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Abstract. We prove the existence of small amplitude periodic solutions, for a large
Lebesgue measure set of frequencies, in the nonlinear beam equation with a weak qua-
dratic and velocity dependent nonlinearity and with Dirichelet boundary conditions. Such
nonlinear PDE can be regarded as a simple model describing oscillations of flexible struc-
tures like suspension bridges in presence of an uniform wind flow. The periodic solutions
are explicitly constructed by a convergent perturbative expansion which can be considered
the analogue of the Lindstedt series expansion for the invariant tori in classical mechanics.
The periodic solutions are defined only in a Cantor set, and resummation techniques of
divergent powers series are used in order to control the small divisors problem.

1. Introduction and Main Results

1.1. The search of periodic solutions in nonlinear wave equations has attracted a
wide interest in recent times. In the finite dimensional case the problem has its
analogous in the study of periodic orbits close to elliptic equilibrium points: results
of existence have been obtained in such a case starting from Lyapunov [20]. Sys-
tems with infinitely many degrees of freedom (as the nonlinear wave equation, the
beam equation, the nonlinear Schrödinger equation and other PDE systems) have
been studied much more recently; the problem is much more difficult because of
the presence of a small divisors problem, which is absent in the finite dimensional
case, and one has to prove an infinite dimensional KAM theorem to overcome such
difficulty. Periodic or quasi periodic solutions in PDEs have been obtained for in-
stance by Wayne [21], Kuksin [18], Kuksin and Poeschel [19] by KAM methods and
by Craig and Wayne [9] and Bourgain [5],[7],[6] by a Lyapunov-Schmidt decompo-
sition and Newton iteration scheme; this last method is flexible and it has been
applied in more than one dimension and for non hamiltonian PDEs. More recently
periodic solutions in PDEs have been constructed [13], [14] by convergent power
series expansion similar to the Lindstedt series for KAM tori [10],[11] using resum-
mation techniques of divergent power series to control the small divisor problem;
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2 V. MASTROPIETRO AND M. PROCESI

this method has the advantage of being constructive and it can be also extended to
non hamiltonian PDEs.

Generally in the literature the nonlinear terms in the PDEs are assumed odd and
velocity-independent, as such features considerably simplify the analysis. A velocity
dependent non linearity has been considered only in [5], in which the string equation
with a nonlinear term u2

t and periodic boundary conditions is considered. The recent
papers [3] and [4] consider the massless string equation, under Dirichlet boundary
conditions, with velocity independent (but otherwise quite general) nonlinearities.

Aim of this paper is to construct periodic solutions in a beam equation with an
even and velocity dependent nonlinearity and Dirichelet boundary conditions;

{

vtt + ∂4
xv + µv = av2 + bv2

t ,

v(0, t) = v(π, t) = 0,
(1.1)

where a, b, µ are suitable parameters. As it will appear clear in the following, our
results could be easily extended to include more general nonlinearities. With respect
to [5], we have considered the beam instead of the wave equation, leading to a
simpler small divisor problem; on the other hand Dirichelet boundary conditions
and even nonlinearities introduce various regularity problems which are not present
in the case of periodic boundary conditions considered in [5].

The interest of (1.1) lies moreover in the fact that it can be regarded as a simple
model describing oscillations of flexible structures; for instance, see [16],[8], a sus-
pension bridge subjected to elastic forces due to suspensions and to forces caused
by a uniform wind-flow has been described by a beam equation with a nonlinear
terms quadratic in v (describing the anharmonic elastic forces) and depending also
from vt (to take into account the forces due to the wind flow). Another applications
of PDE with this kind of nonlinear terms is in [17] to describe the oscillations of
the atmosphere on the flat earth. In the literature there is no proof of existence
of periodic solutions in a large set for such a problem. We will construct such
solutions generalizing to the present case the approach based on Lindstedt series
expansion already adopted first in [12] to prove the existence of periodic solutions
in a zero measure set, and later on generalized to construct periodic solutions in a
large measure set in [12], [13],[14].

Equation (1.1) has an elliptic fixed point at v = 0 with frequencies ωm =
√

m4 + µ so that for a = b = 0 every solution of (1.1) can be written as

v(x, t) =
∞
∑

m=0

Am cos(ωmt + θm) sinmx, (1.2)

where θm is an arbitrary phase. In particular if µ /∈ Q the fixed point is non-
degenerate so that the only ω1 periodic solutions are:

A1 cosω1t sin x , A1 ∈ R (1.3)

We will prove that there are periodic solutions of the nonlinear PDE (1.1) with
a 6= 0, b 6= 0 with frequency Ω = ω1 + ε, for any small ε in a Cantor set, which
are ε-close to (1.3); this is possible provided that we choose a proper A1 which is
O(

√
ε).
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1.2. To face the small divisor problem, some Diophantine conditions must be
imposed on the mass µ.

Definition 1. We call M(γ), γ ≤ 2−6, the set µ ∈ [0, µ0], µ0 = 1
8 verifying the

following Diophantine condition

|ω1n ± ωm| ≥ γ|n|−τ0 ∀n ∈ Z \ {0} and ∀m ∈ N \ {1} (1.4)

|ω1n ± ωm ± ωm′ | ≥ γ|n|−τ0 ∀n ∈ Z \ {0} and ∀m, m′ ∈ N \ {1}

It will be shown in Appendix A1 that the set of µ verifying (1.4), for some positive
γ, is of measure O(µ0) provided that τ0 ≥ 4 and γ is small enough.

Our main result is the following Theorem.

Theorem 1. Generically in a, b, for any µ ∈ M(γ) there exists an ε0 > 0 and
a Cantor set C(γ) ⊂ (0, ε0) verifying limε→0+

1
ε meas (C(γ) ∩ (0, ε)) = 1 such that

for all ε ∈ C(γ) there exists a periodic solution v(x, Ωt) : T
2 → R of (1.1) , with

Ω = ω1 + ε, of the form

v(x, Ωt, ε) =
√

εu(x, Ωt; ε) =
√

ε
∑

n∈Z

∞
∑

m=1

einΩt sin(mx)un,m (1.5)

with un,m = u−n,m and

|un,m| ≤ √
ε
C0e

−σ|n|

m7
, (n, m) 6= (±1, 1) , u±1,1 = Oε(1) (1.6)

with suitable constants C0, σ.

Note that in presence of odd nonlinearities, like v3, one can continue the periodic
solution in an analytic solution both is space and time, see [13] ; on the contrary, in
presence of even or velocity depending nonlinearities, like in the present case, the
periodic solutions are not analytic in space and this lack of regularity is reflected in
some complications in their constructions.

1.3. By inserting (1.6) in (1.1) we get a closed equation for the coefficients un,m(ε) ≡
un,m

un,m

[

−Ω2n2 + ω2
m

]

=
√

εf̂n,m(u). (1.7)

where ωm is defined in (1.2) and

f̂n,m(u) =
Ω

2π2

∫ π

0

dx

∫ 2π/Ω

0

dt sin(mx)e−inΩt(au2 + bu2
t ) (1.8)

More explicitly, see Appendix A2, (1.8) can be written as

f̂n,m =

∗
∑

n1,m1
n2,m2

vm,m1,m2δn1+n2,n(a + b(iΩn1)(iΩn2))un1,m1un2,m2 (1.9)

where
∑∗

means that the sum is over m, m1, m2 such that m±m1±m2 = odd and

vm,m1,m2 =
4mm1m2

π(m2 − (m1 − m2)2)(m2 − (m1 + m2)2)
(1.10)
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One could try to write a power series expansion in ε for u(x, t), using (1.7) to get
recursive equations for the coefficients. However by proceeding in this way one
finds that the coefficient of order k is given by a sum of terms some of which of
order O(k!α), for some constant α. This is the same phenomenon occurring in
the Lindstedt series for invariant KAM tori [10],[11] in the case of quasi-integrable
Hamiltonian systems; in such a case however one can show that there are cancella-
tions between the terms contributing to the coefficient of order k, which at the end
admits a bound Ck, for a suitable constant C. On the contrary such cancellations
are absent in the present case and we have to proceed in a different way, essentially
equivalent to a resummation.

We write

{

ηu1,1 ≡ ηq = f̂1,1(u) if (|n|, m) = (1, 1) (1.11)
[

−Ω2n2 + ω2
m + nνn,m

]

un,m ≡ g−1
n,mun,m = η(f̂n,m(u) + nln,mun,m) otherwise .

Naturally equation (1.11) coincides with (1.12) provided that:

η =
√

ε νn,m = ηln,m (1.12)

We introduce the following definition.

Definition 2. We define Λ the set of (n, m) such that |ω1|n| − m2| ≤ 1 + ε0|n|.
We define D, subset of (ε, ν) ∈ R

+ × l∞, as

D := {(ε, ν) : 0 < ε < ε0 , max
n,m

|νn,m| < cε0, νn,m = 0 if (n, m) /∈ Λ} (1.13)

For any µ ∈ M(4γ), τ > τ0+5, we define a subset D(γ) ⊂ D of couples (ε, ν) ∈ D
verifying the following Diophantine conditions

∣

∣

∣

∣

Ωn ±
√

ω2
m + nνn,m

∣

∣

∣

∣

≥ γ|n|−τ ∀n ∈ Z \ {0} and ∀m ∈ N \ {1} (1.14)

∣

∣

∣
Ω(n2 − n1) ±

√

ω2
m1

+ n1νn1,m1 ±
√

ω2
m2

+ n2νn2,m2

∣

∣

∣
≥ γ|n2 − n1|−τ

∀n1, n2 ∈ Z \ {0} and ∀m1 6= m2 ∈ N : (ni, mi) ∈ Λ , i = 1, 2 (1.15)

We call (1.14) and (1.15), respectively the first and second Melnikov conditions.
Our strategy (similar to the one followed in [12],[13],[14]) in order to prove Theorem
1 is the following:

1) First we consider (ε, ν) as independent parameters belonging to D(γ) (so that
the Melnikov conditions are verified) and we show that it is possible to find an
appropriate ln,m(η, ε, ν), well defined for |η| ≤ η0 and (ε, ν) ∈ D(γ), such that
(1.11) admits a solution un,m analytic in η; both un,m and ln,m are expressed by
convergent power series in η. Using a technique inspired by [4], we extend ln,m to a
C1 function,lEn,m,defined on the square D; lEn,m coincides with ln,m in the set D(2γ).

2)The solution un,m defined above is a solution of (1.7) only if (1.12) is verified;
we show (Proposition 2) that we can find ν = ν(ε) so that (1.12) is verified for all
(ε, ν(ε)) ∈ D(2γ); more precisely ν(ε) solves the equation νn,m =

√
εlEn,m(

√
ε, ε, ν):

hence replacing νn,m with νn,m(ε) in the expansion for un,m we get the solution of
(1.7).
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Proposition 1. Assume that µ ∈ M(4γ) and (ν, ε) ∈ D(γ). Let C0, C1, C2, σ be
positive constants. It is possible to find a sequence

{ln,m(η, ε, ν)}
(n,m)∈Z

2
\{(±1,1)}

(1.16)

such that:
(i) There exists a unique solution u(η, ν, ε; x, t), analytic in t and C5 in x, of

equation (1.11); u is analytic in η for |η| ≤ η0 and is such that:

|u(η, ν, ε; x, t) − u1,1(ν, ε) cosΩt sinx| ≤ |η|C0. (1.17)

for a proper u1,1(ν, ε, ).
(ii) The sequence ln,m(η, ε, ν) is analytic in η and uniformly bounded for (ε, ν) ∈

D(γ):
|l(η, ε, ν)|∞ ≡ max

n,m
|ln,m| ≤ C1|η|. (1.18)

(iii) The functions un,m(η, ε, ν) and ln,m(η, ε, ν) can be extended to C1 functions,
denoted by uE

n,m(η, ε, ν), lEn,m(η, ε, ν), on the set D, such that

lEn,m(η, ε, ν) = ln,m(η, ε, ν) ∀ (ε, ν) ∈ D(2γ) (1.19)

The same is true for uE
n,m.

(iv) lEn,m(η, ε, ν) respects the bounds:

|lE(η, ε, ν)|∞ ≤ |η|C2 , |∂εl
E(η, ε, ν)|∞ ≤ |η|C2 , |∂νn,m lE(η, ε, ν)|∞ ≤ |η|C2 , (1.20)

|
∑

(n,m)∈Λ

∂νn,m lE(η, ε, ν)|∞ ≤ |η|C2 , |uE
n,m(η, ε, ν)| ≤ |η| 1

m7
C2e

−σ|n| (1.21)

Once we have proved Proposition 1, we solve the compatibility equation for the
extended counterterm function lEn,m(η =

√
ε, ε, ν) which is well defined provided

that we choose ε0 so that ε0 < η2
0 .

Proposition 2. For all (n, m) 6= (±1, 1), exist C2 functions νn,m(ε) : (0, ε0) →
(−cε0, cε0) such that

(i) νn,m(ε) verifies

νn,m(ε) =
√

εlEn,m(
√

ε, ε, νn,m(ε)); (1.22)

and is such that
|νn,m(ε)| ≤ Cε , |∂ενn,m(ε)| ≤ C (1.23)

for a suitable constant C;
(ii) the set C ≡ C(2γ) defined by ε ∈ (0, ε0) and the conditions:

∣

∣Ωn − m2
∣

∣ > 4γ|n|−τ0 (1.24)

∣

∣

∣

∣

Ωn ±
√

ω2
m + nνn,m(ε)

∣

∣

∣

∣

≥ 2γ|n|−τ ∀n ∈ Z \ {0} and ∀m ∈ N \ {1} (1.25)
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∣

∣

∣
Ω(n2 − n1) ± (

√

ω2
m1

+ n1νn1,m1(ε) ±
√

ω2
m2

+ n2νn2,m2(ε))
∣

∣

∣
≥ 2γ|n2 − n1|−τ

(1.26)
∀n, n2 ∈ Z \ {0} and ∀m1, m2 ∈ N m1−m2 6= 0, |ω1|ni|−m2

i | ≤ 1+ε0|ni|, i = 1, 2

has large relative Lebesgue measure, namely limε→0+
1
ε meas (C(γ) ∩ (0, ε)) = 1.

1.4. Theorem 1 is an easy consequence of Proposition 1 and 2.

Proof of the Theorem 1. We start by choosing γ and µ ∈ M(4γ) and keep ε0 as
a parameter; by Proposition 1 (i) for all (ε, ν) ∈ D(γ) we can find a sequence ln,m

so that there exists a unique solution u(η, ν, ε; x, t) of (1.11) for all |η| ≤ η0 where
η0 depends only on γ for ε0 small enough. By Proposition 1 (iii) the sequence ln,m

and the solution u(η, ν, ε; x, t) can be extended to C1 functions ( denoted by lE, uE)
for all (ε, ν) ∈ D. Moreover lEn,m(ε, ν) = ln,m(ε, ν), uE

n,m(ε, ν) = un,m(ε, ν) for all
(ε, ν) ∈ D(2γ).

Equation (1.11) coincides with our original eq.(1.7) provided that the compati-
bility equations (1.12) are satisfied. Now we fix ε0 < η2

0 so that lEn,m(η =
√

ε, ε, ν)

and uE
n,m(η =

√
ε, ε, ν) are well defined. By Proposition 2 (i) there exists a sequence

νn,m(ε) which satisfies the extended compatibility eq.(1.12). Finally by Proposition
2(ii) the Cantor set C(2γ) is well defined and of large relative measure.

For all ε ∈ C(2γ) we have that the couple (ε, ν(ε)) is by definition in D(2γ) so
that by Proposition 1(iii):

ln,m(
√

ε, ε, ν(ε)) = lEn,m(
√

ε, ε, ν(ε)) (1.27)

u(
√

ε, ε, ν(ε); x, t) = uE(
√

ε, ε, ν(ε); x, t).

so that u(
√

ε, ε, ν(ε); x, t) solves eq.(1.11) for η =
√

ε. So by Proposition 2(i) ν(ε)
solves the true compatibility eq.(1.12)

νn,m(ε) =
√

εln,m(
√

ε, ε, ν(ε)) (1.28)

for all ε ∈ C(2γ). Then
√

εu(
√

ε, ε, ν(ε); x, t) is a true non trivial solution of our
eq.(1.1) in C(2γ). �

In the rest of the paper we prove Proposition 1 and 2.

2. Lindstedt Series and Tree Expansion.

2.1. In this section we find a formal solution un,m of eq.(1.11) as power series on
η; the solution un,m is parameterized by the coefficients ln,m and it will be written
in the form of a tree expansion.

We assume for ln,m(η, ε, ν), un,m(η, ε, ν) with (n, m) 6= (±1, 1), a formal series
expansion in η:

ln,m(η, ε, ν) =

∞
∑

k=2

ηk−1l(k)
n,m , un,m(η, ε, ν) =

∞
∑

k=1

ηku(k)
n,m (2.1)

for all (n, m) 6= (±1, 1). By definition we set q = u
(0)
±1,1 and u

(k)
±1,1 = 0. Inserting

the series expansion in the second eq.(1.11) we obtain the recursive equations:

u(k)
n,m = gn,m

(

n
k−1
∑

r=2

l(r)
n,mu(k−r)

n,m +
∗

∑

n1,m1
n2,m2

∑

k1+k2=k−1

δn1+n2,n(a − bΩ2n1n2)
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vm,m1,m2u
(k1)
n1,m1

u(k2)
n2,m2

)

≡ gn,m

(

n

k−1
∑

r=2

l(r)
n,mu(k−r)

n,m + F (k)
n,m

)

(2.2)

where gn,m (defined in eq.(1.11) is called the propagator. It holds the following
Lemma.

Lemma 1. For all (n, m) 6= (±1, 1) we have that u
(k)
n,m = 0 when |n| > k + 1 or m

is even.

Proof. We proceed by induction. By definition F
(0)
n,m = 0 so that u

(0)
n,m = 0 if

(n, m) 6= (±1, 1).
Now suppose that our claim holds for all (n, m) 6= (±1, 1) and r < k. Equations

(2.2) are recursive so that F
(k)
n,m is a quadratic polynomial sum of monomials of the

form v(m1, m2, m)u
(h1)
n1,m1u

(h2)
n2,m2 such that the mi are odd, |ni| < hi, n = n1 + n2

and h1 + h2 = k − 1. This implies that F
(k)
n,m can be nonzero only if n = n1 + n2 ≤

h1 + h2 + 2 = k + 1. In the same way the linear terms l
(r)
n,muk−r−1

n,m can be non zero
only if |n| ≤ k − 1.

Finally
∑∗

in eq. (2.2) is restricted to m1 + m2 + m odd and by the inductive
hypothesis m1 and m2 are odd so that m must be odd as well. �

We introduce a smooth partition of the unity in the following way. Let χ(x)
be a C∞ non-increasing function such that χ(x) = 0 if |x| ≤ γ and χ(x) = 1 if
|x| ≥ 2γ; moreover |χ′(x)| ≤ γ−1. Let χh(x) = χ(2hx) − χ(2h+1x) for h ≥ 0, and
χ−1(x) = 1 − χ(x); then

1 = χ−1(x) +

∞
∑

h=0

χh(x) =

∞
∑

h=−1

χh(x). (2.3)

Calling

xn,m(ε, ν) = |Ωn| −
√

ω2
m + nνn,m (2.4)

we define
gn,m,h = χh(xn,m(ε, ν))gn,m(ε, ν) (2.5)

Note that if χh(x) 6= 0 for h ≥ 0 one has 2−h−1γ ≤ |x| ≤ 2−h+1γ, while if χ−1(x) 6= 0
one has |x| ≥ γ. Therefore gn,m,h(ε, ν) = 0 whenever 2−h−1γ ≤ |xn,m(ε, ν)| ≤
2−h+1γ is not verified. Moreover if gn,m,h(ε, ν) 6= 0 and gn,m,h′(ε, ν) 6= 0 then
necessarily |h − h′| ≤ 1. Inserting (2.3) in (2.2) we get

u(k)
n,m =

∑

h

gn,m,hF (k)
n,m + n

∞
∑

h=−1

k−1
∑

r=2

l(r)
n,mgn,m,hu(k−r)

n,m ≡
∞
∑

h=−1

u
(k)
n,m,h (2.6)

2.2. Eq.(2.6) can be applied recursively untill we obtain u
(k)
n,m as a (formal) poly-

nomial in the variables gn,m,h, q and l
(r)
n,m with r < k. It turns out that u

(k)
n,m can

be written as sum over trees (see Lemma 3 below) defined in the following way.
A (connected) graph G is a collection of points (vertices) and lines connecting all
of them. The points of a graph are most commonly known as graph vertices, but
may also be called nodes or points. Similarly, the lines connecting the vertices of a
graph are most commonly known as graph edges, but may also be called branches
or simply lines, as we shall do. We denote with V (G) and L(G) the set of vertices
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and the set of lines, respectively. A path between two vertices is a subset of L(G)
connecting the two vertices. A graph is planar if it can be drawn in a plane without
graph lines crossing.

Definition 3. A tree is a planar graph G containing no closed loops (cycles). One
can consider a tree G with a single special vertex v0: this introduces a natural partial
ordering on the set of lines and vertices, and one can imagine that each line carries
an arrow pointing toward the vertex v0. We can add an extra (oriented) line ℓ0

exiting the special vertex v0; the added line will be called the root line. In this way
we obtain a rooted tree θ defined by V (θ) = V (G) and L(θ) = L(G)∪ ℓ0. A labeled
tree is a rooted tree θ together with a label function defined on the sets L(θ) and
V (θ).

We shall call equivalent two rooted trees which can be transformed into each other
by continuously deforming the lines in the plane in such a way that the latter do
not cross each other (i.e. without destroying the graph structure). We can extend
the notion of equivalence also to labeled trees, simply by considering equivalent two
labeled trees if they can be transformed into each other in such a way that also the
labels match.

Given two nodes v, w ∈ V (θ), we say that w ≺ v if v is on the path connecting
w to the root line. We can identify a line with the nodes it connects; given a line
ℓ = (v, w) we say that ℓ enters v and comes out of w.

In the following we shall deal mostly with labeled trees: for simplicity, where no
confusion can arise, we shall call them just trees.

We call internal nodes the vertices such that there is at least one line entering them.
We call end-points the vertices which have no entering line. We denote with L(θ),
V0(θ) and E(θ) the set of lines, internal nodes and end-points, respectively. Of
course V (θ) = V0(θ) ∪ E(θ).

We call Θ
(k)
n,m the set of all the possible trees of order k defined according to the

following rules.

v

l 0

k  = 3
v

(−1,1)

(1,1)

(1,1)

(0,2)

(0,2)
(1,3)

Fig.1. A tree θ ∈ Θ
(4)
3,4

(1) To each end-point v ∈ E(θ) one associates the mode label (nv, mv), with
mv = 1 and nv = ±1, such that

∑

v∈E(θ)

nv = n. (2.7)

we associate to each end-node a factor ηv = q and an order kv = 0.
(2) To each line ℓ ∈ L(θ) one associates the mode label (nℓ, mℓ) where one has

nℓ =
∑

w∈Eℓ

nw (2.8)
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where Eℓ are the endpoints of the subtree with root given by ℓ.
(3) To each line ℓ ∈ L(θ) one associates the scale label hℓ ∈ N ∪ {−1, 0}. If two

lines ℓ, ℓ′ have the same mode label (nℓ, mℓ) = (n′
ℓ, m

′
ℓ) then |hℓ − hℓ′ | ≤ 1. If ℓ

exits an end-node then hℓ = −1.
(4) To each node v ∈ V0(θ) is associated a type label tv = a or b; For each node

v ∈ V0(θ) one has sv = 1, 2 entering lines.
If sv = 1 the momenta of the exiting and entering line are necessarily the same

and the type label is by definition a. To v is associated an order kv ∈ [2,∞) and a

factor ηv = nℓl
(kv)
nℓ,mℓ,hℓ

where ℓ is the line exiting v.
If sv = 2 then necessarily kv = 1. Calling m, m1, m2 the momenta mℓ respectively

of the lines exiting and entering v, to v is associated a factor ηv = avm,m1,m2 if v is
of type a and ηv = −bΩ2vm,m1,m2 if v is of type b.

(5) To each line entering an a node and to the root line of each tree, we associate
the propagator

gℓ ≡ gnℓ,mℓ,hℓ
(ε, ν) =











χ(hℓ)(|Ωnℓ| −
√

ω2
mℓ

+ nℓνnℓ,mℓ
)

−Ω2n2
ℓ + ω2

mℓ
+ nℓνnℓ,mℓ

, (nℓ, mℓ) 6= (±1, 1),

1 (nℓ, mℓ) = (±1, 1).
(2.9)

To each line entering a b node we associate

gℓ ≡ nℓgnℓ,mℓ,hℓ
(ε, ν) =











nℓχ
(hℓ)(|Ωnℓ| −

√

ω2
mℓ

+ nℓνnℓ,mℓ
)

−Ω2n2
ℓ + ω2

mℓ
+ nℓνnℓ,mℓ

(nℓ, mℓ) 6= (±1, 1),

nℓ (nℓ, mℓ) = (±1, 1).
(2.10)

Only the lines coming out from the end-points can have momentum (nℓ, mℓ) =
(±1, 1).

(6) Finally we define the order of a tree as:

k(θ) =
∑

v∈V (T )

kv. (2.11)

Note that |nℓ| < k(θ) − ∑

v:sv=1 kv.

By the support properties of χh and bounding the denominator of gℓ with
C|nℓ|2−hℓ , we get

|gℓ| ≤ C2hℓ+1 (2.12)

The divisors can be small only if nℓ ≃ m2
ℓ , as explained by the following Lemma.

Lemma 2. If gℓ 6= 0 and hℓ ≥ 0 then

|ω1|nℓ| − m2
ℓ | ≤ 1 + ε0|nℓ| (2.13)

Proof. Equation (2.13) is equivalent to (ω1−ε0)|nℓ|−1 ≤ m2
ℓ ≤ (ω1 +ε0)|nℓ|+1;

we claim that if m2
ℓ > (ω1 +ε0)|nℓ|+1 or m2

ℓ < (ω1−ε0)|nℓ|−1 then nℓ 6= [Ω−1m2
ℓ ]

([...] denotes the closest integer); in fact if nℓ = Ω−1m2
ℓ + x with |x| ≤ 1

2 then as
ω1 − ε0 < Ω < ω1 + ε0 we have that:

(ω1 − ε0)(|nℓ| −
1

2
) ≤ m2

ℓ ≤ (ω1 + ε0)(|nℓ| +
1

2
) (2.14.)
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as ω1 + ε0 ≤ 2.
By contradiction assume that (2.13) is not true; then nℓ 6= [Ω−1m2

ℓ ]; then we can
write n = Ω−1m2

ℓ + k + x with |x| ≤ 1
2 , |k| ≥ 1 so that

|Ωnℓ −
√

ω2
mℓ

+ nℓνnℓ,mℓ
| ≥ |Ωnℓ − m2

ℓ | − |m2
ℓ −

√

ω2
mℓ

+ nℓνnℓ,mℓ
|

≥ |Ωnℓ−m2
ℓ |−

µ0+|nℓν|∞
m2

ℓ

≥ |k|− 1

2
−m−2

ℓ (µ0+(Ω−1m2
ℓ +k+

1

2
)ε0) ≥

1

8
> γ
(2.15)

in contradiction with gℓ 6= 0 and hℓ ≥ 0. �

The coefficients u
(k)
n,m can be represented as sum over the trees defined above;

this is in fact the content of the following Lemma.

Lemma 3. u
(k)
n,m solving (2.6) can be written as

u(k)
n,m =

∑

θ∈Θ
(k)
n,m

Val(θ), (2.16)

where

Val(θ) =
(

∏

ℓ∈L(θ)

gℓ

)(

∏

v∈V (θ)

ηv

)

. (2.17)

Proof. The proof is done by induction on k. If k = 1 it holds by (2.6), recalling

that u
(0)
n,m = qδn,±1δm,1 (see Fig.2)

u(1)
n,m =

∞
∑

h=−1

gn,m,h

∑

n1=±1

vm,1,1(a − bΩ2n1(n − n1))u
(0)
n1,1u

(0)
n−n1,1 =

∑

θ∈Θ
(1)
n,m

Val(θ) .

(2.18)

1

1
(n−n  , 1 )

(n  , 1 )

t v
0

   

=
l 0

(1,n,m)
h  

Fig.2. Graphical representation of (2.18) for k = 1; the sum
over n1, hℓ0 , tv0 is understood.

From (2.6), (2.2) and the inductive hypothesis we have that u
(k)
n,m is given by

u(k)
n,m =

∞
∑

h=−1

gn,m,h{
∑

n1,m1,m2,k1

vm,m1,m2(a − bΩ2n1(n − n1))

∑

θ1∈Θ
(k1)
n1,m1

Val(θ1)
∑

θ2∈Θ
(k−k1)

n−n1,m2

Val(θ2) + n

k−1
∑

r=2

l(r)
n,m

∑

θ3∈Θ
(k−r)
n,m

Val(θ3)}
(2.19)

which can be expressed graphically from Fig.3.
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(n,m,k−r)

k  = rv(n  ,m  ,k  )
1 1 1

(n,m,k)

=

(n−n  ,m  , k−k  −1 )1 2 1

+

Fig. 3.Graphical representation of (2.19); the sum over n1, m1, k1, m2, r
is understood.

Given a tree θ ∈ Θ
(k)
n,m such that sv0 = 2, hl0 = h, let θ1 ∈ Θ

(k1)
n1,m1 , θ2 ∈ Θ

(k−k1)
n−n1,m2

be the subtrees whoose root lines enter in v0; if v0 is of type a by (2.17) one has
that:

Val(θ) = agn,m,hv(m, m1, m2)Val(θ1)Val(θ2); (2.20)

if v0 is of type b let n1 be the momentum of θ1. By our definitions we have that:

Val(θ) = −bΩ2n1(n − n1)gn,m,hv(m, m1, m2)Val(θ1)Val(θ2); (2.21.)

(recall that the root line of a tree is always an a-line.) Finally given a tree θ ∈ Θ
(k)
n,m

such that sv0 = 1, kv0 = r, hl0 = h let θ3 be the subtree whoose root line enters v0,
by (2.17) one has that:

Val(θ) = ngn,m,hl(r)
n,mVal(θ3) . (2.22)

Hence inserting (2.20), (2.22) in (2.19) we get (2.16). �

3. Choice of the Parameters ln,m.

3.1. In the preceding section we have found a power series expansion for un,m

solving (1.11) and parametrized by ln,m. However for generic values of ln,m such
expansion is not convergent, as one can easily identify contributions at order k
which are O(k!α), for a suitable constant α. In this section we show that it is
possible to choose the parameters ln,m in a proper way to cancel such “dangerous”
contributions; in order to do this we have to identify the dangerous contributions
and this will be done through the notion of clusters and resonances.

Definition 4. Given a tree θ ∈ Θ
(k)
n,m a cluster T is a connected set of nodes which

are linked by a continuous path of lines with the same scale label hT or a lower one
and which are maximal; we shall say that the cluster has scale hT . We shall denote
by V (T ) and E(T ) the set of nodes and the set of end-points, respectively, which
are contained inside the cluster T , and with L(T ) the set of lines connecting them.

Therefore an inclusion relation is established between clusters, in such a way that
the innermost clusters are the clusters with lowest scale, and so on. Each cluster T
has an arbitrary number of lines entering it (incoming lines), but only one or zero
line coming from it (outcoming or root line); we shall denote the latter (when it

exists) with ℓ1
T , and we shall denote by h

(e)
T the scale of the outcoming external line

of T .

Definition 5. A cluster T with |V (T )| > 1, with only one incoming line ℓT such
that one has

nℓ1T
= nℓT and mℓ1T

= mℓT (3.1)
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will be called resonance of scale h. In such a case we shall call a resonant line the
root line ℓ1

T .

The propagators on the path between the external lines of T have the form,
αℓ = (0, 1)

nαℓ

ℓ χ(hℓ)(|Ωn0
ℓ + x| −

√

ω2
mℓ

+ nℓνnℓ,mℓ
)

−(Ωn0
ℓ + x)2 + ω2

mℓ
+ nℓνnℓ,mℓ

∣

∣

∣

x=ΩnℓT

(3.2)

and we can consider the value of T as a function of m, n, x = ΩnℓT . The contribution
of a resonance T of a tree θ is given by, calling (nℓT , mℓT ) = (n, m):

Vh
T (Ωn, m, n) =

(

∏

ℓ∈T

gℓ

)(

∏

v∈V (T )

ηv

)

. (3.3)

with h = h
(e)
T .

We define the localization operation acting on the resonances T in the following
way; if |ω1|n| − m2| ≤ 1 + ε0|n0| and (nℓ, mℓ) 6= (n, m) for all ℓ ∈ T then

LVh
T (Ωn, m, n) = Vh

T (sign (n)
√

(ω2
m + nνn,m), m, n) (3.4)

and L = 0 otherwise. We split each resonance as

Vh
T (Ωn, m, n) = LVh

T (Ωn, m, n) + RVh
T (Ωn, m, n) (3.5)

where R = 1 − L; we call LVh
T (Ωn, m) local resonances. The action of L is then to

replace, in the path connecting the external lines of T , the variable x with

ω̄m,n = sign (n)
√

(ω2
m + nνn,m) (3.6)

Definition 6. The trees θT ∈ R(k)
h,n,m are defined as the trees θ ∈ Θ

(k)
h,n,m with the

following modifications: a) there is a single end node, called e, such that (ne, me) =
(n, m) 6= (±1, 1); to e is associated ηe = 1/m3

e. If ℓe be the line exiting from e, ℓe

has associated gℓe = 1 if it enters an a node and gℓe = ne if it enters a b node;
b)the root line l0 has (nℓ0 , mℓ0) = (n, m) and gℓ0 = 1;
c) for all lines ℓ ∈ θ: maxℓ∈L(θ)\{ℓ0,ℓe)} (hℓ) = h.

The definition of value of such tree is identical to the one given in (2.17).

(n  ,m  )=e e

(n  ,m  )=0 0

(n  ,m  )=0 0

Val ( )

(n,m)

(n,m)
e

l 0

Val ( )
l 0

** g
n,m,h

m*
3

(n,m)

(n  ,m  )=l l

(n  ,m  ,h  )=0 0

=
h  < h

l 0Val ( )

(n,m)

l 0
(n,m,h)

0

l l
h  

l

l1

v
T v

Fig.4. We associate to the resonance T (enclosed in an ellipse)
the tree θT ∈ R, and vice-versa.
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Given a resonance T , there exists a unique θT ∈ R(k)
h,n,m such that (see Fig. 4)

VT (Ωn, m, n) = m3Val(θT ) (3.7)

where θT ∈ Rn,m,h if the external line enters an a node and nVT (Ωn, m, n) =
m3Val(θT ) if the external line enters an b node.

3.2 With a suitable choice of the parameters ln,m the functions u
(k)
n,m can be rewrit-

ten as sum over “renormalized” trees defined below.

Definition 7. We define the set of renormalized trees Θ
(k)
R,n,m defined as the trees

in Θ
(k)
n,m defined in §2 with the following differences: a)to each resonance T we apply

the R operation; b)the nodes with sv = 1 have associated ηv = nℓl
(kv)
nℓ,mℓ,hℓ

where ℓ

is the line entering v. In the same way we define R(k)
R,h,n,m. We call resonant lines

the lines coming out of a resonance or a node with sv = 1.

It holds the following result.

Lemma 4.For all k, n, m it holds:

u(k)
n,m =

∑

θ∈Θ
(k)
R,n,m

Val(θ) (3.8)

with
nl

(k)
n,m,h = −m3

∑

h1≥h

∑

θ∈R(k)
R,n,m,h1

LVal(θ) (3.9)

provided that we choose l
(k)
n,m = l

(k)
n,m,−1 in (2.6).

n l   = m 

e

e

h1( )
(2) 3

n,m
h1Σ

h  >−1
1

Val )L + Val (L

Fig.5. The counterterm l
(2)
n,m.

Proof. First note that by definition ln,m,h = 0 if |ω1n − m2| ≥ 1 + ε0|n|. We

proceed by induction. For k = 1, 2 (3.8) surely holds as Θ
(1,2)
R,n,m ≡ Θ

(1,2)
n,m . Then we

assume that (3.8) holds for all r < k; by (2.6)

u
(k)
n,m,h = gn,m,h(F (k)

n,m + n

k−1
∑

r=2

l(r)
n,mu(k−r)

n,m ) (3.10)

F
(k)
n,m is a function of u

(r′)
n′.m′,h′ with r′ < k, where, by the inductive hypothesis,

the u
(r′)
n′.m′,h′ are written as sum over trees in ΘR,n′,m′ . gn,m,hF

(k)
n,m is given by sum

over θ ∈ Θ
(k)
n,m with sv0 = 2, and the root line can be resonant or not. If l0 is

non-resonant then θ ∈ Θ
(k)
R,n,m. If l0 is resonant we split the biggest resonance in

the form (3.5); if L = 0 necessarily there is an inner resonance (whose resonant line

is the root line) and again we apply (3.5) and surely L 6= 0. We split gn,m,hF
(k)
n,m as
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sum of two terms; one, which we denote by G
(k)
n,m, which is the sum over all trees

belonging to ΘR,n,m with sv0 = 2 and the second which is sum of trees with value

Val(θ) = gn,m,hℓ0
[LVal(θT )]Val(θ1) (3.11)

with θT ∈ R(r)
R,h1,n,m and θ1 ∈ Θ

(k−r)
R,n,m. We get

F (k)
n,m = m3gn,m,h

k−1
∑

r=2

uk−r
n,m

∑

h1<h

(L
∑

θ∈R(r)
R,n,m,h1

Val(θ)) + G(k)
n,m (3.12)

which inserted in (3.10) and using (3.9) gives

u
(k)
n,m,h = gn,m,hm3

k−1
∑

r=2

u(k−r)
n,m (

∑

h1<h

∑

θ∈R(r)
R,n,m,h1

LVal(θ)) + G(k)
n,m (3.13)

− m3
k−1
∑

r=2

u(k−r)
n,m (

∑

h1≥−1

∑

θ∈R(r)
R,n,m,h1

LVal(θ)) = gn,m,hG(k)
n,m + ngn,m,h

k−1
∑

r=2

u(k−r)
n,m ln,m,h .

By definition G
(k)
n,m is a sum over all θ ∈ Θ

(k)
R,n,m with sv0 = 2 while the last term in

(3.13) is the sum over all θ ∈ Θ
(k)
R,n,m with sv0 = 1 so that (3.8) is proved. �

(3) Σ
1

1
1+Val ( ) )h

(n,m,h)

+ . . .h

(n,m)
(n,m)

(n,m,h)
h, h  < h−1

n,m
G  = R (Val R

Fig.6. The term G
(3)
n,m, the dots represent sums over trees with

sv = 2 and non resonant root line.

4. Bruno Lemmas and Bounds for the Expansion

4.1. In the previous section we have shown that, with a suitable choice of the

parameters ln,m, we can express un,m as sum over trees belonging to Θ
(k)
R,n,m; we

show in this section that such expansion is indeed convergent if η is small enough
and ε, ν ∈ D(γ) (see Definition 1).

Given a tree θ ∈ Θ
(k)
R,n,m, we call S(θ, γ) the set of (ε, ν) ∈ D such that: for all

ℓ ∈ L(θ):

2−hℓ−2γ < |Ω|nℓ| −
√

ω2
mℓ

+ nℓνnℓ,mℓ
| < 2−hℓ+2γ. (4.1)

In other words we can have Val(θ)(ε, ν) 6= 0 only if (ε, ν) ∈ S(θ, γ).
We call D(θ, γ) ⊂ D the set of (ε, ν) such that, if α1 = ±1, α2 = ±1:

|xnℓ,mℓ
| =

∣

∣

∣
Ω|nℓ| −

√

ω2
mℓ

+ nℓνnℓ,mℓ

∣

∣

∣
≥ γ|nℓ|−τ (4.2)
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|xα1,α2
nl1

,ml1
,nl2

,ml2
| =

∣

∣

∣
Ω(nℓ1 − nℓ2) + α1

√

ω2
ℓ1

+ nℓ1νnℓ1
,mℓ1

+ α2

√

ω2
ℓ2

+ nℓ2νnℓ2
,mℓ2

∣

∣

∣

≥ γ|nℓ1 − nℓ2 |−τ ∀|ω1nℓi − m2
ℓi
| < 1 + ε0|nℓi | (4.3)

for all lines ℓ1, ℓ2 ∈ L(θ) such that nℓ1 6= nℓ2 This means D(θ, γ) is the set of (ε, ν)
verifying the Melnikov conditions in θ.

Calling L0(θ), V0(θ) the set of lines, node and end-points not contained in any
resonance, and S0(θ) the maximal resonance, i.e. the resonances which are not
contained in any other resonance, we can write Val(θ) with θ ∈ ΘR,n,m as

Val(θ) =
(

∏

ℓ∈L0(θ)

g
(hℓ)
ℓ

)(

∏

v∈V0(θ)

ηv

)(

∏

T∈S0(θ)

RVhe
T

T (ΩnℓT , mℓT , nℓT )
)

, (4.4)

and by definition

RVhe
T

T (ΩnℓT , mℓT , nℓT ) = Vhe
T

T (ΩnℓT , mℓT , nℓT ) − Vhe
T

T (sign(nℓT )

√

(ω2
mℓT

+ nℓT νnℓT
,mℓT

), mℓT , nℓT ), (4.5)

and Vhe
T

T (ΩnℓT , mℓT , nℓT ) is given by

Vhe
T

T (ΩnℓT , mℓT , nℓT ) =
(

∏

ℓ∈L0(T )

g
(hℓ)
ℓ

)(

∏

v∈V0(T )

ηv

)(

∏

T ′∈S0(T )

RVhe
T ′

T ′ (ωnℓT ′ , mℓT ′ )
)

.

(4.6)
In order to bound Val(θ) in (4.4) we will use the following result.

Lemma 5 (Bruno Lemma). Given a tree θ ∈ Θ
(k)
R,n,m, we have that D(θ, γ) ∩

S(θ, γ) 6= 0 if and only if the scales hℓ of θ respect

Nh(θ) ≤ max{0, 2K(θ)2(2−h)/τ − 1} + Sh(θ) + Mh(θ), (4.7)

where Nh(θ) is the number of lines with scale greater or equal than h, K(θ) ≤ k(θ)
is the number of non resonant lines, Sh(θ) is the number of resonances T in θ with

h
(e)
T = h and Mh(θ) is the number of vertices with sv = 1 in θ such that the scale

of the exiting line is h.

The proof of the above Lemma is in Appendix A3. By the above lemma we can
prove the following result.

Lemma 6. Assume that there exist a constant C such that one has |l(k)
h,n,m| ≤

q2kCk−12−h, for any n, m and all h ≥ 0. Then for all (ε, ν) ∈ D(θ, γ) it holds that,
for a suitable constant D

|Val(θ)| ≤ Dkq2k
(

∏

v∈V (T )
sv=2

|ηv|
)

(4.8)

Proof. Consider a tree with fixed scales hℓ and momenta nℓ, mℓ. In order to take
into account the R operation we write (4.5) as, if ω̄n,m = sign (n)

√

ω2
m + nνn,m

RVhe
T

T (ΩnℓT , mℓT , nℓT ) =
(

ΩnℓT − ω̄nℓT
,mℓT

)

∫ 1

0

dt∂Vhe
T

T (ΩnℓT + t(ΩnℓT − ω̄nℓT
,mℓT

), mℓT , nℓT ), (4.9)
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where ∂ denotes the derivative with respect to the argument ωnℓT +t(ωnℓT −ω̃mℓT
).

By (4.6) we see that the derivatives can be applied either on the propagators

in L0(T ), or on the RVhe
T ′

T ′ . In the first case there is a factor 2−h
(e)
T +hT : 2−h

(e)
T is

obtained from ωnℓT − ω̄nℓT
,mℓT

while ∂g(hT ) is bounded proportionally to 22hT ; in

the second case note that ∂tRVhe
T ′

T ′ = ∂tVhe
T ′

T ′ as LVh
(e)

T ′

T ′ is independent of t; if the
derivative acts on the propagator of a line ℓ ∈ L(T ), we get a gain factor

2−h
(e)
T +hT ′ ≤ 2−h

(e)
T +hT 2−h

(e)

T ′ +hT ′ , (4.10)

as h
(e)
T ′ ≤ hT . We can iterate this procedure until all the R operations are applied

on propagators; at the end (i) the propagators are derived at most one time; (ii) the

number of terms so generated is ≤ k; (iii) to each resonance T a factor 2−h
(e)
T +hT is

associated.
Assuming that |l(k)

h,n,m| ≤ q2kCk−12−h with γC > 1 and recalling definition

(2.11), for any θ one obtains:

|Val(θ)| ≤ Ckq2k
(

∞
∏

h=0

exp
[

h log 2
(

4k2−(h−2)/τ + Sh(θ) + Mh(θ)
)])

(

∏

T

h
(e)
T

≥3

2−h
(e)
T +hT

)(

∞
∏

h=0

2−hMh(θ)
)(

∏

v∈V (θ)
sv=2

|ηv|
) (4.11)

where the first factor is a bound for
∏

h 2hNh(θ); moreover
∏∞

h=0 2−hMh
ν (θ) takes into

account the factors 2−h arising from the running coupling constants l
(k)
h,n,m and the

action of R produces, as discussed above, the factor
∏

T 2−h
(e)
T +hT . Note that

(

∞
∏

h=0

2hSh(θ)
)(

∏

T

2−h
(e)
T

)

= 1 (4.12)

Moreover it holds that

∏

T

h
(e)
T

≥3

2hT ≤
∞
∏

h=0

2h4k2−(h−2)/τ

(4.13)

as for any derivative produced by the R operation and acting on a propagator at
scale h there is surely a non resonant propagator at the same scale (otherwise the
maximal clusters contained in a resonance are all resonances and R = 1). Then we
can write (4.11) as

|Val(θ)| ≤ (q2D1)
k24k

P∞
h=0 h2−(h−2)/τ

(

∏

v∈V (θ)
sv=2

|ηv|
)

(4.14)

from which (4.8) immediately follows. �

In order to bound the factors |ηv| we will use the following result proven in the
Appendix A4.
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Lemma 7. For all trees θ ∈ Θ
(k)
R,n,m,R(k)

R,h,n,m with sv = 2 for all v one has that

∑

{mℓ}

∏

v∈V (θ)

|ηv| ≤
Ck

2

m3
(4.15)

where m is the momentum associated to the root line,
∑

{mℓ} is the sum over the

values of the momentum mℓ and C2 depends only on a, b.

Finally we have to prove that l
(k)
n,m,h ≤ Ck−12−hq2k.

Given a tree θ ∈ RR,n,m, we call S̃(θ, γ) set of (ε, ν) ∈ D such that 4.1 holds for
all l ∈ L(θ) not on the path between e and v0 and:

2−hℓ−1γ < ||Ωn0
ℓ − ω̄n,m| −

√

ω2
mℓ

+ nℓνnℓ,mℓ
| < 2−hℓ+1 (4.16)

holds for ℓ 6= ℓe on the path between e and v0, namely LVal(θ) = 0 outside

S̃(θ, γ). Finally let D̃(θ, γ) ⊂ D be the set of couples (ε, ν) such that 4.2 holds for
all ℓ not in the path connecting e to ℓ0, and 4.3 holds for all ℓ1, ℓ2 ∈ L(θ) such that
nℓ1 6= nℓ2 and moreover either both ℓ1, ℓ2 are on the path connecting e to ℓ0 or they
both arent on such path.

First of all, the following generalization of Lemma 5 holds.

Lemma 8. Given tree θ ∈ R(k)
R,h,n,m, we have that D̃(θ, γ)∩ S̃(θ, γ) 6= 0 if and only

if the number of lines in θ with scales hℓ verifies

Nh(θ) ≤ 2(K(θ) − 1)2(2−h)/τ + Sh(θ) + Mh(θ). (4.17)

It is an immediate consequence of the previous Lemma the following result.

Lemma 9. Given a tree θ ∈ R(k)
R,h,n,m, and supposing that, for a suitable constant

C, l
(r)
n,m,h′ ≤ Cr−1q2r2−h′

for all r < k then for (ε, ν) ∈ D̃(θ, γ) it holds that

|LVal(θ)| ≤ |n|Ck−1q2k2−h
∏

v∈V (θ)
sv=2

|ηv|C−k1
2 (4.18)

where k1 is the number of lines exiting a node with sv = 2.

Proof. The proof is essentially identical to the one of Lemma 6; the factor n
comes from the definition of Val(θ) in the case when the external line enters a b
node. To extract the factor 2−h we recall that there is at least a non resonant line
ℓ 6= ℓ0 on scale hℓ = h, h − 1 which does not exit a node with sv = 1. By Lemma 8

we have that k1 − 1 ≥ K(θ) − 1 > 2
h−1

τ , so that 2k1−12−h > 1. Then

|LVal(θ)| ≤ q2k2−h(2DC2
2 )k1−1Ck−k1

∏

v∈V (θ)
sv=2

|ηv|C−k1
2 ≤ 2−hCk−1

∏

v∈V (θ)
sv=2

|ηv|C−k1
2

(4.19)
provided that 2Cγ > 1 and we choose C = 2DC2

2 . Finally the factor D as in Lemma
6 is of the form D = D̄γ−1 with D̄ > 1 a pure (ε and γ independent) constant. �

As aconsequence of (3.9) and Lemma 7 and 9 it follows that |l(k)
h,n,m| ≤ q2kCk−12−h.
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Lemma 10. For η0 small enough, the following bounds hold for all (ε, ν) ∈ D(γ):

|ln,m,h| < C1η2−h, |ln,m| < C1η, |un,m| < C0|η|
e−σ|n|

m7
, (n, m) 6= (±1, 1), (4.20)

where (n′, m′) are such that |ω1|n′| − (m′)2| ≤ 1 + ε0|n′| as otherwise νn′,m′ ≡ 0 by
definition.

Proof. By definition D(γ) is contained in all D(θ, γ) and in all D̃(θ, γ) so that
we can use Lemma 6 and Lemma 9 to bound the values of trees. First we fix
an unlabeled tree θ and sum over the values of the labels. Fixed (ε, ν) and given
(nℓ, mℓ) there are only two possible values for each hℓ such that Val(θ) 6= 0. So we
can sum up on the possible scale values obtaining a factor 2k. First we fix the tree
θ ∈ ΘR,n,m,h and sum up the mℓ labels as in Lemma 7, we obtain a factor m−3.
Then we sum up on the possible values the momentum of lines exiting an end node,
we obtain 4k; finally we bound by C̄k the number of unlabeled trees. The bound
for ln,m,h is obtained by:

|ln,m,h| ≤
m3

n

∞
∑

k=2

ηk−1
∑

h1≥h

∑

θ∈R(k)
R,h1,n,m

|LVal(θ)| ≤ ηC1

∑

h1≥h

2−h1 . (4.22)

By Lemma 1 u
(k)
n,m = 0 if |n| > k, so that, using Lemma 7:

|un,m| ≤
∞
∑

k=1

ηk|u(k)
n,m| ≤

∞
∑

k=|n|
ηkCk 1

m3
, (4.21)

In order to get a better decay in m we simply note that if |n| ≤ m2

4 then , if ℓ0

is the root line, ℓ0 is surely an a-line, hℓ0 = −1 and |gℓ0 | ≤ Cm−4; if |n| ≥ m2

4 of

course η|n| ≤ Cη
|n|
2 m−4. Then we get an extra m−4 in (4.21) so that the bound in

(4.20) is found. �

5. Whitney Extension and Implicit Function Theorems

5.1. In this section we extend the function un,m,ln,m, defined in D(γ) to the larger
set D.

Lemma 11. Given θ ∈ R(k)
R,h,n,m, we can extend Val(θ) to a function, called

ValE(θ), defined and C∞ in D such that the bounds of Lemma 10 hold for any

(ε, ν) ∈ D, LVal(θ) = LValE(θ) for any (ε, ν) ∈ D(θ, 2γ) ⊂ D(θ, γ) and finally

LValE(θ) = 0 for (ε, ν) ∈ D \ D(θ, γ). We then define:

l
(k)E
n,m,h =

∑

h1≥h

∑

θ∈R(k)
R,h1,n,m

LValE(θ) (5.1)

and lE is differentiable in (ε, ν) ∈ D and, if C1 is a suitable constant

|∂εl
E
n,m| < C1η , |∂νn′,m′ l

E
n,m| < C1η, |

∑

(n′,m′)∈Λ

∂νn′,m′ l
E
n,m| < C1η (5.2)
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In the same way, given θ ∈ Θ
(k)
R,n,m, we define the extended value ValE(θ) and

therefore uE
n,m.

Proof. We prove first the statement for the (more difficult) case θ ∈ R(k)
R,h,n,m.

We use the C∞ compact support function χ(t) : R → R
+
, defined in the previous

section. Recall that χ(t) equal to 0 if |t| < γ and 1 if |t| ≥ 2γ, and |∂tχ| ≤ γ−1. We
proceed by induction let us suppose that we have proved Lemma 11 for r < k and

therefore defined l
(r)E
n,m,h for r < k. Given a tree θ ∈ R(k)

R,h,n,m,

LValE(θ)=

∗
∏

ℓ∈L(θ)

χ(|xnℓ,mℓ
||nℓ|τ )

∏

α1,α2

∗∗
∏

ℓ1,ℓ2∈L(θ)

χ(|xα1,α2
nℓ1

,mℓ1
,nℓ2

,mℓ2
||nℓ1−nℓ2 |τ ))LVal(θ)

(5.3)
where

∏∗
ℓ∈L(θ) is the product on the lines not on the path between e and v0 and

∏∗∗
ℓ1,ℓ2∈L(θ) is the product on the couples ℓ1, ℓ2 ∈ L(θ) such that: nℓ1 6= nℓ2 and

either both ℓ1, ℓ2 are on the path connecting e to v0 or they both are not on such
path. Finally in each node v with sv = 1 we set ηℓ = lEn,m,h.

1. By definition ValE(θ) = Val(θ) for (ε, ν) ∈ D(θ, 2γ) as in this set the χ in the
above formula are identically equal to 1;

2. By definition supp(ValE(θ)) ⊂ D̃(θ, γ) as the χ in the above formula are

identically equal to 0 in the complementary to D̃(θ, γ);
Finally we define

l
E(k)
n,m,h(ε, ν) =

∞
∑

h1=h

∑

θ∈Rn,m,h1

LValE(θ)(ε, ν) (5.4)

which respects the bounds in Lemma 10. In order to prove (5.2) we proceed by

induction. Given a tree θ ∈ R(k)
R,h1,n,m, the derivatives act on the nodes with sv = 1

which carry the factor l
(r)
n′,m′,h′ with r < k so we can apply the inductive hypothesis.

On the lines ℓ not on the path e, v0 we get

|∂εgℓ| ≤ C|nℓ|22hℓ , |∂νn′,m′ gℓ| ≤ C22hℓ (5.5)

and we use that |nℓ| ≤ k. On the lines ℓ on the path e, v0 the propagator is given
by Lgℓ, defined in (3.2) with x replaced by ω̄n,m, so that

|∂εLgℓ| ≤ |n(0)
ℓ |22hℓ , |∂νn′,m′Lgℓ| = C22hℓ ; (5.6)

where we have used that, by definition of D, |ω1n
′ − (m′)2| ≤ 1 + ε0|n′|. Finally

we consider the derivatives of the χ functions which produce in the bounds a factor
|n0

ℓ |τ+1, all this factors are bounded by kτ+1 ≤ Ck, so that the derivatives of Val(θ)
respect the bounds (4.18). As this bounds are uniform (independent from (n, m))
so that lEn,m,h is C1 function of (ε, ν).

Moreover ∂νn′,m′ l
(k)E
n,m (ε, ν) is non vanishing only if |ω1n

′ − (m′)2| ≤ 1 + ε0|n′|
and if |n| − k < |n′| < |n + k|; hence

∑

n′,m′∈Λ

|∂νn′,m′ l
(k)E
n,m (ε, ν)| ≤ C0k

3/2 max
n′,m′∈Λ

|∂νn′,m′ l
(k)E
n,m (ε, ν)| ≤ Ck

1
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where Λ was defined in Definition 2.
In the same way for θ ∈ ΘR,n,m

ValE(θ) =
∏

ℓ∈L(θ)

χ(xnℓ,mℓ
|nℓ|τ )

∏

α1,α2

∏

ℓ1,ℓ2∈L(θ)

χ(xα1,α2
nℓ1

,mℓ1
,nℓ2

,mℓ2
|nℓ1−nℓ2 |τ )ValE(θ)

(5.7)
and finally

uE
n,m =

∞
∑

k=1

ηk
∑

θ∈ΘR,n,m

Val(θ). (5.8)

�

5.2. Proof of Proposition 1. Lemma 10 and Lemma 11 imply that lEn,m and uE
n,m

are C1 in (ε, ν) for (ε, ν) ∈ D and analytic in η, q for |q| ≤ q0 and η ≤ ε0 such that
Dq2

0ε0 ≪ 1.
Inserting in the first of (1.11) the expansion for uE and lE we get the following

equation for q

q =

∞
∑

k=2

ηk−2
∗

∑

n1,m1
n2,m2

∑

k1+k2=k

δn1+n2−1(a − bΩn1n2)v1,m1,m2u
(k1)E
n1,m1

u(k2)E
n2,m2

. (5.9)

Indeed the leading order of (2.5r) is

q = −1

2
q3(a − bΩ2)

∑

m

v2
1,1,m(2ag0,m + (a − 2bΩ2)g2,m) + O(η). (5.10)

One can easily verify that for all (ε, ν) ∈ D |x0,m|, |x2,m| > 1
2 so that u0,m = uE

0,m.
So (the equation for q is equivalent to:

q = (A + O(ε0))q
3 + ηF (q, ε, ν, η) (5.11)

We then exclude those values of a, b for which A ≤ 0. Equation (5.11) is clearly
invertible near η = 0 if A > 0, so that we obtain q = q(η, ε, ν) analytic in η and C1

in (e, ν). This completes the proof of Proposition 1.
Notice that if A < 0 then we would only need to consider Ω =

√
1 + µ − ε with

as usual ε > 0. �

6. Proof of Proposition 2

6.1. In order to prove the first part of Proposition 2, we consider the extended
compatibility equation 1.12:

νn,m = ηlEn,m(ε, ν, η) ≡
∞
∑

k=2

ηkl(k)
n,m, (6.1)

where we have substituted q with q(ε, ν, η).and lEn,m(ε, ν, η) is a C1 function with
bounded Jacobian (see (5.2)) so that we can solve (6.1) by the implicit function
theorem for η < η0 small enough. We obtain a function ν(ε, η) defined for ε ∈ (0, ε0),
|η| ≤ η0 and of order η2. Moreover νn,m(ε, η) = 0 if |ω1|n| − m2| ≥ 1 + ε0|n|.
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From (6.1) we get

∂ενn,m(ε, η) = η(∂εl
E
n,m +

∑

n′,m′

|ω1|n′|−(m′)2|≤1+ε0|n′|

∂νn′,m′ l
E
n,m∂ενn′,m′(ε, η))

so that
|∂ενn,m(ε, η)|∞ ≤ η2C , |∂ηνn,m(ε, η)|∞ ≤ ηC

Finally we set η =
√

ε and obtain the desired bounds. �

6.2. We have now to bound the measure of C(γ).
We define I1 the set of ε ∈ (0, ε0) verifying for any (n, m),

|Ωn −
√

ω2
m + nνn,m(ε)| ≤ C0

|n|τ0
(6.2)

with C0 = 2γ. When (1.15) is satisfied by Lemma 2 there exists two constants such
that

c1

√
n ≤ m ≤ c2

√
n (6.3)

Moreover one must have (by using also (1.4))

2C0|n|−τ0 ≤ |ω1n − ωm|

≤ |ω1n + εn −
√

ωm + nνn,m(ε)| + |εn| + |
√

ω2
m + nνm(ε) − ωm|

≤ C0|n|−τ + Cε0|n|,
(6.4)

which implies, for |n| > 1 and τ > τ0 + 1,

|n| ≥ N0 ≡
(

C0

Cε0

)1/(τ0+1)

, (6.5)

We can define a map t → ε(t) such that

fn,m(ε(t)) = Ωn −
√

ω2
m + nνn,m(ε) =

2γt

|n|τ , t ∈ [−1, 1] (6.6)

describes the interval defined by (6.2); then one has

∫

I1

dε =
∑

|n|≥N0,0≤m≤c2
√

n

∫ 1

−1

dt

∣

∣

∣

∣

dε(t)

dt

∣

∣

∣

∣

, (6.7)

We have from the definition of fn,m:

dfn,m

dt
=

dfn,m

dε

dε

dt
=

2γ

|n|τ , (6.8)

We need a lower bound on

|dfn,m(ε)

dε
| = |n + n

∂ενn,m

2
√

ω2
m + nνm

| ≥ |n| − C|n|
ωm

(6.9)
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By (6.5) and the fact that, by (6.3), |n|
ωm

≤ C̄ we get for ε0 small enough

|dfn,m(ε)

dε
| >

|n|
2

(6.10)

We substitute in (6.7):

∫

I1

dε ≤
∑

|n|≥N0,0<m≤c2|n|1/2

C1

|n|τ+1
≤ C2ε

(τ− 1
2 ) 1

τ0+1

0 .

So the Cantor set of the ε verifying (1.25) has relative measure → 1 as ε0 → 0 if
τ > τ0 + 5

2 .

6.3. We define I2 the set of ε ∈ (0, ε0) belonging to I1 and verifying, for
m1 6= m2, the condition |ω1|ni| − m2

i | ≤ 1 + ε0|ni|, i = 1, 2

|Ω|n2 − n1| ±
√

ω2
m1

+ n1νn1,m1(ε) ∓
√

ω2
m2

+ n2νn2,m2(ε)| ≤
2γ

|n2 − n1|τ0
(6.11)

Of course |ni| ≤ C1m
2
i , for i = 1, 2.

For simplicity we choose the signs in (6.11) as in −, + in (the other case is done
in the same way); then (6.11) can be verified for some ε only if m1 > m2. It holds
that

m2
1 − m2

2 ≤ (ω1 + ε0)|n| + 1 (6.12)

where n = n1 − n2 The proof is by contradiction; if it is not true then m2
1 − m2

2 >
(ω1 + ε0)|n| + 1 which implies |n| 6= [Ω−1|m2

1 − m2
2|], where [...] denotes the closest

integer. Then

|Ω|n| −
√

ω2
m1

+ n1νn1,m1 +
√

ω2
m2

+ n2νn2,m2 | ≥ |Ωn − m2
1 + m2

2| −
µ0

m2
1

− µ0

m2
2

− (
n1

m2
1

+
n2

m2
2

)c1ε0| ≥ |Ωn − m2
1 + m2

2| −
1

4
(1 + Cε0) ≥

1

8
(6.13)

as |ni| ≤ C1m
2
i , for i = 1, 2, in contradiction with (6.11).

Then by (6.12) we get m1 + m2 ≤ C2
|n|

m1−m2
≤ C2|n| as m1 − m2 ≥ 1; hence

m1 ≤ C3|n| and m2 ≤ C3|n|.
Finally when the conditions (6.11) are satisfied, one has, for n1 − n2 = n and

C0 = 2γ

2C0|n|−τ0 ≤ |ω1n − (ωm2 − ωm1)|
≤ |ω1n + εn −

√

ωm2 + n2νn2,m2 +
√

ωm1 + n1νn1,m1 |
+ |

√

ωm1 + n1νn1,m1 − ωm1 | + |
√

ωm2 + n2νn2,m2 − ωm2 | + ε0|n|

≤ C0|n|−τ + ε0|n| +
|n1||νn1,m1 |

m2
1

+
|n2||νn2,m2 |

m2
2

,

(6.14)
now as |ni| ≤ c2m

2
i we have that

|n| ≥ N1 ≡ (C8ε0)
1/(τ0+1)

. (6.15)
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We define the map t → ε(t) implicitly by:

fn,n1,m1,m2 ≡ Ωn −
√

ω2
m1

+ n1νm1 +
√

ω2
m2

+ n2νm2 =
2γt

|n|τ (6.16)

We write
∫

I2

dε =
∑

|n|≤(C8ε0)1/(τ0+1)

m1,m2≤C3|n|;|n1|≤Cm2
1

∫ 1

−1

dt

∣

∣

∣

∣

dε(t)

dt

∣

∣

∣

∣

(6.17)

We need a lower bound on

|dfn,n1,m1,m2(ε)

dε
| = |n − n1∂ενn1,m1

2
√

ω2
m1

+ n1νm1

+
n2∂ενm2

2
√

ω2
m2

+ n2νnm2

|

≥ |n| − (C + ε0)|n1|
ωm1

− (C + ε0)|n2|
ωm2

≥ |n|
2

(6.18)

where we have used that |ni|
ωmi

is bounded by a constant and we have chosen ε0 small

enough. Hence we get

∫

I2

dε =
∑

|n|≤(C8ε0)1/(τ0+1)

C|n|−τ−1+4 ≤ ε
−τ+4
τ0+1

0 (6.19)

so the Cantor set of the ε verifying (1.26) has relative measure → 1 as ε0 → 0 if
τ > τ0 + 5

2 . Finally we define I3 the set of ε ∈ (0, ε0) verifying

|Ω|n| ±
√

ω2
m1

+ n1νm1(ε) ±
√

ω2
m2

+ n2νm2(ε)| ≤
2γ

|n|τ0
(6.20)

and one proceeds as above with the only difference that (6.20) can be true only if

|m2
1 + m2

2| ≤ C2|n| hence mi ≤ C2

√

|n|, i = 1, 2.

Appendix A1. Measure of the set M(γ)

The analysis is very similar to the one in §6. We call J1 the set of µ which do
not satisfy the first condition in (1.4). J1 is given by:

(1 + µ)|n| −
√

m4 + µ = t
γ

|n|τ0
, t ∈ (−1, 1); (A1.1)

the left hand side can be smaller than 1 only if n = [

√
m4+µ

(1+µ) ], where [...] is the

closest integer; this implies that m < c
√

|n| for a suitable constant c. Then (A1.1)
defines the values µ = µ(t) in J1 so that:

meas(J1) =
∑

n

m<c
√

|n|

∫ 1

−1

dt|dµ(t)

dt
| ≤

∑

n

m<c
√

|n|

2γ

|n|τ0+1
≤ 2γ (A1.2)

as |∂µ[(1 + µ)|n| −
√

m4 + µ]| ≥ |n|
2 , and τ0 > 1

2 .
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Let us call J2 the set of µ such that

(1 + µ)|n| −
√

m4
1 + µ +

√

m4
2 + µ = t

γ

|n|τ0
, t ∈ (−1, 1); (A1.3)

the left hand side can be smaller than one only if n = [

√
m4

1+µ−
√

m4
2+µ

(1+µ) ] which

implies |m2
1 − m2

2| < c|n| and therefore m1 + m2 < c|n|.

meas(J2) =
∑

n
m1,m2<c|n|

∫ 1

−1

dt|dµ(t)

dt
| ≤

∑

n

2γ

|n|τ0−1
≤ 2γ, (A1.4)

as τ0 > 2. Finally we proceed in the same way for J3 the set of µ such that

(1 + µ)|n| −
√

m4
1 + µ −

√

m4
2 + µ = t

γ

|n|τ0
, t ∈ (−1, 1); (A1.5)

We have proved that the complementary set to M(γ) is of order 6γ < 1
8 provided

that γ is small enough, that is γ ≤ 2−6.

Appendix A2. Proof of (1.7)

The equation for the coefficients (1.10) follows immediately from

∫ π

0

dx sin(mx) sin(m1x) = πδm,m1 (A2.1)

and

∫ π

0

dx sin(mx) sin(m1x) sin(m2x) =
∑

ε,ε1,ε2=±
(εε1ε2)

ei(εm+ε1m1+ε2m2)π − 1

i(εm + ε1m1 + ε2m2)

(A2.2)
which is vanishing if ±m1 ± m1 ± m2 is even, while if it is odd it is equal to

4[
1

m + m1 + m2
− 1

m + m1 − m2
− 1

m − m1 + m2
+

1

m − m1 − m2
]

=
8m1m2m

(m2 − (m1 − m2)2)(m2 − (m1 + m2)2)
(A2.3)

Appendix A3. Proof of the Lemmas 5 and 8

In order to prove Lemma 5 we prove inductively the bound, for θ ∈ ΘR,n,m

N∗
h(θ) ≤ max{0, 2K(θ)2(2−h)/τ − 1}, (A3.1)

where N∗
h(θ) is the number of non resonant lines. As we are supposing Val(θ) 6= 0

it holds for any ℓ that γ2−hℓ−1 ≤ |xnℓ,mℓ
| ≤ γ2−hℓ+1. This implies, by the first

Diophantine condition, that θ can have a line on scale h only if K(θ) > 2(h−1)/τ .
Then one can have Nh(θ) ≥ 1 only if K(θ) is such that K(θ) > k0 ≡ 2(h−1)/τ :
therefore for values K(θ) ≤ k0 the bound (4.9) is satisfied.
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If K(θ) > k0, we assume that the bound holds for all trees θ′ with K(θ′) < K(θ).
Define Eh = 2−1(2(4−h)/τ )−1: so we have to prove that N∗

h(θ) ≤ max{0, K(θ)E−1
h −

1}.
Call ℓ the root line of θ and ℓ1, . . . , ℓm the m ≥ 0 lines on scale ≥ h which are

the closest to ℓ
If the root line ℓ of θ is on scale < h then

N∗
h(θ) =

m
∑

i=1

N∗
h(θi), (A3.2)

where θi is the subtree with ℓi as root line, hence the bound follows by the inductive
hypothesis.

If the root line ℓ has scale ≥ h then ℓ1, . . . , ℓm are the entering line of a cluster
T .

By denoting again with θi the subtree having ℓi as root line, one has

N∗
h(θ) = 1 +

m
∑

i=1

N∗
h(θi), (A3.3)

and the bound becomes trivial if either m = 0 or m ≥ 2.
If m = 1 then one has a cluster T with two external lines ℓ and ℓ1, with hℓ1 , hℓ ≥ h

so that by (1.14):

∣

∣|Ωnℓ| −
√

ωmℓ
+ nℓνmℓ,nℓ

∣

∣ ≤ 2−h+1γ,
∣

∣

∣
|Ωnℓ1 | −

√

ωmℓ1
+ nℓ1νmℓ1

,nℓ1

∣

∣

∣
≤ 2−h+1γ,

(A3.4)
As ℓ is non resonant, surely nℓ 6= nℓ1 (otherwise if nℓ = nℓ1 then mℓ 6= mℓ1 hence
the two lines cannot have both scale ≥ h). Hence by (1.26) one has, for suitable
ηℓ, ηℓ1 ∈ {+,−},

2−h+2γ ≥
∣

∣Ω(nℓ−nℓ1)+ηℓ

√

ωmℓ
+nℓνmℓ,nℓ

+ηℓ1

√

ωmℓ1
+nℓ1νmℓ1

,nℓ1

∣

∣ ≥ γ|nℓ−nℓ1|−τ ,

(A3.5)
so that K(θ) − K(θ1) > Eh. Hence by using the inductive hypothesis

N∗
h(θ) = 1+N∗

h(θ1) ≤ 1+K(θ1)E
−1
h −1 ≤ 1+

(

K(θ)−Eh

)

E−1
h −1 ≤ K(θ)E−1

h −1,

(A3.6)
hence the bound is proved also if the root line is on scale ≥ h.

We prove Lemma 8 for LVal(θ̂), θ̂ ∈ RR,n,m,h. We consider the two subtrees

entering in v0; one, called θ̃, does not contain the endpoint e and the bounds of
the preceding lemma can be applied, so we consider the subtree θ containing e. We

proceed inductively on h for θ proving that N∗
h(θ) ≤ 2K(θ)2

2−h
τ ; such bound and

the bound (A3.1) for θ̃ immediately implies (4.7) as K(θ̂) = K(θ̃) + K(θ) − 1.

In order to prove N∗
h(θ) ≤ 2K(θ)2

2−h
τ we define k0 = 2(h−1)/τ . One has N∗

h(θ) =
0 for K(θ) < k0. In fact if the line ℓ with scale h is not in the path, this follows from
the first Melnikov condition. If such line is on the path we have that, if LVal(θ) is
non vanishing

||Ωn0
ℓ + ω̄n,m| −

√

ωmℓ
+ nℓνmℓ,nℓ

)| ≤ γ2−h+1 (A3.7)

so that by the second Melnikov condition:

K(θ) ≥ |n0
ℓ | ≥ 2

h−1
τ . (A3.8)
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Then for K(θ) < k0 the bound is satisfied; for K ≥ k0, we assume that the bound
holds for all K(θ) = K ′ < K, and we show that it follows also for K(θ) = K. If
K(θ) > k0, we assume that the bound holds for all trees θ′ with K(θ′) < K(θ).
Define Eh = 2−1(2(4−h)/τ )−1: so we have to prove that N∗

h(θ) ≤ K(θ)E−1
h . If the

root line ℓ of θ is on scale < h then

N∗
h(θ) =

m
∑

i=1

N∗
h(θi), (A3.9)

where θi is the subtree with ℓi as root line, hence the bound follows by the inductive
hypothesis. If the root line ℓ has scale ≥ h then ℓ1, . . . , ℓm are the entering line
of a cluster T . The same occurs if the root line is on scale ≥ h and non-resonant,
and, by calling ℓ1, . . . , ℓm the lines on scale ≥ h which are the closest to ℓ, one has
m ≥ 2: in fact in such a case at least m − 1 among the subtrees θ1, . . . , θm verifies
the bound (A3.1) so that

N∗
h(θ) = 1 +

m
∑

i=1

N∗
h(θi) ≤ 1 + E−1

h

m
∑

i=1

K(θi) − (m − 1) ≤ EhK(θ), (A3.10)

If m = 0 then N∗
h(θ) = 1 and K(θ)2(2−h)/τ ≥ 1 because one must have K(θ) ≥ k0.

So the only non-trivial case is when one has m = 1. In this case ℓ, ℓ1 are on the
path connecting the external lines of the resonance

||Ωn0
ℓ + ω̄n,m| −

√

ωmℓ
+ nℓνmℓ,nℓ

)| ≤ γ2−h+1 (A3.11)

||Ωn0
ℓ1 + ω̄n,m| − √

ωmℓ1
+ nℓ1νmℓ1

,nℓ1
)| ≤ γ2−h+1 (A3.12)

so that for suitable ηℓ, ηℓ1 ∈ {+,−}

2−h+2γ ≥
∣

∣Ω(n0
ℓ − n0

ℓ1) + ηℓ

√

ωmℓ
+ nℓνmℓ,nℓ

+ ηℓ1

√

ωmℓ1
+ nℓ1νmℓ1

,nℓ1

∣

∣

≥ γ|n0
ℓ − n0

ℓ1 |−τ , (A3.13)

from which K(θ) − K(θ1) ≥ |n0
ℓ − n0

ℓ1
| ≥ 2(h−2)/τ and by the analogous of (A3.6)

the bound is proved.
Appendix A4. Proof of Lemma 7

In order to prove (4.15) we proceed by induction; consider a tree θ with k internal
nodes and sv = 2 for any v; we call ℓ1, ℓ2 the two lines entering v0; we call mℓ1 = m1

and mℓ2 = m2 the root lines of two subtrees θ1 and θ2 with k1 ≥ 0 and k2 ≥ 0
vertices, and k1 + k2 = k − 1. If k1 = 0 (or k2 = 0) then one of the two cases holds:

1. ℓ1 connects to an end-node so that |ηv| = 1 and m1 = 1.
2. ℓ1 connects to the external node so that |ηv| = |ηe| = 1/m3

e (this case is
possible only of θ ∈ RR,h,n,m).

So we can proceed with our inductive hypothesis and suppose that our bound
holds for all trees with 0 ≤ k1 < k end-nodes. Without loss of generality we can
suppose that m1 ≥ m2. We perform the bound m+m1+m2 > m ,m+m1−m2 > m
so that:

∗
∑

m1≥m2

1

|(m2 − (m1 + m2)2)||(m2 − (m1 − m2)2)|
1

m2
1m

2
2
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≤ 1

m2

∗
∑

m1≥m2

1

m2
1m

2
2

1

|m − m1 − m2||m − m1 + m2|
(A4.1)

If m1 ≤ m
4 then the bound is trivial as:

1

m2

∗
∑

m
4 ≥m1≥m2

1

|m − m1 + m2||m − m1 − m2|
1

m2
1m

2
2

≤ 8

3m4

∗
∑

m1,m2

1

m2
1m

2
2

≤ C1

m4
.

(A4.2)
In the remaining terms we treat separately the cases m1 ≤ m − 1, m1 > m and

m1 = m.
We notice that in the first case |m − m1 + m2| ≥ m − m1, while in the second

case |m − m1 − m2| ≥ m1 − m . We then obtain the bound:

1

m2

∗
∑

m1> m
4 , m1≥m2

1

m2
1m

2
2

1

|m − m1 − m2||m − m1 + m2|

≤ 1

m2

(

∗
∑

m−1≥m1> m
4

1

m2
1(m − m1)

(

∞
∑

m2=1

1

m2
2|m − m1 − m2|

)+ (A4.3)

∗
∑

m1>m

1

m2
1(m1 − m)

(

∞
∑

m2=1

1

m2
2|m − m1 + m2|

) +
1

m2

∞
∑

m2=1

1

m2
2

)

Now we estimate the sums with integrals:

∑

n6=A

1

|A − n|n2
≤ C0[

∫ A−1

x=1

1

(A − x)x2
+

∫ ∞

x=A+1

1

(x − A)x2
+

C2

A2
] ≤ C3

A
(A4.4)

∑

n6=A

1

(A − n)2n2
≤ C0[

∫ A−1

x=1

1

(A − x)2x2
+

∫ ∞

x=A+1

1

(x − A)2x2
+

C2

A2
] ≤ C3

A2
(A4.5)

We use the first bound on the sum over m2 then in the sum over m1 we obtain a
series as in the second bound immediately implying

∗
∑

m1> m
4 , m1≥m2

1

m2
1m

2
2

1

|(m2 − (m1 + m2)2)||(m2 − (m1 − m2)2)|
1

m2
1m

2
2

≤ C̄

m4

(A4.6)
This implies the inductive hypothesis, as θ has k vertices and k1 + k2 = k − 1, by
choosing C1 = C̄ in (4.15).
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