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Abstract

This is a synoptic overview of a selection of works dealing with single diffusive structures, with their mutual interaction in
simple flows and their statistical modeling in complex flows. The focus is on reacting conditions pertaining to gaseous diffusion
flames, but isothermal structures are also described when they are of some conceptual interest. This paper considers only few
representative works for each subject, which are functional in explaining the key characteristics of the diffusive structures. The
extension, given to single subjects, is not weighed according to the number of related publications but on the relevance to the
basic understanding of the general framework concerning diffusion flames. One-dimensional structures are first discussed. They
are ordered according to the number of balance equation terms needed for their description. Two-dimensional (2D) structures
are then introduced following an order based on their convolution level. Some pioneering work on three-dimensional structures
is further quoted. The temporal evolution of simple structures in quiescent or simple flowing 2D systems is considered. The
latter case is exploited to present classification of diffusion-controlled mixing regimes. Modeling characterization approach of
turbulent diffusion flames is also described in order to yield a self-sufficient didactic presentation. The approach based on the
flame surface density model is specifically discussed because of its potential use in the determination of qualitative and
quantitative features of simple diffusion flames. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Diffusion flames; Mixing; Structure

Contents
1. Introduction .. ... ... ... 548
2. DefinitiONS . . .ottt 549
2.1. Conserved and material variables, traCeIS . . . . . . ... ..ttt i ettt et e 549
2.2. Reference surfaces . ......... ... ... 551
2.2.1. Eulerian surfaces (interface, isosurface) ............ ... . ... ... 551
2.2.2. Lagrangian surfaces (material, intermaterial) ................ ... ... .. ... .. .. 552
2.2.3. Eulerian—-Lagrangian surfaces .............. ... i 553
2.24. Surface evolution .. ... ... ... e 553
3. Methodological approaches . .. ... ... .. ... 555
3.1. Experimental approaches . . ... ... .. ... 555
3.2. Theoretical approaches . . . ... ... ... 555
3.3. Numerical approaches . . . . ... ..ottt e e e 556
4. Simple diffusion fields and flames . ... ... ... .. . .. 556
4.1. Simple 1D plane Structure . ... .. ... ...ttt 557
4.1.1. Unsteady, diffusive layers . ...... ... 557

* Corresponding author. Tel.: +39-81-768-2264; fax: +39-81-513-6936.
E-mail address: antcaval @unina.it (A. Cavaliere).

0360-1285/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0360-1285(00)00031-9



548 A. Cavaliere, R. Ragucci / Progress in Energy and Combustion Science 27 (2001) 547-585

4.1.2. Steady, convective, diffusive isothermal layer . ............ ... ... ... . ........ 558

4.1.3. Steady, convective, diffusive reactive layer . ... ........ ... ... ... ... 559

4.1.4. Unsteady, convective, diffusive layer . ........ .. .. ... . . . . . . . . . . . 561

4.1.5. Unsteady, convective, diffusive, reactive layer ............ ... ... ... . ... .... 562

4.1.6. Double diffusive layer . ... ... ... 563

4.2, 2D SITUCHUTES . . vt ottt et e e et e e e e e e e e e e e 564
4.2.1. Normal diffusion flames ... ... ... ... . . e 564

4.2.2. ‘Reverse’ and ‘inverse’ diffusion flames . .. ..... ... ... ... . Lo L L. 565

423, Triple flames . . . . . .. 566

4.2.4. Single VOItICES . . . oottt e 567

4.2.5. VOrtex Couples . .. ...t 568

4.3, BD SIUCIUIES . . o v vttt et e et e e e e e e e e e e e 569

5. Evolution of simple structures, their group behavior and classification of regimes ............... 570
5.1. 2D quiescent plane SYSLEIMS . . . . ..t v vttt e e 570
5.2, Simple 2D flow SYStBIMS . . . oot 571
5.2.1. 2D floOW SYSIEIMIS . . o o v ottt et e e e e 571

5.2.2. Classification of miXing regimes ... ... ... ... ..ottt 573

5.2.3. Evolution and statistics of 3D fields in 2D representations . . . .................... 574

530 Simple 3D SYSIEIMS . . . . v v vttt et e e e e e 574

6. ConclUSION . . ... 576
APPENAIX A L 577
Appendix B .. 578
ApPPendix C ... 578
Appendix D .. 579
Appendix E . . oo 581
References . .. ... 582

1. Introduction

Gaseous diffusion flames have been the main topic of
numerous papers and many reviews. A rich capital of
knowledge has been accumulated in a relatively disordered
way because of the great momentum related to the subject
from technological point of view with consequent haste to
achieve significant results. Historically, Burke and Schumann
[1] initiated the description of diffusion flames, with a remark-
able study of two-dimensional (2D) laminar flames, and
continued only years later with research related to one-
dimensional (1D) diffusion flames [2,3]. In contrast studies
on premixed laminar flames have followed an opposite route
facing, during the last two centuries, the gradual increase of
physical, chemical and mathematical difficulties [4].

The early analyses of 1D configurations relative to the
experimental [2], theoretical [5—7] and numerical studies [8]
have branched new research ways and have been added to the
previous ‘corpus’ of knowledge. Fruitful intersection with
other autonomous fields like fluid-dynamics (e.g. stirring,
mixing) [9-11] or mathematics (e.g. percolation [11], chaos
[12]) or chemical kinetics (e.g. new oxidative schemes for low
temperature and rich conditions), have generated different
types of analyses of gaseous diffusion flames. All of them
refer obviously to the same physics and chemistry, but some-
times they are difficult to be recognized by neophytes, who
deal for the first time with this topic. In other words, the large

body of literature obscures, at the first approach, the under-
standing of the mechanistic aspects of the process.

Review papers are also necessarily confined by the authors
to one methodological approach or to narrow classes of flame
configurations, which are themselves rich of different aspects
(or which deal with numerous types of fuels and external
conditions). It is hence difficult to review exhaustively all
the papers, published in a single field, and at the same time
to consider different approaches or different configurations.

One purpose of the present paper is to offer a review, which
tries to overcome this limit. In fact it covers a broad range of
aspects and is intended as a sort of hypertext linking different
specific reviews to which the reader is addressed for a deeper
understanding of each subject. Itis built as a systematic presen-
tation of ‘simple’ diffusion flames ordered according to their
complexity, expressed in terms of spatial dimensionality (one,
two or three-dimensional (3D)), of numbers of balance terms
added to diffusion (accumulation, convection, source terms)
and of number of simple structural units examined (single,
double, multiple mixing layers, etc.). Section 4 is completely
devoted to this presentation.

Section 5 deals with interactions between simple diffu-
sion structures in regimes which are more complex, but
which have not the full characteristics of turbulent ones.
These are the quiescent 2D fields and the 2D transitional
regimes, for which numerical simulation and quantitative
imaging are available.
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Nomenclature

A Strain rate

B Stratification parameter or Dold number
C Curvature

Caa Saturation factor

9 Mass diffusivity

h Sensitive enthalpy

h? Formation enthalpy of ith species
1 Integrated stretch rate

K Stretch rate

Kot Total stretch rate

Le Lewis number

I Premixed flame thickness

M; Molecular weight of ith species
)4 Pressure

Pr Prandtl number

Sc Schmidt number

SR Stretch ratio

t Time

T, Equilibrium maximum temperature
n Unity perpendicular vector

v Fluid-dynamic velocity

v Total velocity

Y Mass fraction of generic species

w Propagation speed

VA Mixture fraction

Zn Overall mixture fraction

Zy Stoichiometric mixture fraction

Greek symbols

a Thermal diffusivity

B A conserved variable per unit mass

1) Diftusive layer thickness

Om Diffusive isothermal layer thickness

o Unstretched diffusive layer thickness

0A Surface element

0y Diftusive layer thickness at Z

o; Physical reactive layer thickness

A, Interface separation distance

Y Stretching factor

v Kinematic diffusivity

X Dissipation rate

b Diffusive flux

p Density

pi Mass production rate for unit volume of ith
species

o Reactive layer thickness in Z space

% Surface density

& Boltzmann variable

A classification of the possible interactions in these
conditions is also given in the same section. This provides
a classification guideline of fully turbulent regimes.

A schematic representation of the sub-topics is reported in a
set of synthetic figures in order to make identification and
memorization of the subject easier. This is the outstanding
case of the 2D round jet flames, which is of great technological
relevance and it has been presented in many classical combus-
tion books [13—16]. Nevertheless, these flames are presented
here only as an example of diffusion flame structure and are
inserted in a single section together with wake flames.

Definitions of the less conventional quantities (like inter-
face and intermaterial surface) are given in the following
section together with more common definitions (conserved
variable, mixture fraction). The most general approach to
the analysis of diffusion flames is presented in Section 3 for
the sake of completeness even though it is widely dealt in
the literature.

Diffusion flames are commonly defined as processes in
which oxidizer and fuel are completely separated and
diffuse toward an oxidation region. It should be
emphasized that this name (diffusion flame) is also used
here for processes in which a minor part of the fuel under-
goes mixing without significant reaction activity. More
specifically, partially premixed flames are sometimes
included in some regimes or structure descriptions, but it
should be clear from the context that diffusion processes are
dominant in determining their evolution.

2. Definitions
2.1. Conserved and material variables, tracers

A variable is conserved if it obeys a source-free balance
equation; i.e. it is relative to a quantity which cannot be
created or destroyed, but only convected and diffused.
This statement is expressed in differential form according
to the following equation, reported with classical notation as
it can be found in many basic text books [13,14]

3
pa—[: +pv-VB=V(pZ5VB) =0 ¢y

in which B represents a conserved variable per unit mass.

According to basic physical principles, the total energy
and the total mass are conserved. In contrast, the energy
associated with a single species or the mass fraction of
species are not generally conserved, because they can
be converted in other forms of energy and in others kinds
of molecular species, respectively. Other examples of
conserved variables are the mass of an atomic species, if
atomic reaction can be neglected, or the quantities, which
are not conserved in principle, but which do not undergo
significant conversions in specific cases (for instance inert
species in complex reactive systems).

Conserved variables peculiar to the combustion field are
obtained as a linear combination of some non-conserved
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Fig. 1. Interfaces sequence of a transitional isothermal jet (after Cavaliere et al. [21]).

variables. They are described as ‘coupling functions’ or
Schvab—Zel’dovich variables [13,14] and are generally
used as a combination of mass fractions of the whole fuel
and oxidizer, which can be thought as reacting in a single
step and in a fixed stoichiometric ratio. Generalization of
this kind of coupled—conserved variable also can be
obtained for multi-component media and for combination
of molecular species and formation enthalpy. In the latter
case a free-source conservation equation of the total
enthalpy (including of sensible and formation enthalpies)
is considered.

A normalized form of a conserved variable can be
defined, in terms of a mixture fraction, as

7 = Bi — Box 2)

Br — Box

subscripts 1, f, ox, stand for local, fuel and oxidizer, respec-
tively. Therefore, corresponding conserved variables (83,
Bi, Box) are defined at all points of mixing flows (subscript
1), in the unmixed fuel flow (subscript f) and in the unmixed
oxidizer flow (subscript ox), respectively. It is of interest to
note, according to the demonstration reported by Peters [4]
(Appendix A), that:

1. this definition is also used in the case of partially
premixed flames when some oxidizer is present in the
fuel as a minor component and fuel is present in the
oxidizer flow;

2. the definition is also used when the two streams are
diluted with inert species;

3. the values of the mixture fractions, referred to different
conserved variables, are equal when they diffuse with the
same rate.

Mixture fraction (Z) complies with the same conservation
equation of any conserved variable (), since they differ for
fixed quantities, (Box/(Bf — Box)), disappearing in the differ-
entiation and for a factor, 1/(B; — Box), Which can be
neglected because it is present in all the terms of the conser-

vation equation. In other words, Eq. (1) applies also to
the mixture fraction when the symbol B is changed with
symbol Z.

The sum of the first two terms in Eq. (1), divided by the
density, is designated in the literature as material or substan-
tial derivative. It is cited in the following as D(-)/Dt and it
defines a ‘material’ variable, 8\ when Eq. (1) can be written
as
DBv _ 9Bwm

Dr — ar +vVBy=0 3)

An example of material variable, which will be used in
the following, is the mass fraction of a tracer. This last
quantity is defined as an inert substance, uniformly
dispersed in part of the flow, in such a weak concentration
that the thermal and fluid-dynamic evolution of the flow is
not altered.

In agreement with Ottino [17] the tracer should not only
be non-diffusing but should also be transported at mean field
velocity. In this way the tracer’s mass fraction, Y, will be
constant in time, and therefore the material derivative of Y,
will be zero.

It is quite difficult to produce this kind of tracer under
experimental conditions in order to seed a gaseous flow also
because the tracer cannot be a gas, as gases, by definition,
diffuse. Neither can the tracer be a solid particle of such
large dimensions to be unable to immediately respond to
accelerations in the average flow. In effect the only tracer,
which has features which are close to those described in the
definition above, is a particle for which the Stokes number is
less than unity [18] and for which the Schmidt number is
greater than 1000 [19]. A particle, for instance, between 0.1
and 1 pm is sufficiently large in dimension to ensure that
Brownian diffusion is low, but it is sufficiently small to
immediately follow a flow. At times the term ‘tracer’ refers
to a diffusive substance (generally featuring a molecular
diffusion coefficient equal to the mean coefficient of the
substances into which it must diffuse). In such cases it is
always better to specify ‘diffusive tracer’ in order to avoid
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Fig. 2. (a) Example of material surface evolution. (b) Schematic of intermaterial surface evolution. Two material surfaces are selected on the

interfaces at time 7, and t,.

any ambiguity between this and the initial definition.
Finally, it is necessary to specify that, in theory, the injection
of a tracer into a known flow field is a very simple concept
because every particle of the tracer follows the trajectory of
a massless point. In practice the integration of the material
derivative (DY/Dt) in time can present problems associated
with the possible chaotic evolution of the trajectories [9].
This is true too when the flow field is well defined as in
laminar fields. This behavior is designated Lagrangian
turbulence [20].

2.2. Reference surfaces

2.2.1. Eulerian surfaces (interface, isosurface)

When a non-diffusive tracer is introduced into part of the
flow it determines an interface. This is the surface of the
flow where the concentration of the tracer is discontinuous,
that is where it passes from zero to a finite value on an
infinitely thin surface. In other words, an interface is the
place of the points in space where VY is infinite.

Examples of interfaces are shown in Fig. 1 [21]. They are
obtained by seeding the central part of a 2D plane jet by
means of TiO, sub-micronic particles. The concentration of
the particles is measured by means of elastic light scattering.
White corresponds to an area in which the tracer concentra-
tion is zero. Black corresponds to an area in which the tracer
concentration is equal to that fixed at injection. It is inter-
esting to note that the tracer substance concentration in a
material volume cannot, by definition, vary in time. In
contrast an Eulerian, fixed, non-infinitesimal volume may
contain a tracer quantity which is different according to the
volume filling with the part of the flow, which has been
‘traced’. If the resolution, through which the spatial disper-
sion of the tracer is observed, is limited, the concentration
itself seems to change point by point and even the interface
appears as a continuous variation of the tracer concentration.
It is also possible that, in practice, the tracer concentration is
so weak that its presence is hardly detectable. This happens

when the tracer is transported in filamented structures so
thin that its continuous distribution does not occur. Despite
these experimental difficulties, the interface is a character-
istic of the dispersion of one gas into another which is easily
measurable, because it possesses a clearly Eulerian nature.
In fact, it is possible at any time to obtain a measurement
without worrying about the intricate Lagrangian evolution
of the particles.

Usually the term ‘stirring’ is applied to the process that
leads to extension and dispersion of the interface, in as much
as diffusion processes are not used because stirring is purely
convective.

Isosurfaces, or isolevel surfaces [22,23], are surfaces on
which scalars are constant. Isobars or isotherms, which refer
to pressure or temperature isosurfaces, are commonly used.
On the other hand the terms isoconcentration or mass
isofraction, are rarely employed. For the sake of brevity in
this paper, isosurfaces will be referred to the scalar mixture
fraction, Z. Isosurfaces move with respect to the fluid that
transports them at a relative propagation speed w, whose
orientation and direction are given by the unit vector n,
perpendicular to isosurface and oriented toward lower
values of Z. Its absolute value is given by the material
derivative, with respect to a reference moving with the
fluid velocity, of the position of the material point (Dx/Dr),
divided by its gradient (VZ = DZ/Dx). According to this
position, Gibson [23] has derived a relation which is also
discussed by Pope [22]

)

lwy| =

Dx, Dz(Dz\' V2
Dr E(DT) Stz

In fact, the material derivative of the mixture fraction,
DZ/Dt, in Eq. (4) is equal to 2,V 27 for incompressible
flows. A second relation between the propagation speed
w, and the mixture fraction field is obtained by expliciting
the gradient VZ = —n|VZ| in Eq. (4).

The divergence of the product n|VZ] is, then, expressed
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Fig. 3. (a) Sequence of progressive isosurfaces (solid contour on the left of the vertical lines) and of progressive interfaces (dotted lines). (after
Cavaliere et al. [21,24]). (b) Linear extension of progressive interface (line 1) and isosurfaces (lines: 2 at Z = 0.05,3 at Z = 0.95,4 at Z = 0.5,

5 at Z = 0.391) section versus residence time.

according to the following equation:

2, D, 9
— —VZ-9,C 5

Iwz| =

This equation is relevant because it shows that the isosur-
face propagates by means of two mechanisms. The first is
driven by the mixture fraction inhomogenity perpendicular
to the isosurface and to its non-linear distribution. The
second is related to the curvature of the isosurface,
expressed by C = V-n. Kinematics of isosurfaces is fully
described in the papers from Pope [22] and Gibson [23],
where possible discontinuity and annihilation of these
surfaces are also discussed.

2.2.2. Lagrangian surfaces (material, intermaterial)
Surface is considered material when it is made up of
points identified by a tracer. In other words a surface is
material when it follows a material evolution [23]. Consider,
for example, a 2D surface at time 7, as it is sketched through
its linear section in Fig. 2a. Every point of the surface
follows a definite trajectory. At time t all these points
together will make up a new surface which besides being
translated and rotated is also extended or contracted. In the
aforementioned figure material surfaces are sketched start-
ing from a surface arbitrarily fixed at the point #,. In theory a
material surface cannot became discontinuous even if in
practice its detection can be subject to the limits already
discussed in conjunction with the interface. Surface stretch-

ing is defined as the temporary evolution of the surface area.
The stretch ratio, or SR, is the ratio between the material
surface area at time ¢ and the area at time f,, for which SR =
BA(1)/8A(ty).

The stretch rate K3, is the relative change of the stretch
ratio, SR

D 1 DA
Ksy = — InSR= —

Dt 6A Dt ©

The surface stretch rate is linked to the velocity pattern of
the flow, in which it evolves, by the following kinematic
relationship, fully detailed in Appendix B:

Ksy =V-v—Vv:nn @)

where n and v are the normal unit vector and the velocity
vector of the surface 8A, respectively. This expression can
be read in an heuristic way as the difference between a
volumetric stretch, Ksy, and a linear one, Ks,, bearing in
mind that the stretch rate is additive by virtue of its
logarithmic nature. The definitions of volumetric Ky and
linear Ky, stretch rates and their kinematic expressions are
given below for completeness

1 D&V
Kyy= — — =
Y8V Dr ®
1 Dél
K =Vv:nn )

T8l Dr
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It is also possible to demonstrate (see last part of
Appendix B) that

Ksa = Vv, —v,C (10)

where v, and v, are the projection of the velocity vector v on
the surface 6A and the modulus of the projection v, along
the normal to the surface, respectively, V, the divergence
operator on the surface 6A and C its curvature. This last
expression shows that the stretch rate consists both of a
contribution related to the ‘planar divergence’ of velocities
on the surface and of a contribution related to the surface
curvature.

An intermaterial surface is a material surface defined at
time 7, on the interface. In general intermaterial surfaces of
practical interest are those partially limited by the first
contact point (or line). By first contact point (or line) we
mean the point (or line) of the interface through which the
tracer passes with the shortest residence time. In a jet, for
instance, the first contact line is the border of the jet’s exit
orifice. In fact all the possible interfaces, obtained by plot-
ting the jet, pass through the side of the jet’s orifice at
residence time of practically zero. In the opposite jets the
first point of contact is the stagnation point.

An example of an intermaterial line is shown in Fig. 2b.
The same lines, used as example of material surface sections
on the left side, are shown again together with the interfaces
at time fq and #,, sketched as red lines between the seeded
(black) and unseeded (white) flows.

2.2.3. Eulerian—Lagrangian surfaces

Interfaces and isosurfaces are here defined ‘progressive’
when they refer to tracers which are injected at the in-flow
boundary after a fixed reference time, #,. They are easy to be
envisaged from a conceptual viewpoint, but difficult to be
evaluated by means of numerical models or experimental
techniques.

In the Direct Numerical Simulation of a planar 2D flow,
given in Fig. 3a, a species A, which is injected at an average
velocity V4 = 1.4 m/s into an external flow, B, which
proceeds with average velocity Vg = 0.14 m/s.

Details, concerning the flow configuration [21] and
computational scheme can be found in the original article
[24]. The point of interest is that at time f#, non-diffusive
massless particles are injected at the boundary in the rim
which separates the two flows and they are convected down-
stream. The interpolating curve, shown as a solid line, deter-
mines the progressive interface at times f;...7s.

This surface is Eulerian because it is part of an Eulerian
surface, i.e. an interface, and it is Lagrangian because it is
bounded on one side by the tracer which is injected at time 7y
and which proceeds towards the outlet. This border line (or
point, as in the 2D example) can be defined as ‘leading line’
(or point) at a generic residence time, z. The progressive
interface always increases, with time, by definition, but
the increasing rate depends on the stretch to which it is
submitted. Its extension, in the example given here, is

reported in Fig. 3b as a function of time with the line tagged
‘1.

The progressive isosurfaces of the example reported in
Fig. 3a can be approximated by the part of isosurfaces,
which are upstream of the leading point of the flows, i.e.
on the left side of the thick line which crosses this point
perpendicularly to the main flow direction. They refer to a
fixed mixture fraction, approximately corresponding to the
stoichiometric value of a large paraffin—air flame, i.e. Z =
0.05. This is a relevant value, because it refers to a mixture
fraction in the peripheral part of the mixing layer. The
extension of the progressive isosurface with time is reported
in Fig. 3b as line ‘2’. This overlaps the progressive interface
up to time 7, showing that the extension of the two surfaces
is identical. It then increases at a slower rate for reasons that
will be clarified below. One of this consists in the fact that
progressive isosurface may undergo an annihilation process
when two parts of it merge into each other.

Curve ‘3°, ‘4’ and ‘5’ (referred to progressive isosurface
at mixture fraction Z = 0.95, Z = 0.5 and Z = 0.38) show
similar behavior with respect to that relative to Z = 0.05
with different splitting time at which they separate from
the progressive interface. The splitting time of the surface
at Z = 0.38 is also marked on the abscissa with £, because
of its relevance in mixing classification, which will be
presented in Section 5.

Progressive interface and isosurface are quantities, which
only recently have been defined, and their experimental
evaluation is not extensively documented. However, it is
clear that the difficulty in their measurement lies in their
Lagrangian nature. In fact, the detection feasibility of the
progressive isosurface depends on the possibility of inject-
ing non-diffusive and diffusive tracers starting from the arbi-
trary time #,. This is a difficult task if the transition, from
absence to presence of tracer, has to be ensured at the same
time on the whole inflow boundary. Furthermore, the tracer
injection at the inlet boundary can interfere with fluid-
dynamic inflow conditions and it cannot be anticipated
upstream of the boundary without pre-stirring or pre-mixing
the traced and non-traced flows. Techniques based on smoke
wire devices or on photochromic tracers, that change their
physical/optical properties when crossing a light sheet on
the boundary, are possible candidates to generate identifi-
able progressive interfaces and isosurfaces.

2.2.4. Surface evolution

The different types of surfaces defined in the previous
section can be properly exploited in a framework which
included all their relations both with kinematic properties,
also previously defined, and with semi-empirical character-
istics which can be obtained either by experimental or
numerical analysis partly presented in the following.

This type of methodological approach has been first intro-
duced by Marble and Broadwell [25] and explored in a
systematic way by Candel and co-workers [26-30] in
order to show the potentials of coherent flame description.
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The ensemble of these works has yielded a framework
which in time has given the evolution equation of the
surface density which is here presented following the
more formal formulation of this equation given by Pope
[22] and Trouve et al. [31]

SA (8A,) (QdA1)
Z=< Z>=—4L; (o) = 22 (11

< 8V 8V (8A,)
i)
-§+VW%ﬁw=w%§z (12)

(Ws) =v + (s

vz
s = s + omst ¥ Pz (13)
ne V2
VZ|

(I(V>5"Zj = <VV —Vv: rll'l)S'ZlY

<Ktot> _ <KV> + <Kw>
’ * S{ (K")s.z. = wVm)g,

(14)

The surface density, 3 is defined in Eq. (11) according
to Pope [22] and Trouve et al. [31], as the expected ratio of
surface area, Az, with respect to the infinitesimal volume,
6V, at fixed Eulerian position, which contains 6,. Surfaces
of interest are isosurfaces, intermaterial surfaces and propa-
gating surfaces, as premixed flame fronts. This presentation
deals with the isosurfaces at fixed mixture fraction value, as
it is quoted in the equation by means of the apex. A different
interpretation of the isosurface density at Z = Z’ is given
[22,31-33] in terms of the first moment of the joint prob-
ability function of mixture fraction and of its gradient,
pdf(Z ''VZ,r,1),o0r, equivalently, with respect to the module
of the gradient as pdf(Z'XVZ|,_z).

The evolution equation is also reported, Eq. (12), as it has
been obtained by the authors referenced before [22,31-33].
It is quite similar to any balance equation with a transport
term analogous to the convective one, in which the fluid-
dynamic velocity is substituted with the total velocity (v**')s.
This is, in turn, the sum of the fluid-dynamic velocity, (v)g,
and the isosurface propagation velocity, (wn)g. The isosur-
face density production is reported on the right side of the
evolution equation as the product of 3 itself and the stretch
rate, (K'*). This quantity also consists of two contributions,
i.e. the fluid-dynamic one, (K")s, and that related to isosur-
face propagation, (K")s. All the aforementioned quantities
are referred to area-weighted ensemble averages and their
equivalent form in terms of kinematic and scalar field vari-
ables (v, Z) are also reported in Egs. (13) and (14), as they
have been determined in Egs. (4), (7) and (10). It is worth
noting that the velocity is decomposed in the Reynolds aver-
aged and the fluctuating component. The surface mean of
the first is the average itself under the hypothesis of ergo-
dicity, (v)g = ¥, while the ensemble average of the fluctua-

tion may be different from zero, because it is area-weighted.
The evolution equation can be derived only in absence of
singularities, critical points, internal edges, self-intersection
(properties of surface regularity) [22]. The last property
entails that annihilation process of different parts of the
isosurface is not included in the equation and that an
‘empirical’ term should be added in order to account for
this important mechanism.

The relationship between the isosurface dynamics at fixed
mixture fraction value, Z', and the diffusion flame in turbu-
lent fields is simple. In fact, the isosurface at stoichiometric
condition can be considered as the skeleton of the process.
The whole reaction process is concentrated in this structure,
in the asymptotic limit, or part of it is centered in the react-
ing layer, where high-temperature oxidation takes place.
The distribution of the stretch rates along the isosurface
affects the oxidation rate in such a way that it determines
the presence or absence of the flame and the partition of the
isosurface in reacting or non-reacting components. Other
elementary flame structures are related to single level
isosurface. For instance triple flames are expected to propa-
gate along this surface [34] in partially premixed turbulent
flames. Similar concepts based on structure identification,
are devised for premixed turbulent combustions, in terms of
an evolution equation of a scalar quantity [35,36], usually
named ‘F’ (field equation) or ‘G’ (G-equation). The
relationship between this equation and the surface density
equation is given by the aforementioned equivalence
between the expected scalar gradient and the surface
density. Therefore the gradient of the G-equation, multi-
plied, in scalar way, for the scalar gradient may be straightly
related to the surface density [33]. Flame surface density
models like the Coherent Flame Models (CFM) [25,32,33]
are now widely used and continuously updated. Different
types of surfaces may be of interest in the future, like inter-
faces because of their relation with the mixing. Different
topological properties could be analyzed for the choice of
different regimes in which the CFM have to be applied. For
instance connectedness could be of interest for localizing
the regions where flames could propagate starting from an
ignition point.

Preliminary works have been presented, in which single
terms involved in the surface equation have been modeled
[37,38].

A very final comment is addressed to the emphasis given
to the topic dealt in this section. This is stressed in the paper,
because it exploits several kinematics quantities, which will
be used along the whole presentation and therefore it shows
the suitability of this approach to give a conceptual frame-
work for the analysis of diffusion flames. Anyway it should
be clear that the modeling of the quantities, as just
described, is a very hard task and pose similar problems to
those related to different approaches. In this sense the
equivalence of the surface density with statistical moment
of the joint probability density function of Z and grad(Z) or
with the dissipation rate y (presented in the following) is the
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link with the approach of two variable pdf as it has been
described by Meyers and Brian [39].

3. Methodological approaches

The approaches, quoted in this section, apply to any kinds
of diffusive structures and they have provided the basic
understanding of diffusion flames. Therefore, independently
on their potentials in quantitative prediction, which are rele-
vant too, they are of interest as conceptual guides in this
field and in the formulation of more complex models.
Furthermore they are pervasive in the descriptions of all
the simple structures, presented in the following, and as
matter of fact, they will appear in different forms several
times. A reading of the fundamental works mentioned in this
section, before and after reading of this paper, can give the
double perspective of the whole field of diffusion flames,
based on a deductive and inductive way of presentation. In
particular the first parts of reviews published in this journal
[40,41] are of interest in relation to any laminar diffusion
flames while they address the wider field of turbulent flames.

3.1. Experimental approaches

The specificity of the experimental investigations devoted
to gaseous diffusion flames is related to the capability of
measuring the quantities defined in the previous section.
The determination of mixture fraction and reference
surfaces is particularly useful. All other measurements,
such as temperature, velocity and concentration, are impor-
tant both for diffusion flames and for other combustion
systems, so that, they will be treated only when they are
tightly related to mixture fraction or reference surfaces.

Comprehensive reviews on the measurement of scalars in
turbulent diffusion flames have been presented by Stepowski
[42] and by Masri et al. [43] in this journal. Measurements
are necessarily based on optical diagnostics because high
spatial and temporal resolutions are needed. Techniques
relying on laser assisted, elastic and anelastic scattering
are mainly used for this purpose. Among these, Raman
measurements are mainly exploited, in studies of unconfined
jet flames [44], because of their capability of simultaneous
measurements of multi-species concentration and tempera-
ture.

Multi-point measurements of a single scalar quantity
belong to three relevant categories of interest in gaseous
diffusion flames. The first one is the measure of scalar gradi-
ent, the second one is the detection of isolevel surface with
constant concentration of conserved (or material) variable
and the third one is the detection of Lagrangian measurable.

The first two categories differ from each other only by the
spatial domain extent. In fact the first one can be performed
around different points with a limited number of highly
resolved spatial sampled points, whereas the second is
usually applied to wider domains with spatial integration.

They can be performed in principle in 2D or 3D space. In
practice they have been performed only in 1D [45] or 2D
space [46] for tracer which are approximately conserved.
For instance, mainly oxygenated organic compounds [47]
have been used as tracers because they are capable of yield-
ing fluorescence signals which may be related to their
concentration, but, of course they cannot survive in highly
oxidative zones. They are not conserved tracers in regions
where fuel has been burnt. Other choices for tracers have
been proposed and are under study [48] but they are related
to multi-measurement techniques and therefore present
some problems for their use in determining gradients or
isosurfaces. It is of interest to note that the early review of
Hanson on the subject of quantitative visualization [49] has
not been followed by others, specific in the combustion
field, in more recent times.

The third category relative to Lagrangian measurements
is mentioned here for its great potentials in characterizing
mixing flow, but very rare works can be quoted in it, because
the measure of Lagrangian quantities is very difficult. In fact it
should be performed in 3D space with aforementioned diag-
nostics difficulty or in very 2D case, in which the sampled
material point do not leave the plane on which the measure-
ment is performed. For instance, the intermaterial surfaces, as
they have been defined before, have been measured with a
limited approximation in a 2D transitional flow [24].

3.2. Theoretical approaches

The first general approach, which is mandatory to
mention, attains to the description of slowly evolving diffu-
sion field and it is related to flames in which the chemical
species and the temperatures are univocally linked to the
local mixture fraction. The local velocity and diffusion
rates have no explicit role in determining reaction rates
and flame structures are reconstructed by superposition of
thermochemical variables on the mixing field. Three types
of relationships between mixture fractions and these vari-
ables have been presented in several forms in the literature:

(i) temperature and composition are fixed at the stoichio-
metric mixture fraction and a linear mixing law is consid-
ered between this condition and the two unmixed conditions
(frozen flow). The early model, proposed by Burke and
Schumann [1], assumes the complete conversion of the
fuel in the highest level oxidation at the stoichiometric
values, with the consequent assumption of adiabatic
temperature in correspondence of these values and of
absence of fuel as well as partially oxidized products in
the oxidizer (and vice versa). No principles restrictions
prevent from assuming an other composition (for instance
an equilibrium one) restricted to a single mixture fraction
condition (stoichiometric or non-stoichiometric) or to
other compositions (for instance determined by means
of a two-steps, irreversible, infinite rate mechanism)
occurring in two mixture fraction conditions [50].
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(ii) equilibrium temperature and compositions are consid-
ered at each mixture fraction [6,51,52]. This assumption
is based on the hypothesis that oxidation and reduction
reactions can occur in the whole reacting field and they
instantaneously equilibrate the reactants and products
concentrations.

(iii) equilibrium temperature and composition are consid-
ered in a limited domain of the mixture fraction, where
the whole oxidation activity is assumed to occur with a
very fast reaction rate. Outside this range a frozen flow is
hypothesized with consequent linear mixing between
reactive region boundaries and unmixed conditions,
analogously to the first model [53].

A second theoretical approach, which has been widely
used for the analysis of premixed laminar flames [54,55],
is based on activation-energy asymptotics [56,57]. It has
been firstly used for the analysis of 1D diffusion flames, in
which one step [5] or more than one step [58] Arrhenius
reactions develop in a diffusion field. The merit of this type
of analysis consists in the analytical evaluation of different
flames regimes depending on the Damkohler number or on
some other parameters which be a measure of diffusive—
convective rates respect to reaction rates.

Finally the transformation from a coordinate system with
spatial coordinates into a system including a mixture frac-
tion coordinate has to be mentioned as autonomous signifi-
cant theoretical approach [40,41,51,52,59]. The new
reference system is obtained under assumption that one
coordinate is perpendicular to surface at constant mixture
fraction. The further assumption, that the terms, in which
this coordinate appears, are of higher order respect to those
depending on other coordinate in the reactive layer, allows
to formulate the evolution of a reacting—diffusing field
through balance equations in two variables, one spatial coor-
dinate and the mixture fraction coordinate. The two vari-
ables can be expressed, equivalently, in terms of the mixture
fraction and a new combined one, named dissipation rates of
the mixture fraction [40,41,51,52,59].

A parametrization of the second variable dissipation rate
is suggested in such a way that it be evaluated in a finite
number of conditions either at the stoichiometric [41] or the
maximum temperature location [41,50] for simplified fluid-
dynamic conditions. All the thermochemical variables are
thought dependent on the variable mixture fractions and on
the parametrized dissipation rates in these selected represen-
tative conditions. This approach is named the flamelet
approach [59] and it is of great interest since it allows to
exploit data collection, also by means of simple diffusive
reactive field numerical simulations, in order to generate
ensemble of representative data on which statistics can be
performed [60] for more complex reactive turbulent fields.

3.3. Numerical approaches

The characterization of laminar diffusion flames has

received great benefit from the numerical studies on the
subject [61], even though detailed kinetic schemes have
been firstly developed and used in connection to premixed
flames [62,63]. The computational improvement of com-
puters as well as of numerical procedures has made possible
the direct simulation of diffusing controlled structures at
larger and larger Reynolds numbers with increasing level
of spatial and temporal detail.

A comprehensive review of the direct numerical simula-
tion applied to reactive flows, in the framework of more
general ‘model-free’ simulations, is presented in this journal
by Givi [64]. It is of interest to mention, according to the
author of this paper, that the relation between the number of
the computational cells, needed to resolve all fluid-dynamic
scales, and the Reynolds number evaluated, on the length
comparable with the whole domain, is proportional to Re**
for each spatial dimension, at least in the considered con-
ditions [64,65]. This entails that the number of cells is Re®*
for 2D structures and Re”* for 3D structures. In other words
a fixed number of grid points allows to resolve all the scales
of 2D and 3D flows which differs from each other in the
Reynolds number for three orders of magnitude. This state-
ment is not strictly correct, because the aforementioned
relationship is based on the assumption of local isotropic,
homogeneous, equilibrium turbulence, which is related to
3D flows at very high Reynolds number. Nevertheless, the
statement is relevant for the qualitative implication that 2D
flows can be spatially resolved with much higher resolution
respect to 3D flows up to a range of Reynolds number, at
which transition both from laminar to turbulent regimes and
from 2D to 3D flows occurs. These flows are of interest
because they can be fully characterized and in the same
time they present some characteristics typical of turbulent
flows. In fact they are multi-scalar, but on a limited range,
and they are dissipative, but on resolvable scales. This last
property is responsible also of the chaotic nature of these
flows, because the dissipative regions, linked in a particular
way [12] through hyperbolic manifold, are the locations of
positive exponential stretching of material line and surface.
In other words, these regions are the locations from which
trajectories of the material points with a high sensitivity to
the initial conditions originate. The regimes, in which lami-
nar deterministic Eulerian conditions and chaotic Lagran-
gian behaviors simultaneously occur, are also named ‘weak
turbulent’ or ‘Lagrangian turbulent’ [20]. In a broad sense
these flows are related to the transitional regimes and the
diffusion flames stabilized in them are named transitional
flames. A thorough review of this subject is given by Takeno
[66] on the basis of numerical simulation.

4. Simple diffusion fields and flames

The presentation order of topics dealt with in this section
is based on dimensionality of the structures. One whole
section is devoted to each dimensionality. 1D structures
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Fig. 4. 1D spatial distribution of mixture fraction according to Egs. (a)—(c) as solution of the equation reported above. In the lower part, plot of

the error function.

are, in turn, ordered according to the number of terms
present in the balance equations, which describe them and
2D structures are ordered according to their level of convo-
lution. Some particular boundaries of the paper have to be
stressed. The only 1D structures considered are planar since
they show with sufficient details the main fluid-dynamic
influence on the diffusion flames. While the relevance of
the flame curvature can be, in principle, appropriately
studied in these types of structures this has not been the
case of diffusion flames, in contrast with premixed flames.
This is because deflagrations proceed as spherical waves
from a point ignition source whereas the interest in gaseous
diffusion flames has originally been generated by the use of
2D flow systems.

1D spherical-symmetric diffusion flames are dealt with
in several papers when they refer to fuel droplet combustion,
and specialized reviews are devoted to the topic [67] with
emphasis on the specificity of the liquid presence. Never-
theless spherically symmetric gaseous flames have their
autonomous interest, for the study both of curvature effect,
as mentioned before, and of their relatively easy use in
microgravity environment [68,69,70].  Cylindrically
symmetric flames (named tubular flames) have also been
studied [71].

Electromagnetic and gravitational fields have not been
explicitly considered in the presentation of the structures
given below. The first field yields both the electrical body
forces on ions and electrons [72] in the low frequency range
and the radiative fluxes in thermal heat transfer at higher
frequencies [69]. The second field is responsible of buoy-
ancy effects relevant in many 2D stabilization mechanisms
[73,74] and in the vortex dynamics of diffusion flame
[75,76] The papers, quoted above in relation to these fields,

can be considered useful entry-points for a thorough study
of these topics.

4.1. Simple 1D plane structure

4.1.1. Unsteady, diffusive layers
A 1D unsteady diffusive layer is described by the equa-
tion

0Z

o - 9vV?z=0 (15)

This is the conservation equation of the mixture fraction
in non-reactive conditions and for constant density. If the
initial condition (at ¢t = #;) is a step function (plotted as a
thick line in Fig. 4) the evolution of Z can be obtained from
the conventional integration of Z as fully explained in
Appendix C. The integration exploits the so-called Boltz-
mann variable & = XINADt [77], i.e. a combination of x and
t. Thus with the boundary conditions Z(x = 0) = Z; and
Z(x — 00) = Z,, a solution is obtained based on the error
function (Eq. (a) in Fig. 4).

In the bottom part of Fig. 4 the error function plot is
reported. It shows that erf(§) is zero for & = 0, rises linearly
for values smaller than 0.6, and then it approaches asymp-
totically 1. It is of interest to note that, for values ¢ < 1, the
approximation erf(£? ~ £is valid within a 16% inaccuracy,
being erf(1) = 0.84. An approximate expression of the
thickness of the incompressible diffusive isothermal layer
On is given by the value of x corresponding to Z = 0.08 or
Z = 0.92. This is given by 8¢9, = V421 which is exactly
the quantity by which the x variable is scaled to give the
Boltzmann variable. Therefore & = x/\/491 = x/8,, is equal
to O at the center of the diffusive layer, and is equal to 1 in
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Fig. 5. Schematic of opposed laminar jets (left side), velocity distribution (central part) and mixture fraction distribution (central part) along the
x-axis according to Egs. (a)—(c). Egs. (a) and (b) obtained as solutions of the equation above. Eq. (d) is the enthalpy balance under the
hypothesis of Section 4.1.2 in terms of the mixture fraction dissipation rate of Eq. (e).

the marginal areas where 2 assumes the values of Z = 0.08
or Z = 0.92. 8, is defined as the thickness of the diffusive
layer. It grows in as /42t or it moves at speed

w = VAD2-1t = VDIt (16)

To authors knowledge, there are no experimental or
numerical works that describe the evolution of the reactive
part of this type of diffusive layer in combustion conditions.

It is easy to presume that in the case of infinite reaction
rate, the whole oxidation is concentrated on one surface, at
Z = Z, infinitely thin and located at a distance from the
reference station equal to 0 . Since Z is between 0.05 and
0.08 for many paraffins [4,43] the flame is generally located
on the edge of the diffusive layer. It moves further and
further away from the interface, located at Z = Z, by
definition.

When the reactive layer is not infinitely thin but possesses
a thickness o within the mixture fraction interval [4], it is
possible to deduce a physical thickness for it, by means of
derivative of Z with respect to x as reported in the following
equation:

9z _dZdf lie*(‘z/@zn)i 17)
dx dé¢ dx 2w Om

This is obtained taking into account that the error function
derivative is equal to the integrand of the function multi-
plied by the pre-exponential factor. Finally it is possible to
equate the derivative of Z with the expression o/8,, where &,
is the physical thickness of the reactive layer. In the hypoth-
esis of the linearity of Z, the derivative is in fact equal to the
ratio of ¢ and §,.

Furthermore, bearing in mind that the reactive layer is on
the edge of the diffusive layer, it is possible to determine the

derivative of Z at a value of x equal to &,

Z=24= x4 =0, (18)

Treact _ 92 1 1

5 dx|“_ e\T 8y
From the first equation it is determined that 6, = 506, or
rather that the reactive layer is equal to the thickness of the
diffusive layer multiplied by five times the ‘thickness of the
flame’ in the mixture fraction domain (o). The o value for
fuels as methane or hydrogen has been evaluated to be less
than 0.02 [4] thus &, is less than 6,,/10. A numerical example
can give some idea of the possible extension of &,. Let us
consider the case in which the diffusive layer evolves over a
time of one second and that the diffusion coefficient is & =
1073 mzsfl, 8, will extend for 1072 m, whilst the reactive
layer (for a paraffin) would be in the order of 10> m.

19)

4.1.2. Steady, convective, diffusive isothermal layer

A steady mixing layer can be created only if the convec-
tive transport counterbalances the natural growth of the
layer. It is hard to figure out a fluid-dynamic field, which
is described by the equation reported in the frame of Fig. 5.
This condition is satisfied partially along the symmetry axis
(or plane) of an incompressible field in which the velocity
component perpendicular to the x-axis is negligible. Such
field can be generated by a potential divergent stagnation
flow configuration, yielded by two opposed jets, sketched in
Fig. 5 by means of the streamlines (solid lines with arrows),
originating from a direction parallel to the x-axis [78,79].
The velocity component parallel to the axis («) will be given
by the Eq. (a) [78] therefore it decreases along the stream-
lines around the symmetry axis from infinity toward the
coordinate origin, around which it will be nearly negligible.
From this point the streamlines diverge and are oriented
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Fig. 6. Schematic of diffusion flame (shaded area) in an opposed configuration (left side). Velocity distribution (central part) and molar fraction
dissipation rate/temperature distribution (right side) along the x-axis. Enthalpy balance under the hypotheses of Section 4.1.3 is reported in the
equation above and in Eq. (a) in terms of mixture fraction dissipation rate of Eq. (b).

along the y direction. Such fluid-dynamic configuration is
known in the theory of dynamic system as an elliptic point to
which some properties of Lagrangian non-stability are
related [12]. A surface perpendicular to the symmetry axis
undergoes an extension with constant stretch rate (exponen-
tial stretch ratio, according to the integration of Eq. (6)),
related to a component of the strain rate usually indicated
with the symbol a. The mixture fraction (Z) will be distrib-
uted similarly to the profile in the frame. It is 1 or O at the
asymptotic boundary conditions, according to the Eq. (b),
obtained as integration of the equation in the window frame.
This equation is an error function of the spatial variable, x,
made non-dimensional by dividing it with the mixing layer
thickness. It is equal to the Z distribution in the non-steady
condition with the only difference of the mixing layer thick-
ness, which is v/4%/a in this case. A typical mixing layer for
bimolecular gases at room temperature and atmospheric
pressure is in the order of some millimeters when the strain
rate component is in the order of 10s™'. As it will be
mentioned later, strain rates of the orders of 10°s7 to
which mixing layers of the order of fractions of the milli-
meter corresponds, are also of interest.

It is also relevant that in this field any other conserved
variable may be expressed in terms of the mixture fraction.
For instance, the sensitive enthalpy (4) in a non-reactive
field is distributed according to the following equation:
Setouh) = L pagimo | =0 20)

This equation is transformed in the Eq. (d) in Fig. 5 when
the spatial dependence is expressed according to the trans-
formation d(-)/dx = d(-)/dZ dZ/dx and the approximation
pa = const can be posed. In the equation a new quantity,
named scalar dissipation rate, y, is defined according to the
Eq. (e) in the same figure. In this term the spatial distribution
of the mixture fraction and, consequently, of any other
conserved variable is synthesized. When it refers to a non-
uniform field, the other term, i.e. the second derivative of the
enthalpy respect to the mixture fraction, must be zero. This

implies that the first derivative has to be constant and, in
turn, that the enthalpy or, equivalently, the temperature is
linearly dependent on the mixture fraction. Such fields are
also named ‘frozen’ and are related to such linear mixing
rule.

Finally is of interest to express the scalar dissipation in
the opposed jet configuration, dealt in this section, for a
unity Lewis number (a = D)

oo L1 \/T > 1 a
=2z iz) “m e

It is straight to note that there is one to one correspon-
dence between the dissipation rate, y and the strain rate, a.
Furthermore the scalar dissipation decreases exponentially
passing from the center to the periphery of the mixing layer.

The ratio between the dissipation rates at the center and at
layer periphery is given by exp(2) = 7.4.

@n

4.1.3. Steady, convective, diffusive reactive layer

The steady, convective, diffusive reactive layer is
described by the same equation reported in Fig. 5 for
conserved variable, in which the source term is added to
the non-conserved one. In the case this is the sensible
enthalpy, the production, given by 3p ,-h? has to be added
to equation in the previous section, in such a way to give the
expression reported in the frame inset of Fig. 6. p; and ",
are the mass production rate per unit volume and the forma-
tion enthalpy of the ith species.

Mathematical formulations [5-7], numerical codes
[8,53,80] and experimental measurements [2,81—-83] have
been used for full spatial characterization of these 1D flame
structures. These works face problems (analytical, numeri-
cal and experimental) which are also found in the case of
premixed flames. General procedures for dealing with these
structures have been reviewed by [2,41,84,85]. The first two
reviews are more related to diffusion flames than the last
two.

Theoretical problems are mainly related to different levels
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of approximations and to different choices of frozen regions
and of the inlet boundary conditions. Among the last ones
two of them are the most common. They are either the
‘potential flow conditions’, for which an inlet strain rate a,
or the ‘plug flow condition’, for which the axial component
of the axial velocity gradient is neglected, are fixed. These
boundary conditions are added to the other thermochemical
ones [86,87]. Intermediate conditions seem to be more
realistic in predicting experimental results [87] so that the
other two conditions should be considered as limit case [86].
Experimental problems are not very specific of the diffusion
flames (e.g. stability of the flame, spatial resolution of
measure, probe interference etc.). Even though they are
greater in these types of structures, because the flue-gas
fluid dynamic pattern extends radially downstream of the
stagnation point.

A schematic representation of the velocity and scalar
distribution is given in the figure, adapted from Chelliah
et al. [87] to which the reader is addressed for a full descrip-
tion of the reactive layer structure and for understanding the
experimental, analytical and numerical origin of the profiles.

Oxygen and fuel are fed from lower and upper side,
respectively. The dotted line in the intermediate part of
the frame is illustrative of the velocity component () in
the isothermal case. The presence of a diffusion flame,
represented by wavy lines in the sketch, yield a positive
velocity divergence, which shifts the isothermal (dotted)
profile toward lower (oxidizer side) and higher values
(fuel side). The mixture fraction field is represented by the
scalar dissipation rate profile, because it straightway affects
the heat release. The plot of this quantity, in the central part

of the figure, is quasi-symmetric with a less steep and wider
tail on the oxidizer side respect to that on the fuel side, i.e. at
the location where temperature profile, shown in the same
plot, attains its maximum. As it will be shown later, the
maxima of the second derivative of the enthalpy with
respect to the mixture fraction and of the heat release also
occur approximately in correspondence of this point.

One merit of these structures is that the reacting field
undergoes stretching in steady conditions (relatively simple
experimental and modeling characterization) and that they
can, in a first approximation, be described by only one para-
meter related to stretch. This implies an easy classification
of the structures and their univocal—universal behavior for a
fixed stretch value. The second property has been the subject
of many studies, in which different parameters related to the
stretch have been suggested to be the most representative of
the whole field. The main parameters are either the strain
rate (a = |Vv]) or the stretch rate (K), or the scalar dissipa-
tion rate () at the inlet boundary conditions and in-around
the oxidation region. They are at least qualitatively equiv-
alent, as it is suggested by their equivalence in not reacting
conditions. Therefore a specific choice among these poss-
ibilities is equivalent in respect to the practical understand-
ing of the rate control step. In contrast a widely accepted
definition of the most representative parameter could be
helpful in the archival storage and statistical use of data-
bases. The velocity gradient (or strain rate) is usually chosen
on periphery of reacting field on the lean side, even though
some authors suggest the most invariant one to be the
maximum one, located on the rich side [87]. A second,
even more common, choice is the scalar dissipation rate at
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the stoichiometric condition or evaluated in correspondence
of the maximum temperature. The two are related, when the
spatial distribution of the mixture fraction can be approxi-
mated by the frozen error function trend, reported in the
previous section [41].

One use of the counter-diffusion flames is the character-
ization of thermochemical variables in the mixture fraction
space and the behavior of the flame structure with respect to
some fluid-dynamic or thermodynamic parameter.

In a first case non-equilibrium characteristics are stressed.
This can be exemplified by temperature-mixture fraction
plots, reported in Fig. 7a, as they have been presented in a
previous review [41]. The maximum temperature is usually
found on the fuel side of the mixture fraction correspondent
both to the stoichiometric composition (Zy) and to equili-
brium maximum temperature (7;). The curves are reported
as examples relative to different scalar dissipation rates.
Major species both of partial oxidation and pyrolysis are
also present on the fuel side of the stoichiometric mixture
fraction. For instance CO [88] (in laminar diffusion flames)
and hydroxyl radicals [89-91] (in turbulent diffusion
flames) for fossil fuels are detected in this composition
range. This means that these species are formed in these
fuel rich conditions or are diffused from the more fuel-
lean regions. Examples of OH super-equilibrium concentra-
tions are shown in Fig. 7b; lower mole fraction is reported
for the condition at higher strain rate as it has been predicted
in papers [89-91], by which the figure is reported [91]. The
presence of other partial oxidation species like hydroperoxy
radicals on the fuel side range has been predicted for Hy/O,
systems [91].

Some other works have been mainly performed by means
of the evaluation of the maximum temperature in the coun-
ter-flow diffusion flame and of its dependence on the exter-
nal strain rate. A typical example of this dependence is
shown in Fig. 7c, where the strain rate appears as reciprocal
of the current value in order to stress the trend for high
values of the strain. Each line is relative to a single external
parameter and it shows its behavior for a wide domain of
strain rates. The temperature variation in this range is a
signature of the diffusion flame structure, which can be
considered in relatively unstretched condition. For high
values of a the maximum temperature decreases and it
falls down at a sharp value corresponding to extinction. In
fact, this way of plotting corresponds to a Damkohler
number which is characteristic of the composition of fuel
and oxidizer as well as of pressure and initial reactants
temperature. In other words the extinction strain rate (or
the equivalent extinction dissipation rate) can be considered
as a state variable (dependence only on thermodynamic
variables) even tough it is a fluid-dynamic quantity. Three
examples of maximum temperature trends, versus strain
rates, are displayed in the plot of Fig. 7c for three pressures
for a Hy/air flame [92]. This system becomes more resistant
to extinction as pressure increases. The dashed line in the
same plot correlates the temperature and the quenching

strain rates. In principle a minimum value of p can be
reached beyond which no diffusion flame at all can be
sustained for whatever low value of the strain rate. This
can be considered a flammability limit and it is quite on
the fundamental and practical levels valuable because it is
accurately defined in a well-defined system. Using as
parameter the oxygen mole fraction [93] this correlation
has been experimentally evaluated and it yields one of the
most relevant constrains in the atmospheric-pressure
combustion of fossil fuels, i.e. the impossibility to stabilize
a diffusion flame for oxygen molar fraction lower than 0.15
[41,93,94].

In some cases dilution of fuel either with inert [83,88] or
with oxidizer [95,96] can be of interest, although these
studies refer more to the first category relative to flame
structure than to parametric dependence on the strain rate.

The influence of the inlet temperature has been assessed
either on the strain rate [92] or on the ignition of non-
premixed stream [97] (which is not considered here).

The counter-flow diffusion flames has been also exploited
for many other types of studies, among which the most
relevant are those relative to formation and reduction/oxida-
tion of pollutants, like NO, [98,99] or soot [100,101].

4.1.4. Unsteady, convective, diffusive layer

Let us consider a surface element 8, arbitrarily chosen on
an interface at the time t = ;. Fig. 8 shows this element as a
line 61(¢y). The ensemble of material derivatives DY,/Drt, at
each point of 6/(¢), describes the temporal evolution of 6/,
under the hypothesis that the tracer does not diffuse. This
line (or surface) is defined as an intermaterial line. Fig. 8
also shows the trajectory of the median point (P) of 8/(¢) in
three position of &/ at times #;, t, and f3.

One may introduce an orthogonal system x,,x, ,x,, with
the origin in the point P and with the x, axis oriented
orthogonally to the material line 6/. In the hypothesis that
the lines (or surfaces) at Z = const are always parallel to the
intermaterial line

0z 0z
_>>_

22
0x, ax;, @2)

and if the curvature of this line (or surface) in the neighbor-
hood of the point P is small enough that surfaces at constant
mass fraction are ‘flat’

2 2
°Z °Z
> = 23
ax2 8xtzl @3)
the balance of mixture fraction can be expressed, in terms of
the x,,x,,x,, and in the hypothesis that p and & are
constant, as

0Z 0z 0’z
— Uy =T (24)
ot 0x, ox;

by expanding in series the u, along x, and considering only
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Fig. 8. Schematic of material line evolution at four times (higher part) and of mixing layer (lower part). Eq. (a) is the mixture fraction
distribution, obtained by the solution of equation above, expressed in terms of mixing layer thickness (6, in Eq. (b)), and stretching factor (vy in

Eq. (c)).

the first term

aZ d oz 0’z
—+(unu+ﬁxn) - 99— =

- 0 25
ot ox, ") ox, ox2 25)

according to Ottino [12].

In the chosen reference system u,,, = 0. Under hypothesis
(23) du,/dx, can be approximated to the stretch rate of the
surface, K54 In fact, the stretch rate

Ksy = Vv, + u,C (26)

can be written, under the mentioned hypothesis: Kg4 =
V.-v; and, since in incompressible and steady conditions
Vv = —du,/dx,, it follows that the conservation equation
can be written as:

2
% —KgA-xn(j—xZn —@% =0 (27)

This is the governing equation for the unsteady, convec-
tive diffusive layer under the hypothesis of linear field of
motion (¥ = —ax). This equation could be used to describe
the evolution of a diffusive layer generated by two opposed
jets (analogous to the one presented in Section 4.1.2) when
the injection conditions change with time. This configura-
tion can be hardly be realized other than imposing periodic
injection conditions of the two jets (e.g. by perturbing them
acoustically). Eq. (27) has been here presented by referring
to a diffusive layer evolving between two parallel flows
because this is a more common configuration. This situation
is approximately (under the above mentioned hypotheses)
described by the equation reported in the frame of Fig. 8.

The mixture fraction Z can be obtained by integrating the
equation using the procedure reported in Appendix D. The
evolution of Z is described by the expression a) in Fig. 8. Itis
formally the same obtained in the unsteady non-stretched
case but, in this latter case, the diffusive layer thickness 6,
differs from the unstretched one, &, for a stretching (or
squeezing) factor y = \/S—?/SR.

In principle SR and vy can be either greater or smaller than
1 but in general SR is greater than 1 and vy is lower than 1.
This is the condition that controls the possibility of a true
mixing of the flows. In fact, the thickness of the diffusive
layer increases because of the diffusive effects, as it occurs
in the unstretched case (& = VA1), whereas the isosur-
face stretching around the intermaterial line reduces the
mixing layer thickness. The same occurs to any structure
that evolves in the mixing layer. For instance, a diffusion
flame with a finite thickness, in which an oxidation reaction
takes place, will be stretched in the same way of the inter-
material surface.

4.1.5. Unsteady, convective, diffusive, reactive layer

A first category of unsteady, convective, diffusive, reac-
tive layers is described in papers which deal with analysis of
spontaneous oscillations in spherically symmetric [69,102]
or stagnation-flow [103,104] diffusion flames. An example
of results obtained in this type of works is given by Chea-
tham et al. [102]. A theoretical-numerical analysis has
shown that in moderate Damkohler number and oxygen
concentration as well as relatively high Lewis number and
heat loss the diffusion flame is susceptible to instability.
This phenomenon is observed under similar conditions in
microgravity candle flame.

One finds in the second category [105-112] studies in
which the time-varying perturbation or boundaries con-
ditions are imposed on a steady stretched configuration in
order to analyze either steep variations or oscillations with
different frequencies and amplitudes. Asymptotic or numer-
ical models have been mainly used to analyze this case.

For instance, such initial conditions are imposed on
temperature profile for a variable time that the effects,
related to external addition of energy (ignition), can be
analyzed [107]. Another example is shown with the help
of schematic variations reported in Fig. 9a, as they have
been studied in a detailed numerical analysis by Mauss et
al. [108]. Stretch rates (the dissipation rate in the original
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Fig. 9. (a) Three examples of steep temporal evolution of stretch rate. (b) CO and H mass fraction evolution for the case reported with thin and
thick lines in (a) (adapted from Mauss et al. [108] and Barlow and Chen [109]). (c) Three examples of oscillating behavior of the stretch rate. (d)
Temporal evolution of temperature for the cases reported in (c) (adapted from Ghoniem et al. [107]).

paper) approximately equal to the quenching one, but lower
than it, are imposed in the diffusion flame. A small increase
of the stretch value for a short period is, then, superimposed,
followed by a steep decrease. The original paper analyzes
different cases. For instance: (a) the increase lasts for such
long period, or the decrease attains such high value, that
extinction is reached in any case; (b) mild changes, in
which the quenching value is exceeded for such short period
or the final stretch value is sufficiently high, that only partial
quenching is effective. This is the case reported in Fig. 9b, in
which the maximum CO mass fraction in the flame, corre-
spondent to the stretch variation drawn with a thick line in
Fig. 9a, is reported. In this case the initial steady state value
attains a new steady state value passing through a relatively
fast overshoot.

Diffusion flame structure is changed also in the case a
single steep decrease of the stretch rate, similar to that one
reported with a thin line in Fig. 9a. In fact, Barlow et al.
[109] have shown that small radicals (H, OH, O) concentra-
tions overshoot above their steady state values relative to the
new stretch rate. The thin line, reported in Fig. 9b, is a
schematic example of this behavior.

Periodic strains affect the flame structure according to
their amplitude as it is shown in the plots of Fig. 9c and d,
which follows the analysis of Ghoniem et al. [107]. The
stretch rate variation with small amplitude, reported in the
figure with thin line, do not change significantly the maxi-
mum temperature and the burning rate in the diffusion
flame. The temperature is shown in Fig. 9d to oscillate
with the minima approximately correspondent to the stretch
maxima. On the opposite side, when the stretch rate oscil-
lates attaining values higher than the quenching steady state
value (K), the maximum temperature, reported with thick
line in Fig. 9d, decreases down to extinction values. Small
amplitude oscillations can be detrimental in the sense that
they depress the burning rates and lower the maximum
temperature (dotted line in Fig. 9d) when they are negative
even in short time of the period (dotted line in Fig. 9c). In

fact in this case compression along isosurfaces correspond
to separation of these surfaces as well as of isothermal
surface and consequent reduction of species and tempera-
ture diffusive transport into the reaction zone has to be
envisaged. The examples reported here are relative to low
frequency oscillation. On the opposite, high frequency of the
strain rate [107] (or equivalently of the scalar dissipation
rates) may yield negligible change in the flame structure
far from the quenching value or only partial extinction if
the quenching value is exceeded.

Finally a separate mention is needed to the very few
experimental papers present in the literature which provide
information relative to internal structures [110] and to
collective effects on diffusion flames. In one of these a rotat-
ing shutter is inserted in the air and fuel feeding system,
which could be adjusted up to a maximum of 130 Hz
[111]. The amplitude of the flame zone oscillation is
shown to decrease with an increase of the frequency, accord-
ing to an asymptotic first order analysis. Much higher
frequency range, up to 1 kHz, has been explored by means
of a speaker-driven counterflow apparatus in which velocity
variations, resulted by acoustic pressure variations, have
been considered dominant [112].

4.1.6. Double diffusive layer

A 1D non-steady diffusive layer has been described in
Section 4.1.1 under an initial condition, consisting in a
single step function of the mixture fraction Z. In this case
such mixing layer develops that the Z distribution is given
by an error function given by the Eq. (a) in Fig. 10.

In the case, presented here, the initial condition is the
double step function drawn as a thick line in Fig. 10a. The
mixture fraction is 1 in a x-range which extends from x = 0
and x = A,, where two intermaterial surfaces can be thought
placed at the initial time #,. The spatial-temporal evolution
of Z follows the Eq. (a) in Fig. 10, according to the integra-
tion of the differential balance equation, as shown in Appen-
dix A. The profiles, shown as thin lines in the ZP—x plot, are
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Fig. 10. (a) Example of a 1D mixture fraction distribution in a double diffusive layer at four times according to Eq. (a). (b) Saturation factor

versus non-dimensional interface distance.

relative to different times, arbitrary chosen as examples.
They show that the mixture fraction ranges between 0 and
1 on the beginning and then attain values lower than 1 at
equidistant positions from the intermaterial surfaces.

Eq. (a) is valid also whenever the convective term is
present, similarly to the case dealt with in Section 4.1.4,
provided that the strain rate is the same in the whole field.

In both cases the diffusive flux through a unitary inter-
material surface at time #, is described in the isolated case by
the expression reported in the following equation:

dz

P pp—oo(t,x = 0) = —SRpZ (28)
dx x=0

where

dz 1

ldz| 9

& o

In the case of a double layer, the presence of an adjacent
diffusive layer can be taken into consideration by virtue of a
saturation factor, Cgy

2
Cp = P :1_e*<%> (30)

This is given by the Eq. (c) in Fig. 10, as it has been
derived in Appendix E following Beige et al. [113]. It can
be easily evaluated from the plot on right side of figure that,
when the ratio between A, and 8, is equal to 2, Cy, has a
value of 0.95 and for a ratio value of 3, the value of Cy, is
approximately 1. In contrast, for ratio values of 0.3 the
saturation factor is already equal to 0.1. Basically:

e for A,/6,, > 2 itis possible to consider the diffusive layer
as isolated;

o for A,/8, <0.1 the first diffusive layer becomes com-
pletely saturated by the second one;
e for intermediate values, the two diffusive layers interact.

It is interesting to note that A,/§,, = 2 corresponds to the
distance at which, for paraffin/air systems, the two stoichio-
metric diffusive isosurfaces meet and therefore disappear,
leading thus to the possible annihilation of the diffusion
flame [114]. Unfortunately no experimental papers exist
(at present) which describe this annihilation in 1D con-
ditions, whereas some interesting considerations can be
made on the basis of the numerical—analytical investigation
of Triggvason et al. [115] for diffusion flames or for
premixed methane—air flames [116]. Interactions between
diffusive layers have been studied also in extinction [117]
and autoignition. In this case different regimes related to
mixing layers interaction has been identified, ranging from
a nearly isolated behavior to that related to a nearly
premixed condition.

4.2. 2D structures

4.2.1. Normal diffusion flames

In the above figure two diffusion flames are reported,
which are of particular historical relevance to technology
and to research. Both of them are obtained for a fuel input
around the axes (or plane) of central symmetry for an exten-
sion up to ry. Thus the mixture fraction is distributed as
indicated in the two plots Z versus r in Fig. 11a and b. It
is unitary at the exit of the central confinement and zero in
the peripheral areas in the first case of Fig. 11a. The central
flow is uniform, equal to uz), and greater or equal respect to
the uniform velocity of the external flow (ug).

Here only a brief and simplified treatment of the subject is
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Fig. 11. Schematic of laminar diffusion flame. The shaded area represents the reacting zone: (a) jet-like diffusion flame; (b) Burke and
Schumann diffusion flames in over-ventilated (1) and under-ventilated (2) conditions.

undertaken giving the idea of a first approximation of the
behavior of these structures. For a full treatment of the
subject, many books may be consulted, for instance Kuo
[14]. It is interesting to stress that these structures can also
be subject to a far more detailed descriptions with the aid of
realistic numerical models as it has been shown in the
numerical—experimental comparison in an aforementioned
paper [61]. Both flames are not in themselves structures of
particular interest in turbulent flames and thus the classical
consideration, here reported, would seem to be sufficient in
order to capture their essence. In both cases, based on the
hypothesis of steady state, no buoyancy effects, complete
isobaricity, constant density and Pr = Le = Sc =1 the
conservation equation of momentum, or mixture fraction,
are similar and analytically resolvable. In the first case,
the solution obtained by Spalding [118] and Schlichting
[119] presents isosurfaces such as the one reported in Fig.
11a. One of these isosurfaces (at Z = Z) under the further
hypothesis of infinite reaction rate, represents the area where
heat is released (shaded line) in attached diffusion flames.

It is also possible to demonstrate that velocity along the
axes, U, where the subscript c stands for central line, or the
mixture fraction along the axes Z, can be expressed in the far
field as

ue Zo 1(3 I[3/1 5
LooZe o (21 )= 2= 31
A x(4~) x[4(2”’°'°)] Gh

when the external velocity is negligible. Apart from the
constants /, and [, and the kinematic viscosity v all the
other quantities have been defined.

Axial velocity and mixture fraction, u. and Z., diminish as
1/x along the axis outside the singular boundary condition.

The hypotheses mentioned above can be left aside in
order to give a more realistic description of both the numer-
ical model and the analytical treatment. For example it is
possible to neglect the hypothesis of Sc = 1 and obtain the

ratio between the flow field and the mixing composition as:
Z/1Z. = (UIU)%.

It is interesting to note that the mixture fraction can be
obtained from any conserved variable B like Schwab—
Zel’dovich variables obtained from linear combinations of
mass fraction of fuel and oxidizer with constant proportion-
ality equal to stoichiometric coefficients.

The second case, described in the scheme reported in Fig.
11b, is the one treated by Burke and Schumann [1]. In this
case, the whole system is confined, the fuel and oxidizer
velocity are equal. By varying the ratio of the inlet areas
one changes the ratio between their flow rates. If the ratio is
greater than the stoichiometric one the flame reduces on the
axes (case 1). They refer to this flame as ‘over-ventilated’. If
the ratio is lower than the stoichiometric value the flame
opens and extends intersecting the external confinement
(case 2), the flame is referred to as ‘underventilated’.
Other uses of these types of structures are in partially
premixed flames [120] and in the pollutant formation, in
particular for carbonaceous particulate and PAH [121,122]
due to the wide pyrolitic region present on the rich side of
the flames. These topics are not dealt here, as it has been
anticipated in the introduction.

4.2.2. ‘Reverse’ and ‘inverse’ diffusion flames

In the flow configuration, of Fig. 12a, the fuel velocity is
lower than that of the external oxidizer flow. On the basis of
the velocity ratio, the distribution of the mixture fractions
can be similar to that of the first jet configuration analyzed in
the previous section or can be closer to that yielded by a
wake with two vortices counter-rotating around their axes.
In general there is an inward reverse flow, which can be
steady and symmetrical or can be unsteady similar to the
periodic Karman vortex street [123], occurring in a wake.
Flows in the first category are unstable, and not often
considered in combustion. For instance one half of this
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Fig. 12. (a) Interface of isothermal flow in ‘reverse’ flame condition. (b) Schematic ‘inverse’ flame (after Wu et al. [132]). 1: blue emission

zone; 2: orange emission zone.

flow can be well represented by a wall flow which undergoes
separation in presence of a bluff body. Some authors have
exploited this configuration in reactive conditions [124] in
order to analyze the increase of heat transfer into the fuel. In
contrast, flows of the second type are widely described in the
literature, at least in isothermal conditions [125].

An example is shown in Fig. 12a. It is relative to a 2D
planar flow adjusted to a velocity ratio of 1.75 and a velocity
of the internal flow of 0.4 m/s. The white color marks the
regions where elastically scattered light from tracer par-
ticles, injected in the central flow, is detectable [126]. The
boundary with the black region is the interface, as it has
been mentioned before. The alternate shedding of vortices
on the left and on the right side is observable. The main
characteristic is that fuel strips, represented in white color,
are embedded inside a vortical structure of the oxidizer flow.
In turn this reverse flow has to be included, as structure, in
the category of single or multiple vortices, which will be
considered later.

Many other 2D fluid-dynamic structures with centerline
recirculation zones have been studied for combustion appli-
cations due to their beneficial effects on flame stabilization,
but they generally refer to turbulent regimes and will not be
considered in this review. Configurations with regions of
inward reverse flows can be obtained also by opposed jet
[127] or swirling flows but their relevance is linked to the
possibility of substaining flames with high velocity inlet
conditions. Interest in swirled flows is testified by the
wide literature on the topic and by the fact that this category
of flows is dealt in several books [128,129]. The same
comment applies for other flows like submerged [125] and
sudden expansion jets [130] in which outward flow struc-
tures are present. In fact, they are analyzed in relation to
turbulent regimes, even though their similarity to simple
laminar structures can be of interest in envisaging possible
links and analogies. A broad-ranging review, which covers

both aspects of laminar and turbulent regimes, is given by
Edelman and Harsha [131].

A diffusion flame is defined ‘inverse’, when the oxidizer
and fuel streams are inverted respect to the ‘normal’ diffu-
sion flames. In concentric coaxial flows the oxidizer is in the
central part of the flame and the fuel is outside. The sketch
Fig. 12b shows the inverse diffusion flame, as described by
Wu and Essenhigh [132]. The profile of the mixture fraction
Z attains unity (only fuel) in correspondence of a double
plateau, which represents the annular fuel stream. In this
configuration oxidizer (Z = 0) is present around the central
symmetry axis.

While this configuration has been used in practical
burners and seems to produce less soot than normal ones
[133] only few papers deal with fundamental aspects and
with measured characteristics. Among these it is worth
mentioning a classification of such flames in terms of their
structures [132]. Six major regimes are identified with the
common feature of blue emission region, which encloses the
central part of the flame (zone 1 in Fig. 12b). Orange emis-
sion region (zone 2) may be present in an annular region
around the blue one. It is notably that the inverse under-
ventilated flames are not luminous and that the flame surface
profiles of the normal and inverse flames are mirror image of
each other. The flame tip is also analyzed in terms of
temperature and species distribution, but the results
provided do not suffice in order to gain a clear conceptual
framework in which the annihilation of two laminar diffu-
sion flames on the oxidizer side can be categorized.

4.2.3. Triple flames

The triple or tribrachial flame is a structure which has
characteristics of premixed and diffusion flames. A triple
flame can be produced in a medium in which the mixture
fraction is not uniformly distributed and when the ignition
occurs around Z = Z or in the case of external input of
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Fig. 13. Schematic of triple flames. Eqs. (a)—(c) stand for stratification parameter, laminar premixed flame thickness and reactive layer
thickness. Sketches a—d are schematic of triple flames according to the stratification parameter B.

ignition energy or in the case of compression heating.
Another example of triple flame is the structure that
guarantees the stabilization in high strain rate of jet outlet
of a lifted laminar diffusion flame. A 2D scheme, which
sums up the aforementioned structure, is shown in Fig. 13.
The thin lines represent the isosurfaces at different values of
mixture fraction Z. The dashed line is the isosurface relative
to a stoichiometric Z. On such a distribution of Z it is possi-
ble to set up a flame, which is represented in the frame by the
arrow-shaped dark region. In this part of space heat is
released due to oxidation of fuel ignited through various
mechanisms that will be discussed later.

In the triple point situated in the apex of the flame, on the
stoichiometric isosurface, combustion propagates as in a
premixed flame. In the frame this occurs towards the right,
or rather towards the mixing region where the mixture has
not yet reacted. The flame front curves in the rich and lean
regions, because in these conditions the laminar flame
propagation is always lower than that obtained along the
isosurface corresponding to the stoichiometric air—fuel
molar fraction. This curved premixed flame leaves behind,
in its passage (to the left of the curved zone in the frame),
two regions in which there will be a residue of fuel or
oxidant, in the regions at lean and rich conditions, re-
spectively. Thus along the stoichiometric isosurface, a
diffusion flame sets itself up completing the reaction of
the fuel or oxidant exuberantly with respect to the stoichio-
metric (value). In the lower part of the frame, four schemes
of triple flames are reported. The first from the left shows
that the branch relative to premixed flames is fairly flat. This
condition occurs when the mixture is virtually homogeneous
and thus the isosurfaces are spaced very far away from each
other. On the extreme right a very curved premixed branch
is represented, practically parallel to the diffusive branch. In
these conditions the Z gradient around Z is very steep. In
order to quantitatively justify the regimes, in which triple
flames occur with different degrees of curvature of the
premixed branch, the stratification parameter or Dold
number, B, is used [134,135].

This is the ratio between the thickness /; of the premixed

flame (in stoichiometric and non-stretched conditions) and
the ‘reacting’ thickness 8, inside the diffusive mixing layer.
The first quantity is dependent only on the composition and
on the thermodynamic initial conditions of the mixture and
it is a measure of the average reaction rate. The second
quantity depends on the fluid-dynamic evolution of the
mixture and takes into consideration its stratification. It
is proportional to the mixing layer thickness &, which,
in turn, is in proportion with 8% = +/4ar multiplied by a
stretching (or squeezing) factor y equal to \/S_F/SR, as it has
been presented in Section 4.1.4. This is also in proportion with
the dissipation rate y = 2a(VZ)?. For B equal to zero, the
nearly flat premixed branch structure, previously described
is obtained. The velocity of propagation of the flame is positive
and higher than that in homogeneous combustion field. For B
approximately equal to 1, the curvature and the area of the
diffusion flame are of the same order of magnitude (second
scheme on the right hand side of the frame). As B increases,
two notable values are obtained, By and B,. In correspondence
with the former, the flame propagation speed becomes nega-
tive, whereas B = By leads to the extinction of the triple flame.

The literature regarding the triple flames is relatively
recent and is largely analytical and numerical [136—140]
whilst only a few experimental studies and comparison
with models has been undertaken on this subject [141,142].

The role of this structure is also relevant in rim bounded
Navier—Stokes, triple-deck region [141-144] for which
adiabatic or non-adiabatic conditions and local stratification
parameter determine the location of the structure in respect
to the boundary.

The characteristics of triple flames have been also related
to anomalous behaviors in terms of Lewis [136,145] and
Schimdt [141] numbers.

4.2.4. Single vortices

The kinematic evolution of an interface can be sche-
matically portrayed as a sequence of the frames, illustrated
in Fig. 14 from (a) to (d). In the first frame the roll-up of the
protuberance that evolves from the flow, represented in
black, is shown accompanied by a curvature of the diffusive
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(a)

Fig. 14. Example of interface (contour between shaded/non-shaded
areas) and isosurface (thin lines) sequence showing a single vortex
convolution. Dotted lines represent the isosurface at stoichiometric
conditions.

layer too. In fact both generic isosurfaces, represented by the
continuous lines, and the isosurface corresponding to the
stoichiometric mixture fraction, represented here by the
dashed line, follow the interface (contour line between
black and white regions) in a parallel way. This behavior
makes reasonable to describe this diffusive layer through the
1D, unsteady, stretched layer, dealt in Section 4.1.5. In
reality, with respect to this simplified model, different
factors come into play. Some of these are here reported in
an ordered list according to their relevance:

(i) interaction between contiguous diffusive mixing
layers;

(ii) distribution of the stretching along the stoichiometric
isosurface;

(iii) expansion of gases due to heat release and conse-
quent induced stretch distribution;

(iv) curvature of isosurfaces.

All these factors are effective in different ways according
to the initial conditions of the evolution of the vortex or, in
other words, according to the thickness of the diffusive layer
at the moment when folding begins.

The flame/vortex interaction has been reviewed by
Renard et al. [146]. This is a very exhaustive review ranging
from the very first works on the subject [147], including the
DNS calculation [148], to the more mature achievements in
the numerical [149,150] as well as experimental works
[151]. Ashurst and Williams [150] have analyzed some of
these elements in qualitative terms by means of a numerical
simulation. The hypothetical schematic description
presented in the four frames above is based on their work.
The authors demonstrated two important features that can be
highlighted in a comparison of frames (b) and (c). The first is
that isosurfaces become disconnected and form islands (see
frame c), due to the annihilation of different parts of the

same isosurface. The second is that inside the spiral struc-
ture, individuated by the interface, it is possible for the
isosurfaces to undergo a rarefaction and form peninsulas
due to the compression along the isosurfaces in correspon-
dence with the vertexes of this peninsula. This evolution of
the vortex leads to the expulsion of many isosurfaces outside
the spiral form structures and eventually the situation set out
in frame (d). It seems that such a situation is favored by the
heat release location with respect to the vorticity distribution
[152].

To be more specific, it is of interest to mention that the
spatial distribution of these quantities has been shown to be
effective in yielding interface-flame separation for the near
field of a 2D, planar diffusion flame by Soteriou [153]. The
distribution is such that the mixture fraction region, where
the exothermic reaction occurs, and the region with the
highest vorticity level may be separated just downstream
of the nozzle rim due to the wake-modified velocity distri-
bution at the inlet boundary. Furthermore the positive
velocity divergence due to volumetric expansion of the
exothermic-reacting regions can both push the flame further
away from the vorticity zone and depress the vorticity level
in the reaction regions, which in turn means less flame-
surface folding. In synthesis it is conceptually relevant to
identify two classes of mechanism, which separate the inter-
face from isosurfaces mixture fraction. The first is the one
just described, which will be referred in the following as
‘splitting mechanism’, whilst the second is the aforemen-
tioned ‘annihilation’ process.

In the last case it is also true that if the vortex which
generated the rolling of the interface is still active, the
stretching rate of the stoichiometric isosurface can generate
stretching or compression of the isosurface itself.

Katta and Roquemore [154] have shown that if the vortex
is on the fuel side (as is generally the case in vortices gener-
ated in shear layers) at the center of the vortices, the isosur-
faces undergo stretching with an increase of the local
temperature. The opposite effect occurs when the vortex is
on the oxidizer side such as those generated by the buoy-
ancy.

4.2.5. Vortex couples

2D vortex couples are of different types: counter-rotating
(as illustrated in Fig. 15a and b) and co-rotating (as shown in
frames ¢ and d). The interest in the former lies in the possi-
bility of creating experimentally the impulses which gener-
ate them in well defined laminar flow fields. These structures
have been used in several experiments and have given rise to
two types of studies. These are related to pulsed fuel jets
(frame a) or to travelling vortices both inside the fuel (frame
b) or inside the oxidizer flow. In case (a) the interface
(which borders onto the black area) is a spiral-form structure
and the diffusion flame, represented by the dashed line, in
correspondence with the stoichiometric isosurface follows
the dynamics of the interface. From the early work of Kara-
gozian and Marble [155] to the more recent investigations
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(a)

(c)

(d)

Fig. 15. Vortex couples examples: (a) counter rotating vortices at interface; (b) counter rotating vortices far from interface; (c) co-rotating

vortices; (d) co-rotating vortices merging.

under microgravity condition [156] the evolution of such a
spiral structure can be captured. The area inside the vortex is
occupied by the oxidative activity and by products of
combustion, present also in the form of several islands
inside the vortex head. The case described in (b) differs
from (a) as there is an initial time interval in which the
diffusion flame is affected by the presence of the vortex
only in terms of stretching. Takahashi and Katta [157], by
means of a numerical simulation, brought into evidence that
this stretching leads to the thinning of the diffusive structure
with a consequent loss of reactants which cross the flame
and an increase of flame cooling. Other experimental studies
[158,159] (extended to comparison with numerical simula-
tions in the case of the former paper [157]) indicate that the
whole diffusion flame, crossing an intense vortex, can
extinguish or that a part of it may be quenched for a short
period after which the whole flame structure can be rebuilt.

It is worth noting that the vortex couple, unlike the single
vortex, presents a strong tendency to extinguishing the diffu-
sion flame. This is due to the presence at the apex of the
structure, between the two spiral-form zones, of an area in
which stretching is more intense. In fact, in this zone as seen
in Fig. 15a), the flow field is typical of a stagnation point. A
deeper insight [151], by means of experimental/numerical
comparison of the data, has shown that annular quenching,
away from the stagnation point, may prevail when the
oxidizer side vortex is forced to cross the diffusion flames
at moderate speed. This quenching, referred to H/air
system, occurs at equal or lower strain rates than that at
the stagnation point and it is due to combined effects of
selective molecular diffusion and curvature. Particular
temporal and spatial correlation have been studied under
flame vortex—flame interaction conditions, in terms of mini-
mum time required for quenching [160] as well as for
increasing the flame surface [161].

The common characteristics between the vortex rings of
Fig. 15a and b and the co-rotating vortices sketched in Fig.
15c is that the interfaced area of greatest extensional stretch-

ing is in the braids between vortices [162], whilst the spiral
structures tend to roll up with an almost rigid rotation.
Anyway the possible presence of compressive stretching
along the diffusion flame surface has to be underlined,
because it produces an increase of the reacting layer thick-
ness [163].

A structure, consisting in only two co-rotating, vortices,
sketched in Fig. 15c¢) (unlike the case of contra-rotating
vortices) is not easily created experimentally but it occurs
in mixing layers of ‘transitional’ jets as well as in numerical
studies [164,165]. Generally the evolution of this structure is
a growth with multi-spires or also a coupling with the vortex
which precedes or follows it. The vortex couples can in turn
be squeezed or refolded as if they were single structures. It is
clear that this process, affecting one (or more than one)
vortex, leads to the nearing of the interface and conse-
quently to the acceleration of the annihilation process of
the isosurfaces. It is plausible to suppose that in this case
too, as with the single vortex, the evolution of the vortex will
lead to the expulsion of the diffusion flame from the central
zone of the spirals.

Very few papers have been devoted to the dynamics of
more than two vortices, even though the aforementioned one
[164] shows similarities with the case of only two vortical
structures in the possible occurrence of pairing and merging
mechanisms.

4.3. 3D structures

This section is devoted to outline some possible effects
related to diffusion flames in simple 3D structures. The
literature in this field is very poor and the only papers,
which deserve a mention, are quoted here only for their
analogic implications and for the descriptions of part of
the effects involved in the whole process. Therefore the
following statements are conjectures and not observed
facts. They are presented only for lust of completing a
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Fig. 16. (1) and (2) Schematic of vortex stretching. (3) 3D steady-state vortex. (4) Schematic of 3D isosurface. Dotted lines stand for the

intersection of isosurface with an arbitrary plane.

pictorial visualization of the diffusive structure and may be
useful as possible orientation of the research work.

A well-known 3D effect, related to isothermal fluid-
dynamic, is the stretching of a vortical structure [165,166].
This is depicted in Fig. 16(1) and (2). An interface is
sketched as surface separating a black region (say seeded
by a tracer) from a white one (say not seeded region). A
fluid-dynamic pattern is thought to yield both vorticity and
linear stretch rate parallelly aligned to the arrows [167]. In
this peculiar case the positive stretch along the arrows yields
anegative one perpendicularly to the interface, i.e. a nearing
of different parts of the convoluted interface. The vortical
structure depicted in Fig. 16(1) deforms in the stretched
omeomorphic structure sketched in Fig. 16(2). The implica-
tion in a diffusive field is that the isosurfaces distances also
become squeezed. In the case a whole mixing layer develops
along the interface, both its thickness (8,,) and the distance
between the interface (A,) decrease according to the inten-
sity of the stretch rate. The ratio of these two lengths should
be constant in presence of an uniform stretch field, therefore
the saturation ratio, defined in Section 4.1.6, should also be
constant with a consequent negligible effect on the mass
diffusion flux through the interface. In other words it is
plausible that the fluid-dynamic pattern associated to
this structure counterbalances the tendency of isosurface
annihilation, even in presence of the flux enhancement
due to stretch influence on the isolated layer.

A second 3D structure is presented in Fig. 16(3). In this
case the interface is folded by two counter rotating vortices,
which are fed by a uniform velocity stream coming along
the y-axis. A characteristic trajectory, drawn in the figure by
a solid line, shows an undisturbed part at infinity, whereas it
follows a spiral path inside interface convolution. The
analytical dependence of the three velocity components on
spatial co-ordinates is reported in correspondence of the full
arrows. It is such that stretch is effective only in the plane y—
z, whereas the not deforming convolution is active only in
the x—y plane or, in other words, the vorticity is aligned on
the z-direction, parallel to the stretch. This characteristic is

common to the stretched vortical structure described before.
The main difference between the two is the steadiness and
the periodic distribution of vorticity of the second structure.
A full analysis of this topic is given by Dold [167,168] in
relation to isothermal and premixed regimes. It deserves
mention due to its uniqueness and to some peculiar phenom-
ena related to it. For instance, a flame trapping mechanism is
identified, in fact a laminar flame propagation originated
along the x-axis may undergo a convective preferential
transport inside the vortex core where it is more resistant
to the quenching. The diffusive regime has also been studied
inside this structure [169] and it is still object of active
research.

A third feature related to 3D diffusion flame is outlined
with the help of sketch 4. This represents an isosurface,
which extends in a 3D domain and it includes some 2D
discontinuities on its surface. The dashed line, which is
the intersection between the isosurface and a plane, is also
discontinuous because itself intersects the 2D discontinu-
ities, but it differs from this because it cannot keep connec-
tion. This is another main difference between the 2D and 3D
structures of diffusion flames. The first one looses the
connection if 2D annihilation of some part of the isosurface
occurs, whereas the second one may be annihilated in some
regions, but it keeps its connection degree.

It has to be stressed again that the considerations
presented here are basically speculative and they want to
be only suggestive. A start reading for a deeper research
in this field are the papers dealing with the identification
[165] and analysis [167] of 3D isothermal structures.

5. Evolution of simple structures, their group behavior
and classification of regimes

5.1. 2D quiescent plane systems

A random distribution of the mixture fraction in quiescent
conditions can be obtained by injecting fuel into a turbulent
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(@)
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Fig. 17. Sketches of non-steady triple flame propagation along open (a) and closed (b) isosurfaces. Dotted lines stand for stoichiometric surface.
Solid line marks burned/burning region. The crosses are the ignition points.

flow field or into a laminar flow field with chaotic-Langran-
gian characteristics. After the arrest of the flow field a
random composition distribution is obtained which is also
know as ‘fossil’ turbulence [170,171] and it is in fact the
residue of the real turbulence. This non-uniform composi-
tion is interesting in the case of combustion because, as with
the contra-diffusion 1D flames, it is above all the distribu-
tion of the mixture fraction gradient VZ which regulates heat
release. When VZ (or the scalar dissipation rate, y, or the
stratification parameter, B) is very low the flame is approxi-
mately in chemical equilibrium, whereas when VZ (or x or
B) is very high, the flame tends to extinguish or not to ignite.
In examples of Fig. 17a and b it is thought that ignition
comes about at the points marked with crosses and that triple
flames originate here. Autoignition either occurs (for
instance when there is a compression heating in diesel
combustion engine) if temperatures exceed a predetermined
threshold (and of course if VZ or y or B are low enough), or
through external input of other energy forms (for instance in
spark-ignited engine). After a period of transition dominated
by a explosive evolution of the early kernel [138], triple
flames travel along the stoichiometric isosurfaces (indicated
by dashed lines in the fresh mixture and by solid lines in the
burnt mixtures). In Fig. 17a these surface are all connected,
hence, from the bifurcation, branches sprout out along
which triple flames travel with their characteristic mush-
room shapes, represented by curved black lines at the dashed
line border, i.e. in the areas where heat is released in a
deflagrative propagating mode. If the isosurfaces are not
connected, like in Fig. 17b, the triple flame structure can
be observed only in the areas where stoichiometric isosur-
faces are connected to ignition zone. It is plausible to
suppose that, if the triple flame originates close to isosur-
faces that are within the limits of inflammability, an arch-
shaped front could be formed such as those traced in Fig. 17
or in Fig. 13. If this is not the case and the ignition takes
place, in the flammability limits, out from the isosurface in
stoichiometric conditions the flame propagation is still

anisotropic, but the residual diffusive—reactive structure is
created only after the flame reach this stoichiometric
isosurface.

This simple schematic example is based on the concepts
presented by Domingo and Vervish [138] for a quiescent
and ‘turbulent’ 2D non-uniform mixture fraction distribu-
tion. The description of the reactive field is obtained by
numerical model with single step kinetic rate when auto-
igniting conditions are reached by means of compression.
The main difference respect to this oversimplified descrip-
tion consists in the extension and location of the ignition. In
the last case ignition is related to stoichiometric isosurfaces
and it extends along these surfaces in the regions where VZ
or y or B do not exceed quenching values. If these quantities
are very low, autoignition takes place on the whole stoichio-
metric surface, then two premixed flames propagate toward
the rich and the lean side, while a diffusion flame is centred
on the stoichiometric surface.

Further refinements can be taken into account, like the
proper air—fuel ratio condition for which the fastest auto-
ignition delay is obtained or like the possible occurrence of
consecutive autoignition processes at different mixture frac-
tion values. That is a condition similar to the one in which
the deflagrative-detonation transition may occur too [172],
but the main picture will not change substantially.

Between the two extreme conditions of single point
ignition and of the whole surface autoignition, intermediate
conditions are reported [138] in which the initial explosive
deflagrative structures is limited to a restricted zone and it
develops into triple flames, yielding a double peak in the
temporal heat release profile.

5.2. Simple 2D flow systems

5.2.1. 2D flow systems

2D flow systems are suitable to study complex mixing
fields in isothermal and reactive conditions. In fact random
characteristics either of spatial distribution of scalar
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Fig. 18. Examples of interfaces of 2D transitional flows. In the upper row are reported the numerical prediction (after Cavaliere et al. [173,174])
while in the lower row the laser light scattering images are reported (due to the presence of sub-micronic seeding in the flow) in the

corresponding conditions.

quantities, as temperature and concentration, or of fluid-
dynamic structures, affecting these quantities in turbulent
diffusion flames may be obtained in 2D time-dependent
flows. This is due to the basic principle that chaotic flows
can be created also in laminar deterministic periodic con-
ditions [12,20]. The only additional requirement is that stag-
nation points have to be distributed in such a way, respect to
a reference frame moving with the average velocity, that the
stretch ratio of material lines undergo exponential evolution.
The high level of stretching is the main feature of dissipative
highly diffusive turbulent flow, i.e. the most important factor
for increasing mixing rate, consequently combustion rates,
and extinguish-related effects.

The other requirements, which 2D time-dependent flows
have to fulfill in order to be representative of 3D turbulent
flow, is the high level of convolution of interfaces, and their
distribution on different length scales. The only concern is
related to the capability of 2D flows of being exhaustive in
containing all possible fluid-dynamic structures, which are
present in 3D turbulent flows.

In order to give an assessment of the great variety of
structures which can be established in 2D flows, interfaces,
obtained in 2D, are reported in Fig. 18.

They are relative to gaseous flows introduced into a main
channel (18 cm width) through 32 equal channels. The
layout of this confinement can be seen in the upper row.
The average velocity of central channel is 0.7 ms ™' in the
first four cases and 0.4 m s~ in the last two cases.

The external velocity is varied between 0.15 and
0.7ms~". The upper row is relative to numerical predic-

tions in which the streak-lines of material points, ‘injected’
at the inflow boundary, have been computed. The lower row
is relative to pattern of laser light scattered by a sub-micron
seeding. Computational and experimental details and the
choice of the boundary conditions are not relevant here
and they are reported in the references [173,174]. It is of
great interest to underline that the comparison is quite satis-
factory and that, in turn, this shows the two-dimensionality
of the flows. Among these flows, there are some of them,
pertaining to highest ratio between the external and central
velocity, in which the interfaces (discontinuity between
black and white regions) are quite convoluted, as it is possi-
ble to observe in the figure. They undergo a relatively
intense stretch rate of the order of 100 sfl, as it has been
reported elsewhere [24]. This stretch rate is not high enough
to cause flame extinction, but it is sufficient for high level of
convolution.

The examples, here described, suggest that ensemble of
structures, i.e. a simple multi-scale system, can be used in
order to explore all possible evolution of the system itself.
Section 2.2.3, together with the following one, shows how
this tool can be exploited to identify mixing isothermal
regimes and to give statistical averages of the most relevant
parameter affecting the diffusion flames. Another wide field
of its application is only briefly quoted here even though it
has great momentum from technological and basic point of
view, i.e. transitional flows. The mechanistic aspects of the
transition have been reviewed in isothermal [175] and reac-
tive flow [176]. The identification of the first modes excited
by internal and external fluid-dynamic effects [177-179]
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Fig. 19. Schematic classification of characteristic regimes.

has been focused as first target. Then other features have
been studied in 2D field, like flame stability at transitional
point [180]. These results are extension of validity of those
obtained in turbulent regimes [181,182] also in respect of
different boundary conditions [183]. These types of flows
have been exploited also for detecting single diffusive struc-
tures, in reacting or isothermal conditions. This use has been
implicitly quoted in the description of 2D vortical structures.

Finally some peculiar diagnostics applications have been
made possible only because they have been used in 2D flow
systems. This is the case of Lagrangian measurements, as it
has been discussed in Section 2.

5.2.2. Classification of mixing regimes

A classification of mixing regimes can be done with the
help of Fig. 19. It can be seen as a physical and logical flow
chart based on the analysis of the plot on the right side of
Fig. 3.

The first test, in the figure above, considers the compar-
ison of the progressive interface (line 1 of Fig. 3) and
progressive isosurfaces selected at the overall mixture frac-
tion Z, (line 5 of Fig. 3). The two surfaces are coincident
before a ‘splitting time’, which is shown as 7,, in the exam-
ple of Fig. 3. In this case the evolution of the molecular
mixing can be analyzed in relation to the interface. In fact
the stretching and the folding involve both surface. The
regime is defined as a ‘coupled mixing—stirring regime’
(route 1 in the figure) when the flow satisfies the above
conditions. On the other hand, when the difference between
the area of the progressive interface and of the progressive
isosurface is greater than a fixed conventional value the flow
is classified as an ‘uncoupled mixing stirring regime’ (route
4 in the figure). A further division can be obtained in the
‘coupled mixing stirring regime’ category using a criteria
based on the aforementioned area difference in which the

progressive isosurface is relative to the typical value of the
periphery of the mixing layer. The value of the mixture
fraction at Z = 0.05 and Z = 0.95, used in the example of
Fig. 3 can be considered a reasonable approximations of
these peripheral values. When the area difference is smaller
than a prefixed arbitrary value for both progressive isosur-
faces the entire mixing layer develops in the vicinity of the
interface and has a recognisable pattern. Thus, the flows, or
parts of the flows that satisfy these properties, can be consid-
ered as belonging to an ‘identified mixing layer regime’
(route 2 in the figure). The other possible case can be clas-
sified as ‘unidentified mixing layer regime’ (route 3 in the
figure). The mixing layer can disappear either due to
annihilation of the surfaces of constant property (which
always entails a decrease of isosurface extension or equiva-
lently, a non-increase of the progressive isosurface) or due
to a positive stretching along the direction of the mixture
fraction gradient. In the latter case, surfaces at constant Z
separate from each other following different kinetic evolu-
tion. The flows, which are in these conditions, are labelled in
the figure as ‘split mixing layer’ regimes. The same type of
comment can highlight significant differences between the
progressive isosurface relative to the overall mixture frac-
tion value Z,. In this case the flows are classified, as
mentioned before, ‘uncoupled mixing stirring’ regimes
thus the two processes are totally uncorrelated and the inter-
face is no longer a point of reference for the analysis of
constant property surfaces. Here too this regime can be
sub-divided into two further classes with reference to the
annihilation or separation of the isosurfaces. The first class
is named ‘saturated mixing regime’ in analogy with the
previous one, the second ‘split mixing stirring’ regime.

It is worth stressing that a 2D simulation of a prototypal
flow pattern has been used for the analysis. As a conse-
quence, the extension of the classification criteria to 3D
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cases and the experimental validation are both needed for a
more general confidence in the classification. In any case it
should be clear that the classification keeps an intrinsic
validity which is not based on the flow simulation. In fact
this was exploited in order to exemplify possible evaluations
on specific mixing processes.

Finally it is useful to classify the regimes following the
route 2, in which the mixing layer is identifiable, into two
classes. These are named ‘interacting’ or ‘isolated’ mixing
regimes, according to the distance and the level of interac-
tion between different parts of the mixing layers.

The progressive interface and isosurface are quantities
that have been defined here for the first time, so that the
previous experience in their measurement cannot be found
in literature. However, it is clear that the difficulty in their
measurement lies in their Lagrangian aspect. In fact, feasi-
bility of detection of a progressive isosurface relies on the
possibility of injecting either a non-diffusive or diffusive
tracer starting from the arbitrary time #,. This is a difficult
task if the transition, from absence to presence of tracer, has
to be ensured at the same time on the whole inflow bound-
ary. In fact the tracer injection on the inlet boundary can
interfere with fluid-dynamic inflow conditions and it cannot
be anticipated upstream of the boundary without pre-stirring
or pre-mixing the traced and non-traced flows. Techniques
based on smoke wire devices or on photocromic tracers,
which change their physical/optical properties crossing
light sheet on the boundary, are possible candidates to
generate identifiable progressive interface and isosurface.

5.2.3. Evolution and statistics of 3D fields in 2D
representations

Turbulent flows are characterized by a high level of three-
dimensionality. This entails the aforementioned (Sections
3.1 and 3.3) difficulties in numerical and experimental
analysis particularly linked to simultaneous characteriza-
tions of a wide scale range when the dimensionality is
increased. Nevertheless a rich source of information on
mechanistic and statistical evolutions comes from two
different approaches. The first consists in the 2D pattern
measurements of scalar quantities with such precision that
gradient and scalar dissipation rates can be evaluated too
[42,150,183—185]. The merits and the limits of these
schemes as well as specific information on the procedures
and on the results are well described in the quoted papers. As
example of the potential of this approach, a sketch (Fig. 20a)
of the flammable mixture boundary of propane—air turbulent
jet is reproduced in the above frame as the authors of an
aforementioned paper [184] have really measured. They
have also measured the scalar dissipation rate y, which is
outlined in the sketch with shaded area representative of
regions where y is higher than a fixed value. y can also
be obtained as conditional statistics inside the flammable
mixture. The outstanding feature is that the mixture fraction
distribution in the example is such that it shows the distribu-
tion of positive and negative stretch along the stoichiometric

surfaces similar to that predicted by Ashurst and Williams
[150]. The second approach consists in Direct Numerical
Simulation (DNS) [37] of ‘2D turbulent’ reactive flows.
This has been much used in the past few years in order to
obtain indications about group behavior of several quanti-
ties, that have been proved to be of interest in the evolution
of simple structures and that have been hypothesized to be
controlling in 3D turbulent diffusion flames too. For exam-
ple in Fig. 20b, the scheme of a fluid-dynamic condition is
shown, used by Van Kalmthout et al. [38] according to the
profile reported in the lower part of the same figure. In order
to conduct this type of study they injected gaseous flows
with a 0 mixture fraction, on the left-hand side (the oxidant),
and 1, on the right side (fuel). The two flows are kept in a
turbulent regime by the addition of isotropic homogenous
turbulent fluctuations with a predetermined ‘von Karman-—
Pao’ power spectrum. The evolution of the resulting flow is
followed as already mentioned, by means of a direct 2D
simulation. In the frame, the 2D pattern on the left-hand
side represents three isosurfaces at Z = 0.25, 0.50 and
0.75 by means of a thick line and various surfaces of isovor-
ticity by thin lines. The plot on the right hand side (Fig. 20c)
shows the fluid-dynamic stretch rate K3, , averaged along
stoichiometric surfaces, versus the mixture fraction Z. The
thick continuous line follows the values obtained from the
numerical experiment, while the thin continuous line is a
modeled constant value. The stretch rate caused by the
curvature, K5WAZ , reported with a thick dotted line, is
obtained as the sum of two terms, according to Eq. (5), as
detailed here below

K5y, = WV-n)sn, =A+ B (32)

A= =4V, (33)

B= {2z 1vz| V- (34)
[VZ  ox, 54

The two terms are represented by means of the segmented
lines with short dashes (A) and with long dashes (B),
respectively.

It is immediately noticeable that the term caused by fluid-
dynamic prevails over that relative to the propagation of the
curved isosurface, and that in the case in hand (absence of
mean velocity gradients) both stretch rates are approxi-
mately constant. The authors show that this kind of behavior
is true also for other values in the stoichiometric ratios.

Solutions of compressible full Navier—Stokes equations,
associated with equations pertaining reaction conditions
have also been presented [64,186] for the study of mixing
layers at high Re. The interested reader is addressed to the
last two articles for a deeper understanding.

5.3. Simple 3D systems

There are not many detailed descriptions of ensembles of
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Fig. 20. (a) Example of flammable mixture boundary (after Everest et al. [184]). (b) Examples of isosurfaces at constant mixture fraction (at
Z =0.25, 0.5, 0.75, thick lines) and vorticity (thin lines), after Van Kalmthout et al. [38]. (c) Contributions to stretch rates on isosurface at
mixture fraction reported on the abscissa. Adapted from Van Kalmthout et al. [38].

structures in 3D fields. This is due to the difficulty
mentioned in the previous section. Therefore the studies
which are quoted here refer to complete 3D simulations of
flow in control volume, whose dimension is only few orders
of magnitude higher than the smallest resolvable length-
scales. Low Reynolds number or transitional flows belong
to this category. They may develop ensembles of structures
in a narrow range of length scales so that they are suitable
for some experimental validation too. Relatively high
Reynolds number turbulent flows, in which only the small
length-scales are simulated, are also of interest. In this case
initial turbulent kinetic energy spectra and periodic bound-
ary conditions are generally prescribed and mixing—reacting
fields are simulated in decaying turbulent fields.

The first category of flows has been explored in order
to characterize laminar or transitional flows, which are
3D from the beginning near the inlet in the case of a
non-circular jet. An example of the potentials in out-
lining topological features of interest in the diffusion
flame characterization is given in the left side of Fig.
21 reproduced from a recent paper [187]. Patterns of scalar
dissipation rates y on vertical and horizontal cross-sections
are also shown. The authors stress the sheet like structures of
the distribution of y.

The second category of papers has been mainly devoted
to the assessment of turbulence kinetics mechanisms [188].
The plot on the right side of Fig. 21 shows an example of
results obtained in this work. The stretch rates integrated on
the whole isosurface (AA,), contained in the control volume,
at different mixture fraction, Z

[= jﬁﬂKgA A (35)
AA,

vs Z itself are shown. The dotted line indicates that the
whole fluid-dynamic stretch rate is taken into account,
according to Eq. (7). A dashed/dotted line corresponds to
the incompressible part (I')

K34; =nn : Vy (36)

Same values of these two integrals occur in the mixture
fraction range between 0.5 and 0.6, which are representative
of the stoichiometric values used in this work (Z = 0, 5).
Approximately equal values are also present for the
unmixed conditions Z = 0 and Z = 1. Only integrals rela-
tive to intermediate mixture fractions around Z = 0.15 and
Z = 0.85 are quite different. It is of interest to note that
expansion rate, due to heat release around stoichiometric
value, is not responsible of the corresponding isosurface
stretch. In fact the difference between the corresponding
values on the two curves represents the compressible contri-
bution and it is quite negligible at Z = 0.5. The third profile
drawn with solid line (1) is the integral of the stretch rate
due to the diffusive propagation of a curved isosurface, as it
has been expressed in the equation of the previous section,
K34,- The contribution to the total stretch of this part is quite
smaller than that shown in the 2D ‘turbulent’ field. In this
case it is nearly negligible but positive in a wide range of the
mixture fraction. Only the unmixed fuel region presents a
significant negative stretch. The greater relevance of the
fluid-dynamic stretch has been also shown in 2D turbulent
fields [37] quoted in the previous section. A study more
related to chemical kinetic rates has been devoted to the
mechanistic analysis of presence of species in super-
equilibrium concentration in reactive 3D flow [189]. Also
in this case the kinetic model, used in the work, was a two-
step reactions one, in which an intermediate species was
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reactive/high-Re
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(a)
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Fig. 21. On the left side: example of scalar dissipation rates on vertical (a) and horizontal (b) cross-section (after Grinstein and Kailasanath
[187]). On the right side: example of stretch rates integrated (I) on an isosurface at mixture fraction Z, reported on the abscissa. I' and I curves
are the contribution to 7 due to incompressible evolution and diffusive propagation.

considered representative of radical or other partial oxida-
tion product. The main result was the confirmation that local
stretching is responsible of partial quenching of diffusive
reactive structures. This role, i.e. validation of results
obtained in lower dimensional fields, seems to be the most
suitable one for the studies exploiting 3D DNS. This attains
to identification either of single structure or of significant
statistical averages in transitional as well as turbulent
regimes.

6. Conclusion

This paper has reviewed works dealing with single diffu-
sive structures, with their mutual interaction in simple flows
and their relevance in statistical modeling in complex flows.
The focus has been given to conditions pertaining to gaseous
diffusion flames, but also isothermal structures have been
described when they were related to combustion regimes.

It is worthwhile to stress that this review was not devoted
to the topic of reacting flows in turbulent regimes. Therefore
it could seem to be overabundant to have presented even few
topics dealt in this field or inappropriate to have a bias
toward the only selected ones. As matter of fact, this is
not the case since the very few turbulent subjects, presented
in the paper have been chosen with a well-defined purpose.
It consists in showing a perspective view of the possible
exploitation of the knowledge about simple structures in
numerical modeling of complex flows. In this respect the
choice of the topics reported for instance in Sections 2.2.3
and 2.2.4 is subjective, in the sense that it has not yet proved
its full capability in the satisfactory modeling of turbulent
diffusion flames. Nevertheless it uses the same quantities,

which are involved in the description of simple structures,
and the statistical averaging of these quantities may be
easily interpreted in terms of processes and phenomena
discussed in the paper.

It is of interest to note that experimental analyses of
turbulent diffusion flames are based on the characterization
of multi-component reacting flows by means of data
acquired from single point measurements and are usually
organized as scalar scatter-plots. A very exhaustive review
of this approach has been quoted before [43]. At the same
time the reader should be aware that this approach is zero-
dimensional, in the sense that it is based on single point
Eulerian measurements, whereas the exploitation of diffu-
sive structures is mainly based on evaluation of multi-
dimensional and Lagrangian quantities. It has been
discussed in Section 3.1 that first approach is feasibly pursu-
able in the experimental statistical characterization of many
complex flows, whereas it has been shown along the whole
review that the second one is effective only in the analysis of
relatively simple flows. Therefore the complementary
nature of the two approaches and the role of the second
one in the understanding and modeling of the physical and
chemical processes only from a conceptual point of view
should also be deeply considered.

Finally it is noteworthy to comment that the review shows
how rich and variegate the literature dealing with unidimen-
sional structures is. It seems that all possible effects related
to them have been captured. Only studies pertaining to new
fuels or new peculiar boundary conditions are expected to
exploit such simplified configurations in order to enlarge the
basic knowledge with respect to specific conditions.

2D structures are the object of the most active and recent
research work. In particular, they contribute to understand
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the effect of curvature and annihilation on complex struc-
tures as it has been documented in this paper as well as to
enhance mixing, shaping and stabilization control in diffu-
sion flame stabilization [146].

3D diffusion flames structures have been rarely analyzed
and exploited in well defined frameworks therefore the
potentials which they can offer to understand turbulent
diffusion flames, particularly in relation to different length
scales interactions, is not clear at the moment. In this respect
this topic represents one of the most advanced research
forefronts, which deserves a coordinated effort in order to
assess the exhaustiveness of uni/bidimensional structures in
describing turbulent flames and possibly to identify new
regimes as well as new kinds of effects in stirring/mixing/
reacting fields.

Appendix A

The ‘mixing fraction’, Ze§, is defined as

_ BB

Bi — B
where 3 is a conservative variable and the subscripts 1 and 2
refer to fuel and oxidant streams, respectively. Z(£) is a non-
dimensional number ranging between O and 1.

Examples of conservative variables are mass fraction and
enthalpy. The mass fraction of fuel and oxidant are defined
as

mc my
Yemw = Zac,-; Y, + ZaH,i?Yi (A2)

Z=¢ (AD)

m
Yo = D do; ;0 Y; (A3)
1

Subscripts C, H, and O in parentheses refer to carbon, hydro-
gen and atomic oxygen that are either bonded or not bonded
to any chemical species in a predefined control mass.

As a consequence Ycp is the mass fraction of the total
carbon and atomic hydrogen contained in all the chemical
species present in a control volume whose density is p. ag;,
ayj, ag; are the numbers of C, H and O atoms in the ith
species. Ycpn) represents the fuel mass fraction that has
either reacted or not. In other words Yy, could be also
indicated as Yoy

The mixing fractions Y(c ) and Yo can be written as

YCH - YCH2 YCH

L=k = = (A4)
(C,H)1 (CH)2 (CH)1
Yo) = Yop Yo

Zy=b= 00 =1 O (A3)
o)1 o2 ()2

The last members of Egs. (4) and (5) are true when there
is no fuel in the oxidizing flow (Y n), = 0) and there is no
oxidizer in the fuel flow (Y, = 0). Z and Z, are equal
when equidiffusion can be assumed.

This statement will be proved in the hypothesis that dilut-

ing species in the oxidant and fuel flow are also present. In
this case in the flow 1 will be present, in addition to the fuel
mass fraction Yy, a diluent whose mass fraction is

I = Ycm,

I =Yem, = Yem, (A6)

Yem,

In other words the diluent in the flow 1 has a mass
fraction = (1 — Y p, Y cmy,of the fuel mass fraction.
Analogously, under the same equidiffusion hypothesis, in
any point of the flow a diluent mass fraction

Yemm (A7)

will be associated to the fuel mass fraction Ycp).

The same discussion could be applied to the oxidant mass
fraction Yo, to which will be associated a diluent mass
fraction

1 =Y,

(AB)
Y0,

Yo
By imposing that the sum of all the mass fractions is unity

it results that
1

—y,
CH)
Yew, + Yew, —y——— + Yo + Yo
(c, o),

1= Yo, _,

(A9)

and by evidencing Ycn) and Yo,

1 —Y, 1—-Y,
Yem, (1 + — o ) + Y(O)(l + ) =1

Yicm, Y0,
(A10)
and
1 1
Y(C,H) 1/+Y 71/ +Y(o) l/‘l’Y—*,l/ :1
(C,H), (0),
(A11)
that is
Y, Y,
e (A12)
Yem, Y0,
or
Z =2, (A13)

Another important relation is regarding the mixing frac-
tion in correspondence of the stoichiometric ratio v,. The
mixing fractions will be indicated with the subscript s when

v = Yo/Ycn) (A14)
that can be expressed as
Y -1
Zy=&g = (1 + VS(C’H)I) (A15)
(0),

This expression comes from

Y, v, Y,
zo=1-Jou _, 7 __ ¥ Yen,

: (A16)
Y (0, Y0,
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Y,
(C,H)y
Zy= 7 Yen, = ZaYcn, (A17)
(C.H),

and substituting Eq. (17) in Eq. (16) results in

Z.Y
Z,=1- VsZs X (C h), (A18)
Y,
That allows us to obtain Z as
Zle(O)2 - Y(O)2 + VSZStY(C,H)l = 0 (A19)
Zs(Yoy, T vsYcm,) = Yo, (A20)
Y,
zsl<1 + V5<C’H)'> =1 (A21)
(0),
and also
-1
Y,
Zy=¢&g= (1 + —;C’“)' ) (A22)
(0),
Appendix B

The following derivation of the strain rate K over a
surface 6A has been reported from Candel and Poinsot
[190] and comes from the formulation of the transport
theorem given by Aris [191]

d Jda
Fm sta'n ds = JJ‘S[E +Vav+VAa@A v)]~n ds
(BD)

taking in account that
VA(@Av)=v-Va—aVv—-vVa+vVa (B2)

it follows:

d
< nds
dt,[.[san

)
= JJ [a—? +v-Va+aVv) — (V-a)v]n ds (B3)
s
Eq. (B3) can be applied to any vectorial quantity defined

over a surface S(f) = SA(f). Assuming a equal to the unitary
vector normal to the surface n it follows:

d
— doA
dt J J A

= JJ [a_n +v-Vn + n(V-y) — (V-n)v]-n déA (B4)
SA(1) t

J
and since
on 19 2
T n=——n’=0 B5
a " 2" (BS)

—wv(L1n2) =
(V-Vn)-n—vV(zn )—O (B6)

it follows:

g JJ déA = JJ [=nn: (Vv) + -v] déA B7)
dr SA(1) BA(1)

and, considering that the integrand in the second term is
constant, it follows:
1 déA
A dr
Analogously it could be demonstrated that, as it has been

reported by Ottino (37), that a linear element &/ and a
volume element 8V are stretched according to the laws

= —nn: (Vv) + Vv (B8)

1 Dol
1 D&V
SV Dr (Vv) : uu v

where m and u are the tangential versor to the linear element
and the unitary versor, respectively.
By substituting v = v, + nv, in Eq. (B8) it follows:

V(v, +nv,) —nn: V(v, + nv,)
=Vv,+Vny, —mn: Vv, —nn: Vny, (B9)
and since nn : Vv, =0

V(v, +nv,) —nn: V(v, + nv,)

=Vv,+nVy,+v,Vn—nn:Vmv,) (B10)

And since n-Vv,, is equal to nn : V(nv,) it results
Vv—mn:(Vv)=Vv, +v,Vn (B11)
Appendix C

We want now to determine the concentration profile or
the mixture fraction in the unsteady 1D case

Iz a3’z
= _p—= Cl1
ot ax? D
for this it was helpful to use the Boltzmann variable

X

= = C2
4 N (C2)
by substituting in Eq. (C1)

dz [ 3¢ d%Z [ 9&\2
—|=)=D—F| = C3
dg(ar) dfz(ax) €3
and since

3 x 32 —x
— = —12t"%) = C4
ot \/4D( ) 2t+/4Dt ©
& 1

ox 4Dt

Eq. (C1) becomes
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d’z dz

—Z 462 =0 C5
a8 §d§ (C5)
with the boundary conditions

x=0=¢&(=0 Z=12, (Co)
X— 0= =00 Z=12y

By introducing the quantity
_ iz
Y= ¢
Eq. (C5) can be easily resolved as

(o2))

dy
- + =
Y 26y=0

A
y

Iny=—¢

and in terms of Z

¢_, 9 _
a&

y=ae" ae ¢ (C8)

By evaluating at ¢ — oo it is possible to determine the
value of the constant a

Z-Zy=a r e & dg:aﬁ (C9)
0 2
_,Z-7)
NG

and by substituting

Z(x,t) — Zy(x=0,1) 2 £ 2
zw(x=oo,z)—zo(x=o,t)_ﬁjoe = erf(®

(C10)
finally
Z— 7
T—Zoo = erf(§) (C11)
where
X
= o

If the boundary conditions are given at —oo and +o0
X= —00 g =—0 Z=0
Z=12Z,

(C12)

X = 00 E=o00

Eq. (C8) is

¢ 2
[Z]e = aJ e ¢de (C13)

and performing the same calculations

Z(x = ) — Z(x = —00)

+ o0 + oo 5
= aj e €= ZaJ et = az-T1T (C14)
i~ Zo [T° =2
a=ﬁ:>Z(x,t)=ﬁlee4Dtdx
and finally
V4 1
Appendix D

We want now to find the expression for Z in the case of an
unsteady convective mixing layer under the hypothesis of
linearizable velocity.

In this case it is possible to approximate the equation

EY4 ou 8’z
— +u -D— =0
at ax, ax2
as
0z aZ 0’z
— — Kx, -D— =0 D1)
Jt 9x,, ax;,
where
du, 1 D(6A)
= = D2
0x, 6A Dt (D2)
is the ‘stretch rate’ and is related to the stretch ratio
(84),
SR = (D3)
(6A),,
by the equation
! T D(6A) (6A),
K dr = — =1 =1In SR D4
J ) j N oA “[ e, | D
that is
t
SR = exp[J K dt] (D5)
t()

Following the suggestion of Chella and Ottino (10) we
can make the substitution

&y, 1) = x,f () (D6)

= 1(t) D7)
and (as a consequence of Eq. (D6))

{ i f(t),%f =xnf(t)}

ox, N
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Assuming that Z depends on the two variables & and 7
Z=Z&m (D8)

and substituting in Eq. (D1), it follows:

[2(2) e ()] - ke 2 (2)
o Ty ()]

=0 (DY)

The term (62§/6x,% ) vanishes because d&/dx,, depends only
on time t.
By posing in evidence the term dZ/0¢ Eq. (D9) becomes

a () el ()

_(ENPZ

and by using Egs. (D6) and (D7)

Y4 y4
g (ﬂ ) + 210 — Knf 0]+

9T\ ot EY3
_ sz(l)if =0 (D11)
0
If we choose the function f(7) such that
xf () — Kx,f()=0 (D12)

it follows: ¥ (1) = Kf(t), and ffo «dnNif) ffo K dr.
By integrating

1
f@ = exp[j K dt] = SR (D13)
Iﬂ
and by posing f(t,) = 1 it results
&(x,, 1) = x,f(t) = x,SR (D14)
and Eq. (D11) can be written as
aZ (dr ,9°Z
—|— ) —DSR"— =0 D15
T ( dr ) 9E? (DI3)
if we assume that (d7/df) = SR? Eq. (D15) becomes
oz 9’z
— —D—— =0 (D16)
ok I3
where
&x,,1) = x,SR (D17)

integrating d7/dr in dz, it results

1 -
7= J SR? dr = tSR? (D18)
1=0

Eq. (D16) is the classical unsteady diffusion equation that
can be solved by making the classical Boltzmann variable

transformation
n=—% (D19)
V4Dt
that means
an 1 on n }
B =t D20
{ I3 J4aDr oT 27 ( )
By substituting Eq. (D19) in Eq. (D16), it results
IZ (d am\ 2o’z
—(—")70(—") 2 =0 (D21)
am\ ot ¢/ an
and by using Eq. (D20) we obtain
Y4 1 \2o’zZ
—(—ﬂ)—D(—) 2 =0 (D22)
an 27 J4Dt) on
therefore we obtain
az 9z
29—+ —5 =0 (D23)
an an

or in a different form

&’z dz
— =2 (D24)
dn dn
Introducing G = (dZ/dmn) Eq. (D24) becomes
dG
= = -G (D25)
dn
by the separation of the variables it results in
dG

and integrating G = ¢ e . Substituting G and integrating
between nn = 0(Z, = 0) and 7

Z n 2
J dz = CJ e " dn (D27)
Z, 0
and finally
Z—-Z,= C@erf(n) (D28)
where
rf 2 ("era
e = — e
(m NG JO m

is the error function.
Taking into account Egs. (D19) and (D17)

Z—Z(,:c@erf(\/%):cgerf(f/'%) (D29)

By evaluating Eq. (D29) at x, = oo(erf(c0) = 1), it is
possible to calculate Z = Z,,, and to determine the constant

¢ = QM(Zew — Zo).
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Eq. (D29) becomes

z-7, _ f(anR)
Zoo - Zo \/4D’T

(D30)

and by Eq. (D18)

Z—Z X, SR
2 =erf i D31
Zoo - Zo ( ’\/4D’T \/SRZ ) ( )

If we introduce the quantity 6,9, named mixing layer
thickness, as the distance from the origin such that

Z—2Z,=09Zs — Z,)

Eq. (D31) can be written as

zZ-7, &9 SR
—— =erf = D32
Zoo 7Zo (\/4DT \/SRZ) ( )

The value of &y can be calculated by considering that
erf(1) = 0.9. This is

V4Dt \/gR?

and, as a consequence

VSR?

SR (D33)

1=

80.9 =V 4Dt

By using the mixing layer thickness value of Eq. (D33) it

Appendix E

Due to the linearity of the conservation equation for the
mixing fraction, Z, a superposition principle can be applied.
This is very useful if the initial conditions for Z are such as
those depicted in the right side of the figure above. In this
case the mixing fraction can be decomposed into two contri-
butions

zZ=27 -2 (ED)

The initial conditions for these components are shown in
the left and central plots.

The mixing fraction Z is, then, given by the equation
reported in the lower right side of Fig. 22 . It is the difference
of two error functions of the two adimensional variables
& =x/6; and & = ((x — 4,))/6,.

If A, — oo then erf(&,) = —1 and the mixing fraction is
the same of the isolated diffusive layer Z = (1/2)(1 +
erf(£)). In this case the diffusive flow J 5 _.., over an unitary
(at t = 0) surface at x = 0 can be obtained by the equation

0z
a0 = —pDS=SR (E2)
n ax

In fact, in the not stirred case, the diffusive flow is given,
due to the Fick law, by —pD(8Z/dx). If the stirring has to be
taken into account this quantity has to be multiplied by the
stirring ratio SR that represents the extent at the time ¢ of a
surface unitary at r = 0.

is possible to write Eq. (32) in a more compact form Since
zZ-7, X, d 2
L% _ef D34 S erf( = — E3
Zo—z, & (50_9) O34 Gert®= e (E3)
‘T y ‘r h
z z, Z4
X' XV X -

1

7= [1+ ert)] "3

& =%,

B 1 SR,
Jl|x:0 =—pp -2

T 81 ‘]2|x=0:_p@

Z, = [(1 + erf(iz))]

£, :(x—A,%

Ja
62 62

1
Z=2(erf (&)= enf5,)

:_@ﬁ l_ex _é_ﬂ
L R

Fig. 22. Decomposition of mixing fraction Z; in Z; and Z, contributions.
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it follows that

az aZ & 1(2),,5
= = [§]

ax

1 1 1

\m)e s~ vm s

NG (E4)

S0 g ax 2

and the diffusive flow, in the case of an isolated layer
becomes

_.p. L SR
PR 5

Jp o0 = (ES)

This expression shows the twofold influence of the stir-
ring (i.e. of the fluid-dynamics) on the mass exchange
between two gaseous layers. In fact, if the stirring is present
the diffusive flow increases because the material surface
increases (and this taken in account by the SR term in Eq.
(ES)). Furthermore, the mixing layer thickness (expressed
by the &,, term) is lowered according to the expression

VSR?

astirred = aisolzltedw = Sisolated’y (E6)
where the vy factor is generally lower than 1. Both these
effects increase the diffusive flow in the stirred case with
respect to the isolated one.

The diffusive flow in the case of a double diffusive layer
(Jan) can be obtained by substituting (0Z/0x) in Eq. (E2)
with the one relative to the double layer

% _ l(%ﬁ _ W@)

ox 2\ 0&  ox & ox

1(2 12 ,&1)
I i R
2\ /m & Jm 8,

= el e(-3)]

~/me RAUP
by assuming 6; = 6,, that is the two diffusive layers would
evolve in the isolated case nearly equally

oZ pD SR A,
=—pDSR— =—"— —|1— -—— E7
Ia, p ax Jm 0, [ exp( 1) )] (E7)

It is possible to define the quantity Cg,

Coat =

JA,‘ 1 _ An
Ty =1 exp( F) (E8)

Itis
0=Cy =1

In the case A, — oo (isolated mixing layers) Cg, value is
1. Lower values are relative to progressively more interact-
ing mixing layers.
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