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– Campo di variazione

– Varianza

– Scarto Quadratico medio

– Coefficiente di variazione

– Scostamenti dalla Media e dalla 
Mediana

– Mutua Variabilità
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– Mutua Variabilità

– Mutabilità

Generalità sulla variabilità

• Concetto di variabilità

• Importanza della variabilità• Importanza della variabilità

• Uso congiunto di indici di posizione ed 
indici di variabilità

• Variabilità assoluta e relativa
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Variabilità e Dispersione

Consideriamo il seguente esempio di tre studenti 
che hanno superato ciascuno tre esami:
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

È facile vedere che se calcoliamo il voto 
medio e quello mediano per ciascun studente 

esso è pari a 24



Variabilità e Dispersione (cont.) 

Possiamo dire che i tre studenti hanno un stesso 
comportamento agli esami?

Dall’esempio risulta evidente che da soli gli 
indici di posizione non riescono a svelare 

esaustivamente il “segreto” delle distribuzioni!!
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Caratteristiche degli indici di variabilità

Un indice di variabilità gode delle seguenti 
caratteristiche:
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 ( ) ( )⇒> nn yyyIVxxxIV ,,,,,, 2121 ⋯⋯

YX  di ilepiù variab 

Un esempio su tredici studenti …

Studenti 

Voto in 
Matematica 
(X)

Voto In 
Statistica 
(Y) X-mx (X-mx)^2 Y-my (Y-my)^2

Gregory House 28 30 -0,08 0,01 5,08 25,78

Lisa Cuddy 30 18 1,92 3,70 -6,92 47,93

Robert Chase 27 21 -1,08 1,16 -3,92 15,39

Studenti 

Voto in 
Matematica 
(X)

Voto In 
Statistica 
(Y) X-mx (X-mx)^2 Y-my (Y-my)^2

Gregory House 28 30 -0,08 0,01 5,08 25,78

Lisa Cuddy 30 18 1,92 3,70 -6,92 47,93

Robert Chase 27 21 -1,08 1,16 -3,92 15,39Robert Chase 27 21 -1,08 1,16 -3,92 15,39

Allison Cameron 28 28 -0,08 0,01 3,08 9,47

Eric Foreman 26 30 -2,08 4,31 5,08 25,78

Remy Hadley (13) 28 27 -0,08 0,01 2,08 4,31

James Wilson 27 30 -1,08 1,16 5,08 25,78

Amber Volakis (B.T.) 29 21 0,92 0,85 -3,92 15,39

Chris Taub 28 22 -0,08 0,01 -2,92 8,54

Robert Chase 27 21 -1,08 1,16 -3,92 15,39

Allison Cameron 28 28 -0,08 0,01 3,08 9,47

Eric Foreman 26 30 -2,08 4,31 5,08 25,78

Remy Hadley (13) 28 27 -0,08 0,01 2,08 4,31

James Wilson 27 30 -1,08 1,16 5,08 25,78

Amber Volakis (B.T.) 29 21 0,92 0,85 -3,92 15,39

Chris Taub 28 22 -0,08 0,01 -2,92 8,54
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Chris Taub 28 22 -0,08 0,01 -2,92 8,54

Lawrence Kutner 29 26 0,92 0,85 1,08 1,16

Edward Vogler 27 23 -1,08 1,16 -1,92 3,70

Stacy Warner 29 30 0,92 0,85 5,08 25,78

Michael Tritter 29 18 0,92 0,85 -6,92 47,93
365 324 0,00 14,92 0,00 256,92

Chris Taub 28 22 -0,08 0,01 -2,92 8,54

Lawrence Kutner 29 26 0,92 0,85 1,08 1,16

Edward Vogler 27 23 -1,08 1,16 -1,92 3,70

Stacy Warner 29 30 0,92 0,85 5,08 25,78

Michael Tritter 29 18 0,92 0,85 -6,92 47,93
365 324 0,00 14,92 0,00 256,92

Le medie sono rispettivamente 28,08 e 24,92 e le mediane 28 e 26 
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Voto in Matematica (X)

24 25 26 27 28 29 30

Voto In Statistica (Y)
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Campo di variazione

)min()max( XXV −=
E’ un indice di variabilità assoluta

Per il nostro esempio abbiamo:

V(Matematica)=12 (teorica) =4(empirica) 
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V(Matematica)=12 (teorica) =4(empirica) 

V(Statistica)=12 (teorica) =12 (empirica)

Varianza

( )∑ −= 22 1 µσ x( )∑ −= 22 1 µσ ix
n

( )∑
∑

−= ii nx
n

22 1 µσ
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E’ un indice di variabilità assoluta

∑
∑ i

n

Caratteristiche principali

• È una media

• Vale sempre che: ∞≤≤ 20 σ• Vale sempre che: ∞≤≤ 20 σ
Per il nostro esempio abbiamo:

15,1   2 =σ
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Il massimo della varianza

Si dimostra che il massimo valore che la varianza 
può assumere (per quella particolare 

distribuzione empirica) è:

)1(2 −nµ
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La varianza può essere anche vista come ….
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Scarto Quadratico Medio

( ) 221 σµσ =−= ∑ ix
n

E’ un indice di variabilità assoluta

( ) σµσ =−= ∑ ix
n

Per il nostro esempio abbiamo:
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Caratteristiche principali

• È una media quadratica

• Vale sempre che: • Vale sempre che: 

∞≤≤ σ0
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Perché è utile lo sqm 

Il problema principale della varianza è che 
è espressa nell’unità di misura del fenomeno è espressa nell’unità di misura del fenomeno 

al quadrato!!!!

Lo scarto quadratico medio risolve questo 
problema!!!!
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problema!!!!



Coefficiente di Variazione

µ
σ=CV 0con ≠µ

E’ un indice di variabilità relativa

µ
0con ≠µ

Per il nostro esempio abbiamo:
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Determiniamo il massimo del coefficiente di 
variazione

Sappiamo che:

)1(0 22 −≤≤ nµσ 10 −≤≤⇒ nµσ)1(0 22 −≤≤ nµσ 10 −≤≤⇒ nµσ

10 −≤≤ n
µ
σ
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massimo il è

Coefficiente di Variazione 
normalizzato

= CV
CV 10con ≤≤ nCV

E’ un indice normalizzato

1−
=

n
CVn 10con ≤≤ nCV

Per il nostro esempio abbiamo:
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01,0
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Proprietà della varianza

XY β=
Consideriamo una variabile X e consideriamo la seguente 

combinazione lineare:

=2σ 22σβabbiamo che: =2
yσ 22

xσβ

cXY += β
Consideriamo una variabile X e consideriamo la seguente 

combinazione lineare:
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cXY += βcombinazione lineare:

abbiamo che: =2
yσ 22

xσβ



Altri indici di variabilità

∑ −= µµ ix
n

S
1Scostamento Semplice 

Medio n

Scostamento Semplice 
Mediano ∑ −= Mex

n
S iMe

1

Per il nostro esempio abbiamo:
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∑n
Per il nostro esempio abbiamo:
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Altri indici di variabilità

Differenza Interquartile 13 QQIQR −=
con

25,0)(1 == XFQ 75,0)(3 == XFQ
con

Per il nostro esempio abbiamo:

30      21 == QQ
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Mutua Variabilità

• Cosa si intende per mutua variabilità?

• Cosa si intende per variabilità rispetto ad • Cosa si intende per variabilità rispetto ad 
un centro

• Quali sono le differenze e le implicazioni?

lez4 2010-2011 statistica-francesco mola 23

Differenze Medie
Consideriamo una variabile X=x1,x2, x3 con 3 modalità e 
proviamo ad individuare tutte le possibili differenze che 

possiamo costruire, cioè tutte le

Abbiamo:

3,2,1,,     =−= jijiji XXd

312111 xxxxxx −−−
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Differenze Medie
È evidente che 3 di queste differenze sono pari a 0

0 3121 xxxx

−−
−−

Abbiamo:

0

0

2313

3212

xxxx

xxxx

−−
−−

3

∑
Abbiamo un indice 
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)13(3

3

1

−

−
=∆
∑

=≠ ji
ji xx di variabilità che 

tiene conto della 
mutua variabilità

In generale abbiamo….
Differenze Medie Semplici

−∑ xx
n

ji

n di queste 
differenze sono pari 

a zero e non 

Differenze Medie Semplici per distribuzioni di frequenza

)1(
1

−

−
=∆
∑

=≠

nn

xx
ji

ji

∑
k

vengono 
considerate al 
denominatore
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Differenze Medie con ripetizione
Differenze Medie con Ripetizione

xx
n

ji∑ −
n di queste 

differenze sono pari 

Differenze Medie con Ripetizione

2

1

n

xx
ji

ji∑
=≠

−
=∆′

k

∑

differenze sono pari 
a zero e non 

influenzano il 
numeratore ma solo 

il denominatore
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2

1

n

nnxx ji
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ji
ji∑
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−
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Una relazione interessante
Si noti che vale la seguente relazione

∆′=∆ n

e che…

1−
∆′=∆

n
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1
2

02)( ≤∆≤⇒=∆
µ

µMax



Mutabilità per dati qualitativi

• Mutabilità

• Dispersione• Dispersione

• Eterogeneità

• Può anche essere applicato per dati 
quantitativi operando unicamente sulle 
frequenze!!
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frequenze!!

…
Consideriamo una mutabileX=x1,x2,…,xk con k modalità e 

n1,n2,…,nk frequenze associate a ciascuna modalità. 
Definiamo poi la seguente funzione:

( )




=
≠

=
ji

ji
xxd ji    0

   1
,
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Ricorrendo alle differenze medie con ripetizione 
viste in precedenza possiamo definire il seguente 

indice:

L’indice del Gini

( ) == ∑∑ ji
i j

ji nnxxd
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g ,
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L’indice del Gini
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Indice di Eterogeneità del Gini



Il massimo di g
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1
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Normalizziamo g
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( ) *2
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Indice di Entropia di Shannon

( )∑−= ii ffH lg
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