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Absfract-A protocol that  supports  the  sharing of resources  that 
exist in different  packet  switching  networks is  presented.  The proto- 
col provides  for  variation  in  individual  network packet  sizes,  trans- 
mission  failures,  sequencing, flow control,  end-to-end  error  checking, 
and  the creation  and  destruction of logical process-to-process  con- 
nections.  Some  implementation  issues  are  considered,  and  problems 
such  as  internetwork  routing, accounting, and  timeouts  are exposed. 

INTRODUCTION 

I" 1 THE LAST few years considerable effort  has  been 
expended on the design and  implementation of packet 

switching net\vorl<s [l]-[7],[14],[17]. A principle reason 
for developing such not\vorks has been to facilitate  the 
sharing of computer resources. A packet communication 
network  includes a transportation mechanism for dcliver- 
ing data between computers or between computers  and 
terminals. To make  the  data meaningful, computers  and 
tcrminals  share a common protocol (i.c.,  a set of agreed 
upon conventions). Several protocols have  already been 
developed for this purpose [S]-[12],[16]. However, 
these protocols have addressed  only the problem of com- 
munication on the same nct\vork. I n  this  paper we prcscnt 
a protocol design and philosophy that  supports  the sharing 
of resources that exist  in  different packct switching net- 
works. 

After  a brief introduction to internetwork protocol 
issues, we describe the  function of a GATEWAY as  an  intcr- 
face bctwccn nctn-orks and discuss its role in  the protocol. 
We then consider thc various det,ails of the protocol, 
including  addressing, formatting, buffering, scquoncing, 
floxv control, error control, and so forth. Wc close with a 
description of an interprocess  communication nxchanism 
and show how i t  can be supported  by  the  internet\\-ork 
protocol. 

Even  though  many different and complex problems 
must be solved in  the design of an individual  packet 
switching  network, these problems are manifestly com- 
pounded  when dissimilar networks arc interconnected. 
Issues arise which may  have no direct  counterpart  in  an 
individual  network and which strongly influence the way 
in which internetwork communication can take place. 

A typical  packet switching network is composed of a 
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set of computer resources called HOSTS, a set of one or 
more packet  switches, and a collcction of communication 
media that  interconnect  the packct switches. Within 
each HOST, wc assume that  there exist processes which 
must communicate with processes in  their own or other 
HOSTS. Any current definition of a process  will be  adequate 
for our purposes [13]. These processes are generally the 
ultimate source and  destination of data  in  the network. 
Typically, within an individual network,  there exists a 
protocol for communication  between any source and 
destination process. Only the source and  destination 
processes require kno\\-ledge of this convention for com- 
munication to   ta lx  place. Processes in two distinct  nct- 
works would ordinarily use different protocols for  this 
purpose. The ensemble of packet  switches and com- 
munication  media is called the paclxt  'switching  subnet. 
Fig. 1 illustrates these idcas. 

In a typical packet  switching subnet,  data of a fixed 
maximum size arc accepted  from  a source HOST, togethcr 
with a formatted  destination  address which is used to 
route  the  data  in a store and  forward fashion. The  transmit 
time for this  data is usually dependent upon internal 
net\\-ork  paramctcrs such as communication  media dat>a 
ratcs, buffering and signaling strategies,  routing, propa- 
gation delays, etc. In addition, somc mechanism is gen- 
erally  prcscnt for error  handling and  determination of 
status of the  networks components. 

Individual pacltct switching nctn;orl<s may  differ  in 
their  implementations  as follows. 

1) Each net\vorlt may  have  distinct ways of addressing 
the rcccivcr, thus requiring that a uniform  addressing 
schemc be created Tvhich can be undcrstood by each 
individual  nctworlt. 

2) Each nct\vorl< may accept data of different  maximum 
size, thus requiring nct\vorl<s to deal in  units of the 
smallest  maximum size (which may he impractically 
small) or requiring procedures which allow data crossing 
a network boundary  to  bc  rcformatted  into smaller 
picccs. 

3 )  The success or failure of a transmission and  its pcr- 
formancc in each  network is governed by different time 
dclays in accepting, delivering, and  transporting the data. 
This requires careful  development of intersetwork  timing 
procedures to  insurc that  data  can be successfully dc- 
livcred through  tho  various nctworlts. 
4) Within each nct\vorl;, communication may be dis- 

ruptcd  due  to unrccoverahlc mStation of the  data or 
missing data. End-to-cnd restoration proccduros are 
desirable to allow complete recovery from these con- 
ditions. 
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/n\ PACKET-SWITCHING  SUBNETWORK (-) PS I PS 

intact  the  internal  operation of each  individual  network 
This is easily achieved if two  networks  interconnect a: 
if  each were a HOST to  the  other network, but withoul 
utilizing  or  indeed  incorporating any  elaborate H O S ~  

protocol  transformations. 
It is thus  apparent  that  the  interface between  network; 

must  play a  central role in the development of any  net 
work  interconnection strategy.  We give a special name tc 
this  interface  that performs  these  functions and call i t  : 
GATEWAY. 

THE GATEWAY  NOTION 

PACKET-SWiTCHING  NETWORK PS = PACKET  SWITCH 

Fig. 1. Typical  packet switching  network. 

5 )  Status ,information,  rout,ing,  fault  detection,  and 
isolation are  typically different in  each  network.  Thus, to  
obtain verification of certain  conditions,  such  as an in- 
accessible or  dead  destination,  various  kinds of coordi- 
nation  must  be invoked  between the communicating  net- 
works. 

It would be errtremely convenient if all the differences 
between  networks could be economically resolved by 
suitable  interfacing a t  .the  network  boundaries.  For 
many of the differences, this  objective  can  be achieved. 
However, both economic and technical  considerations  lead 
us to prefer that  the interface  be  as simple and reliable 
as possible and deal  primarily with passing data between 
networks that use different  packet  switching  strategies. 

The question now arises as  to whether the interface 
ought  to  account for differences in HOST or process level 
protocols by  transforming  the source  conventions into  the 
corresponding  destination  conventions.  We  obviously 
want  to allow convcrsion between  packet  switching 
strategies at   the interface, to permit  interconnection of 
existing and planncd  networks.  However, the complcxity 
and dissimilarity of the Hosl7 or process level protocols 
makes it desirable to avoid  having to transform  between 
them  at  the interface,  even if this  transformation were 
always possiblc. Rather,,  compatible HOST and process 
levcl protocols must bc developed to  achicvc  effective 
intcrnctxork resourcc sharing. The unacceptable al- 
ternative is for  every HOST or process to  implcmcnt  every 
protocol (a potentially  unbounded  number) that  may  be 
needed to cornmunicatc with  other networks.  We  there- 
fore  assume that a comnmn protocol is to  be used between 
HOST'S or processes i n  diffcrcnt  networks and  that  the 
interface bctn-ccn networks  should takc  as small  a role as 
possiblc in  this protocol. 

To allow nc:tworl<s under  diffcrcnt  ownership to inter- 
cunncct, somc accounting will undoubtedly  be needed for 
traffic that passcs across the interface. In  its simplest 
tcrnms, this involves an accounting of packets  handled  by 
mch not for n-hich charges  arb passcd from net  to  net 
until thc buck finally stops at  the user or his rcprescnta- 
tivcb. Ihrthcrmorc~,  the interconnection must prcserve 

In  Fig. 2 we illustrate  three  individual  networks labelec 
A ,  B,  and C which are joined by GATEWAYS M and N 
GATEWAY A// interfaces  network A with  network B, anc 
GATEWAY N interfaces  network B to network C. W 
assume that  an individual  network  may  have  more t,ha~ 
one GATEWAY (e.g., network B )  and  that  there  may b 
more than one GATEWAY path  to use in going between I 

pa,ir of networks. The responsibility  for  properly routin1 
data resides in  the GATEWAY. 

In  practice,  a GATEWAY between  two  networks  may b 
composed of two  halves,  each  associated  with it,s ow1 
network. It is possible to  implement  each half of a GATE 

WAY so it need only  embed  internetwork  packets  in loca 
packet  format or extract  them. We propose that   th  
GATEWAYS handle  internetwork  packet,s  in  a  standarc 
format,  but me are  not proposing any  particular  trans 
mission procedure  between GATEWAY halves. 

Let us now trace  the flow of data  through  the  inter 
connected  networks.  We  assume a packet of data fron 
process X enters  network A destined for process Y il 
network C. The address of Y is initially specified b: 
process X and  the  address of GATEWAY M is derked fron 
the address of process Y .  We nmakc no attempt  to spccif: 
whether the choice of GATEWAY is  made  by process X 
its HOST, or one of thc packet  switches  in  network -4. Thl 
packet  traverses  network A until  it reaches GATEWAY iI4 
At the GATEWAY, the packet is reformatted to meet thl 
requirements of network B, account is taken of this  uni 
of flow between A and B, and  the GATEWAY delivers ths 
packet  to  network B. Again the dcrivation of the nex 
GATEWAY address is accomplished based  on the address o 
the destination Y .  In  this case, GATEWAY A T  is the next one 
Thc packet  traverscs  network R until i t  finally rcache 
GATEWAY N whcrc i t  is formattcd  to mcet the requirement 
of network C. Account is again  taken of this  unit of f l o ~  
betwccn  networks B and C. Upon entering  network C 
the packet is routed  to  the  Hosr  in which process I 
resides and  there  it is delivered to  its  ultimate desbination 

Since the GATEWAY must  understand  the  address of t h  
source and  destination HOSTS, this  information  must b 
available  in  a standard  format  in every  packet whicl 
arrives at   the GATEWAY. .This information is containec 
in an internetzoork header prefixed to  the packet by t h  
source HOST. The packet  format, including the  internet 
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Fig. 2.  Three  networks  interconnected by two GATEWAYS. 

(may be null) b- Internetwork Header 

LOCAL HEADER SOURCE DESTINATION SEQUENCE NO. BYTE COUNTIFLAG FIELD\ TEXT ICHECKSUM 

Fig. 3. Internetwork  packet  format (fields not shown to  scale). 

worlc header,  is  illustrated  in  Fig. 3 .  The source and desti- 
nation  entries  uniforndy and uniquely  identify the address 
of every HOST in  the composite  network.  Addressing  is a 
subject of considerable  complexity  which  is  discussed 
in  greater  detail  in  the  next section. Thenext  two  entries  in 
the header  provide a sequence number  and a byte  count 
that  may  be used to properly  sequence the packets  upon 
delivery to  the dest'ination  and  may  also  enable the 
GATEWAYS to  detect  fault conditions affecting  the  packet. 
The flag  field is  used to convey specific control  information 
and is discussed in  the sect.ion on  retransmission  and 
duplicate  detection  later. The remainder of the  packet 
consists of text for  delivery to  the  destination  and a  trailing 
check sum used for end-to-end  software  verification. The 
GATEWAY does not modify the  text  and merely  forwards the 
check sum along without  computing or recomputing  it. 

Each nct\r-orlr may need to  augment  the  packet  format 
before i t  can pass  t'hrough the individual  netu-ork.  We 
havc  indicated a local header in  the figure which  is prefixed 
to  the beginning of the  packet.  This local header  is  intro- 
duced  nlcrely t'o illustrate the concept of embedding an 
intcrnetworlc packet  in  the  format of the individual  net#- 
work through which the  packet  must pass. It will ob- 
viously vary  in  its  exact  form  from  network  to  network 
and  may  even be unnecessary in some cases. Although not 
explicitly  indicated in  the figure, i t  is  also possiblc that a 
local trailer  may  be  appended to  the end of the packet. 

Unless all transnlitted  packets  are legislatively re- 
stricted to be small  enough to  be  accepted  by  cvcry  in- 
dividual  network, the GATEWAY may be forced to split  a 
packet int,o two or more  smaller  packets. This  action  is 
called fragmentation  and  must be done  in  such a way that 
the destination  is  able to piece togcthcr the fragmcntcd 
packet. It is  clear that  the internct\vorl; header  format 
imposes  a  minimum packet size which all  networks 
must  carry (obviously  all  networks will want  to  carry 
packets  larger than  this  minimum). We believe the long 
rangc  growth  and  development of internctworl; com- 
munication would be seriously  inhibited by specifying 
how much  larger than  the minimum a paclcct  sizc can bc, 
for  tjhc follo\\-ing reasons. 

1) If a maximum  permitted  packet size is specified then 
i t  bccomos impossible to  completely  isolate the  internal 

packet size parameters of one  network  from the  internal 
packet size parameters of all other  networks. 

2 )  It would be  very difficult to increase the maximum 
permitted  packet size in response to new technology (e.g., 
large  memory  systems,  higher data  rate communication 
facilities, etc.) since this would require the agreement  and 
then implen-rentation by all  participating  networks. 

3 )  Associative  addressing and pa.clcet encryption  may 
require the size of a particular  pa'ckct to  cxpand  during 
transit for incorporation of new information. 

Provision  for fragmentation (regardless of where i t  is 
performed)  permits  packet sixc variations to  be  handled 
on an individual  network  basis  without global admin- 
istration  and also permits HOSTS and processes to  be 
insulated  from  changes  in the pa,ckct sizes permitted  in 
any networks  through  which  their data  must pass. 

If fragmentation  must  be  done, i t  appears  best  to  do  it 
upon  entering the  nest netu-orlc at  the GAPEWAY since only 
t.his GATEWAY (and  not  the  other netLvorlcs) must be awarc 
of the int.ernal packet size parameters which made  the 
fragmentation necessary. 

If a GATEWAY fragnwnts  an  incoming  packet  into t'T1-o or 
more paclcet,s, they  must  eventually  be passed along to  the 
destination HOST as  fragnxnts or reassembled  for the 
HOST. It is  conceivable that one  might  desire the GArrEwAY 
to perform the rea.ssenlbly to  simplify the  task of the desti- 
nation HOST (or process) and/or  to  take  advantage of a 
larger  packet size. We take  the position tJhat GATEWAYS 

should  not perform this  function since GATEWAY re- 
assen-rbly can lead to serious buffering  problems,  potential 
deadlocks, the necessity  for  all  fragments of a packet to  
pass through  the  same GArrEwA>r, and increased  dclay in 
transmission. Furthermore, i t  is not sufficient for the 

may also have  to  fragment a paclxt for  transmission. 
Thus  the destination HOST must be prepared to  do  this 
task. 

Let  us now turn briefly to  the somewhat  unusual ac- 
counting effect 11-hich arises  when  a  packet may  be frag- 
mented  by one or more GATEWAYS. We  assume, for 
simplicity, that each  network  initially  charges a fixed rate 
per paclrct transmitted, regardless of distancc,  and if one 
network  can  handle  a  larger  packet size t lml  another, i t  
charges a proportionally  larger price per paclcct. We also 
assume tha t  a subsequent  increase  in any network's 
packet size docs not  result  in  additional cost  per  packet to 
its users. The charge to a uscr thus  remains basically 
constant  through  any  net which must  fragmcnt a packet. 
The unusual cffcct occurs when a paclcct  is fragmented  into 
smaller  packets  which must  individually pass through a 
subsequent nctxvork with a larger  packet size than  the 
original  unfragmented  packet. We expect that most  net- 
works \vi11 naturally selech packet sizes  close to one 
anot'her, but  in  any case, an increase in  packet size in one 
net,  even  when it  causes  fragmentation, will not increase 
the cost of transnlission and  may  actually decrease it. I n  
the  event  that  any  other  packet charging policies (than 

GATEWAYS to provide  this  function since the final GATEWAY 
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the one me suggest)  are  adopted, differences in cost can  be 
used as an economic lever toward  optimization of indi- 
vidual  network  performance. 

PROCESS LEVEL COMMUNICATION 

We suppose that processes wish to communicate  in full 
duplex  with  their correspondent’s using  unbounded but 
finite length messages. A single character  might  constitute 
the  text of a message  from a process to a terminal or vice 
versa. An entire page of characters  might  constitute  the 
text of a message  from  a file to a process.- A data  stream 
(e.g.,  a  continuously  generated  bit  string)  can  be repre- 
sented  as a sequence of finite length messages. 

Within a HOST we assume  the existence of .a transmission 
control  program (TCP) which  handles  the  transmission 
and  acceptance of messages on  behalf of the processes it 
serves. The  TCP is in  turn  served  by one or more packet 
switches  connected to  the HOST in which the  TCP resides. 
Processes that  want  to communicate  present  messages 
to  the  TCP for transmission,  and TCP’R deliver incoming 
messages to  the  appropriate  destination processes. We 
allow the  TCP  to  break  up messages into  segments be- 
cause the  destination  may  restrict  the  amount of data  that 
may  arrive, because the local network  may  limit  the 
maximum  transmission size, or because the  TCP  may 
need to  share  its resources among  many processes con- 
currently.  Furthermore, me constrain the  length of a 
segment to  an integral  number of 8-bit  bytes.  This uni- 
formity  is  most helpful in simplifying the  software needed 
with HOST machines of different  natural word  lengths. 
Provision at  the process level can  be  made for padding a 
message that is not  an  integral  number of bytes  and for 
idcntifying  which of the arriving  bytes of text contain 
information of interest t o  the receiving process. 

Multiplexing  and  demultiplexing of segments  among 
processes are  fundamental t.asks of the  TCP. On trans- 
mission, a TCP  must multiplex  together  segments  from 
different source processes and  produce  internetwork 
packets for delivery to one of it.s serving  packet switches. 
On reception, a TCP will accept a sequence of packets 
from  its  serving  packet  switch(es).  From  this sequence 
of arriving  packets  (generally  from  different HOSTS), 

the  TCP  must  be able  to  reconstruct  and deliver messages 
to  the  proper  destination processes. 

We assume that every  segment is augmented  with  ad- 
ditional  information that allows transmitting  and re- 
ceiving TCP’s to  identify  destination  and source processes, 
respectively.  At  this  point, we must face a major issue. 
How should the source TCI’ format  segments  destined for 
the same  destination  TCP? We  consider  two cases. 

Case 1) : If we take t.he position that segment  boundaries 
are  immaterial  and  that  a  byte  stream  can be  formed of 
segments  destined for the  same  TCP,  then we may  gain 
improvcd  transmission efficiency and resource  sharing by 
arbitrarily parceling the  stream  into  packets,  permitting 
many  stgments to  share  a single internetwork  packet 
headcr.  Howcver, this position results  in  the need to re- 

construct  exactly,  and  in  order,  the  stream of text  bytes 
produced by  the source TCP. At  the  destination,  this 
stream  must first be parsed into  segments  and  these in 
turn  must be used to reconstruct  messages for delivery to 
the  appropriate processes. 

There  are  fundamental problems associated with  this 
strategy  due  to  the possible arrival of packets  out of order 
at   the destination.  The  most  critical problem appears 
to  be  the  amount of interference that processes sharing the 
same  TCP-TCP  byte  stream  may  cause  among  them- 
selves. This is especially so at  the receiving end.  First, 
the  TCP  may  be  put  to some trouble to  parse the  stream 
back  into  segments  and  then  distribute  them  to  buffers 
where  messages are reassembled. If it is  not  readily  ap- 
parent  that all of a segment  has  arrived  (remember,  it 
may come as several  packets),  the receiving TCP may 
have  to suspend  parsing  temporarily until more  packets 
have  arrived.  Second, if a packet is missing, i t  may  not be 
clear whether  succeeding  segments,  even if they  are  identi- 
fiable, can  be passed  on to  the receiving process, unless the 
TCP has knowledge of some process level sequencing 
scheme.  Such  knowledge  would permit  the  TCP  to decide 
whether a succeeding  segment  could be delivered to  its 
waiting process. Finding  the beginning of a  segment when 
there  are  gaps  in  the  byte  stream  may also be  hard. 

Case 2 )  : Alternatively, we might  take  the position that 
the  destination TCP should be  able  to  determine, upon 
its  arrival  and  without  additional  information, for which 
process or processes a received packet is intended,  and if 
so, whether i t  should be delivered then. 

If the  TCP is to determine for which  process an arriving 
packet  is  intended,  every  packet  must  contain  a proces6 
header (distinct from the internetwork  header) that com- 
pletely identifies thc  destination process. For simplicity, 
we assume that each packet  contains  text  from  a single 
process  which is destined for a single process. Thus each 
packet need  contain  only  one process header.  To decide 
whether  the  arriving  data is deliverable to  the destination 
process, the  TCP  must  be a.ble to determine  whether the 
data is in  the  proper sequence  (we  can make provision 
for the  destination process to  instruct  its  TCP  to ignore 
sequencing, but  this is considered a special case).  With thc 
assumption that each  arriving  packet  contains  a process 
header,  the necessary  sequencing and  destination procesf 
ident)ification is  immediately  available to  the  destinatior 
TCP. 

Both Cases 1) and 2) provide  for  the demultiplexing 
and delivery of segments to  destination processes, but 
only  Case 2 )  does so without  the  introduction of potential 
interprocess  interference.  Furthermore,  Case 1) introduceE 
extra  machinery to handle flow control  on a HOST-to- 
HOST basis! since there  must also be some  provision for 
proccss level control,  and  this  machinery is little used since 
the probability is small that  within a given HOST, two 
processes d l  be coincidentally scheduled to send messages 
to  the same  destination HOST. For this reason, we select 
the method of Case 2 )  as a part of the internetwork 
transmission QrOtOCOl. 
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ADDRESS  FORMATS 
The selection of address  formats is a  problem  between 

networks  because the local network  addresses of TCP's 
may  vary  substantially  in  format  and size. A  uniform in- 
ternetwork TCP address  space,  understood by each 
GATEWAY and  TCP, is  essential to routing  and delivery 
of internetwork  packets. 

Similar  troubles  are  encountered when we deal  with 
process addressing and,  more generally, port addressing. 
We .introduce the notion of ports in  order  to  permit a 
process to distinguish  between  multiple message streams. 
The  port  is  simply a  designator of one  such message stream 
associated with a process. The  means for identifying  a port 
are generally  different in different  operating  systems, and 
therefore, to  obtain uniform addressing, a standard  port 
address  format is also required.  A port  address designates 
a full duplex message stream. 

TCP  ADDRESSING 

TCP addressing is intimately  bound  up  in  routing 
issues, since a HOST or GATEWAY must choose a  suitable 
destination HOST or GATEWAY for an outgoing  int,ernetworl< 
packet.  Let  us  postulate the following address  format for 
the  TCP address  (Fig. 4). The choice for  network  identi- 
fication (8 bits) allows up  to 256 distinct  networks.  This 
size seems sufficient for the forseeable future. Similarly, 
the  TCP identifier field permits up  to 65 536 distinct 
TCP's  to  be addressed, which seems more than sufficient 
for any given network. 

As each  packet passes through  a GATEWAY, the GATEWAY 
observes the destination  network I D  to determine how 
to  route  the  packet. If the destination  network is con- 
nected to  the GATEWAY, the lower 16 bits of the  TCP address 
are used to produce  a local TCP address  in  the  destination 
network. If the destination  network  is  not  connected to  the 
GATEWAY, the upper S bits are used to select a  subsequent 
GATEWAY. We malx no  effort to specify how each in- 
dividual  network  shall  associate the internetwork TCP 
identifier  with its local TCP address. We also do not  rule 
out  the possibility that  the local network  understands the 
internetwork  addressing  scheme  and  thus  alleviates the 
GATEWAY of the routing  responsibility. 

PORT  ADDRESSING 
A receiving TCP is faced with the  task of demultiplex- 

ing the  stream of internetwork  packets it receives and 
reconstructing the original messages for  each  destination 
process. Each  operating  system  has  its own internal 
means of identifying processes and  ports. We assume that 
16 bits  are sufficient to serve as  intcrnctwork  port identifiers. 
A  sending process nccd not know how the destination 
port identification will be used. The destination TCP 
will be  ablc to parse this  number  appropriately to find 
the proper buffer into which it will place arriving  packets. 
We permit  a  large  port  number field to  support processcs 
which want  to distinguish  bctween many different 
messages streams  concurrently. In  reality, we do not  care 
how the 16 bits  are sliced up  by  the  TCP's involved. 
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8 16 

NETWORK TCP IDENTIFIER 

Fig. 4. ',TCP address. 

Even  though  the  transmitted  port  name field is large, 
it is  still  a  compact  external  name  for the  internal repre- 
sentation of the port. The use of short names for port 
identifiers is often  desirable to reduce  transmission over- 
head and possibly reduce  packet processing time at   the 
dehnation  TCP. Assigning short names to each port, 
however,  requires an initial  negotiation  between  source 
and  destination  to agree on a  suitable  short  name assign- 
ment, the subsequent  maintenance of conversion tables 
a t  both  the source and  the  destination,  and a final trans- 
action  to release the  short name.  For  dynamic  assignment 
of port names, this negotiation is generally necessary in 
any case. 

SEGMENT  AND  PACKET  FORMATS 

As shown  in Fig. 5, messages are broken by  the TCP 
into segments whose format  is shown in more  detail  in 
Fig. 6. The field lengths  illustrated are merely suggestive. 
The first  two fields (source port  and  destination  port  in 
the figure) have  already been discussed in the preceding 
section  on  addressing. The uses of t.he third  and  fourth 
fields (window and acknowledgment  in the figure) will 
be discussed later  in  the section  on  retransmission and 
duplicate  detection. 

We recall from Fig. 3 that   an internetwork  header con- 
tains  both a  sequence number  and a byte  count,  as well as 
a flag field and a  check  sum. The USCS of these fields are 
explained in  the following section. 

REASSEMBLY  AND  SEQUENCING 

The reconstruction of a message at  the receiving TCP 
clearly requires' that each  internetwork  packet  carry a 
sequence  number which is unique to  its particular  desti- 
nation  port message stream.  The sequence  numbers must 
be  monotonic increasing (or decreasing) since thcy  are 
used to reorder and reassemble arriving  packets  into a 
mcssage. If the space of sequence  numbers were infinite, 
we could simply assign the next  one  to each new packet. 
Clearly, this space  cannot  be  infinite,  and we will consider 
what problems  a  finite  sequence  number  space will cause 
when we discuss retransmission and  duplicate  detection 
in the next  section. We propose the following scheme  for 
performing the sequencing of packets and hence the re- 
construction of messages by  the destination TCP. 

A  pair of ports will exchange  one or more messages over 
a period of time. We could view the sequence of messages 
produced  by  one port as if it were embedded in  an in- 
finitely  long stream of bytes.  Each  byte of the message has 
a  unique  sequence  number which we takc  to be its  byte 
location  relativc to  the beginning of the stream.  When  a 

In  the case of encrypted  packets, a preliminary stage of re- 
assembly may be required prior to decryption. 
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byte identification-sequence  number 

First Message 

(SEQ = k)  

Fig. 7. Assignment of sequence  numbers. 

LH = Local Header 
IH = InternetwolX Header 

CK = Checksum 
PH = Process Header 

Fig. 5 .  Creation of segments  and  packets from  messages. 

32 32 16 16 En 

Source  Port  DertinatianIPort Wmdow ACK Text (Field sizes in bits1 ,+JPlOLIIl Hed..LJ 
Fig.  6. Segment format (process  header and  text). 

segment  is  extracted  from the message by  the source 
TCP  and  formatted for internetwork  transmission, the 
relative  location of the first byte of segment text is used as 
the sequence  number for the packet. The  byte  count 
field in  the  internetwork  header  accounts for all the  text 
in-the segment (but docs not include the check-sum bytes 
or  t'he  bytes  in  either  internetxork or process header). 
We emphasize that  the sequence  number  associated with 
a given packet is unique only to  the pair of ports that  are 
communicating  (see Fig. 7).  Arriving  packets are ex- 
amined to determine for which port  they  are  intended. 
The sequence  numbers on each  arriving  packet  are  then 
used to  determine  the  relative location of the packet  text 
in the messages under  reconstruction.  We  note that  this 
allows the exact position of the  data  in  the reconstructed 
message to be  determined  even n-hen pieces 'are  still 
missing. 

Every segment  produced by  a source TCP is packaged 
in  a single internetwork  packet  and  a check sum is com- 
puted over the  text  and process header  associated  with the 
segment. 

The splitting of messages into segments by  the  TCP 
and  the  potential  splitting of segments into smaller pieces 
by GATEWAYS creates the necessity for indic,ating to-  the 
destination TCP when the end of a  segment (ES) has 
arrived  and when the end of a message (EM) has  arrived. 
The flag field of the internetwork  header is used for this 
purpose  (see  Fig. S) . 

The  ES flag is set  by  the source TCP each time it prc- 
pares  a  segment for transmission. If it should happen that 
the message is completely  contained in  the  segment,  then 
the  EM flag would also be  set. The EM flag is also set  on 
the  last segment of a message, if the message could not 
be  contained  in  one  segment,  These  two flags are used 
by  the  destination  TCP, respectively, to discover the 
presence of a check sum for a given segment and  to discover 
that a  complete message has  arrived. 

The  ES  and EM flags in the internetwork  header  are 
known to  the GATEWAY and  are of special importance when 
packets  must  be  split  apart for propagation  through the 
next local network. We illustrate  their use with an ex- 
ample  in  Fig. 9. 

The original message -4 in Fig. 9 is shown split  into two 
segments A and Az and  formatted' by the TC1' into  a pair 

16 bits 

Y E S M  
S 

N L  

_ . .  E E R 

I l l  I 
L End  of Message when set = 1 

End  of Segment  when set = 1 
Release Use of ProcessIPort  when set=l 
Synchronize to Packet  Sequence Number  when set = 1 

Fig. 8. Internetwork  header flag field. 

- 1000 bytes . 
100  101  102 . . . 

I TEXT  OFMESSAGE A 

SEQ CT ES EM 500 2 

SRC CK TEXT 0 PH 1 500  100  DST 

1- internetwork header --+ segment 1 
split by 
source 
TCP . -. 

SEQ CT ES  EM 500 2 

SRC CK TEXT  1 PH 1  500 600 DST 

250  2 

SRC packet A1 TEXT 0 / PH 0 250  100 DST 

~~~ ~ 

split 
by 
GATEWAY 

SRC packet A12 CK TEXT 0 PH 1  250 350 DST 

SRC TEXT packet AZ1 0 PH 0 250 600 DST 

SRC packet A22 CK TEXT 1 PH 1 250 850 DST 

Fig. 9. Message splitting  and  packet  splitting. 

of internetwork  packets.  Packets A1 and A2 have the 
ES bits  set,  and A2 has  its En1 bit  set  as well. Whe 
packet A1 passes through the GATEWAY, it is split  into t w  
pieces: packet A 11 for which neither EM nor ES bits a1 
xt ,  and  packet A12 whose ES bit is set. Similarly, packt 
A ,  is split  such that  the first piece, packet A21, has neithe 
bit  set, but packet A22 has  both  bits  set.  The scyuenc 
number field (SEQ) and  the  byte  count field (CT) of eac 
packet is modified by  the GATEWAY to properly identif 
the t'ext  bytes of each  packet.  The GATEWAY need on1 
cxamine the internetmork  header to do  fragmentation. 

The destination TCP, upon  reassembling  segment 9 
will detect  the ES flag and will verify the check sum 
knows is contained  in  packet iz12.  Upon  rcceipt of pack( 
A z 2 ,  assuming  all other  packets  have  arrived,  the  dest 
nation TCP detects that  it  has reassembled  a complel 
message and can now advise the destination process of  il 
rcceipt,: 
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RETRANSMISSION  AND  DUPLICATE 
DETECTION 

No transmission  can  be 100 percent reliable. We 
propose  a timeout  and  positive  acknowledgment mecha- 
nism  which will allow TCP’s  to recover  from packet losses 
from  one HOST to  another.  A  TCP  transmits  packets  and 
waits for replies (acknowledgements) that  are carried in 
the reverse packet  stream. If no  acknowledgment for a 
particular  packet is received, the  TCP will retransmit. 
It is  our  expectation that  the HOST level retransmission 
mechanism,  which is described in  the following para- 
graphs, will not  be called upon  very  often  in  practice. 
Evidence  already exists2 that individual  networks  can  be 
effectively constructed  without  this  feature.  However, the 
inclusion of a HOST retransmission  capability  makes i t  
possible to recover  from  occasional  network  problems and 
allows  a  wide  range of HOST protocol strategies  to be in- 
corporated. We envision it will occasionally be invoked to 
allow HOST accommodation  to  infrequent  overdemands for 
limited  buffer resources, and otherwise not used  much. 

Any  retransmission policy requires  some  means by 
which the receiver can  detect  duplicate  arrivals.  Even if 
an infinite  number of distinct  packet sequence  numbers 
were  available, the receiver mould still  have  the problem 
of knowing how long to remember  previously  received 
packets  in  order to  detect  duplicates.  Matters  are compli- 
cated  by  the  fact  that  only  a  finite  number of distinct 
sequence  numbers are  in  fact  available,  and if they  are 
reused,  the receiver must be  able to distinguish  between 
new  transmissions  and  retransmissions. 

A window strategy, similar to  that used by  the  French 
CYCLADES system  (voie  virtuelle  transmission  mode [SI) 
and  the ARPANET very  distant HOST connection [lS], 
is proposed  here  (see Fig. 10). 

Suppose that  the sequence number field in  the  inter- 
network  header  permits  sequence  numbers to range  from 
0 to n - 1. We assume that  the sender will not  transmit 
more  than w bytes  without receiving an acknowledgment. 
The w bytes  serve  as  the window (see Fig. 11). Clearly, 
w must  be less than n. The rules for sender  and receiver 
are  as follows. 

Sender: Let L be  the sequence number associated with 
the left  window edge. 

1) The  sender  transmits  bytes  from  segments whose 
text lies between L and  up  to L + w - 1. 

2 )  On timeout  (duration  unspecified),  the  sender 
retransmits unacknowledged bytes. 

3) On  receipt of acknowledgment consisting of the 
receiver’s current  left window edge, the sender’s,  left 
window  edge is advanced  over  the aclrnowledged bytes 
(advancing  the  right window  edge implicitly). 

Receiver: 
1) Arriving  packets  yhose sequence  numbers coincide 

with  the receiver’s current  left window  edge are acknowl- 
edged  by  sending to  the source the  next  sequence  number 

Left Window Edge 
I 

0 n- 1 a+w- 1 a 

1- window -4 
I< packet sequence number space -1 

Fig. 10. The window  concept. 

Source 
Address 

I Address 
Destination I 

6 

7 

8 

9 

10 

Next Read Position 

End Read  Position 

Timeout 

Fig. 11. Conceptual TCB  format. 

expected.  This effectively acknowledges bytes  in between. 
The  left window  edge is advanced  to  the  next sequence 
number  expected. 

2) Packets  arriving  with  a sequence number  to  the  left 
of the window  edge (or, in  fact,  outside of the window) are 
discarded,  and  the  current  left window  edge  is returned  as 
acknowledgment. 

3) Packets whose  sequence  numbers lie within  the 
receiver’s window but do  not coinicide with  the receiver’s 
left  window  edge are  optionally  kept or  discarded, but 
are  not acknowledged. This is the case when  packets  arrive 
out of order. 

We make some  observations  on  this  strategy.  First, all 
computations  with  sequence  numbers  and  window  edges 
must  be  made modulo n (e.g.,  byte 0 follows byte n - 1). 
Second, w must be less than n/Y;  otherwise  a retrans- 
mission may  appear  to  the receiver to be  a new trans- 
mission in the case that  the receiver has  accepted  a 
window’s worth of incoming  packcts, but  all acknowledg- 
ments  havc been  lost.  Third,  the receiver can  either  save 
or  discard  arriving  packets whose  !sequence numbers  do 
not coincide with  the receiver’s left  window. Thus,  in  the 
simplest  implementation,  the receiver need not  buffer 
more than one  packet  per  message  stream if space is 
critical. Fourth,  multiple  packets  can be aclrnowledgcd 
simultaneously.  Fifth,  the receiver is able  to deliver 
messages to  processes in  their  proper  order as a  natural 
result of the reassembly  mechanism. Sixth, when  dupli- 
cates  arc  detected,  the acknowledgment  method  used 
naturally works to  rcsynchronizc  scndcr and receiver. 
Furthermore, if the rcccivcr accepts  packets whose 
sequcnce  numbcrs lie within  the  current window but 

The ARPANET is one such example. required that a retransmission not  appear to be a new transmission. 
Actually n/2  is  merely a convenient number to  use; it is only 
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which are  not coincident with  the  left window edge, an 
acknowledgment consisting of the  current  left window 
edge  would act  as  a  stimulus  to cause  retransmission of the 
unacknowledged  bytes.  Finally, we mention an overlap 
problem  which  results  from  retransmission, packet 
splitting,  and  alternate  routing of packets  through dif- 
ferent GATEWAYS. 

A  600-byte packet  might pass through one GATEWAY 

and  be  broken  into  two  300-byte  packets. On retrans- 
mission, the same  packet  might be  broken  into  three 
200-byte packets going through  a  different GATEWAY. 
Since  each byte  has  a sequence  number, there is no  con- 
fusion at  the receiving TCP. We leave for later  the issue 
of initially  synchronizing the  sender  and receiver left 
window edges and  the window size. 

FLOW  CONTROL 

Every  segment  that  arrives at  the  destination  TCP is 
ultimately acknowledged by  returning  the sequence 
number of the  next  segment which must  be passed to  the 
process (it  may  not  yet  have  arrived). 

Earlier we described the use of a  sequence number 
space  and window to aid  in  duplicate  detection. Ac- 
knowledgments are carried in the process  header  (see 
Fig. 6)  and- along with  them  there is proviqion for a 
“suggested  window”.which the receiver can  use to control 
the flow of data from the sender.  This is intended  to  be 
the  main  component of the process flow control  mecha- 
nism. The receiver is frcc to  vary  the windo& size accord- 
ing to  any algorithm it desires so long  as the window 
size never  exceeds half thc sequence number space.3 

This flow control  mechanism is exceedingly  powerful 
and flexible and does not  suffer from  synchronization 
troubles that  may  be  encountered  by  incremental buffer 
allocation  schemes [9],[lO]. Hoivever, it relies heavily 
on an effective retransmission  strategy.  The receiver can 
reduce the window  even  while packets  are en route from 
the sender  whose  window is presently  larger.  The  net 
effect of this  reduction will be that  the receiver may 
discard  incoming  packets (they  may  be  outside  thc 
window) and  reiterate  thc  current window size along with 
a current window  edge as  acknowledgment.’By  the  same 
token,  the  sender  can,  upon occasion, choose to send  more 
than a  window’s worth of data on the possibility that  the 
reccivcr will expand the window to accept it (of course, the 
sender  must  not send  more, than half the sequence number 
space at  any  time). Normally, we would  expect the sender 
to  abide  by  thc window limitation.  Expansion of the 
window by  the rcccivcr mcrcly  allows  more data  to  be ac- 
cepted. Vor the receiving HOST with  a small amount of 
buffer space,  a  strategy of discarding  all  packets  whose 
scqucncc  numbers  do not coincide with  the  currcnt  left 
cdgc of the window is probably necessary, but  it will incur 
thc cxpcnsc of cxtra  delay  and  overhead for retransmis- 
sion. 

TCP INPUT/OUTPUT HAND,LING 

The  TCP has  a  component  which  handles  input/output 
(I/O) to  and from the  network4  When  a  packet  has  ar- 
rived, i t  validates  the addresses and places the packet 
on  a  queue.  A pool of buffers can  be  set  up to  handle 
arrivals,  and if all  available  buffers  are used up, succeeding 
arrivals  can  be  discarded since unacknowledged  packet5 
will be  retransmitted. 

On output,  a smaller amount of buffering is needed, 
since process buffers can  hold the  data  to  be  transmitted 
Perhaps double  buffering mill be  adequate. We make nc 
attempt  to specify how the buffering  should be  done 
except to require that  it be  able to service the network 
with  as  little  overhead  as possible. Packet sized buffers 
one or more  ring buffers, or any  other  combination art 
possible candidates. 

When  a  packet  arrives at  the destination TCP,  it  is  placec 
on a queue  which the  TCP services frequently. For ex 
ample, the  TCP could be  interrupted when a queue  place 
ment occurs. The  TCP  then  attempts  to place the packel 
text  into  the proper  place in’  the  appropriate proces! 
receive buffer. If the  packet  terminates  a  segment,  ther 
it can  be  checksummed and acknowledged.  Placemeni 
may fail for several reasons. 

I)  The  destination .process may  not  be. prepared t c  
receive from the.etated source, or the  destination  port 11 
may  not exist. 

2 )  There  may  be insufficient buffer space for the  text 
3) The beginning  sequence number of the  text ma3 

not coincide with  the  next sequence number  to  be deliverec 
to  the process  (e.g., the  packet  has  arrived  out of order) 

In  the first case, the  TCP should  simply  discard thf 
packet  (thus  far, no  provision  has  been made for err01 
acknowledgments). In  the second and  third cases, thc 
packet sequence number  can  be  inspected  to determinc 
whether  the,packet  text lies within the legitimate ivindow 
for  reception. If it does, the  TCP  may optionally  keep thc 
packet  queued for later processing. If not,  the  TCI 
can discard the  packet. In  either case the  TCP car 
optionally  acknowledge with  the  current  left window  edge 

It may  happen  that  the process receive buffer  is no’ 
present  in  the  active  memory of the HOST, but is  stored or 
secondary  storage. If this is the case, the  TCP can  promp 
the scheduler to’bring  in  the  appropriate  buffer  and thc 
packet  can be queued for latcr processing. 

If therc  are no niore input buffers available to  the  TCI 
for temporary queueing of ‘incoming  packets, and if  thc 
TCI’ cannot  quickly  use  the  arriving data  (c.g.,  a  TCI 
to  TCP message) , then  thc  packet is discarded.  Assuminf 
a sensibly functioning  system, no other processes than thc 
one for which the  packet was intended should be  affectec 
by  this  discarding. If the  delayed processing  queue grow 

This  component can  serve to  handle  other  protocols whoss 
associated  control  programs are  designated by internetwork  destina 
tion  address. 
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excessively long, any  packets  in i t  can  be safely discarded 
since none of them  have  yet been acknowledged. Con- 
gestion at   the  TCP level is flexibly handled owing to  the 
robust  retransmission and  duplicate  detection  strategy. 

TCP/PROCESS  COMMUNICATION 

In  order to send a message, a process sets  up  its  text 
in a  buffer region in  its own address  space,  inserts the 
requisite  control  information  (described in  the following 
list)  in a transmit control block (TCB)  and passes control 
to  the  TCP.  The exact  form of a TCB is not specified 
here, but  it might take  the form of a passed pointer,  a 
pseudointerrupt, or various  other forms. To receive a 
message in  its  address space,  a process sets  up a receive 
buffer,  inserts the requisite  control  information in a 
receive control block (RCB)  and again passes control 
to  the  TCP. 

In  some  simple  systems, the buffer  space may  in  fact 
be provided by  the  TCP. For simplicity. we assume that 
a  ring  buffer is used by each process, but  other  structures 
(e.g.,  buffer  chaining) are  not ruled out. 

A possible format for the  TCB is shown in Fig. 11. The 
TCB contains  information  necessary to allow the  TCP 
to  extract  and send the process data. Some of the informa- 
tion  might be  implicitly  known, but we are  not concerned 
with  that level of detail. The various fields in  the  TCB 
are described as follows. 

1) Source  Address: This is the full net/HosT/TCP/port 
address of the  transmitter. 

2) Destination Address: This is the full net/HOST/ 
TCP/port of the receiver. 

3) Next  Packet  Sequence Number: This is the sequence 
numbcr  to be used for the next  packet the  TCP will 
transmit,  from  this  port. 

4) Current   Buf fer   Size:  This is the present size of the 
process transmit buffer. 

5 )  Nex t   Wr i t e   Pos i t i on :  This is the address of the next 
position in the buffer a t  which the process can place new 
data for transmission. 

6) Next  Read  Posi t ion:  This is the address a t  which the 
TCP should begin reading to build the next  segment for 
output. 

7 )  E n d  Rewd Posi t ion:  This is the address a t  which the 
TCI’ should halt transmission.  Initially 6) and 7) bound 
the message which the process wishes to  transmit. 

S) Number of Retransllzissions/ndnxill1u1tL Retransmis- 
s ions:  These fields enable the  TCP  to Beep track of the 
numbcr of times it  has  retransmitted  the  data  and could be 
omitted if the  TCP is not  to give  up. 

9) Timeout/Flwgs: The  timeout field  specifies the 
delay after which unacltnowledgcd data should be  rctrans- 
mittcd.  The flag ficld is uscd for semaphores and  other 
TCl’/proccss synchronization, status  reporting,  ctc. 

10) Current 9cX:nozulerlg,trent/TYirLdo,w: The  current 
acltnowledgmcnt ficld identifies the first byte of data 
still  unaclmo~vledgcd  by thc  destination  TCP. 

The read  and  write positions move  circularly  around the 
transmit buffer,  with the write  position  always to  the left 
(module the buffer size) of the read position. 

The next  packet  sequence  number  should  be  constrained 
to  be less than or equal to  the  sum of the current ac- 
knowledgment and  the window fields. In  any  event,  the 
next  sequence  number should not exceed the sum of the 
current  acknowledgment and half of the maximum possible 
sequence number  (to avoid confusing the receiver’s 
duplicate  detection  algorithm). A possible buffer layout 
is shown in.Fig. 12. 

The  RCB is substantially the same, except that  the end 
read field is replaced by a  partial  segment check-sum 
register which permits the receiving TCP to compute  and 
remember partial check sums  in  the  event  that a  segment 
arrives  in  several  packets.  When the final packet of the 
segment  arrives, the  TCP can  verify the check sum  and if 
successful, acknowledge the segment. 

CONNECTIONS  AND ASSOCIATIONS 

Much of the thinking  about process-to-process com- 
munication  in  packet  switched  networks  has  been in- 
fluenced by  the ubiquitous  telephone  system.  The HOST 

HOST protocol  for the ARPANET deals explicitly with  the 
opening and closing of simplex connections  between 
processes [9],[10]. Evidence has been presented that 
message-based “connection-free” protocols can  be con- 
structed [12], and  this leads  us to carefully  examine the 
notion of a  connection. 

The  term connection has -a wide variety of meanings. It 
can  refer to a  physical or logical path between  two en- 
tities, i t  can refer to  the flow ovcr the  path,  it  can in, 
ferentially refer to  an action  associated with  the  setting 
up of a path, or it can refer to  an association  between  two 
or more  entities,  with or without  regard  to  any  path 
between  them. In  this paper, we do not explicitly reject 
the  term connection,  since it is in such widespread use, 
and does connote  a  meaningful  relation, but consider 
i t  exclusively in the sense of an association  between  two or 
more  entities  without  regard to a path. To be more precise 
about our intent, we shall define the relationship  between 
t\+o or more  ports that  are in  communication, or are pre- 
pared to communicate to  be  an association. Ports  that 
are associated  with  each  other are called associates. 

It is clear that for any communication to  take place 
between  two processes, one must be  able to address the 
other. The two important cases here  are  that  the  deiti- 
nation  port  may  have a global and unchanging  address or 
that  it  may  be globally  unique but dynamically reassigned. 
While in  either case the sender may  have  to  learn  the 
destination  address,  given the destination  name, only in 
the second instance is there a  requirement  for  learning the 
address  from the destination  (or  its  representative) each 
time an association is desired. Only after  the source has 
learned horn to  address  the  destination  can  an association 
be said to  have occurred. But  this is not  yet sufficient. If 
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. Current Message 
/ 

Sent. Acked Partial Next Message Not Sent Sent. Not Acked 

Current Ack Next Seq. No. iw,ndow Next’Read E n d i e a d  1 Next Write 
t 

. Transmit Buffet  Sire 

Fig. 12. Transmit buffer layout. 

ordering of delivered messages is also desired, both 
TCP’s  must  maintain sufficient infornmtion to allow 
proper  sequencing.  When this  information is also present 
at  both ends,  t,hen an association is said to  have occurred. 

Note  that we have  not said anything  about a path, nor 
anything which implies that either  end  be  aware of the 
condition of the  other. Only when both  partners  are 
prepared to communicate with’ each other  has  an associ- 
ation occurred, and  it is possible that neither  partner 
may be  able to verify that  an association exists until some 
data flows between them. 

CONNECTION-FREE  PROTOCOLS  WITH 
ASSOCIATIONS 

In  the ARPANET, the interface message processors 
(IMP’S)  do  not  have  to open and close connections from 
source to destination. The reason  for this is that con- 
nections  are, in effect,  always  open, since the addresk of 
every  source and  destination is never5 reassigned. When 
the name  and  the place are  static  and unchanging, it is 
only necessary to label a packet  with  source  and  desti- 
nation to transmit  it  through  the  network. In  our  parlance, 
every source and  destination forms an association. 

In  thc casc of processes, however, we find that  port 
addresses are continually being used and reused. Some 
ever-present processes could be assigned fixed addresses 
which  do not change  (e.g., the logger process). If we sup- 
posed, however, that every TCP had an infinite  supply of 
port addresses so that no old address would ever  be  reused, 
then  any  dynamically  created  port would be assigned the 
next  unused  address. I n  such an environment,  there 
could never  be any confusion by source and  destination 
TCP as to  the intended  recipient or implied source of each 
message, and all ports would bc  associates. 

Unfortunately,  ,TCP’s (or more  properly,  operating 
systems)  tend  not  to  have  an infinite  supply of internal 
port addresses.  Thcse internal addresscs are reassigned 
aft‘er the demise of each  port. Walden [ l Z ]  suggests that 
a set of unique  uniform  external port addresses could 
be supplied by a ccntral  rcgistry. A newly created  port 
could apply  to  the  central  registry for an address which 
the central  registry would guarantee  to  be unused by  any 
HOST system  in  thc network. Each TCY could maintain 
tablcs  matching  external names with  internal ones, and 
use the external ones for communication  with  other 

HOST is connected to  a different IMP. 
5 Unless the IMP is physically  moved to  another  site, or the 

processes. This idea  violates t.he premise that interprocess 
communica,tion  should not require  centralized  control. 
One would have  to extend the central  registry service to 
include  all HOST’S in all the interconnected  networks to 
apply  this idea to our  situation,  and we therefore do not 
att’empt  to  adopt  it. 

Let us consider the  situation from the  standpoint of the 
TCP.  In order to send or receive data for a given port, 
the  TCP needs to  set  up a TCB  and RCB and initialize 
the window size and left window edge for both. On thc 
receive side, this  task  might even be delayed until the 
first  packet  destined for a given port arrives. By con- 
vention, the first  packet  should  be  marked so that  tht 
receiver will synchronize to  the received sequence  number 

On the send side, the first  request to  transmit coulc 
cause a TCB  to be set  up  with some initial sequenct 
number  (say, zero) and  an assumed window size. Thc 
receiving ‘I’CP can  reject the packet if it wishes anc 
notify the sending TCP of the correct window size via thc 
acknowledgment  mechanism, but only if either 

1) we insist that  the first  packet  be a complete  segment 
2) an acknowledgment  can be  sent for the first packel 

(even if not a segment, as long as the acknowledg 
nlent specifies the next  sequence number  such t h a  
the source also understands  that no bytes  have beer 
accepted). 

It is apparent, therefore, that  the synchronizing of windov 
size and left window edge can  be accomplished withou 
what would ordinarily’be called a connection setup. 

The first  packet referencing a newly created RCE 
sent from  ‘one  associate to  another  can  be  marked  with : 
bit which requests that  the receiver synchronize his lef 
window edge with the sequence  number of the arrivint 
packet  (see SYN bit  in Fig. S) . The  TCP can  examine thc 
source and  destination  port addresses in  the  packet  an( 
in  the  RCB  to decide whether to accept or ignore thc 
request. 

Provision  should  be made for a destination process tc 
specify that  it  is willing to LISTEN to a specific port o 
“any”  port.  This  last idea  permits processes such as thl 
logger process to accept data arriving  from unspecifiec 
sources. This is purely a HOST hat ter ,  however. 

The  initial  packet  may  contain  data which  can be store( 
or discarded by  the destination,  depending  on the avail 
ability of destination  buffer  space at   the time. In  the  othe 
direction,  acknowledgment is returned for  receipt of datr 
which also specifies the receiver’s window size. 

If the receiving TCP should want  to  reject  the  syn 
chronization  request, it merely transmits  an acknowledg 
ment  carrying a release (REL)  bit (see Fig. 8 )  indicatini 
that  the destination  port  address is unknown or inacces 
sible. The sending HOST waits for the acknowledgmen 
(after accepting or rejecting the synchronization  request 
before sending the  nest message or segment.  This rejectiol 
is  quite different  from a negative data acknowledgment 
We do  not  have explicit negative  acknowledgments. If nc 
acknowledgment is returned, the sending HOST ma: 
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retransmit  without  introducing confusion  if, for example, 
the left  window  edge is not  changed  on the retransmission. 
I Because  messages  may  be  broken up  into  many  packets 
‘for transmission or during  transmission, it will be neces- 
sary t o  ignore the  REL flag except  in  the case that  the 
EM flag is also set’. This could  be  accomplished either 
by t’he TCP or by  the GATEWAY which  could  reset the flag 
Ion all but  the  packet  containing  the  set EM flag (see 
Fig. 9). 

At  the end of an association, the  TCP sends a packet 
with  ES,  EM,  and  REL flags set.  The  packet sequence 
number  scheme will alert  the receiving TCP if there  are 
.;till outstanding  packets  in  transit which have  not  yet 
arrived, so a prcmaturc dissociation cannot occur. 

To assure that  both  TCP’s  are  aware  that  the associ- 
ation  has  ended, wc insist that  the rcceiving TCP respond 
to  the  ItEL  by sending a REL acknowledgment of its 
own. 

Suppose now that a  process  sends a single message to  an 
associate including an  REL along with  the  data. Assuming 
an RCB has been  prepared for the receiving TCP  to 
accept the  data,  the TCI’ will accumulate  the incoming 
packets  until  the one marked  ES,  EM,  BEL  arrives, a t  
which  point a REL is returned  to  the  sender.  The associ- 
ation is thereby  terminated  and  the  appropriate  TCB 
and  RCB  are  destroyed. If the first packet of a  message 
contains a SYN request  bit  and  the  last  packet  contains 
~ES,  EM,  and  REL  bits,  then  data will  flow “one  message 
at  a time.”  This mode is very similar to  the scheme de- 
scribed by  Walden [12], since each  succeeding  message 
can  only  be  accepted at  the receiver after a new LISTEN 
(like  Walden’s RECEIVE) command is issued by  the 
receiving process to  its serving TCP.  Note  that only if the 
acknowledgment is received by  the  sender  can  the associ- 
ation be terminated properly. It has  been  pointed out6 
that  the receiver may  erroneously  accept  duplicate 
transmissions if the  sender does not receive the acknowl- 
edgment.  This  may  happen if the  sender  transmits  a 
duplicate  message  with  the SYN and  REL‘bits  set  and  the 
destination  has  already  destroyed  any  record of the 
previous transmission. One  way of preventing  this  problem 
is to  destroy  the record of the association at  the desti- 
nation  only  after some  known and  suitably chosen timeout. 
However, this implies that a new association with  the 
same  source and  destination  port identifiers could not be 
established until  this  timeout  had expired. This problem 
can  occur  even with sequences of messages whose SYN 
and REL  bits  are  separated  into  different  internetwork 
packets. We recognize that  this problem must  be solved, 
but  do  not go into  further  detail herc. 

Alternatively,  both processes can  send  one  message, 
causing the respective TCP’s to  allocate RCB/TCB 
pairs at  both ends  which  rendezvous with  the exchanged 
data  and  then  disappear. If the  overhead of creating  and 
dcstroying  RCB’s  and  TCB’s is small, such  a  protocol 
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might  be  adequate for most  low-bandwidth uses. This  idea 
might also form the basis for a relatively  secure  trans- 
mission system. If the  communicating processes agree to 
change their  external  port  addresses  in  some  way  known 
only to each  other  (i.c.,  pseudorandom),  then  each 
message  will.appear  to  the  outside  world  as if it  is part of a 
different association message stream.  Even if the  data is 
intercepted  by a third  party,  he will have no way of 
knowing that  the  data should in  fact be  considered part of 
a sequence of messages. 

We  have described the  way  in which processes develop 
associations with  each  other,  thereby  becoming associates 
for possible exchange of data.  These associations need not 
involve the  transmission of data prior to  their  formation 
and indeed  two associates need not be  able to  determine 
that  they  are associates until  they  attempt  to communi- 
cate. 

CONCLUSIONS 

We  have discussed  some fundamental issues related to 
the interconnection of packet  switching  networks. In  
particular, we have described a simple but  very powerful 
and’ flexible protocol  which  provides for variation  in 
individual  network  packet sizes, transmission failures, 
sequencing, flow control,  and  the  creation  and  destruction 
of process-to-process associations. We  have considered 
some of the  inlplementation issues that arise  and  found 
that  the proposed  protocol is implementable  by HOST’S 

of widely varying  capacity. 
The  next  important  step is to produce  a  detailed speci- 

fication of the protocol so that some initial  experinlents 
with  it  can be  performed. These  experiments  are  needed 
to determine  some of the  operational  parameters  (e.g., 
how often  and how far  out of order  do  packets  actually 
arrive;  what  sort of delay is .there between  segment 
acknowledgments;  what  should  be  retransmission  time- 
outs  be?) of the proposed protocol. 
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