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Abstract 

The Internet protocol suite, TCP/IP, was first proposed 
fifteen years ago. It was developed by the Defense 
Advanced Research Projects Agency (DARPA), and has 
been used widely in military and commercial systems. 
While there have been papers and specifications that 
describe how the protocols work, it is sometimes difficult 
to deduce from these why the protocol is as it is. For 
example, the Internet protocol is based on a 
connectionless or datagram mode of service. The 
motivation for this has been greatly misunderstood. This 
paper attempts to capture some of the early reasoning 
which shaped the Internet protocols. 

I. Int reduction 

For the last 15 years I, the Advanced Research Projects 
Agency of the U.S. Department of Defense has been 
developing a suite of protocols for packet switched 
networking. These protocols, which include the Internet 
Protocol (IP), and the Transmission Control Protocol 
(TCP), are now U.S. Department of Defense standards 
for intemetworking, and are in wide use in the 
commercial networking environment. The ideas 
developed in this effort have also influenced other 
protocol suites, most importantly the connectionless 
configuration of the IS0 protocols’, 3* 4. 
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While specific information on the DOD protocols is fairly 
generally available’, 6. ‘, it is sometimes difficult to 
determine the motivation and reasoning which led to the 
design. 

In fact, the design philosophy has evolved considerably 
from the first proposal to the current standards. For 
example, the idea of the datagram, or connectionless 
service, does not receive particular emphasis in the first 
paper, but has come to be the defining characteristic of 
the protocol. Another example is the layering of the 
architecture into the IP and TCP layers. This seems basic 
to the design, but was also not a part of the original 
proposal. These changes in the Internet design arose 
through the repeated pattern of implementation and 
testing that occurred before the standards were set. 

The Internet architecture is still evolving. Sometimes a 
new extension challenges one of the design principles, 
but in any case an understanding of the history of the 
design provides a necessary context for current design 
extensions. The connectionless configuration of IS0 
protocols has also been colored by the history of the 
Internet suite, so an understanding ‘of the Internet design 
philosophy may be helpful to those working with ISO. 

This paper catalogs one view of the original objectives of 
the Internet architecture, and discusses the relation 
between these goals and the important features of the 
pnXocols. 

2. Fundamental Goal 

The top level goal for the DARPA Internet Architecture 
was to develop an effective technique for multiplexed 
utilization of existing interconnected networks. Some 
elaboration is appropriate to make clear the meaning of 
that goal. 

The components of the Internet were networks, which 
were to be interconnected to provide some larger service. 
The original goal was to connect together the ori 
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ARPANET’ with the ARPA packet radio network’. ‘, in 
order to give users on the packet radio network access to 
the large service machines on the ARPANET. At the 
time it was assumed that there would be other sorts of 
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networks to interconnect, although the local area network 
had not yet emerged. 

An alternative to interconnecting existing networks 
would have been to design a unified system which 
incorporated a variety of different transmission media, a 
multi-media network. While this might have permitted a 
higher degree of integration, and thus better performance, 
it was felt that it was necessary to incorporate the then 
existing network architectures if Internet was to be useful 
in a practical sense. Further, networks represent 
administrative boundaries of control, and it was an 
ambition of this project to come to grips with the problem 
of integrating a number of separately administrated 
entities into a common utility. 

The technique selected for multiplexing was packet 
switching. Au alternative such as circuit switching could 
have been considered, but the applications being 
supported, such as remote login, were naturally served by 
the packet switching paradigm, and the networks which 
were to be integrated together in this project were packet 
switching networks. So packet switching was accepted 
as a fundamental component of the Internet architecture. 

The fmal aspect of this fundamental goal was the 
assumption of the particular technique for interconnecting 
these networks. Since the technique of store and forward 
packet switching, as demonstrated in the previous 
DARPA project, the ARPANET, was well understood, 
the top level assumption was that networks would be 
interconnected by a layer of Internet packet switches, 
which were called gateways. 

From these assumptions comes the fundamental structure 
of the Internet: a packet switched communications 
facility in which a number of distinguishable networks 
am connected together using packet communications 
processors called gateways which implement a store arid 
forward packet forwarding algorithm. 

3. Second Level Goals 

The top level goal stated in the previous section contains 
the word “effective,” without offering any definition of 
what an effective interconnection must achieve. The 
following list summarizes a more detailed set of goals 
which were established for the Internet architecture. 

1. Internet commuuication must continue 
despite loss of networks or gateways. 

2. The Internet must support multiple types of 
communications service. 

3. The Internet architecture must 
accommodate a variety of networks. 

4. The Internet architecture must permit 
distributed management of its resources. 

5. The Internet architecture must be cost 
effective. 

6. The Internet architecture must permit host 
attachment with a low level of effort. 

7. The resources used in the iutemet 
architecture must be accountable. 

This set of goals might seem to be nothing more than a 
checklist of all the desirable network features. It is 
important to understand that these goals are in order of 
importance, and an entirely different network architecture 
would result if the order were changed. For example, 
since this network was designed to operate in a military 
context, which implied the possibility of a hostile 
environment, survivability was put as a first goal, and 
accountability as a last goal. During wartime. one is less 
concerned with detailed accounting of resources used 
than with mustering whatever resources are available and 
rapidly deploying them it-i an operational manner. While 
the architects of the Internet were mindful of 
accountability, the problem received very little attention 
during the early stages of the design. aud is only now 
being considered. An architecture primarily for 
commercial deployment would clearly place these goals 
at the opposite end of the list. 

Similarly, the goal that the architecture be cost effective 
is clearly on the list, but below certain other goals, such 
as distributed management, or support of a wide variety 
of networks. Other protocol suites, including some of the 
more popular commercial architectures, have been 
optimized to a particular kind of network, for example a 
long haul store and forward network built of medium 
speed telephone lines, and deliver a very cost effective 
solution in this context, in exchange for dealing 
somewhat poorly with other kinds of nets, such as local 
area nets. 

The reader should consider carefully the above list of 
goals, and recognize that this is not a “motherhood” list, 
but a set of priorities which strongly colored the design 
decisions within the Internet architecture. The following 
sections discuss the relationship between this list and the 
features of the Internet. 

4. Sur\i\rability in the Face of Failure 

The most important goal on the list is that the Internet 
should continue to supply communications service, even 
though networks and gateways are failing. In particular, 
this goal was interpreted to mean that if two entities are 
commuuicating over the Internet. and some failure causes 
the Internet to be temporarily disrupted and reconfigured 
to reconstitute the service, then the entities 
communicating should be able to continue without 
having to reestablish or reset the high level state of their 
conversation. More concretely, at the service interface of 
the transport layer, this architecture provides no facility 
to communicate to the client of the transport service that 
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the synchronization between the sender and the receiver 
may have been lost. It was an assumption in this 
architecture that synchronization would never be lost 
unless there was no physical path over which any sort of 
communication could be achieved. In other words, at the 
top of transport, there is only one failure, and it is total 
partition. The architecture was to mask completely any 
transient failure. 

To achieve this goal, the state information which 
describes the on-going conversation must be protected. 
Specific examples of state information would be the 
number of packets transmitted, the number of packets 
acknowledged, or the number of outstanding flow control 
permissions. If the lower layers of the architecture lose 
this information, they will not be able to tell if data has 
been lost, and the application layer will have to cope with 
the loss of synchrony. This architecture insisted that this 
disruption not occur, which meant that the state 
information must be protected from loss. 

In some network architectures, this state is stored in the 
intermediate packet switching nodes of the network. In 
this case, to protect the information from loss, it must 
replicated. Because of the distributed nature of the 
replication, algorithms to ensure robust replication are 
themselves difficult to build, and few networks with 
distributed state information provide any sort of 
protection against failure. The alternative, which this 
architecture chose, is to take this information and gather 
it at the endpoint of the net, at the entity which is utilizing 
the service of the network. 
reliability 

I call this approach to 
“fate-sharing.” The fate-sharing model 

suggests that it is acceptable to lose the state information 
associated with an entity if, at the same time, the entity 
itself is lost. Specifically, information about transport 
level synchronization is stored in the host which is 
attached to the net and using its communication service. 

There are two important advantages to fate-sharing over 
replication. First, fate-sharing protects against any 
number of intermediate failures, whereas replication can 
only protect against a certain number (less than the 
number of replicated copies). Second, fate-sharing is 
much easier to engineer than replication. 

There are two consequences to the fate-sharing approach 
to survivability. First. the intermediate packet switching 
nodes, or gateways, must not have any essential state 
information about on-going connections. Instead, they 
are stateless packet switches, a class of network design 
sometimes called a “datagram” network. Secondly, rather 
more trust is placed in the host machine than in an 
architecture where the network ensures the reliable 
delivery of data. If the host resident algorithms that 
ensure the sequencing and acknowledgment of data fail, 
applications on that machine are prevented from 
operation. 

Despite the the fact that survivability is the first goal in 
the list, it is still second to the top level goal of 
interconnection of existing networks. A more survivable 

technology might have resulted from a single multi- 
media network design. For example, the Internet makes 
very weak assumptions about the ability of a network to 
report that it has failed. Internet is thus forced to detect 
network failures using Internet level mechanisms, with 
the potential for a slower and less specific error detection. 

5. Types of Service 

The second goal of the Internet architecture is that it 
should support, at the transport service level, a variety of 
types of service. Different types of service are 
distinguished by differing requirements for such things as 
speed, latency and reliability. The traditional type of 
service is the bidirectional reliable delivery of data. This 
service, which is sometimes called a “virtual circuit” 
service, is appropriate for such applications as remote 
login or tile transfer. It was the first service provided in 
the Internet architecture, using the Transmission Control 
Protocol (TCP)“. It was early recognized that even this 
service had multiple variants, because remote login 
required a service with low delay in delivery, but low 
requirements for bandwidth, while file transfer was less 
concerned with delay, but very concerned with high 
throughput. TCP attempted to provide both these types 
of service. 

The initial concept of TCP was that it could be general 
enough to support any needed type of service. However, 
as the full range of needed services became clear, it 
seemed too difficult to build support for all of them into 
one protocol. 

The first example of a service outside the range of TCP 
was support for XNET , I2 the cross-Internet debugger. 
TCP did not seem a suitable transport for XNET for 
several reasons. First, a debugger protocol should not be 
reliable. This conclusion may seem odd, but under 
conditions of stress or failure (which may be exactly 
when a debugger is needed) asking for reliable 
communications may prevent any communications at all. 
It is much better to build a service which can deal with 
whatever gets through, rather than insisting that every 
byte sent be delivered in order. Second, if TCP is general 
enough to deal with a broad range of clients, it is 
presumably somewhat complex. Again, it seemed wrong 
to expect support for this complexity in a debugging 
environment, which may lack even basic services 
expected in an operating system (e.g. support for timers.) 
So XNET was designed to run directly on top of the 
datagram service provided by Internet. 

Another service which did not fu TCP was real time 
delivery of digitized speech, which was needed to support 
the teleconferencing aspect of command and control 
applications. III real time digital speech, the primary 
requirement is not a reliable service, but a service which 
minimizes and smooths the delay in the delivery of 
packets. The application layer is digitizing the analog 
speech, packetizing the resulting bits, and sending them 
out across the network on a regular basis. They must 
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arrive at the receiver at a regular basis in order to be 
converted back to the analog signal. If packets do not 
arrive when expected, it is impossible to reassemble the 
signal in real time. A surprising observation about the 
control of variation in delay is that the most serious 
source of delay in networks is the mechanism to provide 
reliable delivery. A typical reliable transport protocol 
responds to a missing packet by requesting a 
retransmission and delaying the delivery of any 
subsequent packets until the lost packet has been 
retransmitted. It then delivers that packet and all 
remaining ones in sequence. The delay while this occurs 
can be many times the round trip delivery time of the net, 
and may completely disrupt the speech reassembly 
algorithm. In contrast, it is very easy to cope with an 
occasional missing packet. The missing speech can 
simply be replaced by a short period of silence, which in 
most cases does not impair the intelligibility of the 
speech to the listening human. If it does, high level error 
correction can occur, and the listener can ask the speaker 
to repeat the damaged phrase. 

It was thus decided, fairly early in the development of the 
Internet architecture, that more than one transport service 
would be required, and the architecture must be prepared 
to tolerate simultaneously transports which wish to 
constrain reliability, delay, or bandwidth. at a minimum. 

This goal caused TCP and IP, which originally had been 
a single protocol in the architecture, to be separated into 
two layers. TCP provided one particular type of service, 
the reliable sequenced data stream, while IP attempted to 
provide a basic building block out of which a variety of 
types of service could be built. This building block was 
the datagram, which had also been adopted to support 
survivability. Since the reliability associated with the 
delivery of a datagram was not guaranteed, but “best 
effort,” it was possible to build out of the datagram a 
service that was reliable (by acknowledging and 
retransmitting at a higher level), or a service which traded 
reliability for the primitive delay characteristics of the 
underlying network substrate. The User Datagram 
Protocol (UDP)13 was created to provide a application- 
level interface to the basic datagram service of Internet. 

The architecture did not wish to assume that the 
underlying networks themselves support multiple types of 
services, because this would violate the goal of using 
existing networks. Instead, the hope was that multiple 
types of service could be constructed out of the basic 
datagram building block using algorithms within the host 
and the gateway. For example, (although this is not done 
in most current implementations) it is possible to take 
datapams which are associated with a controlled delay 
but unreliable service and place them at the head of the 
transmission queues unless their lifetime has expired, in 
which case they would be discarded; while packets 
associated with reliable streams would be placed at the 
back of the queues, but never discarded, no matter how 
long they had been in the net. 

It proved more difficult than first hoped to provide 
multiple types of service without explicit support from 
the underlying networks. The most serious problem was 
that networks designed with one particular type of service 
in mind were not flexible enough to support other 
services. Most commonly, a network will have been 
designed under the assumption that it should deliver 
reliable service, and will inject delays as a part of 
producing reliable service, whether or not this reliability 
is desired. The interface behavior defined by X.25, for 
example, implies reliable delivery, and there is no way to 
turn this feature off. Therefore, although Internet 
operates successfully over X.25 networks it cannot 
deliver the desired variability of type service in that 
context. Other networks which have an intrinsic 
datagram service are much more flexible in the type of 
service they will permit. but these networks are much less 
common, especially in the long-haul context. 

6. Varieties of Networks 

It was very important for the success of the Internet 
architecture that it be able to incorporate and utilize a 
wide variety of network technologies, including military 
and commercial facilities. The Internet architecture has 
been very successful in meeting this goal: it is operated 
over a wide variety of networks, including long haul nets 
(the ARPANET itself and various X.25 networks), local 
area nets (Ethernet, ringnet, etc.), broadcast satellite nets 
(the DARPA Atlantic Satellite Network’“, I5 operating at 
64 kilobits per second and the DARPA Experimental 
Wideband Satellite Net,16 operating within the United 
States at 3 megabits per second), packet radio networks 
(the DARPA packet radio network, as well as an 
experimental British packet radio net and a network 
developed by amateur radio operators), a variety of serial 
links, ranging from 1200 bit per second asynchronous 
connections to TI links, and a variety of other ad hoc 
facilities, including intercomputer busses and the 
transport service provided by the higher layers of other 
network suites, such as IBM’s HASP. 

The Internet architecture achieves this flexibility by 
making a minimum set of assumptions about the function 
which the net will provide. The basic assumption is that 
network can transport a packet or datagram. The packet 
must be of reasonable size, perhaps 100 bytes minimum, 
and should be delivered with reasonable but not perfect 
reliability. The network must have some suitable form of 
addressing if it is more than a point to point link. 

There are a number of services which are explicitly not 
assumed from the network. These include reliable or 
sequenced delivery, network level broadcast or multicast, 
priority ranking of transmitted packet, 
multiple types of service, and ’ mtemal knyJ&te ‘z; 
failures, speeds, or delays. If these services had been 
required, then in order to accommodate a network within 
the Internet, it would be necessary either that the network 
support these services directly, or that the network 
interface software provide enhancements to simulate 
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these services at the endpoint of the network. It was felt 
that this was an undesirable approach, because these 
services would have to be re-engineered and 
reimplemented for every single network and every single 
host interface to every network. By engineering these 
services at the transport, for example reliable delivery via 
TCP, the engineering must be done only once, and the 
implementation must be done only once for each host. 
After that, the implementation of interface software for a 
new network is usually very simple. 

7. Other Goals 

The three goals discussed so far were those which had the 
most profound impact on the design on the architecture. 
The remaining goals, because they were lower in 
importance, were perhaps less effectively met, or not so 
completely engineered. The goal of permitting 
distributed management of the Internet has certainly been 
met in certain respects. For example, not all of the 
gateways in the Internet are implemented and managed 
by the same agency. There are several different 
management centers within the deployed Internet, each 
operating a subset of the gateways, and there is a two- 
tiered routing algorithm which permits gateways from 
dilferent administrations to exchange routing tables, even 
though they do not completely trust each other, and a 
variety of private routing algorithms used among the 
gateways in a single administration. Similarly, the 
various organizations which manage the gateways are not 
necessarily the same organizations that manage the 
networks to which the gateways are attached. 

On the other hand, some of the most significant problems 
with the Internet today relate to lack of sufficient tools for 
distributed management, especially in the area of routing. 
In the large intemet being currently operated, routing 
decisions need to be constrained by policies for resource 
usage. Today this can be done only in a very limited 
way, which requires manual setting of tables. This is 
error-prone and at the same time not sufficiently 
powerful. The most important change in the Internet 
architecture over the next few years will probably be the 
development of a new generation of tools for 
management of resources in the context of multiple 
administrations. 

It is clear that in certain circumstances, the Internet 
architecture does not produce as cost effective a 
utilization of expensive communication resources as a 
more tailored architecture would. The headers of Internet 
packets am fairly long (a typical header is 40 bytes), and 
if short packets are sent, this overhead is apparent. The 
worse case, of course, is the single character remote login 
packets, which carry 40 bytes of header and one byte of 
data. Actually, it is very difficult for any protocol suite to 
claim that these sorts of interchanges are carried out with 
reasonable efficiency. At the other extreme, large 
packets for file transfer, with perhaps 1,000 bytes of data, 
have an overhead for the header of only four percent. 

Another possible source of inefficiency is retransmission 
of lost packets. Since Internet does not insist that lost 
packets be recovered at the network level, it may be 
necessary to retransmit a lost packet from one end of the 
Internet to the other. This means that the retransmitted 
packet may cross several intervening nets a second time, 
whereas recovery at the network level would not generate 
this repeat traffic. This is an example of the tradeoff 
resulting from the decision, discussed above, of providing 
services from the end-points. The network interface code 
is much simpler, but the overall efficiency is potentially 
less. However, if the retransmission rate is low enough 
(for example, 1%) then the incremental cost is tolerable. 
As a rough rule of thumb for networks incorporated into 
the architecture, a loss of one packet in a hundred is quite 
reasonable, but a loss of one packet in ten suggests that 
reliability enhancements be added to the network if that 
type of service is required. 

The cost of attaching a host to the Internet is perhaps 
somewhat higher than in other architectures, because all 
of the mechanisms to provide the desired types of service, 
such as acknowledgments and retransmission strategies, 
must be implemented in the host rather than in the 
network. Initially, to programmers who were not familiar 
with protocol implementation, the effort of doing this 
seemed somewhat daunting. Implementors tried such 
things as moving the transport protocols to a front end 
processor, with the idea that the protocols would be 
implemented only once, rather than again for every type 
of host. However, this required the invention of a host to 
front end protocol which some thought almost as 
complicated to implement as the original transport 
protocol. As experience with protocols increases, the 
anxieties associated with implementing a protocol suite 
within the host seem to be decreasing, and 
implementations are now available for a wide variety of 
machines, including personal computers and other 
machines with very limited computing resources. 

A related problem arising from the use of host-resident 
mechanisms is that poor implementation of the 
mechanism may hurt the network as well as the host. This 
problem was tolerated, because the initial experiments 
involved a limited number of host implementations which 
could be controlled. However, as the use of Internet has 
grown, this problem has occasionally surfaced in a 
serious way. In this respect, the goal of robustness, which 
led to the method of fate-sharing, which led to host- 
resident algorithms, contributes to a loss of robusmess if 
the host misbehaves. 

The last goal was accountability. In fact, accounting was 
discussed in the first paper by Cerf and Kahn as an 
important function of the protocols and gateways. 
However, at the present time, the Internet architecture 
contains few tools for accounting for packet flows. This 
problem is only now being studied, as the scope of the 
architecture is being expanded to include non-military 
consumers who are seriously concerned with 
understanding and monitoring the usage of the resources 
within the intemet. 
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8. Architecture and Implementation 

The previous discussion clearly suggests that one of the 
goals of the Internet architecture was to provide wide 
flexibility in the service offered. Different transport 
protocols could be used to provide different types of 
service, and different networks could be incorporated. 
Put another way, the architecture tried very hard not to 
constrain the range of service which the Internet could be 
engineered to provide. This, in turn, means that to 
understand the service which can be offered by a 
particular implementation of an Internet, one must look 
not to the architecture, but to the actual engineering of the 
software within the particular hosts and gateways, and to 
the particular networks which have been incorporated. I 
will use the term “realization” to describe a particular set 
of networks, gateways and hosts which have been 
connected together in the context of the Internet 
architecture. Realizations can differ by orders of 
magnitude in the service which they offer. Realizations 
have been built out of 1900 bit per second phone lines, 
and out of networks only with speeds greater than 1 
megabit per second. Clearly, the throughput expectations 
which one can have of these realizations differ by orders 
of magnitude. Similarly, some Internet realizations have 
delays measured in tens of milliseconds, where others 
have delays measured in seconds. Certain applications 
such as real time speech work fundamentally differently 
across these two realizations. Some Intemets have been 
engineered so that there is great redundancy in the 
gateways and paths. These Internets are survivable, 
because resources exist which can be reconfigured after 
failure. Other Internet realizations, to reduce cost, have 
single points of connectivity through the realization, so 
that a failure may partition the Internet into two halves. 

The Internet architecture tolerates this variety of 
realization by design. However, it leaves the designer of 
a particular realization with a great deal of engineering to 
do. One of the major struggles of this architectural 
development was to understand how to give guidance to 
the designer of a realization, guidance which would relate 
the engineering of the realization to the types of service 
which would result. For example, the designer must 
answer the following sort of question. What sort of 
bandwidths must he in the underlying networks, if the 
overall service is to deliver a throughput of a certain rate? 
Given a certain model of possible failures within this 
realization, what sorts of redundancy ought to be 
engineered into the realization? 

Most of the known network design aids did not seem 
helpful in answering these sorts of questions. Protocol 
verifiers, for example, assist in confirming that protocols 
meet specifications. However, these tools almost never 
deal with performance issues, which are essential to the 
idea of the type of service. Instead, they deal with the 
much more restricted idea of logical correctness of the 
protocol with respect to specification. While tools to 
verify logical correctness are useful, both at the 
specification and implementation stage. they do not help 
with the severe problems that often arise related to 

performance. A typical implementation experience is 
that even after logical correctness has been demonstrated, 
design faults are discovered that may cause a 
performance degradation of an order of magnitude. 
Exploration of this problem has led to the conclusion that 
the difficulty usually arises, not in the protocol itself, but 
in the operating system on which the protocol runs. This 
being the case, it is difficult to address the problem 
within the context of the architectural specification. 
However, we still strongly feel the need to give the 
implementor guidance. We continue to struggle with this 
problem today. 

The other class of design aid is the simulator, which takes 
a particular realization and explores the service which it 
can deliver under a variety of loadings. No one has yet 
attempted to construct a simulator which take into 
account the wide variability of the gateway 
implementation, the host implementation, and the 
network performance which one sees within possible 
Internet realizations. It is thus the case that the analysis 
of most Internet realizations is done on the back of an 
envelope. It is a comment on the goal structure of the 
Internet architecture that a back of the envelope analysis, 
if done by a sufficiently knowledgeable person, is usually 
sufficient. The designer of a particular Internet 
realization is usually less concerned with obtaining the 
last five percent possible in line utilization than knowing 
whether the desired type of service can be achieved at all 
given the resources at hand at the moment. 

The relationship between architecture and performance is 
an extremely challenging one. The designers of the 
Internet architecture felt very strongly that it was a 
serious mistake to attend only to logical correctness and 
ignore the issue of performance. However, they 
experienced great difficulty in formalizing any aspect of 
performance constraint within the architecture. These 
difficulties arose both because the goal of the architecture 
was not to constrain performance, but to permit 
variability, and secondly (and perhaps more 
fundamentally), because there seemed to be no useful 
formal tools for describing performance. 

This problem was particularly aggravating because the 
goal of the Internet project was to produce specification 
documents which were to become military standards. It 
is a well known problem with government contracting 
that one cannot expect a contractor to meet any criteria 
which is not a part of the procurement standard. If the 
Internet is concerned about performance, therefore, it was 
mandatory that performance requirements be put into the 
procurement specification. It was trivial to invent 
specifications which constrained the performance, for 
example to specify that the implementation must be 
capable of passing 1.000 packets a second. However, this 
sort of constraint could not be part of the architecture, 
and it was therefore up to the individual performing the 
procurement to recognize that these performance 
constraints must be added to the specification, and to 
specify them properly to achieve a realization which 
provides the required types of service. We do not have a 

111 



good idea how to offer guidance in the architecture for complete review of the history of TCP itself would 
the person performing this task. require another paper of this length. 

9. Datagrams 

The fundamental architectural feature of the Internet is 
the use of datagrams as the entity which is transported 
across the underlying networks. As this paper has 
suggested, there are several reasons why datagrams are 
important within the architecture. First, they eliminate 
the need for connection state within the intermediate 
switching nodes, which means that the Internet can be 
reconstituted after a failure without concern about state. 
Secondly, the datagram provides a basic building block 
out of which a variety of types of service can be 
implemented. In contrast to the virtual circuit, which 
usually implies a fixed type of service, the datagram 
provides a more elemental service which the endpoints 
can combine as appropriate to build the type of service 
needed. Third, the datagram represents the minimum 
network service assumption, which has permitted a wide 
variety of networks to be incorporated into various 
Internet realizations. The decision to use the datagram 
was an extremely successful one, which allowed the 
Internet to meet its most important goals very 
successfully. 

There is a mistaken assumption often associated with 
datagrams, which is that the motivation for datagrams is 
the support of a higher level service which is essentially 
equivalent to the datagram. In other words, it has 
sometimes been suggested that the datagram is provided 
because the transport service which the application 
requires is a datagram service. In fact, this is seldom the 
case. While some applications in the Internet, such as 
simple queries of date servers or name servers, use an 
access method based on an unreliable datagram, most 
services within the Internet would like a more 
sophisticated transport model than simple datagram. 
Some services would like the reliability enhanced, some 
would like the delay smoothed and buffered, but almost 
all have some expectation more complex than a 
datagram. It is important to understand that the role of 
the datagram in this respect is as a building block, and not 
as a service in itself. 

IO. TCP 

There were several interesting and controversial design 
decisions in the development of TCP, and TCP itself 
went through several major versions before it became a 
reasonably stable standard. Some of these design 
decisions, such as window management and the nature of 
the port address structure, are discussed in a series of 
implementation notes ublished as part of the TCP 
protocol handbook. “7 ’ P But again the motivation for the 
decision is sometimes lacking. ln this section, I attempt to 
capture some of the early reasoning that went into parts 
of TCP. This section is of necessity incomplete; a 

The originaI ARPANET host-to host protocol provided 
flow control based on both bytes and packets. This 
seemed overly complex, and the designers of TCP felt 
that only one form of regulation would he sufficient. The 
choice was to regulate the delivery of bytes, rather than 
packets. Flow control and acknowledgment in TCP is 
thus based on byte number rather than packet number. 
Indeed, in TCP there is no significance to the 
packetization of the data. 

This decision was motivated by several considerations, 
some of which became irrelevant and others of which 
were more important that anticipated. One reason to 
acknowledge bytes was to permit the insertion of control 
information into the sequence space of the bytes, so that 
control as well as data could be acknowledged. That use 
of the sequence space was dropped, in favor of ad hoc 
techniques for dealing with each control message. While 
the original idea has appealing generality, it caused 
complexity in practice. 

A second reason for the byte stream was to permit the 
TCP packet to be broken up into smaller packets if 
necessary in order to fit through a net with a small packet 
size. But this function was moved to the IP layer when IP 
was split from TCP, and IP was forced to invent a 
different method of fragmentation. 

A third reason for acknowledging bytes rather than 
packets was to permit a number of small packets to be 
gathered together into one larger packet in the sending 
host if retransmission of the data was necessary. It was 
not clear if this advantage would be important; it turned 
out to be critical. Systems such as UNIX which have a 
internal communication model based on single character 
interactions often send many packets with one byte of 
data in them. (One might argue from a network 
perspective that this behavior is silly, but it was a reality, 
and a necessity for interactive remote login.) It was often 
observed that such a host could produce a flood of 
packets with one byte of data, which would arrive much 
faster than a slow host could process them. The result is 
lost packets and retransmission. 

If the retransmission was of the original packets, the same 
problem would repeat on every retransmission, with a 
performance impact so intolerable as to prevent 
operation. But since the bytes were gathered into one 
packet for retransmission, the retransmission occurred in 
a much more effective way which permitted practical 
operation. 

On the other hand, the acknowledgment of bytes could be 
seen as creating this problem in the first place. If the basis 
of flow control had been packets rather than bytes, then 
this flood might never have occurred. Control at the 
packet level has the effect, however, of providing a 
severe limit on the throughput if small packets are sent. If 
the receiving host specifies a number of packets to 
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receive, without any knowledge of the number of bytes in 
each, the actual amount of data received could vary by a 
factor of 1000, depending on whether the sending host 
puts one or one thousand bytes in each packet. 

In retrospect, the correct design decision may have been 
that if TCP is to provide effective support of a variety of 
services, both packets and bytes must be regulated, as 
was done in the original ARPANET protocols. 

Another design decision related to the byte stream was 
the End-Of-Letter flag, or EOL. This has now vanished 
from the protocol, replaced by the push flag, or PSH. The 
original idea of EOL was to break the byte stream into 
records. It was implemented by putting data from 
separate records into separate packets, which was not 
compatible with the idea of combining packets on 
retransmission. So the semantics of EOL was changed to 
a weaker form, meaning only that the data up to this point 
in the stream was one or more complete application-level 
elements, which should occasion a flush of any internal 
buffering in TCP or the network. By saying “one or 
more” rather than “exactly one”, it became possible to 
combine several together and preserve the goal of 
compacting data in reassembly. But the weaker semantics 
meant that various applications had to invent an ad hoc 
mechanism for delimiting records on top of the data 
stream. 

In this evolution of EOL semantics, there was a little 
known intermediate form, which generated great debate. 
Depending on the buffering strategy of the host, the byte 
stream model of TCP can cause great problems in one 
improbable case. Consider a host in which the incoming 
data is put in a sequence of fixed size buffers. A buffer is 
returned to the user either when it is full, or an EOL is 
received. Now consider the case of the arrival of an out- 
of-order packet which is so far out of order to he beyond 
the current buffer. Now further consider that after 
receiving this out-of-order packet, a packet with an EOL 
causes the current buffer to be returned to the user only 
partially full. This particular sequence of actions has the 
effect of causing the out of order data in the next buffer to 
be in the wrong place, because of the empty bytes in the 
buffer returned to the user. Coping with this generated 
book-keeping problems in the host which seemed 
unnecessary. 

To cope with this it was proposed that the EOL should 
“use up” all the sequence space up to the next value 
which was zero mod the buffer size. In other words, it 
was proposed that EOL should be a tool for mapping the 
byte stream to the buffer management of the host. This 
idea was not well received at the time, as it seemed much 
too ad hoc, and only one host seemed to have this 
problem.’ In retrospect, it may have been the correct idea 

‘This use of EOL was properly called “Rubber EOL” but its 
detractors quickly called it “rubber baby buffer bumpers” in an attempt 
to ridicule tbc idea. &edit must go to the creator of the ide+ Bill 
Plummcr, for sticking to his guns in the face of detractors saying the 
above to him ten times fast. 

to incorporate into TCP some means of relating the 
sequence space and the buffer management algorithm of 
the host. At the time, the designers simply lacked the 
insight to see how that might be done in a sufficiently 
general manner. 

Il. Conclusion 

In the context of its priorities, the Internet architecture 
has been very successful. The protocols are widely used 
in the commercial and military environment, and have 
spawned a number of similar architectures. At the same 
time, its success has made clear that in certain situations, 
the priorities of the designers do not match the needs of 
the actual users. More attention to such things as 
accounting, resource management and operation of 
regions with separate administrations are needed. 

While the datagram has served veIy well in solving the 
most important goals of the Internet, it has not served so 
well when we attempt to address some of the goals which 
were further down the priority list. For example, the 
goals of resource management and accountability have 
proved difficult to achieve in the context of datagrams. 
As the previous section discussed, most datagrams are a 
part of some sequence of packets from source to 
destination, rather than isolated units at the application 
level. However, the gateway cannot directly see the 
existence of this sequence, because it is forced to deal 
with each packet in isolation. Therefore, resource 
management decisions or accounting must be done on 
each packet separately. Imposing the datagram model on 
the intemet layer has deprived that layer of an important 
source of information which it could use in achieving 
these goals. 

This suggests that there may be a better building block 
than the datagram for the next generation of architecture. 
The general characteristic of this building block is that it 
would identify a sequence of packets traveling from the 
source to the destination, without assuming any particular 
type of service with that service. I have used the word 
“flow” to characterize this building block. It would be 
necessary for the gateways to have flow state in order to 
remember the nature of the flows which are passing 
through them, but the state information would not be 
critical in maintaining the desired type of service 
associated with the flow. Instead, that type of service 
would be enforced by the end points, which would 
periodically send messages to ensure that the proper type 
of service was being associated with the flow. In this 
way, the state information associated with the flow could 
be lost in a crash without permanent disruption of the 
service features being used. I call this concept “soft 
state,” and it may very well permit us to achieve our 
primary goals of survivability and flexibility, while at the 
same time doing a better job of dealing with the issue of 
resource management and accountability. Exploration of 
alternative building blocks constitute one of the current 
directions for research within the DARPA Internet 
PrOgrtUtl. 
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