TOTAL POSITIVE CURVATURE AND THE EQUALITY CASE IN THE
RELATIVE ISOPERIMETRIC INEQUALITY OUTSIDE CONVEX
DOMAINS
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ABSTRACT. We settle the case of equality for the relative isoperimetric inequality outside
any arbitrary convex set with not empty interior.

1. INTRODUCTION

In [5] Choe, Ghomi and Ritoré proved the following relative isoperimetric inequality outside
convex sets, see also [14] for an alternative proof and [13] for a generalization to higher
codimension.

Theorem 1.1 ([5]). Let C C R be a closed convex set with nonempty interior. For any set
of finite perimeter Q C RN \ C we have

(1.1) P(Q; RV \ C) ZN((U;V)}V\MNI;I.

Moreover, if C has a C? boundary and Q is a bounded set for which the equality in (1.1)
holds, then ) is a half ball.

Here and in what follows P(€; RY \ C) denotes the perimeter of a set Q in RV \ C in the
sense of De Giorgi. As observed by the authors in [5] the equality case for general, possibly
nonsmooth, convex sets does not follow from their methods as it cannot be handled by a simple
approximation argument. However there are many situations in which nonsmooth convex
sets naturally appear. For instance, in models of vapor-liquid-solid-grown nanowires the
nanotube is often described as a semi-infinite convex cylinder with sharp edges and possibly
nonsmooth cross sections. In these models super-saturated liquid droplets correspond to
isoperimetric regions for the relative perimeter outside the cylinder or more in general for the
capillarity energy, see [12, 17]. Experimentally it is observed that in some regimes preferred
configurations are given by spherical caps lying on the top facet of the cylinder. Understanding
these phenomena from a mathematical point of view was our first motivation to study the
equality cases in (1.1) also for nonsmooth convex obstacles, beside the intrinsic geometric
interest of the problem.

The main result of this paper reads as follows.

Theorem 1.2 (The equality case). Let C C RN be a closed convex set with nonempty interior
and let Q@ C RN\ C be a set of finite perimeter such that equality holds in (1.1). Then  is
a half ball supported on a facet of C.

Observe that, compared to the last part of Theorem 1.1, here we don’t have any restriction
on the convex set C and we allow for possibly unbounded competitors. As in [5] the starting

point in order the get the characterization of the equality case in (1.1) is an estimate of the
1
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positive total curvature K () of a hypersurface ¥ C RN \ C when the contact angle between
OC and ¥ is larger than or equal to a fixed 6 € (0, 7). Here KT (X) denotes, roughly speaking,
the measure of the image of the Gauss map restricted to those points where there exists a
support hyperplane, see Definition 1.3 below. To state more precisely our result we need to
introduce some notation: Given 6 € (0,7) we denote by Sp the spherical cap

Sg:={yesSV . y.eny>cosh}.
Moreover, given ¥ C RN \ C and a point z € 3 we denote by N, X the normal cone
N ={vesSV 1. (y—x)-v<0forallye¥},

that is the set of (exterior) normals to support hyperplanes to ¥. We can now recall the
definition of total positive curvature.

Definition 1.3. Let C be a closed convex set with not empty interior, @ C RN\ C a bounded
open set and X := 9\ C. The total positive curvature of X is given by

KH(E) = 1N 1( U NE)
zeX\C

The aforementioned estimate on the total positive curvature is provided by the following
theorem, which will be proved in Section 3.

Theorem 1.4. Let C C RY be a closed convez set of class C*, Q C RN \ C a bounded open
set and 3 := 00\ C. Let 6y € (0,7) such that

(1.2) v-ve(z) <cosby whenever x € XNC, v e N3,
where ve(x) stands for the outer unit normal to C at x. Then,
(1.3) KH(E) > HN 7 (Sg,) -

Moreover, let v > 0 be such that XN C C B,(0). For any € > 0 there exists §, depending on
g,00 and r, but not on C or Q, such that if

(1.4) v-ve(z) <cosby+ 6 whenever z € ENC, v e NX,
and
(1.5) KH(E) <HY " (Spy) + 6,

then ¥ N C is not empty, width(X N C) < e and more precisely ¥ N C lies between two
parallel e-distant hyperplanes orthogonal to vc(z) for some x € XN C. In particular, if (1.2)
is satisfied and the equality in (1.3) holds, then ¥. N C is not empty and lies on a support
hyperplane to C.

Note that in the previous statement width(XNC) denotes the distance between the closest
pair of parallel hyperplanes which contains ¥ N C in between them, see (3.5). Even though
the proof of this theorem follows the general strategy of [4] we are able to improve their result
in three directions: (1) we consider a general contact angle 6y € (0,7), whereas in [4] only
the case 0y = 7/2 is considered; (2) we do not assume any regularity on ¥ and the contact
angle condition can be replaced by the weaker condition (1.2); (3) we get a stability estimate
on the ‘contact part’ 3N C which is independent of the shape of the convex set C. As we will
explain below (2) and (3) are crucial in the proof of Theorem 1.2.
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As a consequence of independent interest of the previous theorem we prove a sharp in-
equality for the Willmore energy, see Theorem 3.10.

Before outlining our strategy of the proof of Theorem 1.2 we briefly recall how in [5] it
is proven that a bounded set y satisfying the equality in (1.1) is a half ball, when C is
sufficiently smooth. There the idea is to consider the isoperimetric profile

I(m) = inf{P(E;RN\ C): EC RV \C, |E| =m},

1 —
defined for all m € (0, |Q|], and to show that I(m) = N(”TN)Nm%, that is I(m) coincides
with the isoperimetric profile I,-(m) of the half space. Moreover, since I'(|Q|) = Hy, where

Hy, is the mean curvature of 3 = 9 \ C,

e 1(920)) (I (20]) ¥ = /E IR 2 (V) ()

> (N = DNV RN S, 0) = L (190]) (I (1Q0) N1

where the first inequality follows from an application of coarea formula and the geometric-
arithmetic mean inequality, see for instance the proof of Theorem 3.10, and the second one
follows from the estimate of the total curvature proved in [5, Lemma 3.1]. Now, since I(m) =
Iy(m) for all m € [0,|Ql], all the inequalities in (1.6) are equalities. In particular this
implies that Kt (X) = HN~1(S, s2) and that ¥ is umbilical. From this information, it is not
difficult to see that 3 must be a half ball.

Note that in the proof of [5, Lemma 3.1] it is crucial that the regular part of ¥ meets 9C
orthogonally and in a C? fashion. This can be inferred from the boundary regularity theory
for perimeter minimizers which can be applied only if C is sufficiently smooth. Therefore the
above argument fails for a general convex set.

In order to deal with this lack of regularity we implement a delicate argument based on
the approximation of C with more regular convex sets.

Let us describe the argument more in detail. Denote by g a set of finite perimeter
satisfying the equality in (1.1). For n > 0 sufficiently small we approximate C with the closed
n-neighborhood C,, = C + B,(0), which is of class C''. Now the idea is to consider the
relative isoperimetric problem in RV \ C,. In order to force the minimizers to converge to
Qo when 7 — 0 and the prescribed mass m converges to ||, we introduce the following
constrained isoperimetric profiles with obstacle £2y:

(1.7) I,(m) = min{P(E;RY \ C,) : EC Q\ C,, |E| =m}

for all m € (0,|Q \ C,|]. Denote by Q, , a minimizer of the above problem and set ¥, ,, :=
0Qy.m \ C,. Note that in the general N-dimensional case, both the obstacle €y and the
minimizers €, ,,, may have singularities. Thus, despite the fact that 0C,, is of class CObl we
cannot apply the known boundary regularity results at the points x € 9%, ,,, N 9C,; N Iy.

However, one useful observation is that €2, ., is a restricted A-minimizer, i.e., a A-minimizer
with respect to perturbations that do not increase the “wet part” 99, ,,NC,, (see Definition 4.1
below), with a A > 0 which can be made uniform with respect to n and locally uniform with
respect to m (see Steps 1 and 2 of the proof of Theorem 1.2). Another important observation
is that restricted A-minimizers satisfy uniform volume density estimates up to the boundary
0C,,. All these facts are combined to show that the constrained isoperimetric profiles (1.7)
are Lipschitz continuous and that their derivatives coincide a.e. with the constant mean
curvature Hy; —of the regular part X7 of X \ 0 (see Steps 3 and 4).
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As in the argument of [5] another important ingredient is represented by the inequality
_ 1
(1.8) K (Sym) = HY 1S, j0) = gNww

which would hold by [5, Lemma 3.1] if we could show that ¥, ,, meets 0C,, orthogonally
and in a sufficiently smooth fashion. However, as already observed, due the possible presence
of boundary singularities at 0§}, ,, N 9C, N 0y we cannot show that the aforementioned
orthogonality condition is attained in a classical sense. An important step of our argument,
which allows us to overcome this difficulty, consists in showing that restricted A-minimizers
satisfy the 7/2 contact angle condition with respect to 0C,, in a “viscosity” sense, namely
that the following weak Young’s law holds:

(1.9) v-ve,(r) <0 whenever z € X, ,, NCy, v € NoXy -

This is achieved in Step 5 by combining a blow-up argument with a variant of the Strong Max-
imum Principle that we adapted from [9]. In turn, owing to (1.9) we may apply Theorem 1.4

to obtain (1.8). Having established the latter and with some extra work we can show that
1 —
I,(m) — Ly (m) as n — 0 for every m € (0, [2o|), where we recall I »(m) = N(%)ﬁm%

is the isoperimetric profile of the halph space (see Steps 6 and 7).
With the convergence of the isoperimetric profiles I;, at hand and using again (1.8), we can
then prove that for a.e. m € (0, |Qo])

1
(1.10) K (Z)m) — inN,

and thus 3, ,, almost satisfies the case of equality in (1.3) for n sufficiently small. Thanks
to the last part of Theorem 1.4 we may then infer that X, ,, N C, is almost flat and with
some extra work that the whole wet part 02, ,, N C,, has the same property. By showing
that for suitable sequences m, /' |Q| and 7, \, 0, 92y m, N C, = 9 N C in the Hausdorff
sense, we may finally conclude that 9Qy N C is flat and lies on a facet of C (see Step 8). We
highlight here that in all the above argument it is crucial that the stability estimate on the
width of ¥, ,,, N C,, provided by our version Theorem 1.4 is independent of the shape of the
convex set C,,.

Having established that the wet part 02y N C is flat, more work is still needed in the final
step of the proof to deduce again from (1.10) that €y is umbilical and in turn a half ball
supported on a facet of C.

The paper is organized as follows: in Section 2 we collect a few known results of the
regularity theory of perimeter quasi minimizers needed in the paper. In Section 3 we prove
Theorem 1.4, while the proof of Theorem 1.2 occupies the whole Section 4 with some of the
most technical steps outsourced to Section ?77. Section 6 contains further regularity properties
if restricted A-minimizers that are needed in the proof of the main result and the proof of the
version of the Strong Maximum Principle needed here.

2. PRELIMINARIES

Throughout the paper we denote by B, () the ball in R of center x and radius r > 0.
In the following we shall often deal with sets of finite perimeter. For the definition and the
basic properties of sets of (locally) finite perimeter we refer to the books [3, 15]. Here we fix
some notation for later use. Given E C R of locally finite perimeter and a Borel set G we
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denote by P(E;G) the perimeter of E in G. The reduced boundary of E will be denoted by
0*F, while 0°F will stand for the essential boundary defined as

O°E =RV \ (E@ U EW),

where E(© and EM are the sets of points where the density of E is 0 and 1, respectively.
Moreover, we denote by vg the generalized exterior normal to E, which is well defined at each
point of 0*F, and by up the Gauss-Green measure associated to E

(2.1) pg =vgHYNILOE.

In the following, when dealing with a set of locally finite perimeter E, we shall always tacitly
assume that F coincides with a precise representative that satisfies the property F = 0*F,
see [15, Remark 16.11]. A possible choice is given by EW for which one may easily check that

(2.2) OEY) = 9°E .

We recall the well known notion of perimeter (A, rg)-minimizer and the main properties
which will be used here.

Definition 2.1. Let Q C RY be an open set. We say that a set of locally finite perimeter
E C RY is a perimeter (A, rg)-minimizer in Q, A > 0 and ro > 0, if for any ball B,(xg) C €,
with 0 < r < rg and any F C RN such that EAF CC B,.(z0) we have

P(E; B,(x0)) < P(F; B,(z0)) + A|[EAF].

In order to state a useful compactness theorem for A-minimizers we recall that a sequence
{Cy} of closed sets converge in the Kuratoswki sense to a closed set C if the following conditions
are satisfied:

(i) if x,, € Cy, for every n, then any limit point of {z,} belongs to C;
(ii) any z € C is the limit of a sequence {z,} with z,, € C,.
One can easily see that C,, — C in the sense of Kuratowski if and only if dist(-,C,,) — dist(-,C)
locally uniformly in RY. In particular, by the Arzela-Ascoli Theorem any sequence of closed
sets admits a subsequence which converge in the sense of Kuratowski.
Throughout the paper, with a common abuse of notation, we write £, — E in L' (L}OC)

instead of x B, — Xg in L1 (Llloc). Moreover, given a sequence of Radon measures up in an

open set ), we say that py, — p weakly® in Q in the sense of measures if

/@duh—>/¢du for all p € C(Q).
Q Q
Next theorem is a well known result, see for instance [15, Ch. 21].

Theorem 2.2. Let Q C RY be an open set and {E,} a sequence of locally finite perimeter
sets contained in Q) satisfying the following property: there exists ro > 0 such that for every n,
E,, is a perimeter (A, ro)-minimizer in Q, with A,, — A € [0,+00). Then there exist E C Q
of locally finite perimeter and a subsequence {ny} such that

(i) E is a (A, ro)-minimizer in §;
(ii) En, — F in L}, .(Q),
(iii) OE,, — C in the Kuratowski sense for some closed set C such that CNQ =0ENQ;
(iv) HNLL(OE,, NQ) = HN"1L(OE N Q) weakly* in Q in the sense of measures.
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Remark 2.3. From the definition of Kuratowski convergence it is not difficult to see that
(ii) and (iii) of Theorem 2.2 imply that, up to extracting a further subsequence if needed,
E,, — K in the sense of Kuratowski, with K NQ = E N,

Definition 2.4. Given a set of locally finite perimeter E, we say that a function h € L}OC(G*E)
is the weak mean curvature of E if for any vector field X € C}(RY;RY) we have

/ divTXd’HN_lz/ hX - vg, dHN"!,
oO*FE O*E

where div; X = divX — (0,,X) - vg stands for the tangential divergence of X along O*E. If
such an h exists we will denote it by Hyg.

Note that if OF is of class C? then Hpyp coincides with the classical mean curvature, or
more precisely with the sum of all principal curvatures. In particular, if E coincides locally
with the subgraph of a function u of class C? then locally

Hop = —div(vu> .

V14 |Vul?

Concerning the above mean curvature operator, we recall the following useful Strong Maxi-
mum Principle, see for instance [18, Th. 2.3], which covers a more general class of quasilinear
equations.

Theorem 2.5. Let Q C RN~ be an open set and let u,v € C%(Q) such that u < v and

N<W> o diV<W)
V14 [Vu|? V14 |Vol?

for some constant A € R. If u(xo) = v(xg) for some xg € Q, then u = v.
We recall the following classical regularity result for A-minimizers.

Theorem 2.6. Let E be a perimeter (A, ro)-minimizer in some open set @ C RN, Then

(i) 0*ENQ is a hypersurface of class CH* for every a € (0,1), relatively open in OENS).
Moreover, dimyp((OE \ 0*E) N Q) < N — 8, where dimy, stands for the Hausdorff
dimension;

(ii) Hpp € L®(0*ENQ), with |Hag||L~ < A, and thus 0*E N Q) is of class WP for all
p=1;

(iii) if there exists a C1 hypersurface ¥ touching OF at x € Q and lying on one side with
respect to OF in a neighborhood of x, then x € 0*F.

Items (i) and (ii) are classical, see for instance Theorems 21.8 and 28.1 in [15] for (i) and
Theorem 4.7.4 in [2] for (ii).

Concerning (iii) one can show that under the assumption on x the minimal cone obtained
by blowing up E around z is contained in a half space. For the existence of such a minimal
cone see Theorem 28.6 in [15]. Since any minimal cone contained in a half space is a half
space, see for instance [8, Lemma 3], it follows that x is a regular point.

The so-called e-regularity theory for A-minimizers underlying the proof of the above theo-
rem yields that sequences of A-minimizers E}, converging in L' to a smooth set E are regular
for h large and in fact converge in a stronger sense. More precisely, we have the following
result, which is well known to the experts.
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Theorem 2.7. Let E,, E be (A, rq)-minimizers in an open set Q@ C RN such that E, — E
in L} (Q). Let x € 0*ENQ. Then, up to rotations and translations, there exist a (N — 1)-

dimensional open ball B' ¢ RNL, functions ¢n,p € W2P(B') for all p > 1, and v > 0 such
that © € B’ x (—r,r) and for n large

OE, N (B x (=r,r
(2.3) OEN (B x (—=r,r)

) ={(@', on(a’)) : 2’ € B'},
) ={(",p(a")) : " € B},
On =@ in CH*(B') for some a € (0,1).

)
Moreover, Hap, (', on(2')) = Hap(z', (') in L®°(B') and thus ¢, — @ in W>P(B') for
allp > 1.

Properties stated in (2.3) follow from the classical e-regularity theory, see [21, Th. 1.9] (see
also the arguments of Lemma 3.6 in [6]). The last part of the statement then easily follows
from Theorem 2.6-(ii) combined with the classical Calderén-Zygmund estimates.

3. AN ESTIMATE OF THE TOTAL POSITIVE CURVATURE

This section is mainly devoted to the proof of Theorem 1.4 and to some applications.

We recall that a set X € SV~ is called spherically convex (in short conver) if it is geodesi-
cally convex, that is, for any pair of points z1, o € X there exists a distance minimizing
geodesic connecting z1 and xo contained in X.

If z € SN~ and 0 € (0,7) we denote by Sy the spherical cap

Spr={yeSV ! z.y>cosh}.

If + = ey we shall simply write Sy instead of Sp.,. Note that S;_g _, coincides with
(SN=1\ So,z) U 0Sp 5, where 0S5y, denotes the relative boundary of Sy , in SV-1. We recall
that

0
HN=L(Sy) = (N — 1)wN1/ sinV 2o do,
0

and HV~H(SN71) = Nwy, where wy is the measure of the unit ball.
The following lemma extends [4, Proposition 3.1] to general angles.

Lemma 3.1. Let X C SN~ be spherically conver and closed, with HN=1(X) > 0, let 0 €
(0,7) and fixr x € X. Then we have

N—-1
o HT (S)

(3.1) HN 1 (X N Spz) HNH(X).

Nwp
Moreover, the equality holds if and only if —x € X. Finally, given 6y € (0, ), for every e > 0
there exists 0 > 0, independent of X, such that if 0 € [0p/2,00], then

’HN_I(SQ)

N—-1
H (X N SO,:E) < ( wN

+ 5>HN_1(X) implies  dist(—z, X) <e.

Proof. We denote by A the spherically convex subset of Sp, obtained by taking the union
of all the minimal geodesics connecting z with the points of X N 9Sp,. Let B := Sy, \ A.
Similarly denote by A~ the spherically convex subset of S;_gy _, obtained by taking the union
of all the minimal geodesics connecting —z with the points of X N19Sp, = X N9S;_g _, and
set BT :=S;_9_2 \A™.
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Assume first that HV~1(A) > 0. We note that

HN 1 AT)  HN T (Semp—a)
fHN—l(A) - HN_l(Se,z)

Thus, we have

HN_I(SQ ) ’HN_I(SQ )

HN_l XNA :HN_l A) = X HN_l A7) > X
( ) ( ) HN_l(Sﬂ—f‘g’fx) ( ) — %N_l(sﬂ—ie?iw)

Note now that X N B~ = (). Indeed, if y € X N B, then the geodesic connecting y to x is
contained in X and intersects 05y, at a point z € X N0Sy .. It follows in turn that y belongs
to the geodesic connecting z with —x, and thus y € A~, which is a contradiction. Therefore,

HYNTHX N Spa) = HYNTHA) + HY (X N B) > HYH(A)
B HN_I(SQ,Q;)

(3.2) COHNY(Sr g, a)
HN_l(SG,x)

N /HNil(STr—O,—a:)

From this inequality (3.1) follows, recalling that HY"1(SV~1) = Nwy.

If instead HN~1(A) = 0, then HN~1(X \ Sy ) = 0 and thus (3.1) holds trivially.

If (3.1) holds with the equality, then HV~!(A) > 0 and all the inequalities in (3.2) are
equalities. In particular, HY1(A7) = HY Y X N Sy_p_,) > 0. In turn, by closedness and
convexity we deduce that —x € X. Conversely, if —z € X then by spherical convexity we
have A~ = X N S;_p_, and also X N B = () since otherwise any geodesic connecting a point
y € XNB to —z would intersect 05y N X, thus implying that y belongs to A, a contradiction.
Therefore all the inequalities in (3.2) are equalities and the conclusion follows.

To establish the last part, we argue by contradiction assuming that there exist € > 0, a
sequence of closed spherically convex sets X,, > x such that HV=1(X,,) > 0 and a sequence
Oy, € [60/2,6p] converging to 0" such that

HN " (Sp,)
NwN
We denote by A, and by A, the sets corresponding to X,, and S, , defined as above. Note

that X,, = (X,, N Sy, ) U (Xn N A;,). From (3.3) it follows that H¥"1(4,), HN71(4,)) > 0
for n large and

HYH(XNAD).

HN_l(A_)

HY N (X N Srp ).

(3.3) HY (X, N S, ) < ( + %)”HN‘I(X”) but  dist(—z, X,,) > €.

,HNil(Xn N SHn,:J:) < HN?l(SHn,I)
HN-1(X, NAy) ~ HN"Y(Sz g, —2)

. _ _ HN=1(Sy, . _ N .
Since HNL(X,, 185, 2) = HN7H(Ap) > sl YV TL(X, 1 A7), it follows that

. HNfl(Xn N Se x) . HN_l(An) HN_l(SG’x)
(3.4) lim — - = lim - = - ’ :
n—oo HN 1(Xn NSr_p —x) n—oo HN*I(Xn N An) HN 1(57"_9/7_x)

n,

+0(1).

Note that we have
’HN_l(SOn,oc) _ HN_l(An) N HN_l(SG’,x)
%Nil(sﬂ_e'na_x) B HN?l(A;l) HN?l(Sﬂ-_elv_x)




and thus, from (3.4) we get
L HYTHAY)
lim —
n—oo HN=1(X,, N Ay)
which clearly contradicts the fact that by the second inequality in (3.3) we easily infer that
HNL(A;\ X)) > C(e)YHN71(4A;,)), for a positive constant C(g) depending only in e. O

=1,

Next we adapt to our case [4, Proposition 4.2]. To this aim we recall some preliminary
definitions.

Definition 3.2. Given a set X C RY and 2 € RV the unit normal cone of X at x is the
(possibly empty) set defined as

N X :={veSVl:(y—2)-v<0foralycX}.

Any hyperplane passing through x and orthogonal to a direction v € N, X is called a support
hyperplane for X with outward normal v. In turn, we define the corresponding normal bundle
of X as
NX = U N, X.
zeX

Given a map o : X — SN~1 and 0 € (0,7) we introduce the following restricted normal cone
and restricted normal bundle respectively as

NI'X = NoX NSy and  N7'X = | NJYX.
zeX

Moreover, we say that a point x € X is exposed if there exists a support hyperplane I passing
through x such that X NII = {z}. Finally, we denote by width(X) the distance between the
closest pair of parallel hyperplanes which contains X in between them, i.e.,

(3.5) width(X) = inf (sup{z-v:ze€ X} —inf{z-v: ze X}).
vesN—1

Lemma 3.3. Let r > 0 and let X = {z1,..., 21} C B.(0). Let 0 : X — SN~ be such that
o(x;) € Ny, X whenever N, X is nonempty. Then

(3.6) HNI (N X)) > HNL(Sy).

Moreover, equality holds in (3.6) if and only if X lies in a hyperplane 11 such that o(x;) L 11
whenever x; is exposed. Finally, given 6y € (0,7), for every € > 0 there exists 6 > 0
(depending also on r > 0 and 6y, but not on o and not on X ) such that if 0 € [0/2,60], then

(3.7) HNYNIX) < HNY(S) + 0 implies width(X) < e

and more precisely there exist an exposed point x € X and two parallel hyperplanes orthogonal
to o(x) with mutual distance equal to € such that X lies between them.

Proof. The proof is essentially the same as for [4, Proposition 4.2], using Lemma 3.1 in place
of [4, Proposition 3.1]. We give the argument for the sake of completeness. Owing to the
compactness of X, for every v € SV~ there exists a support hyperplane to X with outward
normal equal to v. Thus, NX = S¥~1. Observe also that v € intgy-1(N,, X) if and only if
the hyperplane orthogonal to v and passing through z; is a support hyperplane intersecting
X only at x; (and thus x; is exposed). In turn, if i # j we have

intSN71(inX) N intSN—l(ijX) =0.



10 N. FUSCO, M. MORINI

Since by [4, Lemma 4.1] every N, X with nonvanishing " ~!-measure is spherically convex,
we may invoke Lemma 3.1 to conclude that
k
(3:8)  HYTNIX) =3O HNT(NEX) >
i=1

k
D HN TN X) = HV T (Sh)

=1

HN1(Sp)
Nwp

thus establishing (3.6).
If equality holds in (3.6), then the above inequality is an equality and in particular

HN_I(SQ)

N—-1 0,0 —
(3.9) YN X) = F

WYL (N, X)
whenever #V"1(N,, X) > 0, that is whenever z; is exposed. Therefore, by Lemma 3.1 N2 X
contains both o(z;) and —o(x;) and thus X lies in the hyperplane orthogonal to o(z;) and
passing through z;. Conversely, if X lies in a hyperplane orthogonal to o(z;), for every x;
exposed, then also —o(z;) € N, X and thus by Lemma 3.1 (3.9) holds for all z; exposed.
And thus equality holds also in (3.8).

To prove (3.7) and the last part of the lemma, let X, = {27,..., 2} } C B,(0) and let

on t X — SV with o, (27) € Ngzn X, whenever z7' is exposed, 6y, € [0y/2,60] be such that
HN LN X)) — HVH(Sp,) — 0.
Arguing as for (3.8) we then have, in particular, that for every n € N there exists i, €
{1,...,kp} such that
HN NG X)) N1, )
HY=T(Nor X,) Nuw
By Lemma 3.1 this implies that dist(—oy (2 ), Nxﬁ X,) — 0. From this, owing to the equi-

boundedness of the X,,’s it follows that for every k € N and for n large enough X, lies between
the two parallel hyperplanes orthogonal to o, (2} ) and passing through the points ' and

af — zon(2?). In particular, width(X,) — 0. O

in

— 0.

Next proposition extends the previous lemma to the case of a general compact set X and
a continuous map o.

Proposition 3.4. Let X C B,(0) be a compact set. Let o : X — SV~1 be a continuous map
such that o(x) € Ny X for all x € X such that N, X # 0. Then,

(3.10) HNYNTIX) > HNL(Sy)

and if equality holds, then X lies in a hyperplane II which is orthogonal to o(x) for some
x € X. Moreover, given 6y € (0,m) and € > 0 there exists 5o > 0 (depending also on r and
0o, but not on o and not on X ) such that if 0 € [0o/2,00], then

(3.11) HN I NTOX) < HNTH(Sp) + 60 implies width(X) < e

and more precisely there exist x € X and two parallel hyperplanes orthogonal to o(x), with
mutual distance equal to € such that X lies between them.

Proof. Let {X;}ien be an increasing sequence of discrete subsets of X such that X; — X in
the Hausdorff sense. We claim that

. . aN-1
(3.12) > hmisup Xyobx, pointwise in S .

Xyoox
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To this aim let v ¢ N%? X and assume by contradiction that (3.12) does not hold at v and thus
that there exist a subsequence {i,} and points z,, € X; such that v € Nngin. Passing to
a further (not relabelled) subsequence if needed, we may assume that x,, — Z € X. Observe
that by the continuity of o(-), v € Sp 5(z). Fix now any z € X and due to the Hausdorff
convergence find y,, € X; such that y, — . Since for every n, (y, — x,) - v < 0 passing to
the limit we get (x — Z) - v < 0. Due to the arbitrariness of x, we have shown that v € Nz X
and thus v € Ng’HX, a contradiction.

Using the first part of Lemma 3.3 (with X replaced by X;), (3.12) and Fatou’s Lemma we
get

HYTHNTYX) > limsup HYTHNTPXG) > liminf HY T (NTOXG) > HY ()

Assume now that the first inequality (3.11) holds for some 6 € [6/2, 6p], with §p = g, where §
is the constant provided by Lemma 3.3. Then the previous inequality yields for ¢ sufficiently
large, depending on 6,
HNL(NTOX) < HNH(Sp) + 6

and thus, thanks to second part of Lemma 3.3 we infer that there exists x; € X; and two
parallel hyperplanes orthogonal to o(z;) with mutual distance equal to £ such that X; lies
between them. By a compactness argument and the continuity of o, letting ¢ — oo we get
that there exist x € X and two parallel hyperplanes orthogonal to o(z) with mutual distance
equal to € such that X lies between them. Thus, in particular width(X) < e. This establishes
(3.11), which in turn, again by a compactness argument and the continuity of o, yields the
conclusion in the equality case. O

Next we prove a result in the spirit of [4, Theorem 1.1]. In the following C, 2 and ¥ will
be as in Definition 1.3. Moreover if x € ¥ is a point where the tangent hyperplane to ¥ exists
we denote by vy (x) the normal to this hyperplane pointing outward with respect to . We
give the following definition.

Definition 3.5. We denote by X the set of points in X3\ C such that there exists a support
hyperplane 11, with the property that 11, N Y = {z}.

We recall the following result, see [19, Theorem 2.2.9]:

Theorem 3.6. Let K C RY be a compact convex set. Then for HN'-almost every v € SN—1
the support hyperplane for K orthogonal to v intersects K at a single point.

Corollary 3.7. Let C and ¥ C RY be as in Definition 1.3. With the notation above, we

have that
) =1 (| V),
redlt

where KT (X) is the total positive curvature defined in Definition 1.3.

Proof. Let K denote the convex hull of £. By Theorem 3.6 we have that for HV -a.e.
direction v € Uxez\c N3 the corresponding support plane for K intersects K at a single

point that necessarily belongs to ¥\ C and thus to 7. ([l
Proof of Theorem 1.4. Observe that if ¥ N C = () then

U Nz =sVT,
zeX\C
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hence (1.3) trivially holds.

Hence in the following we may assume that ¥ N C # ().
We denote by vc the outward normal to C. We start by proving (1.3). Let us define
c:XNC — SV !as o(z) := vc(x). Note that since C is convex the direction o(z) belongs
to N;C and thus to N;z(XN C) for every z € ¥ N C.

Given v € SV~1, we denote by v the hyperplane orthogonal to v and passing through the
origin and we set

t:=max{t cR: (tv+v)NT #0}.

Clearly, by definition for every v € S¥~1 the hyperplane fv 4 v+ is a support hyperplane for
Y. Fix 0 € (0,60y). We claim that for every z € ¥ N C

(3.13) v e N(XNC)NSyyp implies tv+ rinYcx)\C.

Let ¢y € R be such that 4 vt = tov+v+ and observe that since v-o(x) > cosf > cos by then
by assumption (1.2) v € N,X, hence the hyperplane tov + v+ enters . Thus it easily follows
that £ > ty. Let y € tv + v N Y. Then y ¢ ¥ N C, since otherwise this would contradict the
fact that tov 4+ v is a support hyperplane for N C. This establishes (3.13). From (3.13) it
follows that

(3.14) N?snC)c | WX
zeX\C

Recall that by Definition 1.3

(U NT) =KE(E).

zeX\C

Combining the equality above with (3.14), the inequality (1.3) follows from (3.10) with X =
X NG, letting 6 — 0 .

Given € > 0, let §p be the constant provided by Proposition 3.4 and let 6 € [6y/2,0y) such
that
J
(3.15) HN1(Sp,) < HNH(Sp) + 50 .
Assume that (1.4) and (1.5) for some 6 € (0,dp/2) such that cosfp + 0 < cos@. Then, using
the assumption (1.4), the same argument as before yields (3.13), hence (3.14). Thus, from
(1.5) and (3.15) we have in particular

HYLY(NY (2N C)) <KT(Z) < HVH(Sp,) + 0 < HYL(Sp) + 6o .
The conclusion follows from Proposition 3.4. g

Remark 3.8. Observe that the equality case in (1.3) does not imply 92 N C lies on a facet
of C. In fact it may happen that 02N C is contained in a convex set of Hausdorff dimension
strictly less than N — 1, see Figure 3.

Remark 3.9. Note that if x € XN C is a point where vs,(x) exists and belongs to N, X, then
v-ve(z) <wvs(x)-ve(x) for every v € NyX. Therefore in this case it suffices to check (1.2)
for v =uvs(x).
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A

FIGURE 1. Both ¥; = 99 \ C and X3 = 902 \ C meet C with contact angle 7/4
and satisfy the equality in (1.3) with 6y = 7/4. Note that 9; N C is a point and
002 N C is a segment.

It is well known that for surfaces ¥ C R? without boundary the following inequality holds
/ |Hx|? dH? > 167 .
b

with equality achieved if and only if X is a sphere. We now apply Theorem 1.4 to extend this
inequality to the following extension of the Willmore energy in N-dimensions

/ |HE|N_1 dzHN—l,
S\C

for C'%! hypersurfaces with boundary supported on convex sets and with contact angle larger
than a given 6§y € (0,7). Note that in the next theorem we do not assume any regularity on
the convex set C.

Theorem 3.10 (A Willmore type inequality.). Let C, Q and X be as in Definition 1.3 and
let 0y € (0,7). Assume that ¥\ C is of class CY'. Set Hy, := divgvs, (where vy is the unit
normal to X pointing outward with respect to Q). Assume also

(3.16) v-v <cosfy wheneverx € XNC, ve N, and v € N,C.
Then,
(3.17) / HyN L aHY L > (N = )V HY (S,

\C

Moreover, if equality holds in (3.17) and Hyx, # 0 a.e., then ¥\ C coincides, up to a rigid
motion, with an omothetic of Sy, sitting on a facet of C.

Proof. Without loss of generality we may assume that

/ | He|N71aHN ! < 0.
o\C

Set for any n > 0 sufficiently small C,, := C + B,(0) and ¥, := 00\ C,. Observe that C,
satisfies both a outer and inner uniform ball condition and thus is of class C!, see [16, 7).
Note also that there exists 6, € (0,6p) such that

(3.18) v-vg,(z) < costh, whenever z € 3, NC,, v € N, ,
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with 6, — 6y as n — 07. Indeed, if not, there would exist a sequence 7, — 0, a sequence
of points z;, € ¥,, N C,, and a sequence v}, € Ny, 3, , such that vy, - ve,, (xp) > cos@' for
some 6’ € (0,6p). We may assume that 2, — 2 € XN C, v, — v and ve,, (zp) — V. Clearly
ve NY, vV e N,Cand v-ve(x) > cost, a contradiction to (1.2).
We set
S={zeX\C: N,L#0}, %,={zeX\C,: N3, #0}.
We claim that
(3.19) X~ — X= pointwisein ¥\ C.
S 5

First of all note that ¥\ C, C %, for all 5, whence

Xg = nl—i>%l+ Xso, < lini(i)gf X, pointwise in ¥\ C

If otherwise = ¢ f), we show that x & in for 7 small. Indeed, assume by contradiction that
there exist v, € N,(3,, ), for a sequence 1, — 0. Then, passing to a subsequence, if needed,
vy, — v € N2, a contradiction. This proves that

X5 = limsup x;  pointwise in 3 \C
17_>0+ n
and thus (3.19) holds.
Let (X,)" the subset of in defined as in Definition 3.5 with X replaced by X,. Denote
by K the Gaussian curvature of ¥ \ C and observe that on in we have Hy > 0. By the

arithmetic-geometric mean inequality (N — 1)V 71Ky < Hg 1 on in- Then by Theorem 1.4
we get

/ ‘HE|N_1 d/HN—l > / Hé\ffl d/HN—l > (N . 1)N—1 KZ drHN—l
S\Cy S =,

(3.20) > (N — 1)N1/
(Ep)*

= (N = DNKH(E,) = (N = D)V THY (S, ),
where in the second equality we have used Corollary 3.7 and the area formula, since vy is a

Lipschitz map in a neighborhood of ¥*. Then, letting  — 0 and recalling (3.19) and the
fact that 6, — 6y, we get

/ |HE|N71 dHN*l > ﬁHg—l dHN*l
S\C b

KsdHY ' = (N -1)N! / det(Dvs) dHN 1
(Sn)+

(3.21)
> (N = 1)N-! /~ Ky dHN1 > (N — 1)N19N-1(5,).
>

In particular (3.17) follows.

If equality holds in (3.17) holds, from (3.20) we have that K1 (5,)—H"~1(Sp,) — 0. In turn
from the second part of Theorem 1.4 we get that width(%, N C,) — 0 and more precisely that
Yy N Gy, lies between two parallel hyperplanes orthogonal to vc, (xy) for some z, € ¥, N C,
with mutual distance going to zero. Passing to the limit by a simple compactness argument
we infer that ¥ N C lies on a support hyperplane to C. N

Note also that in the equality case, if Hy, # 0 HV~1-a.e., then (3.21) implies that X\ C = 3.
In turn this yields that every x € ¥ N C has a support hyperplane to ¥. Moreover, (3.21)
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yields also that HY ' = (N — 1) ! Kx. In turn this implies that ¥ is umbilical and thus,
by a classical result, see for instance [10, Prop. 4, Ch. 3], each connected component %; of
Y is contained in a sphere. Since ¥ N C is contained in a hyperplane II tangent to C, each
Y, is either a spherical cap supported on IT and satisfying (3.16) with X replaced by X;, or a
sphere not intersecting C. N
In either case, since (3.16) is satisfied at every point in ¥ N C (recall that ¥ = ¥), we may
apply (3.17) to infer that for every connected component ; we have
HY 7 apuN =t > (N = )N THN1(Sy,) .
£,\C
In particular, since we are in the equality case, there must be only one connected component.
Thus ¥ is a spherical cap homothetic to Sy, up to a rigid motion. Finally ¥ N C by convexity
must lie on a facet of C. O

4. THE EQUALITY CASE IN THE RELATIVE ISOPERIMETRIC INEQUALITY OUTSIDE A
CONVEX SET

In this section we give the proof of Theorem 1.2. Throughout this proof we will denote by
¢ the half space

(4.1) H = {(z',xy) €RY : 2y > 0}.

We will also need the following notions of (A, rp)-minimizer and restricted (A, ro)-minimizer
for the relative perimeter, which extend the standard notion of perimeter (A, rg)-minimizer
recalled in Definition 2.1.

Definition 4.1. Let C C RY be a closed convez set with nonempty interior and let A, rg > 0.
We say that a set of finite perimeter E C RN \ C is a (A,rg)-minimizer of the relative
perimeter P(-;RY \ C) if for any F C RN \ C such that diam(EAF) < rg we have

P(E;RN\ C) < P(F;RN \ C)+ A|[EAF].

Moreover, we say that E C RN \ C is a restricted (A,rg)-minimizer if the above inequality
holds for every set F' C RN \ C such that diam(EAF) <rg and * FNC C 9*ENC up to a

HN L negligible set.

Proof of Theorem 1.2. Let mg > 0 be a given mass and let {2y be a minimizer of the perimeter
outside C such that |Qg| = mo and

(4.2) P(@y;RY \ €)= N () Vi

Since € solves the isoperimetric problem we have that Qg is a (Ag, ro)-minimizer of the
relative perimeter in RY \ C, see Definition 4.1, for some Ag, 79 > 0, depending on €, see for
instance the argument of [15, Example 21.3].! In turn by Proposition 5.2 € satisfies uniform
volume density estimates and thus it easily follows that g is bounded.

We fix a sufficiently large ball Bg(0) containing Q. Note that by standard argument, see
also the argument of Step 1 below, 2 solves the following penalized minimum problem

min{ P(E;RY \ C) + Ao||E| —m|: EC Br\C},
INote that in [15, Example 21.3] it is proved that a mass constrained minimizer E of the relative perimeter

in an open set A is a perimeter (Ag, ro)-minimizer in A according to Definition 2.1. However an inspection of
the proof shows that E is also a (Ao, 70)-minimizer of the relative perimeter P(-, A) according to Definition 4.1.



16 N. FUSCO, M. MORINI

for a possibly larger Ag. In particular we have
(4.3) P(Q0;RY\ C) < P(E;RY \ C) + Ag|WAE|  forall EC Br\C.

Since in the remaining part of the proof we will always work inside Bpr, up to replacing C
with C N Bg, we may assume without loss of generality that C is bounded.

Observe that by Theorem 2.6 we may assume that €y is an open set and that 9 \ C
coincides with the reduced boundary 9*Qq\ C up to an H¥ ~!-negligible set. Let us show that
Qo is connected. Indeed, if otherwise Qg = Q2 U Qq, with Q1 and €2 open, ; a connected
component of Qy with 0 < |£21]| < mg, we have by Theorem 1.1

P(Q0;RV\ C) = P(Q1; RV \ C) + P(Q; RV \ C)
1 ~ 1 ~ 1 N
2N () T N () Tl > N () T
which is a contradiction to (4.2).

For every n > 0 we set C,) = C + B,(0) and, for € [0,7] we set m, := | \ C,|, where
7 > 0 is such that |y \ Cy| > 0. Correspondingly, we set for m € (0, m,]

(4.4) I,(m) = min{ P(B;RY\ C,): ECQ\C,, |E|=m}
and denote by €2, ,, any minimizer of the above problem. Note that g ,,, = 9. Observe
also that

(4.5) sup  sup  P(ym) < 00.
n€l0,7] me(0,my)

Indeed, given 1 € [0,7] and 0 < m < m,, there exists " > n such that | \ C,/| = m. Thus
P(Qym) < P(Qpm; RV \ Cp) + P(Cy; Br) < P(Q\ Cyy) + P(Cyy; Br)
< P(Q0; RN\ C) + 2sup P(Cy; Bg) < P(;RY \ C) + 2Nwy RV L.
s>0

Let us fix m/,m” € (0, mg), with m’ < m”. We claim that there exists 7 € (0, 7] such that
(4.6) if n € [0,7] and U is a connected component of Qg \ C,,, then |U| & [m/, m"].
Note that this property implies in particular that
(4.7) Om N (Q\Cy) #0  forall n €[0,7] and m € [m’, m"].

To prove (4.6) we fix zg € Qo and for every n we denote by U, the connected component of
Q9 \ C,, containing xo. Note that U, increases as 1 becomes smaller. Given any other point
x € (o there exists a path connecting o and x contained in 2y, thus x € U, for n small
enough. Hence |U,| — mo, and the claim follows.

We split the remaining part of the proof in several steps. Some of the long technical claims
contained in these steps will be proved in Appendix B so as not to break the line of reasoning.
Step 1. (Equivalence with a volume penalized problem). Fix 0 < m’ < m” < mg and let
0 <7 <17 be as in (4.6). We claim that there exists A’ > 0 with the following property: for
every n € [0,7] and m € [m/,m”] we have that €, ,, is a minimizer of the following problem

(4.8) min{ P(E;RY\ C,)) + N'||E| —m|: ECQo\Cy}.

The proof of this claim will be given in the Appendix B.
Step 2. (Qm is a restricted A-minimizer). Fix 0 < m’ < m” < mg and let 0 <

n <1
be as in (4.6). We claim that there exists A > Ag such that for every n € [0,7] and m €
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[m/, m"] we have that Q, p, is a restricted A-minimizer under the constraint that 9*ENC, C
0*(£0 \ C;) N C,;. More precisely, for every set of finite perimeter E C Br(0) \ C,, such that
O*ENGC, C 9*(2 \ C,;) N C, up to a HV~Lnegligible set

(4.9) P(Qym; RV \ C,)) < P(E;RYN\ C,) + A|Q, mAE|.

In particular €, ,, is a restricted (A, rp)-minimizer according to Definition 4.1, choosing for
instance ro :=dist(Qo, 0Br(0)).

To prove the claim, we take A = max{A’, Ao} where A’ is as in Step 1. Given E as above,
from Step 1 we get

P(Qym;RYN\ C,)) < P(ENQy; RY\ C,)) + N[ E N Qo — Q|
(4.10) =HYN N O'EN(Q\Cy) +HYN O ENI* QN {ve = o} \ Cy)
+HN L0 Qo N EW) 4+ N||E N Q0| — Q]| -
Then, using (4.3) and the condition 0*E N C,, C 9*(Q \ C;) N C,;, we have
HN (8" N Cy) \ C) + HY 10" \ C,) = P(Q;RY \ C)
< P(EUQy;RY\ C) + Ag|E \ Qo
= HNTH (072 N Cy) \ C) + HY (9" N E@)\ Cy)
+HNTHO*ENO* QN {ve = va,} \ Cy) + HY "HO*E\ Qo) + Ao|E\ Qo -
Simplifying the above inequality, we get
HY 1 QN ED) + HN YO EN9* QN {ve = —vg,}) < HV YO E\ Qo) + Ao E \ Q| -
Combining this inequality with (4.10) we conclude that
P(Qm; RYN\C) <HN L' EN (Q\ Cy)) + HY L O ENd* QN {ve = voy} \ Cy)
+HNHI*E\ Qo) + N||[E N Qo| — ||| + Aol E\ Qo
< P(E;RY\ C,) + max{A’, Ag}| EAQ, |

so that the claim is proven.
Step 3. (Lipschitz equicontinuity of the isoperimetric profiles). Fix 0 < m’ < m” < mg and
let 0 <7 <1 be asin (4.6). We claim that there exists a constant L, such that for n € [0, 7]
the function I, defined in (4.4) is L-Lipschitz in [m/, m"].

We postpone the proof to Appendix B.
Step 4. (A formula for I})). Fix 0 < m' < m” < mg and let 0 <7 < 7 be as in (4.6). For
m € [m',m"] and 1 € [0,7] we set ¥, := 0 \ C; and denote by Xy the regular free
part of Xy, m, that is X} | 1= 0"Qy m \ (0Q U C;)). Observe that by (4.7) X} | is nonempty.
We recall that by a standard first variation argument X7 is a constant mean curvature
manifold. We denote by Hz;;’m such a mean curvature.

We claim that at any point m € (m’, m”) of differentiability for I, n € [0,7], we have

(4.11) I)(m) = Hy, .
To this end we fix x € 3} |, and a ball B, () CC Qg \ Cy, such that 37 N By(z) = 0Qym N
B,(z). Let X be a smooth vector field compactly supported in B, (x) such that

/ X v, dHY T #£0.
X m
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Consider now the flow associated with X, that is the solution in RN x R of

98 (2,t) = X (®(x,1))
O(z,0) ==z

and set Oy (t) = ®(Qym, t). Clearly, P( 1, (t)); RN\ C,,) > I,(|Q,m(t)]), with the equality
at t = 0. Therefore

o (PQu®XRY A C) = 4 ((12n),

Note that

d RN _ N-1
F(POmOFENC,) =, /E X i

7 (02m0D)

where we have used the well known formulas for the first variation of the perimeter and the
volume, see for instance [15, Chap. 17]. Thus (4.11) follows.

Step 5. (A weak Young’s law). Fix 0 < m/ < m” < mg and let 0 < 77 <7 be as in (4.6). We
claim that the if n € [0,7] and m € [m/, m”], the following weak Young’s law holds:

d N
= I (m)— (I%m(@®)]))  =1I)(m) / X vq,, dHN L,

_ dt |t:0 *

t=0 n,m

(4.12) v-ve,(z) <0 whenever z € X, NC; and v € Ny Xy .

Let z € ¥, N C,, and v € N, %, ,,. Without loss of generality, by rotating the coordinate
system if needed, we may assume that x = 0, vc,(0) = ex and v = (v1,0,...,0,vy) with
v1 < 0. Note that (4.12) will be proven if we show that

(4.13) vy > 0 implies that vy = 0.

Set Ej = %Qn,m, h € N and C,), = %Cn and observe that, since 11 < 0 and vy > 0,
Ej, C {z1 > 0}. Note also that by (4.9) we have that

1
(4.14) P(ER;RY\ C,p) < P(G;RY\ C,p) + S AIERAG]

for all sets G C Byr(0)\ C,, 5 such that 9*GNC, , C 0*E,NC,p, up to a HN~Lnegligible set.
Using the density estimate proved in Proposition 5.2 and passing possibly to a not relabelled
subsequence we may assume that FEj, converge in Li, (RY) to some set E C s#N{x; > 0} (see
(4.1)) of locally finite perimeter and that ug, — g as Radon measures in RV, see (2.1) for
the definition of ug. Finally, given r > 0, from the volume density estimate in Proposition 5.2
we get that for h large enough |Ej, N B.(0)| > ¢r" and thus, passing to the limit, we have
|E N B,(0)| > er® for all 7 > 0. This in turn implies that 0 € 9°E C JE. Since each Ej, is a

7 -minimizer, by Theorem 2.2 we have that £ is a 0-minimizer that is

(4.15) P(E; By(z9)) < P(F; By(x0)) for any F, B,(xo) s.t. EAF CC B,(xg) CC .

We claim that also the minimality with respect to inner perturbations passes to the limit.
More precisely we want to show that E satisfies the following minimality property: for any
cube Q,(0) = (—r,7) and any open set with Lipschitz boundary V cC Q,(0)

(4.16) HN"YWOENOVNA) =0 implies P(E;# NQ.0))<PE\V;#NQ.0)).
We postpone the proof of this claim to Appendix B.
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We now denote by E = EUR(E) where R denotes the reflection map R(z/, zn) = (2, —zy).
From (4.16) one can easily check that given an open set with Lipschitz boundary V' cC Q,-(0)
such that HVN~1(OE N V) = 0 we have

P(E;Q.(0)) < P(E\ V;Q.(0)).

We claim that the connected component T' of E containing 0 coincides with {z; = 0}. In
turn this implies (4.13).

To see this assume first that I' intersects {x1 = 0} \ {xny = 0} at some point xy. Then,
by Theorem 2.6-(iii) I" is a smooth minimal surface in a neighborhood of zy. In turn, by
the Strong Maximum Principle Theorem 2.5 it coincides with the hyperplane {z; = 0} in a
neighborhood of zp. The same argument shows that I' N {x; = 0} is both relatively closed
and open in {z; = 0} and therefore I' = {z; = 0}.

Observe that dEN{z1 = 0} C {z; = 0}N{zx = 0} and thus in particular KN "1 (dEN{z, =
0}) = 0. We may then apply Lemma 5.3 to conclude that 0 ¢ OF , thus getting a contradiction.
Step 6. (Convergence of the isoperimetric profiles). We claim that

(4.17) %;r% I)(m) = Io(m) for all m € [0,mg) and 71713%) I,(my) = Io(mo) .

Let n, be a sequence converging to zero such that I, (m) — liminf, o I,(m). Since the
perimeters of €2, ., are equibounded, see (4.5), up to a subsequence we may assume that
Qy,,.m converge in L to a set of finite perimeter E C Qo with |E| = m. Thus, by lower
semicontinuity,

(4.18) Iy(m) < P(E;RYN \ C) < liminf P(Q,, m, RY \ C,,) = lim inf I, (m) .
n n—

Recall that € ,, denotes a minimizer for the problem defining Ip(m). Since
Iy (m — 190, 1 Cyl) < P(Q0i BV \ C,) < Iy(m).

using the equilipschitz continuity of I, proved in Step 3, by letting n tend to 0 in the previous
inequality and recalling (4.18) we obtain the first equality in (4.17). The second one follows
simply from the fact that Q;,,, = Qo \ C,,.

Note that the above argument shows in particular that if m € (0,mq), 7, — 0 and Qy, m
is a sequence converging in L! to a set E, then E coincides with a minimizer Qo.m-
Step 7. (Ip = L). We set

i —
(4.19) Ly(m) = N(%N) ¥l
that is the isoperimetric profile of half spaces. We claim that
(4.20) In(m) = Iy(m) for all m € [0, mo] .

To this end we fix 0 < m’ < m” < mp and let 0 < 77 < 7] be as in (4.6). Recall that by Step
2 for all n € [0,7)], Qy.m is a restricted (A, rg)-minimizer for all m € [m/,m”]. We claim that
for any such 7 if zg € E,J{’m then ¥, ,, is of class C1! in a neighborhood of xy. Here E,J;m is
defined as in Definition 3.5 with 3 and C replaced by %, ,, and C,,. Indeed, observe first that
if zg € E:{’m then by Theorem 2.6 ¥, ;,, is of class C1® in a neighborhood of xg. Moreover, if
zo € (o then, since Hy,  is constant in a neighborhood of xg, we have that in fact 35, , is
analytic in such a neighborhood.

If instead xg € 08, since 2 is a (A, rg)-minimizer and 9 lies on one side with respect
to X;,m which is of class C1® in a neighborhood of z(, again by Theorem 2.6 we infer that
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09 is of class C1®, hence analytic in a neighborhood of xy. The claim then follows from
Proposition 5.5. B

To prove (4.20) observe that the very same argument of (3.20) (with ¥, replaced by X7,
and 6, replaced by m/2) yields that

(4.21) / HY L auN =t > (N = )NINEY
SEm\Cy T 2

Indeed this argument only requires that 3, ., is of class CY1 in a neighborhood of E;ﬁm and
that (3.18) holds. Recall that the latter condition with 6, = 7/2 is ensured by Step 5. Observe
also that if E:;m intersects 0§ in a set of positive #V~! measure then for ¥ l-a.e. x on
such a set

(4.22) Hs, . (x) = Hag, < Hs;,

where X . is the regular free part defined in Step 4 and the inequality follows from Propo-
sition 5.5. Here, with a slight abuse of notation, we denote by Hpq, the constant curvature
of 0*Qg \ C. Therefore the previous inequality, (4.21) and (4.11) imply in particular that for

a.e. m € (m/,;m") and for all n € [0, 7)

1 (m) (T (m)¥ " = P(Qy s RV \ C,) Y
2 > (N = DN IV = L) (T (m) Y

where the last equality follows from (4.19). Recalling that I, is Lipschitz in [m/,m”] and
thus absolutely continuous, raising the above inequality to the power ﬁ and integrating in
[m,m"], for any m € (m/,m"”) we get

In(m")% _ [n(m) N1 > ]_%,j(m”) N-1 — [%(m) N-1

N N

for all n € [0,7)]. Passing to the limit as 7 — 0 and using Step 6 we get
N N
(4.24) Io(m") N1 — Io(m)N-1 > Ly(m")N¥-1 — Iy(m)~-1

for all 0 < m < m” < mg. Observe now that lim,,»_,,, Io(m”) = Iy(mg) (this follows by
a simple semicontinuity argument and by the fact that Iy is increasing). Thus, passing to
the limit in (4.24) as m” — my, recalling that by assumption Io(mg) = I (mg) and that by
Theorem 1.1 Iy(m) > Iz(m), we get Io(m) = Iz(m) for all m € (0,myg), as claimed.
Step 8. (02 N C is flat). In this step we prove that 9y N C lies on a hyperplane II.

To this aim we start by showing that

N N
(4.25) (LX) — (15" in LL.(0,mo).
Indeed, given 0 < m’ < m” < mq from (4.23) and the fact that I,, = I, we have that for
N N
a.e. m € (m/;m”) and n € [0, 7], (Ianl)/(m) > (I};l)/(m) and

1

/m (I,;VNl)’(t)dt—>/m (Iﬁ)’(t)dt asn — 0.

m/ m/

Hence, (4.25) follows.



21

Returning to the proof of the flatness of 90Q2yNC, observe that by a simple diagonal argument
we can construct two sequences m,, — mg and 1, — 0 such that €, ., is a A,-minimizer
for some A,, > 0 (possibly going to +00) and

1
WN\N-1
2)
This is possible thanks to Step 2, Step 6 and (4.25). Given € > 0, let 6 > 0 be as in
Theorem 1.4 with 6y = 7/2. Recall that § depends only on ¢ and on diam(£2). Recall also
that ¥, m, is of class C1! in a neighborhood of ¥ thanks to Step 7. Then from the

My M’

above convergence, arguing as in the proof of (3.20) with in replaced by E,J{mmn, and recalling

that the weak Young’s inequality (4.12) holds for ¥, ., we have that for n large

Ly (mn) = To(mo), (L) (ma) = (I57) (mo) = N(N

Nwy 1-N N-1 N-1

— <Kt (Zhmn) < (N —1) /E+ Hg ' dH
Mn,Mn

< (N = 1)V Py s RY N Cy ) HY

n,Mn
1 Ao N-1 Nwy

= [T )] < =R+,

Note that in the third inequality above we have used (4.22). Thus from Theorem 1.4 we get

that for n sufficiently large width(3,, m, N Cy,) := €, — 0 and more precisely that there

exists x,, € 0C,, such that

(4.26) Ynpmn NCy, CH{z: —gp < (. —2y) - ve,, (xn) <0}.
Observe that, up to a not relabelled subsequence,
(4.27) x, -7 € C, va,, (tn) — 7 € Ng(C).

Denote by II the support hyperplane passing through Z and orthogonal to 7 and by II* the
half spaces {z : (z — ) -7 = 0}. We claim that 9Qy N C C II up to a set of H¥~!-measure
Z€ero.

To prove the claim we first show that, passing possibly to a further subsequence,

(4.28)  9Qy,m, NCy, — K for some K C 90N C s.t. HY (02 NC\ K) =0.

To this aim observe first that since C,, N Bg(0) is a sequence of convex sets converging to

the convex set CN Br(0) in the sense of Kuratowski then P(C,,, N Br(0)) — P(C N Br(0)).

This in turn yields that ¥ ~1LO(C,, N Br(0)) = HN~1LA(C N Bg(0)) and in particular
that

(4.29) HNILoC,, S HNTILAC  in Bg(0).
We claim that
(4.30) limsup HY (09, m,, N Cp,) < HY (K.

n

To this aim set K, = K + B,(0) C Bg(0) for o > 0 sufficiently small. Then for n sufficiently
large 9€2y), m, N Cy, C Ky NOC,, , hence

HY 109, m, N Cy,) <HYN YK, NOC,,).
From this inequality we then have
lim sup #1909, m, N Cy,) < limsup HY 1K, N0C,,) < HY (K, NoC),
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where in the last inequality we have used (4.29). Then (4.30) follows letting ¢ — 0. On the
other hand, Q,,, m,, — Qo in L' and by the lower semicontinuity of perimeter and (4.30)

P(Q0) = Ip(mo) + HN1(0"Q9 N C) < liminf P(Q;, 1n,)
= lim inf [Iﬁn (my) + ’HN_l(aQnmmn N C"]n)]
< Ip(mo) + HNH(K).

Recall that by the volume estimate Proposition 5.2-(ii) 0*Qy N C coincides HN"1-a.e. with
090N C. Thus the above inequality implies that K coincides HY "!-a.e. with Q9N C. Hence,
(4.28) follows.

We finally claim that for n large

(4.31) 0, m, NCyy, C{z: —e < (x—2y) - ve,, (xn) < 0}.

To prove this we argue by contradiction assuming that for infinitely many n there exists
Yn € Oy, m, N Cyy, such that (y, —z,) - vo,, (zn) < —&,. Observe that, if this is the case
for all such n,

(4.32) F,:=0C,, N{z: (x —x,) - ve,, (Tn) < —en} C 0y, m, NCy, .

Indeed if not there exists z,, € Fn\é?Qnmmn and in turn a continuous path v C F}, connecting z,
to yn (recall that C,, is bounded). But then this arc must contain a point in dc,, (98, m, N
C,.) C Xy,.m, NCy,, which contradicts (4.26). Therefore, from (4.32), (4.27) and (4.28) we
have that

OCN{z: (x—7) - 7<0}=0CNII" CoQpNC.

Then, let ¢ := min{t < 0: I+t N C # 0} and set for ¢t € (£,0), C' := CN (II'" + tv). Note
that, from the above inclusion, P(y U (C\ C!); RN \ C!) = P(Qo; RN \ C) = I3(myo), but
this contradicts (1.1) since Qo U (C \ C?) > myg. Hence (4.31) holds for n large enough.
Finally, from (4.31) and (4.28) we have that 9Qg N C C II up to a set of vanishing H¥~!
measure.
Step 9. (Conclusion). In this final step we show that € is a half ball.
To this aim we fix m € (0,mg) and a sequence 7, — 0 such that

1
o)
2

Owing to Steps 6-8 we can find such a sequence for a.e. m € (0,mp). Thanks to Step 2,
we may assume that there exists A > 0 such that €, ,, is a A-minimizer for all n. By

Theorem 2.6-(ii) this implies in particular that [Hy, .| < A HY l-ae. on 9*Qy, m \ Cy,.
Arguing as in the previous step, see also the proof of (3.20), we have then

(433) Lo (m) > To(m) = Ly(m), (LX) (m) » (I57) (m) = N(N

N
SN K (S m) :/ Ky, . dHNH< (N - 1)1—N/ HY guN!
2 E';I‘rnﬁn " E;;—nﬂn e
(434) S (N - 1)17NP(Q77n7m;RN \ Cnn)HéV;_l
Nn,m

ol R, N1 Nwy
- [y X,

where we recall Ky,  is the Gaussian curvature of 3, .,. We start by observing that, since
Hy, . (z) < Hs  for HN"lae x€ Xl  from the third inequality in (4.34) we have in

Ke Nn MM
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particular that
(435) KV S ) =l P, RV Cy,) = HY (00 \ ©).

Note that indeed Hy, , may only take the constant values Hyq, or Hg;km .- Then, again
from (4.34), it follows that

(4.36) either  Hag, = Hy; ~ or  HY (89, m N02%)\ Cy,) = 0.

Fix now z € 9*Qg m. Since Q. m — Qom in L and P(Qy,, s RY\C,,) = P(Q, m; RV \ C)
thanks to the first condition in (4.33), we have that HY 1L 0*Q,, m — HN"'LO*Qq,m in
RY \ C. In turn, by Theorem 2.7 it follows that, up to rotations and translations, there exist
a (N — 1)-dimensional ball B’ ¢ RV~! functions ¢, € W2?P(B’), and r > 0 such that
z € B' x (—r,r) and

O, m N (B x (—r,1)) ={(z/, pn(2')) : 2’ € B},

Im N (B x (—r,r)) ={(a,p(z)) : 2’ € B'},

on — @ in WHP(B') for all p > 1,

Hs, .. (@, pn(x')) — Hsy, . (', p(2")) in LP(B') forallp > 1,
Recalling (4.36) the fourth condition above implies that

Hs,, (& pu(e) = Hy, (o' () = B

strongly in LP(B’) for all p > 1. In turn, see for instance [1, Lemma 7.2], this implies
(4.37) ©n — @ strongly in W2P(B') for all p > 1.

Note also that, since from (4.35) HY1(Z,, m \ b m) — 0, we have that for every y €
(B’ x (=7,7)) N Xo,m there exists a sequence y, € (B’ x (—r,r)) N L} . such that y, — y.
Therefore, using the L' convergence of y,,..m to Qg we conclude that the tangent hyperplane
to 09, at y is also a support hyperplane. Thus we have shown that all principal curvatures
at any point in (B’ x (—r,r)) N 0Ly, are nonnegative. Thus, from the second inequality in

(4.34), recalling (4.35) and (4.37) we may conclude that
Ksy,, = (N -D"VHZ™ = (N =) YHE on (B' % (—r,7)) N Zom .

The equality above implies that X, N (B’ x (—=r,r))) is umbilical. Hence 9*Qq,, \ C is
umbilical, thus each connected component of 9*Q,, \ C lies on a sphere of radius R,, =
(N —1)/Hs;y . Consider the unique unbounded connected component of U := RN\ Qo m.
Then, recalling Step 8, OU \ C is contained in a sphere of radius R,, intersecting C on II.
Thus OU \ C is a spherical cap and €, is contained in the region enclosed by oU \ C and
II. In particular g, is contained in the half space II" determined by II not containing C.

Since P(Q0m;11T) = P(Qpm; RY \ C) = N(%)%m%, by Theorem 19.21 in [15] for a.e.
m we conclude that for such m g, is a half ball. Since the argument above can be carried
out for a.e. m € (0, myp), in particular there exists a sequence m,, — mg such that g ,,, is a
half ball. Hence )y is a half ball.

0

5. APPENDIX A: SOME AUXILIARY RESULTS

In this section we collect some auxiliary results needed in the proof of Theorem 1.2.
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5.1. Density estimates. Density estimates for (A, rg)-minimizers are well known. However
for the sake of completeness we give the proof of the proposition below showing that such
density estimates are independent of the convex obstacle.

Lemma 5.1. Let C be a closed convex set with nonempty interior and F C RV \ C a bounded
set of finite perimeter. Then

P(F;0C) < P(F;RY\ C)
Proof. Let B a ball such that FF CC B and let H; be a sequence of closed half spaces such

that C = (") H;. Since C = (CUF) N (| H; we have
i=1 =1

P(C;B) < limian((C UF)n () Hi B) < P(CUF;B),
=1

where the last inequality follows by applying repeatedly the inequality P(GNH;; B) < P(G; B)
where G is a set of finite perimeter. Since P(CUF; B) = HN-1(0CNFONB)+HN—1(9*F\
C), the conclusion follows observing that P(C;B) = HN-1(dC N FO N B) + HVN-1(oC N
O*F). a

Proposition 5.2. Let C be a closed conver set with nonempty interior and let E C RN\ C be
a restricted (A, ro)-minimizer of the relative perimeter P(-; RN\ C) according to Definition 4.1.
Then there are positive constants ¢; = c1(N) and Cy = C1(N) independent of C such that
for all r € (0, min{ro, N/(4A)}) we have:

(i) for all z € RN \ int(C)
P(B; B,(z)) < OVt
(ii) for all x € O*E
|E N By(z)] > err™ .

Moreover E is equivalent to an open set Q such that 92 = 0°Q, hence HN~1(0Q\ 9*Q) = 0,
and (ii) holds at any point x € 0N.

Proof. Given x € RY \ int(C) and r < min{rg, N/(4A)}, we set m(r) := |E N B,(z)|. Recall
that for a.e. such r we have m/(r) = HN-"Y(EW N dB,(z)) and HV~1(0*E N dB,(z)) = 0.
For any such r we set F':= E \ B,(x). Then, using Definition 4.1, we have

(5.1) P(E; By (2)\ C) < HY"1(0B,(z) N EM) + A|E N B, ()] < CyrN 1
for a suitable constant C7. In turn
P(E;B,(z)) < P(E; B.(z)\ C) + HN"Y0(C N B,(z))) < C1rV "t + HN=Y OB, (z)),

where in the last inequality we estimated the perimeter C N B,(z) with the perimeter of the
larger convex set By(x). Thus (i) follows by taking C; larger.
Observe now that by Lemma 5.1

P(EN B,(z);0C) < P(EN B,(z); RV \ C).
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Thus, using also (5.1), we have
P(ENB,(z)) = P(EN B,(z); RV \ C) + P(E N B,(z);0C)
< 2P(E N B,(z);RY \ C) = 2P(E; B,(x) \ C) + 2m/(r)
<4m’(r) + 2Am(r).

In turn, using the isoperimetric inequality and the fact that 2Ar < N/2 we get

N—-1

Then from the previous inequality we get
1

Ewﬁm(r)¥ < 4m/(r).

Observe now that if in addition x € 0*E, then m(r) > 0 for all r as above. Thus, we may

divide the previous inequality by m(r)%, and integrate the resulting differential inequality
thus getting

|E N By(x)] > eV,
for a suitable positive constant ¢; depending only on N.

We show that 0*E C 9°E. To this aim note that (ii) holds for every z € 9*E. Thus,
if + € RV \ C, since both E and RY \ E are A-minimizers in a neighborhood of = we
have that |E \ B,(z)] > cirN for r small. Thus z ¢ (E@ u EM), that is z € §°E. If
x € OC N O*E then there exists a constant ¢, > 0, depending on x such that for r small
|C N By(z)] > cor™V. This estimate, together with (ii) again implies that 2 € 9°E. Hence
HN-YO*E\O*E) < HN-Y(9°E\0*E) = 0, where the last equality follows from Theorem 16.2
in [15].

Set now Q = EM \ 9EW. Recalling that IEM = 9*E, see (2.2), we have that Q is an
open set equivalent to E such 9Q = EM). Hence the conclusion follows. 0

5.2. A maximum principle. Next result is essentially the strong maximum principle proved
in [9, Lemma 2.13]. However, we have to apply it in a slightly different situation and therefore
we indicate the changes needed in the proof.

Lemma 5.3. Let E C {z1 > 0} be a set of locally finite perimeter such that
(5.2) HN=Y(OE\ O*E)\ {zxy =0}) =0

satisfying the following minimality property: for everyr > 0 and every open set with Lipschitz
boundary V CC Q,(0) such that HN~Y(OE N V) = 0 we have

(5.3) P(E;Qr(0)) < P(E\V;Q:(0)).
Assume also that HN~1(OE N {x1 = 0}) = 0. Then 0 ¢ OE.
The proof of lemma above is in turn based on the following variant of [9, Lemma 2.12]. To

this aim, given 7 > 0 we set C, := (0,7) x D,., where D, := {2/ ¢ RVN=1: |2/| < r}.

2Here as usual we assume that OE = 9" E.



26 N. FUSCO, M. MORINI

Lemma 5.4. Let E be as in Lemma 5.3, let ¥ > 0 and let up € C?(Dy) N Lip(Dy) with
0<wug <7 on Dz. Assume also that

EW N[(0,7) x dD;] € {(x1,2") € (0,7) x Dy : 1 > ug(z')},

div<vu0> —0  in D

EV4 1+ |V’LL[)|2

and
(5.4) ’HN_I(aE No{(z1,2") € Cr : m1 <wup(a’)}) =0.

Then,
EWNCr c {(z1,2)) € Cr: z1 > up(a')}.

Proof. The proof goes exactly as the one of Lemma 2.12 in [9] as it is based on the comparison
with he competitor F = E \ V, where V = {(z1,2') € Cr : 21 < up(2')}. Observe that
assumption (5.4) guarantees that such a competitor satisfies HN~1(0E N dV) = 0, which is
required in order (5.3) to hold. O

Proof of Lemma 5.3. For reader’s convenience we reproduce the proof of Lemma 2.13 in [9]
with the small changes needed in our case.

We choose 7 > 0 so that HN "1 (OENIC:) = 0 and HY2(0ENOD;) = 0, where with a slight
abuse of notation 0Dy stands for the relative boundary of D; in {z1 = 0}. Note that a.e. 7 >0
satisfies these conditions thanks to (5.2) and to the assumption HY~1(0E N {z; = 0}) = 0.
Define now a function wg : Dr — [0, 00] by setting

wg(z') = inf{z; € R: (21,2") € CrNIE}.
Observe that wg is nonnegative and lower semicontinuous on Dy, with the property that
EWNCr c{(z1,2'): 2’ € Dy, 21 > wp(z')}.

Recalling that HY=2(0F N dD;) = 0, we have that wg > 0 HV~2-a.e. on dD;. Therefore
there exists a family (¢;):e(0,1) C C°°(9Dr) such that

. T
0< ¢, <, Smln{wE,Q} O, E o, forall0 <t <ta<1.

By Lemma 2.11 in [9] for every ¢ € (0, 1) there exists u; € C*°(D5) N Lip(D5) such that

div(vut) =0 in Dy,
\/ 1 + |Vut|2

Ut = Pt on 0D .

Note that by the Strong Maximum Principle Theorem 2.5 we have that 0 < u;, < ug, < 7/2
in D7 for every 0 < t; < to < 1. Therefore the graphs I'; of u; are mutually disjoint in Cr
and so HV~1(I'; N OF) = 0 for all but countably many ¢ € (0,1). In particular there exists #
such that (5.4) holds with ug replaced by uz. Therefore we may apply Lemma 5.4 to conclude
that BN N Cr € {(z1,2') € Cr : 21 > ug(2’)} so that in particular wg(0) > uz(0) > 0, hence
0¢O0F. O
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5.3. A regularity result. The following proposition is a slight variant of a result contained
in [20].

Proposition 5.5. Let Q C RY be a bounded open set and let o € O be such that O is of
class C? in a neighborhood U of xg. Let E C Q satisfy

(5.5) P(E)< P(F) foralFCQ,|F|=|E|, st. EAFcCU.

If there exists a support hyperplane Il to E at xg such that OFE N1II = {xy}, then OF is of
class CV' in a neighborhood V' of xg. Moreover if *ENQ NV # 0, then for HN -a.e.
redENINNV

(5.6) Hpq(z) < H,
where H denotes the constant curvature of *ENQNV.

Proof. Observe that by a standard argument (5.5), together with the assumption that 9
of class C?, implies that E is a (A, rg)-minimizer in a possibly smaller naeighborhood U’ of
xg. Hence, since there exists a support hyperplane to OF at xg, by Theorem 2.6 OF is of
class C1* in a neighborhood of . Moreover, up to a change of coordinate system, we may
assume that the support hyperplane to E at z( is the horizontal hyperplane {xx = 0} and
E C {zy > 0}. Since {xny = 0} NOE = {x¢}, there exists £ > 0 sufficiently small such that
En{xy = e} is an (N — 1)-dimensional relatively open set, denoted by w, and there exist
B e C*(w), u € CH*(w) whose graphs coincide with QN (w x (—=r,7)) and OE N (w x (=7, 7))
respectively, for some r > 0, with u = 0 on Ow and 8 < u < 0. The C! regularity of OF
then follows arguing exactly as in the proof at page 658 of [20]. Finally, inequality (5.6) is
also a byproduct of the same proof, see (3.5) in [20]. O

6. APPENDIX B: SOME STEPS OF THE PROOF OF THEOREM 1.2

6.1. Proof of the claim of Step 1. We argue by contradiction assuming that there exist
a sequence Ay — 400, np € [0,7], np — no, mp € [m/,m"] converging to some m, and a
sequence Ej, C Qq \ C,;,, such that each Ej, is a minimizer of (4.8) with A’, m and 7 replaced
by Ap, my, and ny, respectively, and |Ep,| # my,. Since P(Ep; RM\C,,) < P(Qypmp; RV Cy,)s
from (4.5) we have that the perimeters of Ej are equibounded perimeters. Therefore, without
loss of generality we may assume that Ej, converges in L' to some set ' C Qg \ C,, such that
|F'| = m. We assume also that |E},| < my, for all h, the other case being analogous. Note also
that, since Aj, — 400 we have my, — |Ep| — 0.

Observe now that (4.6) implies that there exists a point € 0*F N (g \ C,),). Arguing as
in Step 1 of Theorem 1.1 in [11], given € > 0 sufficiently small, we can find nearby = a point
2’ and r > 0 such that B,(2') C Qo \ C,;, and

WN ’["N
IN+2

[FAB,s@) <er, [FNB() >

Therefore, for h sufficiently large, we also have

WN
’EhﬂBr/g(I'/)’ <erlV, |Ep N B(2))| > 2N+27“N.

We can now continue as in the proof of [11, Theorem 1]. We recall the main construction
for the reader’s convenience. For a sequence 0 < aj, < 1/2V to be chosen, we introduce the
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following bilipschitz maps:

g+ (1—0,2N = 1) (x—a') iflz—2|<5,
N
@x(ﬁ) = 1}+Uh(1— m)(l‘ Qj/) %g ’$—gj"| < r,
x |x —a'| >r.

Setting Ej, := ®,(Ey), arguing as for the proof of [11, formula (14)], we have
(6.1)  HNTHO'EL\ Cyy) — HY U ER\ Cp) > 2V Ny HN L7 El \ Cyp) -
Moreover, arguing exactly as in Step 4 of the proof of [11, Theorem 1] we have

|Ey| — | By| > opr (¢ — £C)
for suitable universal constants ¢, C' > 0. If we fix € so that the negative term in the brackets
does not exceed half the positive one, then we have

~ C
(6.2) |Ep| — [En| = §Uh7"N-

In particular from this inequality it is clear that we can choose o} so that |Eh| = my,; this
implies o5, — 0. With this choice of oy, it follows from (6.1) and (6.2) that

P(Ep:RY\ Cyp) + Apl|En| — myp| < P(Ep; RV \ Cy,) + Ap||Ep| — my|
+28Nopy HY 10" Ep \ Cy,) — Ahggh""N
< P(Ep; RN\ C,,) + A||Ep| — may

for h large, thus contradicting the minimality of FEp,.

6.2. Proof of the claim of Step 3. We start by showing that the functions I, are strictly
increasing in [0,m,] for all n € [0,7]. To this end we fix m € (0,m,] and a point = €
7c, (2y,m), where Tc, is the orthogonal projection on C,,. Let II be the tangent hyperplane
to C, at x. Define Il; = Il + tvc, (z) for t € R and set

t=max{t >0: II, N Qy n, # 0}

Note that ¢ > 0 and that II; is a support hyperplane for €, ,, with dist(Il;, C,) = ¢. For
all t € (0,t) we denote by €, ,,; the intersection of €, ,,, with the half space with boundary
II; containing C,. Then I,(|Qymil) < P(Qymu; RV \ Cy) < P(Qym; RV \ C,) = I,,(m).
Since the function t — [, | is increasing and continuous in a left neighborhood of ¢ and
|, m | < |Q.m| if t < 2, it follows that

(6.3)  for every m € (0, my] there exists € > 0 s.t. I;;(s) < I;(m) for all s € (m —e,m).

Let I ={0 <s<m: Iy(o) < I,(m) for all 0 € [s,m)}. We claim that I = (0,m). Indeed
if m = inf I > 0, then there exist m,, € I, with m,, — m™. Since the minimizers €, ,, are
equibounded sets with equibounded perimeters, see (4.5), up to a subsequence we may assume
that €, ,, converge to a set £ C Qg \ C,, with |E| = m. Then, by the lower semicontinuity
of the perimeter we conclude that I,,(im) < P(E;RN \ C,) < liminf, I,,(my,) < I,(m). In
turn, (6.3) implies that there exists exists a left neighborhood (m — e,m) such that I,(s) <
I)(m) < I,)(m) for all s € (" — €, m) which is a contradiction to the fact that m = inf I. This
contradiction proves that I, is increasing. The strict monotonicity now follows from (6.3).
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We now show that I, is Lipschitz on [m’,m”]. From Step 2 and the uniform density
estimates for restricted A-minimizers proved in Proposition 5.2, it follows that there exist
c1,r90 > 0 (depending on A and thus on m/,m”) such that |Q,,, N By, (x)| > ¢ for all
z € 0y \ Cy and for every m € [m/,m”] and n € [0,7]. Then we fix m € [m/,m"] and
choose z such that the tangent hyperplane IIy to €, ,, at x is also a support hyperplane for
), m parallel to a support hyperplane to C,. Upon changing the coordinate system we may
assume that x = 0 and that vq,,,(0) = ex and so Il is horizontal. Then we consider the
family of parallel hyperplanes IT§ = Iy + tey for t < 0. Set

J={t € (~r0,0): HN"HQym NIT) > c1/2r0} .
Let d :=diam(£2g). Therefore we have

0
a < [ HYTHQym NI dt < [Jlwy—1d™ T+ (1o — \J\)chl :
0

—70

from which we get |J| > co > 0, with ¢2 depending only on m’ and m” and d. On the other
hand from the coarea formula

/ HN =20, m NTIH) dt < HN 710" Qy ) < I (my) + HY 71 (Q0 N OC,)
J

< P(Qy;RY\ C) + sup HN1(QynAC,) =: C(Q).
0<n<n
Therefore we may find € J such that HN=2(9Q,,,, NTI5) < C(Q)/ca. We denote by Qo

the intersection of €2, ., with the half space with boundary Hg containing C,, and by Q;; m 118
complement in €2y, ..
Given s > 0 sufficiently small, we define the competitor set Fys :=Q, U C(t,h) U (hen +

Q. ) where C(t, h) is the vertical cilinder with base Q) N4 and height k = s/HN=1(Q,, N
I1}). By construction |Fy| = m + s. Moreover, if s is sufficiently small Fs C Bg(0). Thus

P Q
Iy(m+s) < P(Fg RV \ Cy) = P(Qn,mRN \Cy) + hHN_z(aQn,m N1 < Iy(m) + hC(c .
2
C(Qo)s 2roC'(£)
= I,(m) + _ < I (m) + 22
n(m oHN = (Qym NTTE) n(m) c1Co °

where in the last inequality we used the fact that ¢ € J. In conclusion we proved that for
every m € [m/, m"] there exists d,, > 0 such that for all s € [0, d,,]

2 Q
L(m+s) — I(m) < MS.
C1C2

Recalling that I;, is increasing, a simple compactness argument shows that I, is Lipschitz
continuous in [m/, m”] with a Lipschitz constant independent of 7.

6.3. Proof of claim (4.16). Let us start by assuming also that
(6.4) HNYOE, NV NA#)=0  forall heN.

To this aim we fix § > 0 and set % := {x € ' : oy >} and (F); = E + Bs(0). Then we
denote by @ : Q-(0) N — Q,(0)\ C, 1 a sequence of C' diffeomorphisms converging in
C! to the identity map as h — 0 with the property that ®,(852 N Q,(0)) = 9C, 5 N Q. (0)
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and ®p(z) = x if © € 5. Recalling the A-minimality property (4.14), we have using (6.4)
and observing that ®,(V) cC Q,(0) for h sufficiently large

P Qr(0)\ Cy) < P(B\ @4(V); Qr(0)\ Gy + 7 [4(V)
< P(Ep; (Qr(0) \ Cyp) \ @1 (V) + P(@r(V); (Qr(0) \ Cyyp) N Ep)
FH N OR,(V) OB 0 (o < 5} 0 (Qr(0)\ Cy)) + (V)]

Since

P(Ep; Qr(0)\ Cyn) = P(En; (Qr(0)\ Cyp) \ @1(V)) + P(En; (Qr(0) \ Cypp) N@R(V)),

and using the fact that 5NV = 502, (V) C (Q-(0)\ Cyy i) NP,(V), the inequality above
yields

P(Ep; 5N V) < P(@p(V); (Qr(0) \ Cypn) N Ep)

FHY I @BL(V) 0 oy <) 0(Q0(0)\ Cya) + 3 18(V)
< P(V:Qr(0) N5 N Ey)

(65 +2HY T (90,(V) 1 (e < 6} 1 (Q1(0)\ Cyp) + 7 [2(V))
< P(V:Q,(0) N 0 (2))

+2Lip(@) NPV {0 < o < 6)) + 3 B0V,

where in the last inequality we used the fact that ®; ' ((Q,(0)\Cy.n)N{zn < 6}) = Q,(0)N{0 <
rn < 0} and the fact that E}, converge in the Kuratowski sense to E in 5, see Remark 2.3.
By the lower semicontinuity of the perimeter, passing to the limit in (6.5)

P(E; A5NV) < P(V;Qr(0) N5 N (E)s) +2P(Vi{0 <zy < 6}).
In turn, by letting 6 — 0 we have
(6.6) PE;NV)< P(V;Q-,(0)NE),

which is equivalent to (4.16) thanks to first condition in (4.16). To remove (6.4) it is enough
to consider a sequence of smooth sets V; CC Q,(0), V CC Vj, satisfying the first condition
in (4.16) and (6.4), and such that V; — V in L' and P(V};Q,(0)) — P(V;Q,(0)). The
conclusion then follows by applying (4.16) with V' replaced by V; and passing to the limit
thanks to the first condition in (4.16).
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