
I E E E TR.INSACTIOSS OX COMMUNIC~LTIOKS, VOL. COM-22, NO. 5, MAY 1974

A Protocol For Packet Network Intercommunication

VINTON G. CERF AND ROBERT E. ICAHN, MEMBER, IEEE

637

Absfract-A protocol that supports the sharing of resources that
exist in different packet switching networks is presented. The proto-
col provides for variation in individual network packet sizes, trans-
mission failures, sequencing, flow control, end-to-end error checking,
and the creation and destruction of logical process-to-process con-
nections. Some implementation issues are considered, and problems
such as internetwork routing, accounting, and timeouts are exposed.

INTRODUCTION

I" 1 THE LAST few years considerable effort has been
expended on the design and implementation of packet

switching net\vorl<s [l]-[7],[14],[17]. A principle reason
for developing such not\vorks has been to facilitate the
sharing of computer resources. A packet communication
network includes a transportation mechanism for dcliver-
ing data between computers or between computers and
terminals. To make the data meaningful, computers and
tcrminals share a common protocol (i.c., a set of agreed
upon conventions). Several protocols have already been
developed for this purpose [S]-[12],[16]. However,
these protocols have addressed only the problem of com-
munication on the same nct\vork. I n this paper we prcscnt
a protocol design and philosophy that supports the sharing
of resources that exist in different packct switching net-
works.

After a brief introduction to internetwork protocol
issues, we describe the function of a GATEWAY as an intcr-
face bctwccn nctn-orks and discuss its role in the protocol.
We then consider thc various det,ails of the protocol,
including addressing, formatting, buffering, scquoncing,
floxv control, error control, and so forth. Wc close with a
description of an interprocess communication nxchanism
and show how i t can be supported by the internet\\-ork
protocol.

Even though many different and complex problems
must be solved in the design of an individual packet
switching network, these problems are manifestly com-
pounded when dissimilar networks arc interconnected.
Issues arise which may have no direct counterpart in an
individual network and which strongly influence the way
in which internetwork communication can take place.

A typical packet switching network is composed of a

tions of the IEEE Communications Society for publication without
Paper approved by the Associate Isditor for Data Communica-

oral presentation. Manuscript received Novemtxr 5, 1973. The
research reported in this paper was supported in part hy the Ad-
vanced Research Projects Agency of the Department of Ihfense
under Contract DAHC 15-73-C-0370.

trim1 Engineering, Stanford University, Stanford, Calif.
V. G. Cerf is with the Department of Computer Science and Elec-

It. E. Kahn is with the Information Processing Technology
Office, Advanced Research Projects Agency, Department of De-
fense, Arlington, Va.

set of computer resources called HOSTS, a set of one or
more packet switches, and a collcction of communication
media that interconnect the packct switches. Within
each HOST, wc assume that there exist processes which
must communicate with processes in their own or other
HOSTS. Any current definition of a process will be adequate
for our purposes [13]. These processes are generally the
ultimate source and destination of data in the network.
Typically, within an individual network, there exists a
protocol for communication between any source and
destination process. Only the source and destination
processes require kno\\-ledge of this convention for com-
munication to ta lx place. Processes in two distinct nct-
works would ordinarily use different protocols for this
purpose. The ensemble of packet switches and com-
munication media is called the paclxt 'switching subnet.
Fig. 1 illustrates these idcas.

In a typical packet switching subnet, data of a fixed
maximum size arc accepted from a source HOST, togethcr
with a formatted destination address which is used to
route the data in a store and forward fashion. The transmit
time for this data is usually dependent upon internal
net\\-ork paramctcrs such as communication media dat>a
ratcs, buffering and signaling strategies, routing, propa-
gation delays, etc. In addition, somc mechanism is gen-
erally prcscnt for error handling and determination of
status of the networks components.

Individual pacltct switching nctn;orl<s may differ in
their implementations as follows.

1) Each net\vorlt may have distinct ways of addressing
the rcccivcr, thus requiring that a uniform addressing
schemc be created Tvhich can be undcrstood by each
individual nctworlt.

2) Each nct\vorl< may accept data of different maximum
size, thus requiring nct\vorl<s to deal in units of the
smallest maximum size (which may he impractically
small) or requiring procedures which allow data crossing
a network boundary to bc rcformatted into smaller
picccs.

3) The success or failure of a transmission and its pcr-
formancc in each network is governed by different time
dclays in accepting, delivering, and transporting the data.
This requires careful development of intersetwork timing
procedures to insurc that data can be successfully dc-
livcred through tho various nctworlts.
4) Within each nct\vorl;, communication may be dis-

ruptcd due to unrccoverahlc mStation of the data or
missing data. End-to-cnd restoration proccduros are
desirable to allow complete recovery from these con-
ditions.

636 IEEE TRAKSACTIONS ON COMMUNICATIONS. MAY 1074

/n\ PACKET-SWITCHING SUBNETWORK (-) PS I PS

intact the internal operation of each individual network
This is easily achieved if two networks interconnect a:
if each were a HOST to the other network, but withoul
utilizing or indeed incorporating any elaborate H O S ~

protocol transformations.
It is thus apparent that the interface between network;

must play a central role in the development of any net
work interconnection strategy. We give a special name tc
this interface that performs these functions and call i t :
GATEWAY.

THE GATEWAY NOTION

PACKET-SWiTCHING NETWORK PS = PACKET SWITCH

Fig. 1. Typical packet switching network.

5) Status ,information, rout,ing, fault detection, and
isolation are typically different in each network. Thus, to
obtain verification of certain conditions, such as an in-
accessible or dead destination, various kinds of coordi-
nation must be invoked between the communicating net-
works.

It would be errtremely convenient if all the differences
between networks could be economically resolved by
suitable interfacing a t .the network boundaries. For
many of the differences, this objective can be achieved.
However, both economic and technical considerations lead
us to prefer that the interface be as simple and reliable
as possible and deal primarily with passing data between
networks that use different packet switching strategies.

The question now arises as to whether the interface
ought to account for differences in HOST or process level
protocols by transforming the source conventions into the
corresponding destination conventions. We obviously
want to allow convcrsion between packet switching
strategies at the interface, to permit interconnection of
existing and planncd networks. However, the complcxity
and dissimilarity of the Hosl7 or process level protocols
makes it desirable to avoid having to transform between
them at the interface, even if this transformation were
always possiblc. Rather,, compatible HOST and process
levcl protocols must bc developed to achicvc effective
intcrnctxork resourcc sharing. The unacceptable al-
ternative is for every HOST or process to implcmcnt every
protocol (a potentially unbounded number) that may be
needed to cornmunicatc with other networks. We there-
fore assume that a comnmn protocol is to be used between
HOST'S or processes i n diffcrcnt networks and that the
interface bctn-ccn networks should takc as small a role as
possiblc in this protocol.

To allow nc:tworl<s under diffcrcnt ownership to inter-
cunncct, somc accounting will undoubtedly be needed for
traffic that passcs across the interface. In its simplest
tcrnms, this involves an accounting of packets handled by
mch not for n-hich charges arb passcd from net to net
until thc buck finally stops at the user or his rcprescnta-
tivcb. Ihrthcrmorc~, the interconnection must prcserve

In Fig. 2 we illustrate three individual networks labelec
A , B, and C which are joined by GATEWAYS M and N
GATEWAY A// interfaces network A with network B, anc
GATEWAY N interfaces network B to network C. W
assume that an individual network may have more t,ha~
one GATEWAY (e.g., network B) and that there may b
more than one GATEWAY path to use in going between I

pa,ir of networks. The responsibility for properly routin1
data resides in the GATEWAY.

In practice, a GATEWAY between two networks may b
composed of two halves, each associated with it,s ow1
network. It is possible to implement each half of a GATE

WAY so it need only embed internetwork packets in loca
packet format or extract them. We propose that th
GATEWAYS handle internetwork packet,s in a standarc
format, but me are not proposing any particular trans
mission procedure between GATEWAY halves.

Let us now trace the flow of data through the inter
connected networks. We assume a packet of data fron
process X enters network A destined for process Y il
network C. The address of Y is initially specified b:
process X and the address of GATEWAY M is derked fron
the address of process Y . We nmakc no attempt to spccif:
whether the choice of GATEWAY is made by process X
its HOST, or one of thc packet switches in network -4. Thl
packet traverses network A until it reaches GATEWAY iI4
At the GATEWAY, the packet is reformatted to meet thl
requirements of network B, account is taken of this uni
of flow between A and B, and the GATEWAY delivers ths
packet to network B. Again the dcrivation of the nex
GATEWAY address is accomplished based on the address o
the destination Y . In this case, GATEWAY A T is the next one
Thc packet traverscs network R until i t finally rcache
GATEWAY N whcrc i t is formattcd to mcet the requirement
of network C. Account is again taken of this unit of f l o ~
betwccn networks B and C. Upon entering network C
the packet is routed to the Hosr in which process I
resides and there it is delivered to its ultimate desbination

Since the GATEWAY must understand the address of t h
source and destination HOSTS, this information must b
available in a standard format in every packet whicl
arrives at the GATEWAY. .This information is containec
in an internetzoork header prefixed to the packet by t h
source HOST. The packet format, including the internet

\

N

W
GATEWAY GATEWAY

Fig. 2. Three networks interconnected by two GATEWAYS.

(may be null) b- Internetwork Header

LOCAL HEADER SOURCE DESTINATION SEQUENCE NO. BYTE COUNTIFLAG FIELD\ TEXT ICHECKSUM

Fig. 3. Internetwork packet format (fields not shown to scale).

worlc header, is illustrated in Fig. 3 . The source and desti-
nation entries uniforndy and uniquely identify the address
of every HOST in the composite network. Addressing is a
subject of considerable complexity which is discussed
in greater detail in the next section. Thenext two entries in
the header provide a sequence number and a byte count
that may be used to properly sequence the packets upon
delivery to the dest'ination and may also enable the
GATEWAYS to detect fault conditions affecting the packet.
The flag field is used to convey specific control information
and is discussed in the sect.ion on retransmission and
duplicate detection later. The remainder of the packet
consists of text for delivery to the destination and a trailing
check sum used for end-to-end software verification. The
GATEWAY does not modify the text and merely forwards the
check sum along without computing or recomputing it.

Each nct\r-orlr may need to augment the packet format
before i t can pass t'hrough the individual netu-ork. We
havc indicated a local header in the figure which is prefixed
to the beginning of the packet. This local header is intro-
duced nlcrely t'o illustrate the concept of embedding an
intcrnetworlc packet in the format of the individual net#-
work through which the packet must pass. It will ob-
viously vary in its exact form from network to network
and may even be unnecessary in some cases. Although not
explicitly indicated in the figure, i t is also possiblc that a
local trailer may be appended to the end of the packet.

Unless all transnlitted packets are legislatively re-
stricted to be small enough to be accepted by cvcry in-
dividual network, the GATEWAY may be forced to split a
packet int,o two or more smaller packets. This action is
called fragmentation and must be done in such a way that
the destination is able to piece togcthcr the fragmcntcd
packet. It is clear that the internct\vorl; header format
imposes a minimum packet size which all networks
must carry (obviously all networks will want to carry
packets larger than this minimum). We believe the long
rangc growth and development of internctworl; com-
munication would be seriously inhibited by specifying
how much larger than the minimum a paclcct sizc can bc,
for tjhc follo\\-ing reasons.

1) If a maximum permitted packet size is specified then
i t bccomos impossible to completely isolate the internal

packet size parameters of one network from the internal
packet size parameters of all other networks.

2) It would be very difficult to increase the maximum
permitted packet size in response to new technology (e.g.,
large memory systems, higher data rate communication
facilities, etc.) since this would require the agreement and
then implen-rentation by all participating networks.

3) Associative addressing and pa.clcet encryption may
require the size of a particular pa'ckct to cxpand during
transit for incorporation of new information.

Provision for fragmentation (regardless of where i t is
performed) permits packet sixc variations to be handled
on an individual network basis without global admin-
istration and also permits HOSTS and processes to be
insulated from changes in the pa,ckct sizes permitted in
any networks through which their data must pass.

If fragmentation must be done, i t appears best to do it
upon entering the nest netu-orlc at the GAPEWAY since only
t.his GATEWAY (and not the other netLvorlcs) must be awarc
of the int.ernal packet size parameters which made the
fragmentation necessary.

If a GATEWAY fragnwnts an incoming packet into t'T1-o or
more paclcet,s, they must eventually be passed along to the
destination HOST as fragnxnts or reassembled for the
HOST. It is conceivable that one might desire the GArrEwAY
to perform the rea.ssenlbly to simplify the task of the desti-
nation HOST (or process) and/or to take advantage of a
larger packet size. We take the position tJhat GATEWAYS

should not perform this function since GATEWAY re-
assen-rbly can lead to serious buffering problems, potential
deadlocks, the necessity for all fragments of a packet to
pass through the same GArrEwA>r, and increased dclay in
transmission. Furthermore, i t is not sufficient for the

may also have to fragment a paclxt for transmission.
Thus the destination HOST must be prepared to do this
task.

Let us now turn briefly to the somewhat unusual ac-
counting effect 11-hich arises when a packet may be frag-
mented by one or more GATEWAYS. We assume, for
simplicity, that each network initially charges a fixed rate
per paclrct transmitted, regardless of distancc, and if one
network can handle a larger packet size t lml another, i t
charges a proportionally larger price per paclcct. We also
assume tha t a subsequent increase in any network's
packet size docs not result in additional cost per packet to
its users. The charge to a uscr thus remains basically
constant through any net which must fragmcnt a packet.
The unusual cffcct occurs when a paclcct is fragmented into
smaller packets which must individually pass through a
subsequent nctxvork with a larger packet size than the
original unfragmented packet. We expect that most net-
works \vi11 naturally selech packet sizes close to one
anot'her, but in any case, an increase in packet size in one
net, even when it causes fragmentation, will not increase
the cost of transnlission and may actually decrease it. I n
the event that any other packet charging policies (than

GATEWAYS to provide this function since the final GATEWAY

G40 IEEE TRANSACTIONS ON COMMUNICATIONS, MAY 1974

the one me suggest) are adopted, differences in cost can be
used as an economic lever toward optimization of indi-
vidual network performance.

PROCESS LEVEL COMMUNICATION

We suppose that processes wish to communicate in full
duplex with their correspondent’s using unbounded but
finite length messages. A single character might constitute
the text of a message from a process to a terminal or vice
versa. An entire page of characters might constitute the
text of a message from a file to a process.- A data stream
(e.g., a continuously generated bit string) can be repre-
sented as a sequence of finite length messages.

Within a HOST we assume the existence of .a transmission
control program (TCP) which handles the transmission
and acceptance of messages on behalf of the processes it
serves. The TCP is in turn served by one or more packet
switches connected to the HOST in which the TCP resides.
Processes that want to communicate present messages
to the TCP for transmission, and TCP’R deliver incoming
messages to the appropriate destination processes. We
allow the TCP to break up messages into segments be-
cause the destination may restrict the amount of data that
may arrive, because the local network may limit the
maximum transmission size, or because the TCP may
need to share its resources among many processes con-
currently. Furthermore, me constrain the length of a
segment to an integral number of 8-bit bytes. This uni-
formity is most helpful in simplifying the software needed
with HOST machines of different natural word lengths.
Provision at the process level can be made for padding a
message that is not an integral number of bytes and for
idcntifying which of the arriving bytes of text contain
information of interest t o the receiving process.

Multiplexing and demultiplexing of segments among
processes are fundamental t.asks of the TCP. On trans-
mission, a TCP must multiplex together segments from
different source processes and produce internetwork
packets for delivery to one of it.s serving packet switches.
On reception, a TCP will accept a sequence of packets
from its serving packet switch(es). From this sequence
of arriving packets (generally from different HOSTS),

the TCP must be able to reconstruct and deliver messages
to the proper destination processes.

We assume that every segment is augmented with ad-
ditional information that allows transmitting and re-
ceiving TCP’s to identify destination and source processes,
respectively. At this point, we must face a major issue.
How should the source TCI’ format segments destined for
the same destination TCP? We consider two cases.

Case 1) : If we take t.he position that segment boundaries
are immaterial and that a byte stream can be formed of
segments destined for the same TCP, then we may gain
improvcd transmission efficiency and resource sharing by
arbitrarily parceling the stream into packets, permitting
many stgments to share a single internetwork packet
headcr. Howcver, this position results in the need to re-

construct exactly, and in order, the stream of text bytes
produced by the source TCP. At the destination, this
stream must first be parsed into segments and these in
turn must be used to reconstruct messages for delivery to
the appropriate processes.

There are fundamental problems associated with this
strategy due to the possible arrival of packets out of order
at the destination. The most critical problem appears
to be the amount of interference that processes sharing the
same TCP-TCP byte stream may cause among them-
selves. This is especially so at the receiving end. First,
the TCP may be put to some trouble to parse the stream
back into segments and then distribute them to buffers
where messages are reassembled. If it is not readily ap-
parent that all of a segment has arrived (remember, it
may come as several packets), the receiving TCP may
have to suspend parsing temporarily until more packets
have arrived. Second, if a packet is missing, i t may not be
clear whether succeeding segments, even if they are identi-
fiable, can be passed on to the receiving process, unless the
TCP has knowledge of some process level sequencing
scheme. Such knowledge would permit the TCP to decide
whether a succeeding segment could be delivered to its
waiting process. Finding the beginning of a segment when
there are gaps in the byte stream may also be hard.

Case 2) : Alternatively, we might take the position that
the destination TCP should be able to determine, upon
its arrival and without additional information, for which
process or processes a received packet is intended, and if
so, whether i t should be delivered then.

If the TCP is to determine for which process an arriving
packet is intended, every packet must contain a proces6
header (distinct from the internetwork header) that com-
pletely identifies thc destination process. For simplicity,
we assume that each packet contains text from a single
process which is destined for a single process. Thus each
packet need contain only one process header. To decide
whether the arriving data is deliverable to the destination
process, the TCP must be a.ble to determine whether the
data is in the proper sequence (we can make provision
for the destination process to instruct its TCP to ignore
sequencing, but this is considered a special case). With thc
assumption that each arriving packet contains a process
header, the necessary sequencing and destination procesf
ident)ification is immediately available to the destinatior
TCP.

Both Cases 1) and 2) provide for the demultiplexing
and delivery of segments to destination processes, but
only Case 2) does so without the introduction of potential
interprocess interference. Furthermore, Case 1) introduceE
extra machinery to handle flow control on a HOST-to-
HOST basis! since there must also be some provision for
proccss level control, and this machinery is little used since
the probability is small that within a given HOST, two
processes d l be coincidentally scheduled to send messages
to the same destination HOST. For this reason, we select
the method of Case 2) as a part of the internetwork
transmission QrOtOCOl.

CERF AND KAHN: PACKET NETWORK INTISRCOMMUNICATION

ADDRESS FORMATS
The selection of address formats is a problem between

networks because the local network addresses of TCP's
may vary substantially in format and size. A uniform in-
ternetwork TCP address space, understood by each
GATEWAY and TCP, is essential to routing and delivery
of internetwork packets.

Similar troubles are encountered when we deal with
process addressing and, more generally, port addressing.
We .introduce the notion of ports in order to permit a
process to distinguish between multiple message streams.
The port is simply a designator of one such message stream
associated with a process. The means for identifying a port
are generally different in different operating systems, and
therefore, to obtain uniform addressing, a standard port
address format is also required. A port address designates
a full duplex message stream.

TCP ADDRESSING

TCP addressing is intimately bound up in routing
issues, since a HOST or GATEWAY must choose a suitable
destination HOST or GATEWAY for an outgoing int,ernetworl<
packet. Let us postulate the following address format for
the TCP address (Fig. 4). The choice for network identi-
fication (8 bits) allows up to 256 distinct networks. This
size seems sufficient for the forseeable future. Similarly,
the TCP identifier field permits up to 65 536 distinct
TCP's to be addressed, which seems more than sufficient
for any given network.

As each packet passes through a GATEWAY, the GATEWAY
observes the destination network I D to determine how
to route the packet. If the destination network is con-
nected to the GATEWAY, the lower 16 bits of the TCP address
are used to produce a local TCP address in the destination
network. If the destination network is not connected to the
GATEWAY, the upper S bits are used to select a subsequent
GATEWAY. We malx no effort to specify how each in-
dividual network shall associate the internetwork TCP
identifier with its local TCP address. We also do not rule
out the possibility that the local network understands the
internetwork addressing scheme and thus alleviates the
GATEWAY of the routing responsibility.

PORT ADDRESSING
A receiving TCP is faced with the task of demultiplex-

ing the stream of internetwork packets it receives and
reconstructing the original messages for each destination
process. Each operating system has its own internal
means of identifying processes and ports. We assume that
16 bits are sufficient to serve as intcrnctwork port identifiers.
A sending process nccd not know how the destination
port identification will be used. The destination TCP
will be ablc to parse this number appropriately to find
the proper buffer into which it will place arriving packets.
We permit a large port number field to support processcs
which want to distinguish bctween many different
messages streams concurrently. In reality, we do not care
how the 16 bits are sliced up by the TCP's involved.

641

8 16

NETWORK TCP IDENTIFIER

Fig. 4. ',TCP address.

Even though the transmitted port name field is large,
it is still a compact external name for the internal repre-
sentation of the port. The use of short names for port
identifiers is often desirable to reduce transmission over-
head and possibly reduce packet processing time at the
dehnation TCP. Assigning short names to each port,
however, requires an initial negotiation between source
and destination to agree on a suitable short name assign-
ment, the subsequent maintenance of conversion tables
a t both the source and the destination, and a final trans-
action to release the short name. For dynamic assignment
of port names, this negotiation is generally necessary in
any case.

SEGMENT AND PACKET FORMATS

As shown in Fig. 5, messages are broken by the TCP
into segments whose format is shown in more detail in
Fig. 6. The field lengths illustrated are merely suggestive.
The first two fields (source port and destination port in
the figure) have already been discussed in the preceding
section on addressing. The uses of t.he third and fourth
fields (window and acknowledgment in the figure) will
be discussed later in the section on retransmission and
duplicate detection.

We recall from Fig. 3 that an internetwork header con-
tains both a sequence number and a byte count, as well as
a flag field and a check sum. The USCS of these fields are
explained in the following section.

REASSEMBLY AND SEQUENCING

The reconstruction of a message at the receiving TCP
clearly requires' that each internetwork packet carry a
sequence number which is unique to its particular desti-
nation port message stream. The sequence numbers must
be monotonic increasing (or decreasing) since thcy are
used to reorder and reassemble arriving packets into a
mcssage. If the space of sequence numbers were infinite,
we could simply assign the next one to each new packet.
Clearly, this space cannot be infinite, and we will consider
what problems a finite sequence number space will cause
when we discuss retransmission and duplicate detection
in the next section. We propose the following scheme for
performing the sequencing of packets and hence the re-
construction of messages by the destination TCP.

A pair of ports will exchange one or more messages over
a period of time. We could view the sequence of messages
produced by one port as if it were embedded in an in-
finitely long stream of bytes. Each byte of the message has
a unique sequence number which we takc to be its byte
location relativc to the beginning of the stream. When a

In the case of encrypted packets, a preliminary stage of re-
assembly may be required prior to decryption.

643 IEEE TRANSACTIONS ON COMMUNICATIOKS, MAY 197'

byte identification-sequence number

First Message

(SEQ = k)

Fig. 7. Assignment of sequence numbers.

LH = Local Header
IH = InternetwolX Header

CK = Checksum
PH = Process Header

Fig. 5 . Creation of segments and packets from messages.

32 32 16 16 En

Source Port DertinatianIPort Wmdow ACK Text (Field sizes in bits1 ,+JPlOLIIl Hed..LJ
Fig. 6. Segment format (process header and text).

segment is extracted from the message by the source
TCP and formatted for internetwork transmission, the
relative location of the first byte of segment text is used as
the sequence number for the packet. The byte count
field in the internetwork header accounts for all the text
in-the segment (but docs not include the check-sum bytes
or t'he bytes in either internetxork or process header).
We emphasize that the sequence number associated with
a given packet is unique only to the pair of ports that are
communicating (see Fig. 7). Arriving packets are ex-
amined to determine for which port they are intended.
The sequence numbers on each arriving packet are then
used to determine the relative location of the packet text
in the messages under reconstruction. We note that this
allows the exact position of the data in the reconstructed
message to be determined even n-hen pieces 'are still
missing.

Every segment produced by a source TCP is packaged
in a single internetwork packet and a check sum is com-
puted over the text and process header associated with the
segment.

The splitting of messages into segments by the TCP
and the potential splitting of segments into smaller pieces
by GATEWAYS creates the necessity for indic,ating to- the
destination TCP when the end of a segment (ES) has
arrived and when the end of a message (EM) has arrived.
The flag field of the internetwork header is used for this
purpose (see Fig. S) .

The ES flag is set by the source TCP each time it prc-
pares a segment for transmission. If it should happen that
the message is completely contained in the segment, then
the EM flag would also be set. The EM flag is also set on
the last segment of a message, if the message could not
be contained in one segment, These two flags are used
by the destination TCP, respectively, to discover the
presence of a check sum for a given segment and to discover
that a complete message has arrived.

The ES and EM flags in the internetwork header are
known to the GATEWAY and are of special importance when
packets must be split apart for propagation through the
next local network. We illustrate their use with an ex-
ample in Fig. 9.

The original message -4 in Fig. 9 is shown split into two
segments A and Az and formatted' by the TC1' into a pair

16 bits

Y E S M
S

N L

_ . . E E R

I l l I
L End of Message when set = 1

End of Segment when set = 1
Release Use of ProcessIPort when set=l
Synchronize to Packet Sequence Number when set = 1

Fig. 8. Internetwork header flag field.

- 1000 bytes .
100 101 102 . . .

I TEXT OFMESSAGE A

SEQ CT ES EM 500 2

SRC CK TEXT 0 PH 1 500 100 DST

1- internetwork header --+ segment 1
split by
source
TCP . -.

SEQ CT ES EM 500 2

SRC CK TEXT 1 PH 1 500 600 DST

250 2

SRC packet A1 TEXT 0 / PH 0 250 100 DST

~~~ ~ 

split 
by 
GATEWAY 

SRC packet A12 CK TEXT 0 PH 1  250 350 DST 

SRC TEXT packet AZ1 0 PH 0 250 600 DST 

SRC packet A22 CK TEXT 1 PH 1 250 850 DST 

Fig. 9. Message splitting  and  packet  splitting. 

of internetwork  packets.  Packets A1 and A2 have the 
ES bits  set,  and A2 has  its En1 bit  set  as well. Whe 
packet A1 passes through the GATEWAY, it is split  into t w  
pieces: packet A 11 for which neither EM nor ES bits a1 
xt ,  and  packet A12 whose ES bit is set. Similarly, packt 
A ,  is split  such that  the first piece, packet A21, has neithe 
bit  set, but packet A22 has  both  bits  set.  The scyuenc 
number field (SEQ) and  the  byte  count field (CT) of eac 
packet is modified by  the GATEWAY to properly identif 
the t'ext  bytes of each  packet.  The GATEWAY need on1 
cxamine the internetmork  header to do  fragmentation. 

The destination TCP, upon  reassembling  segment 9 
will detect  the ES flag and will verify the check sum 
knows is contained  in  packet iz12.  Upon  rcceipt of pack( 
A z 2 ,  assuming  all other  packets  have  arrived,  the  dest 
nation TCP detects that  it  has reassembled  a complel 
message and can now advise the destination process of  il 
rcceipt,: 



CRRF AND KAHX: PACKET NETWORK INTERCOMMUNICATION 643 

RETRANSMISSION  AND  DUPLICATE 
DETECTION 

No transmission  can  be 100 percent reliable. We 
propose  a timeout  and  positive  acknowledgment mecha- 
nism  which will allow TCP’s  to recover  from packet losses 
from  one HOST to  another.  A  TCP  transmits  packets  and 
waits for replies (acknowledgements) that  are carried in 
the reverse packet  stream. If no  acknowledgment for a 
particular  packet is received, the  TCP will retransmit. 
It is  our  expectation that  the HOST level retransmission 
mechanism,  which is described in  the following para- 
graphs, will not  be called upon  very  often  in  practice. 
Evidence  already exists2 that individual  networks  can  be 
effectively constructed  without  this  feature.  However, the 
inclusion of a HOST retransmission  capability  makes i t  
possible to recover  from  occasional  network  problems and 
allows  a  wide  range of HOST protocol strategies  to be in- 
corporated. We envision it will occasionally be invoked to 
allow HOST accommodation  to  infrequent  overdemands for 
limited  buffer resources, and otherwise not used  much. 

Any  retransmission policy requires  some  means by 
which the receiver can  detect  duplicate  arrivals.  Even if 
an infinite  number of distinct  packet sequence  numbers 
were  available, the receiver mould still  have  the problem 
of knowing how long to remember  previously  received 
packets  in  order to  detect  duplicates.  Matters  are compli- 
cated  by  the  fact  that  only  a  finite  number of distinct 
sequence  numbers are  in  fact  available,  and if they  are 
reused,  the receiver must be  able to distinguish  between 
new  transmissions  and  retransmissions. 

A window strategy, similar to  that used by  the  French 
CYCLADES system  (voie  virtuelle  transmission  mode [SI) 
and  the ARPANET very  distant HOST connection [lS], 
is proposed  here  (see Fig. 10). 

Suppose that  the sequence number field in  the  inter- 
network  header  permits  sequence  numbers to range  from 
0 to n - 1. We assume that  the sender will not  transmit 
more  than w bytes  without receiving an acknowledgment. 
The w bytes  serve  as  the window (see Fig. 11). Clearly, 
w must  be less than n. The rules for sender  and receiver 
are  as follows. 

Sender: Let L be  the sequence number associated with 
the left  window edge. 

1) The  sender  transmits  bytes  from  segments whose 
text lies between L and  up  to L + w - 1. 

2 )  On timeout  (duration  unspecified),  the  sender 
retransmits unacknowledged bytes. 

3) On  receipt of acknowledgment consisting of the 
receiver’s current  left window edge, the sender’s,  left 
window  edge is advanced  over  the aclrnowledged bytes 
(advancing  the  right window  edge implicitly). 

Receiver: 
1) Arriving  packets  yhose sequence  numbers coincide 

with  the receiver’s current  left window  edge are acknowl- 
edged  by  sending to  the source the  next  sequence  number 

Left Window Edge 
I 

0 n- 1 a+w- 1 a 

1- window -4 
I< packet sequence number space -1 

Fig. 10. The window  concept. 

Source 
Address 

I Address 
Destination I 

6 

7 

8 

9 

10 

Next Read Position 

End Read  Position 

Timeout 

Fig. 11. Conceptual TCB  format. 

expected.  This effectively acknowledges bytes  in between. 
The  left window  edge is advanced  to  the  next sequence 
number  expected. 

2) Packets  arriving  with  a sequence number  to  the  left 
of the window  edge (or, in  fact,  outside of the window) are 
discarded,  and  the  current  left window  edge  is returned  as 
acknowledgment. 

3) Packets whose  sequence  numbers lie within  the 
receiver’s window but do  not coinicide with  the receiver’s 
left  window  edge are  optionally  kept or  discarded, but 
are  not acknowledged. This is the case when  packets  arrive 
out of order. 

We make some  observations  on  this  strategy.  First, all 
computations  with  sequence  numbers  and  window  edges 
must  be  made modulo n (e.g.,  byte 0 follows byte n - 1). 
Second, w must be less than n/Y;  otherwise  a retrans- 
mission may  appear  to  the receiver to be  a new trans- 
mission in the case that  the receiver has  accepted  a 
window’s worth of incoming  packcts, but  all acknowledg- 
ments  havc been  lost.  Third,  the receiver can  either  save 
or  discard  arriving  packets whose  !sequence numbers  do 
not coincide with  the receiver’s left  window. Thus,  in  the 
simplest  implementation,  the receiver need not  buffer 
more than one  packet  per  message  stream if space is 
critical. Fourth,  multiple  packets  can be aclrnowledgcd 
simultaneously.  Fifth,  the receiver is able  to deliver 
messages to  processes in  their  proper  order as a  natural 
result of the reassembly  mechanism. Sixth, when  dupli- 
cates  arc  detected,  the acknowledgment  method  used 
naturally works to  rcsynchronizc  scndcr and receiver. 
Furthermore, if the rcccivcr accepts  packets whose 
sequcnce  numbcrs lie within  the  current window but 

The ARPANET is one such example. required that a retransmission not  appear to be a new transmission. 
Actually n/2  is  merely a convenient number to  use; it is only 



644 IEEE TRANSACTIOM ON COMMUNICATIONS, MAY 1974 

which are  not coincident with  the  left window edge, an 
acknowledgment consisting of the  current  left window 
edge  would act  as  a  stimulus  to cause  retransmission of the 
unacknowledged  bytes.  Finally, we mention an overlap 
problem  which  results  from  retransmission, packet 
splitting,  and  alternate  routing of packets  through dif- 
ferent GATEWAYS. 

A  600-byte packet  might pass through one GATEWAY 

and  be  broken  into  two  300-byte  packets. On retrans- 
mission, the same  packet  might be  broken  into  three 
200-byte packets going through  a  different GATEWAY. 
Since  each byte  has  a sequence  number, there is no  con- 
fusion at  the receiving TCP. We leave for later  the issue 
of initially  synchronizing the  sender  and receiver left 
window edges and  the window size. 

FLOW  CONTROL 

Every  segment  that  arrives at  the  destination  TCP is 
ultimately acknowledged by  returning  the sequence 
number of the  next  segment which must  be passed to  the 
process (it  may  not  yet  have  arrived). 

Earlier we described the use of a  sequence number 
space  and window to aid  in  duplicate  detection. Ac- 
knowledgments are carried in the process  header  (see 
Fig. 6)  and- along with  them  there is proviqion for a 
“suggested  window”.which the receiver can  use to control 
the flow of data from the sender.  This is intended  to  be 
the  main  component of the process flow control  mecha- 
nism. The receiver is frcc to  vary  the windo& size accord- 
ing to  any algorithm it desires so long  as the window 
size never  exceeds half thc sequence number space.3 

This flow control  mechanism is exceedingly  powerful 
and flexible and does not  suffer from  synchronization 
troubles that  may  be  encountered  by  incremental buffer 
allocation  schemes [9],[lO]. Hoivever, it relies heavily 
on an effective retransmission  strategy.  The receiver can 
reduce the window  even  while packets  are en route from 
the sender  whose  window is presently  larger.  The  net 
effect of this  reduction will be that  the receiver may 
discard  incoming  packets (they  may  be  outside  thc 
window) and  reiterate  thc  current window size along with 
a current window  edge as  acknowledgment.’By  the  same 
token,  the  sender  can,  upon occasion, choose to send  more 
than a  window’s worth of data on the possibility that  the 
reccivcr will expand the window to accept it (of course, the 
sender  must  not send  more, than half the sequence number 
space at  any  time). Normally, we would  expect the sender 
to  abide  by  thc window limitation.  Expansion of the 
window by  the rcccivcr mcrcly  allows  more data  to  be ac- 
cepted. Vor the receiving HOST with  a small amount of 
buffer space,  a  strategy of discarding  all  packets  whose 
scqucncc  numbers  do not coincide with  the  currcnt  left 
cdgc of the window is probably necessary, but  it will incur 
thc cxpcnsc of cxtra  delay  and  overhead for retransmis- 
sion. 

TCP INPUT/OUTPUT HAND,LING 

The  TCP has  a  component  which  handles  input/output 
(I/O) to  and from the  network4  When  a  packet  has  ar- 
rived, i t  validates  the addresses and places the packet 
on  a  queue.  A pool of buffers can  be  set  up to  handle 
arrivals,  and if all  available  buffers  are used up, succeeding 
arrivals  can  be  discarded since unacknowledged  packet5 
will be  retransmitted. 

On output,  a smaller amount of buffering is needed, 
since process buffers can  hold the  data  to  be  transmitted 
Perhaps double  buffering mill be  adequate. We make nc 
attempt  to specify how the buffering  should be  done 
except to require that  it be  able to service the network 
with  as  little  overhead  as possible. Packet sized buffers 
one or more  ring buffers, or any  other  combination art 
possible candidates. 

When  a  packet  arrives at  the destination TCP,  it  is  placec 
on a queue  which the  TCP services frequently. For ex 
ample, the  TCP could be  interrupted when a queue  place 
ment occurs. The  TCP  then  attempts  to place the packel 
text  into  the proper  place in’  the  appropriate proces! 
receive buffer. If the  packet  terminates  a  segment,  ther 
it can  be  checksummed and acknowledged.  Placemeni 
may fail for several reasons. 

I)  The  destination .process may  not  be. prepared t c  
receive from the.etated source, or the  destination  port 11 
may  not exist. 

2 )  There  may  be insufficient buffer space for the  text 
3) The beginning  sequence number of the  text ma3 

not coincide with  the  next sequence number  to  be deliverec 
to  the process  (e.g., the  packet  has  arrived  out of order) 

In  the first case, the  TCP should  simply  discard thf 
packet  (thus  far, no  provision  has  been made for err01 
acknowledgments). In  the second and  third cases, thc 
packet sequence number  can  be  inspected  to determinc 
whether  the,packet  text lies within the legitimate ivindow 
for  reception. If it does, the  TCP  may optionally  keep thc 
packet  queued for later processing. If not,  the  TCI 
can discard the  packet. In  either case the  TCP car 
optionally  acknowledge with  the  current  left window  edge 

It may  happen  that  the process receive buffer  is no’ 
present  in  the  active  memory of the HOST, but is  stored or 
secondary  storage. If this is the case, the  TCP can  promp 
the scheduler to’bring  in  the  appropriate  buffer  and thc 
packet  can be queued for latcr processing. 

If therc  are no niore input buffers available to  the  TCI 
for temporary queueing of ‘incoming  packets, and if  thc 
TCI’ cannot  quickly  use  the  arriving data  (c.g.,  a  TCI 
to  TCP message) , then  thc  packet is discarded.  Assuminf 
a sensibly functioning  system, no other processes than thc 
one for which the  packet was intended should be  affectec 
by  this  discarding. If the  delayed processing  queue grow 

This  component can  serve to  handle  other  protocols whoss 
associated  control  programs are  designated by internetwork  destina 
tion  address. 



CICRF AND KAHB: PACKET NETWORK INTERCOMMUKICATION 645 

excessively long, any  packets  in i t  can  be safely discarded 
since none of them  have  yet been acknowledged. Con- 
gestion at   the  TCP level is flexibly handled owing to  the 
robust  retransmission and  duplicate  detection  strategy. 

TCP/PROCESS  COMMUNICATION 

In  order to send a message, a process sets  up  its  text 
in a  buffer region in  its own address  space,  inserts the 
requisite  control  information  (described in  the following 
list)  in a transmit control block (TCB)  and passes control 
to  the  TCP.  The exact  form of a TCB is not specified 
here, but  it might take  the form of a passed pointer,  a 
pseudointerrupt, or various  other forms. To receive a 
message in  its  address space,  a process sets  up a receive 
buffer,  inserts the requisite  control  information in a 
receive control block (RCB)  and again passes control 
to  the  TCP. 

In  some  simple  systems, the buffer  space may  in  fact 
be provided by  the  TCP. For simplicity. we assume that 
a  ring  buffer is used by each process, but  other  structures 
(e.g.,  buffer  chaining) are  not ruled out. 

A possible format for the  TCB is shown in Fig. 11. The 
TCB contains  information  necessary to allow the  TCP 
to  extract  and send the process data. Some of the informa- 
tion  might be  implicitly  known, but we are  not concerned 
with  that level of detail. The various fields in  the  TCB 
are described as follows. 

1) Source  Address: This is the full net/HosT/TCP/port 
address of the  transmitter. 

2) Destination Address: This is the full net/HOST/ 
TCP/port of the receiver. 

3) Next  Packet  Sequence Number: This is the sequence 
numbcr  to be used for the next  packet the  TCP will 
transmit,  from  this  port. 

4) Current   Buf fer   Size:  This is the present size of the 
process transmit buffer. 

5 )  Nex t   Wr i t e   Pos i t i on :  This is the address of the next 
position in the buffer a t  which the process can place new 
data for transmission. 

6) Next  Read  Posi t ion:  This is the address a t  which the 
TCP should begin reading to build the next  segment for 
output. 

7 )  E n d  Rewd Posi t ion:  This is the address a t  which the 
TCI’ should halt transmission.  Initially 6) and 7) bound 
the message which the process wishes to  transmit. 

S) Number of Retransllzissions/ndnxill1u1tL Retransmis- 
s ions:  These fields enable the  TCP  to Beep track of the 
numbcr of times it  has  retransmitted  the  data  and could be 
omitted if the  TCP is not  to give  up. 

9) Timeout/Flwgs: The  timeout field  specifies the 
delay after which unacltnowledgcd data should be  rctrans- 
mittcd.  The flag ficld is uscd for semaphores and  other 
TCl’/proccss synchronization, status  reporting,  ctc. 

10) Current 9cX:nozulerlg,trent/TYirLdo,w: The  current 
acltnowledgmcnt ficld identifies the first byte of data 
still  unaclmo~vledgcd  by thc  destination  TCP. 

The read  and  write positions move  circularly  around the 
transmit buffer,  with the write  position  always to  the left 
(module the buffer size) of the read position. 

The next  packet  sequence  number  should  be  constrained 
to  be less than or equal to  the  sum of the current ac- 
knowledgment and  the window fields. In  any  event,  the 
next  sequence  number should not exceed the sum of the 
current  acknowledgment and half of the maximum possible 
sequence number  (to avoid confusing the receiver’s 
duplicate  detection  algorithm). A possible buffer layout 
is shown in.Fig. 12. 

The  RCB is substantially the same, except that  the end 
read field is replaced by a  partial  segment check-sum 
register which permits the receiving TCP to compute  and 
remember partial check sums  in  the  event  that a  segment 
arrives  in  several  packets.  When the final packet of the 
segment  arrives, the  TCP can  verify the check sum  and if 
successful, acknowledge the segment. 

CONNECTIONS  AND ASSOCIATIONS 

Much of the thinking  about process-to-process com- 
munication  in  packet  switched  networks  has  been in- 
fluenced by  the ubiquitous  telephone  system.  The HOST 

HOST protocol  for the ARPANET deals explicitly with  the 
opening and closing of simplex connections  between 
processes [9],[10]. Evidence has been presented that 
message-based “connection-free” protocols can  be con- 
structed [12], and  this leads  us to carefully  examine the 
notion of a  connection. 

The  term connection has -a wide variety of meanings. It 
can  refer to a  physical or logical path between  two en- 
tities, i t  can refer to  the flow ovcr the  path,  it  can in, 
ferentially refer to  an action  associated with  the  setting 
up of a path, or it can refer to  an association  between  two 
or more  entities,  with or without  regard  to  any  path 
between  them. In  this paper, we do not explicitly reject 
the  term connection,  since it is in such widespread use, 
and does connote  a  meaningful  relation, but consider 
i t  exclusively in the sense of an association  between  two or 
more  entities  without  regard to a path. To be more precise 
about our intent, we shall define the relationship  between 
t\+o or more  ports that  are in  communication, or are pre- 
pared to communicate to  be  an association. Ports  that 
are associated  with  each  other are called associates. 

It is clear that for any communication to  take place 
between  two processes, one must be  able to address the 
other. The two important cases here  are  that  the  deiti- 
nation  port  may  have a global and unchanging  address or 
that  it  may  be globally  unique but dynamically reassigned. 
While in  either case the sender may  have  to  learn  the 
destination  address,  given the destination  name, only in 
the second instance is there a  requirement  for  learning the 
address  from the destination  (or  its  representative) each 
time an association is desired. Only after  the source has 
learned horn to  address  the  destination  can  an association 
be said to  have occurred. But  this is not  yet sufficient. If 



646 IEEE TRANSACTIONS  ON  COMMUNICATIONS, MAY 1974 

. Current Message 
/ 

Sent. Acked Partial Next Message Not Sent Sent. Not Acked 

Current Ack Next Seq. No. iw,ndow Next’Read E n d i e a d  1 Next Write 
t 

. Transmit Buffet  Sire 

Fig. 12. Transmit buffer layout. 

ordering of delivered messages is also desired, both 
TCP’s  must  maintain sufficient infornmtion to allow 
proper  sequencing.  When this  information is also present 
at  both ends,  t,hen an association is said to  have occurred. 

Note  that we have  not said anything  about a path, nor 
anything which implies that either  end  be  aware of the 
condition of the  other. Only when both  partners  are 
prepared to communicate with’ each other  has  an associ- 
ation occurred, and  it is possible that neither  partner 
may be  able to verify that  an association exists until some 
data flows between them. 

CONNECTION-FREE  PROTOCOLS  WITH 
ASSOCIATIONS 

In  the ARPANET, the interface message processors 
(IMP’S)  do  not  have  to open and close connections from 
source to destination. The reason  for this is that con- 
nections  are, in effect,  always  open, since the addresk of 
every  source and  destination is never5 reassigned. When 
the name  and  the place are  static  and unchanging, it is 
only necessary to label a packet  with  source  and  desti- 
nation to transmit  it  through  the  network. In  our  parlance, 
every source and  destination forms an association. 

In  thc casc of processes, however, we find that  port 
addresses are continually being used and reused. Some 
ever-present processes could be assigned fixed addresses 
which  do not change  (e.g., the logger process). If we sup- 
posed, however, that every TCP had an infinite  supply of 
port addresses so that no old address would ever  be  reused, 
then  any  dynamically  created  port would be assigned the 
next  unused  address. I n  such an environment,  there 
could never  be any confusion by source and  destination 
TCP as to  the intended  recipient or implied source of each 
message, and all ports would bc  associates. 

Unfortunately,  ,TCP’s (or more  properly,  operating 
systems)  tend  not  to  have  an infinite  supply of internal 
port addresses.  Thcse internal addresscs are reassigned 
aft‘er the demise of each  port. Walden [ l Z ]  suggests that 
a set of unique  uniform  external port addresses could 
be supplied by a ccntral  rcgistry. A newly created  port 
could apply  to  the  central  registry for an address which 
the central  registry would guarantee  to  be unused by  any 
HOST system  in  thc network. Each TCY could maintain 
tablcs  matching  external names with  internal ones, and 
use the external ones for communication  with  other 

HOST is connected to  a different IMP. 
5 Unless the IMP is physically  moved to  another  site, or the 

processes. This idea  violates t.he premise that interprocess 
communica,tion  should not require  centralized  control. 
One would have  to extend the central  registry service to 
include  all HOST’S in all the interconnected  networks to 
apply  this idea to our  situation,  and we therefore do not 
att’empt  to  adopt  it. 

Let us consider the  situation from the  standpoint of the 
TCP.  In order to send or receive data for a given port, 
the  TCP needs to  set  up a TCB  and RCB and initialize 
the window size and left window edge for both. On thc 
receive side, this  task  might even be delayed until the 
first  packet  destined for a given port arrives. By con- 
vention, the first  packet  should  be  marked so that  tht 
receiver will synchronize to  the received sequence  number 

On the send side, the first  request to  transmit coulc 
cause a TCB  to be set  up  with some initial sequenct 
number  (say, zero) and  an assumed window size. Thc 
receiving ‘I’CP can  reject the packet if it wishes anc 
notify the sending TCP of the correct window size via thc 
acknowledgment  mechanism, but only if either 

1) we insist that  the first  packet  be a complete  segment 
2) an acknowledgment  can be  sent for the first packel 

(even if not a segment, as long as the acknowledg 
nlent specifies the next  sequence number  such t h a  
the source also understands  that no bytes  have beer 
accepted). 

It is apparent, therefore, that  the synchronizing of windov 
size and left window edge can  be accomplished withou 
what would ordinarily’be called a connection setup. 

The first  packet referencing a newly created RCE 
sent from  ‘one  associate to  another  can  be  marked  with : 
bit which requests that  the receiver synchronize his lef 
window edge with the sequence  number of the arrivint 
packet  (see SYN bit  in Fig. S) . The  TCP can  examine thc 
source and  destination  port addresses in  the  packet  an( 
in  the  RCB  to decide whether to accept or ignore thc 
request. 

Provision  should  be made for a destination process tc 
specify that  it  is willing to LISTEN to a specific port o 
“any”  port.  This  last idea  permits processes such as thl 
logger process to accept data arriving  from unspecifiec 
sources. This is purely a HOST hat ter ,  however. 

The  initial  packet  may  contain  data which  can be store( 
or discarded by  the destination,  depending  on the avail 
ability of destination  buffer  space at   the time. In  the  othe 
direction,  acknowledgment is returned for  receipt of datr 
which also specifies the receiver’s window size. 

If the receiving TCP should want  to  reject  the  syn 
chronization  request, it merely transmits  an acknowledg 
ment  carrying a release (REL)  bit (see Fig. 8 )  indicatini 
that  the destination  port  address is unknown or inacces 
sible. The sending HOST waits for the acknowledgmen 
(after accepting or rejecting the synchronization  request 
before sending the  nest message or segment.  This rejectiol 
is  quite different  from a negative data acknowledgment 
We do  not  have explicit negative  acknowledgments. If nc 
acknowledgment is returned, the sending HOST ma: 



CICRF AND K A H N : ,  PACKET 1\1<T\VORK  INTICRCOMMUNICATION 

retransmit  without  introducing confusion  if, for example, 
the left  window  edge is not  changed  on the retransmission. 
I Because  messages  may  be  broken up  into  many  packets 
‘for transmission or during  transmission, it will be neces- 
sary t o  ignore the  REL flag except  in  the case that  the 
EM flag is also set’. This could  be  accomplished either 
by t’he TCP or by  the GATEWAY which  could  reset the flag 
Ion all but  the  packet  containing  the  set EM flag (see 
Fig. 9). 

At  the end of an association, the  TCP sends a packet 
with  ES,  EM,  and  REL flags set.  The  packet sequence 
number  scheme will alert  the receiving TCP if there  are 
.;till outstanding  packets  in  transit which have  not  yet 
arrived, so a prcmaturc dissociation cannot occur. 

To assure that  both  TCP’s  are  aware  that  the associ- 
ation  has  ended, wc insist that  the rcceiving TCP respond 
to  the  ItEL  by sending a REL acknowledgment of its 
own. 

Suppose now that a  process  sends a single message to  an 
associate including an  REL along with  the  data. Assuming 
an RCB has been  prepared for the receiving TCP  to 
accept the  data,  the TCI’ will accumulate  the incoming 
packets  until  the one marked  ES,  EM,  BEL  arrives, a t  
which  point a REL is returned  to  the  sender.  The associ- 
ation is thereby  terminated  and  the  appropriate  TCB 
and  RCB  are  destroyed. If the first packet of a  message 
contains a SYN request  bit  and  the  last  packet  contains 
~ES,  EM,  and  REL  bits,  then  data will  flow “one  message 
at  a time.”  This mode is very similar to  the scheme de- 
scribed by  Walden [12], since each  succeeding  message 
can  only  be  accepted at  the receiver after a new LISTEN 
(like  Walden’s RECEIVE) command is issued by  the 
receiving process to  its serving TCP.  Note  that only if the 
acknowledgment is received by  the  sender  can  the associ- 
ation be terminated properly. It has  been  pointed out6 
that  the receiver may  erroneously  accept  duplicate 
transmissions if the  sender does not receive the acknowl- 
edgment.  This  may  happen if the  sender  transmits  a 
duplicate  message  with  the SYN and  REL‘bits  set  and  the 
destination  has  already  destroyed  any  record of the 
previous transmission. One  way of preventing  this  problem 
is to  destroy  the record of the association at  the desti- 
nation  only  after some  known and  suitably chosen timeout. 
However, this implies that a new association with  the 
same  source and  destination  port identifiers could not be 
established until  this  timeout  had expired. This problem 
can  occur  even with sequences of messages whose SYN 
and REL  bits  are  separated  into  different  internetwork 
packets. We recognize that  this problem must  be solved, 
but  do  not go into  further  detail herc. 

Alternatively,  both processes can  send  one  message, 
causing the respective TCP’s to  allocate RCB/TCB 
pairs at  both ends  which  rendezvous with  the exchanged 
data  and  then  disappear. If the  overhead of creating  and 
dcstroying  RCB’s  and  TCB’s is small, such  a  protocol 

S. Crocker of ARPA/IPT. 

647 

might  be  adequate for most  low-bandwidth uses. This  idea 
might also form the basis for a relatively  secure  trans- 
mission system. If the  communicating processes agree to 
change their  external  port  addresses  in  some  way  known 
only to each  other  (i.c.,  pseudorandom),  then  each 
message  will.appear  to  the  outside  world  as if it  is part of a 
different association message stream.  Even if the  data is 
intercepted  by a third  party,  he will have no way of 
knowing that  the  data should in  fact be  considered part of 
a sequence of messages. 

We  have described the  way  in which processes develop 
associations with  each  other,  thereby  becoming associates 
for possible exchange of data.  These associations need not 
involve the  transmission of data prior to  their  formation 
and indeed  two associates need not be  able to  determine 
that  they  are associates until  they  attempt  to communi- 
cate. 

CONCLUSIONS 

We  have discussed  some fundamental issues related to 
the interconnection of packet  switching  networks. In  
particular, we have described a simple but  very powerful 
and’ flexible protocol  which  provides for variation  in 
individual  network  packet sizes, transmission failures, 
sequencing, flow control,  and  the  creation  and  destruction 
of process-to-process associations. We  have considered 
some of the  inlplementation issues that arise  and  found 
that  the proposed  protocol is implementable  by HOST’S 

of widely varying  capacity. 
The  next  important  step is to produce  a  detailed speci- 

fication of the protocol so that some initial  experinlents 
with  it  can be  performed. These  experiments  are  needed 
to determine  some of the  operational  parameters  (e.g., 
how often  and how far  out of order  do  packets  actually 
arrive;  what  sort of delay is .there between  segment 
acknowledgments;  what  should  be  retransmission  time- 
outs  be?) of the proposed protocol. 

ACI<NOWLEDGMENT 

The  authors wish to  thank a number of colleagues for 
helpful comments  during  early discussions of international 
network protocols, especially R.  Metcalfe,  R.  Scantle- 
bury,  D.  Walden,  and H. Zimmerman;  D.  Davies  and L. 
Pouzin who constructively  commented  on  the  fragmenta- 
tion  and  accounting issues; and S. Crocker who  com- 
mented on the  creation  and  destruction of associations. 

REFERENCES 

L. Roberts  and B. Wessler, “Computer  network  development 
to achieve  resource sharing,”  in 1970 Spring  Joint  Computer 
Conf. .   AFIPS  Conf.  Proc.. vol. 36. Montvale. N.  J.: AFIPS 
Press:  1970, p p . ~  545-549. 
L. Pouzin,  “Presentation  and  major design  aspects of the 
CYCLADES  computer  network,” in Proc. 3rd Data Com- 

, -  ~I ~ 

munications  Symp., 1973. 
F. It. E. Dell,  “Features of a proposed  synchronous data net- 
work,”  in Proc. 2nd Syrnp.  Problems in the Optimization of Data 
Communications  Systems, 1971, pp. 50-57. 



648 IEEE TRANSACTIONS ON COMMUNICATIONS, M9Y 1972 

[41 

[9 I 

switching  system to allow  remote  access to computer  services 
R.. A. Scantlebury  and  P.  T. Wilkinson, “The design of a 

by  other  computers  and  terminal devices,”  in Proc. 2nd Symp. 
Problc~ns in the Optimization of Data  Communications  Systems, 

in Computer  Communications:  Impacts  and  Implications, 
11. L. A. Barber,  “The  European  computer  network  project,” 

13.. Despres,  “A  packet  switching  network  wlth  graceful  satu- 
S. Winkler,  Ed.  Washington, D. C., 1972, pp. 192-200. 

Implications, S. Winkler, Ed. Washington, D. C., 1972. pp. 
rated  operation,”  in Computer  Communications:  Impacts  and 

R .  E.  Kahn  and W. I<. Crowther,  “Flow  control  in a resource- 
sharing  computer  network,” I E E E  Trans.  Commun., vol. 
COM-20, pp. 539446, June 1972. 
J. F. Chambon,  M.  Elie, J. Le  Bihan,  G.  LeLann,  and H. Zim- 
merman,  “Functional specification of transmission  station  in 
the  CYCLADES  network.  ST-ST  protocol” (in French), 
I.R.I.A.  Tech.  Rep. SCH502.3, May 1973. 

tion  Protocol In  the AItPA  Network,”  in Spring  Joint Com- 
8. Carr, S. Crocker, and V. Cerf,  “HOST-HOST  Communica- 

putcr  Conf., A F I P S  Conf.  Proc., vol. 36. Montvale,  N. J.: 
AFIPS  Press, 1970, pp. 589-597. 
A. McKenzie, “HOST/HOST protocol  for the  AItPA network,” 
in Current  Network Protocols, Network  Information  Cen., 

L. Pouzin,  “Address format In Mitranet,”  NIC 14497, INWG 
Menlo Park,  Calif., NIC 8246, Jan. 1972. 

20, Jan. 1973;< 
D.  Walden,  A  system for  interprocess  communication  in a 
resource  sharing  computer network,” Commun.  Ass.  Comput. 
Mach., vol. 1.5, pp. 221-230, Apr. 1972. 
B.  Lampson,  “A  scheduling  philosophy  for  multiprocessing 
systems,” Commun. Ass.  Comput.  Mach., vol. 11, pp. 347-360, 

1971, pp. 160-167. 

345-3.51. 

May 1968. 
F. E. Heart, R. E.  Kahn, S. Ornstein,  W.  Crowther,  and 
D. Walden,  “The  interface message  processor  for the  ARPA 

AFIPS  Conf .  Proc., vol. 36. Montvale,  N. J.: AFIPS Press, 
computer  network,” in Proc. Spring  Joint Computer Conf., 

N. G. Anslow and J. Hanscoff, “Implementation of inter- 
national  data exchange  networks,”  in Computer  Communica- 
tions:  Imnacts  and  Implications. S. Winkler, Ed. Washington, 

1970, pp. -551-567. 

11. c . ,  1672, pp. 181-is4 
A. McKenzie, “HosT/HosT protocol  design  considerations,” 
INWG  Note 16, NIC 13879, Jan. 1973. 
R. E. e h n ,  “Resource-sharing  computer  communication 
networks, Proc. I E E E ,  vol. 60, pp. 1397:1407, Nov. 1972. 
Bolt,  Beranek,  and  Newman,  “Specificatlon  for the intercon- 
nection of a. host  and  an  IMP,”  Bolt  Beranek  and  Newman, 
Inc.,  Cambrldge, Mass., BBN Rep. 1822 (revised), Apr. 1973. 

Vinton G. Cerf was  born  in New Haver 
Conn., in 1943. He  did  undergraduate wor 
in  mathematics a t  Stanford  Universit) 
Stanford, Calif., and received the  Ph.D. de 
gree  in computer science from  the  Universit, 
of  California a t  Los Angeles, Los Angeler 
Calif., in 1972. 

He  was  with  IBM  in Los  Angeles  fror 
1965 through 1967 and  consulted  and/c 
worked part  time a t  UCLA from 1967 throug 
1972. Currently  he  is  Assistant Professor c 

Computer Science and  Electrical  Engineering a t  Stanford Universit: 
and  consultant  to  Cabledata Associates.  Most of his current researc 
is  supported  by  the Defense  Advanced  Research  Projects  Agency  an 
by  the  National Science Foundation  on  the technology and economic 
of computer  networking. He is  Chairman of IFIP TC6.1, an intel 
national  network working  group  which  is studying  the probleI 
of packet  network  interconnection. * 

Robert E. Kahn (”65) was  born  in Brooklyr 
N. Y., on  December 23, 1938. He received t h  
B.E.E.  degree  from the  City College of N e  
York,  New  York,  in 1960, and  the M.P 
and  Ph.D. degrees from  Princeton Universit: 
Princeton, N. J., in 1962 and 1964, r( 
spectively. 

From 1960 to 1962 he  was a Member of t h  
Technical  Staff of Bell  Telephone  Labor: 
tories,  Murray  Hill,  N. J., engaged in traff 
and  communication  studies.  From 1964 t 

1966 he  was a Ford  Postdoctoral Fellow and  an  Assistant Professc 
of Electrical  Engineering at  the  Massachusetts  Institute of T e d  
nology,  Cambridge,  where  he  worked  on  communications  and ir 
formation  theory.  From 1966 to 1972 he  was a Senior  Scientist 2 

Bolt  Beranek  and  Newman,  Inc.,  Cambridge,  Mass.,  where l- 
worked  on computer  communications  network design and techniquc 
for  distributed  computation. Since 1972 he  has been with  the Ac 
vanced  Research  Projects  Agency,  Department of Defensl 
Arlington, Va. 

Dr.  Kahn is a member of Tau  Beta Pi,  Sigma  Xi, E ta  Kappa NI 
the  Institute of Mathematical  Statistics,  and  the  Mathematic: 
Association of America. He was  selected to serve as a Nation: 
Lecturer for the Association for Computing  Machinery  in 1972. 


