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This paper presents a design principle that helps guide placement of functions among the modules of 
a distributed computer system. The principle, called the end-to-end argument, suggests that functions 
placed at low levels of a system may be redundant or of little value when compared with the cost of 
providing them at that low level. Examples discussed in the paper include bit-error recovery, security 
using encryption, duplicate message suppression, recovery from system crashes, and delivery acknowl- 
edgment. Low-level mechanisms to support these functions are justified only as performance enhance- 
ments. 
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1. INTRODUCTION 

Choosing the proper boundaries between functions is perhaps the primary activity 
of the computer system designer. Design principles that provide guidance in this 
choice of function placement are among the most important tools of a system 
designer. This paper discusses one class of function placement argument that 
has been used for many years with neither explicit recognition nor much convic- 
tion. However, the emergence of the data communication network as a computer 
system component has sharpened this line of function placement argument by 
making more apparent the situations in which and the reasons why it applies. 
This paper articulates the argument explicitly, so as to examine its nature and 
to see how general it really is. The argument appeals to application requirements 
and provides a rationale for moving a function upward in a layered system closer 
to the application that uses the function. We begin by considering the commu- 
nication network version of the argument. 
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In a system that includes communications, one usually draws a modular 
boundary around the communication subsystem and defines a firm interface 
between it and the rest of the system. When doing so, it becomes apparent that 
there is a list of functions each of which might be implemented in any of several 
ways: by the communication subsystem, by its client, as a joint venture, or 
perhaps redundantly, each doing its own version. In reasoning about this choice, 
the requirements of the application provide the basis for the following class of 
arguments: 

The function in question can completely and correctly be implemented only with 
the knowledge and help of the application standing at the endpoints of the 
communication system. Therefore, providing that questioned function as a feature 
of the communication system itself is not possible. (Sometimes an incomplete 
version of the function provided by the communication system may be useful as a 
performance enhancement.) 

We call this line of reasoning against low-level function implementation the 
end-to-end argument. The following sections examine the end-to-end argument 
in detail, first with a case study of a typical example in which it is used-- the 
function in question is reliable data transmission--and then by exhibiting the 
range of functions to which the same argument can be applied. For the case of 
the data communication system, this range includes encryption, duplicate mes- 
sage detection, message sequencing, guaranteed message delivery, detecting host 
crashes, and delivery receipts. In a broader context, the argument seems to apply 
to many other functions of a computer operating system, including its file system. 
Examination of this broader context will be easier, however, if we first consider 
the more specific data communication context. 

2. CAREFUL FILE TRANSFER 

2.1 End-to-End Caretaking 

Consider the problem of careful file transfer. A file is stored by a file system in 
the disk storage of computer A. Computer A is linked by a data communication 
network with computer B, which also has a file system and a disk store. The 
object is to move the file from computer A's storage to computer B's storage 
without damage, keeping in mind that failures can occur at various points along 
the way. The application program in this case is the file transfer program, part 
of which runs at host A and part at host B. In order to discuss the possible 
threats to the file's integrity in this transaction, let us assume that the following 
specific steps are involved: 

(I) At host A the file transfer program calls upon the file system to read the file 
from the disk, where it resides on several tracks, and the file system passes 
it to the file transfer program in fixed-size blocks chosen to be disk format 
independent. 

(2) Also at host A, the file transfer program asks the data communication system 
to transmit the file using some communication protocol that involves splitting 
the data into packets. The packet size is typically different from the file 
block size and the disk track size. 
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(3) The data communication network moves the packets from computer A to 
computer B. 

(4) At host B, a data communication program removes the packets from the 
data communication protocol and hands the contained data to a second part 
of the file transfer application that operates within host B. 

(5) At host B, the file transfer program asks the file system to write the received 
data on the disk of host B. 

With this model of the steps involved, the following are some of the threats to 
the transaction that a careful designer might be concerned about: 

(1) The file, though originally written correctly onto the disk at host A, if read 
now may contain incorrect data, perhaps because of hardware faults in the 
disk storage system. 

(2) The software of the file system, the file transfer program, or the data 
communication system might make a mistake in buffering and copying the 
data of the file, either at host A or host B. 

(3) The hardware processor or its local memory might have a transient error 
while doing the buffering and copying, either at host A or host B. 

(4) The communication system might drop or change the bits in a packet or 
deliver a packet more than once. 

(5) Either of the hosts may crash part way through the transaction after 
performing an unknown amount (perhaps all) of the transaction. 

How would a careful file transfer application then cope with this list of threats? 
One approach might be to reinforce each of the steps along the way using 
duplicate copies, time-out and retry, carefully located redundancy for error 
detection, crash recovery, etc. The goal would be to reduce the probability of 
each of the individual threats to an acceptably small value. Unfortunately, 
systematic countering of threat (2) requires writing correct programs, which is 
quite difficult. Also, not all the programs that must be correct are written by the 
file transfer-application programmer. If we assume further that all these threats 
are relatively low in probability--low enough for the system to allow useful work 
to be accomplished--brute force countermeasures, such as doing everything three 
times, appear uneconomical. 

The alternate approach might be called end-to-end check and retry. Suppose 
that as an aid to coping with threat (1), stored with each file is a checksum that 
has sufficient redundancy to reduce the chance of an undetected error in the file 
to an acceptably negligible value. The application program follows the simple 
steps above in transferring the file from A to B. Then, as a final additional step, 
the part of the file transfer application residing in host B reads the transferred 
file copy back from its disk storage system into its own memory, recalculates the 
checksum, and sends this value back to host A, where it is compared with the 
checksum of the original. Only if the two checksums agree does the file transfer 
application declare the transaction committed. If the comparison fails, something 
has gone wrong, and a retry from the beginning might be attempted. 

If failures are fairly rare, this technique will normally work on the first try; 
occasionally a second or even third try might be required. One would probably 
consider two or more failures on the same file transfer attempt as indicating that 
some part of this system is in need of repair. 
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Now let us consider the usefulness of a common proposal, namely, that the 
communication system provide, internally, a guarantee of reliable data transmis- 
sion. It might accomplish this guarantee by providing selective redundancy in 
the form of packet checksums, sequence number checking, and internal retry 
mechanisms, for example. With sufficient care, the probability of undetected bit 
errors can be reduced to any desirable level. The question is whether or not this 
attempt to be helpful on the part of the communication system is useful to the 
careful file transfer application. 

The answer is that threat (4) may have been eliminated, but the careful file 
transfer application must still counter the remaining threats; so it should still 
provide its own retries based on an end-to-end checksum of the file. If it does, 
the extra effort expended in the communication system to provide a guarantee 
of reliable data transmission is only reducing the frequency of retries by the file 
transfer application; it has no effect on inevitability or correctness of the outcome, 
since correct file transmission is ensured by the end-to-end checksum and retry 
whether or not the data transmission system is especially reliable. 

Thus, the argument: In order to achieve careful file transfer, the application 
program that performs the transfer must supply a file-transfer-specific, end-to- 
end reliability guarantee--in this case, a checksum to detect failures and a retry- 
commit plan. For the data communication system to go out of its way to be 
extraordinarily reliable does not reduce the burden on the application program 
to ensure reliability. 

2.2 A Too-Real Example 

An interesting example of the pitfalls that one can encounter turned up recently 
at the Massachusetts Institute of Technology. One network system involving 
several local networks connected by gateways used a packet checksum on each 
hop from one gateway to the next, on the assumption that the primary threat to 
correct communication was corruption of bits during transmission. Application 
programmers, aware of this checksum, assumed that the network was providing 
reliable transmission, without realizing that the transmitted data were unpro- 
tected while stored in each gateway. One gateway computer developed a transient 
error: while copying data from an input to an output buffer a byte pair was 
interchanged, with a frequency of about one such interchange in every million 
bytes passed. Over a period of time many of the source files of an operating 
system were repeatedly transferred through the defective gateway. Some of these 
source files were corrupted by byte exchanges, and their owners were forced to 
the ultimate end-to-end error check: manual comparison with and correction 
from old listings. 

2.3 Performance Aspects 

However, it would be too simplistic to conclude that the lower levels should play 
no part in obtaining reliability. Consider a network that is somewhat unreliable, 
dropping one message of each hundred messages sent. The simple strategy 
outlined above, transmitting the file and then checking to see that the file has 
arrived correctly, would perform more poorly as the length of the file increased. 
The probability that all packets of a file arrive correctly decreases exponentially 
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with the file length, and thus the expected time to transmit the file grows 
exponentially with file length. Clearly, some effort at the lower levels to improve 
network reliability can have a significant effect on application performance. But 
the key idea here is that the lower levels need not provide "perfect" reliability. 

Thus the amount of effort to put into reliability measures within the data 
communication system is seen to be an engineering trade-off based on perform- 
ance, rather than a requirement for correctness. Note that performance has 
several aspects here. If the communication system is too unreliable, the file 
transfer application performance will suffer because of frequent retries following 
failures of its end-to-end checksum. If the communcation system is beefed up 
with internal reliability measures, those measures also have a performance cost, 
in the form of bandwidth lost to redundant data and added delay from waiting 
for internal consistency checks to complete before delivering the data. There is 
little reason to push in this direction very far, when it is considered that the end- 
to-end check of the file transfer application must still be implemented no matter 
how reliable the communication system becomes. The proper trade-off requires 
careful thought. For example, one might start by designing the communication 
system to provide only the reliability that comes with little cost and engineering 
effort, and then evaluate the residual error level to ensure that it is consistent 
with an acceptable retry frequency at the file transfer level. It is probably not 
important to strive for a negligble error rate at any point below the application 
level. 

Using performance to justify placing functions in a low-level subsystem must 
be done carefully. Sometimes, by examining the problem thoroughly, the same 
or better performance enhancement can be achieved at the high level. Performing 
a function at a low level may be more efficient, if the function can be performed 
with a minimum perturbation of the machinery already included in the low-level 
subsystem. But the opposite situation can occur-- that  is, performing the function 
at the lower level may cost more--for two reasons. First, since the lower level 
subsystem is common to many applications, those applications that do not need 
the function will pay for it anyway. Second, the low-level subsystem may not 
have as much information as the higher levels, so it cannot do the job as 
efficiently. 

Frequently, the performance trade-off is quite complex. Consider again the 
careful file transfer on an unreliable network. The usual technique for increasing 
packet reliability is some sort of per-packet error check with a retry protocol. 
This mechanism can be implemented either in the communication subsystem or 
in the careful file transfer application. For example, the receiver in the careful 
file transfer can periodically compute the checksum of the portion of the file thus 
far received and transmit this back to the sender. The sender can then restart 
by retransmitting any portion that has arrived in error. 

The end-to-end argument does not tell us where to put the early checks, since 
either layer can do this performance-enhancement job. Placing the early retry 
protocol in the file transfer application simplifies the communication system but 
may increase overall cost, since the communication system is shared by other 
applications and each application must now provide its own reliability enhance- 
ment. Placing the early retry protocol in the communication system may be more 

ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984. 



282 • J.H. Saltzer, D. P. Reed, and D. D. Clark 

efficient, since it may be performed inside the network on a hop-by-hop basis, 
reducing the delay involved in correcting a failure. At the same time there may 
be some application that finds the cost of the enhancement is not worth the 
result, but it now has no choice in the matter. 1 A great deal of information about 
system implementation is needed to make this choice intelligently. 

3. OTHER EXAMPLES OF THE END-TO-END ARGUMENT 

3.1 Delivery Guarantees 

The basic argument that a lower level subsystem that supports a distributed 
application may be wasting its effort in providing a function that must, by nature, 
be implemented at the application level anyway can be applied to a variety of 
functions in addition to reliable data transmission. Perhaps the oldest and most 
widely known form of the argument concerns acknowledgment of delivery. A 
data communication network can easily return an acknowledgment to the sender 
for every message delivered to a recipient. The ARPANET, for example, returns 
a packet known as Request For Next Message (RFNM) [1] whenever it delivers 
a message. Although this acknowledgment may be useful within the network as 
a form of congestion control (originally the ARPANET refused to accept another 
message to the same target until the previous RFNM had returned), it was never 
found to be very helpful for applications using the ARPANET. The reason is 
that knowing for sure that the message was delivered to the target host is not 
very important. What the application wants to know is whether or not the target 
host acted on the message; all manner of disaster might have struck after message 
delivery but before completion of the action requested by the message. The 
acknowledgment that is really desired is an end-to-end one, which can be 
originated only by the target application--"I did it," or "I didn't." 

Another strategy for obtaining immediate acknowledgments is to make the 
target host sophisticated enough that when it accepts delivery of a message it 
also accepts responsibility for guaranteeing that the message is acted upon by 
the target application. This approach can eliminate the need for an end-to-end 
acknowledgment in some, but not all, applications. An end-to-end acknowledg- 
ment is still required for applications in which the action requested of the target 
host should be done only if similar actions requested of other hosts are successful. 
This kind of application requires a two-phase commit protocol [5, 10, 15], which 
is a sophisticated end-to-end acknowledgment. Also, if the target application 
either fails or refuses to do the requested action, and thus a negative acknowl- 
edgment is a possible outcome, an end-to-end acknowledgment may still be a 
requirement. 

3.2 Secure Transmission of Data 

Another area in which an end-to-end argument can be applied is that of data 
encryption. The argument here is threefold. First, if the data transmission system 
perfoms encryption and decryption, it must be trusted to securely manage the 
required encryption keys. Second, the data will be in the clear and thus vulnerable 

1 For example,  real- t ime t r an smi s s i on  of  speech has  t igh ter  cons t ra in t s  on message  delay t h a n  on bit-  
error rate. Mos t  retry s chemes  s ignif icant ly increase the  variabil i ty of  delay. 
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as they pass into the target node and are fanned out to the target application. 
Third, the authenticity of the message must still be checked by the application. 
If the application performs end-to-end encryption, it obtains its required authen- 
tication check and can handle key management to its satisfaction, and the data 
are never exposed outside the application. 

Thus, to satisfy the requirements of the application, there is no need for the 
communication subsystem to provide for automatic encryption of all traffic. 
Automatic encryption of all traffic by the communication subsystem may be 
called for, however, to ensure something else--that  a misbehaving user or 
application program does not deliberately transmit information that should not 
be exposed. The automatic encryption of all data as they are put into the network 
is one more firewall the system designer can use to ensure that information does 
not escape outside the system. Note however, that this is a different requirement 
from authenticating access rights of a system user to specific parts of the data. 
This network-level encryption can be quite unsophisticated--the same key can 
be used by all hosts, with frequent changes of the key. No per-user keys complicate 
the key management problem. The use of encryption for application-level au- 
thentication and protection is complementary. Neither mechanism can satisfy 
both requirements completely. 

3.3 Duplicate Message Suppression 

A more sophisticated argument can be applied to duplicate message suppression. 
A property of some communicat ion network designs is that  a message or a part  
of a message may be delivered twice, typical ly as a result of t ime-out-tr iggered 
failure detection and retry mechanisms operating within the network. The 
network can watch for and suppress any such duplicate messages, or it can simply 
deliver them. One might expect that an application would'find it very troublesome 
to cope with a network that may deliver the same message twice; indeed, it is 
troublesome. Unfortunately, even if the network suppresses duplicates, the ap- 
plication itself may accidentally originate duplicate requests in its own failure/ 
retry procedures. These application-level duplications look like different mes- 
sages to the communication system, so it cannot suppress them; suppression 
must be accomplished by the application itself with knowledge of how to detect 
its own duplicates. 

A common example of duplicate suppression that must be handled at a high 
level is when a remote system user, puzzled by lack of response, initiates a new 
login to a time-sharing system. Another example is that most communication 
applications involve a provision for coping with a system crash at one end of a 
multisite transaction: reestablish the transaction when the crashed system comes 
up again. Unfortunately, reliable detection of a system crash is problematical: 
the problem may just be a lost or long-delayed acknowledgment. If so, the retried 
request is now a duplicate, which only the application can discover. Thus, the 
end-to-end argument again: If the application level has to have a duplicate- 
suppressing mechanism anyway, that mechanism can also suppress any dupli- 
cates generated inside the communication network; therefore, the function can 
be omitted from that lower level. The same basic reasoning applies to completely 
omitted messages, as well as to duplicated ones. 
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3.4 Guaranteeing FIFO Message Delivery 

Ensuring that messages arrive at the receiver in the same order in which they 
are sent is another function usually assigned to the communication subsystem. 
The mechanism usually used to achieve such first-in, first-out (FIFO) behavior 
guarantees FIFO ordering among messages sent on the same virtual circuit. 
Messages sent along independent virtual circuits, or through intermediate proc- 
esses outside the communication subsystem, may arrive in a different order from 
the order sent. A distributed application in which one node can originate requests 
that initiate actions at several sites cannot take advantage of the FIFO ordering 
property to guarantee that the actions requested occur in the correct order. 
Instead, an independent mechanism at a higher level than the communication 
subsystem must control the ordering of actions. 

3.5 Transaction Management 

We have now applied the end-to-end argument in the construction of the 
SWALLOW distributed data storage system [15], where it leads to significant 
reduction in overhead. SWALLOW provides data storage servers called reposi- 
tories that can be used remotely to store and retrieve data. Accessing data at a 
repository is done by sending it a message specifying the object to be accessed, 
the version, and type of access (read/write), plus a value to be written if the 
access is a write. The underlying message communication system does not 
suppress duplicate messages, since (a) the object identifier plus the version 
information suffices to detect duplicate writes, and (b) the effect of a duplicate 
read-request message is only to generate a duplicate response, which is easily 
discarded by the originator. Consequently, the low-level message communication 
protocol is significantly simplified. 

The underlying message communication system does not provide delivery 
acknowledgment either. The acknowledgment that the originator of a write 
request needs is that the data were stored safely. This acknowledgment can be 
provided only by high levels of the SWALLOW system. For read requests, a 
delivery acknowledgment is redundant, since the response containing the value 
read is sufficient acknowledgment. By eliminating delivery acknowledgments, 
the number of messages transmitted is halved. This message reduction can have 
a significant effect on both host load and network load, improving performance. 
This same line of reasoning has also been used in development of an experimental 
protocol for remote access to disk records [6]. The resulting reduction in path 
length in lower level protocols has been important in maintaining good perform- 
ance on remote disk access. 

4. IDENTIFYING THE ENDS 

Using the end-to-end argument sometimes requires subtlety of analysis of appli- 
cation requirements. For example, consider a computer communication network 
that carries some packet voice connections, that is, conversations between digital 
telephone instruments. For those connections that carry voice packets, an un- 
usually strong version of the end-to-end argument applies: If low levels of the 
communication system try to accomplish bit-perfect communication, they will 
probably introduce uncontrolled delays in packet delivery, for example, by re- 
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questing retransmission of damaged packets and holding up delivery of later 
packets until earlier ones have been correctly retransmitted. Such delays are 
disruptive to the voice application, which needs to feed data at a constant rate 
to the listener. It is better to accept slightly damaged packets as they are, or even 
to replace them with silence, a duplicate of the previous packet, or a noise burst. 
The natural redundancy of voice, together with the high-level error correction 
procedure in which one participant says "excuse me, someone dropped a glass. 
Would you please say that again?" will handle such dropouts, if they are relatively 
infrequent. 

However, this strong version of the end-to-end argument is a property of the 
specific application--two people in real-time conversation--rather than a prop- 
erty, say, of speech in general. If, instead, one considers a speech message system, 
in which the voice packets are stored in a file for later listening by the recipient, 
the arguments suddenly change their nature. Short delays in delivery of packets 
to the storage medium are not particularly disruptive, so there is no longer any 
objection to low-level reliability measures that might introduce delay in order to 
achieve reliability. More important, it is actually helpful to this application to 
get as much accuracy as possible in the recorded message, since the recipient, at 
the time of listening to the recording, is not going to be able to ask the sender to 
repeat a sentence. On the other hand, with a storage system acting as the 
receiving end of the voice communication, an end-to-end argument does apply to 
packet ordering and duplicate suppression. Thus the end-to-end argument is not 
an absolute rule, but rather a guideline that helps in application and protocol 
design analysis; one must use some care to identify the endpoints to which the 
argument should be applied. 

5. HISTORY, AND APPLICATION TO OTHER SYSTEM AREAS 

The individual examples of end-to-end arguments cited in this paper are not 
original; they have accumulated over the years. The first example of questionable 
intermediate delivery acknowledgments noticed by the authors was the "wait" 
message of the Massachusetts Institute of Technology Compatible Time-Sharing 
System, which the system printed on the user's terminal whenever the user 
entered a command [3]. {The message had some value in the early days of the 
system, when crashes and communication failures were so frequent that inter- 
mediate acknowledgments provided some needed reassurance that all was well.) 

The end-to-end argument relating to encryption was first publicly discussed 
by Branstad in a 1973 paper [2]; presumably the military security community 
held classified discussions before that time. Diffie and Hellman [4] and Kent [8] 
developed the arguments in more depth, and Needham and Schroeder [11] devised 
improved protocols for the purpose. 

The two-phase-commit data update protocols of Gray [5], Lampson and Sturgis 
[10] and Reed [13] all use a form of end-to-end argument to justify their existence; 
they are end-to-end protocols that do not depend for correctness on reliability, 
FIFO sequencing, or duplicate suppression within the communication system, 
since all of these problems may also be introduced by other system component 
failures as well. Reed makes this argument explicitly in the second chapter of his 
Ph.D. dissertation on decentralized atomic actions [14]. 
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End-to-end arguments are often applied to error control and correctness in 
application systems. For example, a banking system usually provides high-level 
auditing procedures as a matter of policy and legal requirement. Those high-level 
auditing procedures will uncover not only high-level mistakes, such as performing 
a withdrawal against the wrong account, but they will also detect low-level 
mistakes such as coordination errors in the underlying data management system. 
Therefore, a costly algorithm that absolutely eliminates such coordination errors 
may be arguably less appropriate than a less costly algorithm that just makes 
such errors very rare. In airline reservation systems, an agent can be relied upon 
to keep trying through system crashes and delays until a reservation is either 
confirmed or refused. Lower level recovery procedures to guarantee that an 
unconfirmed request for a reservation will survive a system crash are thus not 
vital. In telephone exchanges, a failure that could cause a single call to be lost is 
considered not worth providing explicit recovery for, since the caller will probably 
replace the call if it matters [7]. All of these design approaches are examples of 
the end-to-end argument being applied to automatic recovery. 

Much of the debate in the network protocol community over datagrams, virtual 
circuits, and connectionless protocols is a debate about end-to-end arguments. A 
modularity argument prizes a reliable, F I F O  sequenced, duplicate-suppressed 
stream of data as a system component that is easy to build on, and that argument 
favors virtual circuits. The end-to-end argument claims that centrally provided 
versions of each of those functions will be incomplete for some applications, and 
those applications will find it easier to build their own version of the functions 
starting with datagrams. 

A version of the end-to-end argument in a noncommunication application was 
developed in the 1950s by system analysts whose responsibility included reading 
and writing files on large numbers of magnetic tape reels. Repeated attempts to 
define and implement a reliable tape subsystem repeatedly foundered, as flaky 
tape drives, undependable system operators, and system crashes conspired against 
all narrowly focused reliability measures. Eventually, it became standard practice 
for every application to provide its own application-dependent checks and recov- 
ery strategy, and to assume that lower level error detection mechanisms, at best, 
reduced the frequency with which the higher level checks failed. As an example, 
the Multics file backup system [17], even though it is built on a foundation of 
magnetic tape subsystem format that provides very powerful error detection and 
correction features, provides its own error control in the form of record labels 
and multiple copies of every file. 

The arguments that are used in support of reduced instruction set computer 
(RISC) architecture are similar to end-to-end arguments. The RISC argument is 
that the client of the architecture will get better performance by implementing 
exactly the instructions needed from primitive tools; any attempt by the computer 
designer to anticipate the client's requirements for an esoteric feature will 
probably miss the target slightly and the client will end up reimplementing that 
feature anyway. (We are indebted to M. Satyanarayanan for pointing out this 
example.) 

Lampson, in his arguments supporting the open operating system, [9] uses an 
argument similar to the end-to-end argument as a justification. Lampson argues 
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against making any function a permanent fixture of lower level modules; the 
function may be provided by a lower level module, but it should always be 
replaceable by an application's special version of the function. The reasoning is 
that  for any function that  can be thought of, at least some applications will find 
that, of necessity, they must implement the function themselves in order to meet 
correctly their own requirements. This line of reasoning leads Lampson to 
propose an "open" system in which the entire operating system consists of 
replaceable routines from a library. Such an approach has only recently become 
feasible in the context of computers dedicated to a single application. It may be 
the case that the large quantity of fixed supervisor functions typical of large- 
scale operating systems is only an artifact of economic pressures that  have 
demanded multiplexing of expensive, hardware and therefore a protected super- 
visor. Most recent system "kernelization" projects have, in fact, focused at least 
in part on getting function out of low system levels [12, 16]. Though this function 
movement is inspired by a different kind of correctness argument, it has the side 
effect of producing an operating system that  is more flexible for applications, 
which is exactly the main thrust of the end-to-end argument. 

6. CONCLUSIONS 

End-to-end arguments are a kind of "Occam's razor" when it comes to choosing 
the functions to be provided in a communication subsystem. Because the com- 
munication subsystem is frequently specified before applications that  use the 
subsystem are known, the designer may be tempted to "help" the users by taking 
on more function than necessary. Awareness of end-to-end arguments can help 
to reduce such temptations. 

It is fashionable these days to talk about layered communication protocols, but 
without clearly defined criteria for assigning functions to layers. Such layerings 
are desirable to enhance modularity. End-to-end arguments may be viewed as 
part of a set of rational principles for organizing such layered systems. We hope 
that our discussion will help to add substance to arguments about the "proper" 
layering. 
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