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QUASI-PERIODIC SOLUTIONS OF COMPLETELY RESONANT
FORCED WAVE EQUATIONS

MASSIMILIANO BERTI, MICHELA PROCESI

Abstract. We prove existence of quasi-periodic solutions with two frequencies of
completely resonant, periodically forced nonlinear wave equations with periodic spa-
tial boundary conditions. We consider both the cases the forcing frequency is: (Case
A) a rational number and (Case B) an irrational number.

Keywords: Nonlinear Wave Equation, Quasi-Periodic Solutions, Variational Methods,

Lyapunov-Schmidt reduction, Infinite Dimensional Hamiltonian Systems.1
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1. Introduction

We prove existence of small amplitude quasi-periodic solutions for completely reso-
nant forced nonlinear wave equations like

(1.1)

{
vtt − vxx + f(ω1t, v) = 0

v(t, x) = v(t, x+ 2π)

where the nonlinear forcing term

f(ω1t, v) = a(ω1t)v
2d−1 +O(v2d), d > 1, d ∈ N+

is 2π/ω1-periodic in time. We shall consider both the cases

• A) the forcing frequency ω1 ∈ Q

• B) the forcing frequency ω1 ∈ R \ Q.

Existence of periodic solutions for completely resonant forced wave equations was
first proved in the pioneering papers [R1], [R2] (with Dirichlet boundary conditions) if
the forcing frequency is a rational number (ω1 = 1 in [R1]-[R2]). This requires to solve
an infinite dimensional bifurcation equation which lacks compactness property; see
[BN], [C], [BBi]-[BBi1] and references therein for other results. If the forcing frequency
is an irrational number existence of periodic solutions has been proved in [PY]-[Mc]:
here the bifurcation equation is trivial but a “small divisors problem” appears.

To prove existence of small amplitude quasi-periodic solutions for completely reso-
nant PDE’s like (1.1) one generally has to deal with a small divisor problem as well;
however the main difficulty is to understand from which solutions of the linearized
equation at v = 0,

vtt − vxx = 0 ,
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quasi-periodic solutions branch-off: such linearized equation possesses only 2π-periodic
solutions q+(t+ x)+ q−(t− x) where q+(·), q−(·) are 2π-periodic (completely resonant
PDE).

Here is the main difference w.r.t non-resonant PDE’s for which a developed existence
theory of periodic and quasi-periodic solutions has been established, see e.g. [K], [Wa],
[CW], [P], [B1] and references therein.

For completely resonant autonomous PDE’s, existence of periodic solutions has been
proved in [LS], [BP], [BB1], [BB2], [BB3], [GMP], [GP], and quasi-periodic solutions
with 2-frequencies have been recently obtained in [P1]-[P2] for the specific nonlinearities
f = u3 +O(u5). Here the bifurcation equation is solved by ODE methods.

In this paper we prove existence of quasi-periodic solutions with two frequencies ω1,
ω2 for the completely resonant forced equation (1.1) in both the two cases: Case A):
ω1 ∈ Q; Case B): ω1 ∈ R \ Q.

The more interesting case is ω1 ∈ Q (case A) when the forcing frequency ω1 enters
in resonance with the linear frequency 1. To find out from which solutions of the
linearized equation quasi-periodic solutions of (1.1) branch-off, requires to solve an
infinite dimensional bifurcation equation which can not be solved in general by ODE
techniques (it is a system of integro-differential equations). However, exploiting the
variational nature of equation (1.1) like in [BB1]-[BB2], the bifurcation problem can
be reduced to finding critical points of a suitable action functional which, in this case,
possesses the infinite dimensional linking geometry [BR].

1.1. Main results. We look for quasi-periodic solutions v(t, x) of equation (1.1) of
the form

(1.2)

{
v(t, x) = u(ω1t, ω2t+ x)

u(ϕ1 + 2k1π, ϕ2 + 2k2π) = u(ϕ1, ϕ2), ∀k1, k2 ∈ Z

with frequencies

ω = (ω1, ω2) = (ω1, 1 + ε) ,

imposing the frequency ω2 = 1 + ε to be close to the linear frequency 1.
Writing ∂tt − ∂xx = (∂t − ∂x) ◦ (∂t + ∂x) we get

(1.3)
[
ω1∂ϕ1 + (ω2 − 1)∂ϕ2

]
◦

[
ω1∂ϕ1 + (ω2 + 1)∂ϕ2

]
u+ f(ϕ1, u) = 0

and therefore

(1.4)
[
ω2

1∂
2
ϕ1

+ (ω2
2 − 1)∂2

ϕ2
+ 2ω1ω2∂ϕ1∂ϕ2

]
u(ϕ) + f(ϕ1, u) = 0 .

We assume that the forcing term f : T × R → R

f(ϕ1, u) = a2d−1(ϕ1)u
2d−1 +O(u2d), d ∈ N+, d > 1

is analytic in u but has only finite regularity in ϕ1. More precisely

• (H) f(ϕ1, u) :=
∑∞

k=2d−1 ak(ϕ1)u
k, d ∈ N+, d > 1 and the coefficients ak(ϕ1) ∈

H1(T) verify, for some r > 0,
∑∞

k=2d−1 |ak|H1rk < ∞. The function f(ϕ1, u) is
not identically constant in ϕ1.
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We look for solutions u of (1.4) in the Banach space2

Hσ,s :=
{
u(ϕ) =

∑

l∈Z2

ûle
il·ϕ : û∗l = û−l and |u|σ,s :=

∑

l∈Z2

|ûl|e
|l2|σ[l1]

s < +∞
}

where [l1] := max{|l1|, 1} and σ > 0, s ≥ 0.
The space Hσ,s is a Banach algebra with respect to multiplications of functions (see

Lemma 4.1 in the Appendix), namely

u1, u2 ∈ Hσ,s =⇒ u1u2 ∈ Hσ,s and |u1u2|σ,s ≤ C|u1|σ,s|u2|σ,s .

We shall prove the following Theorems.

Theorem A. Let ω1 = n/m ∈ Q. Assume that f satisfies assumption (H) and
a2d−1(ϕ1) 6= 0, ∀ϕ1 ∈ T. Let Bγ be the uncountable3 zero-measure Cantor set

Bγ :=
{
ε ∈ (−ε0, ε0) : |l1 + εl2| >

γ

|l2|
, ∀l1, l2 ∈ Z \ {0}

}

where 0 < γ < 1/6.
There exist constants σ > 0, s > 2, ε > 0, C > 0, such that ∀ε ∈ Bγ, |ε|γ

−1 ≤ ε̄/m2,
there exists a classical solution u(ε, ϕ) ∈ Hσ,s of (1.4) with (ω1, ω2) = (n/m, 1 + ε)
satisfying

(1.5)
∣∣∣u(ε, ϕ) − |ε|

1
2(d−1) q̄ε(ϕ)

∣∣∣
σ,s

≤ C
m2|ε|

γ ω3
1

|ε|
1

2(d−1)

for an appropriate function q̄ε ∈ Hσ,s \ {0} of the form q̄ε(ϕ) = q̄+(ϕ2)+ q̄−(2mϕ1 −
nϕ2).

As a consequence, equation (1.1) admits the quasi-periodic solution v(ε, t, x) :=
u(ε, ω1t, x+ω2t) with two frequencies (ω1, ω2) = (n/m, 1+ε) and the map t→ v(ε, t, ·) ∈
Hσ(T) has the form4

∣∣∣v(ε, t, x) − |ε|
1

2(d−1)

[
q̄+(x+ (1 + ε)t) + q̄−((1 − ε)nt− nx)

]∣∣∣
Hσ(T)

= O
( m2

γ ω3
1

|ε|
2d−1

2(d−1)

)
.

At the first order the quasi-periodic solution v(ε, t, x) of equation (1.1) is the superpo-
sition of two waves traveling in opposite directions (in general, both components q+,
q− are non trivial).

The bifurcation of quasi-periodic solutions looks quite different if ω1 is irrational.

Theorem B. Let ω1 ∈ R\Q. Assume that f satisfies assumption (H),
∫ 2π

0
a2d−1(ϕ1)dϕ1

6= 0 and f(ϕ1, u) ∈ Hs(T), s ≥ 1, for all u.

2Given z ∈ C, z∗ denotes its complex conjugate.
3The proof that Bγ ∩ (0, ε0) and Bγ ∩ (−ε0, 0) are both uncountable ∀ε0 > 0 is like in [BP].
4We denote Hσ(T) := {u(ϕ) =

∑
l∈Z

ûle
ilϕ : û∗

l = û−l , |u|Hσ(T) :=
∑

l∈Z
|ûl|eσ|l| < +∞}.
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Let Cγ ⊂ D ≡ (−ε0, ε0) × (1, 2) be the uncountable zero-measure Cantor set5

(1.6) Cγ :=





(ε, ω1) ∈ D : ω1 /∈ Q ,
ω1

ω2

/∈ Q , |ω1l1 + εl2| >
γ

|l1| + |l2|
,

|ω1l1 + (2 + ε)l2| >
γ

|l1| + |l2|
, ∀ l1, l2 ∈ Z \ {0}




.

Fix any 0 < s < s − 1/2. There exist positive constants ε, C, σ > 0, such that,

∀(ε, ω1) ∈ Cγ with |ε|γ−1 < ε and ε
∫ 2π

0
a2d−1(ϕ1) dϕ1 > 0, there exists a nontrivial

solution u(ε, ϕ) ∈ Hσ,s of equation (1.4) with (ω1, ω2) = (ω1, 1 + ε) satisfying

(1.7)
∣∣∣u(ε, ϕ) − |ε|

1
2(d−1) q̄ε(ϕ2)

∣∣∣
σ,s

≤ C
|ε|

γ
|ε|

1
2(d−1)

for some function q̄ε(ϕ2) ∈ Hσ(T) \ {0}.
As a consequence, equation (1.1) admits the non-trivial quasi-periodic solution v(ε, t, x) :=

u(ε, ω1t, x+ω2t) with two frequencies (ω1, ω2) = (ω1, 1+ε) and the map t→ v(ε, t, ·) ∈
Hσ(T) has the form

∣∣∣v(ε, t, x) − |ε|
1

2(d−1) q̄ε(x+ (1 + ε)t)
∣∣∣
Hσ(T)

= O
(
γ−1|ε|

2d−1
2(d−1)

)
.

Remark 1. Imposing in the definition of Cγ the condition ω1/ω2 = ω1/(1 + ε) ∈ Q we
obtain, by Theorem B the existence of periodic solutions of equation (1.1). They are
reminiscent, in this completely resonant context, of the Birkhoff-Lewis periodic orbits
with large minimal period accumulating at the origin, see [BaB], [BBV].

Remark 2. (Non existence) In Theorem B, existence of quasi-periodic solutions
could follow by other hypotheses on f , see remark 3. However the hypothesis that the
leading term in the nonlinearity f is an odd power of u is not of purely technical nature.

If f(ϕ1, u) = a(ϕ1)u
D with D even and

∫ 2π

0
a(ϕ1) dϕ1 6= 0, then, ∀R > 0 there exists

ε0 > 0 such that ∀σ ≥ 0, s > s− 1/2, ∀(ε, ω1) ∈ Cγ with |ε| < ε0, equation (1.4) does
not possess solutions u ∈ Hσ,s in the ball |u|σ,s ≤ R|ε|1/(D−1), see Proposition 3.

To prove Theorems A-B, instead of looking for solutions of equation (1.4) in a
shrinking neighborhood of 0, it is a convenient devise to perform the rescaling

u → δu with δ := |ε|1/2(d−1)

enhancing the relation between the amplitude δ and the frequency ω2 = 1 + ε. We
obtain the equation

(1.8) Lεu+ εf(ϕ1, u, δ) = 0

where, see (1.3),

Lε :=
[
ω1∂ϕ1 + ε∂ϕ2

]
◦

[
ω1∂ϕ1 + (2 + ε)∂ϕ2

]

=
[
ω2

1∂
2
ϕ1

+ 2ω1∂ϕ1∂ϕ2

]
+ ε

[
(2 + ε)∂2

ϕ2
+ 2ω1∂ϕ1∂ϕ2

]

5See Lemma 3.1.
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and

(1.9) f(ϕ1, u, δ) := sign(ε)
f(ϕ1, δu)

δ2(d−1)
= sign(ε)

(
a2d−1(ϕ1)u

2d−1 + δa2d(ϕ1)u
2d + . . .

)

and sign(ε) := 1 if ω2 > 1 and sign(ε) := −1 if ω2 < 1.

To find solutions of equation (1.8) we shall apply the Lyapunov-Schmidt decompo-
sition method which leads to solve separately a “range equation” and a “bifurcation
equation”.

In order to solve the range equation (avoiding small divisor problems) we restrict ε
to the uncountable zero-measure set Bγ for Theorem A, resp. (ε, ω1) ∈ Cγ for Theorem
B, and we apply the Contraction Mapping Theorem; similar non-resonance conditions
have been employed e.g. in [LS], [BP], [BB1]-[BB2], [Mc], [P1].

To solve the infinite dimensional bifurcation equation we proceed in different ways
in case A) and case B).

As already said, in case A) we follow the variational approach of [BB1],[BB2] noting
that the bifurcation equation is the Euler-Lagrange equation of a “reduced action
functional” which turns out to have the geometry of the infinite dimensional linking
theorem of Benci-Rabinowitz [BR]. However we can not directly apply the linking
theorem because the reduced action functional is defined only in a ball centered at the
origin (where the range equation is solved). Moreover the infinite dimensional linking
theorem of [BR] requires the compactness of the gradient of the functional, property
which is not preserved by extending the functional in the whole infinite dimensional
space.

In order to overcome these difficulties we perform a further finite dimensional reduc-
tion of Galerkin type inspired to [BB3] on a subspace of dimension N , with N large
but independent of ε, see the equations (2.3)-(2.4)-(2.5).

We shall have to solve the (2.4)-(2.5) equations in a sufficiently large domain of q1
(Lemma 2.3), consistent with the | · |H1 bounds on the solution q1 of the bifurcation
equation that can be obtained by the variational arguments, see Lemma 2.6.

Another advantage of this method is that allows to prove the analiticity of the
solution u in the variable ϕ2.

In case B) the bifurcation equation could be solved through variational methods as
in case A). However there is a simpler technique available. The bifurcation equation
reduces, in the limit ε → 0, to a super-quadratic Hamiltonian system with one degree
of freedom. We prove existence of a non-degenerate solution by phase-space analysis.
Therefore it can be continued by the Implicit function Theorem to a solution of the
complete bifurcation equation for ε small.

The paper is organized as follows. For simplicity of exposition we prove first Theorem
A in the case ω1 = 1. We deal with the general case ω1 = n

m
∈ Q at the end of section

2. In section 3 we prove Theorem B.

Acknowledgments: The authors thank Luca Biasco and Philippe Bolle for useful
comments. Part of this paper was written when the second author was at SISSA.
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2. Case A: ω1 ∈ Q

Equation (1.8) becomes, for ω1 = 1

(2.1) Lεu+ εf(ϕ1, u, δ) = 0

where

Lε :=
[
∂ϕ1 + ε∂ϕ2

]
◦

[
∂ϕ1 + (2 + ε)∂ϕ2

]

=
[
∂2
ϕ1

+ 2∂ϕ1∂ϕ2

]
+ ε

[
(2 + ε)∂2

ϕ2
+ 2∂ϕ1∂ϕ2

]
≡ L0 + εL1 .

To fix notations we shall prove Theorem A in the case a2d−1(ϕ1) > 0 and ε > 0, i.e.
sign(ε) > 0.

By the assumption (H) on the nonlinearity f and by the Banach algebra property
of Hσ,s the Nemitskii operator

u→ f(ϕ1, u, δ) ∈ C∞(Bρ,Hσ,s) , 0 < s <
1

2

where Bρ is the ball of radius ρδ−1 in Hσ,s and ρ is connected to the analiticity radius
r of f (note that since ak(ϕ1) ∈ H1(T) then ak(·) ∈ Hσ,s, ∀σ > 0, 0 < s < 1/2).

Equation (2.1) is the Euler-Lagrange equation of the Lagrangian action functional
Ψε ∈ C1(Hσ,s,R) defined by

Ψε(u) :=

∫

T2

1

2
(∂ϕ1u)

2 + (∂ϕ1u)(∂ϕ2u) +
ε(2 + ε)

2
(∂ϕ2u)

2 + ε(∂ϕ1u)(∂ϕ2u) − εF (ϕ1, u, δ)

≡ Ψ0(u) + εΓ(u, δ)

where F (ϕ1, u, δ) :=
∫ u

0
f(ϕ1, ξ, δ)dξ and

Ψ0(u) :=

∫

T2

1

2
(∂ϕ1u)

2 + (∂ϕ1u)(∂ϕ2u)

Γ(u, δ) :=

∫

T2

(2 + ε)

2
(∂ϕ2u)

2 + (∂ϕ1u)(∂ϕ2u) − F (ϕ1, u, δ) .

To find critical points of Ψε we perform a variational Lyapunov-Schmidt reduction
inspired to [BB1]-[BB2], see also [AB].

2.1. The Variational Lyapunov-Schmidt Reduction. The unperturbed functional
Ψ0 : Hσ,s → R possesses an infinite dimensional linear space Q of critical points which
are the solutions q of the equation

L0q = ∂ϕ1

(
∂ϕ1 + 2∂ϕ2

)
q = 0 .

The space Q can be written as

Q =
{
q =

∑

l∈Z2

q̂le
il·ϕ ∈ Hσ,s | q̂l = 0 for l1(l1 + 2l2) 6= 0

}
.

In view of the variational argument that we shall use to solve the bifurcation equation
we split Q as

Q = Q+ ⊕Q0 ⊕Q−
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where6

Q+ :=
{
q ∈ Q : q̂l = 0 for l /∈ Λ+

}
=

{
q+ := q+(ϕ2) ∈ Hσ

0 (T)
}

Q0 :=
{
q0 ∈ R

}

Q− :=
{
q ∈ Q : q̂l = 0 for l /∈ Λ−

}
=

{
q− := q−(2ϕ1 − ϕ2), q−(·) ∈ Hσ,s

0 (T)
}

and

(2.2) Λ+ :=
{
l ∈ Z2 : l1 = 0, l 6= 0

}
, Λ− :=

{
l ∈ Z2 : l1 + 2l2 = 0, l 6= 0

}
.

We shall also use in Q the norm

|q|2H1 = |q+|
2
H1(T) + q2

0 + |q−|
2
H1(T) ∼

∑

l∈Λ−∪{0}∪Λ+

q̂2
l (|l|

2 + 1) .

We decompose the space Hσ,s = Q⊕ P where

P :=
{
p =

∑

l∈Z2

p̂le
il·ϕ ∈ Hσ,s | p̂l = 0 for l1(2l2 + l1) = 0

}
.

Projecting equation (2.1) onto the closed subspaces Q and P , setting u = q+ p ∈ Hσ,s

with q ∈ Q and p ∈ P , we obtain
{
L1[q] + ΠQf(ϕ1, q + p, δ) = 0 (Q)

Lε[p] + εΠPf(ϕ1, q + p, δ) = 0 (P )

where ΠQ : Hσ,s → Q, ΠP : Hσ,s → P are the projectors respectively onto Q and P .

In order to prove analiticity of the solutions and to highlight the compactness of the
problem we perform a finite dimensional Lyapunov-Schmidt reduction, introducing the
decomposition

Q = Q1 ⊕Q2

where

Q1 := Q1(N) :=
{
q =

∑

|l|≤N

q̂le
il·ϕ ∈ Q

}
, Q2 := Q2(N) :=

{
q =

∑

|l|>N

q̂le
il·ϕ ∈ Q

}
.

Setting q = q1 + q2 with q1 ∈ Q1 and q2 ∈ Q2, we finally get

L1[q1] + ΠQ1

[
f(ϕ1, q1 + q2 + p, δ)

]
= 0 ⇐⇒ dΨε(u)[h] = 0 ∀h ∈ Q1 (Q1)(2.3)

L1[q2] + ΠQ2

[
f(ϕ1, q1 + q2 + p, δ)

]
= 0 ⇐⇒ dΨε(u)[h] = 0 ∀h ∈ Q2 (Q2)(2.4)

Lε[p] + εΠP

[
f(ϕ1, q1 + q2 + p, δ)

]
= 0 ⇐⇒ dΨε(u)[h] = 0 ∀h ∈ P (P )(2.5)

where ΠQi
: Hσ,s → Qi are the projectors onto Qi (i = 1, 2).

We shall solve first the (Q2)-(P )-equations for all |q1|H1 ≤ 2R, provided ε belongs
to a suitable Cantor-like set, |ε| ≤ ε0(R) is sufficiently small and N ≥ N0(R) is large
enough (see Lemma 2.3).

6Hσ
0 (T) denotes the functions of Hσ(T) with zero average. Hσ,s(T) := {u(ϕ) =

∑
l∈Z

ûle
ilϕ :

û∗
l = û−l, |u|Hσ,s(T) :=

∑
l∈Z

|ûl|eσ|l|[l]s < +∞} and H
σ,s
0 (T) its functions with zero average.
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Next we shall solve the (Q1)-equation by means of a variational linking argument,
see subsection 2.4.

2.2. The (Q2)-(P )-equations. We first prove that Lε restricted to P has a bounded
inverse when ε belongs to the uncountable zero measure set

Bγ :=
{
ε ∈ (−ε0, ε0) : |l1 + εl2| >

γ

|l2|
, ∀l1, l2 ∈ Z \ {0}

}

where 0 < γ < 1/6. Bγ accumulates at 0 both from the right and from the left, see
[BP].

The operator Lε is diagonal in the Fourier basis {eil·ϕ , l ∈ Z2} with eigenvalues
Dl := (l1 + εl2)(l1 + (2 + ε)l2).

Lemma 2.1. For ε ∈ Bγ the eigenvalues Dl of Lε restricted to P , satisfy

|Dl| =
∣∣∣l1 + εl2

∣∣∣
∣∣∣(l1 + 2l2) + εl2

∣∣∣ > γ ∀l1 6= 0, l1 + 2l2 6= 0 .

As a consequence the operator Lε : P → P has a bounded inverse L−1
ε satisfying

(2.6)
∣∣∣L−1

ε [h]
∣∣∣
σ,s

≤
|h|σ,s
γ

, ∀h ∈ P .

Proof. Denoting by [x] the nearest integer close to x and {x} = x− [x], we have that
Dl > 1 if both l1 6= −[εl2] and l1 + 2l2 6= −[εl2]. If l1 = −[εl2] then

|Dl| ≥
γ

|l2|
(|2l2| − {εl2}) ≥ γ.

In the same way if l1 + 2l2 = −[εl2] we have |Dl| ≥
γ
|l2|

(|2l2| − {εl2}) ≥ γ. �

Lemma 2.2. The operator L1 : Q2 → Q2 has bounded inverse L−1
1 which satisfies

(2.7)
∣∣∣L−1

1 [h]
∣∣∣
σ,s

≤
|h|σ,s
N2

.

Proof. L1 is diagonal in the Fourier basis of Q: eil·ϕ with l ∈ Λ+ ∪ {0} ∪ Λ− (recall
(2.2)) with eigenvalues

(2.8) dl = (2 + ε)l22 if l1 = 0 and dl = (−2 + ε)l22 if l1 + 2l2 = 0 .

The eigenvalues of L1 restricted to Q2(N) verify |dl| ≥ (2 − ε)N2 and (2.7) holds. �

Fixed points of the nonlinear operator G : Q2 ⊕ P → Q2 ⊕ P defined by

G(q2, p; q1) :=
(
− L−1

1 ΠQ2f(ϕ1, q1 + q2 + p, δ), −εL−1
ε ΠPf(ϕ1, q1 + q2 + p, δ)

)

are solutions of the (Q2)-(P )-equations.
Using the Contraction Mapping Theorem we can prove:
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Lemma 2.3. (Solution of the (Q2)-(P ) equations) ∀R > 0 there exist an integer
N0(R) ∈ N+ and positive constants ε0(R) > 0, C0(R) > 0 such that:

(2.9) ∀|q1|H1 ≤ 2R , ∀ε ∈ Bγ , |ε|γ
−1 ≤ ε0(R) , ∀N ≥ N0(R) : 0 ≤ σN ≤ 1 ,

there exists a unique solution (q2(q1), p(q1)) := (q2(ε,N, q1), p(ε,N, q1)) ∈ Q2 ⊕ P of
the (Q2)-(P ) equations satisfying

(2.10) |q2(ε,N, q1)|σ,s ≤
C0(R)

N2
, |p(ε,N, q1)|σ,s ≤ C0(R)|ε|γ−1 .

Moreover the map q1 → (q2(q1), p(q1)) is in C1(B2R, Q2 ⊕ P ) and

(2.11)
∣∣∣p′(q1)[h]

∣∣∣
σ,s

≤ C0(R)|ε|γ−1|h|H1 ,
∣∣∣q′2(q1)[h]

∣∣∣
σ,s

≤
C0(R)

N2
|h|H1 ∀h ∈ Q1 .

Proof. In the Appendix. �

2.3. The (Q1)-equation. Once the (Q2)-(P )-equations have been solved by (q2(q1),
p(q1)) ∈ Q2 ⊕ P there remains the finite dimensional (Q1)-equation

(2.12) L1[q1] + ΠQ1f(ϕ1, q1 + q2(q1) + p(q1), δ) = 0 .

The geometric interpretation of the construction of (q2(q1), p(q1)) is that on the
finite dimensional sub-manifold Z ≡ {q1 + q2(q1) + p(q1) : |q1| < 2R}, diffeomorphic
to the ball

B2R := {q1 ∈ Q1 : |q1|H1 < 2R},

the partial derivatives of the action functional Ψε with respect to the variables (q2, p)
vanish. We claim that at a critical point of Ψε restricted to Z, also the partial derivative
of Ψε w.r.t. the variable q1 vanishes and therefore that such point is critical also for
the non-restricted functional Ψε : Hσ,s → R.

Actually the bifurcation equation (2.12) is the Euler-Lagrange equation of the re-
duced Lagrangian action functional

Φε,N : B2R ⊂ Q1 → R, Φε,N(q1) := Ψε(q1 + q2(q1) + p(q1)) .

Lemma 2.4. Φε,N ∈ C1(B2R,R) and a critical point q1 ∈ B2R of Φε,N is a solution of
the bifurcation equation (2.12). Moreover Φε,N can be written as

(2.13) Φε,N(q1) = const + ε
(
Γ(q1) + Rε,N(q1)

)

where

Γ(q1) :=

∫

T2

(2 + ε)

2
(∂ϕ2q1)

2 + (∂ϕ1q1)(∂ϕ2q1) − a2d−1(ϕ1)
q2d
1

2d

Rε,N(q1) :=

∫

T2

F (ϕ1, q1, δ = 0) − F (ϕ1, q1 + q2(q1) + p(q1), δ)

+
1

2
f(ϕ1, q1 + q2(q1) + p(q1), δ)(q2(q1) + p(q1))
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and, for some positive constant C2(R) ≥ C1(R),

|Rε,N(q1)| ≤ C2(R)
(
δ + |ε|γ−1 +

1

N2

)
(2.14)

∣∣∣R′
ε,N(q1)[h]

∣∣∣ ≤ C2(R)
(
δ + |ε|γ−1 +

1

N2

)
|h|H1 , ∀h ∈ Q1 .(2.15)

Proof. In the Appendix. �

The problem of finding non-trivial solutions of the Q1-equation is reduced to finding
non-trivial critical points of the reduced action functional Φε,N in B2R.

By (2.13), this is equivalent to find critical points of the rescaled functional (still
denoted Φε,N and called the reduced action functional)

(2.16) Φε,N(q1) = Γ(q1) + Rε,N(q1) ≡
(
A(q1) −

∫

T2

a2d−1(ϕ1)
q2d
1

2d

)
+ Rε,N(q1)

where the quadratic form

A(q) :=

∫

T2

(2 + ε)

2
(∂ϕ2q)

2 + (∂ϕ1q)(∂ϕ2q)

is positive definite on Q+, negative definite on Q− and zero-definite on Q0. For q1 =
q+ + q0 + q− ∈ Q1,

(2.17) A(q1) = A(q+ + q0 + q−) = A(q+) + A(q−) =
α+

2
|q+|

2
H1 −

α−

2
|q−|

2
H1

for suitable positive constants α+, α−, bounded away from 0 by constants independent
of ε.

We shall prove the existence of critical points of Φε,N in B2R of “linking type”.

2.4. Linking critical points of the reduced action functional Φε,N . We can
not directly apply the linking Theorem because Φε,N is defined only in the ball B2R.
Therefore our first step is to extend Φε,N to the whole space Q1.

Step 1: Extension of Φε,N . We define the extended action functional Φ̃ε,N ∈ C1(Q1,R)
as

Φ̃ε,N(q1) := Γ(q1) + R̃ε,N(q1)

where R̃ε,N : Q1 → R is

R̃ε,N(q1) := λ
( |q1|2H1

R2

)
Rε,N(q1)

and λ : [0,+∞) → [0, 1] is a smooth, non-increasing, cut-off function such that
{
λ(x) = 1 |x| ≤ 1

λ(x) = 0 |x| ≥ 4
|λ′(x)| < 1 .

By definition Φ̃ε,N ≡ Φε,N on BR := {q1 ∈ Q1 : |q1|H1 ≤ R} and Φ̃ε,N ≡ Γ outside
B2R.
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Moreover, by (2.14)-(2.15), there is a constant C3(R) ≥ C2(R) > 0 such that
∀|q1|H1 ≤ 2R

|R̃ε,N(q1)| ≤ C3(R)
(
δ + |ε|γ−1 +

1

N2

)
(2.18)

∣∣∣R̃′
ε,N(q1)[h]

∣∣∣ ≤ C3(R)
(
δ + |ε|γ−1 +

1

N2

)
|h|H1 , ∀h ∈ Q1 .(2.19)

In the sequel we shall always assume

C3(R)
(
δ + |ε|γ−1 +

1

N2

)
≤ 1 .

Step 2: Φ̃ε,N verifies the geometrical hypotheses of the linking Theorem.

S+

−
W

Q +

Q −
Q

0
+

e+

Figure 1. The cylinder W− and the sphere S+ link.

Lemma 2.5. There exist ε-N-γ-independent positive constants ρ, ω, r1, r2 > ρ, and
0 < ε1(R) ≤ ε0(R), N1(R) ≥ N0(R) such that, ∀|ε|γ−1 ≤ ε1(R), ∀N ≥ N1(R)

(i) Φ̃ε,N(q1) ≥ ω > 0, ∀q1 ∈ S+ :=
{
q1 ∈ Q1 ∩Q+ : |q1|H1 = ρ

}
,

(ii) Φ̃ε,N(q1) ≤ ω/2, ∀q1 ∈ ∂W− where W− is the cylinder

W− :=
{
q1 = q0 + q− + re+ , |q0 + q−|H1 ≤ r1 , q− ∈ Q1 ∩Q−, q0 ∈ R , r ∈ [0, r2]

}

and e+ := cos(ϕ2) ∈ Q1 ∩Q+. Note that ρ, ω are independent of R.

In the following κi, κ± will denote positive constants independent on R, N , ε and γ.
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Proof. (i) ∀q+ ∈ Q1 ∩Q+ with |q+|H1 = ρ < R we have

Φ̃ε,N(q+) = Φε,N(q+) = A(q+) −

∫

T2

a2d−1(ϕ1)
q2d
+

2d
+ Rε,N(q+)

≥
α+

2
ρ2 − κ1ρ

2d −
(
δ + |ε|γ−1 +

1

N2

)
C3(R).(2.20)

Now we fix ρ > 0 small such that (α+ρ
2/2) − κ1ρ

2d ≥ α+ρ
2/4. Next, for (δ + |ε|γ−1+

N−2)C3(R) ≤ α+ρ
2/8 we get by (2.20)

Φ̃ε,N(q+) ≥
α+

8
ρ2 =: ω > 0, ∀ q+ ∈ Q1 ∩Q

+ with |q+| = ρ .

(ii) Let

B1 :=
{
q1 = q0 + q− + r2e+ with |q0 + q−|H1 ≤ r1, q− ∈ Q1 ∩Q−

}
⊂ ∂W−

B2 :=
{
q1 = q0 + q− + re+ with |q0 + q−|H1 = r1, q− ∈ Q1 ∩Q−, r ∈ [0, r2]

}
⊂ ∂W−

and choose r1, r2 > 2R. For q1 = q0 + q− + re+ ∈ B1 ∪ B2

Φ̃ε,N(q1) = Γ(q1) = A(q1) −

∫

T2

a2d−1(ϕ1)(q0 + q− + re+)2d

= −
α−

2
|q−|

2
H1 + r2A(e+) −

∫

T2

a2d−1(ϕ1)
(q0 + q− + re+)2d

2d

≤ −
α−

2
|q−|

2
H1 + r2A(e+) − α

∫

T2

(q0 + q− + re+)2d(2.21)

because a2d−1(ϕ1)/2d ≥ α > 0. Now, by Hölder inequality and orthogonality
∫

T2

(q0 + q− + re+)2d ≥ κ2

(∫

T2

(q0 + q− + re+)2
)d

= κ2

(∫

T2

q2
0 + q2

− + r2e2+

)d

≥ κ3(q
2
0 + r2)d ≥ κ3(q

2d
0 + r2d)

and by (2.21) we deduce

Φ̃ε,N(q0 + q− + re+) ≤ (κ+r
2 − κ3r

2d) −
(α−

2
|q−|

2
H1 + κ3q

2d
0

)
.

Now we fix r2 large such that κ+r
2
2 − κ3r

2d
2 ≤ 0 and therefore

Φ̃ε,N(q1) ≤ κ+r
2
2 − κ3r

2d
2 ≤ 0 ∀q1 ∈ B1 .

Next, setting M := maxr∈[0,r2](κ+r
2 − κ3r

2d), we fix r1 large such that

α−

2
|q−|

2
H1 + κ3q

2d
0 ≥ M ∀ |q− + q0| = r1

and therefore

Φ̃ε,N(q1) ≤M −
(α−

2
|q−|

2
H1 + κ3q

2d
0

)
≤ 0 ∀q1 ∈ B2 .
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Finally if q1 = q− + q0:

Φ̃ε,N(q1) = A(q−) −

∫

T2

a2d−1(ϕ1)
q2d
1

2d
+ R̃ε,N(q1)

≤ |R̃ε,N(q1)| ≤ C3(R)(δ + |ε|γ−1 +N−2)(2.22)

and so Φ̃ε,N(q1) ≤ ω/2 if C3(R)(δ + |ε|γ−1 +N−2) ≤ ω/2. �

We introduce the minimax class

S :=
{
ψ ∈ C(W−, Q) | ψ = Id on ∂W−

}
.

The maps of S have an important intersection property, see e.g. Proposition 5.9 of
[R3].

Proposition 1. (S+ and W− link with respect to S.)

ψ ∈ S =⇒ ψ(W−) ∩ S+ 6= ∅ .

Define the minimax linking level

Kε,N := inf
ψ∈S

max
q∈W−

Φ̃ε,N(ψ(q1)) .

By the intersection property of Proposition 1 and Lemma 2.5-(i)

max
q1∈W−

Φ̃ε,N(ψ(q1)) ≥ min
q1∈S+

Φ̃ε,N(q1) ≥ ω > 0 ∀ψ ∈ S

and therefore
Kε,N > ω > 0 .

Moreover, since Id ∈ S and (2.18)

Kε,N ≤ max
q1∈W−

Φ̃ε,N(q1) ≤ max
q1∈W−

(
Γ(q1) + R̃ε,N(q1)

)

≤ max
q1∈W−

(α+

2
|q+|

2
H1 +

α−

2
|q−|

2
H1 +

∫

T2

κq2d
1

)
+ 1 ≤ K∞ < +∞(2.23)

where K∞ is independent of N, ε, γ since the constants r1, r2 in the definition of W−

are independent of N, ε, γ.
We deduce, by the linking theorem the existence of a (Palais-Smale) sequence (qj) ∈

Q1 at the level Kε,N , namely

(2.24) Φ̃ε,N(qj) → Kε,N , Φ̃′
ε,N(qj) → 0 .

Step 3: Existence of a nontrivial critical point. Our final aim is to prove that the
Palais-Smale sequence qj converges, up to subsequence, to some non-trivial critical

point q1 6= 0 in some open ball of Q1 where Φ̃ε,N and Φε,N coincide.

Lemma 2.6. There exists a constant R∗ > 0, independent on R-ε-N-γ, and functions
0 < ε2(R) ≤ ε1(R), N2(R) ≥ N1(R) such that for all |ε|γ−1 ≤ ε2(R), N ≥ N2(R)

the functional Φ̃ε,N possesses a non-trivial critical point q1 ∈ Q1 with critical value

Φ̃ε,N(q1) = Kε,N , satisfying |q1|H1 ≤ R∗.
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Proof. Writing Φ̃ε,N(q) = Γ(q) + R̃ε,N(q) we derive, by (2.18)-(2.19)

Φ̃ε,N(qj) −
1

2
Φ̃′
ε,N(qj)[qj ] = Γ(qj) −

1

2
Γ′(qj)[qj] +

(
R̃ε,N(qj) −

1

2
R̃′
ε,N(qj)[qj ]

)

=
(1

2
−

1

2d

)∫

T2

a2d−1(ϕ1)q
2d
j +

(
R̃ε,N(qj) −

1

2
R̃′
ε,N(qj)[qj ]

)

≥ α
(1

2
−

1

2d

)∫

T2

q2d
j − (δ + |ε|γ−1 +N−2)C3(R) .

Therefore, by (2.23)-(2.24)

(2.25) K∞ + 1 + |qj|H1 ≥ κ1

∫

T2

q2d
j := κ1|qj |

2d
L2d .

We also deduce, by (2.25), Hölder inequality and orthogonality

K∞ + 1 + |qj|H1 ≥ κ2

(∫

T2

(
q+,j + q0,j + q−,j

)2)d

= κ2

(∫

T2

q2
+,j + q2

0,j + q2
−,j

)d
≥ κ3 (q0,j)

2d

and therefore

(2.26) |q0,j| ≤ κ4

(
1 + |qj|H1

)1/2d

.

By (2.18)-(2.19) and Hölder inequality

Φ̃′
ε,N(qj)[q+,j ] = α+|q+,j|

2
H1

−

∫

T2

a2d−1(ϕ1)q
2d−1
j q+,j + R̃′

ε,N(qj)[q+,j ]

≥ α+|q+,j|
2
H1

− κ5|q+,j|H1

∫

T2

|qj|
2d−1 − (δ + γ−1|ε| +N−2)C3(R)|q+,j|H1

≥ κ6|q+,j|H1

(
|q+,j|H1 − |qj|

2d−1
L2d − 1

)
.(2.27)

By (2.27) and (2.25), using that Φ̃′
ε,N(qj) → 0 and simple inequalities, we conclude

|q+,j|H1 ≤ κ7

(
1 + |qj|

(2d−1)/2d
H1

)
.

Estimating analogously Φ̃′
ε,N(qj)[q−,j] we derive

|q−,j|H1 ≤ κ8

(
1 + |qj|

(2d−1)/2d
H1

)

and by (2.26) we finally deduce

|qj|H1 = |q0,j| + |q+,j|H1 + |q−,j|H1 ≤ κ9

(
1 + |qj|

1/2d
H1

+ |qj |
(2d−1)/2d
H1

)
.

We conclude that |qj|H1 ≤ R∗ for a suitable positive constant R∗ independent of ε, N ,
R and γ.

Since Q1 is finite dimensional qj converges, up to subsequence, to some critical point

q1 of Φ̃ε,N with |q1|H1 ≤ R∗. Finally, since Φ̃ε,N(q1) = Kε,N ≥ ω > 0 we conclude that
q1 6= 0. �
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We are now ready to prove Theorem A in the case ω1 = 1.

Proof of Theorem A for ω1 = 1. Let us fix

R̄ := R∗ + 1 and take |ε|γ−1 ≤ ε2(R̄) := ε .

Set N̄ := N2(R̄) ≥ N0(R̄).
Applying Lemma 2.3 we obtain, for

0 < σ ≤
1

N2(R̄)

a solution (q2(q1), p(q1)) ∈ (Q2(N̄)⊕P )∩Hσ,s of the (Q2)-(P ) equations ∀|q1|H1 ≤ 2R̄.

By Lemma 2.6 the extended functional Φ̃ε,N(q1) possesses a critical point q̄1 6= 0 with

|q̄1|H1 ≤ R∗ < R̄. Since Φ̃ε,N(q1) coincides with Φε,N(q1) on the ball BR̄ we get, by
Lemma 2.4, the existence of a nontrivial weak solution q1 + q2(q1) + p(q1) ∈ Hσ,s of
equation (2.1). Finally

u = |ε|1/2(d−1)
[
q1 + q2(q1) + p(q1)

]
≡ |ε|1/2(d−1)

[
qε + p(q1)

]

solves equation (1.4).
The solution qε := q1 + q2(q1) of the (Q)-equation belongs to Q ∩ Hσ,s+2 by the

regularizing properties of L−1
1 , see in Lemma 2.2 formula (2.8).

Since p̄ := p(q1) solves

(2.28)
(
∂2
ϕ1

+2(1+ε)∂ϕ1∂ϕ2

)
p̄ = −ε

[
(2+ε)∂2

ϕ2
p̄+ΠPf(ϕ1, u, δ)

]
∈ Hσ′,s ∀0 < σ′ < σ

and the eigenvalues of ∂2
ϕ1

+ 2(1 + ε)∂ϕ1∂ϕ2 restricted to P satisfy, for ε ∈ Bγ ,

∣∣∣l1
[
(l1 + 2l2) + ε2l2

]∣∣∣ ≥ γ
|l1|

2|l2|
∀ l1 + 2l2 6= 0, l2 6= 0

and we deduce that p̄ ∈ Hσ′′,s+1 for all 0 < σ′′ < σ′ and |∂ϕ1 p̄|σ′′,s = O(|ε|γ−1). Now,
again by (2.28),

∂2
ϕ1
p̄ = −2(1 + ε)∂ϕ2∂ϕ1 p̄− ε

[
(2 + ε)∂2

ϕ2
p̄ + ΠPf(ϕ1, u, δ)

]
∈ Hσ,s ∀0 < σ < σ′′ .

therefore p̄ ∈ Hσ,s+2 and |p̄|σ,s+2 = O(|ε|γ−1). (1.5) follows with s̄ := s+ 2 > 2.

By (1.2), the function v(ε, t, x) = u(ε, t, x+ (1 + ε)t) is a solution of equation (1.1)
with ω1 = 1. The frequency ω2 = 1 + ε /∈ Q since ε ∈ Bγ . To show that v(ε, t, x)
is quasi-periodic it remains to prove that u depends on both the variables (ϕ1, ϕ2)
independently.

We claim that q̄1 /∈ Q0 ⊕ Q−, i.e. q+(ϕ2) ∈ Q+ \ {0}, and therefore u depends on

ϕ2. Indeed by Lemma 2.6 we know that Φ̃ε,N(q̄1) > ω > 0 and |q1|H1(T) < R. On the

other hand, by (2.22) in Lemma 2.5 Φ̃ε,N(q− + q0) < ω/2, for all |q− + q0|H1 ≤ R̄, so
that necessarily q̄1 /∈ Q0 ⊕Q−.

We claim that any solution u of (2.1) depending only on ϕ2, namely solving

(2.29) (2 + ε)u′′(ϕ2) + f(ϕ1, u(ϕ2), δ) = 0 ,
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is u(ϕ2) ≡ 0 . Indeed, by definition,

δ2(d−1)f(ϕ1, u, δ) = f(ϕ1, δu) =

∞∑

k=2d−1

ak(ϕ1)(δu)
k

(recall sign(ε) = 1). Consider now a smooth zero mean function g(ϕ1) such that∫ 2π

0
ak(ϕ1)g(ϕ1) 6= 0 for some k (recall that by assumption (H) some of the ak(ϕ2) are

not constant). By (2.29) we have

(2 + ε)u′′(ϕ2)

∫ 2π

0

g(ϕ1)dϕ1 +

∫ 2π

0

f(ϕ1, u(ϕ2), δ)g(ϕ1)dϕ1 = 0

which implies, by the assumption (H) on f ,

(2.30)
∞∑

k=2d−1

[δu(ϕ2)]
k

∫ 2π

0

ak(ϕ1)g(ϕ1)dϕ1 = 0 .

The function G(z) :=
∑∞

k=2d−1 bkz
k with bk :=

∫ 2π

0
ak(ϕ1)g(ϕ1)dϕ1 is a nontrivial ana-

lytic function. Therefore equation (2.30), i.e. G(δu(ϕ2)) = 0, cannot have a sequence
of zeros accumulating to 0. So, for δ small enough, u(ϕ2) ≡ 0. �

Proof of Theorem A for any rational frequency ω1 = n
m

∈ Q. Consider now equation (1.8)
with ω1 = n/m where n,m are coprime integers.

The space Q, formed by the solutions of ∂ϕ1(
n
m
∂ϕ1 + 2∂ϕ2)q = 0 can be written as

Q =
{
q =

∑

l∈Z2

q̂le
il·ϕ ∈ Hσ,s | q̂l = 0 for l1(nl1 + 2ml2) 6= 0

}

and is composed by functions of the form

q(ϕ) = q+(ϕ2) + q−(2mϕ1 − nϕ2) + q0 .

Let P be the supplementary space to Q and perform the Lyapunov-Schmidt decom-
position like in (2.3)-(2.4)-(2.5).

For ε in the Cantor set Bγ , the eigenvalues

Dl =
( n
m
l1 + εl2

)( n
m
l1 + 2l2 + εl2

)

of the linear operator Lε can be bounded, arguing as in Lemma 2.1, by

|Dl| =
|(nl1 + εml2)(nl1 + 2ml2 + εml2)|

m2
>

γ

m2
∀l1 6= 0, nl1 + 2ml2 6= 0 .

As a consequence ∣∣∣L−1
ε [h]

∣∣∣
σ,s

≤
m2|h|σ,s

γ
, ∀h ∈ P ,

and, in solving the (Q2)-(P ) equations as in Lemma 2.3, we obtain the new restriction

γ−1|ε| ≤
ε0(R)

m2
, N ≥ N0(R)

and the bound (compare with (2.10)) |p(q1)|σ,s ≤ C0(R)|ε|γ−1m2.
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The corresponding reduced action functional has again the form (2.13)-(2.16) with
the different quadratic part

A(q1) = A(q+ + q0 + q−) = A(q+) + A(q−) =
α+

2
|q+|

2
H1 − n2α−

2
|q−|

2
H1

and therefore it still possesses a linking critical point q̄1 ∈ Q1.
To prove the bound (1.5) note that the eigenvalues of ω2

1∂
2
ϕ1

+ 2ω1(1 + ε)∂ϕ1∂ϕ2

(ω1 = n/m) restricted to P satisfy, for ε ∈ Bγ ,

ω1

∣∣∣l1
(nl1 + 2l2m) + ε2l2m

m

∣∣∣ ≥
ω1|l1|γ

2|l2|m2
∀nl1 + 2ml2 6= 0, l2 6= 0

and therefore p̄ ∈ Hσ,s+2 and |p̄|σ,s+2 = O(|ε|m2/ω3
1γ). �

3. Case B: ω1 6∈ Q

We now look for solutions of equation (1.8) when the forcing frequency ω1 is an
irrational number.

To fix notations we shall prove Theorem B when
∫ 2π

0
a2d−1(ϕ1)dϕ1 > 0 and therefore

ε > 0, i.e. sign(ε) = 1 .
Fixed 0 < s < s−1/2, the Nemitskii operator u→ f(ϕ1, u, δ) ∈ C∞(Bρ,Hσ,s) since,

if ak(ϕ1) ∈ Hs(T), then ak(·) ∈ Hσ,s, ∀σ > 0, 0 < s < s− 1/2.

For ε = 0 equation (1.8) reduces to

(3.1) ω1∂ϕ1

(
ω1∂ϕ1 + 2∂ϕ2

)
q = 0

and its solutions q form, by the irrationality of ω1, the infinite dimensional subspace

(3.2) Q :=
{
q ∈ Hσ,s : ∂ϕ1q ≡ 0

}
=

{
q = q(ϕ2) ∈ Hσ(T)

}
.

To find solutions of (1.8) for ε 6= 0, we perform a Lyapunov-Schmidt reduction and
we decompose the space

Hσ,s = Q⊕ P

where Q ≡ Hσ(T) and

P :=
{
p =

∑

l∈Z2

p̂le
il·ϕ ∈ Hσ,s | p̂l = 0 for l1 = 0

}
.

Projecting equation (1.8) onto the closed subspaces Q and P , setting u = q+ p ∈ Hσ,s

with q ∈ Q, p ∈ P we obtain

(2 + ε)q̈ + ΠQ

[
f(ϕ1, q + p, δ)

]
= 0 (Q)(3.3)

Lε[p] + εΠP

[
f(ϕ1, q + p, δ)

]
= 0 (P )(3.4)

where q̈ = ∂2
ϕ2
q, ΠQ : Hσ,s → Q is the projector onto Q,

(ΠQu)(ϕ2) :=
1

2π

∫ 2π

0

u(ϕ1, ϕ2) dϕ1 ,

and ΠP = Id −Q is the projector onto P .



18 MASSIMILIANO BERTI, MICHELA PROCESI

We could proceed now as in the previous section performing a finite dimensional
reduction and applying variational methods. However, in this case, the infinite dimen-
sional (Q)-equation can be directly solved by the Implicit Function Theorem in a space
of analytic functions.

For this, it is useful to consider the parameter δ (and ε = δ2(d−1)) in the right hand
side of (3.4), as an independent parameter δ = η, ε = η2(d−1), and to solve the equation

(3.5) Lε[p] + η2(d−1) ΠP

[
f(ϕ1, q + p, η)

]
= 0 (Pη)

for (ε, ω1) in the Cantor set Cγ and for all η small. In this way we highlight the
smoothness of the solution p(η, ε, ·) of the (Pη)-equation (3.5) in the variable η.

3.1. Solution of the (Pη)-equation. We first prove that the operator Lε : P → P
has a bounded inverse when (ε, ω1) belongs to the Cantor set Cγ defined in (1.6).

Lemma 3.1. For any ε0 > 0 the Cantor set Cγ is uncountable.

Proof. Consider the set C of couples x1, x2 ∈ Bγ such that:

x1 ∈ (−ε1, ε1) , x2 ∈
(
1 + ε1, 2 − ε1

)
, x1 + x2 /∈ Q , x1 − x2 /∈ Q .

where ε1 = ε0/2. C is an uncountable subset of R2 since for all x1 ∈ Bγ the conditions
x1± x2 /∈ Q exclude only a countable set of values x2. The Lemma follows since
Cγ contains ψ−1C where ψ : (ε, ω1) → (ε/ω1, (2 + ε)/ω1) is an invertible map for
(ε, ω1) ∈ (−ε0, ε0) × (1, 2). �

The operator Lε has eigenvalues Dl = (ω1l1 + εl2)(ω1l1 + 2l2 + εl2).

Lemma 3.2. For (ε, ω1) ∈ Cγ the eigenvalues Dl of Lε restricted to P satisfy

(3.6) |Dl| =
∣∣∣(ω1l1 + εl2)(ω1l1 + 2l2 + εl2)

∣∣∣ > γ , ∀l1 6= 0 .

As a consequence, the operator Lε : P → P has a bounded inverse L−1
ε satisfying

(3.7)
∣∣∣L−1

ε [p]
∣∣∣
σ,s

≤
|p|σ,s
γ

, ∀p ∈ P .

Proof. Estimate (3.6) is trivially satisfied if −l1 6= ε
ω1
l2 and −l1 6= 2+ε

ω1
l2. Now, if

−l1 = [ ε
ω1
l2], then |(2 + ε)l2+ ω1l1| > |(2 + ε)l2 − εl2| −

1
2
> |l2|. Therefore, using

|ω1l1 + εl2| > γ/|l2|, we get (3.6). The same estimate (3.6) holds if −l1 = [2+ε
ω1
l2] since,

in this case, |ω1l1 + εl2| > |(2 + ε)l2 − εl2| −
1
2
> |l2|. �

Fixed points of the nonlinear operator G : P → P defined by

G(η, p) := −η2(d−1) L−1
ε ΠPf(ϕ1, q + p, η)

are solutions of the (Pη)-equation.
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Lemma 3.3. Assume (ε, ω1) ∈ Cγ. ∀R > 0 there exists η0(R), C0(R) > 0 such
that ∀|q|Hσ(T) ≤ R, 0 < ηγ−c ≤ η0(R), with c = 1/2(d − 1), there exists a unique
p(η, q) ∈ P ∩Hσ,s solving the (Pη)-equation (3.5) and satisfying

(3.8) |p(η, q)|σ,s ≤ C0(R)η2(d−1)γ−1

and the equivariance property

(3.9) p(η, qθ)(ϕ1, ϕ2) = p(η, q)(ϕ1, ϕ2 − θ), ∀θ ∈ T

where qθ(ϕ1, ϕ2) := q(ϕ1, ϕ2 − θ). Moreover p(·, ·) ∈ C1((0, η0(R)) ×Q;P ).

Proof. In the Appendix. �

3.2. The (Q)-equation. Once the (Pη)-equation has been solved by p(η, q) ∈ P there
remains the infinite dimensional bifurcation equation

(3.10) (2 + ε)q̈ + ΠQ

[
f(ϕ1, q + p(η, q), η)

]
= 0 .

Recalling (1.9), the (Q)-equation (3.10) evaluated at η = 0 reduces to the ordinary
differential equation

(3.11) (2 + ε)q̈ + 〈a2d−1〉 q
2d−1 = 0

where 〈a2d−1〉 := (1/2π)
∫ 2π

0
a2d−1(ϕ1) dϕ1.

Equation (3.11) is a superlinear autonomous Hamiltonian system with one degree of
freedom and can be studied by a direct phase-space analysis.

Lemma 3.4. There exists σ > 0 such that, equation (3.11) possesses a 2π-periodic,
analytic solution q(ϕ2) ∈ Hσ(T). Morevoer, q(ϕ2) is non-degenerate up to time trans-
lations, i.e. the linearized equation on q

(3.12) (2 + ε)ḧ+ (2d− 1)〈a2d−1〉q
2(d−1)h = 0

possesses a one-dimensional space of 2π-periodic solutions, spanned by q̇.

Proof. Up to a rescaling, equation (3.11) can be written as ẍ = −V ′(x) with potential
energy V (x) := x2d. All solutions of such system are analytic and periodic with period

T (E) = 4

∫ E
1
2d

0

dx√
2(E − x2d)

= 4E
1
2d

− 1
2

∫ 1

0

dx√
2(1 − x2d)

.

The equation T (E) = 2π has a solution q̄(ϕ2) which is in Hσ(T) for some appropriate
σ̄ > 0. The non-degeneracy of the corresponding 2π-periodic solution follows by

dT

dE
= 2

(1

d
− 1

)
E

1
2d

− 3
2

∫ 1

0

dx√
2(1 − x2d)

6= 0

and the next Proposition proved in the Appendix.
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Proposition 2. Suppose the autonomous second order equation −ẍ = V ′(x), x ∈ R,
possesses a continuous family of non-constant periodic solutions x(E, t) with energy E

and period T (E) satisfying the anysocronicity condition dT (E)
dE

6= 0. Then x(E, t) is non-
degenerate up to time translations, i.e. the T (E)-periodic solutions of the linearized
equation

(3.13) −ḧ = D2V (x(E, t))h

form a one dimensional subspace spanned by (∂tx)(E, t).

�

From now on we fix R̄ := |q|Hσ(T) + 1 in Lemma 3.3 and take 0 < ηγ−c ≤ η0(R̄).
By Lemma 3.4 and (3.9), we can construct solutions of the infinite dimensional

bifurcation equation (3.10) by means of the Implicit Function Theorem:

Lemma 3.5. There exist 0 < η1 ≤ η0(R̄), C1 > 0 such that for all 0 < ηγ−c ≤ η1,
equation (3.10) has a unique (up to translations) solution q̄η(ϕ2) ∈ Hσ(T) satisfying

|q̄η − q|Hσ(T) ≤ C1|η| .

Proof of Theorem B. Setting again δ ≡ η, q̄ε(ϕ2) + p(ε, q̄ε) solves (1.8) and

u(ε, ϕ) = |ε|1/2(d−1)
[
q̄ε(ϕ2) + p(ε, q̄ε)

]

is a non trivial solution of (1.4). The bound (1.7) follows by (3.8). As in Theorem A
the solution u depends on both the variables (ϕ1, ϕ2). Finally, the solution v(ε, t, x) :=
u(ε, ω1t, x + ω2t) of (1.1) is quasi-periodic since, by the definition of Cγ , ω1/ω2 = ω1/
(1 + ε) /∈ Q. �

Remark 3. To prove existence of solutions of (1.8), i.e. (1.1), it is sufficient that the
second order equation (3.11) possessess a continuous, nonisocronous family of non-
constant periodic orbits one of them having period 2π/j, see Proposition 2.

The hypothesys that the leading term in the nonlinearity f is an odd power of u is
not of technical nature. The following non-existence result holds:

Proposition 3. (Non-existence) Let f(ϕ1, u) = a(ϕ1)u
D with D even and

∫ 2π

0
a(ϕ1)

dϕ1 6= 0. ∀R > 0, there exists ε0 > 0 such that ∀σ ≥ 0, s > s − 1
2
, ∀(ε, ω1) ∈ Cγ

with |ε| < ε0, equation (1.4) does not possess solutions u ∈ Hσ,s in the ball |u|σ,s ≤
R|ε|1/(D−1).

Proof. We first rescale equation (1.4) with u→ |ε|1/(D−1)u obtaining

(3.14) Lεu+ |ε|a(ϕ1)u
D = 0 .

Write any solution uε ∈ Bσ,s(R) := {u ∈ Hσ,s : |u|σ,s ≤ R} of (3.14) as uε = qε + pε
with qε ∈ Q, pε ∈ P . pε satisfies the (P )-equation Lεp + |ε|ΠPa(ϕ1)u

D = 0 and
therefore |pε|σ,s ≤ C(R)|ε|. Then, for ε small enough, pε ≡ p(ε, qε) where p(ε, qε) is
constructed as in Lemma 3.3 and satisfies the estimate |p(ε, qε)|σ,s ≤ C|ε||qε|

D
Hσ(T).
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The projection qε satisfies the (Q)-equation

(3.15) (2 + ε)q̈ε + sign(ε)ΠQ

[
a(ϕ1)(qε + p(ε, qε))

D
]

= 0

and therefore |qε|Hσ,2(T) ≤ C(R).
We claim that qε → 0 in Hσ(T) (and so in Hσ,s) for ε → 0. Indeed, from any

subsequence qε, we can extract by the compact embedding Hσ,2(T) →֒ Hσ(T) another
convergent subsequence qεn

such that qεn
→ q ∈ Hσ(T). By (3.15), we deduce that

2q̈ + sign(ε)〈a〉qD = 0

where 〈a〉 :=
∫ 2π

0
a(ϕ1) dϕ1 6= 0. Such equation does not possess non-trivial periodic

solutions for both sign(ε) = ±1, i.e. ε > 0 and ε < 0, and we conclude that q = 0.
We finally prove that equation (3.15) does not possess non-trivial periodic solutions

in a small neighborhood of the origin.
Linearizing equation (3.15) at q = 0 we get (2 + ε)ḧ = 0 whose solutions in Hσ(T)

are the constants. We can perform another Lyapunov-Schmidt reduction close to 0
decomposing Hσ(T) = {constants} ⊕ {zero average functions}, namely qε = ρ + w.
By the Implicit function Theorem we get that for any constant |ρ| ≤ ρ0 small enough
(independently of ε) there exists a unique zero average function wρ with |wρ|Hσ(T) =
O(ρD) solving

(2 + ε)ẅρ +
[
a(ϕ1)(ρ+ wρ + p(ε, qε))

D −
〈
a(ϕ1)(ρ+ wρ + p(ε, qε))

D
〉]

= 0 .

Hence ρ is such that

0 =
〈
a(ϕ1)(ρ+ wρ + p(ε, qε))

D
〉

= 〈a〉ρD + o(ρD) .

This implies ρ = 0 since 〈a〉 6= 0 and so qε = ρ+ wρ = 0. �

4. Appendix

Lemma 4.1. Hσ,s is a Banach algebra for σ, s ≥ 0.

Proof. By the product Cauchy formula

uv =
∑

j∈Z2

( ∑

k∈Z2

uj−kvk

)
eij·ϕ

and therefore

|uv|σ,s :=
∑

j∈Z2

eσ|j2|[j1]
s
∣∣∣
∑

k∈Z2

uj−kvk

∣∣∣ ≤
∑

j∈Z2

eσ|j2|[j1]
s
∑

k∈Z2

|uj−k| |vk|

≤
∑

k∈Z2

|vk|
∑

j∈Z2

|uj−k|e
σ|j2|[j1]

s

≤ 2s
∑

k∈Z2

|vk|e
σ|k2|[k1]

s
∑

j∈Z2

|uj−k|e
σ|j2−k2|[j1 − k1]

s := 2s|u|σ,s|v|σ,s

since eσ|j2| ≤ eσ|j2−k2|eσ|k2| and [j1] ≤ 2[j1 − k1][k1] for all k, j ∈ Z2. �
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Proof of Lemma 2.3. Let us consider

B :=
{

(q2, p) ∈ Q2 ⊕ P : |q2|σ,s ≤ ρ1 , |p|σ,s ≤ ρ2

}

with norm |(q2, p)|σ,s := |q2|σ,s + |p|σ,s. We claim that, under the assumptions (2.9)
there exists 0 < ρ1, ρ2 < 1, see (4.6), such that the map (q2, p) → G(q2, p; q1) is a
contraction in B, i.e.:

(i) (q2, p) ∈ B =⇒ G(q2, p; q1) ∈ B;
(ii) |G(q2, p; q1) − G(q̃2, p̃; q1)|σ,s ≤ (1/2)|(q2, p) − (q̃2, p̃)|σ,s , ∀(q2, p), (q̃2, p̃) ∈ B.

In the following κi will denote positive constants independent on R, N and ε (i.e. on
δ := |ε|1/2(d−1)).

By (2.7) and the Banach algebra property of Hσ,s

|G1(q2, p; q1)|σ,s = |L−1
1 ΠQ2f(ϕ1, q1 + q2 + p, δ)|σ,s

≤
κ1

N2

(
|q1|

2d−1
σ,s + |q2|

2d−1
σ,s + |p|2d−1

σ,s

)
(4.1)

provided that 0 ≤ δ ≤ δ0(R). Similarly, for ε ∈ Bγ , by (2.6),

|G2(q2, p; q1)|σ,s = |εL−1
ε ΠPf(ϕ1, q1 + q2 + p, δ)|σ,s

≤ κ2|ε|γ
−1

(
|q1|

2d−1
σ,s + |q2|

2d−1
σ,s + |p|2d−1

σ,s

)
.(4.2)

For all q1 ∈ Q1(N) and since 0 ≤ s < 1/2

|q1|σ,s =
∑

|l2|≤N

|q̂0,l2|e
σ|l2| + |q̂−2l2,l2|e

σ|l2|[−2l2]
s

≤ eσN
∑

|l2|≤N

|q̂0,l2 | + |q̂−2l2,l2 |[−2l2]
s ≤ κ3

[( ∑

|l2|≤N

|q̂0,l2 |
2[l2]

2
)1/2( ∑

l2∈Z

1

[l2]2

)1/2

+
( ∑

|l2|≤N

|q̂−2l2,l2 |
2[l2]

2
)1/2( ∑

l2∈Z

1

[l2]2(1−s)

)1/2]
≤ κ4|q1|H1(4.3)

whenever 0 ≤ σN ≤ 1.
Substituting in (4.1)-(4.2) we get ∀|q1|H1 ≤ 2R, ∀|q2|σ,s ≤ ρ1, ∀|p|σ,s ≤ ρ2

|G1(q2, p; q1)|σ,s ≤ κ5N
−2

(
R2d−1 + ρ2d−1

1 + ρ2d−1
2

)
(4.4)

|G2(q2, p; q1)|σ,s ≤ κ5|ε|γ
−1

(
R2d−1 + ρ2d−1

1 + ρ2d−1
2

)
.(4.5)

Now, setting C0(R) := κ5R
2d−1, we define

(4.6) ρ1 :=
2C0(R)

N2
ρ2 := 2|ε|γ−1C0(R) .

By (4.4), (4.5) there exists N0(R) ∈ N+ and ε0(R) > 0 such that ∀N ≥ N0(R) and
∀|ε|γ−1 ≤ ε0(R)

|G1(q2, p; q1)|σ,s ≤ ρ1 |G2(q2, p; q1)|σ,s ≤ ρ2

proving (i). Item (ii) is obtained with similar estimates.
By the Contraction Mapping Theorem there exists a unique fixed point (q2(q1), p(q1)) :=

(q2(ε,N, q1), p(ε,N, q1)) of G in B. The bounds (2.10) follow by (4.6).
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Since G ∈ C1(Q2⊕P ×Q1;Q2⊕P ×Q1) the Implicit function Theorem implies that
the maps Q1 ∋ q1 → (q2(ε,N, q1), p(ε,N, q1)) are C1.

Differentiating (q2(q1), p(q1)) = G(q2(q1), p(q1), q1)

q′2(q1)[h] = −L−1
1 ΠQ2(∂uf)(ϕ1, q1 + q2(q1) + p(q1), δ)

(
h+ q′2(q1)[h] + p′(q1)[h]

)

p′(q1)[h] = −εL−1
ε ΠQ2(∂uf)(ϕ1, q1 + q2(q1) + p(q1), δ)

(
h+ q′2(q1)[h] + p′(q1)[h]

)

and using (2.7), (2.6) and the Banach algebra property of Hσ,s

|q′2(q1)[h]|σ,s ≤ C(R)N−2
(
|h|σ,s + |q′2(q1)[h]|σ,s + |p′(q1)[h]|σ,s

)

|p′(q1)[h]|σ,s ≤ C(R)|ε|γ−1
(
|h|σ,s + |q′2(q1)[h]|σ,s + |p′(q1)[h]|σ,s

)

which implies the bounds (2.11) since

det

∣∣∣∣∣∣

1 − C(R)N−2 −C(R)N−2

−C(R)|ε|γ−1 1 − C(R)|ε|γ−1

∣∣∣∣∣∣
≥

1

2

for C(R)(|ε|γ−1 +N−2) small enough and (4.3).

Proof of Lemma 2.4. By (2.4), (2.5) we have that, at u := q1 + q2(q1) + p(q1),

(4.7) dΨε(u)[h] = 0 ∀h ∈ Q2 and dΨε(u)[h] = 0 ∀h ∈ P .

Since q′2(q1)[k] ∈ Q2 and p′(q1)[k] ∈ P ∀k ∈ Q1, we deduce

dΦε,N(q1)[k] = dΨε(u)
[
h+ q′2(q1)[k] + p′(q1)[k]

]
= dΨε(u)[k] ∀k ∈ Q1

and therefore u := q1 + p(q1) + q2(q1) solves also the (Q1)-equation (2.3).

Write Ψε(u) = Ψ
(2)
ε (u) − ε

∫
T2 F (ϕ1, u, δ) where

Ψ(2)
ε (u) :=

∫

T2

1

2
(∂ϕ1u)

2 + (1 + ε)(∂ϕ1u)(∂ϕ2u) +
ε(2 + ε)

2
(∂ϕ2u)

2

is an homogeneous functional of degree two. By homogeneity:

(4.8) Ψε(u) =
1

2
dΨ(2)

ε (u)[u] − ε

∫

T2

F (ϕ1, u, δ) .

By (2.4), (2.5) (i.e. (4.7))

(4.9) dΨ(2)
ε (q1 + q2(q1) + p(q1))[q2(q1) + p(q1)] = ε

∫

T2

f(ϕ1, u, δ)(q2(q1) + p(q1)) .
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Substituting in (4.8) we obtain, at u = q1 + q2(q1) + p(q1)

Φε,N(q1) = Ψε(q1 + p(q1) + q2(q1)) =
1

2
dΨ(2)

ε (u)[q1 + p(q1) + q2(q1)] − ε

∫

T2

F (ϕ1, u, δ)

=
1

2
dΨ(2)

ε (q1)[q1] − ε

∫

T2

F (ϕ1, u, δ) +
1

2
f(ϕ1, u, δ)(q2(q1) + p(q1))

= Ψ0(q1) + ε

∫

T2

(2 + ε)

2
(∂ϕ2q1)

2 + (∂ϕ1q1)(∂ϕ2q1) − F (ϕ1, u, δ)

+
1

2
f(ϕ1, u, δ)(q2(q1) + p(q1)) = const + ε(Γ(q1) + Rε,N(q1))

because Ψ0(q1) ≡ const.
By (2.10) the bounds (2.14)-(2.15) follow.

Proof of Lemma 3.3. The existence of p(η, q) ∈ Hσ,s can be proved as in Lemma 2.3
using the Contraction Mapping Theorem. The smoothness of p(η, q) follows by the
Implicit Function Theorem since G(η, p) is smooth in η and q.

By the invariance of equation (3.5) under translations in the ϕ2 variable the function
p(η, q)(ϕ1, ϕ2 − θ) solves

p(η, q)(ϕ1, ϕ2 − θ) + η2(d−1) L−1
ε ΠPf

(
ϕ1, qθ + p(η, q)(ϕ1, ϕ2 − θ), η

)
= 0

and, therefore, by uniqueness (3.9) holds.

Proof of Proposition 2. Write x(E, t) = y(ω(E)t, E) where y(ϕ,E) is 2π-periodic in
ϕ and ω(E) := 2π/T (E). The functions (∂tx)(E, t) and

(4.10) (∂Ex)(E, t) = t
dω(E)

dE
(∂ϕy)(ω(E)t, E) + (∂Ey)(ω(E)t, E)

are two linearly independent solutions of the linearized equation (3.13). (∂tx)(E, t) is
2π-periodic while, since

dω(T )

dT
= 2πT (E)−2dE(T )

dT
6= 0 and (∂ϕy)(ϕ,E) 6≡ 0

(if not x(E, t) would be constant in t), (∂Ex)(E, t) is not 2π-periodic. We conclude
that the space of T (E)-periodic solutions of (3.13) form a 1-dimensional linear space
spanned by (∂tx)(E, t).
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