































∇2ϕ2 = 0 in Ω ∪ Ωc = Ω∞

[ϕ2]∂Ω = ϕ1

∣

∣

∂Ω−

[

∂ϕ2

∂n

]

∂Ω

= 0

ϕ2 regular at infinity ∂Ω∞

, (3.15)

where ∂Ω− indicates the internal layer of the boundary ∂Ω. The solution ϕ2 of

the latter boundary value problem is the well-known double layer potential [13]:

ϕ2(r) =
1

4π

∫

∂Ω
ϕ1(r

′)∇′

(

1

|r− r′|

)

· n dS . (3.16)

Until now, it is not yet evident the advantage of the method, since the evaluation

of the potential ϕ2(r) at each location r ∈ Ω is very expensive from computa-

tional point of view. Indeed the situation seems more complicated with respect

to the direct evaluation of the original integral (3.7), since now N × Nb opera-

tions (Nb is the number of boundary nodes) plus the solution of boundary value

problem (3.14) are required in order to obtain ϕ.

The nice idea is to use Eq. (3.16) to evaluate the potential ϕ2 only on the

boundary ∂Ω−. In fact, it is known from potential theory [66] that if ∂Ω is

sufficiently smooth at location r0, then

lim
r→r

−
0

r0∈∂Ω

ϕ2(r) = −ϕ1(r0)

2
+

1

4π

∫

∂Ω
ϕ1(r

′)∇′

(

1

|r0 − r′|

)

· n dS . (3.17)

It can be shown [67] that the discretized version of the latter equation is:

ϕ
2
= Bϕ

1
, (3.18)

where B is a suitable Nb×Nb boundary matrix and ϕ
1
, ϕ

2
are the vector contain-

ing the boundary nodal values of the scalar potentials ϕ1, ϕ2. From the knowledge

of ϕ2 on the boundary ∂Ω, which now costs N2
b operations, then the boundary

value problem (3.15), now with Dirichlet boundary conditions on ∂Ω, can be

solved with the usual FE technique [52].

Let us summarize the costs of this hybrid technique. We assume that the

mesh (typically consisted of tetrahedrons) has N nodes. In most situations, one

can think that the boundary nodes Nb are in the order O(N2/3). In particular,

this happens when characteristic dimensions of the body, along the coordinates

axes, are of the same order of magnitude. We will discuss remarkable exceptions

after. Therefore,
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• at the preprocessing stage, the boundary matrix B [Nb × Nb] has to be

computed and stored. The storage requirement is O(N2
b ).

• In a single evaluation of the demagnetizing field:

1. the internal Neumann problem (3.14) has to be solved with the usual

FE technique to find ϕ1. This implies that it costs the inversion of an

N ×N linear system.

2. The value of ϕ2 on the boundary has to be computed by means of

Eq. (3.18), which costs N2
b operations.

3. The internal Dirichlet problem, given by Eq. (3.15) with boundary

conditions obtained at step 2, has to be solved with FE technique,

which costs another N × N linear system inversion, but with same

stiffness matrix used at step 1.

4. Finally, the demagnetizing field Hm = −∇(ϕ1 + ϕ2) has to be evalu-

ated.

We observe that this method has the advantage to manage arbitrarily complicated

geometries, whereas the FFT convolution method is optimal with a structured

mesh. Nevertheless, if one deals with somehow “flat” magnetic bodies, like for

instance thin-films, the assumption Nb ∼ O(N2/3) fails, since it happens instead

N ≃ Nb, unless than one performs additional (and maybe useless) refinement

along the “small” dimension. Thus, one can conclude that the hybrid FE-BE

method is not optimal for thin-film geometries.

In the sequel, this method will be used in full micromagnetic simulations of

damping and precessional switching processes to investigate how far they can be

treated within the framework of the uniform mode approximation analyzed in

chapter 2. The FFT convolution method described in section 3.1.1 will be used

in chapter 4 where the solution of micromagnetic standard problem no. 4 [79] will

be addressed.

3.2 Comparison between Damping and Precessional switching

in magnetic thin-films

We have seen in section 2.4.2 that traditionally, magnetization reversal in thin

films is realized by applying a sufficiently large magnetic field almost antiparal-

lel to the initial magnetization state and that the resulting reversal dynamics is

driven by dissipative processes. This kind of switching is referred to as damping

switching in literature [26, 27]. Nevertheless, as seen in section 2.4.3, the pos-
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Figure 3.2: Sketch of the thin-film geometry.

sibility of using precessional motion of magnetization to realize the switching of

thin films and particles has been recently investigated [34, 37, 68]. In this kind

of switching, referred to as precessional switching [28], the in-plane external field

is approximately orthogonal to the initial magnetization state and produces a

torque that drives precessional motion of magnetization; this results in a faster

and less energy-consuming magnetization dynamics. Magnetization reversal is

realized by switching the external field off precisely when precession has brought

the magnetization state close to its reversed orientation. Therefore, the applied

field pulse duration has to be carefully chosen, while in damping switching there

is no such need. Although it is generally desired that thin films and nanoele-

ments in magnetic storage devices are in almost uniform magnetization states,

both conventional switching and precessional switching are nonuniform dynamic

processes. Here, we investigate the switching process of a permalloy magnetic

rectangular thin-film: the thickness is c = 5 nm, the major and mean edge length

are respectively a = 500 nm and b = 250 nm (see Fig. 3.2). The thin-film

medium has a uniaxial magneto-crystalline anisotropy whose easy axis is along

the x-axis (long axis), the uniaxial anisotropy constant is K1 = 2×103 J/m3, the

exchange stiffness constant is A = 1.3×10−11 J/m, the saturation magnetization

Ms ≈ 795 kA/m (such that µ0Ms = 1 T) and the damping constant is α = 0.02;

the exchange length of the material, defined by Eq. 1.92, is

lex =

√

2A

µ0M2
s

= 5.7160 nm . (3.19)

We assume that magnetization dynamics of the thin-film is described by the

Landau-Lifshitz-Gilbert equation (1.83), namely:

∂M

∂t
= −γM×Heff +

α

Ms
M× ∂M

∂t
, (3.20)

where Heff is the effective field defined by Eq. (1.68)

Heff (M(·)) = Hm +Hexc +Han +Ha , (3.21)
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(a) (b)

Figure 3.3: (a) Conventional (damping) switching process. (b) Precessional
switching process.

which includes the applied field Ha, the exchange field Hexc, the anisotropy field

Han and the magnetostatic (demagnetizing) field Hm, as seen in section 1.2.2.

In micromagnetic simulations, the numerical time integration of Eq. (3.20)

is performed by using a backward differentiation formula [69]; the spatial dis-

cretization is done using the finite element method [52] with a mesh consisted

of tetrahedrons; the mesh is finer near the corners of the thin-film (mesh edge

length= 5 nm < lexc) where a stronger accuracy is required for the computation

of magnetostatic field. The hybrid finite element boundary element method [70],

discussed in section 3.1.2, is used to solve the magnetostatic problem.

All the numerical simulations that we will present in this section have been

performed with the parallel code MAGPAR [73] developed by W. Scholz at Vi-

enna University of Technology [80].

First, we perform micromagnetic simulations of conventional (damping) and

precessional switching process for the thin-film. Initially, the thin-film is satu-

rated along the y direction and then relaxed, by switching the external field off, to

the remanent C-state (see Fig. 3.4, on the right), which is one of the equilibrium

configurations really observed in experiments on magnetic thin-films2. At time

t = 0 the external field is applied, respectively antiparallel and orthogonal to the

easy axis, as sketched in figure 3.3. We compare two aspects of the switching

processes: the switching speed and the uniformity of the magnetization during

the reversal process.

3.2.1 Reversal speed in the switching process

We consider, as a measure of the switching speed, the time instant t0 at which

the average x component < mx > (< · > means spatial average) is zero after the

application of the external field (the external field strength is the same in both

the simulations):

t0 = min{t > 0 :< mx >= 0} . (3.22)

2The S-state was obtained by first saturating the thin-film along the [1, 1, 1] direction and
then by switching the external field off.
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Figure 3.4: Numerical results. Remanent states of magnetic thin-film. (left)
S-state. (right) C-state.
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Figure 3.5: Numerical results. Comparison between damping (dashed line) and
precessional (solid line) switching: time for average mx component to reach zero
from the starting configuration for Ha = 19.51 kA/m.

In figure 3.5 one can observe the behavior of the average mx component until

it reaches zero, showing that the precessional switching dynamics is much faster

(t0 = 0.09 ns) than damping switching’s (t0 = 0.17 ns). This is due to the differ-

ent nature of the mechanism driving magnetization motion in the two processes:

in conventional switching there is only one equilibrium configuration after the

application of the external field, namely the reversed state, so the switching pro-

cess is a kind of relaxation process towards the equilibrium and therefore the

damping process is crucial. Conversely, in precessional switching the main role is

played by the magnetic torque acting on the magnetization, which causes a fast

precessional motion around the effective field driving the magnetization back and

forth between the initial and the reversed state. Therefore, in most cases this

process is so fast that dissipative effects can be neglected.
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Figure 3.6: Numerical results. Plot of the uniformity indicator u vs time in the
interval (0, t0) for damping (right) and precessional switching (left). The external
field is Ha = 19.51 kA/m.

3.2.2 Spatial Magnetization uniformity

As far as the uniformity of magnetization is concerned, we consider a very simple

indicator u(t), given by the sum of the square values of the average magnetization

components

u(t) =< mx(t) >
2 + < my(t) >

2 + < mz(t) >
2 , (3.23)

where the symbol < · > means spatial average. The indicator u(t) is useful to

check the spatial uniformity of magnetization as function of time, that is, during

the reversal process. The results are reported in Fig. 3.6. One can easily ob-

serve that precessional switching is a quasi-uniform process, because the sum of

the square values of the average magnetization components remain almost con-

stant during time and close to unity, whereas for damping switching it decreases

rapidly towards zero, showing the occurring of domain nucleation and domain

wall motion. In fact, the spatial behavior of magnetization vector field, at given

time instants, is depicted in Fig. 3.7 for the case of damping switching. One can

clearly observe that the nucleated domains at the ends of the thin-film enlarge

during time, giving rise to the so-called head-to-head configuration involving the

motion of two domain walls. At the end of the process the two walls collapse

and determine again a quasi-uniform configuration with average orientation in

the opposite direction to the initial one. In this way the switching is realized.

The spatial behavior of magnetization is reported in Fig. 3.8 for the case of

precessional switching. One can clearly observe that rather than domain wall



92 Non-uniform Magnetization Dynamics in thin-films

t = 0 t < t0

t = t0 t > t0

Figure 3.7: Numerical results. Screenshots of magnetization vector field during
reversal for damping switching. The external field is Ha = 19.51 kA/m.

motion, coherent rotation can be observed, that is, the magnetization rotates

almost at the unison, driven by the magnetic torque produced by the applied

field. This kind of motion recalls the term “quasi-ballistic” used in Ref. [68] to

describe precessional switching.

Thus we can conclude that for precessional switching, in our case of thin-film

medium, one can reasonably apply the uniform mode theory to predict the dura-

tion of the external field pulse, which is necessary to achieve successful switching,

as described in section 2.4.3.

3.2.3 Uniform mode approximation

To this end, we model the thin-film as a flat ellipsoid, characterized by the demag-

netizing factors Nx, Ny, Nz. such that Nx ≪ Nz, Ny ≪ Nz. The demagnetizing

factors can be computed as function of the aspect ratios c/a and b/a by means
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t = 0 t < t0

t = t0 t > t0

Figure 3.8: Numerical results. Screenshots of magnetization vector field during
reversal for precessional switching. The external field is Ha = 19.51 kA/m.

of the following expressions [71]:

Nx =
cosφ cos θ

sin3 θ sin2 ψ
[F (k, θ)− E(k, θ)] , (3.24)

Ny =
cosφ cos θ

sin3 θ sin2 ψ cos2 ψ

[

E(k, θ)− cos2 ψ F (k, θ)− sin2 ψ sin θ cos θ

cosφ

]

, (3.25)

Nz =
cosφ cos θ

sin2 θ cos2 ψ

[

sin θ cosφ

cos θ
− E(k, θ)

]

, (3.26)

where cos θ = c/a, cosφ = b/a, and the angle ψ is defined by

sinψ =

[

1− (b/a)2

1− (c/a)2

]1/2

=
sinφ

sin θ
= k ; (3.27)

F (k, θ) and E(k, θ) are the incomplete elliptic integrals [72] of the first and sec-

ond kind respectively. All the angles θ, φ, ψ are intended to belong to the inter-

val [0, π/2].

In our case, the application of the above formulas gives:

Nx = 0.0062 , Ny = 0.0175 , Nz = 0.9763 , (3.28)
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which, give the following values for the Dx, Dy, Dz coefficients (shape and mag-

netocrystalline anisotropy):

Dx = Nx −
2K1

µ0M2
s

= 1.2× 10−3, Dy = Ny, Dz = Nz . (3.29)

We assume that the external field ha is applied along the y axis:

ha = haey . (3.30)

We compute the critical time instants t1, t2, Ts expressed by Eqs. (2.53)-(2.55),

slightly generalized [50] for the case Dx, Dy, Dz 6= 0:

t1 =

∫ u1

u0

du

k(Dz −Dx)
√

1− p2 cos2 u− [ay − (p/k) sinu]2
, (3.31)

t2 = t1 + 2

∫ u2

u1

du

k(Dz −Dx)
√

1− p2 cos2 u− [ay − (p/k) sinu]2
, (3.32)

Ts =

∫ u2

u0

du

k(Dz −Dx)
√

1− p2 cos2 u− [ay − (p/k) sinu]2
. (3.33)

where the parameters are given by:

k2 = (Dz −Dy)/(Dz −Dx) , (3.34)

ay = −ha/(Dz −Dy) , (3.35)

p2 = k2a2y +
Dz − 2g0
Dz −Dx

, (3.36)

g0 =
Dx

2
. (3.37)

Notice that here we are supposing that the initial state is m = ex. Similarly to

the derivation presented in section 2.4.3, in equations (3.31)-(3.33) the value of

the parameters u0, u2 can be found by using parametric equations

mx = −p cosu , my = ay +
p

k
sinu , (3.38)

of the elliptic curve on which magnetization motion occurs:

m2
x + k2(my − ay)

2 = p2 , (3.39)

to find the intersections with the unit circle m2
x + m2

y = 1. The value u1 can

be found from the intersection between the elliptical trajectory (3.39) with the

ellipse m2
x + k2m2

y = k2 delimiting the high energy region.

The above technique can be applied to whatever external field applied in the

x, y plane. When the field is applied along one axis, as in our case, it is possible

to carry out the integration of conservative LLG equation (α = 0) where mx,my

are given in the parametric form (3.38):

du
√

1− p2 cos2 u− [ay − (p/k) sinu]2
= k(Dz −Dx)dt , (3.40)
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ha/hSW 1.0 1.1 1.2 1.3 1.4 1.5

Ha [kA/m] 13.01 14.31 15.61 16.91 18.21 19.51

Ts [ns] 0.194 0.181 0.171 0.162 0.155 0.149

Table 3.1: Values of the switching times Ts, analytically computed with for-
mula (3.33) and used in micromagnetic simulations (Ms = 795 kA/m, A =
1.3× 10−11 J/m, α = 0.02).
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Figure 3.9: Analytical and numerical solutions of Landau-Lifshitz-Gilbert equa-
tion. Plot of < mx > vs time. ha = 1.5 × hSW , Dx = 1.2 × 10−3, Dy = 0.0175,
Dz = 0.9763.

which gives the relation between the parametric variable u and time. In fact it

is possible [42, 50] to bring Eq. (3.40) in the canonical form which can be inte-

grated by means of Jacobi elliptic3 functions [72]. In this way one can obtain the

magnetization dependance on time in exact analytical form and exact expression

of the critical instants (3.31)-(3.33).

It is also shown in [42] that, in the case of ha = haey, the critical value of

the external applied field for precessional switching is still one half of the Stoner-

Wohlfarth field:

hc =
Dy −Dx

2
=
hSW
2

. (3.41)

3.2.4 Numerical results

We performed a set of micromagnetic numerical simulations of the precessional

switching process for the values of Ha and Ts specified in the table 3.1. This

table reports the switching time Ts, analytically computed using Eq. (3.33), for

different values of Ha. The simulations were started from both initial magnetiza-

tion configurations which can be observed in the experiments on thin-film media:

the S-state and C-state (see figure 3.4). In figure 3.9 a comparison between the

3See Appendix B
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Figure 3.10: Numerically computed < mx > as a function of time. S-state (a),
C-state (b) initial condition. (In both figures) symbol “�” for ha = hSW; “O”
for ha = 1.1 × hSW; “X” for ha = 1.2 × hSW; “∇” for ha = 1.3 × hSW; “⋄” for
ha = 1.4× hSW; “△” for ha = 1.5× hSW.

analytical solution of LLG Eq. (2.18) with α = 0, the numerical solution of LLG

Eq. (2.18) with α = 0.02 for a uniformly magnetized thin-film shaped ellipsoidal

particle (macro-spin model) and the finite element solution of Eq. (3.20) is re-

ported for an applied field strength ha = 1.5× hSW.

In the undamped case, at time t = Ts the magnetization is exactly in the

reversed position. Therefore, when the external field is switched off, it remains

definitely in this state. If the damping term is introduced, one can see that after

t = Ts there is a small oscillation of < mx > because the system is not yet in the

minimum energy state. In the general nonuniform case one can easily see that

the uniform mode theory provide anyway a reasonably good information about

the duration of the field pulse, but the presence of nonuniform modes produces

an oscillation that can bring magnetization back to the initial state as one can see

in Figs. 3.10(a)-(b). For this reason, a field strength ha = 1.5× hSW is required

to achieve successful switching starting from either an S-state or a C-state. We

observe that this value is moderately larger than the critical value provided by

uniform mode theory, hc = hSW/2.

3.2.5 Precessional switching: dependance on the anisotropy and

switching time tolerance window

In this section we will demonstrate that the agreement with the analytical predic-

tion increases for increasing values of the anisotropy constant. In this respect, we

will verify that the time window tolerance (t1, t2) computed by Eqs. (3.31)-(3.32)

gives very accurate information on the reliability of the switching.

In Fig. 3.11 the plot of the time instants t1, Ts, t2 is reported as a function
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Figure 3.11: Plot of switching times Ts (solid line), t1 and t2 (dashed lines).
ha = Dy −Dx, Dx = Nx − 2K1/(µ0M

2
s ), Dy = 0.0175, Dz = 0.9763.

K1 [104 J/m3] 1.0 2.5 5.0 7.5 10

Ha [kA/m] 30.88 60.88 110.88 160.88 210.88

Ts [ps] 124.3 86.6 62.0 49.8 42.1

t1 [ps] 92.9 64.6 46.0 36.7 30.9

t2 [ps] 155.6 108.7 78.0 62.9 53.3

Table 3.2: Values of the parameters used in micromagnetic simulations (Ms =
795 kA/m, A = 1.3× 10−11 J/m, α = 0.02).

of the anisotropy constant K1 when the applied field amplitude is chosen Ha =

MshSW = (Dy −Dx)Ms. The normalized applied field ha = Dy −Dx is related

to K1 through Eq. (3.29). It is important to underline that the time window

for switching the field off is reasonably wide because, in the analyzed interval

of K1 ∈ [104, 105] J/m3 (moderately soft materials used in magnetic recording

technology), is t1 < 0.75× Ts and t2 > 1.25× Ts, that is, a tolerance of at least

±25% on the switching pulse is allowed.

On the basis of the above analysis we performed a set of micromagnetic sim-

ulations of precessional switching experiments for the 500× 250× 5 nm thin-film

described at the beginning of section 3.2. Initially, the thin-film is saturated along

the positive x-axis, then it is relaxed to the remanent state. At time t = 0 the

rectangular external field pulse is applied Ha = (Dy −Dx)Ms until time t = Ts

at which the field is switched off and the magnetization relaxes towards equilib-

rium. We performed different simulations for different values of K1, reported in

Table 3.2. The results are reported in Fig. 3.12. One can clearly see that for

moderately low values of K1 (Fig. 3.12a) at t = Ts magnetization is not exactly
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Figure 3.12: Micromagnetic simulations: plot of mx vs time; (a) K1 = 104 J/m3;
(b) K1 = 2.5 × 104 J/m3; (c) K1 = 5 × 104 J/m3; (d) K1 = 7.5 × 104 J/m3; (e)
K1 = 10× 104 J/m3. The switching time Ts is marked with a vertical line.

close to the reversed state, but micromagnetic simulations show that the higher

the applied field strength is, the better is the agreement with the uniform mode

theory. By moderately increasing the value of the anisotropy constant there is a

very good agreement with the above prediction and the remaining oscillation after

t = Ts tends to be very close to the magnetization reversed state [Fig. 3.12(b)-(e)].

Next, we chose to verify the prediction of the uniform mode theory regarding

the time window for switching the field off. We analyze, for sake of brevity, the

case of anisotropy constant K1 = 2.5 × 104 J/m3. The applied field is Ha =

(Dy − Dx)Ms = 60.88 kA/m. The results (Fig. 3.13) show the accuracy of the

uniform mode theory prediction. In fact, switching the applied field off just

few picoseconds after time t = t2 (Fig. 3.13b) or just a few picoseconds before

time t = t1 (Fig. 3.13d) leads to non-successful switching, while switching the

applied field off just few picoseconds before time t = t2 (Fig. 3.13a) or just

a few picoseconds after time t = t1 (Fig. 3.13c) leads to successful switching.

Thus, we can conclude that, in precessional switching experiments on thin-film

media constituted of moderately soft materials, the time window for switching

the applied field off can be derived by using the uniform mode theory with a very

high accuracy. Moreover, the knowledge of the time window [t1, t2] can be used

to find the switching diagrams proposed in Ref. [34] to design MRAM storage

cells, in the case of short (rectangular) field pulse durations, without performing

numerical simulations.
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Figure 3.13: Micromagnetic simulations: plot of mx vs time. K1 = 2.5 × 104

J/m3, Ha = (Dy − Dx)Ms = 60.88 kA/m. The field is switched off at time (a)
t = 108 ps; (b) t = 120 ps; (c) t = 65 ps; (d) t = 63 ps.

3.3 Fast switching of Tilted Media

In this section we present a very particular case of switching process in which

it is possible to obtain magnetization reversal of a whole grain ensemble with

external fields whose amplitude is below the Stoner-Wohlfarth limit. This kind

of switching process has considerable applications in hard-disks realizations for

several reasons that we will see below. Our purpose is to show that, although

the medium is consisted of many weakly (exchange and magnetostatically cou-

pled) interacting grains, it can be approximately treated as a collection of non-

interacting grains. Therefore, the necessary conditions for the switching can be

investigated with the uniform mode theory applied to a single grain.

3.3.1 Introduction

It has been recently underlined that tilted magnetic media can have considerable

advantages in magnetic recording applications [74, 75, 76]. These media are

usually realized as thin films constituted by grains with easy axis at an angle

of approximately 45◦ with respect to the film plane (see for example Fig. 3.14).

This leads to coercive fields smaller by a factor two compared to perpendicular

media4, and thus allows the use of high anisotropy magnetic materials, which in

turn provide a better thermal stability or a higher areal density. Higher data rates

can be also realized owing to the high torque that acts on the magnetization and

4Since the medium “sees” the external field as applied at 135◦ off the easy axis, this can be
understood by looking at the Stoner-Wohlfarth astroid (see Fig. 3.16) in the direction at 135◦

off the x axis, where the critical field is about hSW /2.



100 Non-uniform Magnetization Dynamics in thin-films

Figure 3.14: Granular structure of perpendicular and tilted media.

the high signal-to-noise ratio (SNR) related to the fact that grains with slightly

different easy axes have almost the same switching field5. As mentioned before,

in these media it is possible to realize switching for external fields below the

Stoner-Wohlfarth (SW) limit [75], and, in the appropriate range of external field

amplitude, it has been shown that the switching time decreases with decreasing

amplitude of the external field pulse [76].

In the following we intend to analyze the switching process in weakly cou-

pled granular tilted media. As first approximation we will analyze the case of

noninteracting grains. Since the grains are usually almost uniformly magnetized,

this case can be treated by using the uniform mode theory. In this respect, we

consider a family of noninteracting grains with dispersion in the easy axis and

initial magnetization directions. This analysis provides an estimate of the range

of external field amplitude and directions required to realize switching. The pa-

rameter values predicted by the theory are then used in a 3D micromagnetic

simulation of the switching process in which the interactions of the grains are

taken into account.

3.3.2 Uniform mode approximation

To start the discussion, consider a uniformly magnetized Stoner-Wohlfarth (SW)

particle, with easy axis along the x-axis of a cartesian reference system, charac-

terized by the following normalized free energy g(m):

g(m) =
1

2
(Dx −N⊥)m

2
x − haxmx − haymy , (3.42)

where Dx = Nx − K1/(µ0M
2
s ), K1 is the uniaxial anisotropy constant, Nx and

N⊥ are demagnetizing factors along and perpendicular to the x-axis, respectively.

Equilibria and switching of this particles can be analyzed by SW model which

5This can be inferred by observing that directions at about 135◦ off the x axis intersect the
SW astroid at almost the same distance from the origin. This leads to very close values of
critical fields.
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Figure 3.15: Phase portrait of LLG equation in the stereographic plane: M
is a maximum, S is the saddle point, m is the target minimum. N⊥ = 0.5,
Dx = −3.0159, hSW = 3.5159.

leads to the well-known asteroid curve in the applied field plane (see section 2.2

and Fig. 3.16) which separates the regions characterized by two minima of free

energy (inside the asteroid) and one minimum (outside the asteroid). Within

the static SW theory switching is attainable only for field above hSW = N⊥ −
Dx. Nevertheless by using magnetization dynamics6, it is possible to realize

switching also below this limit. To investigate this circumstance, we will analyze

magnetization dynamics by means of Landau-Lifshitz-Gilbert (LLG) equation:

dm

dt
= −m× heff + α

(

m× dm

dt

)

, (3.43)

where heff = −∇mg. In order to illustrate the main idea behind fast switching

below SW limit, let us consider the conservative LLG equation, i.e. we put

α = 0 in Eq. (3.43). The qualitative features of LLG dynamics are conveniently

represented on the plane by using the stereographic transformation introduced

in section 2.3.

In Fig. 3.15 a portion of the conservative phase portrait of Eq. (3.43) is re-

ported in the case of an external field with ha = 0.43 × hSW and applied at an

angle 45◦ off the x axis. The magnetization trajectories coincide with the con-

tour lines of the energy function (3.42). Since ha < hSW, there is still a minimum

of the free energy in the point U near the initial state I which is assumed to

be in the position (1, 0) (positive easy axis direction). One can see that if the

initial state is inside the homoclinic loop Γ around the minimum, the dynamics

remains trapped around U , conversely when the initial magnetization state is

6We have already seen an example of switching below SW limit, namely the precessional
switching analyzed in section 2.4.3.
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Figure 3.16: The solid line represents SW astroid, the dashed line represents the
parametric curve defined by Eqs. (3.44).

outside Γ, the precessional oscillation brings magnetization far from the mini-

mum U and this is instrumental to speed up the switching process. The dashed

lines in Fig. 3.15 represent an example of these two possible trajectories. The

critical case between the two behaviors occurs when the initial state I exactly

lies on the homoclinic loop Γ. This situation is realized when the applied field is

on a line in the hax − hay plane which is inside the SW asteroid (see Fig.3.16).

This curve can be expressed, in parametric form [28, 36] as:

hax = −hSW cosu cos2
u

2
, hay = hSW sinu sin2

u

2
, (3.44)

where |u| < π/2 is the parameter. It turns out that it is necessary that the applied

field is inside the region F between the dashed and the solid line to realize the

switching. This region can be characterized by specifying for each angle θh the

allowed applied field amplitude range [ha1, ha2] (emphasized in Fig. 3.16). The

upper limit ha2 is given by the SW theory [77]

ha2 = hSW[(sin θh)
2/3 + (cos θh)

2/3]−3/2 , (3.45)

while ha1 can be found using Eqs. (3.44) once the applied field angle θh is

connected with the corresponding parameter u∗, through the equation

hay(u
∗)/hax(u

∗) = − tan θh . (3.46)

Next we want to use the above uniform mode theory to study an ensemble of

N noninteracting particles to take into account dispersion of anisotropy axis and

initial magnetization. We assume that the nominal (average) easy axis direction

of the media is along the unit vector e which is aligned with the x axis. The
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Figure 3.17: Up: phase portrait of LLG equation for α = 0.02, θh = 45◦. Down:
plots of the deviation angle δ as a function of ha.

j-th particle is characterized by a magnetization direction mj and an easy axis

direction ej forming an angle βj with e. We assume that the maximum βj is less

than a prescribed angle β.

We indicate by θh,j the angle between ha and−ej which satisfies the inequality

θh − β < θh,j < θh + β . (3.47)

By assuming that the initial states are given by mj = ej , we find a family of

applied field intervals Sj = [ha1,j , ha2,j ] which corresponds to the fast switching

of each particle. Thus, we can determine the applied field interval S that allows

the fast switching of all the particles by taking the intersection of the Sj :

S =
N
⋂

j=1

Sj . (3.48)

We computed this applied field interval for θh = 45◦ and β = 5◦ and the result

is S = [0.401× hSW, 0.47× hSW].

The analysis above has been carried out by using the conservative dynamics.

In the case of the actual dynamics with damping the study of switching is more

complicated and a careful analysis of the phase portrait is required. Magnetiza-

tion dynamics is now described by Eq. (3.43) with α > 0. In Fig. 3.17 (up) one

can see a portion of the phase portrait of the dynamical system for α = 0.02,
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Figure 3.18: Comparison of the switching time for a perpendicular recording
media and a tilted media.

θh = 45◦, ha = 0.43×hSW. The shaded region B, enclosed in the separatrices Γ1

and Γ2, is the basin of attraction of the undesired minimum U . Magnetization

trajectories spiral toward minima of the free energy and the phase portrait (see

Fig. 3.17) is divided into the basins of attraction of the two minima m and U . A

necessary condition for switching is that the initial position I is in the basin of

attraction of the target minimum m.

In addition, it is desirable that a whole neighbor of the initial position is

inside this basin of attraction. Indeed, in real granular materials the different

grains, due to exchange and strayfield interactions with other grains, will have

slightly different initial conditions with certain deviation from the easy axis. In

this respect, by analyzing the phase portrait in Fig. 3.17 we can determine quan-

titatively what is the allowed deviation δj of the j-th particle magnetization mj

from the its easy axis ej , compatible with the requirement that the magnetization

state is within the basin of attraction of the target minimum. This can be done

by considering for each particle the circle of allowed initial conditions (see the

dashed circle in Fig. 3.17). The analysis must be carried out for each particle in

the ensemble and lead to the estimate of the maximum angular deviation δ. The

results are summarized in Fig. 3.17 (down).

3.3.3 Micromagnetic simulations of Fast switching process

The final steps in our analysis is to verify whether the indication of the theory

above are still reasonable when we take into account the weak interactions among

the grains. To this end we have performed finite element [78] calculations (FEM)
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for weakly exchange and magnetostatically coupled granular media. The applied

field is chosen within the range estimated with the uniform mode theory. Both

perpendicular and tilted recording media with a weak exchange coupling between

the grains (Ainter = 3 × 10−14 J/m) are investigated. The material parameters

within the grains are: Js = µ0Ms = 0.5 T, A = 10−11 J/m and K1 = 3.5 × 105

J/m3. The thickness of the perpendicular media and the tilted media is 12 nm

and 8.5 nm, respectively. The average grain diameter is 10 nm for both media.

More than 45000 finite elements are used to provide an edge length smaller than

the exchange length. A normal distribution of the easy axes directions with a

maximum opening angle of 5◦ is assumed for both media. For the perpendicular

media the average easy axis direction is parallel to the film normal. For the tilted

media the angle between the average easy axis direction and the film normal is

45◦. Thus, for both samples the average easy axis direction points parallel to the

edges between the grains. The external field is applied 45◦ off the film normal

and parallel to the film normal for the perpendicular media and the tilted media,

respectively. The field rise time is 10 ps. The FEM simulations for granular struc-

tures verify that switching is possible for fields smaller than the SW switching

field and within the range predicted by the uniform mode theory. The switching

time is defined as the time until the average magnetization component parallel to

the easy axis crosses zero the last time. Figure 3.18 compares the switching time

as a function of the external field strength, for the perpendicular media and the

tilted media, significantly different due to the different demagnetizing field. The

jumps that can be observed in Fig. (3.18) are due to ringing of the magnetization.

For tilted media, the FEM simulations also show that a change of the opening

angle of the easy axes distribution from 5◦to 1◦ changes the switching time by

less than 0.1 %. Small switching field distributions lead to a high signal to noise

ratio.
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Chapter 4

Geometric integration of

Landau-Lifshitz-Gilbert equation

4.1 Introduction

The purpose of this chapter is to address the general problem of the numerical in-

tegration of Landau-Lifshitz-Gilbert (LLG) equation. In fact, we have observed

more than once, that due to the nonlinear nature of this equation, analytical

solutions can be derived in very few particular cases, or by using linearization

techniques (see chapter 2 and references therein). Consequently, the only gen-

eral (and mostly used) method to study magnetization dynamics is to solve LLG

equation by suitable numerical methods. In this respect, as mentioned in chapter

3, the most common procedure is to use a semi-discretization approach. First, the

equation is only discretized in space by using finite difference or finite elements

methods [52]. This leads to a discretized version of the micromagnetic free energy

and a corresponding system of ordinary differential equations (ODEs). Second,

this system of ODEs is numerically integrated by using appropriate time-stepping

techniques. It is interesting to underline that, while the spatial discretization is

generally carried out trying to preserve the main properties of the free energy

functional G(M;Ha) introduced in chapter 1, little attention is generally paid

to the preservation, after the time discretization, of the peculiar structure of

LLG temporal evolution. This is probably due to the fact that, in the past,

the main emphasis was on static micromagnetics and on reproducing accurate

approximation of the free energy landscape associated to a magnetic system sub-

ject to quasi-static external fields. This goal has been generally achieved by

using accurate spatial discretization of the free energy G(M;Ha). On the other

hand, when dynamic magnetization processes have to be investigated, the issue

of using appropriate numerical time integration technique becomes rather cru-

cial. Nevertheless, this problem seems to have been substantially overlooked, and

most workers in LLG numerical simulation use ‘off-the-shelf’ algorithms such
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as Euler, linear multi-step methods (e.g. Adams-Bashforth, Adams-Moulton,

Crank-Nicholson, Backward Differentiation Formulas (BDF)) or Runke-Kutta

methods[79, 80]. We must underline here that these standard methods do not

preserve structural properties of LLG time evolution. This equation has indeed

peculiar dynamic properties, mentioned in section 1.3.5, which it is convenient to

recall below.

a) First, the magnetization has constant magnitude in time at each spatial lo-

cation, as indicated by Eq. (1.97). Equation (1.97) is a fundamental con-

straint on the LLG time evolution that should be respected in the time

discretized version of LLG equation. Since, usual time stepping methods

do not preserve this property, most researchers follows the naive approach

of renormalizing the magnetization vector field at each time step or after

a prescribed tolerance has been exceeded. This naive approach is actually

a nonlinear numerical modification of the time evolution which in princi-

ple can have also relatively strong effect on the subsequent computation of

magnetostatic field [86] and for this reason is not recommended, especially

when long time regime have to be studied.

b) Second, for constant external field the LLG evolution has a Lyapunov struc-

ture [82], namely the free energy functional is a decreasing function of time

along the trajectories of LLG equation, according to Eq. (1.102). This

property is fundamental because it guarantees that the system tends to-

ward stable equilibrium points, which are minima of free energy. Usual

time-stepping techniques preserve this property only for sufficiently small

time-step. Indeed, when the time-step is too large, instability phenomena

can produce transient or even steady increase of energy. The stability con-

straint on the time step is usually rather severe and this generally leads to

unnecessary long computational time.

c) Third, the LLG equation is obtained by adding a phenomenological damping

term to an otherwise hamiltonian (conservative) equation and therefore one

should expect that in the limit of α → 0, the numerical integration should

preserve energy and, if possible, the hamiltonian structure. This is not

only a mathematical requirement. In fact, in most experimental situations

LLG evolution is not strongly dissipative and the damping effects can be

considered as a perturbation of the conservative motion (see chapter 2, sec-

tions 2.4.3, 2.5, 2.6). In this respect, it is quite reasonable from the physical

point of view, that the numerical integration scheme is able to reproduce
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accurately the conservative motion. This is definitely the most challeng-

ing part in the numerical simulation since the conservative precession is

generally much faster than the slow motion associated to dissipative pro-

cesses. As it is well-known in hamiltonian dynamics studies, most standard

numerical schemes do not preserve energy and/or hamiltonian structure,

and particular care must by devoted to develop appropriate time stepping

technique.

As matter of fact, it is generally very difficult to obtain the preservation of the

above properties in the time discretization by using explicit methods (e.g. Euler,

Adams-Bashforth). Implicit methods, on the other hand, have good performances

in terms of stability, but do not preserve the amplitude of magnetization or the

energy in the limit α→ 0. However, the use of implicit methods generally makes

it necessary to solve large system of coupled nonlinear equations at each time

step which may lead to unacceptable computational cost. In this respect, most

researchers generally try to avoid implicit methods by using appropriate semi-

implicit techniques [81]. This has of course the drawback that accurate numerical

time integration require stability upper bound for the time step. This in turn can

be quite problematic since LLG dynamics, in many relevant cases, may exhibit

dynamic processes with very different time scales.

In fact, the issue of developing time integrators for LLG equation that pre-

serve relevant properties of the equation under discretization, has received lately

some attention [25, 84, 85, 86]. The general point of view presented in these

recent works is to use suitable geometric integrators[87] which are techniques

designed to preserve geometrical properties of dynamics, namely symmetry, con-

servation of quantities, hamiltonian structure etc. In particular, the possibility of

developing integrators for LLG equation based on Lie-group methods and Cay-

ley transform have been investigated in Refs. [85, 86]. These methods preserve

the magnetization amplitude, but they do not generally preserve the LLG Lya-

punov structure and the energy in the limit of zero damping. The basic idea is

to take into account the conservation of magnetization magnitude by an appro-

priate change of variable (lift of the problem in the Lie-algebra associated to the

Lie-group of rotations). The problem is then solved with usual RK time-stepping

algorithms. These methods are conditionally stable and the stability require-

ments are certainly affected by the choice of the new set of variables. This could

lead to an increase of the temporal stiffness and, consequently, to an increase of

the computational cost.
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In this chapter, we will apply the (implicit) mid-point rule to the time integra-

tion of LLG equation. We shall demonstrate that the use of mid-point rule leads

to a numerical time stepping that preserves the fundamental properties of LLG

dynamics. This algorithm has been known for a long time and it has been applied

extensively in the area of hamiltonian dynamics for its interesting preservation

properties [83]. However, in its pure form, it has never been applied directly to

the full 3D micromagnetics dynamical problem. A partial use of mid-point rule

has been proposed in Ref. [25]. In this work, the mid point rule has been applied

along with an appropriate explicit extrapolation formula (second order Adams-

Bashforth) for the effective field. This method has the property of preserving

magnetization magnitude and, due to the explicit extrapolation formula, does

not require the inversion of a large system of coupled nonlinear equations (but

just three by three linear system of equations at each location in space). However,

the method does not in general preserve the Lyapunov structure of LLG equation

neither the energy for zero damping. In addition, the semi-implicit nature of the

scheme imposes stability restrictions to the time step.

Here we apply the implicit mid-point rule directly to the LLG equation in its

pure form. With the use of the mid-point rule we can overcome the drawbacks of

the standard methods. The methods is unconditionally stable, preserves exactly,

independently from the time step, magnetization magnitude and, in the case of

zero damping, free energy of the system. In addition, mid-point rule preserves

unconditionally Lyapunov structure of LLG dynamics for constant applied field,

namely in the discrete dynamics, the free energy is always decreasing regardless

of the time step. The price we have to pay is that now we have to solve a large

(generally full) system of nonlinear algebraic equations. As we will discuss in

the following, this problem has been dealt with by using quasi-Newton algorithm

which allows one to deal with sparse banded matrix inversions only.

4.2 The mathematical model

It is very useful for the following discussion, to recall the dimensionless form (1.95)

of LLG equation:
∂m

∂t
= −m×

(

heff(m, t)− α
∂m

∂t

)

, (4.1)

with the usual normalized quantities introduced in section 1.3.4.

The LLG equation (4.1) is implicit with respect to ∂m/∂t, and it can be

transformed in the equivalent normalized Landau-Lifshitz form of Eq. (1.87):

∂m

∂t
= − 1

1 + α2
m× heff(m, t)− α

1 + α2
m× (m× heff(m, t)) , (4.2)
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where ∂m/∂t is explicitly expressed. This form of LLG equation is the most

commonly used for numerical integration.

As seen in chapter 1, the normalized effective field heff can be defined by

the variational derivative heff = −δg/δm of the normalized micromagnetic free

energy functional, formed by the sum of normalized exchange, magnetostatic,

anisotropy and Zeeman energy, respectively:

g(m;ha) =

∫

Ω

[

A

µ0M2
s

(∇m)2 − 1

2
hm ·m+

K1

µ0M2
s

[

1− (m · ean)2
]

− ha ·m
]

dv ,

(4.3)

where A is the exchange constant, K1 is the uniaxial anisotropy constant, ean

is the easy axis unit-vector and hm is the magnetostatic (demagnetizing) field,

which is the solution of the boundary value problem:

∇ · hm = −∇ ·m in Ω , (4.4)

n× [hm]∂Ω = 0 , n · [hm]∂Ω = n ·m . (4.5)

In Eqs. (4.4)-(4.5), we have denoted with n the outward normal to the boundary

∂Ω of the magnetic body, and with [hm]∂Ω the jump of the vector field hm across

∂Ω.

The magnetization m(r, t) is also assumed to satisfy the following condition

at the body surface:
∂m

∂n
= 0 , (4.6)

which is related to the presence of first (laplacian) term in Eq. (4.3).

4.2.1 General properties of the effective field

By considering the variational derivative of Eq. (4.3) with respect to the vector

field m and by using Eqs. (4.4)-(4.5) and the boundary condition (4.6), one can

readily derive that the effective field is constituted by the sum of four terms: the

exchange field hex, the magnetostatic field hm, the anisotropy field han and the

applied field ha:

heff(m, t) = − δg

δm
= hex + hm + han + ha(t) , (4.7)

where the explicit dependence of heff on time is related to the dependence on

time of ha. The first three terms in Eq. (4.7) can be related to the vector field

m through the following equations (sections 1.2.2 and 3.1):

hex =
2A

µ0M2
s

∇2m , (4.8)

hm = − 1

4π
∇
∫

Ω
∇′

(

1

|r−r′|

)

·m(r′) dVr′ , (4.9)

han =
2K1

µ0M2
s

ean(r)(ean(r) ·m(r)) , (4.10)
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From the Eqs. (4.4)-(4.5), (4.6) and (4.8)-(4.10), one can easily prove that the

sum of the first three terms of the effective field (4.7) is a formally self-adjoint

operator acting on the vector field m in a suitable subspace of L2(Ω) with respect

to the usual scalar product in L
2(Ω):

(v,w)
L2(Ω) =

∫

Ω
v(r) ·w(r)dV . (4.11)

In other terms the effective field (4.7) can be written in the following form

heff(r, t) = −Cm+ ha(t) (4.12)

where C is a formally self-adjoint integro-differential operator in L
2(Ω).

4.2.2 Constraints for magnetization dynamics

and hamiltonian structure of conservative dynamics

Let us now summarize the fundamental properties of LLG dynamics in the nor-

malized quantities introduced above.

The first property a) is expressed as

|m(r, t)| = |m(r, t0)| ∀t ≥ t0 , ∀r ∈ Ω , (4.13)

which can be easily derived as explained in section 1.3.5. In the typical micro-

magnetic problem it is assumed initially |m(r, t0)| = 1 which is the normalized

version of the micromagnetic constraint |M| = Ms.

The second fundamental property b) is related to the nature of the energy

balance in LLG dynamics:

d

dt
g(t) = −

∫

Ω
α

∣

∣

∣

∣

∂m

∂t

∣

∣

∣

∣

2

dv −
∫

Ω
m · ∂ha

∂t
dv (4.14)

which has very important implications. For constant applied field, Eq. (4.14)

reduces to
d

dt
g(t) = −

∫

Ω
α

∣

∣

∣

∣

∂m

∂t

∣

∣

∣

∣

2

dv , (4.15)

This equation reveals the role of the damping and shows that LLG dynamics

has a Lyapunov structure, namely, for constant external field, the free energy is

always a decreasing function of time. In addition, it also demonstrates the nature

of the Gilbert phenomenological damping: the dissipation is proportional to the

square of the velocity of variation of magnetization. This is connected to the fact

that the Gilbert damping term can be introduced by using the Rayleigh approach

described in section 1.3.5.

This property is very important because it guarantees that the system tends

toward minima of free energy (i.e. meta-stable equilibrium points).
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Third, for α = 0 the LLG equation becomes an Hamiltonian dynamical system

for the vector field m defined as

∂m

∂t
= m× δg

δm
. (4.16)

The LLG hamiltonian form (4.16) is related to the following LLG Poisson bracket

{f(m), h(m)} = −m · δf
δm

× δh

δm
(4.17)

where f(m) and h(m) are two generic functionals of m. In Eq. (4.16), the

role of the hamiltonian is played by g(m;ha). It should be underlined that,

although the LLG dynamics is always dissipative, it is interesting to consider

the conservative case as in most experimental situations the dissipative effect are

quite small (typically α ∼ 10−2). In other terms, the LLG dynamics, on relatively

short time scale, is a perturbation of the conservative (hamiltonian) precessional

dynamics. In this respect, many interesting conclusions on the nature of dynamics

can be also derived from the conservative1 Eq. (4.16).

4.3 Spatially semi-discretized LLG equation

We now introduce a spatially discretized version of the mathematical model. The

discussion presented below is considerably general and thus applicable to all the

usual spatial discretization techniques [52].

To start the discussion, let us assume that the magnetic body has been subdi-

vided inN cells or finite elements. We denote the magnetization vector associated

to the l-th cell or node by ml(t) ∈ R
3. Analogously, the effective and the applied

fields at each cell will be denoted by the vector heff,l(t), ha,l(t). In addition to the

cell-vectors, we introduce another notation for the mesh vectors which include

the information of all cells of the mesh. In this respect, we will indicate with m,

heff, ha the vectors in R
3N given by:

m =









m1

...

mN









heff =









heff,1

...

heff,N









ha =









ha,1

...

ha,N









. (4.18)

4.3.1 Discretized free energy and effective field

Usual spatial discretization techniques [52] (e.g. finite elements and finite differ-

ences) quite naturally lead to a discretized version of the free energy (4.3) which

has generally the form

g(m,ha) =
1

2
mT · C ·m− ha ·m . (4.19)

1We have seen examples of this in chapter 2, for uniformly magnetized particles.
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where C is now a 3N × 3N symmetric matrix [80] which describes exchange,

anisotropy and magnetostatic interactions. Once the free energy has been dis-

cretized, the corresponding spatially discretized effective field heff(m, t) can be

obtained as

heff(m, t) = −
∂g

∂m
= −C ·m+ ha(t) . (4.20)

We notice that the effective field mathematical structure (4.12) is formally pre-

served after the spatial discretization, and the matrix C is the discretized version

of the formally self-adjoint integro-differential operator C.
The matrix C can be naturally decomposed into the sum of the three terms

Cex, Cm, Can which correspond to discretized exchange, magnetostatic and ani-

sotropy interactions:

C = Cex +Cm +Can . (4.21)

It is important to observe that Cex and Can are sparse matrices since the exchange

and anisotropy interactions have a local character, whereas Cm is a full matrix

owing to the long-range magnetostatic interactions.

4.3.2 Semi-discretized LLG equation properties

By using the above notations, the spatially semi-discretized LLG equation con-

sists in a system of 3N ODEs which, for the generic l−th cell, can be written in

the following form :

d

dt
ml = −ml ×

[

heff,l(m, t)− α
d

dt
ml

]

, (4.22)

and for the whole collection of cells as:

d

dt
m = −Λ(m) ·

[

heff(m, t)− α
d

dt
m

]

, (4.23)

where Λ(m) is a block-diagonal matrix

Λ(m) = diag(Λ(m1), . . . ,Λ(mN )) (4.24)

with blocks Λ( · ) ∈ R
3×3 such that Λ(v)·w = v×w, ∀v, w ∈ R

3. We also observe

that Λ(m) is linearly dependent on m through an appropriate third order tensor

Γ as

Λ = Γ ·m (4.25)

where Γ is block diagonal with N diagonal 3× 3× 3 blocks constituted by third

order permutation tensors and the dot product in Eq. (4.25) represent an index

contraction. The meaning of this contraction can be inferred by the considering



4.4 − Mid-point LLG discrete dynamics 115

that the component of the vector v · (Γ ·w) corresponding to the l-th cell is given

by

(v · (Γ ·w))l = vl ×wl , (4.26)

where we have used the notation introduced above for mesh vectors (v, w) and

cell vectors (vl, wl).

Now, we briefly summarize the properties of the semi-discretized LLG. These

properties are completely analogous to the properties (4.13)-(4.17) and the demon-

stration can be obtained by following the very same line of reasoning. Indeed, we

can easily prove that

|ml(t)| = |ml(t0)| ∀t ≥ t0 , l = 1, . . . , N , (4.27)

d

dt
g(t) = −α

∣

∣

∣

∣

dm

dt

∣

∣

∣

∣

2

−m · dha

dt
= −

N
∑

l=1

α

∣

∣

∣

∣

dml

dt

∣

∣

∣

∣

2

−
N
∑

l=1

ml ·
dha,l

dt
, (4.28)

and, in the case of constant applied field, that:

d

dt
g(t) = −α

∣

∣

∣

∣

dm

dt

∣

∣

∣

∣

2

= −
N
∑

l=1

α

∣

∣

∣

∣

dml

dt

∣

∣

∣

∣

2

. (4.29)

Finally, in the case α = 0, the semi-discretized LLG (4.23) takes the form

dm

dt
= Λ(m) · ∂g

∂m
, (4.30)

which is related to the semi-discretized version of Poisson bracket (4.17)

{f(m), h(m)} =
∂f

∂m
· Λ(m) ·

(

∂h

∂m

)T

(4.31)

where T indicate the matrix transpose, f(m) and h(m) are two generic functions

of m, and ∂f/∂m, ∂h/∂m are the corresponding gradients.

In connection with the hamiltonian structure (4.30), it is interesting to men-

tion that when the matrix Λ(m) has the linear form (4.25), the related hamilto-

nian system (4.30) is said to have a Lie-Poisson structure [88]. As we will discuss

in the sequel, this structure affects the nature of mid-point approximation of LLG

equation.

4.4 Mid-point LLG discrete dynamics

We now proceed to derive the full discretization of LLG equation by applying

the mid-point rule (see Appendix C) to the spatially semi-discretized system of

ODEs given by Eq. (4.22). In the following, we will denote the value of physical
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quantities at the n-th time step with the suffix n. The mid-point rule consists in

the following time-stepping scheme, written for the for the generic l−th cell:

mn+1
l −mn

l

∆t
= −

(

mn+1
l +mn

l

2

)

×
[

heff,l

(

mn+1+mn

2
, tn+

∆t

2

)

− α
mn+1

l −mn
l

∆t

]

,

(4.32)

where ∆t is the time step which, for the sake of simplicity, is assumed here

constant. Nevertheless, due to the single-step nature of mid-point rule, most

considerations in the following can be generalized to nonconstant time steps.

Equation (4.32) can be rewritten in terms of mesh vectors as follows

mn+1−mn

∆t
= −Λ

(

mn+1+mn

2

)

·
[

heff

(

mn+1+mn

2
, tn+

∆t

2

)

− α
mn+1−mn

∆t

]

.

(4.33)

Equation (4.33) defines mn+1 in terms of mn implicitly. By solving this equation

for mn+1, we generate a map

mn+1 = Φ(mn,∆t) (4.34)

which describe the LLG discrete dynamics. We will discuss the technique for

solving the implicit equation (4.33) in the following section. In this section,

instead, we will focus on the properties of the map (4.34) defined implicitly by

Eq. (4.32) or equivalently by Eq. (4.33).

As a preliminary consideration, we notice that, in most LLG numerical inves-

tigations, numerical discretization of LLG equation is carried out starting from

the Landau-Lifshitz form (4.2) which has the advantage of explicitly expressing

the time derivative of m. Conversely, in the approach we propose, we directly

discretized the original LLG equation in which the time derivative is implicitly

contained. In fact, since the mid-point scheme is already implicit, the implicit

nature of LLG equation does not introduce any further complication, but rather

it drastically simplifies the treatment and the algorithm.

4.4.1 Properties of mid-point rule induced dynamics

Point-wise magnitude conservation

The first important property of the discrete dynamics can be readily obtained

from Eq. (4.32) by scalar multiplying both sides of the equation by (mn+1
l +mn

l ).

This leads immediately to

(mn+1
l −mn

l ) · (mn+1
l +mn

l ) = |mn+1
l |2 − |mn

l |2 = 0 , l = 1 . . . N , (4.35)

which means that the magnitude of the magnetization vector remains constant in

each cell. Thus, the mid-point rule preserves exactly the magnitude preservation

property (4.27), regardless of the time step.
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Energy balance and discrete Lyapunov structure

Next, we analyze the energy balance properties of the discrete dynamics. The

derivation of the main equation can be carried out by scalar multiplying both

sides of Eq. (4.33) by the quantity

[

heff

(

mn+1+mn

2
, tn+

∆t

2

)

− α
mn+1−mn

∆t

]

. (4.36)

It is clear that, due to the antisymmetry of the matrix Λ(m) (which in turn is

related to the antisymmetry of its 3× 3 diagonal blocks), the dot multiplication

of (4.36) and the right-hand-side of Eq. (4.33) gives zero. As far as the left-hand

side is concerned, by using the expression of the discretized effective field (4.20),

one obtains:

mn+1−mn

∆t
·
[

−C ·
(

mn+1+mn

2

)

+ ha

(

tn+
∆t

2

)

− α
mn+1−mn

∆t

]

= 0 . (4.37)

Then, by using the symmetry of the matrix C and the following mid-point ap-

proximation for the mid-point value of the applied field:

ha

(

tn+
∆t

2

)

=
hn+1
a + hn

a

2
+

∆t2

4

d2ha

dt2

∣

∣

∣

∣

tn+∆t
2

, (4.38)

one can readily derive the following equation

g(mn+1;hn+1
a )− g(mn;hn

a)

∆t
= −α

∣

∣

∣

∣

mn+1−mn

∆t

∣

∣

∣

∣

2

+

−(mn+1+mn)

2
· h

n+1
a − hn

a

∆t
+

∆t

4
(mn+1−mn) · d

2ha

dt2

∣

∣

∣

∣

tn+∆t
2

.

(4.39)

Notice that since (mn+1−mn) is of the order O(∆t) then the last term at the

right hand side of the equation is O(∆t2) and thus, as we expected, up to this

second order term, the discrete dynamics reproduce the energy balance for semi-

discretized equation (4.28).

In fact, very interesting properties of the scheme can be inferred from Eq. (4.39).

First we notice that, if the applied field ha is piece-wise linear with respect to

time, in each time interval [tn, tn+1], then the last term in right hand side vanishes

and the energy balance is exactly reproduced in its mid-point time discretized

version. In addition, in the case of constant applied field, the last two terms in

Eq. (4.39) vanish and the energy balance reduces to the following form

g(mn+1;ha)− g(mn;ha)

∆t
= −α

∣

∣

∣

∣

mn+1−mn

∆t

∣

∣

∣

∣

2

. (4.40)

Equation (4.40) has very important consequences. First, independently of the

time step, the discretized energy g(mn;ha) is decreasing. This confirms that
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the mid-point rule is an unconditionally stable algorithm which reproduce the

relaxation behavior in LLG discrete dynamics for any choice of the time step.

Notice also that the rate of variation of energy in the discrete dynamics is coherent

the mid-point version of Eq. (4.29).

Second, for α = 0 the energy is exactly preserved regardless of the time steps.

These two properties confirms the unconditional stability of mid-point rule, but

more importantly they indicate that, in the short time scale, the mid-point rule

will tend to reproduce correctly the most important part in the LLG dynamics,

i.e. the precessional magnetization motion.

Preservation of Hamiltonian structure

Finally, it is also important to address the issue of the preservation of the hamil-

tonian structure [89] (in the case α = 0) given by Eq. (4.30). Let us indicate by

m(t) = φ(t,m0) the flow of Eq. (4.30), namely the solution of the Cauchy prob-

lem for the system of ODEs (4.30) with the initial condition m(t = t0) = m0. It

is well known that the map φ(t,m0) mapping m0 into m(t) satisfies the following

symplecticity condition

∂φ(t,m)

∂m
· Λ(m) ·

(

∂φ(t,m)

∂m

)T

= Λ(φ(t,m)) . (4.41)

A numerical scheme is said to preserve the hamiltonian structure if the associated

map, which connects one step to the following (in the case of mid-point rule the

map Φ(mn,∆t) introduced in Eq. (4.34)), fulfills the condition (4.41). In this

respect, by using the fact that the LLG equation has a Lie-Poisson structure (i.e.

the matrix Λ(m) is linear with respect to m as expressed in Eq. (4.25)), it is

possible to prove the following error formula [83]

∂Φ(∆t,m)

∂m
· Λ(m) ·

(

∂Φ(∆t,m)

∂m

)T

− Λ(Φ(∆t,m)) = O(∆t3) (4.42)

which means that, the mid-point rule applied to LLG equation preserves hamil-

tonian structure up to the third order term in ∆t.

It is also interesting to underline that the preservation of hamiltonian struc-

ture would be exact for an hamiltonian system defined by a Poisson bracket of

the type {f(m), h(m)} = (∂f/∂m) · J · (∂h/∂m)T where the matrix J does not

depend on m. In LLG studies this situation is encountered in all those problems

in which LLG equation is linearized around a given magnetization state as it

is generally done in Spin-wave analysis [4] and nucleation problems [5]. In this

respect, it must be underlined that, although these problems are linear in nature,

analytical solutions are obtainable only under quite restrictive assumptions about
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the geometry of the magnetic body. General geometries can be treated only by

numerical techniques.

4.5 Solution of the time-stepping equation

The properties we have just discussed are strongly related to the implicit nature of

mid-point rule. As consequence of this implicit nature, we have to solve the time-

stepping Eq. (4.33) for the unknown mn+1 at each time step which amounts to

solve the following system of 3N nonlinear equations in the 3N unknowns mn+1:

F(mn+1) = 0 , (4.43)

where F(y) : R3N → R
3N is the following vector function:

F(y) =

[

I− αΛ

(

y+mn

2

)]

(

y−mn
)

−∆t f

(

y+mn

2

)

, (4.44)

and where

f(m) = −Λ(m) · heff(m) = Λ(m) ·
∂g

∂m
, (4.45)

is the right-hand-side of the conservative LLG equation. It is interesting to notice

that the damping is present in only one term in the function F(y) and it introduce

only a slight modification of the function.

The solution of the system of equation (4.43) can be obtained by using

Newton-Raphson (NR) algorithm. To this end, we derive the jacobian matrix

JF(y) of the vector function F(y) which, after simple algebraic manipulations,

can be written in the following form

JF(y) = I− αΛ(mn)− ∆t

2
Jf

(

y+mn

2

)

(4.46)

where Jf is the jacobian matrix associated to f(m). By using the Eqs.(4.25),

(4.45), one obtains:

Jf(m) =
∂f

∂m
(m) = Λ(m) · C+ Γ · (−C ·m+ ha) . (4.47)

The main difficulty in applying NR method is that the Jacobian JF(y) of F(y) is

a full matrix, due to the long-range character of magnetostatic interactions which

reflects in the full nature of the matrix C. In this connection, let us observe that

the damping term affect only a small sparse component of the jacobian JF(y)

and thus does not introduce any basic difficulty.

Anyhow, due to the full nature of JF(y), the use of the plain NR method

would require an unpractical computational cost. However, as it is usual in

solving field problems with implicit time stepping, we can use a quasi-Newton
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method by considering a reasonable approximation of the Jacobian. In order to

have a sparse Jacobian one can consider the following expression J̃F in which

magnetostatic interactions are not included:

J̃F(y) = I− αΛ(mn)− ∆t

2
J̃f

(

y+mn

2

)

, (4.48)

where the matrix J̃f is

J̃f(m) = −Λ(m) · (−(Cex +Can)) + Γ · [−(Cex +Can) ·m+ ha] . (4.49)

Basically, the latter equation is obtained by substituting the full matrix C with

its sparse component Cex +Can in Eq. (4.47). Thus, the iterative procedure can

be summarized as follows:

y
0
= mn , y

k+1
= y

k
+∆y

k+1
with J̃F(yk

)∆y
k+1

= −F(y
k
) . (4.50)

At each iteration, the linear system defined by the matrix (4.49) has to be in-

verted. Since this matrix is non-symmetric, we have found appropriate to use

generalized minimum residual (GMRES) method [91]. The iteration (4.50) is

repeated until the norm ‖F(y
k
)‖ is under a prescribed tolerance.

The iterative technique we developed to solve Eq. (4.43) belongs to the main

category of quasi-Newton methods. In this respect, it has been proven [92] that

this kind of iterative procedure is convergent and the order of convergency is the

first order, provided that the initial guess is sufficiently close to the ‘true’ solution

of the system.

4.6 Accuracy tests for LLG discrete dynamics

We have shown that mid-point rule time-stepping preserves magnetization magni-

tude conservation and Lyapunov structure of LLG equation. Nevertheless, since

the time-stepping equations (4.33) are solved through an iterative procedure,

the properties of mid-point rule we have demonstrated in Sec. 4.4 are fulfilled

only within a certain accuracy related to the tolerance which we imposed on the

quasi-NR technique. In this respect, it is important to test the accuracy of the

preservation of LLG properties during the computation.

To this end, as far as magnetization magnitude conservation, we will check

the accuracy with the following quantities:

mav =
1

N

N
∑

l=1

|ml| , σ2m =
1

N

N
∑

l=1

(|ml| −mav)
2 , (4.51)

which are, respectively, mean value and variance of the magnetization magnitude

over the cells of the mesh.
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As far as the energy balance equation is concerned, we use the self-consistency

criterion proposed by Albuquerque and coworkers [94]. This criterion is based on

Eq. (4.28) rewritten in the following form

α =

(

d

dt
g(t)

)

/

∣

∣

∣

∣

dm

dt

∣

∣

∣

∣

2

. (4.52)

which is valid for constant applied field. It is quite natural, to test the preservation

of energy dynamics in numerical computation, to compute

α̂n = −
(

g(mn+1;ha)− g(mn;ha)

∆t

)

/∣

∣

∣

∣

mn+1−mn

∆t

∣

∣

∣

∣

2

. (4.53)

at each time step, and compare the value of the sequence α̂n with the constant α.

In this respect, we observe that if we could exactly invert the nonlinear system

of equations (4.43), then the sequence α̂n would be constant coincident with α.

This can be immediately derived from the property (4.40) of the mid-point rule.

However, since we determine the new time step by an iterative procedure, the

sequence will be in fact nonconstant and it will usually exhibit an oscillatory

behavior. It has been shown in Ref. [94] that numerical instabilities can be

detected from the observation of the behavior of the values α̂n.

For the case of conservative dynamics, the discretized energy is conserved

according to Eq. (4.29) for α = 0:

g(t) = g(t0) ∀ t ≥ t0 . (4.54)

With mid-point rule time discretization, this property becomes (see Eq. (4.40)):

g(mn+1;ha) = g(mn;ha) , (4.55)

which holds regardless of the time step. One can test the accuracy of the scheme

by recording the deviation of the total energy from its initial value. Again, one

cannot expect that this property will be exactly fulfilled as far as we solve the

time stepping algorithm with an iterative procedure. In this respect, we will verify

a-posteriori that the energy conservation is guaranteed with sufficient precision

by computing the relative error eg of g(mn;ha) with respect to the initial energy

g(m0;ha):

eng =
g(m0;ha)− g(mn;ha)

g(m0;ha)
, (4.56)

and checking that the sequence eng remains within prescribed tolerance.
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4.7 Finite differences spatial discretization of LLG equation

Up to this point the considerations we made about the properties and the im-

plementation of mid-point rule were rather independent from the spatial dis-

cretization used. In the following, to test the method we have chosen a specific

technique based on finite-differences method. The magnetic body is subdivided

into a collection of rectangular prisms with edges parallel to the coordinate axes.

The edge lengths are dx, dy, dz. In this framework, it is convenient to identify

each cell by three indices i, j, k instead of using the index l as we did before. The

magnetization mi,j,k is assumed to be uniform within the generic (i, j, k) cell.

With this notation, the effective field in the generic (i, j, k) cell can be expressed

as

heff;i,j,k = hex;i,j,k + hm;i,j,k + han;i,j,k + ha;i,j,k (4.57)

The exchange field (4.8) is computed by means of a 7-point laplacian discretiza-

tion, which is second order accurate in space. In the generic “internal” cell (i, j, k),

the exchange field can be expressed as follows:

hex;i,j,k =
2A

µ0M2
s

[

mi+1,j,k +mi−1,j,k

d2y
+

mi,j+1,k +mi,j−1,k

d2x
+

+
mi,j,k+1 +mi,j,k−1

d2z
−
(

2

d2y
+

2

d2x
+

2

d2z

)

mi,j,k

]

(4.58)

A similar expression holds for the boundary cells where the Neumann boundary

condition (4.6) has to be taken into account. Since the exchange interaction

is a first-neighbors interaction, one can easily observe that the matrix Cex is a

block-diagonal matrix.

As seen in section 3.1, the magnetostatic field (4.9) can be expressed as dis-

crete convolution:

hm;i,j,k =
∑

i′ 6=i

∑

j′ 6=j

∑

k′ 6=k

Ni−i′,j−j′,k−k′ ·mi′,j′,k′ dxdydz (4.59)

where Ni−i′,j−j′,k−k′ is the 3×3 block of the magnetostatic interaction matrix Cm

which describes the magnetostatic interaction between the cells i, j, k and i′, j′, k′.

The discrete convolution (4.59) is computed by means of 3D Fast Fourier Trans-

form (FFT) using the zero-padding algorithm [64]. The kernel of the convolution

is obtained in exact analytical form by means of a slight generalization of the

one proposed in Ref. [93] for cubic cells. As far as anisotropy is concerned, we

assume that the body has uniaxial anisotropy defined by the anisotropy constant

K1. Therefore, the anisotropy field is

han;i,j,k =
2K1

µ0M2
s

(mi,j,k · ex)ex . (4.60)

and the matrix Can is a diagonal matrix.
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Figure 4.1: (Left) Thin-film geometry for µ-mag standard problem n. 4. (Right)
Initial equilibrium S-state.

4.8 Numerical Simulations of µ-mag standard problem n. 4

4.8.1 Definition of the problem

We apply the above numerical technique to solve the µ-mag standard problem

n. 4 (see Ref. [79]). This problem concerns the study of magnetization reversal

dynamics in a thin-film subject to a constant and spatially uniform external field,

applied almost antiparallel to the initial magnetization. The geometry of the

medium is sketched in Fig. 4.1. The material parameters are A = 1.3×10−11 J/m,

Ms = 8.0 × 105 A/m, K1 = 0 J/m3 and α = 0.02 (permalloy). The initial state

is an equilibrium s-state (see Fig. 4.1, right) such as is obtained after applying

and slowly reducing a saturating field along the [1, 1, 1] direction to zero. In all

the numerical simulations the equilibrium condition has been chosen such that:

max
l=1...N

∣

∣

∣

∣

∣

mn+1
l −mn

l

∆t

∣

∣

∣

∣

∣

< 10−5 , (4.61)

i.e. the maximum of the (normalized) torque across the body has been checked

for equilibrium. Moreover, the stopping criterion of the quasi-Newton iterative

procedure has been chosen

max |Fq(yk)| < 10−14 , q = 1, . . . , 3N . (4.62)

where Fq(yk) is the q-th components of the vector F(yk), and the index k indi-

cates the number of quasi-Newton iterations.

Two switching events will be calculated using fields applied in the x-y plane

of different magnitude and direction. In the first case the external field is applied

at an angle of 170◦ off the x axis with x − y components such that µ0Mshax =

−24.6 mT, µ0Mshay = 4.3 mT and µ0ha = 25 mT. In the second case the external

field is applied at an angle of 190◦ off the x axis with x − y components such

that µ0Mshax = −35.5 mT, µ0Mshay = −6.3 mT, and µ0Msha = 36 mT. In both

cases the cell edges are dx = 3.125 nm, dy = 3.125 nm, dz = 3 nm and therefore

the number of cells is N = 160× 40× 1 = 6400.
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Figure 4.2: Comparison between solutions of µ-mag standard problem no. 4.
Plots of < mx >=< Mx > /Ms and < my >=< My > /Ms versus time. The
external field is applied at an angle of 170◦ off the x-axis.

4.8.2 Numerical results

Next we report the comparison between the solution obtained using the above

numerical technique and the solutions submitted by other researchers [79] to the

µ-mag website. The time step of the mid-point numerical algorithm is fixed and

has been chosen such that (|γ|Ms)
−1∆t = 2.5 ps. We observe that the time steps

related to the other solutions (see Ref. [79]) are considerably smaller (less then

0.2 ps) to fulfill numerical stability requirements. In Figs. 4.2 and 4.3 plots of

< my > (< · > means spatial average) as a function of time are reported. We

observe that in the first case (Fig. 4.2) there is substantial agreement between the

submitted solutions (see Ref. [79]) and for this reason we report, for comparison

purposes, only the solution proposed by McMichael and coworkers. In Fig. 4.4

the plots of magnetization vector field when < mx > crosses zero for the first time

are reported. Numerical simulations of the same problem were performed with a

smaller cell edge (2.5 nm, number of cells N = 10000). The results, reported in

Fig. 4.5, show that the computed magnetization dynamics does not depend on

the mesh size. As far as accuracy is concerned, the self-consistency conditions

mentioned in section 4.6 have been verified by means of the computation of the

values mav, σ
2
m and α̂n. The result of this computations is reported in Figs. 4.6-

4.8.3. One can observe from Fig. 4.6 that the magnetization magnitude is very

well preserved, since the mean value mav ∼ 1 ± 10−16 and the variance σ2m is

in the order of 10−30. Moreover, one can see from Fig. 4.8.3 that the relative

error enα = (α̂n −α)/α is in the order of 10−7. As far as conservative dynamics is
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concerned, the same problem has been simulated with α = 0. The results, shown

in Fig. 4.8.3 show that the reversal of the thin-film occurs, in the sense that

the average magnetization exhibits a persistent oscillation around the reversed

state. This means that the precessional effects are prevalent with respect to the

damping effects. The free energy is conserved as one can see from Fig. 4.8 where

exchange, magnetostatic, anisotropy, Zeeman energy and the total free energy

are reported as functions of time. Quantitatively speaking, the relative error eg

of the free energy with respect to its initial value is in the order of 10−8 as one

can see from Fig. 4.9.

4.8.3 Discussion about computational cost

As far as computational effort is concerned, numerical simulations for different

number of cells and different time steps have been performed beyond the previ-

ous ones, with the only purpose of performance evaluation of the code. Some

indicators, such as the average number of quasi-Newton iterations per time step

(NR), the average number of GMRES iterations in one quasi-Newton iteration

(LIN), the simulated time T , the simulation time Ts and the ratio between them,

the maximum relative error eα,max = max |(α̂n − α)/α|, the angle of the applied

field δ, the number of cells N and the time step are reported in Table 4.1. In

this respect, some considerations can be drawn. First, one can observe that the

total number of cells N does not affect the quasi-Newton procedure in both the

cases δ = 170◦ and δ = 190◦, whereas it affects the solution of the linear sys-

tems by increasing the average number of GMRES iterations. Second, one can

clearly see that the minimum and maximum values of quasi-Newton and GMRES

iterations are close to the average values, meaning that the iterative procedure

weakly depends on magnetization dynamics; in fact, as seen before, the approxi-

mate jacobian matrix J̃F depends on the particular value of magnetization vector

m. Third, some considerations on computational cost can be made. We expect

that the computational cost function C(N) of the algorithm can be reasonably

expressed by the sum of two terms. In fact, at each quasi-Newton iteration the

cost of the evaluation of magnetostatic field (3D FFT convolution [64]) is pro-

portional to N logN . On the other hand, within each quasi-Newton iteration,

the cost of LIN iterations of GMRES is proportional to N , since basically is the

cost of LIN sparse matrix-vector products. Thus, we can express the overall cost

function C(N) as:

C(N) = Ts(N)/T = c1NRN logN + c2NRLINN , (4.63)
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δ N ∆t
|γ|Ms

[ps] NR LIN eα,max T [ns] Ts [s] Ts/T [s/ns]

170◦ 1000 2.5 11/14/17 4/5/5 1.5× 10−8 5.7700 648.05 112

170◦ 2500 2.5 11/14/17 6/7/7 2.0× 10−7 5.8450 1976.47 338

170◦ 6400 2.5 11/14/18 11/13/15 3.0× 10−7 5.8400 5631.23 964

170◦ 10000 2.5 11/14/18 17/19/22 1.3× 10−7 5.8425 12152.74 2080

190◦ 1000 2.5 11/14/17 4/5/5 1.4× 10−8 5.5800 632.34 113

190◦ 2500 2.5 11/14/18 6/7/8 0.7× 10−7 6.4100 2183.36 341

190◦ 6400 2.5 11/14/18 12/13/15 6.2× 10−7 6.4100 6257.13 976

190◦ 10000 2.5 11/14/18 18/20/23 7.0× 10−7 6.4100 13546.79 2113

170◦ 6400 1.0 9/12/14 6/6/7 3.7× 10−7 5.8420 10145.46 1737

170◦ 6400 2.5 11/14/18 11/13/15 3.0× 10−7 5.8400 5631.23 964

170◦ 6400 5.0 14/18/25 24/26/28 3.5× 10−7 5.9400 4624.31 779

190◦ 6400 1.0 9/12/14 6/6/7 1.3× 10−7 6.4150 11163.490 1740

190◦ 6400 2.5 11/14/18 12/13/15 6.2× 10−7 6.4100 6257.13 976

190◦ 6400 5.0 14/18/27 23/26/30 1.1× 10−7 7.4950 5705.520 761

Table 4.1: Numerical results. Indicators of computational effort for the pro-
posed mid-point rule numerical technique. δ is the angle of the applied field,
N is the number of cells, ∆t is the time step, column NR reports mini-
mum/average/maximum number of quasi-Newton iterations per time step, col-
umn LIN reports minimum/average/maximum number of GMRES iterations for
one quasi-Newton iteration, eα,max = max |(α̂n − α)/α| is the maximum relative
error with respect to the assigned damping parameter α, T is the simulated time,
Ts the simulation time. N = 1000 refers to a prism cell of size 12.5× 5× 3 nm.
N = 2500 refers to a prism cell of size 5 × 5 × 3 nm. N = 6400 refers to a
prism cell of size 3.125 × 3.125 × 3 nm. N = 10000 refers to a prism cell of
size 2.5 × 2.5 × 3 nm. The simulations have been performed with a Pentium 4
processor workstation (3 GHz), 1 GB RAM under RedHat Linux 9.

where c1 and c2 are fitting parameters. One can see from Fig. 4.10 that for

moderately large number of cells, the ratio Ts/T increases according to the

O(N logN) scaling expected for the computation of the demagnetizing field by

the 3D FFT convolution, whereas, for larger number of cells, the computational

cost of the GMRES iterations becomes prevalent. Finally, it is important to

underline that by increasing the time step ∆t, the numerical algorithm exhibits

a considerable speed-up, as one can see comparing the ratios Ts/T obtained in

both the cases for a given number of cells N = 6400 and time steps such that

(|γ|Ms)
−1∆t =1, 2.5, 5 ps. In all the simulations it has been observed that the

relative error eα,max is in the order of 10−7.
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Figure 4.3: Comparison between solutions of µ-mag standard problem no. 4.
Plots of < my >=< My > /Ms versus time. The external field is applied at an
angle of 190◦ off the x-axis.
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Figure 4.4: Numerical results for µ-mag standard problem no. 4. Snapshot of
magnetization vector field when the average < mx > crosses zero for the first
time. The external field is applied at an angle of 170◦ (up) and 190◦ (down) off
the x-axis.
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Figure 4.5: Numerical results for µ-mag standard problem no. 4. Plots of <
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The external field is applied at an angle of 190◦ off the x-axis.
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Figure 4.6: Numerical results for µ-mag standard problem no. 4. (a) Plot of
1−mav as a function of time. (b) Plot of the variance σ2m as a function of time.
In both plots δ = 190◦, N = 6400.
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Figure 4.8: Numerical results for µ-mag standard problem no. 4 in the conserva-
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free energy as functions of time. δ = 190◦, N = 6400.
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as function of time. δ = 190◦, N = 6400.
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Figure 4.10: Numerical results for µ-mag standard problem no. 4. Plots of the
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Conclusions and Outlook

In this thesis some categories of magnetization phenomena, connected with high-

end technological applications have been investigated. The followed approach has

its foundations in micromagnetics, which is capable of properly describing mag-

netic phenomena on sub-micron scale. A first step has been done by studying

magnetization dynamics under the hypothesis that the particles were uniformly

magnetized. In this framework, it has been recalled that magnetization dynam-

ical processes of technological interest, like damping switching and precessional

switching, can be treated with analytical approaches present in literature, which

provide critical design parameters like critical fields, as well as switching time and,

for precessional switching, the time tolerance allowed in order to have successful

switching. A slightly different context in the framework of uniform mode theory,

has been touched, regarding some aspects of the LLG dynamics under circularly

polarized fields, which arises in typical ferromagnetic resonance experiments. In

particular, a special perturbative technique, based on mathematical background

in the framework of dynamical systems theory, has been developed for the study

of quasiperiodic solutions of LLG equation under circularly polarized field. In this

respect, the problem of finding quasiperiodic solutions has been turned into the

determination of limit cycles of a suitable modification of LLG equation, obtained

by introducing the appropriate rotating reference frame. Basically, the result is

that the study of the existence, the number, the stability of limit cycles of the

dissipative LLG dynamics can be performed, at first order, on the conservative

dynamics. The analytical results have been confirmed by numerical simulations

that indeed show the accuracy of the predictions.

In addition, this technique, which permits also to study the (global) bifurca-

tions of the limit cycles, has been applied to the study of LLG dynamics driven by

spin-transfer torque. This subject is currently the focus of considerable research

for its applications to current-driven switching of MRAMs cells. In particular,

by using the above perturbative technique, and on the other hand the analytical

treatment of the conservative dynamics, it is possible to predict analytically the

critical values of the electric current and magnetic fields that rule complicated
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behaviors, like the onset of self-oscillations and the current-driven switching, ob-

served in recent experiments on spin-injection. Moreover, with this technique

characteristics of the self-oscillations like frequency and amplitude can be ana-

lytically computed from the knowledge of the conservative dynamics.

As soon as the hypothesis of uniformly magnetized particles has been aban-

doned, the problem of the numerical computation of the magnetostatic field,

which has been recognized to be the bottleneck of micromagnetic computations,

has been analyzed. The two most used methods, respectively for finite differ-

ences and finite elements discretizations, have been described. Afterwards it has

been shown with micromagnetic simulations of damping and precessional switch-

ing, that the former is an intrinsically non-uniform process, whereas the latter

can be reasonably considered quasi-uniform also for dimensions of hundreds of

nanometers (half micron) and moderately low anisotropy. In this respect, by

computing the switching time with the uniform mode analysis, reliable switching

can be obtained. It has been demonstrated that the accuracy of the prediction

increases for increasing anisotropy of the material. Moreover, for moderately soft

materials, with K1 in the order of 104 ÷ 105 J/m3, a tolerance of ±25% on the

pulse amplitude is allowed. The predicted time window agree with micromagnetic

simulations with a precision of few picoseconds.

Then the fast switching of tilted granular media has been analyzed by means

of a uniform mode approximation. The medium has been considered as a collec-

tion of noninteracting grains with dispersion of easy axes and initial conditions.

In this framework, the necessary condition for the switching of the whole gran-

ular medium, i.e. the applied field amplitude range which makes fast switching

possible, has been derived by analyzing the single grain dynamics, first conser-

vative and then dissipative. A set of micromagnetic simulations have confirmed

the predictions made with the uniform mode analysis.

Thus, the main result of this study is the fact that the uniform mode theory

can be applied to study processes of technological interest, and in some cases it

provides critical design parameters.

Beside the above analysis, the problem of geometrical integration of LLG

equation has been addressed. In fact, the mostly used numerical time-stepping

techniques do not preserve the fundamental properties of LLG dynamics, namely

magnetization magnitude conservation, Lyapunov structure for constant in time

applied field and hamiltonian structure in the conservative case. There is an

interesting example in literature of how the missed fulfillment of magnitude con-

servation leads to inaccurate computation of magnetostatic field. Moreover, the

quantitative discordance arising in the solution of micromagnetic standard prob-



Conclusions and Outlook 135

lems suggests that the particular choice of numerical methods may affect the

results of the computations. Therefore, we are convinced that a numerical model

has to qualitatively reproduce the properties of the continuous model as best as

possible, but, nevertheless it must have a feasible computational cost. In this

respect, the proposed implicit mid-point rule technique has revealed very effi-

cient from both points of view. First of all, it can be applied to any spatial

discretization, like finite differences and finite elements, which preserves the for-

mal structure of the effective field. Then, we have shown that the mid-point

discretized LLG equation exactly fulfills magnetization magnitude conservation

regardless of the time step. In addition, in case of constant applied field, the

discrete dynamics has itself a Lyapunov structure regardless of the time step,

and in the case of conservative dynamics (α = 0) the discretized free energy is

preserved regardless of the time step and the hamiltonian structure is preserved

up to third order in the time step.

The implicit nature of the mid-point time-stepping leads to the solution of

a nonlinear system of equations at each time step. Therefore, special and rea-

sonably fast quasi-Newton iterative procedure has been developed to solve this

system. Since the solution is approximate depending on the tolerance of the

quasi-Newton procedure, the precision in the fulfillment of the LLG dynamics

properties has been checked a posteriori. In particular, for finite differences spa-

tial discretization, we have solved the micromagnetic standard problem no. 4. As

far as the accuracy tests are concerned, the magnitude has been preserved within

machine precision for each cell and the Lyapunov structure is preserved with a

relative error in the order of 10−8. Conservative simulations of the same prob-

lem show that the free energy is preserved with relative error also in the order

of 10−8. As far as computational effort is concerned, the use of quasi-Newton

technique which approximates the full jacobian matrix of the nonlinear system of

equations as a sparse matrix, allows the use of fast iterative methods (GMRES)

for the inversion of the linear systems arising in the single quasi-Newton itera-

tion. The moderately low measured simulation times, together with the fact that

the time step can be chosen much larger than explicit methods due to mid-point

rule unconditional stability, make this method a good candidate for accurate

micromagnetic simulations.

Future work in this framework could be made by developing a finite element

code with mid-point rule time-stepping, which would permit to treat magnetic

bodies with in principle arbitrary shape. Moreover the computational cost could

be lowered by implementing suitable preconditioning for the GMRES method. In

addition, the inclusion of the spin-transfer torque term in the code would permit



136 Conclusions and Outlook

to investigate non-uniform spin-injection phenomena in multi-layers structures.

Finally, the inclusion of thermal effects in magnetization dynamics model and,

consequently in micromagnetic simulations, would be a considerable improvement

of the investigation. This direction will be pursued in future activities.



Appendix A

A.1 Main Properties of Ferromagnetic Materials

Some material properties of typical ferromagnetic materials are listed in the table

below:

Material Tc µ0Ms A K1 lex (γMs)
−1

Unit [K] [T] 10−11 [J/m] 105 [J/m3] [nm] [ps]

Fe 1044 2.16 1.5 0.48 2.8 2.6

Co 1398 1.82 1.5 5 3.4 3.1

Ni 627 0.62 1.5 -0.057 9.9 9.2

Permalloy 720 1.0 1.3 0 5.7 5.7

CrO2 0.5 0.1 0.22 3.2 11.4

SmCo5 993 1.05 2.4 170 7.4 5.4

Tc is the Curie temperature of the material, Ms is the saturation magneti-

zation, A is the exchange constant, K1 is the uniaxial magneto-crystalline ani-

sotropy constant, lex is the exchange length (see Eq. (1.92)) of the material,

(γMs)
−1 is the value of the normalized time unit for a given material.
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Appendix B

B.1 Elliptic Functions

The Jacobi elliptic functions are standard forms of elliptic functions [72]. The

three basic functions are denoted by sn(u, k), cn(u, k) and sn(u, k), where k is the

modulus such that 0 < k2 < 1. They arise from the inversion of the incomplete

elliptic integral of the first kind:

u = F (φ, k) =

∫ φ

0

dϕ
√

1− k2 sin2 ϕ
. (B.1)

The inverse function of F (u, k) is given by the Jacobi amplitude am(u, k)

φ = am(u, k) = F−1(u, k) . (B.2)

The Jacobi elliptic functions can be defined as follows:

sn(u, k) = sinφ = sin
(

F−1(u, k)
)

= sin (am(u, k)) (B.3)

cn(u, k) = cosφ = cos
(

F−1(u, k)
)

= cos (am(u, k)) (B.4)

dn(u, k) =

√

1− sin2 φ =

√

1− sin2 (am(u, k)) . (B.5)

By introducing x = sinϕ as new integration variable in Eq. (B.1), one obtains

the following new expression of the incomplete elliptic integral of the first kind:

u =

∫ s

0

dx
√

(1− k2x2)(1− x2)
, (B.6)

where s = sinφ. By taking into account that u = sn−1(sinφ, k) we may also

write the last equation as
∫ s

0

dx
√

(1− k2x2)(1− x2)
= sn−1(s, k) . (B.7)

Similar formulas can be written for cn(u, k) and dn(u, k). The Jacobi elliptic

function are doubly periodic in K and K ′ in the following sense:

sn(u+ 2mK + i2nK ′, k) = (−1)msn(u, k) (B.8)

cn(u+ 2mK + i2nK ′, k) = (−1)m+ncn(u, k) (B.9)

dn(u+ 2mK + i2nK ′, k) = (−1)ndn(u, k) , (B.10)
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where m,n ∈ Z, i =
√
−1, K(k) is the complete elliptic integral of the first kind:

K(k) = F (π/2, k) =

∫ π/2

0

dϕ
√

1− k2 sin2 ϕ
=

∫ 1

0

dx
√

(1− k2x2)(1− x2)
,

(B.11)

K ′(k) = K(k′) and k′ =
√
1− k2 is the complementary modulus. The Jacobi

elliptic functions sn(u, k), cn(u, k), dn(u, k) can be seen as doubly periodic gener-

alizations of the trigonometric function satisfying the conditions:

sn(u, 0) = sinu (B.12)

cn(u, 0) = cosu (B.13)

dn(u, 0) = 1 . (B.14)

In addition, they are related through the following identities:

sn2(u, k) + cn2(u, k) = 1 (B.15)

k2sn2(u, k) + dn2(i, k) = 1 (B.16)

k2cn2(u, k) + k′2 = dn2(u, k) (B.17)

cn2(u, k) + k′2sn2(u, k) = dn2(u, k) . (B.18)

B.2 Perturbative analysis of limit cycles in 2D dynamical

systems

Here we present the Poincaré-Melnikov perturbative technique to analyze limit

cycles in dynamical systems defined on a 2D manifold Σ. We follow the approach

proposed by Perko in Ref. [43].

Let us consider an autonomous dynamical system:

dx

dt
= f0(x) , (B.19)

with x = (x1, x2) ∈ R
2 and f0(x) analytical in R

2. Let us suppose to perturbe

the system in the following way:

dx

dt
= f0(x) + εf1(x, ε) , (B.20)

where ε is the amplitude of the perturbation and f1(x, ε) is an analytical function

in R
2. We assume now that the unperturbed system (B.19) has a continuous

family of periodic trajectories:

Γx0
: x(t) = γ(x0, t) . (B.21)

These trajectories can be determined by the initial condition x0 chosen on a

Poincaré section S (see Fig. B.1 and Ref. [43]) normal to the family of periodic
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trajectories. Conversely, the generic trajectory of the perturbed system (B.20)

will be, in general

x(t) = ϕ(t,x0, ε) , (B.22)

where we have indicated with ϕ(t,x0, ε) the flow of the dynamical system (B.20)

From Eq. (B.22) it follows that:

γ(t) = ϕ(t,x0, ε = 0) , (B.23)

where, for sake of brevity, the dependance on x0 has been not indicated. The

flow (B.22) can be developed in Taylor series with respect to the perturbation

parameter ε:

x(t) = ϕ(t,x0, 0) +
∂ϕ

∂ε
(t,x0, 0)ε+O(ε2) . (B.24)

By remembering Eq. (B.23) and by setting

∂ϕ

∂ε
(t,x0, 0) = ∆x , (B.25)

one obtains

x(t) = ϕ(t,x0, 0) + ε∆x+O(ε2) . (B.26)

By using the latter equation in the perturbed dynamical system (B.20), we end

up with:

d

dt
γ(t) + ε

d∆x

dt
= f0(γ(t) + ε∆x) + εf1(γ(t) + ε∆x, ε) . (B.27)

By developing in Taylor series the right-hand side of the latter equation with

respect to the variables x, ε, one has:

d

dt
γ(t) + ε

d∆x

dt
= f0(γ(t)) +

∂ϕ

∂x
(γ(t))ε∆x+ ε

(

f1(γ(t), 0)+

+
∂f1
∂x

(γ(t), 0)ε∆x+
∂f1
∂ε

(γ(t), 0)ε)

)

. (B.28)

By remembering that d
dtγ(t) = f0(γ(t)) and by neglecting second order terms,

one ends up with the following equation:

d∆x

dt
=
∂ϕ

∂x
(γ(t))∆x+ f1(γ(t), 0) , (B.29)

which we call first variational equation with respect to ε. Equation (B.29) de-

fines a 2D dynamical system which can be used, in principle to study how the

perturbation affects the displacement ∆x of the perturbed trajectory with re-

spect to the unperturbed orbit in one period. We notice that the dynamical

system (B.29) has periodic coefficients and, therefore it is not possible to solve it

in exact analytical form. Nevertheless, we observe that we are interested only on
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Figure B.1: Planar sketch of a portion of the phase portrait of the unperturbed
dynamical system (B.19). S is the Poincaré section normal to the family of
continuous trajectories.

the component of ∆x normal to the unperturbed trajectory γ(t):

∆xn = ∆x · n , (B.30)

where n is the unit-vector normal to γ(t) and tangential to the manifold Σ. The

unit-vector n is proportional to the following vector:

f0(γ(t))× e(γ(t)) , (B.31)

where e is the unit-vector normal to Σ. Therefore, we can express ∆xn as

∆xn = ∆x · f0(γ(t))× e(γ(t)) = ∆x ∧ f0(γ(t)) , (B.32)

where the wedge product v ∧w, with v = (v1, v2),w = (w1, w2) ∈ R
2, is defined

as

v ∧w = v1w2 − v2w1 . (B.33)

By differentiating both sides of Eq. (B.32) with respect to time, remembering

Eq. (B.29), and using straightforward algebra, one ends up with the following

one-dimensional differential equation, with periodic coefficients, for ∆xn:

d

dt
∆xn = f1(γ(t), 0) ∧ f0(γ(t)) +∇Σ · f0(γ(t))∆xn , (B.34)

where ∇Σ · f0 = tr
[

∂f0
∂x (γ(t))

]

is the divergence of the 2D vector field f0(γ(t)). It

can be shown [43] that

∫ Tx0

0
∇Σ · f0(γ(t)) dt = 0 . (B.35)
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Equation (B.34) can be analytically integrated over one period of the unperturbed

solution Tx0
. By taking into account the latter equation, the solution can be

written as:

∆xn(Tx0
) =

∫ Tx0

0
exp

[

−
∫ t

0
∇Σ · f0(γ(τ)) dτ

]

[f1(γ(t), 0) ∧ f0(γ(t))] dt .

(B.36)

In addition, if f0(x) is a conservative vector field it happens that:

∇Σ · f0 = 0 . (B.37)

Thus, Eq. (B.36) reduces to the following simpler form:

∆xn(Tx0
) =

∫ Tx0

0
f1(γ(t), 0) ∧ f0(γ(t)) dt . (B.38)

Let us suppose now that the generic unperturbed trajectory, determined by

the initial condition x0, can be univocally determined by a scalar parameter

g0 through a correspondence g0 = g(x0). From Eq. (B.36) one can define the

Melnikov function M(g0):

M(g0) =

∫ Tg0

0
exp

[

−
∫ t

0
∇Σ · f0(γ(τ)) dτ

]

[f1(γ(t), 0) ∧ f0(γ(t))] dt , (B.39)

where Tg0 = Tg(x0). Therefore, to summarize, the Melnikov function, computed

on the value g0, determines the one period displacement of the unperturbed tra-

jectory, determined by g0, in the direction normal to that unperturbed trajectory.

Intuitively, it can be inferred that when M(g0) = 0, the unperturbed trajectory

corresponding to g0 becomes a limit cycle when the perturbation is introduced.

This can be rigorously proven (see Ref. [43]) for finite (but small) values of the

perturbation parameter ε. Thus, the zeros of the Melnikov function correspond

to limit cycles of the perturbed dynamical system (B.20). Moreover, the sign of

the derivative of the Melnikov function at the zero determines the stability of

the corresponding limit cycle. In particular, positive derivative implies that the

limit cycle is stable, whereas negative sign corresponds to an unstable limit cycle.

By using this technique, also bifurcations of limit cycles can be studied. In par-

ticular, it is possible to find algebraic conditions which corresponds to suitable

bifurcation conditions [43]. For instance, the condition for the Andronov-Hopf

bifurcation is given by:

M(g0) = 0 ,
dM

dg0
= 0 , (B.40)

and the condition for homoclinic connection bifurcation is obtained by impos-

ing that the Melnikov function vanishes in correspondence of an unperturbed

homoclinic trajectory.
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Appendix C

C.1 Brief remarks on the mid-point rule numerical technique

Let us consider the generic ordinary differential equation:

d

dt
x(t) = f(x(t), t) , (C.1)

with f(x, t) : R2 → R. Let us consider the time interval [t, t + ∆t] where ∆t is

the time step. The latter equation can be written at the time instant t+∆t/2:

dx

dt

∣

∣

∣

t+∆t/2
= f(x(t+∆t/2), t+∆t/2) , (C.2)

Let us develop the function x(t) in Taylor series with respect to the initial point t:

x(t+∆t) = x(t+∆t/2) +
dx

dt

∣

∣

∣

t+∆t/2

∆t

2
+
d2x

dt2

∣

∣

∣

t+∆t/2

∆t2

4
+O(∆t3) , (C.3)

x(t) = x(t+∆t/2)− dx

dt

∣

∣

∣

t+∆t/2

∆t

2
+
d2x

dt2

∣

∣

∣

t+∆t/2

∆t2

4
+O(∆t3) , (C.4)

where the symbol O(∆t3) indicates the terms of the third order and greater in

∆t. By subtracting the latter expressions, one obtains:

x(t+∆t)− x(t)

∆t
=
dx

dt

∣

∣

∣

t+∆t/2
+O(∆t2) , (C.5)

meaning that the substitution in Eq. (C.2) of the derivative in the mid-point of

the interval [t, t+∆t] with the left-hand side of Eq. (C.5), leads to a truncation

error of the second order with respect to the time step.

By summing Eqs. (C.3)-(C.4) and using simple algebra the following mid-

point formula can be derived:

x(t+∆t/2) =
x(t+∆t) + x(t)

2
+O(∆t2) . (C.6)

In addition, by using Eq. (C.6), it can be shown with the very same line of

reasoning that:

f

(

x(t+∆t/2), t+
∆t

2

)

= f

(

x(t+∆t) + x(t)

2
, t+

∆t

2

)

+O(∆t2) . (C.7)
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Therefore, the numerical scheme obtained from Eq. (C.2) with the second-order

approximations (C.5) and (C.7)

dx

dt

∣

∣

∣

t+∆t/2
=
x(t+∆t)− x(t)

∆t
+O(∆t2) (C.8)

x(t+∆t) + x(t)

2
= x(t+∆t/2) +O(∆t2) (C.9)

with the position tn = t0 + n∆t and xn = x(tn), can be written in the following

way:
xn+1 − xn

∆t
= f

(

xn+1 + xn
2

, tn +
∆t

2

)

. (C.10)

This scheme is commonly refereed to as mid-point rule numerical technique and

is second-order accurate with respect to the time step ∆t.

Now we want to investigate the stability property of the mid-point rule

scheme (C.10). We refer, for sake of simplicity, to the scalar initial value problem:

dx

dt
= λx , x(t0) = x0 , λ ∈ C : Re[λ] < 0 . (C.11)

The latter equation can be discretized according to the mid-point rule:

xn+1 − xn =
λ∆t

2
(xn+1 + xn) . (C.12)

With some straightforward algebra, one can obtain the following time-stepping

algorithm:

xn+1 =
1− λ∆t

2

1 + λ∆t
2

xn . (C.13)

Now, if we study the evolution of two solutions of Eq. (C.11), one starting from

the initial condition x0 and the other starting from y0 = x0 + e0, the evolution

of the perturbation en = yn − xn can be found with the same time-stepping as

Eq. (C.13):

en+1 =
1− λ∆t

2

1 + λ∆t
2

en , (C.14)

which can be rewritten with respect to the initial perturbation e0:

en =

[

1− λ∆t
2

1 + λ∆t
2

]n

e0 . (C.15)

In particular, the modulus of the perturbation evolves according to the following

equation:

|en| =
∣

∣

∣

∣

∣

1− λ∆t
2

1 + λ∆t
2

∣

∣

∣

∣

∣

n

|e0| . (C.16)

It turns out that, in order that the error vanishes for n → ∞, the following

constraint is required:
∣

∣

∣

∣

1− z
2

1 + z
2

∣

∣

∣

∣

< 1 . (C.17)
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where the complex variable z = λ∆t has been defined. It can be shown that the

complex function

g(z) =
1− z

2

1 + z
2

(C.18)

fulfills the constraint (C.17) ∀z ∈ C : Re[z] < 0. Therefore, the mid-point rule

numerical scheme is stable for any λ ∈ C : Re[λ] < 0 and for any time step

∆t, namely is unconditionally stable. In particular, this property is referred in

literature [95] to as A-stability of the mid-point rule numerical method.
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