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Navier–Stokes equations — I

• Mass and momentum balance:





∇ · V = 0

ρ
DV

Dt
= ∇ · τ + f

where V = V (x, t), ρ = const.,
D

Dt
=

∂

∂t
+ V · ∇

• For Newtonian and incompressible flows:

τ = −pI + 2µ

(
∇V + (∇V)T

2

)



Navier–Stokes equations — II

• Navier–Stokes equations (Navier 1822, Stokes 1845):





∇ · V = 0

∂V

∂t
+ V · ∇V = −

∇p

ρ
+ ν∇2V + f (NS)

• “Indicial notation”:





∂Uj

∂xj
= 0

∂Uj

∂t
+ Ui

∂Uj

∂xi
= −

1

ρ

∂p

∂xj
+ ν

∂2Uj

∂x2
i

+ fj (NS)j



Navier–Stokes equations — III

• When body forces admit a potential (f = ∇ϕ), defining the modified

pressure P = p/ρ+ ϕ and exploiting incompressibility:

∂V

∂t
+ ∇ · (VV) = −∇P + ν∇2V

• Non dimensional formulation is:

∂V∗

∂t∗
+ ∇∗ ·

(
V∗V∗)

= −∇∗P ∗ +
1

Re
∇∗2V∗

where Re =
VrefLref

ν



Definitions – I

• Decomposition of the tensor ∇V = S + Ω:

S =
∇V + (∇V)T

2︸ ︷︷ ︸
rate of strain

Ω =
∇V − (∇V)T

2︸ ︷︷ ︸
rate of rotation

• In indicial notation...:
∂Ui

∂xj
= Sij +Ωij

Sij =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)

Ωij =
1

2

(
∂Ui

∂xj
−
∂Uj

∂xi

)



Definitions – II

• S e Ω arise for example in the relations:

τ = −pI + 2µS τij = −pδij + 2µSij

Ω · A =
1

2
ω ∧ A Ωij = −

1

2
εijk ωk

2∇ · S = ∇ (∇ · V) + ∇2V 2
∂Sij

∂xi
=

∂

∂xj

∂Ui

∂xi
+
∂2Uj

∂x2
i

∇ · S = −
1

2
curlω + ∇ (∇ · V)

∂Sij

∂xi
= −

1

2
εjki

∂ωi

∂xk
+

∂

∂xj

∂Ui

∂xi

with ω = curlV (i. e. ωi = εijk
∂Uk

∂xj
)



Conserved passive scalars

• Convection-diffusion equation for a passive scalar:

∂φ

∂t
+ V · ∇φ = Γ∇2φ

• Conservative form of the conservation equation:

∂φ

∂t
+ ∇ · F (φ) = 0

with F (φ) = Vφ− Γ∇φ



Induced equations — I

• Poisson equation for pressure (divergence of (NS)):

∇2p = −ρ∇ · (V · ∇V)

• Vorticity equation (curl of (NS)):

∂ω

∂t
+ V · ∇ω = ω · ∇V + ν∇2

ω

ω · ∇V is the “stretching” term
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Induced equations — II

• Evolution equation for (unit mass) kinetic energy: E =
|V|2

2

∂E

∂t
+ V · ∇E + ∇ ·

[(

V
p

ρ

)

− 2νV · S

]

= −Φ

with Φ = 2νSijSij dissipation function.

• By considering a domain D with periodic or impermeable wall BCs, by

integrating over D one has:

dE

dt
= −

∫

D
Φ dD = −ν

∫

D
ω2

i dD

with E =
∫
D E dD

ω2
i = |ω|2 is the enstrophy



Turbulence: definitions(?!) — I

• It is a well-known fact that under suitable conditions, which normally amount to a requirement that
the kinematic viscosity ν be sufficiently small, some of this motions are such that the velocity at any
given time and position in the fluid is not found to be the same when it is measured several times
under seemingly identical conditions. In these motions the velocity takes random values which are not
determined by the ostensible, or controllable, or ’macroscopic’, data of the flow, although we believe
that the average properties of the motion are determined uniquely by the data. Fluctuating motions
of this kind are said to be turbulent.

G. K. Batchelor, 1953

• Turbulence is a three-dimensional time-dependent motion in which vortex stretching causes velocity
fluctuations to spread to all wavelengths between a minimum determined by viscous forces and a
maximum determined by the boundary conditions of the flow. It is the usual state of fluid motion
except at low Reynolds numbers.

! The only short but satisfactory answer to the question “what is turbulence?” is that it is the general
solution of the Navier Stokes equation.

P. Bradshaw, 1972

• Creation of small scale activity and dissipation, is the principle of turbulence. Classical fluid dynamical
instabilities play a role of the fuel, vortex stretching is the engine, and viscous dissipation is the breaks.

P. Constantin, 1994



Turbulence: definitions(?!) — II

• The following definition of turbulence can thus be tentatively proposed and may contribute to avoiding
the somewhat semantic discussion on this matter: a) Firstly, a turbulent flow must be unpredictable, in
the sense that a small uncertainty as to its knowledge at a given initial time will amplify so as to render
impossible a precise deterministic prediction of it evolution; b) Secondly, it has to satisfy the increased
mixing property defined above; c) Thirdly, it must involve a wide range of spatial wave lengths.

M. Lesieur, 1997

• Turbulence can be defined by a statement of impotence reminiscent of the second law of thermody-
namics: flow at a sufficiently high Reynolds number cannot be decelerated to rest in a steady fashion.
The deceleration always produces vorticity, and the resulting vortex interactions are apparently so sen-
sitive to the initial conditions that the resulting flow pattern changes in time and usually in stochastic
fashion.

H. W. Liepmann, 1979

• A body of fluid is a mechanical system with an infinite number of degrees of freedom. It may therefore
be expected to execute a rather random motion comparable to that of the molecules in a gas. If one
regards such a chaotic motion as analyzed into harmonic components of various scales, one recognizes
that frictional forces tend to dissipate the small scale oscillations and keep the motion more or less
regular. Thus, when viscous forces are sufficiently strong, i.e. at sufficiently low Reynolds numbers,
the motion will become laminar. On the other hand, at sufficiently high Reynolds numbers the motion
will tend to become random fluctuating, even when external conditions are steady.

C. C. Lin and H. W. Reid, 1963



Turbulence: phenomenology

Turbulence characteristics

• High vorticity and 3D

• Highly irregular in both space and time

• Randomness

• Diffusivity and dissipativity

• Wide range of spatial and temporal scales involved

• Non locality



Turbulence: statistical approach

• (Thermo)fluid-dynamic quantities are assumed as stochastic variables,

unpredictable for a single experiment but with stable expected values

• For each variable we define the mathematical expectation as:

〈U〉 = lim
N→∞

N∑

ν=1

Uν
N

• Comparison with experiments (in which various space and/or temporal

mean values are measured) is made under the assumption of validity of

the ergodic hypotesis



Stochastic tools: basic concepts — I

Given Ω the probability space:

• At every time instant t̄ and in every point in space x̄ the generic fluid-

dynamic variable is a random variable.

Ut̄,x̄ (ω) : Ω −→ R

• Fixed the point x̄ in space, Ux̄ (t) is a stochastic process.

Ux̄ (ω, t) : Ω× [t0,∞[ −→ R

• Fixed a time instant t̄, Ut̄ (x) is a random field.

Ut̄ (ω,x) : Ω× D −→ R



Stochastic tools: basic concepts — II

• The characterization of a random variable is made through the specifi-

cation of the Probability Density Function fU in such a way that:

P (U (ω) ∈ R) =
∫

R
fU (u) du

• The characterization of N random variables is made through the spec-

ification of the Joint Probability Density Function:

fU1,U2,...,UN

• The characterization of stochastic processes and/or random fields is

made through the specification of the n-point, n-time Joint Probability

Density Functions

fN (u1, t1, x1; . . . uN, tN,xN)

∀N , ∀ (t1, . . . , tN), ∀ (x1, . . . ,xN)



Stochastic tools: basic concepts — III

The synthetic characterization is made through the specification of the

moments

• Mean value:

〈U〉 =
∫ ∞

−∞
V fU (V ) dV

• Variance:

〈(U − 〈U〉)2〉 =
∫ ∞

−∞
(V − 〈U〉)2 fU (V ) dV

• Central moment of order n:

〈(U − 〈U〉)n〉 =
∫ ∞

−∞
(V − 〈U〉)n fU (V ) dV



Stochastic tools: basic concepts — IV

• Let σ be the standard deviation (σ =
√

var (U)). Standard random

variables are defined as:

Û =
(U − 〈U〉)

σ

• Of particular interest are standard moments of order n = 3 and n = 4,

respectively called skewness and flatness

Sk (U) =
〈(U − 〈U〉)3〉

σ3
Fl (U) =

〈(U − 〈U〉)4〉

σ4

• In the case of a random vector U = (U1, U2, . . . , UN) the covariance

matrix is defined as:

cov (U) = 〈(Ui − 〈Ui〉)
(
Uj − 〈Uj〉

)
〉



Reynolds equations

• Reynolds decomposition:

ui = Ui − 〈Ui〉

• By applying the mean operator to (NS)j (Reynolds equations):

∂〈Uj〉

∂xj
= 0

∂〈Uj〉

∂t
+ 〈Ui〉

∂〈Uj〉

∂xi
= −

1

ρ

∂〈p〉

∂xj
+ ν

∂2〈Uj〉

∂x2
i

−
∂〈uiuj〉

∂xi

〈uiuj〉 is the Reynolds Stress Tensor (RST)
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• By applying the mean operator to (NS)j (Reynolds equations):

∂〈Uj〉

∂xj
= 0

∂〈Uj〉

∂t
+ 〈Ui〉

∂〈Uj〉

∂xi
= −

1

ρ

∂〈p〉

∂xj
+ ν

∂2〈Uj〉

∂x2
i

−
∂〈uiuj〉

∂xi

〈uiuj〉 is the Reynolds Stress Tensor (RST)



Reynolds Stress Tensor — I

Interpretation as a stress for the RST:

• Reynolds equations can be written as::

ρ

(
∂〈Uj〉

∂t
+ 〈Ui〉

∂〈Uj〉

∂xi

)

=
∂τ̃ij
∂xi

• The stress tensor τ̃ij is now given by

τ̃ij = −〈p〉δij + 2µ〈Sij〉 − ρ〈uiuj〉



Reynolds Stress Tensor — II

• In the Reynolds equations the term 〈uiuj〉 is unknown

• It is possible to write down balance equations for 〈uiuj〉; they will involve

further unknowns (closure problem)

• At fixed x e t RST represents the covariance matrix of the random

vector U

〈uiuj〉 = 〈(Ui − 〈Ui〉)
(
Uj − 〈Uj〉

)
〉 = cov (U)



Reynolds Stress Tensor — III

• The turbulent kinetic energy k is defined as half the trace of the RST

〈uiuj〉:

k =
1

2
〈uiui〉

• The anisotropy aij is defined as the deviatoric part of the RST:

aij = 〈uiuj〉 −
2

3
kδij



em um sentido estat́ıstico.

Instantaneous and mean scalar field



Passive scalar transport: mean equations

• The mean equation for a passive scalar reads:

∂〈φ〉

∂t
+ 〈V〉 · ∇〈φ〉 + ∇ · 〈uφ′〉 = ∇ · (Γ∇〈φ〉)

• In conservative form one has:

∂〈φ〉

∂t
+ ∇ · (〈V〉〈φ〉) = ∇ ·

(
Γ∇〈φ〉 − 〈uφ′〉

)

• Again, in addition to diffusive (Γ∇〈φ〉) and convective (〈V〉〈φ〉) mean

fluxes, an additional unknown term due to fluctuations arises: (−〈uφ′〉).



Energy equations

• An equation for turbulent kinetic energy k can be written from the

equations of mean kinetic energy and from an equation for the transport

of kinetic energy of the mean velocity field:

〈E〉 =
1

2
〈UiUi〉 Ē =

1

2
〈Ui〉〈Ui〉 k =

1

2
〈uiui〉

D̄〈E〉

D̄t
+ ∇ · T1 = −ε̄− ε

D̄Ē

D̄t
+ ∇ · T2 = −P − ε̄

D̄k

D̄t
+ ∇ · T = P − ε

where:

D̄

D̄t
= ∂t + 〈Ui〉∂i sij =

1

2

(
∂ui

∂xj
+
∂uj

∂xi

)

, P = −〈uiuj〉
∂〈Ui〉

∂xj
= −aijS̄ij

ε = 2ν〈sijsij〉 Turbulent kinetic energy dissipation (for unit mass and time)

ε̄ = 2νS̄ijS̄ij, Ti =
1

2
〈uiujuj〉 + 〈uip

′〉/ρ− 2ν〈ujsij〉



Energy equations

• An equation for turbulent kinetic energy k can be written from the

equations of mean kinetic energy and from an equation for the transport

of kinetic energy of the mean velocity field:

〈E〉 =
1

2
〈UiUi〉 Ē =

1

2
〈Ui〉〈Ui〉 k =

1

2
〈uiui〉

D̄〈E〉

D̄t
+ ∇ · T1 = −ε̄− ε

D̄Ē

D̄t
+ ∇ · T2 = −P − ε̄

D̄k

D̄t
+ ∇ · T = P − ε

where:

D̄

D̄t
= ∂t + 〈Ui〉∂i sij =

1

2

(
∂ui

∂xj
+
∂uj

∂xi

)

, P = −〈uiuj〉
∂〈Ui〉

∂xj
= −aijS̄ij

ε = 2ν〈sijsij〉 Turbulent kinetic energy dissipation (for unit mass and time)

ε̄ = 2νS̄ijS̄ij, Ti =
1

2
〈uiujuj〉 + 〈uip

′〉/ρ− 2ν〈ujsij〉



Stochastic tools, again — I

• For a stochastic process one defines the autocovariance and the auto-

correlation function

R (t, s) = 〈u (t)u (t + s)〉

ρ (t, s) =
R (t, s)

〈u (t)2〉

For statistically stationary processes R and ρ depend only on s

• For a Random field one defines the two-point correlation

Rij (x, r) = 〈ui (x)uj (x + r)〉

For a statistically homogeneous field Rij depends only on r.



Stochastic tools, again — II

• From the definition of autocorrelation one can define temporal scales

of the flow (integral timescale):

τ =
∫ ∞

0
ρ(s) ds

• From the definition of two point correlation one can define various

spatial scales (integral lengthscales), e.g.:

L11 (x) =
1

R11(x,0)

∫ ∞

0
R11 (x, r1) dr1



Homogeneous and isotropic turbulence (Taylor, 1935)

• A turbulent field is defined homogeneous if all the statistical variables

of the fluctuating field are independent on a shift in space

• A turbulent homogeneous field is defined isotropic if all the statistical

variables are independent on reflection and rotations of the coordinate

system



Homogeneous and isotropic turbulence — II

In homogeneous and isotropic fields the two-point correlation functions are

independent on the direction of r and are hence dependent only on r.

• At r = 0 we have the RST, which is now a scalar tensor:

Rij (0, t) = 〈uiuj〉 = u′2δij u′2 =
2

3
k

• It is possible to show that the most general form of the autocorrelation

tensor for isotropic fields is given by

Rij (r, t) = u′2
(
g (r, t) δij + (f (r, t) − g (r, t))

rirj

r2

)

where u′2 = 2
3k and f and g are respectively the longitudinal and

trasverse autocorrelation.



Homogeneous and isotropic turbulence — III

f(r, t) =
R11

u′2
=

〈u1(x + e1r, t)u1(x, t)〉

〈u2
1〉

g(r, t) =
R22

u′2
=

〈u2(x + e1r, t)u2(x, t)〉

〈u2
2〉

R33 = R22 Rij = 0 per i -= j

u ( )x2 u ( r)x+e2 1
u ( )x1 u ( r)x+e1 1 e1 e1

f(r) g(r)

Longitudinal and trasverse autocorrelation



Homogeneous and isotropic turbulence — IV

• Continuity imposes:

g(r, t) = f(r, t) +
1

2
r
∂

∂r
f(r, t)

and hence Rij is univocally determined by f(r, t).

• There are spatial scales based on f and g:

L11 =
∫ ∞

0
f(r, t) dr (longitudinal integral scale )

L22 =
∫ ∞

0
g(r, t) dr (trasverse integral scale )

λf =
[
−

1

2
f ′′(0, t)

]1

2 (longitudinal Taylor microscale)



1.0

kf

rp(r)

f(r)

Longitudinal autocorrelation and Taylor microscale



Kolmogorov (1941) theory: basic concepts

• Kolmogorov 1941 theory (K41) is based on few statistical hypotesis

justified by Richardson energy cascade view (Richardson, 1922)

• In such a description a turbulent field can be considered to be composed

of (eddies) of different sizes

• Large eddies are unstable and break up trasferring their energy to smaller

eddies. This process is assumed to be non viscous

• The energy transfer is halted on sufficiently small scales at which vis-

cosity is active in dissipating energy



Mixing Layer (Brown e Roshko, 1974)



Energy cascade (Richardson, 1922)



Kolmogorov (1941) theory: basic concepts

Kolmogorov theory is formulated for turbulent flows at sufficiently high

Reynolds number. For such flows one assumes that:

1. Small scales are statistically isotropic (and universal)

2. Statistical properties of small scales (dissipation range) depend solely

on ν and ε

3. There exist intermediate scales (inertial subrange) at which statistical

properties are universal and depend only on ε.



Kolmogorov (1941) theory: basic concepts

• Dimensional analysis allows one to determine the following Kolmogorov

scales

η ≡
(
ν3/ε

)1/4

uη ≡ (εν)1/4

τη ≡ (ν/ε)1/2

• By assuming ε ∼ U3/L one has the following scaling laws:

η/L ∼ Re−3/4

uη/U ∼ Re−1/4

τη/T ∼ Re−1/2



Kolmogorov (1941) theory: basic concepts

• Second order velocity structure function:

Bij (r,x, t) = 〈[Ui (x + r, t) − Ui (x, t)]
[
Uj (x + r, t) − Uj (x, t)

]
〉

• For homogeneous and isotropic turbulence

Bij (r, t) = BNN (r, t) δij + [BLL (r, t) − BNN (r, t)]
rirj

r2

• A consequence of continuity equation is

BNN (r, t) = BLL (r, t) +
1

2
r
∂

∂r
BLL (r, t)

rirj

r2



Kolmogorov (1941) theory: basic concepts

Dimensional analysis allows one to obtain the following scaling laws:

• In the dissipation range:

BLL (r, t) = (εr)2/3 B̂LL (r/η)

• In the inertial subrange:

BLL (r, t) = C2 (εr)2/3 “two-third law”

i.e. B̂LL → C2 for r/η 0 1
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Kolmogorov (1941) theory: basic concepts

• It is possible to obtain an equation for f(r, t) from (NS) (Karman–

Howart, 1938)

∂

∂t

(
u′2f

)
−

u′3

r4
∂

∂r

(
r4k̄

)
=

2νu′2

r4
∂

∂r

(
r4
∂f

∂r

)

where k̄ = 〈u1(x, t)2u1(x + e1r, t)〉/u′3 and u′2 = 2
3k

• Expressed in terms of the longitudinal structure function BLLL(r, t) on

has: (Kolmogorov equation)

3

r5

∫ r

0
s4
∂

∂t
BLL (s, t) ds = 6ν

∂BLL

∂r
− BLLL −

4

5
εr

• In the inertial subrange one has:

BLLL = −
4

5
εr “four-fifth” law
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4
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Fourier representation — I

• Fourier transform of the autocorrelation tensor is the velocity-spectrum

tensor

Φij(κ) =
1

(2π)3

∫ ∫ ∫ ∞

−∞
Rij(r)e

−iκ·r dr

Rij(r) =
∫ ∫ ∫ ∞

−∞
Φij(κ)eiκ·r dκ

• The RST is given by:

Rij(0) = 〈uiuj〉 =
∫ ∫ ∫ ∞

−∞
Φij(κ) dκ

which identifies Φij as the “density” of the RST in the wavenumbers

space



Fourier representation — II

• By removing all “directional” informations from Φij (κ) one obtains the

definition of the energy spectrum function:

E(κ) =
∫

S(κ)

1

2
Φii (κ) dS (κ)

where S (κ) is the sphere of radius κ in wavenumber space

• From the definition of E (κ) one obtains:

k =
∫ ∞

0
E(κ) dκ

ε =
∫ ∞

0
2νκ2E(κ) dκ

D(κ) = 2νκ2E(κ) is the dissipative spectrum



Fourier representation — III

By applying Kolmogorov hypotesis in the wavenumber space one obtains

scaling laws analogous to the ones for the velocity structure functions.

• In the dissipation range, E(κ) is uniquely determined by ν and ε:

E(κ) = (εν5)1/4ϕ(κη)

and ϕ(κη) is an universal function.

• In the inertial subrange, E(κ) is uniquely determined by ε:

E(κ) = Cε2/3κ−5/3



Energy spectrum (Frisch, 1996)



Energy spectrum (Frisch, 1996)



Fourier representation — IV

• Experimentally, the 1D spectrum is measured

E11(κ1) =
1

π

∫ ∞

∞
Rij (e1r1) e−iκ1r1 dr1

also expressed as:

E11(κ1) =
2

π
〈u2

1〉
∫ ∞

0
f(r1) cos(κ1r1) dr1

• Scaling laws for E11 are given by:

E11(κ1) = ψ(κ1η)ε
2/3κ

−5/3
1

E11(κ1) = φ(κ1η)
(
εν5

)1/4
in the dissipation range (κη → 1)

E11(κ1) = C1ε
2/3κ−5/3 in the inertial range (κη 1 1)
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K41 refinements — I

Further results of K–41 for higher-order statistics:

• Scaling laws for moments of order n ≥ 3 for the velocity structure

functions:

〈(∆U)n〉 = Cn (r〈ε〉)n/3

with ∆U = [Ui (x + eir) − Ui(x)]. In the case n = 3 theory has already

given: C3 = −4/5

• Normalized velocity derivative moments of higher order:

Mn =
〈
(
∂ui
∂xi

)n
〉

〈
(
∂ui
∂xi

)2
〉n/2

According to K41 Mn are universal constants.



K41 refinements — II

• Both predictions for higher order statistics are not fully verified by ex-

periments

• Higher order moments exhibit scaling exponents different from n/3 and

not universal. Normalized velocity derivatives have moments growing

with Re

• From the point of view of the hypotesis, the critical point is the depen-

dence of the local statistics from averaged dissipation (Landau 1944)

• A (partial) correction has been given by Kolmogorov himself (refined

similarity hypotesis, 1962)



K41 refinements — III

• Discrepancy between theoretical predictions and experimental results is

attributed to internal intermittency .

• It is the tendency of turbulent flows to develop highly localized regions

of intense vorticity by means of the vortex stretching mechanism, with

consequent intense and localized dissipation peaks

• Statistical consequence of this phenomenon is the occurrence of rare

events with high probability with exponential decay of the pdf



PDF of the difference of velocity fluctuations.
Atmosferic turbulence



Spatial distribution of vorticity dissipation in homogeneous and isotropic turbulence.
DNS, periodic box (Sreenevasan, 1999)



Turbulence: numerical simulation

These considerations justify the view that a considerable mathematical effort towards a detailed understand-
ing of the mechanism of turbulence is called far. The entire experience with the subject indicates that the
purely analytical approach is beset with difficulties, which at this moment are still prohibitive. The reason
for this is probably as was indicated above: That our intuitive relationship to the subject is still too loose –
not having succeeded at anything like deep mathematical penetration in any part of the subject, we are still
quite disoriented as to the relevant factors, and as to the proper analytical machinery to be used.
Under these conditions there might be some hope to ‘break the deadlock’ by extensive, but well-planned,
computational efforts. It must be admitted that the problems in question are too vast to be solved by a
direct computational attack, that is, by an outright calculation of a representative family of special cases.
There are, however, strong indications that we could name certain strategic points in this complex, where
relevant information must be obtained by direct calculations. If this is properly done, and the operation
is then repeated on the basis of broader information then becoming available, etc., there is a reasonable
chance of effecting real penetrations in this complex of problems and gradually developing a useful, intuitive
relationship to it. This should, in the end, make an attack with analytical methods, that is truly more
mathematical, possible

J. von Neumann, 1949



Turbulence: numerical simulation — I

Numerical simulation of turbulent flows can be obtained with different ap-

proaches

• Direct Numerical Simulation (DNS)

• Large Eddy Simulation (LES)

• PDF models

• RANS models, based on equations for the RST

• RANS models, based on the concept of turbulent viscosity



Turbulence: numerical simulation — II

For what it concerns turbulent viscosity models, here we will consider:

• Algebraic models (e.g. mixing length models)

• One equation models (e.g. Turbulent-kinetic-energy models)

• Two equations models (e.g. k–ε, k–ω)



Gradient diffusion hypotesis

• The mean equation for passive scalar transport can be written in con-

servative form as:

∂〈φ〉

∂t
+ ∇ · (〈V〉〈φ〉) = ∇ ·

(
Γ∇〈φ〉 − 〈uφ′〉

)

• Gradient diffusion hypotesis models the unknown term 〈uφ′〉 as:

〈uφ′〉 = −ΓT∇〈φ〉

It this way the effective diffusivity is: Γeff(x, t) = Γ+ΓT(x, t)



Turbulent viscosity hypotesis — I

• In the same way, turbulent viscosity hypotesis models the deviatoric part

of the RST −ρ〈uiuj〉 by assuming linear dependence from the tensor S̄ij

(Boussinesq, 1877)

〈uiuj〉 −
2

3
kδij = −2νT (x, t) S̄ij

νT is the turbulent viscosity .

• Boussinesq hypotesis can be expressed in a more compact way as:

aij = −2νTS̄ij

in analogy with the deviatoric part of the stress tensor:

τdij = −2µSij



Turbulent viscosity hypotesis — II

• Effective viscosity is::

νeff = νT (x, t) + ν

• Mean momentum equation reads:

∂〈Uj〉

∂t
+ 〈Ui〉

∂〈Uj〉

∂xi
= −

1

ρ

∂

∂xj

(
〈p〉 +

2

3
ρk

)
+

∂

∂xi

[

νeff (x, t)

(
∂〈Ui〉

∂xj
+
∂〈Uj〉

∂xi

)]



Turbulent viscosity hypotesis — II
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1

ρ

∂
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2

3
ρk
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∂

∂xi
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Turbulent viscosity hypotesis — II
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3
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Turbulent viscosity hypotesis — II

• Effective viscosity is::

νeff = νT (x, t) + ν

• Mean momentum equation reads:

∂〈Uj〉

∂t
+ 〈Ui〉

∂〈Uj〉

∂xi
= −

1

ρ

∂

∂xj

(
〈p〉 +

2

3
ρk

)
+

∂

∂xi

[

νeff (x, t)

(
∂〈Ui〉

∂xj
+
∂〈Uj〉

∂xi

)]



Turbulent viscosity hypotesis: remarks — I

The specification of ΓT (x, t) and νT (x, t) overcomes the closure problem

of Reynolds equations. Some remarks are however made:

• ΓT (x, t) and νT (x, t) are in general functions of space and time. Their

specification requires the solution of ad hoc equations (differential or

algebraic)

• Closure problem actually remains. We have simplified the problem in the

sense that we passed from the specification of six functions (simmetric

tensor 〈uiuj〉 components) to the specification of a single function (νT).



Turbulent viscosity hypotesis: remarks — II

• Turbulent diffusivity hypotesis is rigorously valid if passive scalar flux

due to turbulent motion is aligned with the gradient of the mean scalar

field

• In the same way, turbulent viscosity hypotesis is rigorously valid if prin-

cipal axes of the deviatoric part of the RST are aligned with symmetric

part of the mean velocity gradient

In both cases these assumption are generally incorrect and experimentally

not always verified!



Turbulent viscosity hypotesis: shear flows

• For 2D parallel shear flows RST has a unique non null component,

which is the term 〈uv〉. Turbulent viscosity hypotesis becomes:

〈uv〉 = −νT (x, t)
∂〈U〉

∂y

• In this case Boussinesq hypotesis can be seen as a definition of turbulent

viscosity



Mixing length — I

• By analogy with kinetic theory for ideal gases, Prandtl proposed the

following expression for turbulent viscosity:

µ =
1

2
ρūλ −→ µT =

1

2
ρvm1m

where vm and 1m are respectively the mixing velocity and the mixing

length (Prandtl, 1925)

• For the mixing velocity Prandtl made the hypotesis

vm ∼ 1m

∣∣∣∣∣
d〈U〉

dy

∣∣∣∣∣

and hence turbulent viscosity is given by: νT = 12m

∣∣∣∣∣
d〈U〉

dy

∣∣∣∣∣



Mixing length: free shear flows — I

• For simple shear flows, mixing length is assumed as:

1m = αδ(x)

• the parameters α and δ(x) are determined ad hoc for each particular flow

by making similarity considerations and by reference with experimental

data



Mixing length: free shear flows — II

For simple cases the one has the following values (Wilcox, 1993):

• Far wake δ(x) ≈ 0.805

√
Dx

ρU2
∞

α = 0.180

• Mixing layer δ(x) ≈ 0.247x α = 0.071

• Round jet δ(x) ≈ 0.233x α = 0.080

• Plane jet δ(x) ≈ 0.246x α = 0.098







Mixing length: wall bounded flows— I

• For wall bounded flows Prandtl assumption is that 1m is linearly related

to the distance from the wall:

1m = κy

• This assumption is consistent with the logaritmic law of the wall (von

Karman, 1930):

〈U〉+ =
1

κ
ln y+ + B

with κ ≈ 0.41 (Karman constant) and B ≈ 5.0



Mixing length: wall bounded flows— II

Mostly used variants are:

• Cebeci-Smith (1967) model

• Baldwin-Lomax (1978) model

These models incorporate the effects of the so-called external intermittency



One-equation models— I

Turbulent-kinetic-energy model

• Turbulent-kinetic-energy model is based on the specification of νT given

by (Prandtl, 1945):

νT = ck1/21m

based on dimensional analysis arguments

• It is obtained by assuming ck1/2 as velocity scale for the definition of

νT, instead of 1m|∂〈U〉/∂y|

• For the definition of the model, one needs an equation for k, and a

specification for 1m (incomplete model)



One-equation models— II

Turbulent-kinetic-energy model

• The balance equation for k is:

D̄k

D̄t
+ ∇ · T = P − ε

where T and ε requires a specification

• A model for ε is given by employing a velocity scale derived from tur-

bulent kinetic energy k and a length scale given by the mixing length:

ε = Ck3/2/1m

• This assumption, together with the specification for νT, implicitely im-

plies the assumption:
νTε

k2
= cC



DNS, channel flow (Kim et al. 1987)



One-equation models— III

Turbulent-kinetic-energy model

• For T one assumes (gradient diffusion hypothesis):

T = −

(

ν +
νT
σk

)

∇k

• The final equation for k is:

D̄k

D̄t
= ∇ ·

((

ν +
ck1/21m
σk

)

∇k

)

+ P − Ck3/2/1m

Where the unknown (to be specified) is 1m



Two equations models: k-ε

k − ε models are based on the specification of turbulent viscosity:

νT = Cµk2/ε

• k is determined by the equation already seen for the Turbulent-kinetic-

energy model

• ε is determined by an ad hoc equation

k − ε model is complete



“standard” k-ε model

Jones e Launder (1972)

• k is determined with the exact equation, with the assumptions employed

for the Turbulent-kinetic-energy model:

D̄k

D̄t
= ∇ ·

((

ν +
νT
σk

)

∇k

)

︸ ︷︷ ︸
∇·T

−〈uu〉∇〈U〉︸ ︷︷ ︸
P

−ε

• ε si determined with an empirical equation based on physical consider-

ations:

D̄ε

D̄t
= ∇ ·

((
ν +

νT
σε

)
∇ε

)
+ Cε1P

ε

k
− Cε2

ε2

k

• Constants are given by:

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3



k-ε model: conclusions

• k − ε is the simplest complete model

• Is quite accurate for simple flows, but inaccurate for complex flows

• Sources of uncertainity are:

1. Turbulent viscosity hypotesis

2. The equation for ε



Two equations models: k-ω

• In principle, other two-equations model can be proposed. Hystorically,

the first equation has usually been for k while different choiches are

possible for the second variable.

• Since 1942 Kolmogorov proposed as a second parameter the function

ω, which is defined as the dissipation per unit turbulent kinetic energy:

ω =
ε

k

• To the term ω various physical interpretations can be given. Each of

them is at the basis of the empirical equation written for it



“standard” k-ω model

Wilcox (1988)

• Eddy viscosity is given by:

νT =
k

ω

• Equation for k:

D̄k

D̄t
= ∇ ·

((

ν +
νT
σk

)

∇k

)

− P − C1kω

• Equation for ω:

D̄ω

D̄t
= ∇ ·

((
ν +

νT
σε

)
∇ε

)
+ C2P

ω

k
− C3ω

2

• Constants are given by:

C1 = 0.09, C2 = 5/9, C3 = 3/40, σk = 2.0, σε = 2.0



k-ω model: conclusions

• Various implementations of the model are available in literature, de-

pending on the flow to be calculated

• For boundary layer flows it is more accurate than k-ε in the treatment

of viscous near wall regions

• The treatment of non turbulent free stream boundaries is problematic



Discretization of the balance equations

The three principal methodologies for the numerical discretization of bal-

ance equations are:

• Finite Differences (FD)

• Finite Element Method (FEM)

• Finite Volume Methods (FVM)



Finite Volume Methods: basic concepts — I

In the FVM technique an integral formulation of the balance equations is

discretized directly in the physical space.

Main features of the technique are:

• It is based on cell-averaged values

• Once a grid is generated, one has to associate control volumes

• It permits a straightforward implementation of a conservative discretiza-

tion

• It is easly implemented on arbitrary grids



Finite Volume Methods: basic concepts — II

Flow equations are the expression of conservation (balance) laws.

For a scalar quantity U the balance equation can be recast in the conser-

vative form

∂U

∂t
+ ∇ · F = Q

where F is the flux of U .

For example, for the passive scalar balance equation
∂φ

∂t
+V ·∇φ−Γ∇2φ = 0

the conservative form of the equation is:

∂φ

∂t
+ ∇ · F (φ) = 0

with F (φ) = Vφ− Γ∇φ



Finite Volume Methods: basic concepts — III

Differential equations are derived from integral balance equation (on arbi-

trary volumes). Integrating in space over a subdomain Dj one obtains the

integral form of the equations:

d

dt

∫

Dj

U dDj = −
∫

Sj

F · n dSj +
∫

Dj

Q dDj

which can be discretized by expressing volume integrals by means of the

averaged values over the volume:

dUj

dt
= −

1

µ(Dj)

∫

Sj

F · n dSj + Qj

where g =
1

µ(Dj)

∫
Dj

g dDj



Finite Volume Methods: basic concepts — IV

The most general integral conservation form reads:

∫

Dj

U dDj

∣∣∣∣∣

n+1

=
∫

Dj

U dDj

∣∣∣∣∣

n

−
∫ n+1

n

∫

Sj

F · n dSj dτ +
∫ n+1

n

∫

Dj

Q dDj dτ

which leads to the exact discretized equation

Uj

∣∣∣
n+1

= Uj

∣∣∣
n
−

∆t

µ(Dj)

∫

Sj

F∗ · n dSj +∆tQ∗
j

where F∗ =
1

∆t

∫ n+1
n F dτ is the numerical flux



Variables arrangement on the grid

• NS equations have four scalar unknowns. In a FVM one has to generate

a grid and to associate to each variable a set of Control Volumes.

• The basic distinction is between colocated and staggered arrangements.

• Among staggered grids one can further choose between various config-

urations



Variables arrangement on the grid: Colocated arrangement

pij
ui,j

vi,j

• Colocated arrangement is the obvious choiche in order to store the variables. The
same CV is shared by all the variables

• Programming and storing of variables is simplified

• It was out of favour for incompressible flow calculation due to difficulties with pressure-
velocity coupling



Variables arrangement on the grid: Staggered arrangement — I

pij

ui,j

vi,j

ui+1,j

vi+1,j

ui+1,j-1

vi+1,j-1

ui,j-1

vi,j-1

pij ui,jui-1,j

vi,j-1

vi,j

• There is no need for all the variables to share the same grid

• Several terms can be calculated without interpolation

• It can improve the coupling between velocities and pressure



Variables arrangement on the grid: MAC staggered arrangements

(Harlow Welch (1965))

pij ui,j

vi,j

ui-1,j

vi,j-1

pij ui,j

vi,j

ui-1,j

vi,j-1

pij ui,j

vi,j

ui-1,j

vi,j-1

MAC arrangement by Harlow and Welch is the most used variable arrangement. It has
several advantages.

• Evaluation of mass fluxes in the continuity equation are straightforward

• Pressure and diffusion gradients can be naturally approximated without interpolation

• The biggest advantage is that it has a strong coupling between velocities and pressure



Numerical solution of NS equations: Projection methods – I

Recall the NS equations:





∇ · V = 0

∂V

∂t
= −V · ∇V −

∇p

ρ
+ ν∇2V (NS)

There is not an evolution equation for p and a kinematic constraint has to
be enforced at each time step.
The fundamental approach is to decouple pressure field form velocity field

• An intermediate velocity field V∗ is calculated with a tentative pressure
field. The resulting field has correct curl and non correct div

• This field is corrected with a gradient field (affects only div and not
curl)

• The potential field for correction is determined in such a way that
continuity is enforced (it projects V∗ onto the space of div-free fields)



Numerical solution of NS equations: Projection methods – II

• The equation for the intermediate field V∗ is:

V∗ = Vn + r(Vn)∆t

where r(V) = −∇ · (VV) + ν∇2V

(tentative gradient pressure field is taken zero here)

• The projection step is made with a gradient field, which does not affect

the (correct) curl

Vn+1 = V∗ − ∇p∆t

• The requirement ∇ · Vn+1 = 0 is satisfied by a pressure gradient satis-

fying:

∇2p =
1

∆t
∇ · V∗



Numerical solution of NS equations: Projection methods – III

• Pressure Poisson Equation (PPE) is equipped with a Neumann BC obtained from
projection of NS on the boundary normal. For impermeable walls one has:

∂p

∂n
=

1

∆t
V∗ · n

• The upgrade of V∗ has been computed on internal points. There is an indetermination
in the value of V∗ · n. The same indetermination arise in the evaluation of the RHS
of PPE near the boundary.

• The two indeterminations cancel in the implementation. Any value for ∂p/∂n can be
given if the source term in the PPE is suitably modified near the boundary

pij

dp/dn

u*W



Numerical solution of NS equations: stability requirements

Explicit stability constraints

• From linear diffusion equation a stability constraint for explicit calcula-

tions for 2D centered diffusion:

ν∆t

h2
≤

1

4

h is the smallest grid spacing

• From linear advection equation a necessary condition for stability of

explicit discretizations is the CFL condition (Courant, Friedrichs, Lewy,

1928):

umax∆t

h
≤ p

where the stencil extends p nodes to the left of the collocation node

(u ≥ 0)



Numerical solution of NS equations: Implicit methods – I

• When implicit integration is needed, a different procedure for the de-

termination of Vn+1 and Pn+1 has to be implemented, since the RHS

of Poisson equation depends non linearly on Vn+1

• An implicit discretization of NS equations can be symbolically written

in the form:

A
(
Vn+1

)
Vn+1 + Gpn+1 = q

DVn+1 = 0

where A is a representation of a suitable discretization of non stationary

and convection diffusion operators, while G and D are discretizations of

gradient and divergence operator respectively



Numerical solution of NS equations: Implicit methods – II

The classical SIMPLE (Semi Implicit Method for Pressure Linked Equations)
method proceeds as follows:

1. Linearize around velocity field Vn

A (Vn)Vn+1 + Gpn+1 = q

2. Compute a tentative velocity field V∗ corresponding to a tentative pressure field p∗

(solve a linear system)

A (Vn)V∗ + Gp∗ = q

3. Defined δp = pn+1 − p∗ and δV = Vn+1 − V∗ momentum equation furnishes the link
between δp and δV:

A (Vn) δV + Gδp = 0
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Numerical solution of NS equations: Implicit methods – II

The classical SIMPLE (Semi Implicit Method for Pressure Linked Equations)
method proceeds as follows:

1. Linearize around velocity field Vn

A (Vn)Vn+1 + Gpn+1 = q

2. Compute a tentative velocity field V∗ corresponding to a tentative pressure field p∗

(solve a linear system)

A (Vn)V∗ + Gp∗ = q

3. Defined δp = pn+1 − p∗ and δV = Vn+1 − V∗ momentum equation furnishes the link
between δp and δV:

A (Vn) δV + Gδp = 0



Numerical solution of NS equations: Implicit methods – III

4. Substitute this relation with the approximate relation (Patankar, Spalding)

ΣδV + Gδp = 0 (1)

(with Σ = diagA) which is easily inverted: δV = −Σ−1Gδp

5. Pressure correction is obtained by employing continuity:

DVn+1 = DV∗ + DδV = 0

and hence:

D
(
Σ−1Gδp

)
= DV∗

6. Since equation (2) is not exact, pressure and velocity corrections are not exact.
An internal iteration is needed re-starting from step 3.
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