
THE DESIGN PHILOSOPHY OF THE DARPA INTERNET
PROTOCOL~S

David D. Clark

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Ma. 02139

Abstract

The Internet protocol suite, TCP/IP, was first proposed
fifteen years ago. It was developed by the Defense
Advanced Research Projects Agency (DARPA), and has
been used widely in military and commercial systems.
While there have been papers and specifications that
describe how the protocols work, it is sometimes difficult
to deduce from these why the protocol is as it is. For
example, the Internet protocol is based on a
connectionless or datagram mode of service. The
motivation for this has been greatly misunderstood. This
paper attempts to capture some of the early reasoning
which shaped the Internet protocols.

I. Int reduction

For the last 15 years I, the Advanced Research Projects
Agency of the U.S. Department of Defense has been
developing a suite of protocols for packet switched
networking. These protocols, which include the Internet
Protocol (IP), and the Transmission Control Protocol
(TCP), are now U.S. Department of Defense standards
for intemetworking, and are in wide use in the
commercial networking environment. The ideas
developed in this effort have also influenced other
protocol suites, most importantly the connectionless
configuration of the IS0 protocols’, 3* 4.

This work was support4 in part by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. NOOOIJ-83-K-0125.

Permission 10 copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage.
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish. requires a fee and/
or specific permission.

o 1988 ACM 0-89791-279-9/88/008/0106 $1.50

While specific information on the DOD protocols is fairly
generally available’, 6. ‘, it is sometimes difficult to
determine the motivation and reasoning which led to the
design.

In fact, the design philosophy has evolved considerably
from the first proposal to the current standards. For
example, the idea of the datagram, or connectionless
service, does not receive particular emphasis in the first
paper, but has come to be the defining characteristic of
the protocol. Another example is the layering of the
architecture into the IP and TCP layers. This seems basic
to the design, but was also not a part of the original
proposal. These changes in the Internet design arose
through the repeated pattern of implementation and
testing that occurred before the standards were set.

The Internet architecture is still evolving. Sometimes a
new extension challenges one of the design principles,
but in any case an understanding of the history of the
design provides a necessary context for current design
extensions. The connectionless configuration of IS0
protocols has also been colored by the history of the
Internet suite, so an understanding ‘of the Internet design
philosophy may be helpful to those working with ISO.

This paper catalogs one view of the original objectives of
the Internet architecture, and discusses the relation
between these goals and the important features of the
pnXocols.

2. Fundamental Goal

The top level goal for the DARPA Internet Architecture
was to develop an effective technique for multiplexed
utilization of existing interconnected networks. Some
elaboration is appropriate to make clear the meaning of
that goal.

The components of the Internet were networks, which
were to be interconnected to provide some larger service.
The original goal was to connect together the ori

B
inal

ARPANET’ with the ARPA packet radio network’. ‘, in
order to give users on the packet radio network access to
the large service machines on the ARPANET. At the
time it was assumed that there would be other sorts of

106

networks to interconnect, although the local area network
had not yet emerged.

An alternative to interconnecting existing networks
would have been to design a unified system which
incorporated a variety of different transmission media, a
multi-media network. While this might have permitted a
higher degree of integration, and thus better performance,
it was felt that it was necessary to incorporate the then
existing network architectures if Internet was to be useful
in a practical sense. Further, networks represent
administrative boundaries of control, and it was an
ambition of this project to come to grips with the problem
of integrating a number of separately administrated
entities into a common utility.

The technique selected for multiplexing was packet
switching. Au alternative such as circuit switching could
have been considered, but the applications being
supported, such as remote login, were naturally served by
the packet switching paradigm, and the networks which
were to be integrated together in this project were packet
switching networks. So packet switching was accepted
as a fundamental component of the Internet architecture.

The fmal aspect of this fundamental goal was the
assumption of the particular technique for interconnecting
these networks. Since the technique of store and forward
packet switching, as demonstrated in the previous
DARPA project, the ARPANET, was well understood,
the top level assumption was that networks would be
interconnected by a layer of Internet packet switches,
which were called gateways.

From these assumptions comes the fundamental structure
of the Internet: a packet switched communications
facility in which a number of distinguishable networks
am connected together using packet communications
processors called gateways which implement a store arid
forward packet forwarding algorithm.

3. Second Level Goals

The top level goal stated in the previous section contains
the word “effective,” without offering any definition of
what an effective interconnection must achieve. The
following list summarizes a more detailed set of goals
which were established for the Internet architecture.

1. Internet commuuication must continue
despite loss of networks or gateways.

2. The Internet must support multiple types of
communications service.

3. The Internet architecture must
accommodate a variety of networks.

4. The Internet architecture must permit
distributed management of its resources.

5. The Internet architecture must be cost
effective.

6. The Internet architecture must permit host
attachment with a low level of effort.

7. The resources used in the iutemet
architecture must be accountable.

This set of goals might seem to be nothing more than a
checklist of all the desirable network features. It is
important to understand that these goals are in order of
importance, and an entirely different network architecture
would result if the order were changed. For example,
since this network was designed to operate in a military
context, which implied the possibility of a hostile
environment, survivability was put as a first goal, and
accountability as a last goal. During wartime. one is less
concerned with detailed accounting of resources used
than with mustering whatever resources are available and
rapidly deploying them it-i an operational manner. While
the architects of the Internet were mindful of
accountability, the problem received very little attention
during the early stages of the design. aud is only now
being considered. An architecture primarily for
commercial deployment would clearly place these goals
at the opposite end of the list.

Similarly, the goal that the architecture be cost effective
is clearly on the list, but below certain other goals, such
as distributed management, or support of a wide variety
of networks. Other protocol suites, including some of the
more popular commercial architectures, have been
optimized to a particular kind of network, for example a
long haul store and forward network built of medium
speed telephone lines, and deliver a very cost effective
solution in this context, in exchange for dealing
somewhat poorly with other kinds of nets, such as local
area nets.

The reader should consider carefully the above list of
goals, and recognize that this is not a “motherhood” list,
but a set of priorities which strongly colored the design
decisions within the Internet architecture. The following
sections discuss the relationship between this list and the
features of the Internet.

4. Sur\i\rability in the Face of Failure

The most important goal on the list is that the Internet
should continue to supply communications service, even
though networks and gateways are failing. In particular,
this goal was interpreted to mean that if two entities are
commuuicating over the Internet. and some failure causes
the Internet to be temporarily disrupted and reconfigured
to reconstitute the service, then the entities
communicating should be able to continue without
having to reestablish or reset the high level state of their
conversation. More concretely, at the service interface of
the transport layer, this architecture provides no facility
to communicate to the client of the transport service that

107

the synchronization between the sender and the receiver
may have been lost. It was an assumption in this
architecture that synchronization would never be lost
unless there was no physical path over which any sort of
communication could be achieved. In other words, at the
top of transport, there is only one failure, and it is total
partition. The architecture was to mask completely any
transient failure.

To achieve this goal, the state information which
describes the on-going conversation must be protected.
Specific examples of state information would be the
number of packets transmitted, the number of packets
acknowledged, or the number of outstanding flow control
permissions. If the lower layers of the architecture lose
this information, they will not be able to tell if data has
been lost, and the application layer will have to cope with
the loss of synchrony. This architecture insisted that this
disruption not occur, which meant that the state
information must be protected from loss.

In some network architectures, this state is stored in the
intermediate packet switching nodes of the network. In
this case, to protect the information from loss, it must
replicated. Because of the distributed nature of the
replication, algorithms to ensure robust replication are
themselves difficult to build, and few networks with
distributed state information provide any sort of
protection against failure. The alternative, which this
architecture chose, is to take this information and gather
it at the endpoint of the net, at the entity which is utilizing
the service of the network.
reliability

I call this approach to
“fate-sharing.” The fate-sharing model

suggests that it is acceptable to lose the state information
associated with an entity if, at the same time, the entity
itself is lost. Specifically, information about transport
level synchronization is stored in the host which is
attached to the net and using its communication service.

There are two important advantages to fate-sharing over
replication. First, fate-sharing protects against any
number of intermediate failures, whereas replication can
only protect against a certain number (less than the
number of replicated copies). Second, fate-sharing is
much easier to engineer than replication.

There are two consequences to the fate-sharing approach
to survivability. First. the intermediate packet switching
nodes, or gateways, must not have any essential state
information about on-going connections. Instead, they
are stateless packet switches, a class of network design
sometimes called a “datagram” network. Secondly, rather
more trust is placed in the host machine than in an
architecture where the network ensures the reliable
delivery of data. If the host resident algorithms that
ensure the sequencing and acknowledgment of data fail,
applications on that machine are prevented from
operation.

Despite the the fact that survivability is the first goal in
the list, it is still second to the top level goal of
interconnection of existing networks. A more survivable

technology might have resulted from a single multi-
media network design. For example, the Internet makes
very weak assumptions about the ability of a network to
report that it has failed. Internet is thus forced to detect
network failures using Internet level mechanisms, with
the potential for a slower and less specific error detection.

5. Types of Service

The second goal of the Internet architecture is that it
should support, at the transport service level, a variety of
types of service. Different types of service are
distinguished by differing requirements for such things as
speed, latency and reliability. The traditional type of
service is the bidirectional reliable delivery of data. This
service, which is sometimes called a “virtual circuit”
service, is appropriate for such applications as remote
login or tile transfer. It was the first service provided in
the Internet architecture, using the Transmission Control
Protocol (TCP)“. It was early recognized that even this
service had multiple variants, because remote login
required a service with low delay in delivery, but low
requirements for bandwidth, while file transfer was less
concerned with delay, but very concerned with high
throughput. TCP attempted to provide both these types
of service.

The initial concept of TCP was that it could be general
enough to support any needed type of service. However,
as the full range of needed services became clear, it
seemed too difficult to build support for all of them into
one protocol.

The first example of a service outside the range of TCP
was support for XNET , I2 the cross-Internet debugger.
TCP did not seem a suitable transport for XNET for
several reasons. First, a debugger protocol should not be
reliable. This conclusion may seem odd, but under
conditions of stress or failure (which may be exactly
when a debugger is needed) asking for reliable
communications may prevent any communications at all.
It is much better to build a service which can deal with
whatever gets through, rather than insisting that every
byte sent be delivered in order. Second, if TCP is general
enough to deal with a broad range of clients, it is
presumably somewhat complex. Again, it seemed wrong
to expect support for this complexity in a debugging
environment, which may lack even basic services
expected in an operating system (e.g. support for timers.)
So XNET was designed to run directly on top of the
datagram service provided by Internet.

Another service which did not fu TCP was real time
delivery of digitized speech, which was needed to support
the teleconferencing aspect of command and control
applications. III real time digital speech, the primary
requirement is not a reliable service, but a service which
minimizes and smooths the delay in the delivery of
packets. The application layer is digitizing the analog
speech, packetizing the resulting bits, and sending them
out across the network on a regular basis. They must

108

arrive at the receiver at a regular basis in order to be
converted back to the analog signal. If packets do not
arrive when expected, it is impossible to reassemble the
signal in real time. A surprising observation about the
control of variation in delay is that the most serious
source of delay in networks is the mechanism to provide
reliable delivery. A typical reliable transport protocol
responds to a missing packet by requesting a
retransmission and delaying the delivery of any
subsequent packets until the lost packet has been
retransmitted. It then delivers that packet and all
remaining ones in sequence. The delay while this occurs
can be many times the round trip delivery time of the net,
and may completely disrupt the speech reassembly
algorithm. In contrast, it is very easy to cope with an
occasional missing packet. The missing speech can
simply be replaced by a short period of silence, which in
most cases does not impair the intelligibility of the
speech to the listening human. If it does, high level error
correction can occur, and the listener can ask the speaker
to repeat the damaged phrase.

It was thus decided, fairly early in the development of the
Internet architecture, that more than one transport service
would be required, and the architecture must be prepared
to tolerate simultaneously transports which wish to
constrain reliability, delay, or bandwidth. at a minimum.

This goal caused TCP and IP, which originally had been
a single protocol in the architecture, to be separated into
two layers. TCP provided one particular type of service,
the reliable sequenced data stream, while IP attempted to
provide a basic building block out of which a variety of
types of service could be built. This building block was
the datagram, which had also been adopted to support
survivability. Since the reliability associated with the
delivery of a datagram was not guaranteed, but “best
effort,” it was possible to build out of the datagram a
service that was reliable (by acknowledging and
retransmitting at a higher level), or a service which traded
reliability for the primitive delay characteristics of the
underlying network substrate. The User Datagram
Protocol (UDP)13 was created to provide a application-
level interface to the basic datagram service of Internet.

The architecture did not wish to assume that the
underlying networks themselves support multiple types of
services, because this would violate the goal of using
existing networks. Instead, the hope was that multiple
types of service could be constructed out of the basic
datagram building block using algorithms within the host
and the gateway. For example, (although this is not done
in most current implementations) it is possible to take
datapams which are associated with a controlled delay
but unreliable service and place them at the head of the
transmission queues unless their lifetime has expired, in
which case they would be discarded; while packets
associated with reliable streams would be placed at the
back of the queues, but never discarded, no matter how
long they had been in the net.

It proved more difficult than first hoped to provide
multiple types of service without explicit support from
the underlying networks. The most serious problem was
that networks designed with one particular type of service
in mind were not flexible enough to support other
services. Most commonly, a network will have been
designed under the assumption that it should deliver
reliable service, and will inject delays as a part of
producing reliable service, whether or not this reliability
is desired. The interface behavior defined by X.25, for
example, implies reliable delivery, and there is no way to
turn this feature off. Therefore, although Internet
operates successfully over X.25 networks it cannot
deliver the desired variability of type service in that
context. Other networks which have an intrinsic
datagram service are much more flexible in the type of
service they will permit. but these networks are much less
common, especially in the long-haul context.

6. Varieties of Networks

It was very important for the success of the Internet
architecture that it be able to incorporate and utilize a
wide variety of network technologies, including military
and commercial facilities. The Internet architecture has
been very successful in meeting this goal: it is operated
over a wide variety of networks, including long haul nets
(the ARPANET itself and various X.25 networks), local
area nets (Ethernet, ringnet, etc.), broadcast satellite nets
(the DARPA Atlantic Satellite Network’“, I5 operating at
64 kilobits per second and the DARPA Experimental
Wideband Satellite Net,16 operating within the United
States at 3 megabits per second), packet radio networks
(the DARPA packet radio network, as well as an
experimental British packet radio net and a network
developed by amateur radio operators), a variety of serial
links, ranging from 1200 bit per second asynchronous
connections to TI links, and a variety of other ad hoc
facilities, including intercomputer busses and the
transport service provided by the higher layers of other
network suites, such as IBM’s HASP.

The Internet architecture achieves this flexibility by
making a minimum set of assumptions about the function
which the net will provide. The basic assumption is that
network can transport a packet or datagram. The packet
must be of reasonable size, perhaps 100 bytes minimum,
and should be delivered with reasonable but not perfect
reliability. The network must have some suitable form of
addressing if it is more than a point to point link.

There are a number of services which are explicitly not
assumed from the network. These include reliable or
sequenced delivery, network level broadcast or multicast,
priority ranking of transmitted packet,
multiple types of service, and ’ mtemal knyJ&te ‘z;
failures, speeds, or delays. If these services had been
required, then in order to accommodate a network within
the Internet, it would be necessary either that the network
support these services directly, or that the network
interface software provide enhancements to simulate

109

these services at the endpoint of the network. It was felt
that this was an undesirable approach, because these
services would have to be re-engineered and
reimplemented for every single network and every single
host interface to every network. By engineering these
services at the transport, for example reliable delivery via
TCP, the engineering must be done only once, and the
implementation must be done only once for each host.
After that, the implementation of interface software for a
new network is usually very simple.

7. Other Goals

The three goals discussed so far were those which had the
most profound impact on the design on the architecture.
The remaining goals, because they were lower in
importance, were perhaps less effectively met, or not so
completely engineered. The goal of permitting
distributed management of the Internet has certainly been
met in certain respects. For example, not all of the
gateways in the Internet are implemented and managed
by the same agency. There are several different
management centers within the deployed Internet, each
operating a subset of the gateways, and there is a two-
tiered routing algorithm which permits gateways from
dilferent administrations to exchange routing tables, even
though they do not completely trust each other, and a
variety of private routing algorithms used among the
gateways in a single administration. Similarly, the
various organizations which manage the gateways are not
necessarily the same organizations that manage the
networks to which the gateways are attached.

On the other hand, some of the most significant problems
with the Internet today relate to lack of sufficient tools for
distributed management, especially in the area of routing.
In the large intemet being currently operated, routing
decisions need to be constrained by policies for resource
usage. Today this can be done only in a very limited
way, which requires manual setting of tables. This is
error-prone and at the same time not sufficiently
powerful. The most important change in the Internet
architecture over the next few years will probably be the
development of a new generation of tools for
management of resources in the context of multiple
administrations.

It is clear that in certain circumstances, the Internet
architecture does not produce as cost effective a
utilization of expensive communication resources as a
more tailored architecture would. The headers of Internet
packets am fairly long (a typical header is 40 bytes), and
if short packets are sent, this overhead is apparent. The
worse case, of course, is the single character remote login
packets, which carry 40 bytes of header and one byte of
data. Actually, it is very difficult for any protocol suite to
claim that these sorts of interchanges are carried out with
reasonable efficiency. At the other extreme, large
packets for file transfer, with perhaps 1,000 bytes of data,
have an overhead for the header of only four percent.

Another possible source of inefficiency is retransmission
of lost packets. Since Internet does not insist that lost
packets be recovered at the network level, it may be
necessary to retransmit a lost packet from one end of the
Internet to the other. This means that the retransmitted
packet may cross several intervening nets a second time,
whereas recovery at the network level would not generate
this repeat traffic. This is an example of the tradeoff
resulting from the decision, discussed above, of providing
services from the end-points. The network interface code
is much simpler, but the overall efficiency is potentially
less. However, if the retransmission rate is low enough
(for example, 1%) then the incremental cost is tolerable.
As a rough rule of thumb for networks incorporated into
the architecture, a loss of one packet in a hundred is quite
reasonable, but a loss of one packet in ten suggests that
reliability enhancements be added to the network if that
type of service is required.

The cost of attaching a host to the Internet is perhaps
somewhat higher than in other architectures, because all
of the mechanisms to provide the desired types of service,
such as acknowledgments and retransmission strategies,
must be implemented in the host rather than in the
network. Initially, to programmers who were not familiar
with protocol implementation, the effort of doing this
seemed somewhat daunting. Implementors tried such
things as moving the transport protocols to a front end
processor, with the idea that the protocols would be
implemented only once, rather than again for every type
of host. However, this required the invention of a host to
front end protocol which some thought almost as
complicated to implement as the original transport
protocol. As experience with protocols increases, the
anxieties associated with implementing a protocol suite
within the host seem to be decreasing, and
implementations are now available for a wide variety of
machines, including personal computers and other
machines with very limited computing resources.

A related problem arising from the use of host-resident
mechanisms is that poor implementation of the
mechanism may hurt the network as well as the host. This
problem was tolerated, because the initial experiments
involved a limited number of host implementations which
could be controlled. However, as the use of Internet has
grown, this problem has occasionally surfaced in a
serious way. In this respect, the goal of robustness, which
led to the method of fate-sharing, which led to host-
resident algorithms, contributes to a loss of robusmess if
the host misbehaves.

The last goal was accountability. In fact, accounting was
discussed in the first paper by Cerf and Kahn as an
important function of the protocols and gateways.
However, at the present time, the Internet architecture
contains few tools for accounting for packet flows. This
problem is only now being studied, as the scope of the
architecture is being expanded to include non-military
consumers who are seriously concerned with
understanding and monitoring the usage of the resources
within the intemet.

110

8. Architecture and Implementation

The previous discussion clearly suggests that one of the
goals of the Internet architecture was to provide wide
flexibility in the service offered. Different transport
protocols could be used to provide different types of
service, and different networks could be incorporated.
Put another way, the architecture tried very hard not to
constrain the range of service which the Internet could be
engineered to provide. This, in turn, means that to
understand the service which can be offered by a
particular implementation of an Internet, one must look
not to the architecture, but to the actual engineering of the
software within the particular hosts and gateways, and to
the particular networks which have been incorporated. I
will use the term “realization” to describe a particular set
of networks, gateways and hosts which have been
connected together in the context of the Internet
architecture. Realizations can differ by orders of
magnitude in the service which they offer. Realizations
have been built out of 1900 bit per second phone lines,
and out of networks only with speeds greater than 1
megabit per second. Clearly, the throughput expectations
which one can have of these realizations differ by orders
of magnitude. Similarly, some Internet realizations have
delays measured in tens of milliseconds, where others
have delays measured in seconds. Certain applications
such as real time speech work fundamentally differently
across these two realizations. Some Intemets have been
engineered so that there is great redundancy in the
gateways and paths. These Internets are survivable,
because resources exist which can be reconfigured after
failure. Other Internet realizations, to reduce cost, have
single points of connectivity through the realization, so
that a failure may partition the Internet into two halves.

The Internet architecture tolerates this variety of
realization by design. However, it leaves the designer of
a particular realization with a great deal of engineering to
do. One of the major struggles of this architectural
development was to understand how to give guidance to
the designer of a realization, guidance which would relate
the engineering of the realization to the types of service
which would result. For example, the designer must
answer the following sort of question. What sort of
bandwidths must he in the underlying networks, if the
overall service is to deliver a throughput of a certain rate?
Given a certain model of possible failures within this
realization, what sorts of redundancy ought to be
engineered into the realization?

Most of the known network design aids did not seem
helpful in answering these sorts of questions. Protocol
verifiers, for example, assist in confirming that protocols
meet specifications. However, these tools almost never
deal with performance issues, which are essential to the
idea of the type of service. Instead, they deal with the
much more restricted idea of logical correctness of the
protocol with respect to specification. While tools to
verify logical correctness are useful, both at the
specification and implementation stage. they do not help
with the severe problems that often arise related to

performance. A typical implementation experience is
that even after logical correctness has been demonstrated,
design faults are discovered that may cause a
performance degradation of an order of magnitude.
Exploration of this problem has led to the conclusion that
the difficulty usually arises, not in the protocol itself, but
in the operating system on which the protocol runs. This
being the case, it is difficult to address the problem
within the context of the architectural specification.
However, we still strongly feel the need to give the
implementor guidance. We continue to struggle with this
problem today.

The other class of design aid is the simulator, which takes
a particular realization and explores the service which it
can deliver under a variety of loadings. No one has yet
attempted to construct a simulator which take into
account the wide variability of the gateway
implementation, the host implementation, and the
network performance which one sees within possible
Internet realizations. It is thus the case that the analysis
of most Internet realizations is done on the back of an
envelope. It is a comment on the goal structure of the
Internet architecture that a back of the envelope analysis,
if done by a sufficiently knowledgeable person, is usually
sufficient. The designer of a particular Internet
realization is usually less concerned with obtaining the
last five percent possible in line utilization than knowing
whether the desired type of service can be achieved at all
given the resources at hand at the moment.

The relationship between architecture and performance is
an extremely challenging one. The designers of the
Internet architecture felt very strongly that it was a
serious mistake to attend only to logical correctness and
ignore the issue of performance. However, they
experienced great difficulty in formalizing any aspect of
performance constraint within the architecture. These
difficulties arose both because the goal of the architecture
was not to constrain performance, but to permit
variability, and secondly (and perhaps more
fundamentally), because there seemed to be no useful
formal tools for describing performance.

This problem was particularly aggravating because the
goal of the Internet project was to produce specification
documents which were to become military standards. It
is a well known problem with government contracting
that one cannot expect a contractor to meet any criteria
which is not a part of the procurement standard. If the
Internet is concerned about performance, therefore, it was
mandatory that performance requirements be put into the
procurement specification. It was trivial to invent
specifications which constrained the performance, for
example to specify that the implementation must be
capable of passing 1.000 packets a second. However, this
sort of constraint could not be part of the architecture,
and it was therefore up to the individual performing the
procurement to recognize that these performance
constraints must be added to the specification, and to
specify them properly to achieve a realization which
provides the required types of service. We do not have a

111

good idea how to offer guidance in the architecture for complete review of the history of TCP itself would
the person performing this task. require another paper of this length.

9. Datagrams

The fundamental architectural feature of the Internet is
the use of datagrams as the entity which is transported
across the underlying networks. As this paper has
suggested, there are several reasons why datagrams are
important within the architecture. First, they eliminate
the need for connection state within the intermediate
switching nodes, which means that the Internet can be
reconstituted after a failure without concern about state.
Secondly, the datagram provides a basic building block
out of which a variety of types of service can be
implemented. In contrast to the virtual circuit, which
usually implies a fixed type of service, the datagram
provides a more elemental service which the endpoints
can combine as appropriate to build the type of service
needed. Third, the datagram represents the minimum
network service assumption, which has permitted a wide
variety of networks to be incorporated into various
Internet realizations. The decision to use the datagram
was an extremely successful one, which allowed the
Internet to meet its most important goals very
successfully.

There is a mistaken assumption often associated with
datagrams, which is that the motivation for datagrams is
the support of a higher level service which is essentially
equivalent to the datagram. In other words, it has
sometimes been suggested that the datagram is provided
because the transport service which the application
requires is a datagram service. In fact, this is seldom the
case. While some applications in the Internet, such as
simple queries of date servers or name servers, use an
access method based on an unreliable datagram, most
services within the Internet would like a more
sophisticated transport model than simple datagram.
Some services would like the reliability enhanced, some
would like the delay smoothed and buffered, but almost
all have some expectation more complex than a
datagram. It is important to understand that the role of
the datagram in this respect is as a building block, and not
as a service in itself.

IO. TCP

There were several interesting and controversial design
decisions in the development of TCP, and TCP itself
went through several major versions before it became a
reasonably stable standard. Some of these design
decisions, such as window management and the nature of
the port address structure, are discussed in a series of
implementation notes ublished as part of the TCP
protocol handbook. “7 ’ P But again the motivation for the
decision is sometimes lacking. ln this section, I attempt to
capture some of the early reasoning that went into parts
of TCP. This section is of necessity incomplete; a

The originaI ARPANET host-to host protocol provided
flow control based on both bytes and packets. This
seemed overly complex, and the designers of TCP felt
that only one form of regulation would he sufficient. The
choice was to regulate the delivery of bytes, rather than
packets. Flow control and acknowledgment in TCP is
thus based on byte number rather than packet number.
Indeed, in TCP there is no significance to the
packetization of the data.

This decision was motivated by several considerations,
some of which became irrelevant and others of which
were more important that anticipated. One reason to
acknowledge bytes was to permit the insertion of control
information into the sequence space of the bytes, so that
control as well as data could be acknowledged. That use
of the sequence space was dropped, in favor of ad hoc
techniques for dealing with each control message. While
the original idea has appealing generality, it caused
complexity in practice.

A second reason for the byte stream was to permit the
TCP packet to be broken up into smaller packets if
necessary in order to fit through a net with a small packet
size. But this function was moved to the IP layer when IP
was split from TCP, and IP was forced to invent a
different method of fragmentation.

A third reason for acknowledging bytes rather than
packets was to permit a number of small packets to be
gathered together into one larger packet in the sending
host if retransmission of the data was necessary. It was
not clear if this advantage would be important; it turned
out to be critical. Systems such as UNIX which have a
internal communication model based on single character
interactions often send many packets with one byte of
data in them. (One might argue from a network
perspective that this behavior is silly, but it was a reality,
and a necessity for interactive remote login.) It was often
observed that such a host could produce a flood of
packets with one byte of data, which would arrive much
faster than a slow host could process them. The result is
lost packets and retransmission.

If the retransmission was of the original packets, the same
problem would repeat on every retransmission, with a
performance impact so intolerable as to prevent
operation. But since the bytes were gathered into one
packet for retransmission, the retransmission occurred in
a much more effective way which permitted practical
operation.

On the other hand, the acknowledgment of bytes could be
seen as creating this problem in the first place. If the basis
of flow control had been packets rather than bytes, then
this flood might never have occurred. Control at the
packet level has the effect, however, of providing a
severe limit on the throughput if small packets are sent. If
the receiving host specifies a number of packets to

112

receive, without any knowledge of the number of bytes in
each, the actual amount of data received could vary by a
factor of 1000, depending on whether the sending host
puts one or one thousand bytes in each packet.

In retrospect, the correct design decision may have been
that if TCP is to provide effective support of a variety of
services, both packets and bytes must be regulated, as
was done in the original ARPANET protocols.

Another design decision related to the byte stream was
the End-Of-Letter flag, or EOL. This has now vanished
from the protocol, replaced by the push flag, or PSH. The
original idea of EOL was to break the byte stream into
records. It was implemented by putting data from
separate records into separate packets, which was not
compatible with the idea of combining packets on
retransmission. So the semantics of EOL was changed to
a weaker form, meaning only that the data up to this point
in the stream was one or more complete application-level
elements, which should occasion a flush of any internal
buffering in TCP or the network. By saying “one or
more” rather than “exactly one”, it became possible to
combine several together and preserve the goal of
compacting data in reassembly. But the weaker semantics
meant that various applications had to invent an ad hoc
mechanism for delimiting records on top of the data
stream.

In this evolution of EOL semantics, there was a little
known intermediate form, which generated great debate.
Depending on the buffering strategy of the host, the byte
stream model of TCP can cause great problems in one
improbable case. Consider a host in which the incoming
data is put in a sequence of fixed size buffers. A buffer is
returned to the user either when it is full, or an EOL is
received. Now consider the case of the arrival of an out-
of-order packet which is so far out of order to he beyond
the current buffer. Now further consider that after
receiving this out-of-order packet, a packet with an EOL
causes the current buffer to be returned to the user only
partially full. This particular sequence of actions has the
effect of causing the out of order data in the next buffer to
be in the wrong place, because of the empty bytes in the
buffer returned to the user. Coping with this generated
book-keeping problems in the host which seemed
unnecessary.

To cope with this it was proposed that the EOL should
“use up” all the sequence space up to the next value
which was zero mod the buffer size. In other words, it
was proposed that EOL should be a tool for mapping the
byte stream to the buffer management of the host. This
idea was not well received at the time, as it seemed much
too ad hoc, and only one host seemed to have this
problem.’ In retrospect, it may have been the correct idea

‘This use of EOL was properly called “Rubber EOL” but its
detractors quickly called it “rubber baby buffer bumpers” in an attempt
to ridicule tbc idea. &edit must go to the creator of the ide+ Bill
Plummcr, for sticking to his guns in the face of detractors saying the
above to him ten times fast.

to incorporate into TCP some means of relating the
sequence space and the buffer management algorithm of
the host. At the time, the designers simply lacked the
insight to see how that might be done in a sufficiently
general manner.

Il. Conclusion

In the context of its priorities, the Internet architecture
has been very successful. The protocols are widely used
in the commercial and military environment, and have
spawned a number of similar architectures. At the same
time, its success has made clear that in certain situations,
the priorities of the designers do not match the needs of
the actual users. More attention to such things as
accounting, resource management and operation of
regions with separate administrations are needed.

While the datagram has served veIy well in solving the
most important goals of the Internet, it has not served so
well when we attempt to address some of the goals which
were further down the priority list. For example, the
goals of resource management and accountability have
proved difficult to achieve in the context of datagrams.
As the previous section discussed, most datagrams are a
part of some sequence of packets from source to
destination, rather than isolated units at the application
level. However, the gateway cannot directly see the
existence of this sequence, because it is forced to deal
with each packet in isolation. Therefore, resource
management decisions or accounting must be done on
each packet separately. Imposing the datagram model on
the intemet layer has deprived that layer of an important
source of information which it could use in achieving
these goals.

This suggests that there may be a better building block
than the datagram for the next generation of architecture.
The general characteristic of this building block is that it
would identify a sequence of packets traveling from the
source to the destination, without assuming any particular
type of service with that service. I have used the word
“flow” to characterize this building block. It would be
necessary for the gateways to have flow state in order to
remember the nature of the flows which are passing
through them, but the state information would not be
critical in maintaining the desired type of service
associated with the flow. Instead, that type of service
would be enforced by the end points, which would
periodically send messages to ensure that the proper type
of service was being associated with the flow. In this
way, the state information associated with the flow could
be lost in a crash without permanent disruption of the
service features being used. I call this concept “soft
state,” and it may very well permit us to achieve our
primary goals of survivability and flexibility, while at the
same time doing a better job of dealing with the issue of
resource management and accountability. Exploration of
alternative building blocks constitute one of the current
directions for research within the DARPA Internet
PrOgrtUtl.

113

12. Acknowledgments -- A Historical
Perspective

It would be impossible to acknowledge all the
contributors to the Internet project; there have literally
been hundreds over the 15 years of development:
designers, implementors, writers and critics. Indeed, an
important topic, which probably deserves a paper in
itself, is the process by which this project was managed.
The participants came from universities, research
laboratories and corporations, and they united (to some
extent) to achieve this common goal.

The original vision for TCP came from Robert Kahn and
Vinton Cerf, who saw very clearly, back in 1973, how a
protocol with suitable features might be the glue that
would pull together the various emerging network
technologies. From their position at DARPA, they guided
the project in its early days to the point where TCP and IP
became standards for the DOD.

The author of this paper joined the project in the mid-70s,
and took over architectural responsibility for TCP/IP in
198 1. He would like to thank all those who have worked
with him, and particularly those who took the time to
reconstruct some of the lost history in this paper.

References

1.

2.

3.

4.

5.

6.

7.

V. Cerf, and R. Kahn, “A Protocol for Packet
Network intercommunication”, IEEE
Transactions Communications, Vol.
Corn-22, No. 5, May1974 pp. 637-648.

ISO, “Transport Protocol Specification”, Tech.
report IS-8073, International Organization for
Standardization, September 1984.

ISO, “Protocol for Providing the Connectionless-
Mode Network Service”, Tech. report DIS8473,
International Organization for Standardization,
1986.

R. Callon, “Internetwork Protocol”, Proceedings
ofthe IEEE, Vol. 71, No. 12, December 1983, pp.
1388-1392.

Jonathan B. Pastel, “Intemetwork Protocol
Approaches”, IEEE Transactions
Communications, Vol. Corn-28, N”d:
4, April 1980, pp. 605-611.

Jonathan B. Postel, Carl A. Sunshine, Danny
Cohen, “The ARPA Internet Protocol”,
Computer Networks 5, Vol. 5, No. 4, July 1981,
pp. 261-27 1.

Alan Shehzer, Robert Hinden, and Mike Brescia,
“Connecting Different Types of Networks with
Gateways”, Data Communications, August 1982.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. McQuillan and D. Walden, “The ARPA
Network Design Decisions ’ ’ , Computer
Networks, Vol. 1, No. 5, August 1977, pp.
243-289.

R.E. Kahn, S.A. Gronemeyer, J. Burdifiel, E.V.
Hoversten, “Advances in Packet Radio
Technology”, Proceedings of the IEEE, Vol.
66, No. 11, November 1978, pp. 1408-1496.

B.M. Leiner, D.L. Nelson, F.A. Tobagi, “Issues
in Packet Radio Design”, Proceedings of the
IEEE, Vol. 75, No. 1, January 1987, pp. 6-20.

“Transmission Control Protocol RFC-793”,
&DN Protocol Handbook, Vol.
2, September 1981, pp, 2.179-2.198.

Jack Haverty, “XNET Formats for Internet
Protocol Version 4 IEN 158”, DDN Protocol
Handbook, Vol. 2, October 1980, pp. 2-345 to
2-348.

Jonathan Postel, “User Datagram Protocol NIC-
RFC-768”, DDN Protocol Handbook, Vol.
2. August 1980, pp. 2.175-2.177.

I. Jacobs. R. Binder, and E. Hoversten, “General
Purpose Packet Satellite Networks”, Proceedings
of the IEEE, Vol. 66, No. 11, November 1978, pp‘
1448-1467.

C. Topolcic and J. Kaiser, “The SATNET
Monitoring System”, Proceedings of the IEEE-
MILCOM Boston, MA, October 1985, PP.
26.1.1-26.1.9.

W.Edmond, S.Blumenthal, A.Echenique,
S.Storch, T.Calderwood, and T.Rees, “The
Butterfly Satellite IMP for the Wideband Packet
Satellite Network’ ’ , Proceedings of the ACM
SIGCOMM ‘86, ACM, Stowe, Vt., August 1986,
pp. 194-203.

David D. Clark, “Window and Acknowledgment
Strategy in TCP NlC-RFC-813”, DDN Protocol
Handbook, Vol. 3, July 1982, pp. 3-5 to 3-26.

David D. Clark, “Name, Addresses, Ports, and
Routes NIC-RFC-814”, DDN Protocol
Handbook, Vol. 3, July 1982, pp. 3-27 to 3-40.

114

