
End-To-End Arguments in System Design
J. H. SALTZER, D. P. REED, and D. D. CLARK
Massachusetts Institute of Technology Laboratory for Computer Science

This paper presents a design principle that helps guide placement of functions among the modules of
a distributed computer system. The principle, called the end-to-end argument, suggests that functions
placed at low levels of a system may be redundant or of little value when compared with the cost of
providing them at that low level. Examples discussed in the paper include bit-error recovery, security
using encryption, duplicate message suppression, recovery from system crashes, and delivery acknowl-
edgment. Low-level mechanisms to support these functions are justified only as performance enhance-
ments.

CR Categories and Subject Descriptors: C.0 [General] Computer System Organization--system
architectures; C.2.2 [Computer-Communication Networks]: Network Protocols--protocol archi-
tecture; C.2.4 [Computer-Communication Networks]: Distributed Systems; D.4.7 [O p e r a t i n g
S y s t e m s] : Organization and Design--distributed systems

General Terms: Design

Additional Key Words and Phrases: Data communication, protocol design, design principles

1. INTRODUCTION

Choosing the proper boundaries between functions is perhaps the primary activity
of the computer system designer. Design principles that provide guidance in this
choice of function placement are among the most important tools of a system
designer. This paper discusses one class of function placement argument that
has been used for many years with neither explicit recognition nor much convic-
tion. However, the emergence of the data communication network as a computer
system component has sharpened this line of function placement argument by
making more apparent the situations in which and the reasons why it applies.
This paper articulates the argument explicitly, so as to examine its nature and
to see how general it really is. The argument appeals to application requirements
and provides a rationale for moving a function upward in a layered system closer
to the application that uses the function. We begin by considering the commu-
nication network version of the argument.

This is a revised version of a paper adapted from End-to-End Arguments in System Design by J. H.
Saltzer, D.P. Reed, and D.D. Clark from the 2nd International Conference on Distributed Systems
(Paris, France, April 8-10) 1981, pp. 509-512. © IEEE 1981
This research was supported in part by the Advanced Research Projects Agency of the U.S.
Department of Defense and monitored by the Office of Naval Research under contract N00014-75-
C-0661.
Authors' address: J. H. Saltzer and D. D. Clark, M.I.T. Laboratory for Computer Science, 545
Technology Square, Cambridge, MA 02139. D. P. Reed, Software Arts, Inc., 27 Mica Lane, Wellesley,
MA O2181.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0734-2071/84/1100-0277 $00.75

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984, Pages 277-288.

278 • J.H. Saltzer, D. P. Reed, and D. D. Clark

In a system that includes communications, one usually draws a modular
boundary around the communication subsystem and defines a firm interface
between it and the rest of the system. When doing so, it becomes apparent that
there is a list of functions each of which might be implemented in any of several
ways: by the communication subsystem, by its client, as a joint venture, or
perhaps redundantly, each doing its own version. In reasoning about this choice,
the requirements of the application provide the basis for the following class of
arguments:

The function in question can completely and correctly be implemented only with
the knowledge and help of the application standing at the endpoints of the
communication system. Therefore, providing that questioned function as a feature
of the communication system itself is not possible. (Sometimes an incomplete
version of the function provided by the communication system may be useful as a
performance enhancement.)

We call this line of reasoning against low-level function implementation the
end-to-end argument. The following sections examine the end-to-end argument
in detail, first with a case study of a typical example in which it is used-- the
function in question is reliable data transmission--and then by exhibiting the
range of functions to which the same argument can be applied. For the case of
the data communication system, this range includes encryption, duplicate mes-
sage detection, message sequencing, guaranteed message delivery, detecting host
crashes, and delivery receipts. In a broader context, the argument seems to apply
to many other functions of a computer operating system, including its file system.
Examination of this broader context will be easier, however, if we first consider
the more specific data communication context.

2. CAREFUL FILE TRANSFER

2.1 End-to-End Caretaking

Consider the problem of careful file transfer. A file is stored by a file system in
the disk storage of computer A. Computer A is linked by a data communication
network with computer B, which also has a file system and a disk store. The
object is to move the file from computer A's storage to computer B's storage
without damage, keeping in mind that failures can occur at various points along
the way. The application program in this case is the file transfer program, part
of which runs at host A and part at host B. In order to discuss the possible
threats to the file's integrity in this transaction, let us assume that the following
specific steps are involved:

(I) At host A the file transfer program calls upon the file system to read the file
from the disk, where it resides on several tracks, and the file system passes
it to the file transfer program in fixed-size blocks chosen to be disk format
independent.

(2) Also at host A, the file transfer program asks the data communication system
to transmit the file using some communication protocol that involves splitting
the data into packets. The packet size is typically different from the file
block size and the disk track size.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

End-to-End Arguments in System Design • 279

(3) The data communication network moves the packets from computer A to
computer B.

(4) At host B, a data communication program removes the packets from the
data communication protocol and hands the contained data to a second part
of the file transfer application that operates within host B.

(5) At host B, the file transfer program asks the file system to write the received
data on the disk of host B.

With this model of the steps involved, the following are some of the threats to
the transaction that a careful designer might be concerned about:

(1) The file, though originally written correctly onto the disk at host A, if read
now may contain incorrect data, perhaps because of hardware faults in the
disk storage system.

(2) The software of the file system, the file transfer program, or the data
communication system might make a mistake in buffering and copying the
data of the file, either at host A or host B.

(3) The hardware processor or its local memory might have a transient error
while doing the buffering and copying, either at host A or host B.

(4) The communication system might drop or change the bits in a packet or
deliver a packet more than once.

(5) Either of the hosts may crash part way through the transaction after
performing an unknown amount (perhaps all) of the transaction.

How would a careful file transfer application then cope with this list of threats?
One approach might be to reinforce each of the steps along the way using
duplicate copies, time-out and retry, carefully located redundancy for error
detection, crash recovery, etc. The goal would be to reduce the probability of
each of the individual threats to an acceptably small value. Unfortunately,
systematic countering of threat (2) requires writing correct programs, which is
quite difficult. Also, not all the programs that must be correct are written by the
file transfer-application programmer. If we assume further that all these threats
are relatively low in probability--low enough for the system to allow useful work
to be accomplished--brute force countermeasures, such as doing everything three
times, appear uneconomical.

The alternate approach might be called end-to-end check and retry. Suppose
that as an aid to coping with threat (1), stored with each file is a checksum that
has sufficient redundancy to reduce the chance of an undetected error in the file
to an acceptably negligible value. The application program follows the simple
steps above in transferring the file from A to B. Then, as a final additional step,
the part of the file transfer application residing in host B reads the transferred
file copy back from its disk storage system into its own memory, recalculates the
checksum, and sends this value back to host A, where it is compared with the
checksum of the original. Only if the two checksums agree does the file transfer
application declare the transaction committed. If the comparison fails, something
has gone wrong, and a retry from the beginning might be attempted.

If failures are fairly rare, this technique will normally work on the first try;
occasionally a second or even third try might be required. One would probably
consider two or more failures on the same file transfer attempt as indicating that
some part of this system is in need of repair.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

280 • J.H. Saltzer, D. P. Reed, and D. D. Clark

Now let us consider the usefulness of a common proposal, namely, that the
communication system provide, internally, a guarantee of reliable data transmis-
sion. It might accomplish this guarantee by providing selective redundancy in
the form of packet checksums, sequence number checking, and internal retry
mechanisms, for example. With sufficient care, the probability of undetected bit
errors can be reduced to any desirable level. The question is whether or not this
attempt to be helpful on the part of the communication system is useful to the
careful file transfer application.

The answer is that threat (4) may have been eliminated, but the careful file
transfer application must still counter the remaining threats; so it should still
provide its own retries based on an end-to-end checksum of the file. If it does,
the extra effort expended in the communication system to provide a guarantee
of reliable data transmission is only reducing the frequency of retries by the file
transfer application; it has no effect on inevitability or correctness of the outcome,
since correct file transmission is ensured by the end-to-end checksum and retry
whether or not the data transmission system is especially reliable.

Thus, the argument: In order to achieve careful file transfer, the application
program that performs the transfer must supply a file-transfer-specific, end-to-
end reliability guarantee--in this case, a checksum to detect failures and a retry-
commit plan. For the data communication system to go out of its way to be
extraordinarily reliable does not reduce the burden on the application program
to ensure reliability.

2.2 A Too-Real Example

An interesting example of the pitfalls that one can encounter turned up recently
at the Massachusetts Institute of Technology. One network system involving
several local networks connected by gateways used a packet checksum on each
hop from one gateway to the next, on the assumption that the primary threat to
correct communication was corruption of bits during transmission. Application
programmers, aware of this checksum, assumed that the network was providing
reliable transmission, without realizing that the transmitted data were unpro-
tected while stored in each gateway. One gateway computer developed a transient
error: while copying data from an input to an output buffer a byte pair was
interchanged, with a frequency of about one such interchange in every million
bytes passed. Over a period of time many of the source files of an operating
system were repeatedly transferred through the defective gateway. Some of these
source files were corrupted by byte exchanges, and their owners were forced to
the ultimate end-to-end error check: manual comparison with and correction
from old listings.

2.3 Performance Aspects

However, it would be too simplistic to conclude that the lower levels should play
no part in obtaining reliability. Consider a network that is somewhat unreliable,
dropping one message of each hundred messages sent. The simple strategy
outlined above, transmitting the file and then checking to see that the file has
arrived correctly, would perform more poorly as the length of the file increased.
The probability that all packets of a file arrive correctly decreases exponentially
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

End-to-End Arguments in System Design • 281

with the file length, and thus the expected time to transmit the file grows
exponentially with file length. Clearly, some effort at the lower levels to improve
network reliability can have a significant effect on application performance. But
the key idea here is that the lower levels need not provide "perfect" reliability.

Thus the amount of effort to put into reliability measures within the data
communication system is seen to be an engineering trade-off based on perform-
ance, rather than a requirement for correctness. Note that performance has
several aspects here. If the communication system is too unreliable, the file
transfer application performance will suffer because of frequent retries following
failures of its end-to-end checksum. If the communcation system is beefed up
with internal reliability measures, those measures also have a performance cost,
in the form of bandwidth lost to redundant data and added delay from waiting
for internal consistency checks to complete before delivering the data. There is
little reason to push in this direction very far, when it is considered that the end-
to-end check of the file transfer application must still be implemented no matter
how reliable the communication system becomes. The proper trade-off requires
careful thought. For example, one might start by designing the communication
system to provide only the reliability that comes with little cost and engineering
effort, and then evaluate the residual error level to ensure that it is consistent
with an acceptable retry frequency at the file transfer level. It is probably not
important to strive for a negligble error rate at any point below the application
level.

Using performance to justify placing functions in a low-level subsystem must
be done carefully. Sometimes, by examining the problem thoroughly, the same
or better performance enhancement can be achieved at the high level. Performing
a function at a low level may be more efficient, if the function can be performed
with a minimum perturbation of the machinery already included in the low-level
subsystem. But the opposite situation can occur-- that is, performing the function
at the lower level may cost more--for two reasons. First, since the lower level
subsystem is common to many applications, those applications that do not need
the function will pay for it anyway. Second, the low-level subsystem may not
have as much information as the higher levels, so it cannot do the job as
efficiently.

Frequently, the performance trade-off is quite complex. Consider again the
careful file transfer on an unreliable network. The usual technique for increasing
packet reliability is some sort of per-packet error check with a retry protocol.
This mechanism can be implemented either in the communication subsystem or
in the careful file transfer application. For example, the receiver in the careful
file transfer can periodically compute the checksum of the portion of the file thus
far received and transmit this back to the sender. The sender can then restart
by retransmitting any portion that has arrived in error.

The end-to-end argument does not tell us where to put the early checks, since
either layer can do this performance-enhancement job. Placing the early retry
protocol in the file transfer application simplifies the communication system but
may increase overall cost, since the communication system is shared by other
applications and each application must now provide its own reliability enhance-
ment. Placing the early retry protocol in the communication system may be more

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

282 • J.H. Saltzer, D. P. Reed, and D. D. Clark

efficient, since it may be performed inside the network on a hop-by-hop basis,
reducing the delay involved in correcting a failure. At the same time there may
be some application that finds the cost of the enhancement is not worth the
result, but it now has no choice in the matter. 1 A great deal of information about
system implementation is needed to make this choice intelligently.

3. OTHER EXAMPLES OF THE END-TO-END ARGUMENT

3.1 Delivery Guarantees

The basic argument that a lower level subsystem that supports a distributed
application may be wasting its effort in providing a function that must, by nature,
be implemented at the application level anyway can be applied to a variety of
functions in addition to reliable data transmission. Perhaps the oldest and most
widely known form of the argument concerns acknowledgment of delivery. A
data communication network can easily return an acknowledgment to the sender
for every message delivered to a recipient. The ARPANET, for example, returns
a packet known as Request For Next Message (RFNM) [1] whenever it delivers
a message. Although this acknowledgment may be useful within the network as
a form of congestion control (originally the ARPANET refused to accept another
message to the same target until the previous RFNM had returned), it was never
found to be very helpful for applications using the ARPANET. The reason is
that knowing for sure that the message was delivered to the target host is not
very important. What the application wants to know is whether or not the target
host acted on the message; all manner of disaster might have struck after message
delivery but before completion of the action requested by the message. The
acknowledgment that is really desired is an end-to-end one, which can be
originated only by the target application--"I did it," or "I didn't."

Another strategy for obtaining immediate acknowledgments is to make the
target host sophisticated enough that when it accepts delivery of a message it
also accepts responsibility for guaranteeing that the message is acted upon by
the target application. This approach can eliminate the need for an end-to-end
acknowledgment in some, but not all, applications. An end-to-end acknowledg-
ment is still required for applications in which the action requested of the target
host should be done only if similar actions requested of other hosts are successful.
This kind of application requires a two-phase commit protocol [5, 10, 15], which
is a sophisticated end-to-end acknowledgment. Also, if the target application
either fails or refuses to do the requested action, and thus a negative acknowl-
edgment is a possible outcome, an end-to-end acknowledgment may still be a
requirement.

3.2 Secure Transmission of Data

Another area in which an end-to-end argument can be applied is that of data
encryption. The argument here is threefold. First, if the data transmission system
perfoms encryption and decryption, it must be trusted to securely manage the
required encryption keys. Second, the data will be in the clear and thus vulnerable

1 For example, real- t ime t r an smi s s i on of speech has t igh ter cons t ra in t s on message delay t h a n on bit-
error rate. Mos t retry s chemes s ignif icant ly increase the variabil i ty of delay.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

End-to-End Arguments in System Design • 283

as they pass into the target node and are fanned out to the target application.
Third, the authenticity of the message must still be checked by the application.
If the application performs end-to-end encryption, it obtains its required authen-
tication check and can handle key management to its satisfaction, and the data
are never exposed outside the application.

Thus, to satisfy the requirements of the application, there is no need for the
communication subsystem to provide for automatic encryption of all traffic.
Automatic encryption of all traffic by the communication subsystem may be
called for, however, to ensure something else--that a misbehaving user or
application program does not deliberately transmit information that should not
be exposed. The automatic encryption of all data as they are put into the network
is one more firewall the system designer can use to ensure that information does
not escape outside the system. Note however, that this is a different requirement
from authenticating access rights of a system user to specific parts of the data.
This network-level encryption can be quite unsophisticated--the same key can
be used by all hosts, with frequent changes of the key. No per-user keys complicate
the key management problem. The use of encryption for application-level au-
thentication and protection is complementary. Neither mechanism can satisfy
both requirements completely.

3.3 Duplicate Message Suppression

A more sophisticated argument can be applied to duplicate message suppression.
A property of some communicat ion network designs is that a message or a part
of a message may be delivered twice, typical ly as a result of t ime-out-tr iggered
failure detection and retry mechanisms operating within the network. The
network can watch for and suppress any such duplicate messages, or it can simply
deliver them. One might expect that an application would'find it very troublesome
to cope with a network that may deliver the same message twice; indeed, it is
troublesome. Unfortunately, even if the network suppresses duplicates, the ap-
plication itself may accidentally originate duplicate requests in its own failure/
retry procedures. These application-level duplications look like different mes-
sages to the communication system, so it cannot suppress them; suppression
must be accomplished by the application itself with knowledge of how to detect
its own duplicates.

A common example of duplicate suppression that must be handled at a high
level is when a remote system user, puzzled by lack of response, initiates a new
login to a time-sharing system. Another example is that most communication
applications involve a provision for coping with a system crash at one end of a
multisite transaction: reestablish the transaction when the crashed system comes
up again. Unfortunately, reliable detection of a system crash is problematical:
the problem may just be a lost or long-delayed acknowledgment. If so, the retried
request is now a duplicate, which only the application can discover. Thus, the
end-to-end argument again: If the application level has to have a duplicate-
suppressing mechanism anyway, that mechanism can also suppress any dupli-
cates generated inside the communication network; therefore, the function can
be omitted from that lower level. The same basic reasoning applies to completely
omitted messages, as well as to duplicated ones.

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

284 • J.H. Saltzer, D. P. Reed, and D. D. Clark

3.4 Guaranteeing FIFO Message Delivery

Ensuring that messages arrive at the receiver in the same order in which they
are sent is another function usually assigned to the communication subsystem.
The mechanism usually used to achieve such first-in, first-out (FIFO) behavior
guarantees FIFO ordering among messages sent on the same virtual circuit.
Messages sent along independent virtual circuits, or through intermediate proc-
esses outside the communication subsystem, may arrive in a different order from
the order sent. A distributed application in which one node can originate requests
that initiate actions at several sites cannot take advantage of the FIFO ordering
property to guarantee that the actions requested occur in the correct order.
Instead, an independent mechanism at a higher level than the communication
subsystem must control the ordering of actions.

3.5 Transaction Management

We have now applied the end-to-end argument in the construction of the
SWALLOW distributed data storage system [15], where it leads to significant
reduction in overhead. SWALLOW provides data storage servers called reposi-
tories that can be used remotely to store and retrieve data. Accessing data at a
repository is done by sending it a message specifying the object to be accessed,
the version, and type of access (read/write), plus a value to be written if the
access is a write. The underlying message communication system does not
suppress duplicate messages, since (a) the object identifier plus the version
information suffices to detect duplicate writes, and (b) the effect of a duplicate
read-request message is only to generate a duplicate response, which is easily
discarded by the originator. Consequently, the low-level message communication
protocol is significantly simplified.

The underlying message communication system does not provide delivery
acknowledgment either. The acknowledgment that the originator of a write
request needs is that the data were stored safely. This acknowledgment can be
provided only by high levels of the SWALLOW system. For read requests, a
delivery acknowledgment is redundant, since the response containing the value
read is sufficient acknowledgment. By eliminating delivery acknowledgments,
the number of messages transmitted is halved. This message reduction can have
a significant effect on both host load and network load, improving performance.
This same line of reasoning has also been used in development of an experimental
protocol for remote access to disk records [6]. The resulting reduction in path
length in lower level protocols has been important in maintaining good perform-
ance on remote disk access.

4. IDENTIFYING THE ENDS

Using the end-to-end argument sometimes requires subtlety of analysis of appli-
cation requirements. For example, consider a computer communication network
that carries some packet voice connections, that is, conversations between digital
telephone instruments. For those connections that carry voice packets, an un-
usually strong version of the end-to-end argument applies: If low levels of the
communication system try to accomplish bit-perfect communication, they will
probably introduce uncontrolled delays in packet delivery, for example, by re-
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

End-to-End Arguments in System Design • 285

questing retransmission of damaged packets and holding up delivery of later
packets until earlier ones have been correctly retransmitted. Such delays are
disruptive to the voice application, which needs to feed data at a constant rate
to the listener. It is better to accept slightly damaged packets as they are, or even
to replace them with silence, a duplicate of the previous packet, or a noise burst.
The natural redundancy of voice, together with the high-level error correction
procedure in which one participant says "excuse me, someone dropped a glass.
Would you please say that again?" will handle such dropouts, if they are relatively
infrequent.

However, this strong version of the end-to-end argument is a property of the
specific application--two people in real-time conversation--rather than a prop-
erty, say, of speech in general. If, instead, one considers a speech message system,
in which the voice packets are stored in a file for later listening by the recipient,
the arguments suddenly change their nature. Short delays in delivery of packets
to the storage medium are not particularly disruptive, so there is no longer any
objection to low-level reliability measures that might introduce delay in order to
achieve reliability. More important, it is actually helpful to this application to
get as much accuracy as possible in the recorded message, since the recipient, at
the time of listening to the recording, is not going to be able to ask the sender to
repeat a sentence. On the other hand, with a storage system acting as the
receiving end of the voice communication, an end-to-end argument does apply to
packet ordering and duplicate suppression. Thus the end-to-end argument is not
an absolute rule, but rather a guideline that helps in application and protocol
design analysis; one must use some care to identify the endpoints to which the
argument should be applied.

5. HISTORY, AND APPLICATION TO OTHER SYSTEM AREAS

The individual examples of end-to-end arguments cited in this paper are not
original; they have accumulated over the years. The first example of questionable
intermediate delivery acknowledgments noticed by the authors was the "wait"
message of the Massachusetts Institute of Technology Compatible Time-Sharing
System, which the system printed on the user's terminal whenever the user
entered a command [3]. {The message had some value in the early days of the
system, when crashes and communication failures were so frequent that inter-
mediate acknowledgments provided some needed reassurance that all was well.)

The end-to-end argument relating to encryption was first publicly discussed
by Branstad in a 1973 paper [2]; presumably the military security community
held classified discussions before that time. Diffie and Hellman [4] and Kent [8]
developed the arguments in more depth, and Needham and Schroeder [11] devised
improved protocols for the purpose.

The two-phase-commit data update protocols of Gray [5], Lampson and Sturgis
[10] and Reed [13] all use a form of end-to-end argument to justify their existence;
they are end-to-end protocols that do not depend for correctness on reliability,
FIFO sequencing, or duplicate suppression within the communication system,
since all of these problems may also be introduced by other system component
failures as well. Reed makes this argument explicitly in the second chapter of his
Ph.D. dissertation on decentralized atomic actions [14].

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

286 • J.H. Saltzer, D. P. Reed, and D. D. Clark

End-to-end arguments are often applied to error control and correctness in
application systems. For example, a banking system usually provides high-level
auditing procedures as a matter of policy and legal requirement. Those high-level
auditing procedures will uncover not only high-level mistakes, such as performing
a withdrawal against the wrong account, but they will also detect low-level
mistakes such as coordination errors in the underlying data management system.
Therefore, a costly algorithm that absolutely eliminates such coordination errors
may be arguably less appropriate than a less costly algorithm that just makes
such errors very rare. In airline reservation systems, an agent can be relied upon
to keep trying through system crashes and delays until a reservation is either
confirmed or refused. Lower level recovery procedures to guarantee that an
unconfirmed request for a reservation will survive a system crash are thus not
vital. In telephone exchanges, a failure that could cause a single call to be lost is
considered not worth providing explicit recovery for, since the caller will probably
replace the call if it matters [7]. All of these design approaches are examples of
the end-to-end argument being applied to automatic recovery.

Much of the debate in the network protocol community over datagrams, virtual
circuits, and connectionless protocols is a debate about end-to-end arguments. A
modularity argument prizes a reliable, F I F O sequenced, duplicate-suppressed
stream of data as a system component that is easy to build on, and that argument
favors virtual circuits. The end-to-end argument claims that centrally provided
versions of each of those functions will be incomplete for some applications, and
those applications will find it easier to build their own version of the functions
starting with datagrams.

A version of the end-to-end argument in a noncommunication application was
developed in the 1950s by system analysts whose responsibility included reading
and writing files on large numbers of magnetic tape reels. Repeated attempts to
define and implement a reliable tape subsystem repeatedly foundered, as flaky
tape drives, undependable system operators, and system crashes conspired against
all narrowly focused reliability measures. Eventually, it became standard practice
for every application to provide its own application-dependent checks and recov-
ery strategy, and to assume that lower level error detection mechanisms, at best,
reduced the frequency with which the higher level checks failed. As an example,
the Multics file backup system [17], even though it is built on a foundation of
magnetic tape subsystem format that provides very powerful error detection and
correction features, provides its own error control in the form of record labels
and multiple copies of every file.

The arguments that are used in support of reduced instruction set computer
(RISC) architecture are similar to end-to-end arguments. The RISC argument is
that the client of the architecture will get better performance by implementing
exactly the instructions needed from primitive tools; any attempt by the computer
designer to anticipate the client's requirements for an esoteric feature will
probably miss the target slightly and the client will end up reimplementing that
feature anyway. (We are indebted to M. Satyanarayanan for pointing out this
example.)

Lampson, in his arguments supporting the open operating system, [9] uses an
argument similar to the end-to-end argument as a justification. Lampson argues
ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

End-to-End Arguments in System Design • 287

against making any function a permanent fixture of lower level modules; the
function may be provided by a lower level module, but it should always be
replaceable by an application's special version of the function. The reasoning is
that for any function that can be thought of, at least some applications will find
that, of necessity, they must implement the function themselves in order to meet
correctly their own requirements. This line of reasoning leads Lampson to
propose an "open" system in which the entire operating system consists of
replaceable routines from a library. Such an approach has only recently become
feasible in the context of computers dedicated to a single application. It may be
the case that the large quantity of fixed supervisor functions typical of large-
scale operating systems is only an artifact of economic pressures that have
demanded multiplexing of expensive, hardware and therefore a protected super-
visor. Most recent system "kernelization" projects have, in fact, focused at least
in part on getting function out of low system levels [12, 16]. Though this function
movement is inspired by a different kind of correctness argument, it has the side
effect of producing an operating system that is more flexible for applications,
which is exactly the main thrust of the end-to-end argument.

6. CONCLUSIONS

End-to-end arguments are a kind of "Occam's razor" when it comes to choosing
the functions to be provided in a communication subsystem. Because the com-
munication subsystem is frequently specified before applications that use the
subsystem are known, the designer may be tempted to "help" the users by taking
on more function than necessary. Awareness of end-to-end arguments can help
to reduce such temptations.

It is fashionable these days to talk about layered communication protocols, but
without clearly defined criteria for assigning functions to layers. Such layerings
are desirable to enhance modularity. End-to-end arguments may be viewed as
part of a set of rational principles for organizing such layered systems. We hope
that our discussion will help to add substance to arguments about the "proper"
layering.

ACKNOWLEDGMENTS

Many people have read and commented on an earlier draft of this paper, including
David Cheriton, F. B. Schneider, and Liba Svobodova. The subject was also
discussed at the ACM Workshop in Fundamentals of Distributed Computing, in
Fallbrook, Calif., December 1980. Those comments and discussions were quite
helpful in clarifying the arguments.

REFERENCES
1. BOLT BERANEK AND NEWMAN INC. Specifications for the interconnection of a host and an

IMP. Tech. Rep. 1822. Bolt Beranek and Newman Inc. Cambridge, Mass. Dec. 1981.
2. BRANSTAD, D.K. Security aspects of computer networks. AAIA Paper 73-427, AIAA Computer

Network Systems Conference, Huntsville, Ala. Apr. 1973.
3. CORBATO, F.J., DAGGETT, M.M., DALE¥, R.C., CREAS¥, R.J., HELLIWIG, J.D., ORENSTEIN, R.H.,

AND KORN, L.K. The Compatible Time-Sharing System, A Programmer's Guide. Massachusetts

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

288 J.H. Saltzer, D. P. Reed, and D. D. Clark

Institute of Technology Press, Cambridge, Mass. 1963, p. 10.
4. DIFFIE, W., AND HELLMAN, M.E. New directions in cryptography. IEEE Trans. Inf. Theory

IT-22, 6 (Nov. 1976), 644-654.
5. GRAY, J.N. Notes on database operating systems. Operating Systems: An Advanced Course.

Lecture Notes on Computer Science, vol. 60. Springer-Verlag, New York. 1978. 393-481.
6. GREENWALD, M. Remote virtual disk protocol specifications. Tech. Memo. Massachusetts

Institute x)f Technology Laboratory for Computer Science, Cambridge, Mass. In preparation.
7. KEISTER, W., KETCHLEDGE, R.W., AND VAUGHAN, H.E. No. 1 ESS: System organization and

objectives. Bell Syst. Tech. J. 53, 5, Pt 1, (Sept. 1964), 1841.
8. KENT, S.W. Encryption-based protection protocols for interactive user-computer communica-

tion. S.M. thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, Mass., May 1976. Also available as Tech. Rep. TR-162. Massachusetts
Institute of Technology Laboratory for Computer Science, May 1976.

9. LAMPSON, B.W., AND SPROULL, R.F. An open operating system for a single-user machine. In
Proceedings of the 7th Symposium on Operating Systems Principles, (Pacific Grove, Calif. Dec. 10-
12). ACM, New York, 1979, pp. 98-105.

10. LAMPSON, S., AND STURGIS, n . Crash recovery in a distributed data storage system. Working
paper, Xerox PARC, Palo Alto, Calif. Nov. 1976 and Apr. 1979. Submitted for publication.

11. NEEDHAM, R.M., AND SCHROEDER, M.D. Using encryption for authentication in large networks
of computers. Commun. ACM 21, 12 (Dec. 1978), 993-999.

12. POPEK, G.J., et al. UCLA data secure unix. In Proceedings of the 1979 National Computer
Conference, vol. AFIPS Press, Reston, Va., pp. 355-364.

13. REED, D.P. Implementing atomic actions on decentralized data. ACM Trans. Comput. Syst. 1,
1 (Feb. 1983), 3-23.

14. REED, D.P. Naming and synchronization in a decentralized computer system. Ph.D. disserta-
tion, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer
Science, Cambridge, Mass. September 1978. Also available as Massachusetts Institute of Tech-
nology Laboratory for Computer Science Tech. Rep. TR-205, Sept., 1978.

15. REED, D.P., AND SVOBODOVA, L. SWALLOW. A distributed data storage system for a local
network. A. West, and P. Janson, Eds. In Local Networks for Computer Communications,
Proceedings of the 1FIP Working Group 6.4 International Workshop on Local Networks (Zurich,
Aug 27-29 1980), North-Holland, Amsterdam, 1981, pp. 355-373.

16. SCHROEDER, M.D., CLARK, D.D., AND SALTZER, J.H. The multics kernel design project. In
Proceedings 6th Symposium on Operating Systems Principles. Oper. Syst. Rev. 11, 5 (Nov. 1977),
43-56.

17. STERN, J.A. Backup and recovery of on-line information in a computer utility. S.M. thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, Mass. Aug. 1973. Available as Project MAC Tech. Rep. TR-116, Massachu-
setts Institute of Technology, Jan. 1974.

Received February 1983; accepted June 1983

I
ACM Transactions on Computer Systems, Vol. 2, No. 4, November !984.

