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Previous lectures - Nonlinear dynamical systems

Stability of hyperbolic equilibrium points and periodic orbits

Stability of nonhyperbolic situations 

Center manifold theorem

Dynamics on the center manifold

The linearized dynamics does not give information on stability

3
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Motivations - Theory

Models contain parameters 

What happens to the geometry of the phase space when a parameter 
changes?

Quantitative changes

Qualitative changes

Implication on the safety

Qualitative changes will be called bifurcations. 

When can we observe qualitative changes?

Can we a priori know the possible scenarios for different dynamical systems?

Dynamical systems can be quite “large”: do we need to account for details of their 
“largeness” or we can limit to something simpler? 

4
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Motivations - Applications

5

Multiplicity, Ignitions
Symmetry breakings
Phase transitions...

Nonlinear models of engineering 
systems exhibit instabilities:

Automatic 
Reliable

Large scale systems

Software for the stability analysis

These phenomena must 
be understood for a 
correct design and 

optimization 
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General frame

In this lecture we will only consider systems of the types:

The parameters µ are now explicitly considered to change 

for a change in the operating conditions

to account for uncertainties 

in time

7

Continuous

Discrete

dx

dt
= f(x, µ), x ∈ Rn, f ∈ Cr(Rn, Rn) with r ! 1, µ ∈ Rm with m ! 1

xk+1 = F (xk, µ), x ∈ Rn, F ∈ Cr(Rn, Rn) with r ! 1, µ ∈ Rm with m ! 1
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A very simple linear example

We start from a very simple linear example

x=0 is an equilibrium point

It is asymptotically stable if µ<0, the phase portrait does not change if the 
parameter is perturbed a little bit.

It is unstable if µ>0, the phase portrait does not change if the parameter is 
perturbed a little bit.

It is stable if µ=0.

The latter condition merits some attention: it is a nonhyperbolic equilibrium point

Undecided

Any perturbation of the parameter value determines a qualitative change in the 
phase portrait of the system

8

ẋ = µx
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Motivation

Two important considerations:

Hyperbolic points seems to be “indifferent” to small parameter changes, 
while the nonhyperbolic point is strongly affected from them

Is this a kind of stability with respect to parameter changes?

NB: the stability we know was related to changes in the state of the system. 

It seems that a qualitative change occurs when the system passes 
through a nonhyperbolic point: Bifurcations?

These two aspects will be addressed in detail in this lecture.

9
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Topological equivalence
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Topological equivalence of linear systems

Let’s reconsider the case of a 2D 
linear system

It is apparent that we can describe 
the hyperbolic systems with just 3 
cases:

Sources, saddles and sinks

In the case of nonhyperbolic 
systems we can identify 5 situations 
(not all shown in this figure)

Similar conclusions could be drawn 
for larger dimension systems (the 
saddles could be of different types 
in such cases)

11
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Topological equivalence of linear systems

For linear systems one could define an equivalence relation and equivalence 
classes on the basis of the eigenvalues.

For hyperbolic 2D systems for example

12
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Topological equivalence of linear systems

In the case of nonhyperbolic conditions one has to account for algebraic and 
geometrical multiplicity of the eigenvalues

In the 2D case the possible situations are:

13
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Topological equivalence of systems

We are strongly tempted to try to develop an equivalence criterion of the phase 
portrait for any kind of dynamical system (linear, nonlinear, continuous, discrete)

A homeomorphism is an invertible map such that both the map and its inverse are 
continuous                                              .

It is important to remark that the two systems could be the same 
system for a different value of the parameters.

14

Two systems SA1 (phase space X) and SA2 (phase space Y) of the same order n 
share the same qualitative behavior and are topologically equivalent if and only if 

there exists a homeomorphism that maps orbits of SA1 on those of SA2 preserving 
the direction of time. 

DEFINITION

ẋ = f(x, α), x ∈ Rn, α ∈ Rm

ẏ = g(y,β), y ∈ Rn, β ∈ Rm

ψ ∈ C0(X, Y ) ψ−1 ∈ C0(Y,X)
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Why homeomorphism?

15
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Topological equivalence of systems

The definition fulfills the following three properties

1. Reflection: SA1 is Topologically Equivalent to SA1

2. Symmetry: SA1 Topologically Equivalent to SA2 implies SA2 Topologically 
Equivalent to SA1

3. Transitivity: If SA1 is Topologically Equivalent to SA2 and SA2 is Topologically 
Equivalent to SA3 then SA1 is Topologically Equivalent to SA3

With this definition: two hyperbolic continuous linear systems with stable 
and unstable eigenspaces of the same dimensions are topologically 
equivalent.

The case of maps: two linear maps with stable and and unstable eigenspaces of 
the same dimensions and the matrices characterizing the dynamics on both 
eigenspaces have the same determinant are topologically equivalent 

16
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Topological equivalence of nonlinear systems

In the case of nonlinear systems the phase portrait are topologically equivalent if:

1. They have the same number of equilibrium points with the same stability 
properties;

2. They have the same number of periodic orbits with the same stability properties

3. They have the same invariant in one to one correspondence 

For nonlinear systems a local equivalence is of course useful

17

The system SA1 in the subset U of the phase space X is said topologically equivalent 
to the system SA2 in the subset V of the phase space Y if there exists a 

homeomorphism that transforms the orbits (or pieces of orbits) of the first system 
into orbits (or pieces of orbits) of the second system by preserving the time direction 

of points corresponding orbits. 

DEFINITION



Structural stability and bifurcations /61Lezione 5

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

Topological equivalence of systems

An important case: if U includes an equilibrium point xE of the first system and V 
includes an equilibrium yE  point of the second system

In such a case the system SA1 is said to be close to xE topologically equivalent to 
SA2 in yE  

An example: the nonlinear system in U is topologically equivalent to the 
associate linearized system in V if the latter is hyperbolic (another way to 
state the Hartman-Grobmann theorem)

18

U V
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Bifurcation conditions
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Structural stability

A hyperbolic equilibrium is structurally stable under smooth perturbations

A sufficiently small perturbation of the vector field or of the map does not induce 
a qualitatively change of a structurally stable dynamical system

A local version of the definition is of course available

The global and local definitions of the structural stability are the basis 
of the definitions of global and local bifurcations.

20

A system                                                    is structurally stable (with respect 
to the parameter) if and only if there exists an ε>0 such that its phase portrait is 
topologically equivalent to that of the system                                                for 

any µ such that ||µ-µ0||<ε.

ẋ = f(x, µ0), or xk+1 = F (xK , µ0)

ẋ = f(x, µ), or xk+1 = F (xK , µ)

DEFINITION
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Bifurcation conditions

The appearance of a topologically nonequivalent phase portrait under variation of 
parameters is called a bifurcation. 

Thus, a bifurcation is a change of the topological type of the system as its 
parameters pass through a bifurcation (critical) value.

21

The system SA                                                    is in (critical) bifurcation condition 
for a value of the parameter µ=µC (bifurcation value) if any neighborhood of µC 

contains at least a value µ  such that the system is not topologically equivalent to SA

DEFINITION

ẋ = f(x, µC), or xk+1 = F (xK , µC)

ẋ = r + x2
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Bifurcations

Generally, as the vector field f or the map F change (for example by varying a 
parameter value)  the phase portrait of the dynamical system changes 
continuously and remain topologically equivalent.

On the other hand, it can happen that for a critical value of the parameter 
α a sudden change of the phase portrait of the dynamical system occurs

22
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Bifurcation conditions

Some other examples

23
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Local and global bifurcations

Bifurcations are classified as local or global

Continuous systems

We will examine bifurcations of both equilibrium points and limit cycles

The latter will be studied as bifurcation of fixed points of maps (Poincaré map)

Discrete systems

We will examine bifurcations of fixed points and of m-periodic points (fixed points of 
iterated maps)

More on bifurcations in NDSII

24
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Bifurcation of equilibrium points

With xE an equilibrium point of a nonlinear dynamical system:

Hartman-Grobman theorems states that any nonlinear system in a neighborhood of xE 

is locally topologically equivalent  to the associate linearized system if such linearized 
system is hyperbolic. Bifurcations of hyperbolic equilibrium points are not possible.  

Nonhyperbolicity of xE  is necessary condition for the occurrence of local 
bifurcations and the critical conditions of local bifurcations have to be searched for 
among nonhyperbolic equilibrium points

Local bifurcation of equilibrium points are signaled by the nonhyperbolicity: 
eigenvalues with zero real parts (continuous systems) or unit magnitude 
Floquet multipliers (discrete systems) 

25

ẋ = f(x, µ) (xk+1 = F (xk, µ)The equilibrium point xC of the dynamical system                                           is in 
bifurcation conditions for the parameter value µ=µC if a couple of neighborhoods 

I(µC) and I(xC) such that all systems with parameter contained in I(µC) are 
topological equivalent in I(xC) do not exist.

DEFINITION
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Bifurcation of equilibrium points

Necessary conditions for bifurcation of equilibrium points of continuous systems

Local bifurcations are linked to change in stability of the equilibrium point 

26

Re

Im

Re

Im

Saddle-node Hopf-Andronov
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Bifurcation of equilibrium points

Necessary conditions for bifurcation of equilibrium points of discrete systems

Local bifurcations are linked to change in stability of the equilibrium point 

27

Saddle-node

Im Im Im

Re Re Re

Period doubling Neimark-Sacker
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Bifurcation of equilibrium points

If we observe a bifurcation in the phase space we may recognize that quite often 
bifurcations imply the collisions of limit sets with different stability properties 
(equilibrium points, limit cycles, or equilibrium point with limit cycle

28

Collision between equilibrium points

Collision between an equilibrium 
point and a limit cycles
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Global bifurcations

Global bifurcations are difficult to detect. They cannot be pinpointed with a local 
analysis (in the neighborhood of an equilibrium point)  rather one has to analyze 
the phase portrait (or a part of it). 

It proves useful to define some special orbits:

29

An orbit Γ0 starting at a point x∈Rn is called homoclinic to the saddle point x0 of 
dynamical system if ϕt x → x0 as t → ±∞.

An orbit Γ0 starting at a point x∈Rn is called heteroclinic to the saddle points x1 and 
x2 of the dynamical system if ϕt x → x1 as t → −∞ and ϕt x → x2 as t → +∞. 

DEFINITIONS
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Homoclinic and heteroclinic orbits

In 2D

In 3D

Examples of homoclinic and heteroclinic orbits of a dynamical system is 
structurally unstable.

30
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Transversality

For example, a surface and a curve intersecting with a nonzero angle at some 
point in R3 are transversal. The main property of transversal intersection is that it 
persists under small C1 perturbations of the manifolds. 

If the manifolds intersect nontransversally, generic perturbations make them 
either nonintersecting or transversally intersecting.

31

Two smooth manifolds M, N ⊂ Rn intersect transversally if there exist n linearly 
independent vectors that are tangent to at least one of these manifolds at any 

intersection point.

DEFINITION



Structural stability and bifurcations /61Lezione 5

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

Global bifurcation

32

Global bifurcation can be interpreted as nontransversal collisions of 
stable and unstable manifolds for both two bounded orbits (heteroclinic 
orbits) and one bounded orbit (homoclinic). 

The study of global bifurcation is easy in 2D systems as in the plane transversal 
collisions are not possible.
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USEFUL TOOLS
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Solution diagrams

It is very useful to have a graphic representation of the regime solutions 
(stationary and dynamics) and of their bifurcations  as one parameter value is 
varied (bifurcation parameter).

A simple graph is obtained by plotting a significant state variable (or its maximum 
for the case of dynamic regime solutions) as a function of the bifurcation 
parameter. 

As an alternative one can use a proper norm of the state vector in regime 
conditions.

These graphs are called (regime) solution diagrams and can be efficiently built 
with parameter continuation software (e.g., Auto or MatCont) 

You will learn how to use such software in a subsequent lecture

34
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Solution diagrams

An example for a 2D system (CSTR)

Bifurcation parameter Da

Conventions

Bifurcation points

35
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Bifurcation diagrams

If the model contains more than one single parameter, i.e., if μ is a vector with 
more than one component, the critical values for a parameter depend on the 
other parameter values. 

One can than build a diagram in the parameter space where bifurcation values are 
reported. The plot of the manifolds corresponding to bifurcation conditions in the 
parameter space of interest.

When a parameter value is varied one moves in this space

If no bifurcation line is crossed the systems are all topologically equivalent

If a bifurcation line is crossed the system show a qualitative change in its properties.

36
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Bifurcation diagrams

The CSTR: solution and bifurcation diagrams

37
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Catastrophic bifurcations

Parameters may change in time. If such variations are slow (with respect to the 
characteristic times of the dynamical system) the system will remain in regime 
conditions by attaining the new (with respect to the parameter value) stable 
states. 

One would observe a qualitative change of the regime solution if the (slowly 
changing) parameter crosses a bifurcation value.

A change of regime would then be observed: for example from a steady state to a 
periodic solution.

We are not guaranteed that when crossing a bifurcation value the state of the 
system would experience a “small” change when attaining the new stable solution 
(if any!)

When the change is not small we say that the corresponding bifurcation 
is catastrophic (in the sense that the change might have strong 
consequences)i: explosions, ignitions, extinctions, runaway, …., static 
failures (Tacoma Narrows bridge), ….

38
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Catastrophic bifurcations (Wikipedia)

The first Tacoma Narrows Bridge opened to traffic on July 1, 1940. It collapsed 
four months later on November 7, 1940, at 11:00 AM (Pacific time) due to a 
physical phenomenon known as aeroelastic flutter caused by a 67 kilometres per 
hour (42 mph) wind. 

Flutter is a self-feeding and potentially destructive vibration where aerodynamic 
forces on an object couple with a structure's natural mode of vibration to produce 
rapid periodic motion. 

39



Structural stability and bifurcations /61Lezione 5

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

An example from chemical engineering

An industrial incident in an ammonia production plant. The incident was caused by 
a sudden loss of stability induced by a decrease of reactor pressure. 

Three beds in series with fresh feed between each bed and preheating of the feed 
with the effluents. 

40
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An example from chemical engineering

Catastrophic or not?

41
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ANALYSIS OF LOCAL BIFURCATIONS
CENTER MANIFOLD THEOREM
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Analysis of local bifurcations 

The analysis of local bifurcations of equilibrium points can be performed on a 
simplified version of the dynamical system (both continuous and discrete)

By reducing its dimensions

We anticipated this during Lecture 4

By simplifying the nonlinear terms

If the discrete system is a Poincaré map, the analysis is related to the local 
bifurcation of limit cycles

43

Center manifold theory

Normal form theory
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Center manifolds and local bifurcations of continuous systems

In the case of continuous systems under investigation, if xE is the equilibrium 
point one can translate the origin of the phase space in xE and by separating the 
linear terms one ends up with:

Then, by with a Jordan transformation (x=Ty) one gets:

44

ẋ = Df(xE , µ)x + R(x)

ẏ =




ẏs

ẏu

ẏc



 =




Js 0 0
0 Ju 0
0 0 Jc








ys

yu

yc



 +




Rs (ys, yuyc)
Ru (ys, yuyc)
Rc (ys, yuyc)




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Center manifolds and local bifurcations of continuous systems

If xE  is a nonhyperbolic equilibrium point  

1. There exists at least one center manifold WC(0) with the same dimensions of EC of the 
associate linearized system

2. There exists one and only one stable manifold WS(0) with the same dimensions of ES 
of the associate linearized system

3. There exists one and only one unstable manifold WU(0) with the same dimensions of 
EU of the associate linearized system

4. The three manifolds crosses at the origin and are there tangent to the eigenspaces of 
the associate linearized system.

The (possible) bifurcation of the nonhyperbolic equilibrium point xE can 
be studied on a system with lower dimensions (those of the center 
eigenspace).

45



Structural stability and bifurcations /61Lezione 5

AA 2008/2009    Pier Luca Maffettone Nonlinear Dynamical Systems I AA 2008/09

Center manifolds and local bifurcations of continuous systems

Indeed, it can be demonstrated that local bifurcations take place on the center 
manifold (which is locally attracting). 

As we have already learned the center manifold close to the origin is described by 
the equation:

Thus, the local bifurcations can be studied on a center manifold on the reduced 
system:

Where are the parameters? We want to study the local bifurcation on the center 
manifold, so it must exist in a neighborhood of the critical parameter value.

46

W c
loc :

{
ys = hs(yc)
yu = hu(yc)

ẏc = Jc yc + Rc(hs(yc), hu(yc), yc)
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Center manifolds in parameter-dependent systems

We consider the case:

Suppose that at μ=0 the system has a nonhyperbolic equilibrium x = 0 with n0 
eigenvalues on the imaginary axis and (n - n0) eigenvalues with nonzero real 
parts. (n- of them have negative real parts, n+ of them have positive real parts). 

Consider the extended system:

This system can be nonlinear even if the original system was linear (why?).

The Jacobian is

Nonhyperbolic equilibrium x = 0 with n0+1 eigenvalues on the imaginary axis and 
(n - n0) eigenvalues with nonzero real parts. 

We can apply the Center Manifold Theorem: a center manifold exists in 
the neighborhood of the critical value of the parameter

47

ẋ = f(x, µ), x ∈ Rn, µ ∈ R1.

µ̇ = 0
ẋ = f(x, µ)

J =
(

0 0
fµ(0, 0) fx(0, 0)

)
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Center manifolds in parameter-dependent systems

An example

48

ẋ = µx− x3

ẏ = −y
µ̇ = 0

ẋ = µx− x3

ẏ = −y 2D Center manifold

µ < 0 µ = 0 µ > 0
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Center manifolds in parameter-dependent systems

Saddle-node bifurcation (more in Lecture 6)

Hopf bifurcation (more in Lecture 6)

49
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Center manifolds in parameter-dependent systems

Fold bifurcation of limit cycles (more in Lecture 7)

Flip bifurcation of limit cycles (more in Lecture 7)

50
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Center manifolds in parameter-dependent systems

The analysis is the local and nonlinear terms can be reduced to polynomials (from 
second order up) and polynomial transformation can lead to very simple 
expressions (normal form theory). 

Generally, a translation of the parameter is also adopted

A similar procedure can be applied to the case of discrete systems as 
well:

51

yc,k+1 = Jc yc,k + Rc(hs(yc,k), hu(yc,k), yc,k)

µk+1 = µk
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ANALYSIS OF LOCAL BIFURCATIONS
NORMAL FORMS
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Normal forms

We have reduced the problem to the center manifold. For example for the 
continuous case:

We have to deal with the nonlinear part RC. Depending on it different bifurcation 
scenario will be encountered.

We now consider the problem of the classification of all possible local (i.e. near 
bifurcation boundaries in the parameter space and corresponding critical orbits in 
the phase space) bifurcation diagrams of generic systems 

For local bifurcations of equilibria and fixed points, universal bifurcation diagrams 
are provided by normal forms.

53

ẏc = Jc yc + Rc(hs(yc), hu(yc), yc)
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Normal forms

A normal form of a mathematical object, broadly speaking, is a 
simplified form of the object obtained by applying a transformation 
(often a change of coordinates) that is considered to preserve the 
essential features of the object. 

For instance, a matrix can be brought into Jordan normal form by applying a similarity 
transformation. 

Now we consider normal forms for autonomous systems of differential 
equations (vector fields or flows) near an equilibrium point. 

Similar ideas can be used for discrete-time dynamical systems near a fixed point, or 
for flows near a periodic orbit. 

54
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Normal forms

The idea of a normal form is to find a polynomial which would be topologically 
equivalent to a given system around a bifurcation point.

Questions

1. Can an equivalent polynomial be found, i.e., does it exist?

2. Is the normal form unique?

3. Which properties of the bifurcation determine the minimal degree of such a 
polynomial?

55

Given a bifurcation, a polynomial dynamical system                  is called a normal 
form of the bifurcation at (λ,x)=(λ0,x0) if it satisfies the generic bifurcation conditions, 

and is topologically equivalent to any system satisfying the same bifurcation 
conditions

DEFINITION

ẋ = f(x, λ)
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Normal forms

The method is local: the coordinate transformations are generated in the 
neighborhood of a known solution

The coordinate transformation will in general be nonlinear functions of the 
dependent variables

Solution of a series of linear problems

The structure of the normal form is determined entirely by the nature of the linear 
part of the vector field
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Normal forms

The first step in the reduction was to obtain the center manifold.

Our goal is to find an equivalent polynomial system for RC with as low degree as 
possible.

We would like to find a coordinate change

where pm is a homogeneous polynomial of degree m. Their coefficient are chosen to 
eliminate the largest number of nonlinear terms

The transformations leave the terms of degree less than m unaltered 

The transformation is locally a diffeomorphism and thus the tranformed system is 
topologically equivalent to the original system

The best one can hope is that the latter equation will be linear. 

We are at a bifurcation point and the linear part of f has zero real part 
eigenvalues. At such equilibrium point the linearization problem cannot 
be solved and there are (nonlinear) resonant terms in f which cannot be 
removed by coordinate change. 
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y = z + pm(z)
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Normal forms - Technicalities

On the center manifold

To eliminate second order terms one can use the transformation

With                                 one could eliminate all second order terms!
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ẏc = Jc yc + Rc(hs(yc), hu(yc), yc)

ẏc = Jc yc + F2,c(yc) + F3,c(yc) + ... + Fr−1,c(yc) + O (‖yc‖r)

yc = z + p2 (z)

ẏc = ż + Dp2(z)ż

(I + Dp2 (z)) ż = Jc z + Jc p2 (z) + F2,c(z) + F̃3,c(yc) + ... + F̃r−1,c(yc) + O (‖yr
c‖)

ż = (I + Dp2 (z))−1 (Jc z + Jc p2 (z) + F2,c(z) + F̃3,c(yc) + ... + F̃r−1,c(yc) + O (‖yr
c‖))

(I + Dp2 (z))−1 = I −Dp2 (z) + O
(
‖z‖2

)

ż = Jc z + Jc p2 (z) −Dp2 (z)Jc z + F2,c(z) + F̃3,c(z) + ... + F̃r−1,c(z) + O (‖z‖r)

L2
Jc

(p2 (z)) = − (Dp2 (z)Jc z − Jc p2 (z))

−L2
Jc

(p2 (z)) = F2,c(z)
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Normal forms - Technicalities

In the end one would obtain a reduced system with all second order terms 
eliminated or simplified

The same procedure can be applied to third order terms and so on...
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ż = Jc z + F r
2,c + F̃3,c(z) + ... + F̃r−1,c(z) + O (‖z‖r)
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Normal forms

Thus, bifurcations of “common” equilibrium points could be studied by analyzing 
the behavior of local bifurcations of low dimensional (1D or 2D) systems with 
nonlinear terms of second or third (when second degree term are nil) degree. 

Continuous systems 

One has to study a 1D system if only one eigenvalue has zero real part, or a 2D 
system if a conjugate pair of complex eigenvalues has zero real part. 

Discrete systems

One has to study a 1D system if only one Floquet multiplier has unit magnitude, or a 
2D system if a pair of conjugate of complex Floquet multipliers has unit magnitude
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Final remarks

The concept of topological equivalence

Structural stability: another kind of stability

Effect of parameter changes

Bifurcations as passage through structural instability

Catastrophic bifurcations

Center manifold theory to describe bifurcation in low dimensions

Normal forms: a way to classify bifurcations
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