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We consider the class of Hamiltonians:
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where 0 ≤ b < 1
2
, and the perturbing function f(q) is a rational function of eiq . We

prove upper and lower bounds on the splitting for such class of systems, in regions of the
phase space characterized by one fast frequency. Finally using an appropriate Normal
Form theorem we prove the existence of chains of heteroclinic intersections.
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1. Presentation of the Model and Main Theorems

The general setting of this paper is the problem of homoclinic splitting and Arnol’d

diffusion in a priori stable systems with three or more relevant time scales. The

general strategy is the one proposed in [1] and [2] and in particular the application

to a priori stable systems proposed in [3] and further developed in [4]. More pre-

cisely we consider a class of close to integrable n degrees of freedom Hamiltonian

systems for which one can prove the existence of (n−1)-dimensional unstable KAM

tori together with their stable and unstable manifolds. We use a perturbative dia-

grammatic construction (proposed and developed in [3], [4] and [5]) to prove upper

bounds on the angles of intersection of the stable and unstable manifolds of a KAM

torus (homoclinic splitting). Such bounds are generally exponentially small in the

perturbation parameter and depend on the chosen torus and in particular on the

number of fast degrees of freedom. For systems with one fast degree of freedom

we prove as well lower bounds on the homoclinic splitting through the mechanism

of Melnikov dominance. Finally for such systems we prove the existence of “long”

chains of heteroclinic intersections; namely we produce a list of unstable KAM tori

T1, . . . , Th such that T1, Th are at distances of order one in the action variables and

the unstable manifold of each Ti intersects the stable manifold of Ti+1. This paper

is a generalization of the results of [4], [5], [6], therefore in proving our claims we

will rely heavily on intermediate results proved in the latter papers which we will

not prove again.

Consider the class of Hamiltonians

1

2

n−1
∑

j=1

Ĩ2 +
1

2
εĨ2
n +

p̃2

2
+ ε

[

(cos q̃ − 1) − 1 − c2

4
(cos 2q̃ − 1)

]

+ εµf(q̃)
n
∑

i=1

sin ψ̃i ,

(1.1)

where the pairs Ĩ ∈ Rn, ψ̃ ∈ Tn and p̃ ∈ R, q̃ ∈ T are conjugate action-angle

coordinates, 0 < c ≤ 1, f(q̃) is odd and analytic on the torus and µ, ε are small

parameters. We will consider them independent and then prove that one can prove

Arnold Diffusion for µ ≤ εP , for an appropriate P .

This class of Hamiltonians is a model for a near to integrable system close to a

simple resonance where the dependence on the hyperbolic variables is not through

the standard pendulum, but still maintains various qualitative properties of the

pendulum. Namely we have a “generalized pendulum”,

p̃2

2
+ ε

[

(cos q̃ − 1) − 1 − c2

4
(cos 2q̃ − 1)

]

which has an unstable fixed point in p̃ = q̃ = 0 with Lyapunov exponent λ = c
√
ε.

Generally one rescales the time and action variables so that the Lyapunov

exponent is one:
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Ĩ
(

t
c
√
ε

)

c
√
ε
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(

t

c
√
ε

)
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p̃
(

t
c
√
ε

)

c
√
ε
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(

t

c
√
ε

)

.

(1.2)
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Such rescaling sends Hamiltonian 1.1 in

(I, A(ε)I)

2
+
p2

2
+

1

c2

[

(cos q− 1)− 1 − c2

4
(cos 2q− 1)

]

+ µf(q)
n
∑

i=1

sin(ψi) (1.3)

where A(ε) is the diagonal matrix with eigenvalues ai = 1 for i = 1, . . . , n − 1

and an = ε. So from now on we will work on Hamiltonian (1.3) and turn back to

Hamiltonian (1.1) only to prove the existence of heteroclinic chains. The system

(1.3) is integrable for µ = 0. It represents a list of n uncoupled rotators and a

generalized pendulum (depending on the parameter c). We will denote the frequency

of the rotators (which determines the initial data I(0)) by ω so that

I(t) = I(0) = A−1ω , ψ(t) = ψ(0) + ωt .

The initial data are chosen in an appropriate domain (physically interesting in the

variables Ĩ) so that there are at least three characteristic orders of magnitude for

the frequencies of the unperturbed system.

Definition 1.1. In frequency space we first consider the ellipsoid

Σ :=

{

x ∈ Rn :
n
∑

i=1

x2
i /ai = 2E

}

where E is an order one constanta E ∼ Oε(1).

For notational convenience we split the frequency ω in two vectorial components :

ω = ( ω1√
ε
, εαω2) with ω1 ∈ Rm, ω2 ∈ Rn−m, and 0 ≤ α ≤ 1

2 . Finally, given two

suitable order one constants R, r ∼ Oε(1), we consider the region

Ω ≡ {ω ∈ Rn :
√
εω ∈ Σ , r < |ω1,i| < R and r < |ω2| < R , εα|ω2,i| ≥

√
ε ,

εα|ω2,n−m| ∼
√
ε} .

We have chosen the generalized pendulum so that its dynamics on the separatrix

is particularly simple,b namely

q(t) = 2 arc cot g

(

1

c
sinh(±t)

)

, eiq(t) =
sinh(±t) + ic

sinh(±t) − ic
. (1.4)

There are at least three characteristic time scales Oε(ε
− 1

2 ), Oε(ε
α), Oε(

√
ε) (coming

from the degenerate variable In) and 1 which is the Lyapunov exponent of the

unperturbed pendulum.

We will call ψ1, . . . , ψm the fast variables and we will sometimes denote them

as ψF ∈ Tm. Conversely we will call ψm+1, . . . , ψn the slow variables ψS ∈ Tn−m.

aNow and in the following we will say a(ε) ∼ Oε(f(ε)) if limε→0+
a(ε)
f(ε)

= L 6= 0.
bThe motion on the separatrix can be easily obtained by direct computation; the main feature
is that the motion on the separatrix is such that eiq(t) is a rational function of et. Here we are
considering the simplest class of examples, which contains the standard pendulum c = 1.
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The perturbing function is a trigonometric polynomial of degree one in the

rotators ψ and a rational functionc in eiq. We have decoupled the dependence of ψ

and q only to simplify the computations. For each ω ∈ Rn the unperturbed system

has an unstable fixed torus,

p(t) = q(t) = 0 , I(t) = I(0) = A−1ω , ψ(t) = ψ(0) + ωt .

The stable and unstable manifolds of such tori coincide and can be expressed as

graphs on the angles.

Definition 1.2. Given any γ ∈ R, ε < γ ≤ O(ε
1
2 ) and a fixed τ > n− 1, we define

the set

Ωγ ≡
{

ω ∈ Ω : |ω · l| > γ

|l|τ , ∀ l ∈ Zn/{0}
}

of γ, τ Diophantine vectors in Ω. Now we consider

Ω∗
γ ≡ Ωγ ×

(

− 1

2
,
1

2

)

and for all (ω, ρ) ∈ Ω∗
γ we set ωρ = (1 + ρ)ω.

For all (ω, ρ) ∈ Ω∗
γ and for all l ∈ Zn/{0} |ωρ · l| > γ

2|l|τ , ω ∈ Ωγ implies that ω1

and ω2 are Diophantine as well; we will call τF and τS their exponents.

KAM like theorems (see [2], [5]) imply that there exists µ0(ε, γ) ∼ ε2 such

that if |µ| ≤ µ0 and if (ω, ρ) ∈ Ω∗
γ , there exists one and only one n-dimensional Hµ-

invariant unstable torus Tµ(ω, ρ) whose Hamiltonian flow is analytically conjugated

to the flow Tn 3 ϑ → ϑ + ωρt. Moreover one can parameterize the stable and

unstable manifolds of Tµ(ω, ρ) by functions I±(ω, ϕ, q, µ), analytic in the last three

arguments, with ϕ, q ∈ Tn × [− 3
2π,

3
2π]. Namely given

z±(ω, ϕ, q, µ) = (I±(ω, ϕ, q, µ), p±(ω, ϕ, q, µ), ϕ, q) ,

where the pendulum action is derived by energy conservation, the trajectoryd:

z(ω, ϕ, q, µ, t) =

{

ΦtHz
+(ω, ϕ, q, µ) if t > 0

ΦtHz
−(ω, ϕ, q, µ) if t < 0

tends exponentially to a quasi-periodic function of frequency ω.

Remark 1.3. We have introduced the variable ρ in order to fix the energy of the

perturbed system,e namely given a list of ωi ∈ Ωγ one can find ρ(ωi, µ) such that all

the corresponding whiskered tori are on the same energy surface, see for instance [5].

cActually it is sufficient that the singularity of f(ψ(t), q(t)), which is nearest to the real axis is
polar and isolated.
dΦt

H is the evolution at time t of the Hamiltonian flow (1.3).
eThe final goal is to find heteroclinic intersections on the fixed energy surface, and so “Arnold
diffusion”, but in the following sections we will discuss only homoclinic intersections and so we
will drop the parameter ρ.
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Definition 1.4. We will study the difference between the stable and unstable man-

ifolds on an hyper-plane transverse to the flow (a Poincaré section), we choose the

hyper-plane q = π and consequently drop the dependence on q. We call

G0
j (ϕ, ω) =

1

2
aj(Ij(ϕ, ω, 0

−) − Ij(ϕ, ω, 0
+))

the splitting vector and prove that G0
j (ϕ = 0, ω) = 0. A measure of the transversality

is

∆0
ij = ∂ϕjG

0
i (ϕ)|ϕ=0

called splitting matrix.

We will prove the following theorems:

Theorem 1. The splitting matrix ∆0 satisfies the formal power series relationf :

∆0 ∼ AD0B

where A, B are close to identity matrices and D0 is the “holomorphic part” of the

splitting matrix; namely its entries are expressed as integrals over R of analytic

functions. Moreover the formal power series involved are all asymptotic.g

This statement was posed as a conjecture in [7] Paragraph 3.

Corollary 1.5. The preceding Theorem implies that Hamiltonian (1.3), in regions

of the action variables corresponding to m 6= 0 fast time scales, has exponentially

small upper bounds on the determinant of the splitting matrix :

|det ∆0| ≤ Ce−
c

εb , with b =
1

2m
,

provided that µ < ε1+2 n
m .

Notice that Theorem 1 can be proved for much more general systems than model

(1.3).

Theorem 2. Consider Hamiltonian (1.3) in regions of the action variables corres-

ponding to m = 1 fast variables and for perturbing functions f(q) such that the

pole f(q(t)) closest to the imaginary axis, say t̄, is such that |Im t̄| = d ≤ arc sin c.

Setting µ ≤ εP with P = p/2 + 8 + 4n where p is the degree of the pole of f(q(t))

in t̄ we prove that

C1ε
−p1e−

d|ω1|√
ε ≤ |det ∆0| ≤ C2ε

−p2e−
d|ω1|√

ε

where C1, C2, p1, p2 are appropriate order one constants.

fWe denote formal power series identities with the symbol A ∼ B.
gA formal power series

∑

µnan(ε) is asymptotic if for all q > 0 there exists Q > 0 such that for
all n ≤ ε−q then an(ε) ≤ ε−Qn.
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Corollary 1.6. Under the conditions of Theorem 2 the Hamiltonian (1.1) has

heteroclinic chains, namely a set of N ≥ 1 trajectories z1(t), . . . , zN(t) together

with N + 1 different minimal setsh T0, . . . , TN such that for all 1 ≤ i ≤ N

lim
t→−∞

dist(zi(t), Ti−1) = 0 = lim
t→∞

dist(zi(t), Ti) .

Moreover one can construct such chains between tori T (ωa;µ), T (ωb;µ) such that

ωa, ωb ∈ Ω̄ ⊂ Ωγ and

|ε− 1
2 (ωan − ωbn)| ∼ Oε(1) .

The techniques used for proving the Theorems are those proposed in [3] and

developed in [4] for partially isochronous three time scale systems with three degrees

of freedom. In this paper, particular attention is given to the formalization of the

tree expansions and of the “Dyson equation” and relative cancellations proposed in

[4]. This enables us to extend Theorem 1 to systems with n degrees of freedom and at

least two time scales; moreover the proof is definitely simplified and quite compact.

In this article we have considered completely anisochronous systems only to fix

an example; generalizing to partially (or totally, thus recovering the results of [8])

isochronous systems is completely trivial. Indeed Theorem 1 and hence Corollary 1.5

can be proved for very general systems, as we will show in a forthcoming paper.

Moreover we have generalized the class of perturbing functions and the “pen-

dulum” (the literature considers only trigonometric polynomials and the standard

pendulum); the latter generalizations are quite technical but nevertheless non-trivial

and interesting, we think, as the techniques we propose are easily generalizable and

give a clear picture of the limits of proving Arnold diffusion via Melnikov dominance.

2. Perturbative Construction of the Homoclinic Trajectories

One can use perturbation theory to find the (analytic for µ ≤ µ0) trajectories on

the S/U manifolds of Hamiltoniani (1.3)

z(ϕ, ω, t) =
∑

k

(µ)kzk(ϕ, ω, t) .

Namely we insert the expansion in µ in the Hamilton equations of system (1.3),

İj = −(µ) cosψjf(q) , ψ̇j = ajIj ,

ṗ =
1

c2
sin q(1 − (1 − c2) cos q) − (µ)

n
∑

i=1

sinψi
df

dq
(q) , q̇ = p ,

(2.1)

hA closed subset of the phase space is called minimal (with respect to a Hamiltonian flow φt
h) if

it is non-empty, invariant for Φt
h and contains a dense orbit. In our case the minimal sets will be

unstable tori T (I) with ω(I) Diophantine.
iNotice that the apex k on the functions I, ψ represents the order in the expansion in µ NOT
an exponent. To avoid confusion, when we need to exponentiate we always set the argument in
parentheses.
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and find initial data I(ω, ϕ, µ, 0±) (and consequently p(ω, ϕ, µ, 0±)) such that the

solution of (2.1) tends exponentially to a quasi-periodic function of frequency ω.

Inserting in the Hamilton equations the convergent power series representation:

I(t, ϕ, µ) =

∞
∑

k=0

(µ)kIk(t, ϕ) , ψ(t, ϕ, µ) =

∞
∑

k=0

(µ)kψk(t, ϕ) ,

p(t, ϕ, µ) =

∞
∑

k=0

(µ)kpk(t, ϕ) , q(t, ϕ, µ) = q0(t) +

∞
∑

k=1

(µ)kψk0 (t, ϕ)

we obtain, for k > 0, the hierarchy of linear non-homogeneous equations,j

İkj = F kj ({ψhi }i=0,...,n
h<k

) , ψ̇kj = ajI
k
j , for j = 1, . . . , n ;

ṗk =
1

c2
(cos(q0(t)) − (1 − c2) cos(2q0(t)))ψk0 + F k0 ({ψhi }i=0,...,n

h<k

) , ψ̇k0 = pk ,
(2.2)

where the functions F ki are defined as follows. Set: [·]k = 1
k!

dk

dµk ( · )|µ=0; we have

F kj (t) = −
[

∂ψjf
1

(

k−1
∑

h=1

(µ)h ~ψh(t)

)]

k−1

− δj0

[

∂ψ0f
0

(

k−1
∑

h=1

(µ)hψh0 (t)

)]

k

, j = 0, . . . , n

where ~ψh(t) is the vector ψh0 (t), . . . , ψhn(t),

f1(~ψ) =

n
∑

i=1

sinψif(ψ0) , f0(ψ0) =
1

c2

(

(cosψ0 − 1) +
1 − c2

2
sin2 ψ0

)

,

finally δji denotes the Kronecker delta. For k = 0 we obtain the unperturbed

homoclinic trajectory:

z0(t) = (A−1ω, p0(t), ϕ+ ωt, q0(t)) ,

(q0(t), p0(t)) is the lower branch of the pendulum separatrix starting at q = π

written in Eq. (1.4).

For k > 0 we have a linear non-homogeneous ODE that we can solve by variation

of constants. The fundamental solution of the linearized pendulum equation is given

by,

W (t) =

∣

∣

∣

∣

ẇ0 ẋ0
0

w0 x0
0

∣

∣

∣

∣

, w0 =
1

2
σ(t)x1

0 where σ(t) = sign(t)

jWhen it is not strictly necessary we will omit the prefixed initial data of the angles ϕ =
ψ1(0), . . . , ψn(0); ψ0(0) = π.
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x0
0 =

c2 cosh(t)

c2 + sinh(t)2
,

x1
0 =

σ(t)x0
0

2c4
(2(−3 + 4 c2) t+ sinh(2 t) + 4(−1 + c2)2 tanh(t)) . (2.3)

It is easily seen (see [3] or [5]) that one can choose an appropriate “primitive”

in the right hand side of the first column of Eqs. (2.2) so that the solutions are

exponentially quasi-periodic.

2.1. Whisker calculus, the “primitive” =
t

Let us first define the function spaces on which we work, all the definitions and

statements of this Subsection and of the following one are proposed and explained

in detail in [3], we are simply reformulating them to suit our needs.

Definition 2.1. (i) H is the vector space (on C) generated by monomials of the

form

m = σ(t)a
|t|j
j!
xhei(ϕ+ωt)·ν where h ∈ Z , ν ∈ Zn , j ∈ N ,

x = e−|t| , a = 0, 1 , σ(t) = sign(t) . (2.4)

(ii) Given two positive constants b and d, H(b, d) is the subset of functions f(t)

analytic on the real axis in t 6= 0 that admit, separately for t > 0 and t < 0, a

(unique) representation,

f(t) =

k
∑

j=0

|t|j
j!
M

σ(t)
j (x, ϕ+ ωt) , (2.5)

with M
σ(t)
j (x, ϕ) trigonometric polynomials in ϕ and the function M

σ(t)
k not iden-

tically zero.

The Fourier coefficients M
σ(t)
jν (x) are all holomorphic in the x-plane in a region

{0 < |x| < e−b} ∪ {|argx| < d}
and have possible polar singularities at x = 0. k is called the t degree of f.

In Fig. 1 we have represented a possible domain of analyticity for the Mνj .

Notice that H is contained in all the spaces H(b, d); moreover if |t| > b, f(t) can

be represented as an absolutely convergent series of monomials of the type m,

separately for t > b and t < −b. One can easily check that the functional that acts

on monomials m of the form (2.4) as

=t(m) =























−σa+1xhei(ψ+ωt)·ν
j
∑

p=0

|t|j−p
(j − p)!(h− iσω · ν)p+1

if |h| + |ν| 6= 0

−σ
a+1|t|j+1

(j + 1)!
if |h| + |ν| = 0

(2.6)

is a primitive of m.
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eb

d

Fig. 1.

We can extend =t, with |t| > b, to a primitive on functions f ∈ H(b, d) by

expanding f in the monomials m (we obtain absolutely convergent series) and

applying (2.6). Then if |t| ≤ b we set

=t ≡ =2σ(t)b +

∫ t

2σ(t)b

, (2.7)

obviously the choice of 2b is arbitrary and this is still the same primitive of f .

In H(b, d) we can extend =t to complex values of t such that t ∈ C(b, d) where

C(b, d) := {t ∈ C : |Im t| ≤ d, |Re t| ≤ b} ∪ {t ∈ C : |Im t| ≤ 2π, |Re t| > b} ,

is the domain in Fig. 1 in the t variables.

An equivalent (and quite useful) definition of =t is

=tf =

∮

du

2iπu

∫ t

σ(t)∞+is

e−σ(τ)uτf(τ)dτ , (2.8)

where σ(t) = sign(Re t), t = t1 + is, with t1, s ∈ R and the integral is performed on

the line Im τ = s; finally the integrals in u have to be considered to be the analytic

continuation on u from u positive and large.

This definition is clearly compatible with the formal definition given above and

one easily sees that H(b, d) is closed under the application of =t.

Definition 2.2. H0(b, d) is the subspace of H(b, d) of functions that can be extended

to analytic functions in C(b, d).

Notice that f is in H0(b, d) if it is in H(b, d) and f(t) is analytic at t = 0.

Remark 2.3. If f ∈ H0(b, d) then generally =f /∈ H0(b, d) and has a discontinuity

in t = 0. For instance if f ∈ L1 is positive, then

=(f) := (=0− −=0+

)f =

∫ ∞

−∞
f 6= 0 .
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We can construct operators which preserve H0(b, d); let = = =0− −=0+

and

=t+ =

{

=t if t ≥ 0

=t −= if t < 0 ,
=t− =

{

=t if t ≤ 0

=t + = if t > 0 .

The operator

1

2

∑

ρ=±1

=tρ = =t − 1

2
σ(t)=

preserves the analyticity.

Now let us cite two important properties of H0(b, d), proved in [3].

Lemma 2.4. In H0(b, d) we have the following shift of contour formulas :

∀f ∈ H0(b, d) and for all d > s ∈ R,

(i) =f(τ) = =f(τ + is) ,

(ii)
∑

ρ=±1

=t+isρ f(τ) =

∮

dR

2iπR

∑

ρ=±1

∫ t

ρ∞
e−Rσ(τ)(τ+is)f(τ + is)dτ .

2.2. The recursive equations

One can easily verify that f 1(ψ0(t), q0(t)) and f0(q0(t)) are in H0(a, d) (and

bounded at infinity) for some “optimal” values a, d corresponding respectively to

the maximal distance from the imaginary axis and the minimal distance from the

real axis of the poles of such functions. One can prove by induction, see [3] or [5] for

the details, that the solutions of Eqs. (2.2) tend to quasi-periodic functions provided

that the initial data are chosen to be:

Ikj (ϕ, ω, 0±) =
∑

k

µk=0±
F kj , p(ϕ, ω, 0±) =

∑

k

µk=0±
x0

0F
k
0 .

Moreover one can prove that F kj (ϕ, ω, t) has no constant component. Consequently

it is convenient to express the trajectories in terms of the “primitives” =t in the

form (a0 = 1):

(µ)kψkj (ϕ, t) = (µ)kajQ
t
jF

k
j + x0

jG
1k
j + x1

jG
0k
j

where x0
j = 1, x1

j = |t| for j 6= 0 while the xi0 are defined in Eq. 2.3,

Qtj [f ]=
1

2
(=t++=t−)[(x0

j (t)σ(τ)x1
j (τ)−x1

j (t)σ(t)x0
j (τ))f(τ)] , Gikj =(µ)k

1

2
aj=xijF kj .

For the proofs of these assertions see [3] or [5].

Notice that by our definitions,

Ij(ϕ, 0
−) − Ij(ϕ, 0

+) = 2a−1
j

∑

k

G0k
j ≡ 2a−1

j G0
j , 2G0

0 = p(ϕ, 0−) − p(ϕ, 0+) .
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We define the formal power series

∑

k

Glkj (ϕ) ≡ Glj(ϕ), j = 0, . . . , n , l = 0, 1 .

Notice that by the KAM theorem the G0
j are convergent series.

Remark 2.5. (i) We will often use formal power series and in particular formal

power series identities, namely identities which hold only at each order k in the

series expansion in µ; we will mark such identities with the symbol A ∼ B.

In Sec. 4.5 we will prove that the formal power series we use are “asymptotic”.

As a definition of asymptotic power series we will assume that a formal power series
∑

µnan(ε) is asymptotic if for all q > 0 there exists Q > 0 such that, for all n ≤ ε−q ,
an(ε) ≤ ε−Qn. This implies that we can control the first ε−q terms provided that

µ < εQ.

(ii) It should be stressed that we do not need to prove convergence for all the

asymptotic power series involved in a given identity to obtain information on those

series which are known to be convergent (by the KAM theorem).

The following Proposition contains some important properties of the operators

Qj all proved in [3].

Proposition 2.6 (Chierchia). (i) The operators Qj are “symmetric” on H(a, d) :

=(f Qjg) = =(g Qjf) .

(ii) H0(a, d) is closed under the application of Qtj .

(iii) The operators Qj preserve parities and if f ∈ H0(a, d) is odd then =f = 0.

(iv) If F,G ∈ H(a, d) are such that the projection on polynomials, πPF ·G, has no

constant component, then

=0σ

G(τ)∂τF (τ) = F (0σ)G(0σ) −=0σ

F (τ)∂τG(τ) .

Proposition 2.6(iii) immediately implies the following (again proved in [3])

Corollary 2.7. For all k ∈ N, j = 0, . . . , n, i = 0, 1, the function Gikj (ϕ) is zero

for ϕ = 0. In particular the splitting vector is zero for ϕ = 0 and the system has an

homoclinic point.

Proof. We proceed by induction; by Proposition 2.6(iii) Gi 1j (ϕ = 0) = 0 as it is

the integral of an odd analytic function. Consequently ψ1
j (ϕ = 0, t) is both odd

and in H0(a, d). Now we suppose that Gi hj (ϕ = 0) = 0 and ψhj (ϕ = 0, t) is odd

and in H0(a, d) for all h < k and j = 0, . . . , n. The function F kj is an odd analytic

function of the angles ψi (∂ψjf
δ) computed at ψ =

∑

h<k(µ)hψhj (ϕ = 0, t) which

is again odd and in H0(a, d). We can apply Proposition 2.6(iii) so Gi kj (ϕ = 0) = 0

and ψkj (ϕ = 0, t) is both odd and in H0(a, d).
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3. Proofs of the Theorems

We define the formal power series:

∆a
i,j = ∂ϕiG

a
j , for j = 1, . . . , n , δai = ∂ϕiG

a
0 , for a = 0, 1 .

Notice that such series are known as a priori to be convergent only for a = 0.

Lemma 3.1. The stable and unstable manifolds are on the same energy surface so

that
n
∑

j=1

G0
j (ϕ)(Ij (ϕ, 0

+) + Ij(ϕ, 0
−)) = −G0

0(ϕ)(p(ϕ, 0+) + p(ϕ, 0−)) , (3.1)

this relation implies that at the homoclinic point ϕ = 0,

~I(ϕ = 0, 0+)∆0 = −δ0p(ϕ = 0, 0+) .

Proof. Equation (3.1) are simply the energy conservation at time t = 0:

(I(ϕ, 0+), AI(ϕ, 0+)) + p2(ϕ, 0+) = (I(ϕ, 0−), AI(ϕ, 0−)) + p2(ϕ, 0−) ,

the potential part of the Hamiltonian cancels as the perturbation depends only on

the angles. Finally we differentiate in ϕ and compute at the homoclinic point where

G0
j = 0 by Corollary 2.7.

3.1. The formal linear equation

In the recursive construction of ψj , and consequently of Gij , we have distinguished

three “blocks”:

(0) x0
jG

0k
j , (1) x1

jG
1k
j , (2) (µ)kajQ

t
j(F

k
j ) , (3.2)

as the Gihj can be brought out of the integral we can say that ψkj and G0k
j (j =

1, . . . , n) are polynomials in the Grhl with l = 0, . . . , n, h = 1, . . . , k − 1, r = 0, 1.

This can be seen as a formal power series identity:

G0
j (ϕ) ∼ J0

j (ϕ) +
∑

r=0,1

(

n
∑

l=1

N
[r]
jl (ϕ)Grl (ϕ) + n

[r]
j G

r
0

)

+ quadratic terms + · · · [r] = |r − 1| .

Following [4] we differentiate this relation in the parameter ϕ and evaluate it on

the homoclinic point where Gij ∼ 0, this leads to a linear formal identity for ∆0:

∆0 ∼ D0 +N1∆0 +N0∆1 + n1δ0 + n0δ1 (3.3)

where D0
ij = ∂ϕjJ

0
i |ϕ=0.

Notice that we do not have an explicit expression for the matrices N i and ni

although we have a recursive algorithm for the coefficients of the series expansion;

we will use trees to find such explicit expressions. We can notice however that D0
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is the holomorphic part of the splitting matrix, namely it is obtained by using only

the holomorphic block (2) of (3.2) in the construction of the homoclinic trajectory.

We insert the energy conservation relations in Eq. (3.3):
(

1 −N1 +
1

p(ϕ = 0, 0+)
n1~I(ϕ = 0, 0+)

)

∆0 ∼ D0 +N0∆1 + n0δ1 . (3.4)

The tree representation of the trajectories leads to the following Propositions

all proved in the next Sections:

Proposition 3.2. The following formal power series relations hold :

(i) D0 ∼ N0 , (ii) n0 ∼ c

2
D0ω ,

(iii) D0 is the Hessian of a function S0 at the homoclinic point: D0
ij =

∂ϕi∂ϕjS
0(ϕ)|ϕ=0.

This Proposition generalizes to Hamiltonian (1.3) similar results of [4].

Relations (i) and (ii) inserted in (3.4) directly imply that:
(

1 −N1 +
1

p(ϕ = 0, 0+)
n1~I(ϕ = 0, 0+)

)

∆0 ∼ D0

(

1 + ∆1 +
1

2
ωδ1

)

. (3.5)

Proposition 3.3. One can use the tree representation to find appropriate bounds

on the order k terms of the series expansion of the formal power series of Eq. (3.5).

If we denote by Mk the order k term of the µ expansion of a formal power series

M, we have:

max(|N1k|, |pk(ϕ = 0, 0+)|, |Ikj (ϕ = 0, 0+)|, |δ1k |, |∆1k|) ≤ (k!)c1(Cε−1)k .

Moreover the Fourier coefficients of the function S 0k :

S0k(ϕ) =
∑

ν∈Zn:|ν|≤k
eiϕ·ν Ŝ0k(ν) ,

respect the inequalities

|Ŝ0k(ν)| ≤
{

(k!)c1(Cε−
p+7
2 )ke−|ω·ν|d

(k!)c1Ckε−ke−|ω·ν|c
,

where C, c < d are appropriate order one constants, c1 = 4τ + 4 (τ is the Dio-

phantine exponent of ω) finally p is the degree of the pole nearest to the real axis of

f(q0(t)).

Proof of Theorem 1. Proposition 3.3 implies that the formal series of relation

(3.5) are asymptotic for N < ε−q with |µ| < µ0 = C̄ε(4τ+4)q+1. Then the formal

relation (3.5) is an equality for the truncated series M≤N (let us call A the formal

matrix on the left of ∆0 and B the one on the right of D0):

A≤N∆0≤N = D0≤NB≤N + o

(

µ

µ0

)N

.
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Both A≤N and B≤N are close to identity and so have order one determinants. This

proves Theorem 1 and consequently the conjecture posed in [7], namely that the

leading order of the splitting determinant is given by its analytic part detD0.

Proof of Corollary 1.5. Let us now set m̄ = τF +1, where τF is the Diophantine

exponent of ω1|ω1 · νF | ≥ γF |νF |−m̄+1 m̄ > m (m is the number of fast degrees of

freedom). We choose N = C1ε
− 1

2m̄ (where C1 ≤ (γF /|ω2|)
1

2m̄ ) if α = 0) so that we

can remove the absolute value in e−c|ω·ν| and for all frequencies ν such that νF 6= 0:

|Ŝ0k(ν)| ≤ (k!)c1ε−ke
− cγF√

ε(N)m̄−1 +c|ω2||ν| ;

we can sum on the frequencies ν : νF 6= 0 in

D0k
ij =

∑

|ν|≤k
νiνjS

0k(ν)

with ϕi or ϕj fast.

D0k
ij ≤ (k!)c1k3ε−ke−c̃ε

−1/2m̄





∑

0≤l≤k
ec|ω2|l





n−m

≤ (k!)c1(C̃ε−1)ke−c̃ε
−1/2m̄

.

So we can sum the asymptotic series D0 for k ≤ N and ν < ε1+2(τ+1)/m̄,

min

(

|detD0≤N |,
(

µ

µ0

)N)

≤ Ce−c̃ε
−1/2m̄

.

Finally we can take any m̄ > m and τ > n − 1 so we choose m̄−1 = m−1 −
(log(ε−

1
2 ))−1 (similarly τ +1 = n+(log(ε−

1
2 ))−1) so that ε−1/2m̄ = e−1ε−1/2m and

ε1+2(τ+1)/m̄ ≥ Cε1+2n/m for some order one C. �

If we have only one fast variable we can give better bounds on detD0, namely

we use

|Ŝ0k(ν)| ≤ (k!)c1(Cε−
p+7
2 )ke−|ω·ν|d

and the fact that for one fast frequency

|ω · ν| ≥ |ω1|√
ε
|ν1| − εα|ω2||νS | ,

provided that ν1 6= 0 and N ≤ cε−
1
2 (with c < |ω1|/|ω2| if α = 0), so by summing

up the formal power series we have that:

D0≤N
ij = D01

ij +

N
∑

k=2

D0k
ij ,

where if |µ| ≤ C̃ε
p+7
2 +2n:

N
∑

k=2

D0k
ij ≤

N
∑

k=2

(µC̃ε−
p+7
2 −2n)k

∑

0<ν1<k

[e
− |ω1|dν1√

ε ] ≤ (µC̃ε−
p+7
2 −2n)2[e

− |ω1|d√
ε ] (3.6)

(the term in square brackets appears only if i = 1 or j = 1). So to prove Theorem 2

we have to show that for µ ≤ εP the first order D0 1
ij dominates.
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3.2. Lower bounds on the Melnikov term

The first order of D0 is

D01
ij = −δij Im

[ ∫ ∞

−∞
eiωjt(f(q0(t)) − f(0))

]

,

namely the integral of an even, analytic, exponentially decreasing function. If j 6= 1

we bound this integral with an order one constant.

Lemma 3.4. The singularities of F (t) = f(q0(t)) come in groups of eight (in

|Im t| ≤ π); namely if t0 is a singularity so are

−t0 , ±t̄0 , ±t0 + iπ , ±t̄0 + iπ .

The residues of f(q0(t)) at such points are related in particular if the Laurent series

of F at ti is
∑

k≥−p
gk(ti)(t− ti)

k ,

then gk(ti) = −(−1)kḡk(−t̄i).

Proof. We are simply using the fact that f(q) is real and odd and that z = eiq(t)

has two preimages t and −t+ iπ. This implies in particular that F (t) = −F (−t) =

F̄ (t).k

In the assumptions of Theorem 2 we have imposed that there is onel couple

(t0,−t̄0) of poles closest to the imaginary axis coming from f(q0(t)) rather than

f0(q0(t)). Then f(0) = 0 as f is odd, and by definition f(q(t)) has two poles on

the line |Im t| = d, so if ω1 > 0 we shift the integration to a line Im t = l > d, not

ε close to any singularity (if ω1 < 0 we shift to Im t = −l < −d).
∣

∣

∣

∣

Im

[ ∫ ∞

−∞
eiω1tf(q0(t))

]∣

∣

∣

∣

≥ 2π|Re[Res(e
i

ω1√
ε
t
(f(q0(t)), t0)

+ Res(e
i

ω1√
ε
t
(f(q0(t)),−t̄0)]|

− e
− |ω1|√

ε
l

∣

∣

∣

∣

Im

[∫ ∞

−∞
e
i

ω1√
ε
t
(f(q0(t+ il)) − f(0))

]∣

∣

∣

∣

,

(3.7)

the last integral is again the integral of a bounded ε independent function so we

bound it by an order one constant. The residue at the poles can be computed:

∑

k=1,p

(iω1)
k−1

(k − 1)!ε(k−1)/2
(gk(t0) − (−1)kḡk(t0))

kThe symbol f̄(z) := f(z̄).
lNaturally we could deal with any finite number of poles with this property.
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which is real and generally greater than

Ce
− |ω1|√

ε
d
ε−

p−1
2 . (3.8)

Proof of Theorem 2. We choose |µ| ≤ εp/2+8+4n so that (3.8) dominates on

(3.6). �

3.3. Heteroclinic intersection for systems with one fast frequency

In the following we will consider systems with one fast frequency and in the a priori

stable variables of Hamiltonian (1.1). We can fix µ = εP and ensure Melnikov

dominance, as discussed in the previous sections. This means that we have lower

and upper bounds on the splitting determinant (and on the eigenvalues of the

splitting matrix) of the type:

aεpe−cε
− 1

2 ≤ det ∆0(ω) ≤ bε−pe−cε
− 1

2 .

The coefficients p, a, b, c depend on the perturbing function f .

We consider the function:

F (ϕ, ω0, ω) = Ĩ−µ (ϕ, ω, ρ(ω)) − Ĩ+
µ (ϕ, ω0, ρ(ω0))

≡ c
√
ε(I−µ (ϕ, ω, ρ(ω)) − I+

µ (ϕ, ω0, ρ(ω0)))

where ω, ω0 ∈ Ωγ . Notice that

F (0, ω0, ω0) = 0 , det
∂F

∂ϕ
(0, ω0, ω0) = 2nεn/2 det ∆0(ω0) .

Hence from the implicit function theorem there exists a function ϕ(ω, ω0, ε) for

which

Fµ(ϕ(ω, ω0, ε), ω, ω0) ≡ 0 ,

provided |ω − ω0| is small enough. Fixed ω0 standard computations (see [5]) show

that the smallness condition is

|ω − ω0| ≤ Cε−2pe−2cε−
1
2 .

To prove the existence of heteroclinic intersections, we have to prove the existence

of a chain of KAM tori at distances of order B = Oε(e
−Cε−

1
2 ) for some C > 2c,

namely we have to adapt to our anisotropic setting (one fast and many slow time

scales) the classical techniques discussed in detail in [2] or [5].

Proposition 3.5. There exists a list of Diophantine frequencies ω1, . . . , ωh ∈ Ωγ
such that :

(i)
√
ε|ωi − ωi+1| ≤ e−C1ε

− 1
2 (ii) ε−

1
2 |Πn(ω1 − ωh)| ∼ Oε(1) , (3.9)

where Πn is the projection on the nth component. To each of the frequencies ωi
is associated a preserved unstable invariant torus of Hamiltonian (1.1), T (ωi, ρi)
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(with ρi ∈ [− 1
2 ,

1
2 ]) of frequency

√
ερiωi. The scaling factor ρi is chosen so that all

the invariant tori are on the same energy surface, as explained in Remark 1.3.

To prove the Proposition we proceed in two steps:

(1) Define an appropriate set Ω̄ of Diophantine frequencies respecting condi-

tion (3.9).

(2) Prove the existence of unstable KAM tori of frequency:
√
ερω for ρ ∈ [− 1

2 ,
1
2 ]

and ω ∈ Ω̄. We will only sketch the proof of this second point.

Definition 3.6. Given an order one C1 > 2c, set A1 = e−C1ε
− 1

2 and consider the

set :

Ω̄ :=



















ω ∈ Ω :



















(a)
√
ε|ω · l| ≥ A1

|l|τ ∀ l ∈ Zn/{0} : l1 6= 0

(b)
√
ε|ω · l| ≥ ε2

|l|τ ∀ l ∈ Zn/{0} : l1 = 0



















.

As there is only one fast time scale the condition ω ∈ Ω can be given only on the

slow variables, while the fast variable is obtained by “energy conservation” ω ∈ Σ

(Σ is the ellipsoid of Definition 1.1), namely we consider a function F : Rn−1 → Σ:

F (x) :=







√

√

√

√2E −
n−1
∑

i=2

x2
i − ε−1x2

n , x2, . . . , xn







,

so that given β = 1
2 + a ( 1

2 ≤ β ≤ 1) and R, r, R1, r1, r2, appropriate order one

constantsm and defining:

Ω̃ := {ω̃ ∈ Rn : ω̃ε−
1
2 ∈ Ω} , we have Ω̃ = F (B(R, r) ∩M)

where B(R, r) ⊂ Rn−1 is the spherical shelln of radiuses εβR, εβr and

M := {ω ∈ Rn−1 : εr1 ≤ ωn ≤ εR1 , ωi > r2ε
β , i = 2, . . . , n− 1} .

As we always deal with ω̃ =
√
εω we will omit the tilde rescaling all the relations.

The Jacobian of F in B(R, r) ∩M is bounded from above and below by order one

constants so that given a measurable seto S ⊂ Ω meas(F−1(S)) ∼ meas(S).

Condition (b) naturally defines subsets of B(R, r)∩M . Moreover we can project

the set respecting condition (a) on the subspace of the slow variables. Call this set

Ω̄4 ⊂ B(R, r) ∩M .

Let us call S(x) the (n − 2)-dimensional sphere centered in the origin and of

radius εβx. We take 2r < R and consider R̄ so that

R1/2 < R̄ < R1 ,
r

R
>
r1
R̄
. (3.10)

mThis condition automatically imply r̄ ≤ √
εω1 ≤ R̄, notice that we are not using the same

notation as in (1.1), here ωi is always the ith component of ω.
nWe call spherical shell of radiuses b, a the (n− 1)-dimensional domain {x ∈ Rn−1 : a ≤ |x| ≤ b}.
oThe symbol ∼ means that the two measures are of the same order in ε.
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Definition 3.7. Consider the sets

S2 := {ω ∈ S(R) : ε(R1 − (R1 − R̄)/4) ≤ ωn ≤ ε(R̄+ (R1 − R̄)/4), ωi ≥ r2ε
β ,

∀ i 6= n} ,

S3 := {ω ∈ S(R) : εR1 ≤ ωn ≤ εR̄ , ωi ≥ r2ε
β , ∀ i 6= n} .

M ∩ S(R) ⊃ S3 ⊃ S2; and the sets all have measure of order ε(n−3)β+1.

Given a set X ∈ S(R), its cone C(X) is the set of semilines stemming from

the origin and reaching points of X. We consider truncated cones T (X) := C(X)∩
B(R, r), and, for any r < a < b < R, Ta,b(X) = T (X) ∩B(b, a).

Notice that by (3.10) if X ∈ S3, then T (X) ∈M ∩ B(R, r).

Remark 3.8. Recall that given a measurable set X ∈ S(R), the cone of X is

measurable and measT (X) ∼ εβ meas(X), meas Ta,b(X) ∼ εβ(b− a) meas(X).

Definition 3.9. Given A2 = e−C2ε
− 1

2 with 2c < C2 < C1 and for all s ∈ R,

1 < s < 4R/r, we consider the sets :

Ω̄2(s) =

{

ω ∈ B(R, r) : |ω · l| ≥ sε2

|l|τ ∀ l ∈ Zn−1/{0} |l| ≤ A−1
2

}

,

Ω3(s) =

{

ω ∈ B(R, r) : |ω · l| ≥ sε2

|l|τ ∀ l ∈ Zn−1/{0}
}

.

Remark 3.10. Standard measure theoretic arguments imply that the sets (Ω̄i(s)∩
S(R))C∩S(R) all have measure of order ε(n−3)β+2; this implies as well that (Ω̄i(s)∩
S2)

C ∩ S2 has measure of the same order and the same holds for intersections with

S3 and for (Ω̄2(s) ∩ Ω̄3(s) ∩ S2)
C ∩ S2. We will repeatedly use such relations.

Lemma 3.11. (i) Given a point ω ∈ Ω̄2(2R/r) ∩ S2, the whole solid ball Bρ(ω) of

center ω and radius ρ = ε2A1+τ
2 is contained in Ω̄2(R/r) and its intersection with

S(R) is contained in S3.

(ii) The whole truncated cone T (Ω̄2(R/r) ∩ S3) is in Ω̄2(1), same for Ω̄3.

Proof. (i) First notice that any (n − 2)-dimensional “ball”, Bρ(x) ∩ S(R) ∈ S3 if

x ∈ S2. Now consider ω ∈ Ω2(2R/r)∩S2 and a vector x ∈ Rn−1 on the unit sphere:

|(ω + ρx) · l| ≥ ||ω · l| − |l|ρ| ≥ |ω · l|
(∣

∣

∣

∣

1 − ρ
|l|

|ω · l|

∣

∣

∣

∣

)

, as
|l|

|ω · l| ≤
r|l|τ+1

2Rε2

and |l| ≤ A2, setting ρ = ε2A1+τ
2 we have 0 < ρ |l|

|ω·l| |) 1
2 .

(ii) Given a point x ∈ Ω3(R/r)∩S(R) (or in x ∈ Ω2(R/r)∩S(R)) then rx/R ∈
S(r). Moreover for r/R ≤ t ≤ 1:

|tx · l| = t|x · l| ≥ r/R
Rε2

r|l|τ =
ε2

|l|τ .



May 7, 2003 15:6 WSPC/148-RMP 00165

Exponentially Small Splitting and Arnold Diffusion 19

Lemma 3.12. The set Ω̄2(R/r) ∩ S(R) is union of a finite number of disjoint

convex domains. Each domain is contained in a (n−2)-dimensional “ball” of radius

C3ε
βA2 for an appropriately fixed order one C3.

Proof.

(Ω̄2(R/r) ∩ S(R))

≡ S(R)
⋂

l∈Z
n−1

|l|≤A2

({

x ∈ Rn−1 : (x · l) > Rε2

r|l|τ
}

∪
{

x ∈ Rn−1 : (x · l) < −Rε2

r|l|τ
})

,

now the intersection of sets such that each connected component is convex has the

same property. Suppose, by contradiction, that there are points x1, x2 ∈ Ω2(R/r)∩
S(R) such that the arc x1

_x2 is all in Ω2(R/r) ∩ S(R) and has length greater than

2R−1√nεβA2. Let 〈x1, x2〉 be the plane generated by the vectors x1, x2, and on

it consider the sector S of unit vectors orthogonal to x1
_x2, this sector has angle

ϑ = 2
√
nA2. The product space of 〈x1, x2〉⊥ with the sector S is a multi-cylinder

in which there cannot be entire vectors l ∈ Zn−1 with |l| ≤ A−1
2 .

Now we consider the intersection of the multi-cylinder with the sphere |x| =

A−1
2 − 2

√
n, on 〈x1, x2〉 it is an arc of length greater than 2

√
n so that a ball of

radius
√
n is contained in the multi-cylinder. Now in each ball of radius

√
n there

is at least one entire vector. Namely let x be the center of the ball then [x] (entire

part of each component) is entire and |x− [x]|∞ ≤ 1.

Let N be the number of connected domains of Ω̄2(R/r)∩S(R) contained in S3.

Each domain contains an (n− 2)-dimensional “ball” of radius ρ = ε2A1+τ
2 , so that

N ≤ A
−(n−2)(τ+1)
2 εβ(n−2)−2n+5.

Let us now consider the Cantor set Ω̄3(R/r)∩S3, by Remark 3.10 we have that

(Ω̄3(R/r)∩S3)
C ∩S3 has measure of order ε(n−3)β+2. This implies that Ω̄3(R/r)∩

S3 ∩ Ω̄2(R/r) is not empty and the measure of (Ω̄3(R/r) ∩ S3 ∩ Ω̄2(R/r))
C ∩ S3 is

of order ε(n−3)β+2.

Lemma 3.13. There exists a connected domain D of Ω2(R/r) ∩ S3 such that

meas(D ∩ Ω̄3(R/r)) ≥ A
(n−2)(τ+1)+1
2 .

Proof. Suppose the assertion to be false, then calling Di, i = 1, . . . , N the

connected domains:

meas S3 ∼ meas(Ω̄2(R/r) ∩ S3 ∩ Ω̄3(R/r)) =

N
∑

i=1

meas(Di ∩ Ω̄3) ≤ A
(n−2)(τ+1)+1
2 N

which is absurd.

Then we can use Lemma 3.11(ii) and consider the truncated cone T (D) ⊂ Ω̄2(1),

by Lemma 3.13 P = T (D) ∩ Ω̄3(1) has measure of order A
(1+τ)(n−2)+1
2 εβ; namely
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the Cantor set P contains all radial segments having an endpoint in D ∩ Ω̄3(R/r)

and the other on S(r).

Consider an (n − 1)-dimensional ball of radius ρ ∼ εβA2 centered on a point

x ∈ D and which contains D (such ball exists by Lemma 3.13). Given h = [ 2(R−r)
3ρR ],

consider the points xi = tix with ti = 1 − 3/2iρ h ≥ i ∈ N0 and let us cover T (D)

with a finite number of balls Bi of radius ρ and centered on points xi.

Setting ρ = 2C3ε
βA2 we have that Bi ∩ Bj is empty if |i − j| > 1 and each

Bi ∩ Bi+1 contains a truncated cone Tai,bi(D) with bi − ai ≥ ρ/4. We consider

the sets Pi = Tai,bi(D) ∩ Ω3(1), by Lemma 3.13 each Pi has measure of order

εβA
(1+τ)(n−2)+2
2 .

Now we consider the Cantor set Ω̄4 whose complementary set in M ∩ B(R, r)

has measure of order ε(n−2)β+1A1. Its intersection with Pi has measure of order

εβA
(1+τ)(n−2)+2
2 , provided that A1 < A

(τ+1)(n−2)+3
2 . Consider a list ωi ∈ Pi ∩

Ω̄4; for each i we have that ωi, ωai+1 ∈ Bi+1 so the list respects condition 3.9(i)

moreover

min
y∈B0

yn ≥ R̄− 2CεβA2 and max
y∈Bh

yn ≤ r

R
R1 + 2CεβA2

for some order one C so the list respects condition 3.9(ii).

In the Appendix A.2 we have proved, generalizing similar results of [9], that

there exists a symplectic transformation, well defined in a region W of the phase

space (Ĩ , ψ), which sends Hamiltonian (1.1) in the local normal form:

1

2
(J,AJ) +

√
εG1(PQ,

√
ε) + µg1(φS , J, P,Q) + αf1(φ, J, P,Q) (3.11)

where α = Oε(e
−Cε−

1
2 ) for any order one C. W is of order one in the actions

both in the fast direction J1 and in the degenerate one Jn, namely there exists

points w1, w2 ∈ W such that |ΠJn(w1 − w2)| = Oε(1). We can then prove a KAM

theorem for the Hamiltonian (3.11) for µ < ε4 with the frequencies ω in Ω̄ by

choosing (A1)
2 � α. Roughly speaking, KAM theorems are proved by performing

an infinite sequence of symplectic transformations defined in a set of nested domains

whose intersection is not trivial. Each approximation step reduces the order of the

perturbation quadratically and is well defined provided an appropriate smallness

condition is verified. Roughly speaking, such condition is of the type: µγ−2 � 1

where µ is the small parameter and γ is the Diophantine constant of the frequency

ω of the preserved torus. To apply this scheme to Hamiltonian (3.11), we first

perform a finite number of approximation steps on the slow variables with J1 as

a parameter; the small denominators involved are |ωS · l| on which we have the

stronger Diophantine condition so that the approximation scheme works provided

that µε−4 � 1. Eventually we will reduce the µ perturbation to order α and then

continue with the classical KAM scheme on all the variables, now the smallness

condition is αA−2
1 � 1. This completes the proof of Proposition 3.5.
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4. Tree Representation

4.1. Definitions of trees

We briefly review the tree representation of the homoclinic trajectory. The defini-

tions contained in this Subsections are all adapted from [10].

Definition 4.1. A graph G consists of two sets V (G) (vertices), E(G) (edges)

such that E(G) is a subset of the unordered pairs of distinct elements of V (G). We

will always consider finite graphs, i.e. graphs such that N(G) = |V (G)| is finite.

Two vertices i, j ∈ V (G) are said to be adjacent if (i, j) ∈ E(G). It is customary to

write n ∈ G in place of n ∈ V (G) and (i, j) ∈ G in place of (i, j) ∈ E(G).

Two graphs G1, G2 are equal if and only if they have the same vertex set and

the same edge set.

Definition 4.2. A path joining the vertices i, j ∈ G is a subset Pij of E(G) of

the form

Pij := {(i, v1), (v1, v2), . . . , (vk, j)} .
A graph G is connected and without loops if for all i, j ∈ G, there exists one

and only one path that connects them. Such graphs are called trees. Their vertices

are called nodes and their edges are called branches.

A tree T such that the set V (T ) = {1, 2, . . . , N(T )} is called a numbered tree.

Definition 4.3. A labeled tree is a tree A plus a label LA(v) ≥ 0 which is generally

a set of functions f iA(v) defined on the nodes.

When possible we will omit the subscript A in the functions f i.

Definition 4.4. Two labeled trees X, Y are isomorphic if there is a bijection, say

h, from V (X) to V (Y ) such that for all a ∈ V (X), LX(a) ≡ LY (h(a)). Moreover

(a, b) ∈ E(X) if and only if (h(a), h(b)) ∈ E(Y ). We say that h is an isomorphism

from X to Y. Notice that since h is a bijection h−1 is well defined and is an iso-

morphism from Y to X. We will call symmetries or automorphisms of X, the

isomorphisms from X to X.

It is often convenient and more compact to represent a tree by a diagram, with

points for the nodes and lines for the branches, as in Fig. 2.

In this diagrams the positions of the points and lines do not matter — the only

information it conveys is which pairs of nodes are joined by a branch. This means

that the two diagrams in Fig. 2 are equal by definition.

Fig. 2.
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Strictly speaking these diagrams do not define graphs, since the set V is not

specified. However, if the diagram has N points, we may assign distinct natural

numbers 1, 2, . . . , N to the points (which we still call nodes), so obtaining a labeled

numbered tree. Then it is easily seen that the two trees in Fig. 2 are isomorphic.

Definition 4.5. We will call diagrams the equivalence classes of labeled trees via

the relation A ∼= B if and only if A and B are isomorphic.

An obvious consequence of this definition is that, LA(v) and N(A) are well

defined on the equivalence classes.

We can choose a representative A′ of the equivalence class A by giving a

numbering 1, 2, . . . , N(A) to the nodes of A.

Remark 4.6. Given an equivalence class of labeled trees A and a numbering A′,
the group of automorphisms of A′ can be identified with a subgroup of the group

of permutations on N(A) elements SN(A); we denote such subgroup by S(A′).
S(A′) is the subgroup of the permutations σ ∈ SN(A) which fix both E(A′)

and the labels L(A′). Namelyp σ ∈ S(A) → σE = E and L(n) = L(σ(n)) for all

n ≤ N(A).

Given two isomorphic trees A′ and A′′, representatives of A, let h be a bijec-

tion such that E(A′) = σE(A′′). The groups S(A′) and S(A′′) = h−1S(A′)h are

isomorphic. We will improperly call the equivalence classes via this relation the

symmetry group S(A) of the diagram A.

Using standard notation (see for instance [11]) we denote by a := (i1, i2, . . . , im)

with N 3 ij ≤ N(A) the permutation such that a(ih) = ih+1, a(im) = i1, and

a(n) = n for all N 3 n ≤ N(A) such that n /∈ {i1, i2, . . . , im}. Moreover we denote

by ab the composition of a and b. As an example in Fig. 3 consider the numbered

tree A (N(A) = 6), its symmetries are the identity and a := (1, 4); b := (2, 3);

c ≡ a ◦ b; d ≡ (5, 6)(1, 2)(4, 3), e := (5, 6)(1, 3)(2, 4); f := (5, 6)(1, 2, 4, 3); g := f ◦a.
Clearly any other numbering on A would give an isomorphic symmetry group.

1

5 6

4 3

2

Fig. 3.

pWith standard abuse of notation we denote σE(A′) the function such that σ(a, b) = (σa, σb) for
all (a, b) in E(A′).
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Definition 4.7. Given a tree A and a node v ∈ A, we define its orbit:

[v] := {w ∈ A : w = g(v) for some g ∈ S(A)} ,

i.e. the list of nodes obtained by applying the whole group S(A) to v, notice that

this is an equivalence relation (a proof of this statement is in [10]).

In the example of Fig. 3 there are two orbits, which in the chosen numbering

are:

[1] ≡ {1, 2, 3, 4} and [5] ≡ {5, 6} .

Remark 4.8. The orbits are well defined on the equivalence classes of labeled

trees, it should be clear, for instance, that the nodes signed in black in the diagram

of Fig. 4 are an orbit.

Definition 4.9. A rooted labeled tree is a labeled tree A plus one of its nodes

called the first node (vA or v0); this gives a partial ordering to the tree, namely we

say that i > j if Pv0j ⊂ Pv0i. Moreover choosing a first node induces a natural

ordering on the couples of nodes representing the branches namely (a, b) ∈ E(A)

implies that a < b. We recall some definitions on rooted trees :

(a) the level of v l(v) is the cardinality of Pv0v;
(b) the nodes subsequent to v, s(v), are the nodes adjacent to v and of higher level;

the node preceding v is the only node adjacent to v and of lower level;

(c) given v node of A, we call A≥v the rooted tree (with first node v) of the nodes

w ≥ v; we call A\v the remaining part of the tree A.

An isomorphism between rooted trees (A, vA), (B, vB) is an isomorphism be-

tween A and B which sends vA in vB . The symmetries of a rooted labeled tree

(A, vA), which we denote again by S(A, vA) are the subgroup of the symmetries of

the corresponding unrooted tree that fix the first node vA. As done for trees, we

can represent the equivalence classes of rooted trees with diagrams, representing

by convention the first node on the left and all the nodes of the same level aligned

vertically (it should be obvious that the definitions v > w, A\v and A≥v are well

posed on the equivalence classes).

L

L

L

L’

Fig. 4.
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4.2. Admissible trees

Definition 4.10. We consider rooted labeled trees such that some nodes are

distinguished by having a different set of labels.q An admissible tree is a symbol :

A, {vA}, {v1, . . . , vm}, {w1, . . . , wh}

such that A is a tree, all the vi, wj and vA are nodes of A, the vi are all end-nodes,

{vi}mi=1 ∩ {wj}hj=1 = ∅

and the vi are all different.

We call {vi}mi=1 ≡ F(A) the fruits of A, {wj}hj=1 ≡ M(A) the marked r nodes

of A and the set

0

A: {v /∈ F(A)}

the free nodes of A. Finally s0(v) are the free nodes in s(v).

The labels are distributed in the following way :

(a) For each node v 6= vA, one angle label jv ∈ {0, . . . , n} (remember that we are

considering a system with n+ 1 degrees of freedom).

(b) For each node v, one order label δv = 0, 1 if v ∈
0

A and δv ∈ N otherwise.

(c) For each node v ∈ M(A), one angle-marking J = 0, . . . , n and one function-

marking h(t) ∈ H.

(d) For each node v ∈ F(A), one type label i = 0, 1.

We set a grammar on the so defined labeled rooted trees, namely :

δv = 0 → {jv = Jv = 0, |s(v)| ≥ 2, jv′ = 0 ∀ v′ ∈ s(v)} .

To draw the diagrams without writing down the labels we give a color to each

j = 1, n (which forces δ = 1) and two different colors for the couples of labels j = 0,

δ = 1 and j = 0, δ = 0.

In all the pictures we will set n = 1 and choose the colors gray, black and white,

see Fig. 5. The fruits F(A) will be represented as “bigger” end-nodes colored with

the color corresponding to their angle label and with their order and type written on

a side. The marked nodes will be distinguished by a box of the color corresponding

to their angle-marking and with their function-marking written on a side. If the

function marking is h(t) = 1 we will omit the function marking. By convention the

first node is set on the left, and the nodes of the same level are aligned vertically.

Definition 4.11. (1) We will call fruitless trees the (labeled rooted trees) A such

that F(A) is empty. We will say that a fruit v stems from w if v ∈ s(w).

(2) We will call T the set of equivalence classes (as in Definition 4.5) of admis-

sible trees,
0

T the subset of T of trees with at least a free node and A the subset of

qThe dynamical meaning of the labels will be clear when we define the “value” of a tree.
rA node v can appear many times in M(A) we will say it carries more than one marking.
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Fig. 5. Examples of trees in A5 and in (T 0
0 )5 (see Definition 4.13).

0

T of “fruitless” trees. Finally we will call
m

A the subset of A of fruitless trees with

no marking.

(3) We will call F ik
j the “tree” composed of one fruit of order k, angle j and

type i; clearly

T ≡ T
⋃

i=0,1
j=0,...,n
k>0

F ik
j .

Notational Convention 1. Using standard notation we represent the equivalence

classes by [A] where A is an admissible tree.

Moreover given a tree A we will write A ∈ T if it is a representative of an

equivalence class in T .

Definition 4.12. The order of a tree A ∈ T is :

o(A) =
∑

v∈A
δv .

The order of a node v of A is o(v) = o(A≥v).

Given a tree A ∈
0

T and one of its nodes v we call A≥v the tree composed of

the nodes greater or equal to v; if A≥v is not a fruit then it is not admissible as

it carries a label j in the first node. In such case, we conventionally set A≥v ∈ T
by setting a mark J(v) = jv , h(v, t) = 1 on v and subsequently “forgetting” the

label jv.

It is easily seen that o(A) > 0 for all A ∈ T and that

T k ≡ {A ∈ T t.c. o(A) = k}

is a finite set; clearly the same is true in
0

T and in A.

Notational Convention 2. In all our sets an apex k means we consider the subset

of trees of order k.

We list here the subsets of
0

T and A that we will need in the following sections.

Definition 4.13. (a) Aa
j (T a

j ) with j = 0, . . . , n, a = 0, 1, is the subset of A (
0

T )

such that M(A) ≡ {vA} and J(vA) = j, h(vA, t) = xaj (t).
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(b) Aab
ij (T ab

ij ), with i, j = 0, . . . , n, a, b = 0, 1, is the subset of A (
0

T ) such that

M(A) ≡ {vA, v} for some v ∈ A moreover J(vA) = i, h(vA, t) = xai , J(v) = j,

h(v, t) = xbj .

Given a set S one can consider a vector space on Q generated by formal linear

combinations of the elements of the set; we represent it by V(S).

Definition 4.14. V(S) is the vector space of linear combinations of elements of S

with rational coefficients.

[A] ∈ S → [A] ∈ V(S) , [A], [B] ∈ V(S) → q1[A] + q2[B] ∈ V(S) , ∀q1, q2 ∈ Q .

We construct V(S) for the sets in Definition 4.13, we obtain infinite dimensional

vector spaces that can be expressed as direct sum of finite dimensional spaces

generated by the sets Sk (we call these spaces Vk(S)).s

Definition 4.15. In particular, we will be interested in the following vectors :

fk =
1

k

∑

A∈(
m

A)k

δvA
=1

A

|S(A)| , Λaki =
∑

A∈(T a
i )k

A

|S(A)| ,

faki =
∑

A∈(Aa
i )k

A

|S(A)| , fabkij =
∑

A∈Aabk
ij

A

|S(A)| ,

where the sum A ∈ Sk means choosing one representative A for each equivalence

class (diagram) of the set Sk. Clearly the vectors are determined only up to iso-

morphisms. The same vectors without the apex k will represent the formal seriest:

V =
∑∞

k=1 V
k.

4.3. Values of trees

We link the vectors defined in Definition 4.15 to the dynamics by defining an appro-

priate tree “value” V(A) where A ∈ T . This definition can be extended to diagrams

provided that V(A) = V(B) if A and B are isomorphic, moreover we can uniquely

extend V to a linear function on V(T ). The presentation is very schematic as this

definitions can be found in [3] and following papers; let us only write the F kj ex-

plicitly (using well known formulas on the derivatives of composite functions), ej
the vectors of the canonical basis:

F kj = −
∑

δ=0,1

∑

~m∈Nn
0

(∇~m+ejf δ(t))
∑

{ph
j }~m,k−δ

n,k−1
∏

j=0
h=1

1

phj !
(ψhj )p

h
j

sWe are using the fact that the sets are disjoint union of the corresponding “fixed order” sets Sk.
tRemember that the apex k is NOT an exponent.
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where {phj }~m,k is a list of numbers in N0 ≡ N ∪ {0} which respect the relations

∑

h

phj = mj ,
∑

j,h

hphj = k , finally we define ∇~mf(t) =

[

n
∏

j=0

∂
mj

ψj
f(ψ)

]

ψi=ϕi+ωit
ψ0=q0(t)

.

So we define

Vϕ(A) =
∏

v>v0

(=τw
+ + =τw

− )Ψϕ(A)

where

Ψϕ(A) =
∏

v∈A0

v>v0

wjv (τw, τv)
∏

v∈A0

(

− 1

2
ajv

)

µδv∇
∑n

j=0 mv(j)ejf δv

×
∏

α∈F(v)

x
[iα]
jα

∏

β∈M(v)

hβ(v, τv)
∏

α∈F(A)

G
o(α),i(α)
j(α) .

F(v) are the fruits stemming from v, M(v) is the list of markings of the

node v, w is the node preceding v and finally mv(j) is the number of elements in

{v, s0(v),F(v),M(v)} having angle label (or angle marking) equal to j. We write

s0(v), F(v) instead of s(v) to remark that the fruits are not considered proper

nodes. Notice that Ψϕ(A) contains the kernels of the integral operators Qj so that

V is obtained by “integrating” on the times τv v > v0; clearly the integrations must

be performed in the correct order, first the end-nodes . . . . The following proposition

is standard (it is proved in [3] for numbered trees instead of equivalence classes),

we sketch the proof in the Appendix.

Proposition 4.16. The value of the splitting vectors Gikj (ϕ) is

Gikj (ϕ) = =Vϕ(Λikj ) .

The value of the homoclinic trajectory ψkj is

(µ)kψkj (t, ϕ) = (=t+ + =t−)wj(t, τ0)Vϕ(Λikj ) +
∑

a=0,1

x
[a]
j G

ak
j .

Definition 4.17 (Equivalent trees). We are mainly interested in the splitting

vectors and splitting matrix so we will consider two trees to be equal if they have

the same value in the computation of the Gaj .

A ∼= B iff =Vϕ(A) = =Vϕ(B) ∀ϕ ∈ Tn ;

such identity can hold only for some initial data ϕ̄, in such case we write

(A ∼= B)ϕ̄ .
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4.4. Tree identities

4.4.1. Mark adding functions

We can define linear functionsu on V(T ), for instance we can add markings to a

tree; given A ∈
0

T the symbol

h(v, t)∂vl A

represents the application of an angle-marking J(v) = l and a function-marking

h(v, t) in the node v; formally

A, {vA}, {vi}mi=1, {wj}hj=1 → A, {vA}, {vi}mi=1, {{wj}hj=1 ∪ {v}} ,
notice that given two nodes v, w in the same orbit [v] ∂vl A is isomorphic to ∂wl A.

We can define the linear function:

Mj(h(t))[A] :=
∑

v∈Å

h(v, t)∂vjA . (4.1)

Particularly interesting mark adding functions are M b
j ≡Mj(x

b
j(t)).

Lemma 4.18. The vector fabij is obtained from fai by the mark adding function

M b
j [f

a
i ] = fabij .

Proof. We need to show that
∑

A∈Aa
i

∑

v∈
0
A

1

|S(A)|∂
v
jA =

∑

A∈Aa
i

∑

[v]∈
0
A

m[v]

|S(A)|∂
[v]
j A =

∑

B∈Aab
ij

B

|S(B)| ,

in the second equality m[v] is the cardinality of the orbit of v and the sum over

[v] means we choose one representative from each equivalence class; similarly the

symbol ∂
[v]
j is the application of the angle marking j to one of the nodes of the

orbit [v]. We are simply grouping the isomorphic trees ∂wj A with w ∈ [v] and

choosing a representative of the equivalence class. Given each tree B ∈ Aab
ij there

is one and only one couple A ∈ Aa
i , [v] ∈ A such that ∂

[v]
j A = B (there is a

common representative). The symmetry group of B fixes both the marked nodes

so |S(A)| = m[v]|S(B)| by the Lagrange theorem.v

Lemma 4.19. The function M0
j with j = 1, . . . , n is a function on the values of

trees. Given a fruitless tree A ∈ A the mark-adding function M 0
j with j = 1, . . . , n

acts as the derivative on the angle ϕj :

∂ϕj=Vϕ(A) = =Vϕ(M0
j [A]) .

uWe always define functions F on trees. Then one should verify that F (A) and F (B) are isomorphic
if A,B are so. This implies that one can uniquely extend the functions on the vector spaces by
linearity.
vWe refer to the Lagrange theorem which states that the order of a group G acting on a set V is
the order of the orbit of a point v ∈ V times the order of the subgroup of G which fixes v.
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Proof. Adding an angle marking j to the node v is equivalent to adding ej to

mv in ∇mf δ, so we add a derivative in ψj to the function f δv (ψ) which is to be

evaluated in ψj = ϕj + ωjτv, ψ0 = q0(t). If j 6= 0 this is equivalent to applying a

ϕj derivative to the node v. As the dependence on ϕ comes only from the functions

f1 we have proved our assertion.

4.4.2. Fruit adding functions

Remark 4.20. Notice that by our definition of equivalent trees adding a fruit of

order k, type i and angle j in the free node v of a tree A ∈
0

T is equivalent to adding

a mark x
[i]
j (t)∂vj to the node v and multiplying by the ϕ dependent function Gikj .

As we have seen in Eq. (3.4) the only contributions to ∆0k
ij come from the parts

of G0k
i which are at most linear in the Gmhl with l = 0, . . . , n h < k m = 0, 1. In

tree representation we can say that the only contribution comes from trees with

one fruit. So to find the matrices Na and na (a = 0, 1) we have to understand how

to pass from fruitless trees to trees with one fruit. First of all let us notice that the

fruitless contribution to Λ0
j is clearly f0

j so that

D0
ij = =Vϕ=0f00

ij .

Now we can add a fruit F ik
j to the node v of a tree A ∈

0

T by adding a node y

labeled (i, k, j) to the list F(A) and setting y ∈ s(v), given a tree a we apply this

function to each node v ∈ A then sum on the nodes v. By Remark 4.20 this is

equivalent to applying the function Gikj (ϕ)M
[i]
j , where [i] = |i− 1|, to A.

Proof of Proposition 3.2(i). If j 6= 0 we can obtain each tree with one fruit

by adding the fruit to a node of a fruitless tree as described above; so that by

Lemma 4.18,

Nak
ij = =Vϕ=0(f

0a
ij )

and consequently N0 = D0. �

If j = 0 we have trees with one fruit attached to nodes with δv = 0, so that

detaching the fruit we do not obtain an acceptable tree (the node has only one

successive free node). We construct such trees from fruitless ones by using a different

function: given a tree A ∈ A and a node v ∈ A v 6= vA and jv = 0 we attach the

node y of the tree in Fig. 6 to v and w (by convention the node preceding v).

Formally we set

li(A, v) = E(A) \ (w, v) ∪ (w, y) ∪ (y, v) ;

then G
[i]h
0 li(A, v) is a tree with one fruit, stemming from y (δy = 0) and y has only

one successive free node.

We apply li(A, v) to the nodes of A, and set li(A, v) = 0 if v = vA or if jv 6= 0.

Li(A) =
∑

v∈A
li(A, v) ;



May 7, 2003 15:6 WSPC/148-RMP 00165

30 M. Procesi

���
���
���
���

0
1

G0
i h

i h

=
x i

0
(t)

Fig. 6.

= ][L
i

+
0

i 0
i 

Fig. 7. The fruit adding functions.

notice that this is NOT well defined as a function A → A. However Gih0 l
[i](A) is

well defined and A →
0

T and so we can define the “value” of Li(A); in the next

Subsection we will prove that Li(A) is equivalent to an acceptable tree.

Lemma 4.21. Calling
0

T 1F the set of trees with one fruit and

Λ
0(1F )
j =

∑

A∈
0
T 1F

j

A

|S(A)| ,

we have that :

Λ
0(1F )
j =

∑

l=0,1

n
∑

i=0

Gli(M
[l]
i (f0

j ) + δi0L
[l](f0

j )) ,

and consequently

n0
j = =Vϕ=0(f

00
j0 + L0(f0

j )) .

Proof. Consider a tree B with one fruit, of angle i, order k and type l attached

to a node v′. If such node has more than one successive or δv 6= 0, then it can

be obtained by applying G
[l]h
i xli∂

v
i to a tree A ∈ A0

j . If the node has δv = 0 and

only one successive then there exists one and only one couple A, v with A ∈ A0
j ,

v node of A such that G
[l]h
0 ll(A, [v]) = B (as usual the symbol [v] means choosing

one representative for the equivalence class). The symmetry group of B fixes both

the first node and the fruit (and so consequently all the path joining the fruit to

the first node), so if we divide by Glki we obtain a tree with two marked nodes

which again fixes the first node and the node v′ where the fruit was attached; if v′



May 7, 2003 15:6 WSPC/148-RMP 00165

Exponentially Small Splitting and Arnold Diffusion 31

has only one successive free node, say v, then that is fixed as well. This proves the

proposition as given A ∈ A0
j ,

La(A) =
∑

[v]∈A
m[v]l(A, [v]) and moreover |S(A)| = m[v]|S(l(A, [v]))| .

Finally n0
j is the linear term in G1

0 in the expansion of G0
j , so it is given by trees

with one fruit of angle j = 0 and type l = 0.

Remark 4.22. As f δ(t) = F (ψi(0) + ω̃it, ψ0(t)) and ψ̇0(t) = − 2
cx

0
0(t), we have

that:

∂τv∇~mf δ(τv) =
∑

j=1,...,n

ωj∇~m+eif δ(τv) −
2

c
x0

0∇~m+e0f δ(τv) .

For notational convenience we define a symbolw ∂yt A, where A is a fruitless tree

and v is one of its nodes, by setting

Ψϕ(∂yt A) =
∏

v∈A
v>v0

wjv (τw, τv)
∏

v∈A

(

− 1

2
ajv

)

µδv

∏

β∈M(v)

hβ(v, τv)

×
∏

v∈A
v 6=y

∇
∑n

j=0 mv(j)ej f δv∂τy (∇
∑n

j=0 my(j)ej f δy ) .

This definition implies thatx

∑

v∈A
∂vt A

∼=
∑

j=1,...,n

ωjM
0
j (A) − 2

c
M0

0 (A) .

Lemma 4.23. Given an odd function G ∈ H0 the following relation holds :

∂tQ
t
j(G) = Qtj

[

∂τG(τ) +
2

c
δj0x

0
0(τ)∂

3
0f

0(τ)Qτ0(G)

]

.

The proof of this Lemma (proposed in [4]) is straightforward but quite long, we

report it in the Appendix.

Lemma 4.24. Given a tree A ∈ A0
i , i = 1, . . . , n then

Vϕ=0

(

∑

v∈A
∂vt A− l0(A, v)

)

= ∂tVϕ=0(A) .

Proof. We drop the ϕ = 0 in V for notational convenience. The assertion is trivially

true for trees with only one node, so we prove it by induction on the order of the

trees. Let us define Ah
j as the set of fruitless trees of order h with only one marking,

wWe could define ∂v
t (A) to be a special marked tree.

xRemember that A ∼= B means that =V(A) = =V(B).
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placed on the first node, Jv0 = j and h(v0, t) = 1; for j 6= 0, Ah
j
∼= A0h

j . Suppose

Lemma 4.24 holds for all trees in Ah
j , h < k for j = 0, . . . , n, then fory A ∈ A0k

i ,

∂τ0V(A) = −1

2
(∂τ0∇~m(v0)f δv0 )

∏

v∈S(v0)

Qjv [V(A≥v)]

+
∑

v∈S(v0)

V(A/v)∂τ0 [QjvV(A≥v)]) .

Now we set V(A≥v) = F (which is odd when ϕ = 0) and apply Lemma 4.23 to

F ∈ H0:

∂τ0Qjv (F ) = Qjv (∂τvF ) +
2

c
δj0Q0(x

0
0(τy)∂

3
0f

0(τy)Q0(F )) ,

clearly

∂τvF = ∂τv [V(A≥v)] and δj0Q0(x
0
0(τy)∂

3
0f

0(τy)Q0(F )) = −V(l0(A, v)) .

So we obtain

∂τ0V(A) = V(∂v0t A) −
∑

v∈S(v0)

2

c
V(l0(A, v)) +

∑

v∈S(v0)

V(A/v)[Qjv∂τvV(A≥v)])

by definition A≥v ∈ Ah
j for some j, h. So we consider trees of lower order for which

the Proposition is true by the inductive hypothesis.

Proof of Proposition 3.2(ii). By Lemma 4.21 we must show that

n0
i = =Vϕ=0(f

00
i0 + L0(f0

i )) =
c

2
=Vϕ=0

(

n
∑

j=1

f00
ij ωj

)

. (4.2)

Now for j 6= 0, =∂tVϕ=0(f
0
j ) = 0 as the integrand has no constant component. So

we can use Lemma 4.24 and Remark 4.22 to obtain Eq. 4.2.

4.4.3. Changing the first node

Another way of manipulating trees is to change the first node (which is distinguish-

able as it does not have the label j). Generally one can obtain various trees in
0

T
by simply changing the uncolored node (for example one can shift the angle labels

down along a path joining any node v to the uncolored one vA). However not all

the trees obtained in such a way are in T .

Definition 4.25. Given a tree A ∈
0

T , let vA be the first node and v a free node;

the change of first node P (A, v) :
0

T →
0

T is so defined :

yWe recall that V(A) = V(A/v)QjvV(A≥v).
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Let vA = v0, v1, . . . , vm = v be the nodes of the path PvA,v. P (A, v) is obtained from

A, {vA}, {vi}mi=1, {wj}hj=1 by shifting only the j labels of the nodes of PvA,v in the

direction of vA. This automatically implies that v is left j-uncolored and is the first

node of P (A, v). If we obtain a tree not in T we set P (A, v) = 0.

P : V(T ) → V(T ) is the linear function such that ∀A ∈ T , P (A) =
∑

v∈
0
A
P (A, v).

Lemma 4.26. P (A, v) = 0 if and only if δvA = 0, |s(vA)| = 2. This means that

the possibility of applying the change of first node does not depend on the chosen

v 6= vA.

Proof. Consider the trees A and P (A, v) and the nodes vA = v0, v1, . . . , vm = v

of the path PvA,v. For each i = 0,m − 1, vi precedes vi+1 in A and follows it in

P (A, v). So for each node w 6= vA, v, the number of following nodes s(w) is the

same in A and P (A, v); s(vA) decreases by one and s(v) consequently increases by

one. This implies that all trees A with δvA = 0 and |s(vA)| = 2 have P (A, v) = 0 for

all v. Moreover if vi has δ = 0, then it has j = 0 as well as all the nodes (including

vi+1) following it. This means that in P (A, v), it will still have δ = j = 0, the same

s(vi) ≥ 2; moreover vi−1 that follows vi in P (A, v) has j = 0.

We will call
r

T the trees whose first node can be changed.

Lemma 4.27. By Proposition 2.6(a), we have:

∀A ∈
r

T , ∀v ∈ A : P (A, v) −A ∈ ker =Vϕ
∀A ∈

r

T (j,f)(i,h): P1(A) −A ∈ ker =Vϕ
(4.3)

Proof. Notice that given a tree A and one of its nodes v, if w ∈ P(vA, v) then

P (A, v) = P (P (A,w), v), so we only need to prove the assertion for v ∈ s(vA).

Given A ∈
r

T and v ∈ s(vA) such that jv = j, we compare =V(A) and =V(B) with

B = P (A, v), so B has first node v (no label jv) and a node vA in s(v) with jvA = j.

=V(A) = −1

2
ajva

(µ)δvA =∇
∑

j mvA
(j)ejf δvA

∏

w∈s(vA)
w 6=v

Qjw [V(A≥w)]

×Qj

[

(−µ)δv∇
∑

j mv(j)ejf δv

∏

w1∈s(v)
V(A≥w1)

]

,

which by the symmetry of Qj is equal to

=∇
∑

j mv(j)ej (−µ)δvf δv

∏

w1∈s(v)
V(A≥w1)Qj

×
[

(−µ)δvA∇
∑

j mvA
(j)ejf δvA

∏

w∈s(vA)
w 6=v

Qjw [V(A≥w)]

]

.
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v

A P(A,v)= =

v

A P(A,v)= =

Fig. 8. An example of trees that are equivalent by changing the first node.

This is the value of B, namely, both in A and in B, mv(i) with i 6= j is the number

of elements in (s(v),M(v), F(v)) having label i and mv(j) − 1 is the number of

elements in (s(v),M(v),F(v)) having label j.

Lemma 4.28. For each i = 1, n, we have

f0
i
∼= M0

i (f) .

Proof. The proof of this statement is in [7], we report it here for completeness. By

Lemma 4.27 we have that for A in Ak
j ,

A ∼= 1

k

∑

[v]:δv=1

m[v]P (A, v) so
∑

A∈Ak
j

A

|S(A)| =
1

k

∑

A∈Ak
j

∑

[v]:δv=1

m[v]

|S(A)|P (A, v) ,

now there exists one and only one couple B ∈
m

A , [vA] ∈ B such that δvB =

1 and ∂vA

j B = P (A, vB). Finally by the Lagrange Theorem, (m[vB ])−1|S(A)| =

(m[vA])−1|S(B)|.

This completes the proof of Proposition 3.2.

4.5. Upper bounds on the values of trees

Given a fruitless tree A ∈
m

A of order k (so with at most 2k − 1 nodes), its value

through =V1
ϕ is of the form:

(

− 1

2

)N(A)
(

∏

v≥v0
ajv

)

=
∏

v>v0

(=τw
+ + =τw

− )(µ)δv0∇
∑

j mv0 (j)ej f δv0

×
∏

v>v0

(µ)δv∇
∑

j mv(j)ejf δvw(τw , τv) . (a)

We expand f1 in Fourier series in the rotator angles,

f1(ψ, q) =
∑

|ν|=1

eiν·ψfν(q) ,

so that each node has one more label νv ∈ Zn. We will represent as A(ν) a tree A

with labels νv such that
∑

v∈A
νv = ν .
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In each node v with δ = 1 we have as factor the function dnvfνv (q(t)) where

nv = mv(0).

The functions fν(q) and q(t) are such that fν(q(t)) = Fν(e
t) ∈ H0(a, d). Natu-

rally by our analyticity assumptions fν(q(t)) is limited for |t| → ∞ in |Im t| < 2Π.

We are considering rational functions Fν(e
t), let us call tiν their (finite number of)

poles in |Im t| ≤ Π (all with Im t 6= 0) then

d = min
ν,i

|Im (tiν)| ; a = max
ν,i

|Re(tiν)| . (4.4)

Moreover the following proposition holds.

Lemma 4.29. The functions ∂k0 fν(q(t)) = F kν (et) are all limited rational functions

of et, whose poles are the same as those of F 0
ν(e

t); moreover

max
t∈C(a+2,d−√

ε)
|F kν (et)| ≤ Ck!ε

p+k
2 . (4.5)

Proof. We can use Cauchy estimates on ∂k0 fν(q) provided that the images in the q

variables of C(a+2, d−√
ε) and of C(a+1, d− 1

2

√
ε) via the function q0(t)

−1, have

distance of the order of c
√
ε for some order one c. This can be verified by direct

computation or proved using simple geometric arguments.

Having fixed ν =
∑

v νv, in integral (a) we shift the integration to R + iσ(ων)d
′

where d′ < d (we will then fix d′ = d − √
ε to obtain optimal estimates and

d′ = c ≤ d/2 to obtain simply exponentially small estimates), ων = ω · ν and σ(x)

is the sign of x. As the functions are all analytic in |Im(t)| ≤ d′ the integral (a) is

unchanged. Notice that in integral (a) we cannot choose the sign of the shift in the

single node integrals and so we need to work in the (symmetric) domains C(a, d′) to

guarantee the indifference of extending in the lower or upper half-plane. To simplify

the notation we set

σ(ων) = + and define E(d′, ν) = e−|ων |d′ .

If A has k nodes with δ = 1, let {νv}kν be the lists of k vectors νv ∈ Zn such that
∑

νv = ν. The value of A(ν) (tree A ∈
m

A with total frequency ν) in integral (a) is:

(

− 1

2

)N(A)

eiν·ϕE(d′, ν)
∑

{νv}k
ν









∏

s=1,...,n
δv=1 ,v≥v0

(iνvs)
mv(s)









∮

dRv0
2iπRv0

∫ ∞

−∞
dτv0e

−σ(τv0 )Rv0

× [dnv0f δv
νv0

(q(τv0 + id′))]eiωvτv0

∏

v>v0

∮

dRv
2iπRv

(∫ τw

−∞
dτv +

∫ τw

∞
dτv

)

× e−σ(τv)Rv(τv+id′)wjv (τw + id′, τv + id′)
∏

v≥v0
[dnvf δνv

(q(τv + id′))]eiωvτv ; (a)
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naturally f0
ν = 0 for all non-zero ν. As usual w is the node preceding v, mv(s) is

the number of nodes in the list v, s(v) with label j = s, n(v) the number of those

with label j = 0 and ωv = ωνv .

The residues in R are introduced by using the Definition 2.8. The factors

(iνvs)
ms

v come only from nodes with δv = 1 and their product is bounded by 1.

Now we want estimates on the integrals that depend only on the order k; we start

by splitting the sums in monomials.

(1) Split wj(τw + id, τv + id) into 6 terms if j = 0 or 2 terms if j 6= 0: so we obtain

63k−1 terms. Each of this terms is of the form

τhv x
−l
v y(xv)τ

h′
w x

−l′
w y′(xw) ,

where xv = e−|τv|, 0 ≤ h, h′, l′, l ≤ 1 and both y(x), y′(x) are analytic in |x| ≤ 1

(we will call this the limited x dependent part of the Wronskian).

(2) Separate
∫ τw

−∞ dτv +
∫ τw

∞ dτv , and =dτv0 in integral (a). We get other 2k terms

like

∏

v≥v0

∮

dRv
2iπRv

(

∫ τw

ρv∞
dτve

−σ(τv)Rv(τv+id)eiωvτv(τv)
hvxlv

|s(v)|+2
∏

j=1

yjv(xv)

)

,

where 0 ≤ lv, hv ≤ |s(v)|+1. Notice that ρv is not the sign of τv but an extra label.

The functions yjv are chosen in the following way:

(i) One of the yjv is either coming from ∂nv
0 f0, (i.e. it is in the list cos(mq(τv+id)),

sin(mq(τv + id)) with m = 1, 2) or is one of the F kνv
.

(ii) One is the limited xv dependent part of a term from the Wronskian at the

node v.

(iii) For each node v′ following v there is one function yjv which is the xv dependent

part of a term coming from the Wronskian w(τv , τv′ ).

Notice that the functions y are by definition in H(a, d) and respect condition 4.29.

(3) Given a node v ∈ s(v0) split the integral
∫ τv0

ρv∞ dτv as
∫ 0

ρv∞ dτv −
∫ 0

ρv0∞
dτv +

∫ τv0

ρv0∞
dτv and proceed recursively for all nodes (other 32k+1 terms). We consider

first the contributions from the term with
∫ τw

ρv0∞
dτv for all nodes (the others will

be expressed as products of the same kind of integrals).

Set ρv0 = −1, we want to estimate:

I−(A) =
∏

v≥v0

∮

dRv
2iπRv

(

∫ τw

−∞
dτve

Rv(τv+id)eiωvτv (τv)
hvx−lvv

|s(v)|+2
∏

j=1

yvj (τv)

)

.

(4.6)

Finally we split the first integral
∫ 0

−∞ =
∫ −a0

−∞ +
∫ 0

−a0
, where a0 > 0 is suitably

large (a0 = a + 2 log 2). We set yvj (τv) =
∑

r=0 y
v,r
j xr and C{rv} =

∏

v y
vrv

j . The
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integral is

Ia0
m = Res

∑

{rv}
C{rv}

∏

v

∂nv

∂Ehv
v

∏

v

∫ τw

−∞
dτv(e

Rv(τv+id)+Evτveiωvτvxrv
v ) (4.7)

with τw0 = −a0. Starting from the end-nodes we now perform the integrals in dτv
then the derivatives in Ev and finally the residues in Rv, we do this first for all the

end-nodes and then proceed to the inner nodes hierarchically.

Lemma 4.30. Integral (4.7) produces the bounds

Ia0
m ≤ ε−m(m!)2τ+2Ck1

∏

v

[ |s(v)|+2
∏

j=1

(

∑

h

|yv,hj ||xh0 |
)]

;

x0 = e−a0 , m is the number of nodes (≤ 2k−1), |s(v)| the number of nodes following

v and C1 is some order one constant. Finally τ is the Diophantine exponent of ω√
ε
,

|ω · n| > ε
1
2 γ|n|−τ for some γ = Oε(1) .

If we choose a0 > a the series are all convergent (by the analyticity of the yj’s

in x0).

We choose x0 = e−a

8 and estimate the coefficients of the Taylor series in the ball

|x| ≤ e−a−2:

∞
∑

k=0

|yv,kj |xk0 ≤ 4 max
|x|≤2x0

(yvj (x)) .

Proof of Lemma 4.30. This is taken from [3].

The integral

∫ t

−∞
xKeiAτeBτ =

xKe(iA+B)t

K +B + iA
,

so the Ev derivatives in the end-node v give 2hv terms of the form:

hv1!
xrv
w e

idRve(iωv+Rv)τw

rv +Rv + iωv
(τw)h

v
2 hv1 + hv2 = hv . (4.8)

The residue of R−1
v times (4.8) is (4.8) if |rv | + |ωv| 6= 0 and

hv2!

(hv2 + 1)!
(τw)h

v
1 (τw + id)h

v
2+1 if |rv | + |ωv| = 0 .

Developing the binomial we obtain other 2hv+1 terms, all of the type

Ghv+1m̄!xrv
w e

iωvτw(τw)h̃v .

The constant G is the maximum between one (rv 6= 0), (min|ν|≤N |ω · ν|)−1 or (Π
2 )

(we use that d < Π
2 ). After integrating all the end-nodes following a node w we can

integrate in dτw a sum of 22
∑

v∈s(w) hv+1 terms of the type

Gh̄h̄!xr̃w
w eiΩvτw(τw)ĥ
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where r̃v =
∑

v∈s(w) rv , Ωv =
∑

v∈s(w) ωv and h̄ + ĥ ≤ ∑

v∈s(w) hv + 1. We have

proved that the integrals derivatives and residues correspond to calculating the

integrands in (4.7) at the limiting point a0, ignoring the oscillating factors eiΩa0 ,

substituting the Taylor coefficients with their moduli and multiplying by a factor

bounded by

26k−3(k!)4 max
0<|ν|<kN

(|ω · ν|)−2τ(2k−1) ≤ Ck(k!)4τ+4 . �

We now consider the “left out part”
∫ t

−a0
dτv0 (we will set t = 0 in integral (a)).

Let v1 be a node of level one.

We break the integral =τv0dτv1 as =−a0dτv1 +
∫ τv0

−a0
dτv1 . If we choose the first

term and m1 is the number of nodes of A≥v1 , the integral on A≥v1 can be bounded

by Ia0
m1

and we are left with the problem of bounding the “left out part”
∫ t

−a0
dτv0

on the remaining subtree A/v1 . We repeat the procedure hierarchically and we end

up with 2m terms of the form:

Ia0
m1

· · · Ia0
mp

∏

v∈ϑ

∫ τw

−a0

dτvV(ϑ)

where the subtree ϑ has m̃ nodes and m̃+
∑

mj = m. We bound the last integral by

the maximum of the integrand. Let us now examine the 3m−1 integrals left aside in

the analysis of item 3. Starting from the end-nodes we cut off all the subtrees ϑ that

contribute a definite integral =0
ρ. Such integrals are of the type Iρ(ϑi) that we have

already considered. We are left with an integral again of the type Iρ0 (ϑ0) where ϑ0

is the tree deprived of the ϑi. The total number of nodes of the ϑi i = 0, . . . , h is m.

Now we only have to compute the maxima of the |yvj (x)|, that means the maxima

of the moduli of the terms form the derivatives of f 0 from the Wronskian and from

all the F kν in the regions C(a = 2, d′). To bound the functions F kν (et) we use the

fact that d′ = d−√
ε and Proposition 4.29(ii) .

As we are not interested in optimality,z we will estimate the maximum of a pole

of order k by ε−
k
2 .

Lemma 4.31. The |yvj (τv)| non coming from f1 contribute at most a factor

ε−k−2k0+1 where k0 is the number of nodes with δv = 0.

Proof. There are k0 ≤ k − 1 nodes with δv = 0 carrying at most a double pole.

Then each of the k + k0 − 1 nodes v 6= v0 carries a summand of

max
t∈C(d−√

ε,a+2)
(|x0

j |) max
t∈C(a+2,d−√

ε)
(|x1

j |)

from the Wronskian. So it is another double pole.

zNotice that if the perturbing function is not a trigonometric polynomial then we do not approach
simultaneously both the singularities of f0 and f1.
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The functions F nν appear exactly k times. Moreover n =
∑k
i=1 nvi , so we count

each node with δv = 1 plus all its successive nodes. As each node with δv = 0 has

s(v) ≥ 2,

k
∑

i=1

nvi ≤
∑

v

nv − 3k0 = 2k − k0 − 1 .

We can bound the maxima of the F nν in C(a+ 2, d−√
ε) using Lemma 4.29, so

we have a factor
√
ε
−(p+2)k+k0 .

Finally we notice that E(d − √
ε, ν) ∼ E(d, ν) and we sum on all the trees of

order k using the known bound:

∑

A∈(
m
A )k

∏

v∈A
δv=1

n(v)!

|S(A)| ≤ (4n)k .

This proves Proposition 3.3(ii). To prove Proposition 3.3(i) we set d′ = 0 so we do

not have any divergent contribution from the integrals in (−a+ 2, a+2). Moreover

we can add fruits and markings by simply using the mark adding functions; see [3]

for full details.

Appendix A.

A.1. Proof of Proposition 4.16

We give values to trees recursively; namely given a tree with fruits A ∈ Tj we define

its value as:

V(A) = −1

2
µδv0aj∇~m+ejf δv0 (t))

∏

v∈s(v0)

W(A≥v) , where

W(A) = (=t+ + =t−)wj(t, τ)V(A)

if A is not a fruit, and

W(Fak
j ) = x

[a]
j (t)=xajV(Λkj )

otherwise. Finally we set V(Λ1
j ) = − 1

2µaj∇ejf1(t). This is clearly the same function

V we defined in Subsec. 4.3. We consider a multi-linear function Γδj on trees Tj so

define Γδj(A1, . . . , An) attaches the fist nodes of the trees Ai to the tree αδj with one

marked node δv = δ, Jv = j. By convention if we have n copies of the tree A in the

list {Ai} we will write Γδj(A
n). Remembering that

F kj = −
∑

δ=0,1

∑

{ph
j }~m,k−δ

∇~m+ejf δ(t)

n,k−1
∏

j=0
h=1

(ψhj )p
h
j

phj !
.
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We define recursively:

Λkj =
1

2
aj
∑

δ=0,1

∑

{ph
j }~m,k−δ

µδ

P{phj }
Γδj((Λ̄

1
0)
p10 , . . . , (Λ̄k−1

n )p
k
n−1) , Λ̄kj = Λkj+

∑

a=0,1

Fak
j ,

where given a list {ai}, P{ai} =
∏

i ai!. By definition, W(Λ̄kj ) = ψkj . Let us prove

that Λkj =
∑

A∈T k
j
|S(A)|−1A. As in both definitions, Λkj is a sum over all trees in

T k
j . This is equivalent to showing that in the two expressions, each tree A has the

same coefficient. We proceed by induction as the statement is trivially true for Λ1
j .

Given a tree A ∈ Ak
j , let v1 vm be its level one nodes and A1, . . . Am its level one

subtrees; we need that

1

|S(A)| =
N(A1, . . . , Am)

P{phi (A)}

m
∏

i=1

1

|S(Ai)|

where {phi (A)} is the number of trees {Aj} in Ah
i and N(A1, . . . , Am) is the number

of ways in which one can choose one summand from each f1
0, . . . ,f

k−1
n and obtain

the unordered list (A1, . . . , Am). Now if m[vi] is the cardinality of the orbit of vi
(so there are m[v1] subtrees equal to A1 . . .),

N(A1, . . . , Am) =
P{phi (A)}
∏

[v]1
m[v]!

and
m
∏

i=1

1

|S(Ai)| =
∏

[v]∈s(v0)

1

|S(A≥[v])m[v]| .

This proves the assertion by the Lagrange Theorem:

|S(A)| =
∏

[v]∈s(v0)

m[v]!|S(A≥v)|m[v] .

A.2. Normal form theorem

We perform a symplectic change of variables that brings Hamiltonian (1.1) in local

“normal form”. We will use the standard notations (see [2], [4] or [12], [13]) and the

existence of the fast time scale. For systems with one fast time scale, this provides a

symplectic change of variables defined in a region W such that ΠIW = Oε(1), that

sends the perturbing terms depending on the fast angle to order e−
1

εB for some

B(n) < 1. This will be the basis for proving Arnold diffusion for systems with one

fast variable. For completeness we state the theorem for m fast variables. The first

step is to set the pendulum in local hyperbolic normal form (see [2]), we obtain the

local Hamiltonian:
1

2
(I, AI) +

√
εG(pq,

√
ε) + µf(p, q, ψ) , (A.1)

where the function G(J,
√
ε) is analytic for |J | < k̃2

0 ∼ √
ε and will be written as

Taylor series: G(J) =
∑

k≥1 J
kGk.

The perturbing term f(p, q, ψ) is a trigonometric polynomial of degree N in the

rotator angles and an analytic function of p, q ≤ k0. So we consider the domain:

W (k0, s0) ≡W0 := {|p|, |q| ≤ k0, I ∈ V0(ε) ⊂ Cn, ψ ∈ Tn × (−is0, is0)} ,

where V0(ε) is some n-rectangle such that ΠIjV0(ε) = O(
√
εωj

aj
).
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We write f in Taylor series: f(p, q, ψ) =
∑

fν,k,hp
kqheiν·ψ. For all s < s0,

k < k0, we use the weighted norm:

|f |k,s ≡ |f |W (k,s) =
∑

es|ν||fν,l,h|k2(l+h)eiν·ψ .

Definition A.1. Given a sub-lattice Λ ∈ Zn and a point set D ∈ V0(ε), we say

that D is K − β non-resonant modulo Λ if for all I ∈ D,

|ω(I) · ν| ≥ β, ∀ν : ν /∈ Λ ∩ |ν| ≤ K .

If Λ0 is the lattice generated by the N frequencies (νi ∈ Zn) of f , we set Λ ∈ Λ0

to be the sub-lattice orthogonal to the fast components. We choose a point set D

in the following manner: let P be the set of vectors ω such thataa ωε−
1
2 ∈ Ω such

that |ω1 · νF | ≥ γ
|νF |τF

for an order one γ.

Given r0 ∈ R+, the domain D(r0) is a thickening of P such that ∀ I ∈ D(r0),

there exists ω ∈ P such that

|AI − ω| ≤ εα+ 1
2 r0

for r0 < R; in the following we will set b = 1
2 + α.

Lemma A.2. D0 ≡ D(r0) is β −K non-resonant modulo Λ with

K =

(

γ

4R
ε−b
)

1
1+τF

, β = (γ)
1

1+τF (4Rεb)
τF

1+τF .

Proof. Given I ∈ D(r0) ω(I) = AI is εbr0-close to an ω ∈ P , so

|ω(I) · ν| ≥ |ω1 · νF | − (εb|ω2||ν| + εbr0|ν|)

with r < |ω2| < R. Thus we set

εb|ω2|γ−1|ν|τF +1, εbr0|ν|γ−1|ν|τF +1 <
1

4
.

We construct an analytic symplectic transformation (µ-close to identity) of the

form:

Id+ µS(I ′, p′, ψ, q) = Id+
∑

1<l≤ K
N

µl
|ν|≤lN
∑

ν 6=Λ

S
(l)
ν,k,h(p

′)kqheiν·ψ ,

that brings the Hamiltonian A.1 in the normal formbb

(I ′, AI ′) +
√
εG1(pq,

√
ε) + µg1(ψ

′
S , I

′, p′, q′, ε, µ) + µ
K
N f1(ψ

′, I ′, ε, µ)

aaRecall that we are now working on Hamiltonian (1.1) so that all quantities must be appropriately
rescaled by

√
ε.

bbThe separation between the integrable G1 and the non-integrable g1 is kept only because we
will eventually set up a KAM scheme for the slow variables, so we need to estimate the size of the
integrable part.
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in a suitable domain D′(r1) × Tns1 ×B2
k1

, where

D′(r) = D(r) ∩ {I : ∃ω ∈ P such that |anIn − ωn| ≤ r0ε} .

The Hamilton–Jacobi equations are

µAI ′ · Sψ +
1

2
µ2|ASψ|2 +

√
εG(qp′ + µqSq)) =

√
εG1(p

′q + p′Sp′ , µ)

+µg1(ψS + µSI′ , I
′, p′, q + µSp′ , ε, µ) − µf(p′ + Sq , q, ψ) + o(µK) (A.2)

and we assume that we can find some domain D′(r) × Tns × B2
k such that the

functions in A.2 are evaluated inside their domain of analyticity. We will call ΠΛ the

natural projection on functions NOT depending on the fast angles: ΠΛf(ψ, p, q) =

g(ψS , p, q) and ΠJ the natural projection on functions depending only on J = pq:

F =
∑

Fν,k,hp
kqheiν·Φ ΠJF =

∑

F0,h,h(pq)
h .

We are looking for a symplectic transformation such that (ΠΛ)S = 0. We will solve

the Hamilton–Jacobi equations recursively and determine the functions G1(J, µ) =
∑

i≥0 µ
iG1(J ; i) and µg1(ψS , I, p, q, µ) =

∑

i≥1 µ
ig1(ψS , I, p, q; i). The first order

leads tocc

G1(J, 0) = G(J) , G1(J, 1) =
1√
ε
ΠJf , g1(ψ1S , I

′, p′, q′, 1) = (ΠΛ − ΠJ )f ,

S
(1)
ν,k,h = − fν,k,h

i[I ′ · ν] + (k − h)
√
εGJ(p′q)

.

The term i[I ′ ·ν]+(k−h)√εGJ (0) = D(ν, k, h) is the “small denominator” that

in our case (i.e. up to order K
N ) admits the lower bound D(ν, k, h) ≥ β provided

that I ′ ∈ D′(r0). The higher order terms are determined recursively; we set µS<l =
∑l−1

h=1 µ
hS(h) and [f(µ)]l = 1

l!∂
l
µf |µ=0.

G1(J, l) =
1√
ε
ΠJ

[(

µ2 1

2
|AS<lψ |2 +

√
εG(qp′ + µqS<lq )

)

−
√
εG1(p

′q + p′S<lp′ , µ)

−µg1(ψS + µS<lI′ , I
′, p, q + µS<lp′ , ε, µ) + µf(p′ + S<lq , q, ψ)

]

l

)

,

the remaining resonant terms are in µg1 =
∑∞

m=1 µ
mg1(ψs, I

′, p′, q;m):

g1(ψS , I
′, p′, q; l) = (ΠΛ − ΠJ )

[(

1

2
µ2|AS<lψ |2 +

√
εG(qp′ + µqS<lq )

)

−
√
εG1(p

′q + p′S<lp′ , µ) − µg1(ψS + µS<lI′ , I
′, p, q

+µS<lp′ , ε, µ) + µf(p′ + S<lq , q, ψ)

]

l

)

,

ccNotice that the pendulum and rotator terms cannot cancel each other, this is a consequence of
the locality of our analysis.
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the terms of order µl such that ν 6= Λ fix the value of S
(l)
ν,k,h. We expand the Taylor

series only in this expression. The symbol {ki}rk means the set of vectors in Nr such

that
∑r
i=1 ki = k, while {νi}rν is the set of r vectors in Zn such that

∑r
i=1 νi = ν.

S
(l)
ν,k,h = − 1

D(ν, k, h)

[

∑

ν(1)+ν(2)=ν

1

2
S

(m)

ν(1) ,k1,h1
S

(l−m)

ν(2) ,k−k1,h−h1
(ν(1), Aν(2))

+
√
ε

l
∑

r≥2

∑

{ki}r
k,{hi}r

h,
{li}r

l ,{νi}r
ν

(

1

r!
∂rJG(p′q)Πr

i=1S
(li)
νi,ki,hi

hi

+
∑

r≥1

∑

{ki}r
k+r,{hi}r

h,

{li}r
l−1,{νi}r

ν1

1

r!
∂rp′f(p′, q,Ψ)Πr

i=1kiS
(li)
νi,ki,hi

−
√
ε

l−2
∑

m=0

l−m
∑

r≥2

∑

{ki}r
k,{hi}r

h,
{li}r

l−m,{νi}r
ν

(

1

r!
∂rJG1(p

′q;m)Πr
i=1S

(li)
νi,ki,hi

ki

−
l−1
∑

m=1

∑

ka+kb=k,
ha+hb=h

∑

la+lb=l−m,
νa+νb=ν

l−m
∑

r≥0

l−m−r
∑

s≥0
r+s≥1

∑

{ki}r
ka+r,{hi}r

ha
{li}r

la
,{νi}r

νa

∑

{kj}s
kb
,{hj}s

hb
,

{li}s
lb
,{νi}s

νb

×
(

1

r!s!
∂rq∂

s
ψS
g1(ψS , I

′, p′, q;m)Πr
i=1ki(S

(li)
νi,ki,hi

Πs
j=1∇IS

(li)
νj ,kj ,hj

(A.3)

To avoid proliferation of symbols we will set:

max(|f |0, |G|0) = E0 and choose r0 > 1 so that r0ε
b ≥ r0ε ≡ λ0 > k2

0 . Finally we

will call bj = b if j = 1, . . . , n− 1 and bn = 1.

Proposition A.3. Consider the nested domains : Dl ≡ D′(rl) × Tnsl
× B2

kl
where

rl = 1
2r0e

−lξ, sl = s0(1 + lξ) and kl = 1
2k0e

−lξ ; the following bounds holddd:

|S(l)
ν,k,h|l ≤ C1(l − 1)!Bl−1, |G1(J, l)|l ≤ C2(l − 1)!Bl−1 ,

|g1(ψS , I ′, p′, q; l)|l ≤ C3(l − 1)!Bl−1

with C1 = E0

β , C2 = C3 = E0 and B = c
E2

0

β2k4
0ξ

2 for some small enough order one c.

Moreover the so defined transformation is a biholomorphism: DK → D0 provided

that ξ = s0
4K , µBK < 1. Thus the system can be written in normal form for

µ <
β2k4

0ξ
2

K3
(A.4)

in the domain D(r) × T ns ×B2
k , with r = 1

2r0e
−s0/4, k = 1

2k0e
−s0/4 and s = s0/4.

ddBy |f |l we mean |f |Dl
.
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Remark A.4. Notice that for systems with one fast time scale, the domain P

coincides with the whole W (k, s0/2) as all one-dimensional vectors of norm one are

Diophantine with order one γ. Moreover in this case β = O(1) as well, so if we

choose K = c√
ε
, the bound on µ is µ ≤ ε

5
2 .

Remark A.5. Notice that if we choose K = Oε(1), we can perform some steps of

the normal form theory for µ < ε.

Proof. We proceed by induction, using the analyticity assumptions on G and f .

We will assume that the desired bounds hold for all l < m and that G1(J, l) and

g1(ψS , I
′, p′, q, l) are analytic in Dm−1. This implies that the transformations

I = I ′ + µS<mψ , ψ′ = ψ + µS<mI′ ,

p = p′ + µS<mq , q′ = q + µS<mp′

are well defined and Dm → D0 if

max(|µS<mq |m, µS<mp′ |m) ≤ 1

4
km , |µS<mψj

|m ≤ 1

4
rmε

bj ,

|µS<mI′ |s ≤
1

4
s0 , |µS<mψ,I′ |m < 1 .

Substituting the bounds in these inequalities (and using Cauchy estimates for the

derivatives) we obtain the constraint µmax( 8C1

k2
0ξ
, 8C1

λ0ξ2
) < 1 provided that µKB ≤ 1

2 .

Having verified the analyticity of the transformation up to order m, we use analytic

bounds on G, G1 and g1 and the assumed bounds on the lower orders to bound

G1(J ;m) S(m) and g1(ψS , I
′, p′, q;m). We repeatedly use the inequality:

∑

{ki≥1}a
i=1:

∑

i ki=k

a
∏

i=1

(ki − 1)! ≤ (k − 1)!

Let us first consider S(m), it is composed of five sums. In each we substitute the

Cauchy estimates and the bounds coming from the inductive hypothesis.

(1) The sum of quadratic terms is bounded by (k − 1)!Bk−1 C2
1

s20ξ
2βB

.

(2) The terms due to G are bounded by
√
εE0

β
(m− 1)!Bm

∑

r≥2

(

4C1

k2
0ξB

)r

≤ 8
√
εE0C

2
1

k4
0ξ

2βB
(m− 1)!Bm−1

provided that 4C1

k2
0ξB

< 1
2 .

(3) The terms due to f are bounded by

E0

β
(m− 1)!Bm−1

∑

r≥1

(

2C1

k2
0ξB

)r

≤ 4E0C1

k2
0ξβB

(m− 1)!Bm−1

provided that 2C1

k2
0ξB

< 1
2 .

(4) The terms due to G1 has the same bound as (2) if we fix C2 = E0.
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(5) If we fix C3 = E0 as well, the terms due to g1 are bounded by

E0

β
(m− 1)!Bm−1

∑

r≥0

∑

s≥0,r+s≥1

(

2C1

k2
0ξB

)r(
2C1

λ0ξB

)s

≤ 4C1E0

βk2
0ξB

(m− 1)!Bm−1

provided that 2C1

λ0ξB
≤ 2C1

k0
0ξB

< 1
2 .

These five bounds must be all set < 1
5C1. It is easily seen that, as b ≤ 1 and

λ0 ≥ k2
0 , all the desired bounds are implied by max( 8C1

λ0ξ2
, 8

√
εE0C1

k4
0ξ

2βB
) ≤ 1

5 . Now we

discuss the bounds on G1 and g1. There are always the same five terms times a

factor β√
ε

for G1 and β for g1. So all the bounds are verified if, E0C1

k4
0ξ

2βB
≤ c � 1.

We fix C1 = E0

β as this comes from the first order and B = c
E2

0

k4
0ξ

2β2 .

A.3. Proof of Lemma 4.23

Proof. We define an operator

Oj [g] := Qj(G) +
1

2

∑

i=0,1

xij=(x
[i]
j G)

so that ψkj = Oj(F
k
j ). We consider the vector V =

( Oj(G)
∂t(Oj (G))

)

. By the definition of

Oj , it is a solution of V̇ = LjV +G where Lj is the 2 × 2 matrix:

Lj =

∣

∣

∣

∣

∣

0 1

δj0g(q
0(t)) 0

∣

∣

∣

∣

∣

, g(ψ0) = −∂2
ψ0
f0(ψ0) .

We derive with respect to t:

V̈ = LjV̇ + (L̇j)V + Ġ) .

The first line of the solution V̇ is

∂t(Oj(G)) = Oj(−δj0q̇0(t)∂3
0f

0(t)O0(G) + Ġ)

plus the first component of a solution of the homogeneous equation t → W (t)X

that we determine via the initial data. Otj(F ) is zero for t = 0, and the initial datum

is determined by the boundedness condition ∂t(Oj(G))|t=0 = =0(x0
jG), so

∂t(Oj(G)) = Oj

(

2

c
δj0x

0
0(t)∂

3
0f

0(t)O0(G) + Ġ

)

+ x0
j (t)=0(x0

jG)

and as G is odd we can substitute Qj(G) = Oj(G).

Next we notice that the vectors W i =
(x0

0(t)

ẋ0
0(t)

)

,
(σ(t)x1

0(t)

σ(t)ẋ1
0(t)

)

are solutions of the

system Ẇ = L0W . So we apply the time derivative and obtainee

ẋi0 =
2

c
Q0(x

i
0x

0
0∂

3
0f

0(t)) + δi1σ(t)x0
0 . (A.5)

eeWe are using the fact that O0(σ(τ)F ) = σ(t)O0(F ).
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The last term is added to have the right behavior in t = 0 (dtσ(t)x1
0|0 = 1).

Oj

(

2

c
δj0x

0
0(t)∂

3
0f

0(t)O0(G) + Ġ

)

+ x0
j (t)=0(x0

jG)

= Qj

(

2

c
δj0x

0
0(t)∂

3
0f

0(t)Q0(G) + Ġ

)

+
1

2

∑

i

(

xij=x
[i]
j

(

2

c
δj0x

0
0(t)∂

3
0f

0(t)Q0(G) + Ġ

)

+ x0
j (t)=0(x0

jG) . (A.6)

The last two sums cancel each other via relation A.5 and Proposition 2.6(i) and

(iv), for j = 0, and using the fact that if j 6= 0, then ẋ0
j = 0 and ẋ1

j = σ(t):

1

2

∑

i

(

xij=x
[i]
j

(

2

c
δj0x

0
0(t)∂

3
0f

0(t)Q0(G) + Ġ

)

+ x0
j (t)=0(x0

jG)

=
1

2

∑

i

(

xij=GQ0

(

2

c
δj0x

[i]
j (t)x0

0(t)∂
3
0f

0(t)

)

− 1

2
=(ẋ

[i]
j G) + x0

j (t)=0(x0
jG) . (A.7)
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