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Previous lectures - Linear autonomous systems

Dynamics completely determined by the eigenvalues

For linear systems each eigenspace, generalized eigenspace and their composition 
is a subspace U of the phase space invariant under the evolution operator:

3

dx

dt
= Ax, x ∈ Rn ⇒ x(t;x0) = φtx0 = eAtx0

xk+1 = Axk, x ∈ Rn ⇒ xk = φkx0 = Akx0

⇓

x ∈ U ⇒ eAtx, Akx ∈ U
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Previous lectures - Linear autonomous systems

Through a Jordan transformation  x=Ty  the state vector can be partitioned in 
three components:

Stable: ys

Unstable: yu

Central: yc 

Their evolution is uncoupled from the others

4

σ(AS) ∈ C−, σ(AU ) ∈ C+, σ(AC) ∈ C0

AS ∈ Ms (R) , AU ∈ Mu (R) , AC ∈ Mc (R)

s + u + c = n

ẏs = ASys, ys ∈ RS , s =
∑

λi∈C−
ma(λi)

ẏu = AUyu, yu ∈ RU , u =
∑

λi∈C+

ma(λi)

ẏc = ACyc, yc ∈ RC , c =
∑

λi∈C0

ma(λi)
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Previous lectures - Linear autonomous systems

Stable (Unstable) Eigenspace ES (EU): 

Invariant

The orbits tend to (move from) the origin as time increases

Central Eigenspace EC:

Invariant

The dynamics may be simply stable or unstable 

Continuous systems: depends on the algebraic and geometrical multiplicity of the 
eigenvalues with zero real part

Discrete time systems: depends on the algebraic and geometrical multiplicity of the 
eigenvalues with unit magnitude.

5
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Previous lectures - Linear autonomous systems

In the case of linear systems the stability is a global property, e.g., the system 
is stable.

Hyperbolic systems:

Sinks (attractors)

Sources (repellors)

Saddles

WHAT HAPPENS WHEN THE DYNAMICAL SYSTEM IS NONLINEAR?

6

From Kuznetsov Elements of Applied Bifurcation Theory, Springer 1998
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Motivation of this lecture

Stability in nonlinear dynamical systems

Definition of the (local) orbital stability

Relationships between the local dynamics of a nonlinear system and the 
dynamics of associated linearized systems

Invariant manifolds for nonlinear systems

Stable, unstable and central manifolds of bounded orbits (equilibrium points and limit 
cycles)

Definitions of the local dynamical characteristics (geometry of the orbits in 
the phase space) of nonlinear systems through the dynamics on the invariant 
manifolds of bounded orbits

Definitions of attractors, repulsors and saddles for nonlinear systems

7
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Outline

Introduction

Stability

Hyperbolic points

Nonhyperbolic points

Limit Cycles

Convention

8

Mathematical statements

Important statements



Geometry and Stability NLDS /69Lezione 4

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

General frame

In this lecture we will only consider systems of the types:

9

xk+1 = F (xk), x ∈ Rn, F ∈ Cr(Rn, Rn) with r ! 1

dx

dt
= f(x), x ∈ Rn, f ∈ Cr(Rn, Rn) with r ! 1

Continuous

Discrete
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INTRODUCTION
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Orbits of continuous systems

In the case of continuous systems bounded orbits may represents the asymptotic 
behavior of an orbit for t→+∞ (regime) or t→-∞. 

11

Stationary (points in the phase space, for any n)
Periodic (closed curve in the phase space, only for n>1)

Quasiperiodic or k-periodic (k>1, k-tori in the phase space, n>k)
Aperiodic (chaotic, often fractal objects in the phase space, only for n>2)

Bounded orbits can be:
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Bounded orbits - Examples for Continuous Systems

Stationary and periodic orbits in n=2

From a model for a Continuous Stirred Tank Reactor

12



Geometry and Stability NLDS /69Lezione 4

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

Bounded orbits - Examples for Continuous Systems

Quasiperiodic orbit in n=3

13
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Orbits of discrete systems

Bounded (discrete!) orbits can represent the asymptotic behavior of orbits for 
k→∞ (regime) or k→-∞ also in discrete systems. 

14

Stationary (points in the phase space, for any n)
m-Periodic (m points in the phase space, for any n)

Quasiperiodic (k-tori in the phase space, n>k)
Aperiodic (chaotic, often fractal objects in the phase space, only for any n)

Bounded orbits can be:
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Bounded orbits - Examples for discrete systems

Stationary orbits (fixed points) n=1

15
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Bounded orbits - Examples for discrete systems

m-periodic orbits (fixed points) n=1

16
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Nonlinear Dynamical Systems - Examples

Earliest important examples: The Newton Equations to derive and unify the three 
laws of Kepler, i.e., the basis of Classical Mechanics

1. The orbit of every planet is an ellipse with the sun at a focus.

2. A line joining a planet and the sun sweeps out equal areas during equal intervals of 
time.

3. The square of the orbital period of a planet is directly proportional to the cube of the 
semi-major axis of its orbit.

The Newton equations are conservation laws and are nonlinear in general

A particle moving in a Force Field: the gravitational field of the sun

Similar examples: charged particles in electromagnetic fields

Newton’s second law

The force vector at the location of the particle at any instant equals the acceleration 
vector of the particle times the mass

17

F = ma
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Nonlinear Dynamical Systems - Examples

Newton’s second law

x(t) the position of the particle at time t

Mathematically:                    is a sufficiently differentiable curve 

The acceleration vector is the second derivative of x(t) with respect to time

Second order differential equation

18

F = ma

x : R→ R3

ẍ =
1
m

F(x)

F(x(t)) = m ẍ(t)
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Nonlinear Dynamical Systems - Examples

Which is the state of the dynamical system?

From previous lectures: 

A state of a dynamical system is information characterizing it at a given time

Recast the problem as a set of first order differential equations

The state variables are the position and the velocity

A solution                  gives the passage of the state of the system in time

19

ẋ = v

v̇ =
1
m

F(x)

(x(t), v(t))
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Nonlinear Dynamical Systems - Examples

Depending on the nature of the force field one ends up with different dynamical 
systems describing different physical systems

Frictionless Pendulum

State variables:

Nonlinear Dynamical system 

20

F = −mg sinθ a = !
d2θ

dt2

x = !θ v = !
dθ

dt

!
d2θ

dt2
= −gsinθ

ẋ = v

v̇ = −g sinx
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Nonlinear Dynamical Systems - Examples

Pendulum - Phase Portrait

21

x

v

Equilibrium points

Stability?
Multiplicity
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Nonlinear Dynamical Systems - Examples

Close to the (0,0) equilibrium point the system can be linearized

Harmonic oscillator

A linear and autonomous dynamical system

What happens linearizing close to (π,0)? 

22

sinx = x + O(x2)

ẋ = v

v̇ = −gx

x

v
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Nonlinear Dynamical Systems - Examples

A damped harmonic oscillator

In real oscillators friction, or damping, slows the motion of the system.

Another  nonlinear and autonomous dynamical system

Phase portrait

23

ẋ = v
v̇ = −g sinx− ζv

x

v
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Problems at hand

Multiplicity of regime solutions

We have to decide on the stability of the regime solutions

Which might be stationary or dynamic

We think that we might use linearization and information derived from linear 
systems to take position on stability

Is this always possible?

What happens if we vary the parameter values?

24
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STABILITY
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Orbital Stability - Poincaré

The stability of an orbit of a dynamical system characterizes whether nearby 
orbits will remain in a neighborhood of that orbit or be repelled away from it. 

Asymptotic stability additionally characterizes attraction of nearby orbits to this 
orbit in the long-time limit. 

Let’s consider a generic bounded orbit of a continuous system passing through x0 

An orbit γ(x0) is called stable if for any given neighborhood U(γ(x0)) there exists 
another neighborhood V (γ(x0)) ⊆ U(γ(x0)) such that any solution starting in V 
(γ(x0)) remains in U(γ(x0)) for all t≥0. 

Similarly, an orbit γ(x0) is called asymptotically stable if it is stable and if there 
is a neighborhood U(γ(x0)) such that 

26

γ(x0) = {x ∈ Rn|∃t ∈ R : x = x(t, x0) = Φtx0}

lim
t→∞

d(φ(t, x), γ(x0)) = 0 for all x ∈ U(x0)

with d(x, γ(x0)) = supy∈γ(x0)|x− y|
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Orbital Stability - Poincaré

An orbit is stable if a orbit sufficiently close to it remains close to it, and is 
asymptotically stable if they asymptotically tend to it.

27
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Orbital Stability - Poincaré

Note that this definition ignores the time parametrization of the orbit. In 
particular, if x is close to x1 ∈ γ(x0), we do not require that φ(t, x) stays close 
to φ(t, x1) (we only require that it stays close to γ(x0)). 

To see that this definition is the right one, consider the pendulum. 

There all orbits are periodic, but the period is not the same. Hence, if we fix a 
point x0, any point x = x0 starting close will have a slightly larger respectively 
smaller period and thus φ(t, x) does not stay close to φ(t, x0). 

Nevertheless, it will still stay close to the orbit of x. 

28
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Linearization

The definition of stability of an orbit is LOCAL

This suggests the idea of analyzing a linearization around it to obtain information 
from the characteristic local dynamics (local phase portrait)

In most cases the local geometry (and the stability properties) of a 
nonlinear dynamical system can be identified through the knowledge of 
the associate linearized system

This is not always possible. Even when this is not possible the knowledge of the 
geometry of the associate linearized system is useful.

29



Geometry and Stability NLDS /69Lezione 4

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

Linearization at an equilibrium point - Machinery

To characterize the local dynamics and the stability of an equilibrium point of a 
nonlinear dynamical system

xE identifies one equilibrium point 

A nearby point is

The derivative

with

Thus it is reasonable to believe that solutions of                        behave similarly 
to solutions of              for u near 0. 

Equivalently:                        for x close to xE

30

f(xE) = 0

Translation

u := x− xE , with |u|" 1

u̇ = f(u + xE) = f(xE) + Df(xE) + R(u) = Au + R(u)

R(u)
|u| → 0 as |u| ↓ 0

u̇ = Au + R(u)
u̇ = Au

ẋ = A(x− xE)

Jacobian

Df(xE) =

∥∥∥∥∥∥

∂f1
∂x .... ∂f1

∂x
... ... ...

∂fn

∂x ... ∂fn

∂x

∥∥∥∥∥∥
x=xE
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Linearization - Translation + Derivation

The linearized system 

around A and C are stable foci (eigenvalues?)

around B is a saddle (eigenvalues?)

31

A

C

B

A≡C

B
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Linearized stability

An equilibrium point xE is hyperbolic if none of the eigenvalues of Df(xE) have 
zero real part. 

If xE is hyperbolic, then either all the eigenvalues of Df(xE) have negative real part 
or at least one has positive real part. 

In the former case, we know that 0 is an asymptotically stable equilibrium solution; 

In the latter case, we know that 0 is an unstable solution. 

Theorem of Hartman-Grobman

We can extend this conclusion to the case of nonlinear dynamical system

Asymptotic Stability: If xE is an equilibrium point and all the eigenvalues of Df(xE) 
have negative real part, then xE is asymptotically stable. 

Instability: If xE is an equilibrium point and some eigenvalue of Df(xE)  has positive 
real part, then xE unstable. 

32
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Linearized stability

Consequence of the Hartman-Grobman Theorem: 

if the associate linearized system is hyperbolic the local dynamics (geometry in the 
phase space) of the nonlinear system has the same features of that of the linearized 
system

In such conditions the stability of the equilibrium point can be determined by studying 
the stability of the associate linearized system

Sinks, sources, saddles

33



Geometry and Stability NLDS /69Lezione 4

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

Nonlinear geometry of the phase space

Any equilibrium point (more in general any bounded orbit) of a nonlinear 
dynamical system possesses manifolds corresponding to the eigenspaces of the 
associated linearized system.

Such manifolds are invariant (as the eigenspaces)

If the dynamics on these manifolds is known the geometries of the orbits close to 
the equilibrium point (more in general the bounded orbit) is determined.

Though superposition is no longer applicable, one can call for orbit continuity.

34
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Nonlinear geometry of the phase space

Manifolds of dimension m and class Cs  locally posses the structure of m-
dimensional Euclidean space (generalization of lines, surfaces ...) and are 
“sufficiently smooth”.

35

Manifolds in R3



Geometry and Stability NLDS /69Lezione 4

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

Nonlinear geometry of the phase space - Manifold invariance

A manifold S is said to be invariant under the vector field              if for any x0∈S 
we have x0(t, 0, x0)∈S for all t∈R

Similarly we can invoke and negative positive invariance 

Complete orbits are invariant manifolds

36

ẋ = f(x)
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HYPERBOLIC EQUILIBRIUM POINTS
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Linearized stability

Hyperbolic equilibrium points: the analogies between nonlinear and linear systems 
can be pushed further. 

Invariant manifolds generalize the invariant subspaces of the linear case. 

We assume here that f is of class Cr with r≥2. 

38

DEFINITION

ẋ = f(x)Let x* be a singular point of the system              , and let U be a neighborhood of x*. 
The local stable and unstable manifolds of x* in U are defined as

WS
loc(x∗) := {x ∈ U : lim

t→∞
φt(x) = x ∗ and φt(x) ∈ U ∀t ≥ 0}

WU
loc(x∗) := {x ∈ U : lim

t→−∞
φt(x) = x ∗ and φt(x) ∈ U ∀t ≤ 0}
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Linearized stability

STABLE MANIFOLD THEOREM

Let x* be a hyperbolic equilibrium point of the system               such that the matrix 
∂f/∂x(x*) has n+ eigenvalues with positive real parts and n- eigenvalues with negative 
real parts, with n+, n- ≥ 1. Then x* admits, in a neighborhood U  

a local stable manifold                , which is a differentiable manifold of class Cr and 
dimension n-, tangent to the stable subspace E- at x*, and which can be represented as a 
graph; 

a local unstable manifold                , which is a differentiable manifold of class Cr and 
dimension n+, tangent to the stable subspace E+ at x*, and which can be represented as a 
graph; 

39

ẋ = f(x)

WS
loc(x

∗)

WU
loc(x

∗)
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Remarks

1. Whenever we speak of manifolds (either stable, or unstable or center) we speak 
of manifolds of equilibrium points (or of other invariant sets)

2. The nonlinear manifolds are tangent to the associated linear manifolds at the 
equilibrium point

3. The theorem applies only when the center eigenspace of the associated linearized 
system is absent

1. The nature of the solutions in the center manifold if present cannot be inferred by the 
nature of solutions in the center eigenspace. MORE REFINED TECHNIQUES ARE 
NEEDED (see below)

40
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Linearized stability

WHAT DOES THE STABLE MANIFOLD THEOREM MEAN?

For the linear system, there is an n-dimensional space (x- arbitrary and x+ =0) in which 
solutions approach zero as t→∞, and an n+dimensional space (x- =0 and x+ arbitrary) in 
which solutions approach zero as t→-∞. 

An example of is a simple saddle, where there is a line along which solutions move towards the 
origin, and another line along which they move away from the origin. 

The stable manifold theorem says that the nonlinear system behaves in a qualitatively 
similar fashion; the only difference is that the linear subspaces must be replaced 
by the nonlinear manifolds. 

The line x+ =0 becomes the function x+ =g(x-), and the line x- =0 becomes the function      
x- =h(x+) with the following properties:

The manifolds x+ =g(x-) (UNSTABLE) and x- =h(x+) (STABLE) are invariant, i.e. if a solution 
starts on one of these manifolds, then it remains there.

The manifolds are tangent to the spaces x+ =0 and x- =0, respectively.

A solution approaches the origin as t→∞ precisely if it lies on the stable manifold and it 
approaches the origin as t→-∞ precisely if it lies on the unstable manifold.

41
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Stable and Unstable Manifolds of an equilibrium point

Thus the local manifolds WS and WU close to an equilibrium point are graphs of 
functions

Global manifolds can be reconstructed via simulation by starting close to the 
equilibrium point on the local manifolds...

42

WS
loc(x∗) : yu = hs(ys)

WU
loc(x∗) : ys = hu(yu)
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Manifolds and eigenspaces

43

From: Kuznetsov Y. A., Elements of applied bifurcation theory, Springer Verlag, New York 2004 
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Global Manifolds

Stable Global manifold and Unstable Global Manifolds for the saddle in the 
origin.

44
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Invariant Manifolds for maps

Similarly for the maps

45

From: Kuznetsov Y. A., Elements of applied bifurcation theory, Springer Verlag, New York 2004 
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Linearized stability

What happens if the system is nonhyperbolic?

Is this an important issue?

46

Eigenvalues Linear system Nonlinear system

Asymptotically stable Asymptotically stable

Stable
(simple imaginary 

roots) ?
Weakly unstable

(multiple imaginary 
roots) ?

Unstable Unstable

Im

Re

Im

Re

Im

Re

Im

Re
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NONHYPERBOLIC EQUILIBRIUM POINTS
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Linearized stability - Nonhyperbolic points

The following nonlinear dynamical system has an equilibrium 
point in the origin (0,0)

Hyperbolic conditions: The equilibrium point is stable 
(unstable) if  α<0 (α>0).

If α=0 the linearized system is stable. 

What happens to the nonlinear system? The stability in this 
case depends on the nonlinear terms: the origin is 
asymptotically stable if ε<0.  

48

ẋ1 = αx1 + x2 + εx1(x2
1 + x2

2)
ẋ2 = −x1 + αx2 + εx1(x2

1 + x2
2)
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Linearized stability - Nonhyperbolic points

Another example

The linearized system is nonhyperbolic with eigenvalues 0 and -1.

The linearized system has monodimensional central and stable eigenspaces

Which is the stability of the origin?

What about the local dynamics? 

49

ẋ = xy
ẏ = −y + αx2
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Stable manifold theorem again

There is also a version of the stable manifold theorem which covers the case 
where some of the eigenvalues are on the imaginary axis. 

Consider the system

f1, f2, and f3 are of quadratic order at the origin, A has eigenvalues with negative real 
parts, B has eigenvalues with positive real parts, and C has eigenvalues with zero real 
part. 

The stable manifold in this case has the form x2=φ1(x1), x3=φ2(x1), and the unstable 
manifold has the form x1=ψ1(x2), x3=ψ2(x2), where, as before, the  the functions are of 
quadratic order at the origin. 

The difference is that we can no longer characterize the stable manifold as the locus 
of solutions which approach the origin for t→+∞. This is because of the presence of 
neutral eigenvalues. Therefore, the nonlinear terms determine which orbits 
approach the origin. 

50

ẋ1 = Ax1 + f1(x1, x2, x3)
ẋ2 = Bx2 + f2(x1, x2, x3)
ẋ3 = Cx3 + f3(x1, x2, x3)
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Center manifold theorem

The center manifold is invariant and has the same dimensions of EC, it is tangent 
to EC in xE, BUT the dynamics on it is not “similar” to that on EC.

For a given dynamics on EC the dynamics on WC can be stable, a-stable or unstable 
and depends on the nonlinear terms.

The knowledge of the center manifold and of the dynamics on it allows the 
determination of the stability of the equilibrium point (or any bounded orbits)

When the equilibrium point does not posses an unstable manifold but only a 
stable and a center manifold the stability issues depend on the dynamics on the 
central manifold for the continuity of the vector field.

These aspects are strictly related with the problem of bifurcation as will become 
clearer during next lecture.

51
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Center manifold theorem

Center manifold theorem

Let x* be a singular point of f, where f is of class Cr, r≥2, in a neighbourhood of x*. 
Let A = ∂f/∂x (x*) have, respectively, n+, n0 and n- eigenvalues with positive, zero and 
negative real parts, where n0>0. Then there exist, in a neighbourhood of x*, a local 
invariant Cr manifolds                            , of respective dimension n+, n0 and n-, and 
such that 

        is the unique local invariant manifold tangent to E+ at x*, and φt(x) →x* as t→−∞ 
for all x∈       . 

        is the unique local invariant manifold tangent to E- at x*, and φt(x) →x* as t→+∞ 
for all x∈       . 

        is tangent to E0, but not necessarily unique. 

As we have already done, a center manifold can be treated as a graph

52

WU
loc, WC

loc, WS
loc

WU
loc

WU
loc

WS
loc

WS
loc

WC
loc

WC
loc =

{
y ∈ Rn : yS = hS(yC), yU = hU (yC), hJ(0) = DhJ(0) = 0

}
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Center manifold theorem

Orbits staying near the equilibrium for t ≥ 0 or t ≤ 0 tend to        in the 
corresponding time direction.

If we know a priori that all orbits starting in U remain in this region forever (a 
necessary condition for this is n+ = 0), then the theorem implies that these orbits 
approach       (0) as t→∞. In this case the manifold is locally  “attracting”. 

Nonuniqueness

53

WC
loc

WC
loc

From: Kuznetsov Y. A., Elements of applied bifurcation theory, Springer Verlag, New York 2004 
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Dynamics on the center manifold

The local analysis of the nonlinear dynamical system can be inferred from what 
happens on the center manifold 

Of course, if unstable eigenvalues are present the equilibrium point is unstable. 
But if they are absent the dynamics on the center manifolds becomes:

The central idea is that the dynamics of the system is governed by the 
evolution of these center modes, while the stable modes follow in a passive 
fashion, they are “enslaved”.

54

ẏC = ACyC + RC(hS(yC), hU (yC), yC)

ẏC = ACyC + RC(hS(yC), yC)

From: Kuznetsov Y. A., Elements of applied bifurcation theory, Springer Verlag, New York 2004 
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How to calculate the center manifold

We want to determine the equation that represents the center manifold.

Let’s assume that no unstable component is present.

All orbits starting near the equilibrium point approach the invariant center manifold. 
The qualitative behavior of the local flow on the plane can then be determined from 
the flow of an appropriate scalar differential equation on the center manifold.

The coordinate of a point on the center manifold must obey the following 
equation:

By deriving respect to time

Recalling the relationships

55

Enslaving

ẏs = ASys + RS(ys, yc)
ẏc = ACyc + RC(ys, yc)

ys = hs(yc)

ẏs = Dhs(yc)ẏc
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How to calculate the center manifold

Thus (as the center manifold is invariant)

This is a partial differential equation for hS(yc) with boundary conditions

The problem is complex but it can be solved by using polynomials at any degree 
of accuracy

56

ASys + RS(ys, yc) = DhS(yc)
[
ACyc + RC(ys, yc)

]

⇓

AShS(yc) + RS(hS(yc), yc) = DhS(yc)
[
ACyc + RC(hS(yc), yc)

]

hS(0) = 0, DhS(0) = 0
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How to calculate the center manifold - An example

The system:

The linear part is already in the Jordan form, and the eigenvalues are 0 and -1

We have one stable component and one central component

The axis x=0 is the ES while y=0 is EC.

 The stable manifold coincides with ES.

For the center manifold:

1.  

2.   

3.  

57

ẋ = xy

ẏ = −y + αx2

ẏ = Dh(x)ẋ

y = h(x)

−h(x) + αx2 = Dh(x) x h(x)

x

y
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How to calculate the center manifold - An example

An approximate solution is:

which is inserted in Eq. 3 gives

By equating the polynomials in RHS and LHS one obtains:

The center manifold is:

And the dynamics on WC is:

58

h(x) = ax2 + bx3 + ...

−ax2 − bx3 + αx2 = (2ax + 3bx2)(ax3 + bx4)

h(x) = αx2 + O(x4)

y = αx2

ẋ = αx3 + O(x5)
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How to calculate the center manifold - An example

If α<0 (α>0) the origin is stable (unstable)

A nonhyperbolic attractor (saddle)

It is wrong to approximate the center manifold with the center eigenspace. In 
such a case the dynamics would have been

59

WS

WC

ẋ = 0

α<0
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LIMIT CYCLES
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Poincaré maps to study continuous time systems

Continuous nonlinear dynamical system can be associated to a discrete time 
system the so-called Poincarè map.

Among other things, the Poincaré map is a clear and powerful tool to understand and 
describe concepts related to nonlinear dynamical systems

An example: Orbital stability is easily linked to eigenvalues of the Poincarè map.

Unfortunately: There exists no general methods to construct the map. (Ingenuity is 
required)

Poincarè map is very useful

To study the orbit structure near a periodic orbit

When the phase space is periodic (nonautonomous systems)

To study the orbit structure near peculiar orbits (homoclinic and heteroclinic)

61
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Poincaré maps - What is it?

62

http://www.cg.tuwien.ac.at/research/vis/dynsys/Poincare97/
by H. Löffelmann, T. Kucera, and E. Gröller
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Poincaré map

A Poincaré section is used to construct a (n-1)-dimensional discrete dynamical 
system, i.e., a Poincaré map, of a continuous flow given in n dimensions. 

This reduced system of n-1 dimensions inherits many properties, e.g., 
periodicity or quasi-periodicity, of the original system. 

We will concentrate in the following on the case of n being equal to three. 

A Poincaré section S is assumed to be a part of a plane, which is placed within the 
3D phase space of the continuous dynamical system such that either the periodic 
orbit (or else) the Poincaré section. 

The Poincaré map is defined as a discrete function P:S→S, which associates 
consecutive intersections of a trajectory of the 3D flow with S

A cycle of the 3D system which intersects the Poincaré section in q points (q ≥1) is 
related to a periodic point of Poincaré map P, i.e., it is a critical point of the map  
Pq. 

63
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Poincaré map

Furthermore stability characteristics of the cycle are inherited by the 
critical point: stable, unstable, or saddle cycles result in stable, 
unstable, or saddle nodes, respectively. 

Many characteristics of periodic or quasi-periodic dynamical systems can be 
derived from the corresponding Poincaré map. 

64

Σ = {x ∈ U |S(x) = 0}

DEFINITION

A set Σ⊂Rn is called a submanifold of codimension one (i.e., its dimension is n
−1), if it can be written as                                 where U⊂Rn is open, 

S∈Ck(U), and   ∂S/∂x≠0 for all x∈Σ. 

The submanifold Σ is said to be transversal to the vector field f if ∂S/∂x f(x)≠0 
for all x∈Σ.
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Poincaré map and stability of periodic solutions

Let Σ be a submanifold of codimension one transversal to f such that φ(T, x)∈Σ. 
Then there exists a neighborhood U of x and τ∈Cn(U) such that τ(x)=T and    
φ(τ(y), y)∈Σ for all y∈U . 

If x is periodic and T=T(x) is its period, then PΣ(y) = φ(τ(y), y) is called Poincaré 
map. 

It maps Σ into itself and every fixed point corresponds to a periodic orbit of 
the continuous system.

The periodic orbit γ(x0) is an (asymptotically) stable orbit of f if and only if x0 is an 
(asymptotically) stable fixed point of PΣ. 

Moreover, if yn → x0 then φ(t, y) → γ(x0) by continuity of φ and compactness of [0, 
T]. Hence γ(x0) is asymptotically stable if x0 is. 

Suppose f ∈ Cn has a periodic orbit γ(x0). If all eigenvalues of the Poincaré 
map lie inside the unit circle then the periodic orbit is asymptotically 
stable. 

65
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Stability of periodic solutions - Examples

66

Saddle limit cycle

Attractor limit cycle
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Basin of attraction

It is interesting to known for a given attractor (equilibrium point, periodic 
orbit, ...)  the subset of the phase space from which the orbits tend to it. 

This subset is invariant and is called basin of attraction, BA,  of the attractor

A nonlinear dynamical system can have multiplicity of attractors, each of them 
with its own basin of attraction.

These basins of attraction are open sets and their boundaries do not belong to 
any of them.

67

BA =
{

x ∈ Rn : lim
t→+∞

d(φtx, A) = 0
}
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Basin of attraction

Often the boundaries of the basin of attraction are the stable manifolds of other 
solutions (saddles, saddle-cycles).

68
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Final remarks

Stability and linearization of nonlinear dynamical systems

Locality

Hyperbolicity vs. nonhyperbolicity

Center manifold theorem (very useful for bifurcation analysis)

Limit cycles and Poincaré map 
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