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Abstract

The definition of asymptotic integrability is formulated within the perturbation

theory based on multiple-scale expansion. Here we show that a 1+1 weakly nonlinear

and strongly dispersive wave equation can be asymptotically integrable only up to a

finite order, and we provide an algorithmic method to test it.
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1. Introduction

Nonlinear wave equations are rarely solvable, and, even if we neglect damping

and forcing, our ability to compute nonlinear effects relies mainly on approximation

schemes or numerical experiments. One of the approaches is the quasi-monochromatic

or slowly varying amplitude approximation that was introduced in nonlinear optics

and fluid dynamics more than thirty years ago (references to relevant papers can

be found in [1] and [2]). This method applies whenever the solution, at the first

order in a small parameter ǫ, is a monochromatic (carrier) wave whose amplitude

slowly varies in space, namely is a function of the slow coordinate ξ = ǫx. Here the

smallness parameter ǫ is both the peak amplitude and the relative band-width ∆k/k

of the initial wave-packet in the wave-number (Fourier) variable k (cfr.[1]). The well-

known, and broadly applied, result of this analysis is that the amplitude evolves in

the slow time variable t2 = ǫ2t according to the celebrated Nonlinear Schroedinger

(NLS) equation, that, since it follows from a generic nonlinear wave equation, has

been recently recognized [3] as a universal model of nonlinear wave propagation in the

strongly dispersive regime.

Higher order terms in the ǫ- expansion have been recently [2] considered with the

purpose of computing inelastic effects in two-solitary wave collisions, and of capturing

the evidence that the original nonlinear wave equation under investigation, being

quite generic, is indeed nonintegrable. In fact, this last question stems naturally

from the observation that the first order reduced equation, namely the NLS equation,

is integrable and therefore the nonintegrability of the original nonlinear wave equation

should manifest itself at some higher order of the perturbative expansion.

In the following we briefly report on the main results we obtain within the formal-

ism introduced in [1] (for a different approach, see [2]), in particular on the definition

of asymptotic integrability up to order n(An- integrability) which naturally follows

from our analysis. As simple examples, we display the conditions for A1 and A2 -
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integrability, while details, proofs and further examples are provided elsewhere [4].

A distinctive ingredient of our method is the introduction of (finitely or infinetely)

many slow time variables, tn ≡ ǫnt, n = 1, 2, · · ·. For pedagogical purpose, we point out

first that the occurrence of many slow times is naturally implied by the well-known

Poincaré - Lindstedt perturbation scheme. Indeed, consider the single anharmonic

oscillator equation

d2q/dt2 + ω2
oq = c2q

2 + c3q
3 + · · · , q = q(t), (1.1)

with the initial conditions q(0) = ǫ, q̇(0) = 0, where ǫ is the (small) perturbation

parameter. Since, for sufficiently small ǫ, q(t) is periodic, one can set

q(t) = f(θ), θ = ωt, f(θ) = f(θ + 2π), (1.2)

together with the two expansions

ω = ωo + ǫω1 + ǫ2ω2 + · · · (1.3)

f = ǫf1 + ǫ2f2 + ǫ3f3 + · · · (1.4)

where the coefficients ωn, for n ≥ 1, are chosen so as to eliminate the secular terms

that appear in the differential equations for the functions fn(θ). In this way, the

solution q(t) proves to be a function not only of the time t but also of the slow times

tn, since combining (1.2) with (1.3) yields

θ = ωot + ω1t2 + ω2t2 + ω3t3 + · · · . (1.5)

However, this approach does not seem to be convenient when one deals with PDEs;

in fact, the following different, yet equivalent, expansion of the solution q(t),

q(t) =
∑

|α|>0

eiαωot
∑

n≥|α|

ǫnq(α)
n (t1, t2, · · ·) +

∑

n≥2

ǫnq(o)
n (t1, t2, · · ·) (1.6)
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turns out to be suitable to extension to nonlinear wave equations (see below). Here we

note that q(t) is doubly expanded both in harmonics and in powers of ǫ, each amplitude

q
(α)
n being a function of the slow times only. Moreover, as explicitely shown, only the

fundamental harmonics exp(±iωot) contribute to the first order approximation.

2. Formalism and basic equations

Let

Lu = G(u) (2.1)

be a 1 + 1 wave equation where u = u(x, t) is the dependent variable, L is a linear,

first order in time, differential operator with constant coefficients, and G(u) is an

analytic function (with no linear terms) of u and its x- derivatives. For instance, we

have considered equations with L = ∂t − ∂3
x, G(u) = cu3

x + (c2u
2 + c3u

3 + · · ·)x, and

L = ∂t+∂x+a∂3
x+b∂2

x∂t, G(u) = (a1u
2+a2u

2
x+a3u

2
xx)x+(a4u

2+a5u
2
x)xx+a6(u

2)xxx

this second case being relevant to waves in shallow water. In order to semplify our

analysis we assume that the variable u be real, u = u∗. For an arbitrarily given (real)

wave number k, it is convenient to introduce the plane-wave

E ≡ exp[i(kx − ωt)] (2.2)

where ω = ω(k) is the dispersion law that is determined by the condition LE = 0.

Let us now set the harmonic expansion

u =
+∞∑

α=−∞

u(α)Eα (2.3)

where the coefficients u(α) depend only on the slow variables ξ and tn, n = 1, 2, · · ·,

and let us note that the action of differential operators on u can be easily translated

into operations on the functions u(α) via the identities

∂x(Eαu(α)) = Eα(iαk + ǫ∂ξ)u
(α) , (2.4a)
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∂t(E
αu(α)) = Eα(−iαω + ǫ∂1 + ǫ2∂2 + ǫ3∂3 + · · ·)u(α) , (2.4b)

where ∂n ≡ ∂/∂tn. It is then clear that the equation

L(Eαu(α)) = EαL(α)u(α) (2.5)

defines the linear operator L(α), for the α-th harmonics, that is differential in the

slow variables ξ and tn, and possesses a well-defined formal expansion in powers of ǫ,

namely

L(α) = L(α)
o + ǫL

(α)
1 + ǫ2L

(α)
2 + · · · (2.6)

Once the expansion (2.3) of u is inserted in the function G(u), then also G(u) turns

out to be expressed in terms of harmonics,

G(u) =
+∞∑

α=−∞

G(α)Eα , (2.7)

where the coefficients G(α) are polynomial expressions of the functions u(β) and their

ξ - derivatives. As a result of this setting, the original equation (2.1) is equivalent to

the (infinite) set of PDEs

L(α)u(α) = G(α), α = 0, ±1,±2, · · · . (2.8)

Since the inverse operator (L(α))−1 has a formal expansion in powers of ǫ iff L
(α)
o 6=

0, and L
(α)
o is just a number, it is convenient to introduce the following definition:

the α-th harmonics is resonant (or, shortly, (α) is a resonance) iff L
(α)
o = 0. As a

consequence, if (α) is not a resonance, then the equation (2.8) can be formally solved

by algebraic means, u(α) = (Lα)−1G(α), and only the amplitudes u(α) corresponding

to resonances satisfy truly differential equations. Since the reality of u implies the

condition u(−α) = u(α)∗, if we assume, just for the sake of simplicity, that only α = ±1
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are resonances, say L
(±1)
o = 0, we need to focus our attention only on the equation

L(1)u(1) = G(1), while all other equations, after expanding in powers of ǫ,

u(α) =
∑

n=1

ǫnu(α)(n) (2.9)

yield, by recursion, the expression of u(α)(n), for |α| 6= 1, in terms of u(1)(m), u(1)∗(l)

and their ξ- derivatives. As a by-product of the ǫ- expansion, one can show that

only the resonant harmonics u(±1) give contributions of order ǫ since u(o)(1) = 0 and

u(α)(n) = 0 for n< | α |. Moreover, because of the special rôle played by the functions

u(1)(n), we introduce the following simpler notation u(1)(n) ≡ u(n), L
(1)
n ≡ Ln and

G(1)(n) ≡ G(n), where, of course,

G(α) =
∑

n=2

εnG(α)(n) , (2.10)

with the additional assumption that the functions u(n), (n = 1, 2, 3 . . .) be infinitely

differentiable with respect to the variable ξ, and with the notation

uℓ(n) ≡ ∂ℓ
ξ u(n) , uo(n) = u(n) . (2.11)

In order to keep track of the ε-order at which a given expression enters in our

equations, it is convenient to denote the ε-order with the symbol Oε, with self-evident

notation such as Oε(uℓ(n)) = ℓ + n, Oε(Ln) = n, Oε(G(n)) = n, etc.. In this way, it

is easily seen that the basic equation is the triangular set of PDEs,

L1 u(n − 1) + L2 u(n − 2) + . . . + Ln−1 u(1) = G(n) , n ≥ 2 , (2.12)

where G(n) is a differential polynomial of the functions {u(m), u∗(m)} with unit

gauge index, this meaning that G(n) −→ exp(iθ)G(n) if u(n) −→ exp(iθ)u(n).

More conveniently, we introduce the finite-dimensional vector space P(n) of differ-

ential polynomials that are i) nonlinear in {u(m), u∗(m)}, ii) with unit gauge index,

6



and iii) with Oε = n. The vector spaces P(n) can be easily identified by specify-

ing the basis of monomials; thus, for instance, P(2) is empty, P(3) is 1-dimensional,

P(3) = {u2(1) u∗(1)}, P(4) is 4-dimensional, P(4) = {u(2) u(1) u∗(1), u2(1) u∗(2),

u1(1) u(1)u∗(1), u2(1) u∗
1(1)}, and so forth.

3. Secularities and reduced equations

For arbitrarily given initial data, it turns out that the solutions u(n) of the tri-

angular system (2.12) are not bounded as t2 → ∞ as a consequence of secularities.

However, as shown in [1], bounded solutions exist if appropriate conditions are satis-

fied. In particular, necessary conditions are

L1u(n) = 0 , ∂nu(1) = Kn[u(1)] , n = 1, 2, . . . , (3.1)

where the vector fields Kn are the commuting flows of the NLS hierarchy, say

K2 = iω2(u2(1) − 2cu2(1)u∗(1)) (3.2)

is the NLS flow, K3 is the complex modified Korteweg-de Vries flow and so on (here c is

assumed to be real so as to deal with the integrable NLS). This finding clearly implies

that Lnu(1) belongs to the vector space P(n+1), so that the triangular system (2.12)

can be recast in the simpler form (note that L2u(1) = G(3) is the NLS equation)

L2u(n − 2) + L3u(n − 3) + . . . + Ln−2u(2) = G̃(n) , n ≥ 4 , (3.3)

where now the differential polynomial G̃(n)ǫ P(n) depends on u(ℓ) only for ℓ up to

n − 2.

The multiple-scale equations (3.3) can be rewritten in a more convenient form by

introducing the linear operators

Mn ≡ ∂n − K ′
n[u(1)] , n ≥ 2 , (3.4)
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where K ′
n[u(1)] is the Frechét derivative (with respect to u(1)) of Kn[u(1)], and by

observing that

Ln − MnǫP(n) . (3.5)

Indeed, the equations (3.2) now read

M2u(n − 2) + M3u(n − 3) + . . . + Mn−2u(2) = F (n) , n ≥ 4 , (3.6)

with the twofold virtue that, as for the linear operators Ln, also the operators (3.4)

commute with each other,

[Mn,Mm] = 0 , (3.7)

and that F (n)ǫP(n) depends on u(ℓ) for ℓ up to n − 3.

4. Integrability

At this point we note that the reduced multiple-scale equations (3.6) hold for

any equation in the general class (2.1), and do not bring, therefore, any information

on the integrability properties of the original equation (2.1). However, a relation

to integrability stems from the following facts. First, in the linear (and trivially

integrable) case, Mn = Ln and F (n) = 0, and the triangular system (3.6) splits into

the set of evolution (with respect to each slow time) equations Mℓu(n) = 0, ℓ ≥ 2,

n ≥ 2, that are obviously compatible with each other. Second, we show in [4] that, if

the original equation (2.1) is C-integrable or S-integrable, then, also in this case, the

system (3.6) has the splitting property

Mℓu(n) = fℓ(n)ǫP(ℓ + n) , (4.1)

where the differential polynomials fℓ(n) satisfy the compatibility conditions Mmfℓ(n)

= Mℓfm(n). In this respect, it is convenient to introduce the subspace Pn(m) of

P(m) of the differential polynomials that depend on u(ℓ) and u∗(ℓ) for ℓ up to n.

In fact, it turns out that, if the equations (4.1) are satisfied for some ℓ and n, then
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fℓ(n)ǫPn−1(n+ℓ). Because of the splitting property (4.1) of integrable equations, and

of the fact that the multiple-scale equations obtain in a neighborough of ε = 0, it is

natural to define the equation Lu = G(u) asymptotically integrable up to order n, or

An-integrable, if all the reduced multiple-scale equations M2u(m) + . . . + Mm u(2) =

F (m + 2) for m = 2, 3, . . . , n, but not for m = n + 1 split into (compatible) equations

of the form Mℓu(m − ℓ + 2) = fℓ(m − ℓ + 2) for ℓ = 2, . . . , n, together with the

condition M3 f2(n) = M2 f3(n). The case n = 1 can be included in this definition

by considering that the equation M2u(1) = F (3) is the NLS equation for which the

integrability condition is Imc = 0, where c is the parameter that appears in (3.2).

As for the computational task, one has to solve the equation M2 f3(n) = M3 f2(n)

where M3 f2(n) is a given vector in Pn−1(n+5). To this aim, we note that the kernel

of the operator Mℓ in the vector space P(n) is empty, and that the differential operator

is rapresented by a rectangular matrix taking a vector of Pn−1(n + 3) into a vector

of Pn−1(n + 5). As a consequence, the solution f3(n) of this equation exists iff the

vector f2(n) satisfies appropriate conditions, that are, therefore, those which entail

asymptotic integrability. The actual computations have been performed by computer

since the algebraic complexity rapidly increases with n. In order to show this, we

give below the dimensionality of the first few vector spaces Pℓ(n) in the notation

Pℓ(n) → dim(Pℓ(n)): P1(3) → 1, P1(4) → 2, P1(5) → 5, P1(6) → 8, P2(4) → 4,

P2(5) → 12, P2(6) → 26, P3(5) → 14, P3(6) → 34. Thus, the A2-integrability

condition on

f2(2) = (α1 + iβ1)u(1)u1(1)u∗(1) + (α2 + iβ2)u
2(1)u∗

1(1) (4.2)

reads β1 = β2 = 0 if c 6= 0, while no condition on αj and βj is required if c = 0.

The A3-integrability condition on the 12-dimensional vector f2(3) is given by 15 real

equations so that the general vector f2(3) depends on 9 real arbitrary parameters.

The explicit expression of these, and higher order, conditions are given in [4]. Once

these conditions have been found, they can be used to test the order of the asymptotic
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integrability of a given wave equation of the form (2.1). Examples of particular wave

equations that have been tested by this method are also reported in [4]. Finally, since

integrable equations are A∞-integrable, we conjecture that, conversely, A∞-integrable

equations are indeed (either C or S-) integrable.
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