
IEEE Communications Magazine • September 2013124 0163-6804/13/$25.00 © 2013 IEEE

INTRODUCTION

Wireless mesh networks (WMNs) are being
deployed all around the world to both provide
ubiquitous connection to the Internet and carry
data generated by several services (video surveil-
lance, smart grids, earthquake early warning sys-
tems, etc.). However, since wireless transmissions
are involved, interference is a major concern. In
order to mitigate the effects of interference,
mesh routers are being equipped with multiple
radio interfaces, which allow simultaneous trans-
missions on orthogonal channels (as provided by
the IEEE 802.11 standard). Given that the num-
ber of available radio interfaces per node is usu-
ally less than the number of available channels,
the problem of how to assign a channel to every
radio interface arises. Channel assignment turns
out to be a challenging problem, also due to its
interdependence with the routing problem [1].

In order to optimize the network performance, a
number of channel assignment algorithms
(referred to as load-aware [2]) have therefore
been proposed that assign channels to radios by
taking link loads into account.

However, a channel assignment computed
based on a given traffic profile may not be effi-
cient if the network is offered a different traffic
load [3]. Hence, a number of papers have recent-
ly addressed the problem of re-assigning chan-
nels to cope with a variation in the traffic load.
Such recomputation of channels is constrained
by the need to limit the disruption in connectivi-
ty following a number of channel switches.

In [4, 5], heuristics are proposed that mini-
mize the decrease in the amount of traffic deliv-
ered to the destination under the assumption
that a channel reconfiguration takes a fixed
amount of time. The presented numerical simu-
lations assume a value of 1 s for this amount of
time. However, no evidence is given that such a
value is achievable in practice. The approach
proposed in [6] aims to recalculate and dissemi-
nate the channel assignment as frequently as
once per second. Such a proposal is evaluated by
using the ns-3 network simulator. However, the
authors assume the availability of a single gate-
way node that, based on knowledge of the com-
plete topology, traffic demands, and set of
interfering links, computes the channel assign-
ment and the routes toward all the network
nodes in a centralized manner and disseminates
them using a source routing paradigm.Thus,
such results do not provide insights about the
time required by a network to reach a steady
state again after switching channels if a practical
distributed hop-by-hop routing protocol is used.

To the best of our knowledge, no other work
has presented an experimental study to systemat-
ically evaluate the impact of switching channels
on the performance of a wireless mesh network.
In [7], a channel abstraction layer has been imple-
mented in the Linux kernel to experiment with a
hybrid channel assignment algorithm. However,
the proposed approach brings a number of mod-
ifications to the Linux kernel (a unicast table
duplicating the routing table is implemented in
the channel abstraction layer, a packet buffering
mechanism is required to queue packets waiting
for the interface to switch to the selected chan-

ABSTRACT

A large body of research has recently
addressed the channel assignment problem in
multi-radio wireless mesh networks. In order to
reduce interference, many proposals require
radio interfaces to (more or less frequently)
switch channels to exploit the availability of mul-
tiple orthogonal channels. However, such pro-
posals have been almost exclusively evaluated by
means of simulations and the impact of switch-
ing channels on the network performance has
not been experimentally evaluated so far. In this
article, we aim to fill such a gap and present the
results of a thorough experimental campaign we
conducted on the ORBIT wireless testbed to
study the effects of switching channels in a multi-
radio wireless mesh network. Our experiments
show that in common scenarios a channel switch
causes a non-negligible interruption in the con-
nectivity among nodes, which is on the order of
10 seconds. Also, our tests reveal that a rapid
recovery from link failures caused by channel
switches is prevented by a rather slow update of
the advertised link quality. Inspired by the analy-
sis of the experiments we conducted, we also
propose and evaluate a preliminary technique to
reduce the interruption in the delivery of packets
caused by a channel switch.

TOPICS IN NETWORK TESTING

Stefano Avallone and Giovanni Di Stasi, University of Naples

An Experimental Study of the
Channel Switching Cost in
Multi-Radio Wireless Mesh Networks

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 124

IEEE Communications Magazine • September 2013 125

nel, an additional function is implemented to
correctly transmit broadcast frames, beaconing
at the MAC layer is disabled), which make the
presented results only meaningful for the specif-
ic architecture considered. In [8], the authors
aim at evaluating the impact of a channel switch
on the performance experienced by voice and
video traffic. However, authors only present
some experimental results and do not investigate
the factors leading to the obtained results. More
important, a multi-radio node is emulated by
connecting two single-radio nodes via an Ether-
net cable, which clearly affects the accuracy of
the presented results.

The goal of this article is to systematically
evaluate the impact of switching channels on the
performance of a wireless mesh network and to
identify the causes of the observed interruptions
in the connectivity among nodes. To this end, we
conducted a thorough experimental campaign on
the ORBIT wireless testbed hosted by Rutgers
University.1 We selected Optimized Link State
Routing (OLSR) as the routing protocol for our
experiments. OLSR is a proactive routing proto-
col standardized by the Internet Engineering
Task Force (IETF) RFC 3626, for which there is
an implementation2 that is considered to be sta-
ble and well tested since it is deployed on many
community WMNs with hundreds of nodes. The
analysis of the experiments we conducted reveals
that a large part of the interruption in the con-
nectivity following a channel switch is caused by
the routing protocol, and in particular by the
procedure employed to update the link quality.
Since every routing protocol implements its own
version of such a procedure, the indications we
provide in this article are useful for tuning the
configuration of any distributed hop-by-hop
routing protocol. Based on the analysis of our
experiments, we also propose and evaluate a
preliminary technique that can be employed to
reduce the duration of the interruption in the
delivery of packets caused by a channel switch.

In the remainder of this article, after a brief
introduction to OLSR, we present and analyze
the results of the experiments we conducted and
evaluate the technique proposed to reduce the
interruption caused by a channel switch. The
findings of our experimental study are then sum-
marized.

OPTIMIZED LINK STATE ROUTING
Optimized Link State Routing (OLSR)is a rout-
ing protocol for mobile ad hoc networks defined
by the IETF Mobile Ad Hoc Network (MANET)
working group (RFC 3626). OLSR is a proactive
protocol, meaning that each node maintains a
route for all known destinations at all times.
Each node periodically (every 2 s, as proposed
by RFC 3626) sends a HELLO message includ-
ing the list of its neighbors. Such exchange of
messages enables each node to discover its
neighbors and two-hop neighbors, as well as to
estimate how reliable a link to a neighbor is. An
HELLO message has an associated validity time,
so a node can discard a link to a neighbor if the
validity of the last HELLO message received
from that neighbor has expired. In order to dis-
card links of poor quality, a mechanism called

link hysteresis is defined, which makes use of two
thresholds: a new link is considered as estab-
lished when its quality exceeds the higher thresh-
old, while an established link is considered as
lost when its quality drops below the lower
threshold. The values proposed by RFC 3626 are
such that the successful (unsuccessful) reception
of three consecutive HELLO messages is enough
to mark the link as established (lost). A link is
denoted asymmetric if it is only verified in one
direction (i.e., a node has received a HELLO
message from a neighbor) or symmetric if it is
verified in both directions (i.e., a node has
received a HELLO message from a neighbor
which includes its address). OLSR only provides
for the use of symmetric links. To allow every
node to build the network topology, a topology
control (TC) message is also sent periodically
(the proposed period is 5 s). Such a message
includes the list of neighbors of the sender and
is retransmitted by every node receiving it
according to the well-known flooding strategy.
Based on the information gathered from the
received HELLO and TC messages, each node
can use the algorithm proposed by RFC 3626 to
find the shortest (in terms of hop count) paths
to all the other nodes in the network, thus deter-
mining the routes populating the routing table.

At the time of this writing, the IETF MANET
working group is developing a second version of
OLSR, which differs from the first one mainly
because it allows the use of link metrics other
than the hop count. Each node computes the
quality of an incoming link from a neighbor by
collecting statistics on the HELLO messages
received from that neighbor and includes such
information in the HELLO messages it sends.
Thus, a node is aware of the quality of both the
incoming and outgoing links to each of its neigh-
bors. The metric associated with an (undirected)
link is then computed as a function of the quali-
ty of both the incoming and outgoing links. TC
messages also carry information on the link
quality, so each node builds the network topolo-
gy and computes the shortest paths to all the
other nodes according to the link metric used.
The OLSR daemon we used also implements
OLSRv2 and different link metrics. In our exper-
iments, we used the default link metric, expected
transmission count (ETX) [9].

EXPERIMENTAL RESULTS
Our testing methodology consists of investigating
three different scenarios, each having a precise
purpose. First, we consider two nodes and ana-
lyze two different cases of channel switching,
with the purpose of measuring how long the con-
nectivity between the two nodes is interrupted
and identifying the causes of such interruption.
Second, we consider a seven-node topology to
investigate whether the interruption caused by a
channel switch can be alleviated through the use
of alternative paths and to give a better idea of
what happens in topologies with multiple nodes.
Third, we consider a larger topology (13 nodes)
and perform a number of (random) channel
switches varying from 1 to 5. The goal is to eval-
uate the impact of the number of channel switch-
es on the network performance and the

1 http://www.orbit-lab.org.

2 http://www.olsr.org

At the time of this

writing, the

IETF MANET working

group is developing

a second version of

OLSR, which differs

from the first one

mainly because it

allows the use of link

metrics other than

the hop count.

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 125

IEEE Communications Magazine • September 2013126

improvement achieved by the technique we pro-
pose to reduce the interruption in the delivery of
packets.

All the experiments described hereinafter
have been performed with the aid of a central-
ized channel assignment server (CAS), which
connects (via TCP) to each of the channel assign-
ment clients (CACs) running on all the network
nodes to communicate the channel switch infor-
mation (old channel-new channel pairs). When
all the CACs have been informed, the CAS
sends a Channel Switch message to the CAC
running on a selected node. Such a CAC
rebroadcasts the received message (multiple
times, to account for possible transmission fail-
ures) and then performs the required channel
switches, and so do all the CACs receiving the
Channel Switch message.

Each experiment has been repeated five times
to take various sources of randomness into
account. For instance, to avoid synchronization
of control messages (e.g., HELLO and TC mes-
sages), RFC 3626 proposes that each node add a
random amount of time (jitter) to the interval at
which messages are generated. Hence, results can
vary among different repetitions of the same
experiment. In the following subsections we
describe in detail a single repetition for each
experiment, while we refer to Table 1 for a sum-
mary of the results achieved in all the repetitions.

All the mesh nodes have two IEEE 802.11
radio interfaces (Atheros chipset) operating in
ad hoc mode and using the standard distributed
coordinated function (DCF) as the channel
access mechanism. To alleviate the adjacent
channel interference, we used channels with cen-
ter frequencies separated by at least 40 MHz. In
the following, we just enumerate channels as 1,
2, 3, … instead of specifying the exact IEEE
numbering. Every mesh node runs the Linux
kernel (v. 3.2) and the OLSR daemon (v. 0.6.4)
configured with the default values. The driver
used for the radio interfaces is ath5k. In all the
experiments, the WMN is traversed by low-bit-
rate traffic (100 kb/s) in order to decrease the
probability of collisions. Traffic has been gener-
ated by D-ITG [10].

SCENARIO I: TWO-NODE TOPOLOGY
We consider two mesh nodes running OLSR,
and two host nodes acting as source and destina-
tion of a single traffic flow. The sender is con-

nected to mesh node 0, and the receiver is con-
nected to mesh node 1 (both via Ethernet cable).
In the following, we present the experimental
results achieved in the two cases we considered.

Case I-A: Fixed Neighbor-to-Interface Bind-
ing — Figure 1a shows the setup used for this
experiment (the hosts acting as sender and
receiver are not shown). For clarity, only the last
two bytes of the IP addresses of the mesh nodes
are shown (i.e., 0.1 instead of 10.0.0.1). Nodes 0
and 1 initially establish a link on channel 1,
which is crossed by the traffic generated by the
sender. At some point in time, both nodes switch
their radios on channel 2. Thus, this experiment
serves the purpose of analyzing the case of a
fixed neighbor-to-interface binding; that is, each
node continues to use the same radio interface
to communicate with the neighbor after the
channel switch. In such a case, no change in the
route used to reach the neighbor is required on
both nodes. We first comment on the results
achieved by OLSRv1 (with the hop count met-
ric) in the case of UDP traffic. Figure 1b shows
that such a channel switch causes an interruption
in the delivery of UDP packets to the destina-
tion that lasts for about 12.7 s. We looked at the
traffic traces of the experiment to identify the
causes of such a long interruption (the exchange
of some relevant packets is illustrated in Fig.
1d). It turns out that no packets are successfully
exchanged between the two nodes for about 7.8
s following the channel switch, which indicates a
lack of connectivity at the medium access control
(MAC) layer between the two nodes. The reason
is that the IEEE 802.11 standard provides that
nodes cannot trasmit data before they join a
basic service set (BSS) in infrastructure mode or
an independent BSS (IBSS) in ad hoc mode.
Thus, after a channel switch, each node needs to
join a new IBSS on the new channel. The imple-
mentation of such a procedure within the Linux
kernel requires that a node listens on the speci-
fied channel (or scans all the channels if no
channel is specified) at intervals of 2 s until
either a beacon frame advertising an existing
IBSS (or a specific IBSS in case a BSSID is
specified) is received or a timer, whose duration
is 7 s, expires. If the timer expires, the node cre-
ates its own IBSS and starts advertising it in the
beacon frames it sends. Otherwise, the node
joins one of the IBSSs that have been advertised.

Table 1. Length (in seconds) of the interruption in the delivery of packets measured in all the experiments. TNEW_IBSS: time to establish a
new IBSS; TJOIN_IBSS: time to join an existing IBSS; THELLO: HELLO message interval; THELLO_TIMEOUT: HELLO message validity;
TTC_TO_SOURCE: time for a TC message to arrive to the mesh source node.

OLSRv1 OLSRv2

UDP TCP UDP TCP

Case I-A TNEW_IBSS + 3 ◊ THELLO 13.3 ± 0.6 20.5 ± 7.0 TNEW_IBSS 9.0 ± 1.0 13.6 ± 0.0

Case I-B TJOIN_IBSS + 4 ◊ THELLO 7.6 ± 0.8 13.6 ± 0.1 THELLO_TIMEOUT 20.4 ± 1.0 27.5 ± 0.0

Case II, flow 3Æ6 3 THELLO 4.9 ± 0.3 10.2 ± 3.4 THELLO_TIMEOUT 18.5 ± 0.4 27.5 ± 0.0

Case II, flow 6Æ3 TJOIN_IBSS + 4 ◊ THELLO 8.3 ± 0.8 10.2 ± 3.4 TTC_TO_SOURCE 21.5 ± 0.7 27.5 ± 0.0

AVALLONE_LAYOUT_Layout 1 8/26/13 6:54 PM Page 126

IEEE Communications Magazine • September 2013 127

In our experiment, both nodes wait 7 s in the
attempt to receive beacon frames announcing an
IBSS on the new channel. Then one node cre-
ates and advertises a new IBSS, which is joined
by the other node, and the connectivity at the
MAC layer is restored. At this point, however,
each node no longer has a valid route to the
other node. Indeed, the lack of connectivity at
the MAC layer lasts long enough to cause the
loss of three consecutive HELLO messages,
which, according to the hysteresis mechanism
used by OLSRv1, induces the routing protocol
to consider the link to the neighbor as lost.
Thus, once the connectivity at the MAC layer is
restored, the link to the neighbor must be estab-
lished again. To this end, each node has to
receive three consecutive HELLO messages
before the link can be considered symmetric and
a route to the neighbor can be inserted into the
routing table. Thus, the interruption in the deliv-
ery of packets between two nodes lasts for the
time required to establish a new IBSS plus the
time required to establish a new link (three
times the HELLO interval, in case of OLSRv1
using default values). Rather than making the

process of marking a link as lost slower (which
would affect the ability of the routing protocol
to rapidly react to link failures), a viable solution
for avoiding the additional time needed to re-
establish a link could be to set the timer used by
the MAC layer to determine that no IBSS is
available to join at a value less than the time
required by the hysteresis mechanism to mark a
link as lost (since no value for such a timer is
mandated by the IEEE 802.11 standard).

When OLSRv2 (with the ETX metric) is
used, the delivery of UDP packets is interrupted
for about 8.5 s after the channel switch (Fig. 1c).
As explained above, the creation of a new IBSS
takes at least 7 s, during which a number of
HELLO messages get lost (Fig. 1e). However,
contrary to what happens with OLSRv1, the link
quality used by OLSRv2 degrades rather slowly,
and the lack of connectivity at the MAC layer
does not last long enough to make the link qual-
ity drop below the threshold associated with a
usable link (0.1 by default). Hence, in this case,
the interruption in the delivery of packets basi-
cally coincides with the interval required to cre-
ate a new IBSS at the MAC layer, and there are

Figure 1. Case I-A: fixed neighbor-to-interface binding: a) network topology; b) OLSRv1 (hop count); c) OLSRv2 (ETX); d) OLSRv1
(hop count); e) OLSRv2 (ETX).

Time (s)

(b)

150

40Th
ro

ug
hp

ut
 (

kb
ps

)

0

80

120

160

200

30 45 60

No connectivity
at MAC layer
(≤ 7.8s)

29.6s

28.7s

30.2s

30.5s

32.3s

34.3s

36.3s

38.0s

38.4s
39.6s

40.3s

42.9s

42.9s

41.3s

42.3s

UDP
TCP

Time (s)

(c)

150

40Th
ro

ug
hp

ut
 (

kb
ps

)

0

80

120

160

200

30 45 60

UDP
TCP

0
0.1

1→2 1→2

0.2

0.1 0.2

HELLO (0.1 SYM)

HELLO (0.2 SYM)

HELLO (0.1 SYM)

HELLO (0.1 SYM)

HELLO (0.1 SYM)

HELLO (0.1 LOST)

HELLO (0.1 LOST)

HELLO (0.1 LOST)

HELLO (0.1 LOST)

HELLO (0.1 SYM)

HELLO (0.2 SYM)

HELLO (0.2 SYM)

HELLO (0.2 LOST)

HELLO (0.2 LOST)

HELLO (0.2 LOST)

HELLO (0.2 LOST)

HELLO (0.2 ASYM)

UDP packets

UDP packets

(a)

(d)

1

No route to 1
on node 0
(4.9s)

No connectivity
at MAC layer
(≤ 8.4s)

29.8s

29.6s

30.1s

31.1s

33.1s

34.8s

36.7s

38.5s

38.6S

38.6S

0.1 0.2

HELLO (0.1 SYM/1/1)

HELLO (0.2 SYM/1/1)

HELLO (0.1 SYM/1/1)

HELLO (0.1 SYM/1/1)

HELLO (0.1 SYM/1/1)

HELLO (0.1 SYM/0.85/1)

HELLO (0.2 SYM/1/1)

HELLO (0.2 SYM/1/1)

HELLO (0.2 SYM/0.99/1)

HELLO (0.2 SYM/0.99/1)

UDP packets

UDP packets

(e)

HELLO (0.1 SYM/1/1)

HELLO (0.2 SYM/0.99/1)

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 127

IEEE Communications Magazine • September 2013128

no additional delays introduced by the routing
protocol.

In case of TCP traffic, the interruption in the
delivery of packets to the destination may be
prolonged by the TCP congestion control mecha-
nism. Indeed, if packets are not acknowledged
before the re-transmission timer expires, the
TCP sender stops transmitting new packets, re-
transmits the packets that have not been
acknowledged and doubles the re-transmission
timer. In the case of OLSRv1 (Fig. 1b), valid
routes are restored just before the first unac-
knowledged packet is retransmitted for the sixth
time (13.63 s after its initial transmission). How-
ever, for some repetitions (2 out 5) of this exper-
iment, valid routes are restored just after the
sixth retransmission of the first unacknowledged
packet, thus making it fail again. In such a case,
the packet is retransmitted again after 13.84 s,
thus making the interruption in the delivery of
TCP packets last for about 27.4 s. This behavior
explains the high deviation in the values report-
ed in Table 1. In the case of OLSRv2 (Fig. 1c),
the time at which the new IBSS is established
(about 7 s since the channel switch) falls in

between the first unacknowledged packet is sent
for the fifth time (6.7 s since the initial transmis-
sion) and the sixth time (13.63 s since the initial
transmission). Hence, the interruption in the
delivery of TCP packets lasts 13.6 s in all the
repetitions of this experiment.

Case I-B: Changing Neighbor-to-Interface
Binding — The setup considered in this case is
shown in Fig. 2a. Nodes 0 and 1 initially estab-
lish a link on channel 1, which is crossed by the
traffic generated by the sender. At some point in
time, node 0 switches its radio operating on
channel 1 to channel 2. Consequently, the two
interfaces involved in the previously established
link no longer hear each other. Instead, the
interface on node 0 can now hear a different
interface on node 1, and a new link must be
established between them. Thus, in this case,
each node has to change its route to the other:
node 0 has to change the next hop (1.2 instead
of 0.2), while node 1 has to change the interface
used to reach the neighbor. We first comment
on the results3 achieved by OLSRv1 (with the
hop count metric) in the case of UDP traffic.

Figure 2. Case I-B: changing neighbor-to-interface binding: a) network topology; b) OLSRv1 (hop count); c) OLSRv2 (ETX); d)
OLSRv1 (hop count); e) OLSRv2 (ETX).

Time (s)

(b)

150

40Th
ro

ug
hp

ut
 (

kb
ps

)

0

80

120

160

200

30 45 60

UDP
TCP

Time (s)

(c)

150

40Th
ro

ug
hp

ut
 (

kb
ps

)

0

80

120

160

200

30 45 60

UDP
TCP

0

Before channel switch
After channel switch

0.1

1→2

0.2

1.2

(a)

1

1

2

No connectivity
at MAC layer
(≤ 1.1s)

26.2s

28.7s

29.3s

30.4s

30.5s

32.1s

32.5s
33.7s

34.4s

35.7s

36.3s
37.6s

37.7s

(d)

0.2 0.1 1.2

UDP packets

HELLO (0.2 SYM)

HELLO ()

HELLO (0.1 LOST)

HELLO (0.1 LOST)

HELLO (0.1 LOST)

HELLO (0.1 SYM)

HELLO (0.1 SYM)

HELLO (0.1 SYM)

HELLO (0.1 SYM)
HELLO (0.2 SYM, 1.2 LOST)

HELLO (0.2 SYM, 1.2 LOST)

HELLO (0.2 LOST, 1.2 LOST)

HELLO (0.2 LOST, 1.2 ASYM)

UDP packets

HELLO (0.1 SYM)

HELLO (0.1 LOST)

Invalid route
(via 0.2) to 1
on node 0
(4.0s)

No route to
1 on node 0
(3.3s)

No connectivity
at MAC layer
(≤ 0.3s)

27.0s
28.8s

28.9s

29.2s

30.7s

30.9s
32.6s

32.6s

45.4s

46.5s

47.3s

48.3s

48.3s

(e)

0.2 0.1 1.2

UDP packets
HELLO (0.2 SYM/1/1)

HELLO ()

HELLO (0.1 SYM/0/0)

HELLO (0.1 SYM/0/0)

HELLO (0.1 SYM/0.31/0.35)

HELLO (0.1 SYM/0.37/0.37)

HELLO (0.1 SYM/1/1)

HELLO
(0.1 SYM/1/1)

HELLO
(0.1 SYM/1/1)

HELLO (0.2 SYM/1/1,
1.2 LOST/0/0)

HELLO (0.2 SYM/0.87/1,
1.2 LOST/0.06/0)

HELLO (0.2 SYM/0.5/1,
1.2 LOST/0.37/0.31)

HELLO (0.2 LOST/0.5/1,
1.2 SYM/0.37/0.31)

UDP packets

HELLO
(0.1 SYM/1/1)

HELLO
(0.1 SYM/0.87/1)

Invalid route
(via 0.2) to 1
on node 0
(18.1s)

3 The analysis of these
experiments led us to
identify and fix a bug in
the implementation of
OLSR regarding the selec-
tion of the link to be used
to connect to a neighbor
in case of multiple avail-
able links. All the results
presented in this paper
have been obtained by
running the fixed version
of OLSR.

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 128

IEEE Communications Magazine • September 2013 129

Figure 2b shows that the channel switch described
above causes an interruption in the delivery of
UDP packets to the destination that lasts for
about 8.4 s. By looking at the traffic traces (Fig.
2d), we notice that the interruption in the con-
nectivity at the MAC layer between the two
nodes is much shorter (less than 1.1 s) than in
the previous case I-A. This is because when the
interface on node 0 switches to channel 2, it soon
receives a beacon frame from the interface on
node 1, which is already operating on channel 2,
and thus promptly joins the advertised IBSS. The
remaining part of the interruption is due to the
routing protocol. Indeed, the OLSR daemon on
node 0 still considers the link to 10.0.0.2 as sym-
metric and hence uses this IP address as the next
hop for the destination. The IP address is
resolved to the MAC address of the interface on
node 1 operating on channel 1, which is clearly
not reachable by node 0 (whose interface is now
operating on channel 2). Node 0 no longer
receives HELLO messages from 10.0.0.2, and
hence, according to the hysteresis mechanism, it
marks the link to such interface as lost after a
few seconds and removes the corresponding
route from the routing table. Meanwhile, node 0
receives HELLO messages from 10.0.1.2; there-
fore, a few seconds later, a new link between
10.0.0.1 and 10.0.1.2 is established and used to
exchange traffic between nodes 0 and 1.

We now comment on the results achieved by
OLSRv2 (with the ETX metric). Figure 2c shows
that the delivery of UDP packets is interrupted
for about 19.4 s after the channel switch. Again,
the lack of connectivity at the MAC layer lasts
for a short time (less than 0.3 s, Fig. 2e), and
most of the interruption in the delivery of pack-
ets is due to the routing protocol. Once the con-
nectivity at the MAC layer is restored, node 0
exchanges HELLO messages with 10.0.1.2, while
no longer receiving HELLO messages from
10.0.0.2. Hence, the quality of the link between
10.0.0.1 and 10.0.0.2 decreases, while the quality
of the link between 10.0.0.1 and 10.0.1.2 increas-
es. However, as noted while describing case I-A,
the quality of a link improves and degrades
rather slowly according to the mechanism used
by OLSRv2. For this reason, the quality of the
failed link between 10.0.0.1 and 10.0.0.2 stays
higher than that of the new link between 10.0.0.1
and 10.0.1.2 for a long time; hence, the new link
is not used. Eventually, the old link is discarded
in favor of the new one not because its quality is
exceeded by that of the new link, but because
the validity (20 s) of the last HELLO message
received from 10.0.0.2 expires, and the old link is
marked as lost. In fact, at the time the old link is
marked as lost, its quality still exceeds that of
the new link. As soon as the old link is marked
as lost by node 0, the only remaining link to
node 1 is the link between 10.0.0.1 and 10.0.1.2.
A corresponding route is added to the routing
table of node 0, and the traffic starts flowing
again between nodes 0 and 1. We observe here
that the slow degradation of the quality of a
failed link is accentuated by the fact that the
quality of the link in the outgoing direction
remains fixed to 1. Indeed, this value can only be
measured by the neighbor and communicated to
the node via HELLO messages. Since no

HELLO messages are received from the neigh-
bor after the channel switch, the quality of the
link in the outgoing direction remains fixed to
the last value communicated by the neighbor.

Contrary to the case of fixed neighbor-to-
interface binding (case I-A), in this case the lack
of connectivity at the MAC layer is negligible,
and most of the interruption in the delivery of
packets consists of the time the routing protocol
takes to prefer the link on the new channel over
the link on the previous channel. Thus, routing
protocols that quickly update the link quality (as
done by OLSRv1, in comparison to OLSRv2)
enable to (relatively) rapidly switch to the new
link, thus reducing the interruption in the deliv-
ery of packets to the destination. However, we
note that the interruption in the delivery of
packets cannot be made arbitrarily small by
tweaking the protocol parameters. Indeed,
reducing the HELLO interval has the drawback
of increasing the overhead, while reducing the
number of consecutive HELLO messages that
need to be received (lost) to consider a link as
established (lost) has the drawback of making
the establishment/removal of links too sensitive
to temporary degradations of the wireless chan-
nel (which can frequently occur in practice), with
the risk of introducing instabilities at the routing
layer.

In the case of TCP traffic, we again observe
an increase in the duration of the interruption
with respect to UDP traffic. For OLSRv1 (Fig.
2b), the time at which the new route is added to
the routing table usually falls in between the first
unacknowledged packet is sent for the fifth time
(6.7 s since the initial transmission) and the sixth
time (13.63 s since the initial transmission).
Hence, the duration of the interruption in the
delivery of TCP packets is about 13.6 s in all the
repetitions of this experiment. For OLSRv2 (Fig.
2c), the time at which the new route is added to
the routing table usually falls between the first
unacknowledged packet being sent for the sixth
time (13.63 s since initial transmission) and the
seventh time (27.47 s since initial transmission).
Hence, the duration of the interruption in the
delivery of TCP packets is about 27.5 s in all the
repetitions of this experiment.

Finally, we remark that the only aspect of
OLSR determining the results shown in this sec-
tion is the procedure adopted to consider links
as established/lost. Indeed, we have shown that
the duration of the interruption in the delivery
of packets depends on how fast such a proce-
dure is. Therefore, we believe that the comments
made in this section are not specific to OLSR,
but they can be applied to any distributed hop-
by-hop routing protocol.

Scenario II: Seven-Node Topology — We
consider seven mesh nodes (Fig. 3a) running
OLSR, and two host nodes acting as the source
and destination of a pair of traffic flows. One
flow is generated by the host connected to node
3 and destined to the host connected to node 6,
while the other flow follows the opposite direc-
tion. At some point in time, a channel switch of
the same kind as case I-B takes place. In partic-
ular, node 3 switches its radio operating on
channel 1 to channel 2 so that such a radio can

Contrary to the case

of fixed neighbor-to-

interface binding

(case I-A), in this

case the lack of con-

nectivity at the MAC

layer is negligible,

and most of the

interruption in the

delivery of packets

consists of the time

the routing protocol

takes to prefer the

link on the new

channel over the link

on the previous

channel.

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 129

IEEE Communications Magazine • September 2013130

hear a different radio on node 5. We first com-
ment on the results achieved by OLSRv1 (with
the hop count metric) in the case of UDP traffic.
First, we consider the flow from node 3 to node
6, which is initially routed along the path with
the minimum hop count (3-5-2-6). As explained
earlier, node 3 continues to send packets to the
interface of node 5 operating on channel 1
(10.0.0.6) until the link to this interface is con-
sidered lost, which usually happens 6 s after
reception of the last HELLO message. At this
point (34.0 s in Fig. 3d), since the new link to
interface 10.0.1.6 is not yet symmetric, node 3
chooses an alternative path (3-1-0-4-6) to the
destination. When the new link is established,
node 3 starts sending packets along the shortest
path again. This experiment shows that an alter-

native path, if available at the node immediately
upstream of the link that fails due to the channel
switch, is used as soon as such link is marked as
lost, thus reducing the interruption in the deliv-
ery of packets (4.5 s as shown in Fig. 3b).

Concerning the flow from node 6 to node 3,
we observe that node 6 (like all the other nodes
but 3 and 5) is unaware of the lack of connectivi-
ty between nodes 3 and 5 until it receives one of
the TC messages generated by nodes 3 and 5
when the link between them becomes lost. To
limit overhead, TC messages are not forwarded
immediately, but are grouped with other received
TC messages and transmitted in a single packet
along with a HELLO message. Such a mecha-
nism delays the spread of information, with the
consequent formation of routing loops. Indeed,

Figure 3. Scenario II: seven-node topology: a) network topology; b) OLSRv1 (hop count); c) OLSRv2 (ETX); d) OLSRv1 (hop count);
e) OLSRv2 (ETX).

Time (s)
150

80

Th
ro

ug
hp

ut
 (

kb
ps

)

40

0

120

30 45 60

Flow 3→6

29.5 33.1 34.0 36.2 38.6 40.5 41.9 42.5 43.5Time (s)

Channel
switch

Node 3
6 via 1

Node 5
3 via 3

Node 5
3 via 2

Node 3
6 via 5

Node 2
3 via 6

Node 6
3 via 4

Node 6
3 via 2

Node 2
3 via 5

Flow 6→3

Packets lost
on 3→5

Packets lost
on 6→2

(routing loop)

Packets follow
6→2→5→3

Packets follow
6→2→5→3

Packets follow
3→5→2→6

Before channel switch
After channel switch

(a)

1

3

0

5

5

2

6

1

Flow 3→6

Flow 6→3

UDP
TCP

Time (s)
150

80

Th
ro

ug
hp

ut
 (

kb
ps

)

40

0

120

30 45 60

UDP
TCP

Time (s)
150

80

Th
ro

ug
hp

ut
 (

kb
ps

)

40

0

120

30 45 60

UDP
TCP

Time (s)

(b)

(d)

Flow 3→6

29.0 48.0 48.9 49.9 51.5 51.8 62.2 63.3 65.7Time (s)

Channel
switch

Node 5
3 via 2

Node 2
3 via 6

Node 3
6 via 1

Node 6
3 via 4

Node 3
6 via 5

Node 5
3 via 3

Node 2
3 via 5

Node 6
3 via 2

Flow 6→3
Packets lost

on 5→2
(routing loop)

Packets follow
6→4→0→1→3

Packets follow
6→2→5→3

(e)

(c)

150

80

Th
ro

ug
hp

ut
 (

kb
ps

)

40

0

120

30 45 60

UDP
TCP

1.4

0.4

0.2 0.1
1.2

1.6

0.6

1.1

4

64
3

2

4

3

5

2

0.5

0.3

1.3
1.7

0.7

Flow 3→6

Flow 6→3

Packets follow
3→1→0→4→6

Packets lost
on 5→3

Packets lost on 5→2
(routing loop)

Packets follow
6→4→0→1→3

Packets lost
on 3→5

Packets follow
3→1→0→4→6

Packets follow
3→5→2→6

Packets lost
on 5→3

1.5

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 130

IEEE Communications Magazine • September 2013 131

when node 5 marks its link to node 3 as lost, it
starts sending packets to node 2 in an attempt to
find an alternative path. Node 2, however, has
not yet received an updated TC message and
continues sending packets back to node 5. It is
interesting to note that an updated TC message
arrives at node 6 (40.5 s in Fig. 3d) when the
new link between nodes 3 and 5 has been already
established (38.6 s). Thus, although the current
path is valid, node 6 decides to send packets des-
tined to 3 along an alternative path (6-4-0-1-3).
Later (42.5 s), node 6 receives a TC message
carrying the information that the connectivity
between nodes 3 and 5 has been restored, and
switches back to sending packets along the mini-
mum hop path. However, not all nodes have
received the latest topology update, and hence, a
new routing loop occurs, which leads to a second
brief interruption (1.0 s) in the delivery of pack-
ets. This experiment shows that nodes upstream
of the link that fails due to the channel switch
attempt to find an alternative path to the desti-
nation as soon as they are informed of the link
failure (via TC messages). However, routing
loops can occur due to nodes having inconsistent
views of the network topology. Also, route oscil-
lations are generated that cause network insta-
bility. In this regard, the slow propagation of TC
messages (to limit the overhead) accentuates
such problems.

We now comment on the results achieved by
OLSRv2 (with the ETX metric) in the case of
UDP traffic, starting with the flow from node 3
to node 6. By using a link metric other than the
hop count, it is in theory possible to switch to an
alternative path before a link on the current
path is marked as lost. It suffices that the cumu-
lative quality of the alternative path is better
than that of the current path. However, this does
not happen in our experiment. Indeed, node 3
prefers the alternative path over the current
path (which includes a failed link) only when the
validity of the last HELLO message received
from 10.0.0.6 expires (48.0 s in Fig. 3e). The rea-
son is that the quality of a link degrades very
slowly, as described earlier. As a consequence,
the availability of alternative paths is not exploit-
ed, and the interruption in the delivery of pack-
ets is the same as that observed in case I-B.
Likewise, the alternative path continues to be
used well beyond the time when the new link
between nodes 3 and 5 is established (51.8 s).
This is due to the fact that the quality of the new
link increases very slowly. Similar observations
can be made for the flow from node 6 to node 3.
Due to the slowly decreasing quality of the link
between 10.0.0.4 and 10.0.0.6 (which is carried in
the TC messages sent by nodes 3 and 5), node 6
continues to use the path including such link for
a long time (up to 49.9 s). Thus, flows in both
directions experience a long interruption (around
20 s) and do not benefit from the availability of
alternative paths.

In case of TCP traffic, Figs. 3b and 3c show
that the same observations as before can be
made: the interruption in the delivery of TCP
traffic lasts longer than that of UDP traffic due
to the TCP congestion control mechanism. Final-
ly, we performed experiments in a seven-node
topology with a channel switch of the same kind

as case I-A (fixed neighbor-to-interface binding).
We have shown that, provided the routing proto-
col is not too quick at removing links, this kind
of channel switch does not cause changes in the
routing tables. Hence, routing loops do not
occur, and the interruption in the delivery of
packets coincides with the lack of connectivity at
the MAC layer. When multiple mesh nodes are
present, there is a chance that the connectivity at
the MAC layer is restored quicker than
described earlier. Indeed, if there is another
radio operating on the new channel that can be
heard by either of the two radios switching chan-
nels, these radios perform one channel scan and
decide to join the IBSS advertised by the other
radio, thus considerably reducing the duration of
the interruption (around 1 s).

SCENARIO III: 13-NODES TOPOLOGY
We now consider a network of 13 mesh nodes
crossed by 6 traffic flows (3 additional hosts act-
ing as senders and 2 hosts acting as receivers are
connected to the mesh network). We perform
five different experiments, each characterized by
a number of channel switches varying from one
to five. Each experiment is repeated 20 times,
each time with a distinct set of radio interfaces
switching channel. Every channel switch changes
the neighbor-to-interface binding, given that
with fixed neighbor-to-interface binding it is pos-
sible to ensure that the interruption in the deliv-
ery of packets only lasts for the time required to
restore the connectivity at the MAC layer. For
each repetition of all the experiments, we collect
the duration of the interruption in the delivery
of packets experienced by each flow. The plots
in Fig. 4 summarize the distribution of the val-
ues collected for each experiment. In particular,
a white box spans from the first quartile to the
third quartile, circles represent outliers (i.e., val-
ues greater [less] than the third [first] quartile
plus [minus] 1.5 times the inner quartile range),
a vertical line spans from the minimum to the
maximum values (excluding outliers), and a hori-
zontal segment indicates the median.

In this section, we also present and evaluate a
technique inspired by the analysis of the experi-
ments illustrated in the previous sections, which
aims at reducing the duration of the interruption
caused by a channel switch. We observe that, if
the neighbor-to-interface binding changes, the
link established on the previous channel fails in
a permanent manner upon channel switching.
Hence, instead of waiting for the link quality to
drop below the threshold indicating a usable
link, it would be more efficient for the nodes
switching channels to immediately mark the link
as lost. Our proposed technique, which we refer
to as link invalidation, provides that nodes
involved in a channel switch immediately mark
the link on the previous channel as lost and
advertise that by sending out both a HELLO
message (to inform neighbors) and a TC mes-
sage (to inform all other nodes). In such a way,
the nodes involved in a channel switch can imme-
diately use an alternative path, if available, and
the link failure is reported sooner to the nodes
upstream of the failed link, which can find alter-
native paths as well. We remark that link invali-
dation would be counterproductive in fixed

If there exists anoth-

er radio operating on

the new channel

that can be heard by

either of the two

radios switching

channel, these radios

perform one channel

scan and decide to

join the IBSS adver-

tised by the other

radio, thus consider-

ably reducing the

duration of the

interruption.

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 131

IEEE Communications Magazine • September 2013132

neighbor-to-interface binding (where the link fail-
ure is temporary). Hence, link invalidation should
only be used when the neighbor-to-interface bind-
ing changes. However, we believe that nodes are
able to determine whether or not they need to
apply the link invalidation. Indeed, in centralized
channel re-assignment (as in our experiments),
the type of channel switch can be communicated
by the centralized entity, while in distributed
channel re-assignment, nodes are able to recog-
nize the type of channel switch by themselves.

The results shown in Fig. 4 suggest the fol-
lowing observations:

•For all the routing protocols, the median
value of the duration of the interruption typical-
ly increases with the number of channel switch-
es. This result is rather expected, since the
higher the number of channel switches, the high-
er the number of links that fail, and hence the

more difficult it is to find alternative paths that
are not affected by such link losses.

•The link invalidation technique applied to
OLSRv1 (Fig. 4b) allows some gain over plain
OLSRv1 to be attained (Fig. 4a). Such a gain
decreases with the number of channel switches.
The reason is that the advantage of the link
invalidation technique is alternative paths can be
used sooner. However, finding alternative paths
becomes harder with the increase in the number
of channel switches.

•The link invalidation technique applied to
OLSRv2 (Fig. 4d) allows a considerable gain
over the plain OLSRv2 to be achieved (Fig. 4c).
The reason is that OLSRv2, due to the slow
degradation of the link quality, is heavily penal-
ized by the time required to discard a failed link,
while the link invalidation technique enables the
failed link to immediately be discarded.

Figure 4. Scenario III: 13-nodes topology: a) OLSRv1 (hop count); b) OLSRv1 (hop count) with link invalidation; c) OLSRv2 (ETX);
d) OLSRv2 (ETX) with link invalidation.

Number of channel switches

(a)

1

5

In
te

rr
up

ti
on

 le
ng

th
 (

s)

0

10

15

20

25

30

35

2 3 4 5
Number of channel switches

(b)

1

5

In
te

rr
up

ti
on

 le
ng

th
 (

s)

0

10

15

20

25

30

35

2 3 4 5

Number of channel switches

(c)

1

5

In
te

rr
up

ti
on

 le
ng

th
 (

s)

0

10

15

20

25

30

35

2 3 4 5
Number of channel switches

(d)

1

5

In
te

rr
up

ti
on

 le
ng

th
 (

s)

0

10

15

20

25

30

35

2 3 4 5

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 132

IEEE Communications Magazine • September 2013 133

•OLSRv2 with link invalidation performs
slightly better than OLSRv1 with link invalida-
tion. This is likely due to the fact that the thresh-
old used by OLSRv2 to denote a usable link is
very low, and hence, the link on the new channel
is used sooner by OLSRv2 than OLSRv1.

Finally, we note that we observed frequent
interruptions in the delivery of packets when
using OLSRv1, even in the absence of channel
switches. This is likely due to the fact that the
loss of a few control messages is sufficient to dis-
card a link. Loss of packets is not unlikely in
wireless networks, due to environmental noise
and collisions (caused, e.g., by hidden nodes or
simultaneous expiration of the backoff timer on
multiple nodes). Hence, the procedure employed
by OLSRv1 to discard links turns out to be exces-
sively quick.

CONCLUSIONS
In this article we present the results of a thor-
ough experimental study we conducted to evalu-
ate the impact of channel switches on the
performance of a multi-radio wireless mesh net-
work using a distributed hop-by-hop routing pro-
tocol. The main findings of our study can be
summarized as follows:

•Our experiments showed that a channel
switch causes a non-negligible interruption in the
connectivity among nodes, which is on the order
of 10 s. The analysis of these experiments
revealed that results are determined by one par-
ticular aspect of the routing protocol: the proce-
dure adopted to consider a link as established/
lost. Such a procedure is usually based on a
measure of the link quality as a function of the
percentage of control messages (e.g., HELLO
messages) received.

•In the case of fixed neighbor-to-interface
binding, the link failure is temporary; hence,
routes should not be modified. To this end, the
link must not be marked as lost before the con-
nectivity at the MAC layer is restored. Restoring
the connectivity at the MAC layer may take the
time required to perform one channel scan and
join an IBSS (in the order of hundreds of mil-
liseconds), in case another node is already adver-
tising an IBSS using the new channel, or the
time required to conclude that there is no avail-
able IBSS to join and create a new IBSS (a few
seconds) otherwise. Thus, in the latter case,
routing protocols that are quick at marking a
link as lost if no messages are received on that
link may incur longer interruptions due to the
additional time required to re-establish the link.
To avoid such additional time, the time it takes
the MAC layer to determine that no IBSS is
available to join should be set to a value less
than the time the routing protocol takes to con-
sider a link as lost if no message is received on
that link. In such a way, the interruption in the
delivery of packets coincides with the time
required to restore connectivity at the MAC
layer, and no change is made to the routing
tables, even for routing protocols that are quick
at marking a link as lost.

•In the case of neighbor-to-interface binding
changes, there is the need to update the routing
tables, since the link on the previous channel

fails permanently and must be discarded in favor
of the link on the new channel. In this case,
therefore, routing protocols that are quicker at
establishing/removing links exhibit shorter inter-
ruptions in the delivery of packets. Also, routing
protocols that quickly update the link quality
manage to efficiently exploit the availability of
alternative paths. Indeed, the faster the quality
of the link on the previous channel degrades, the
sooner an alternative path, if available, is used.
However, the information that a link has been
established/removed takes some time to propa-
gate among all the network nodes. Hence, dis-
tinct nodes may have inconsistent views of the
network topology, which likely leads to routing
loops and route oscillations. This situation is
clearly even worse for multiple simultaneous
channel switches. In the case of OLSR, the
attempt to reduce overhead by aggregating mul-
tiple TC messages into a single packet is coun-
terproductive, because delaying the propagation
of TC messages can only accentuate such routing
problems.

•Some link metrics (e.g., the one used by
OLSRv2 in our experiments) are a function of
the link quality in both directions. A node can
directly measure the quality in the incoming
direction and receive the quality in the outgoing
direction from its neighbor. However, in case of
link failure, the quality in the outgoing direction
is no longer updated, thus contributing to the
slow degradation of the quality of the failed link.
Our experiments suggest that a slow degradation
of the link quality is not desirable; therefore, we
believe that proper countermeasures should be
taken in the design of the routing protocol.

•A routing protocol that is too quick at dis-
carding links has the drawback that frequent
interruptions may occur due to the loss of few
control messages (caused by environmental noise
or collisions). Hence, making the degradation of
link quality too fast is not a viable solution to
reduce the interruption in the delivery of packets
following a channel switch. As a preliminary
solution, we propose a link invalidation tech-
nique (to be activated in case the neighbor-to-
interface binding changes), which has the
advantage that it does not interfere with the pro-
cess of updating the link quality in normal condi-
tions. Through experiments, we proved that such
a technique allows even protocols that exhibit
slow degradation of the link quality to contain
the duration of the interruption in connectivity
following a channel switch.

REFERENCES
[1] A. Raniwala, K. Gopalan, and T. Chiueh, “Centralized Chan-

nel Assignment and Routing Algorithms for Multi-Channel
Wireless Mesh Networks,” ACM Mobile Computing and
Commun. Rev., vol. 8, no. 2, Apr. 2004, pp. 50–65.

[2] J. Crichigno, M. Wu, and W. Shu, “Protocols and Archi-
tectures for Channel Assignment in Wireless Mesh Net-
works,” Ad Hoc Networks, vol. 6, no. 7, Sept. 2008,
pp. 1051–77.

[3] S. Avallone, G. Di Stasi, and A. Kassler, “A Traffic-Aware
Channel and Rate Re-Assignment Algorithm for Wire-
less Mesh Networks,” IEEE Trans. Mobile Computing,
vol. 12, no. 7, July 2013, pp. 1335–48.

[4] A. Kanagasabapathy, A. Franklin, and C. Murthy, “An Adap-
tive Channel Reconfiguration Algorithm for Multi-Channel
Multi-Radio Wireless Mesh Networks,” IEEE Trans. Wireless
Commun., vol. 9, no. 10, Oct. 2010, pp. 3064–71.

For all the routing

protocols, the medi-

an value of the dura-

tion of the

interruption typically

increases with the

number of channel

switches. This result

is rather expected,

since the higher the

number of channel

switches, the higher

the number of links

that fail, and hence

the more difficult it is

to find alternative

paths that are not

affected by such

link losses.

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 133

IEEE Communications Magazine • September 2013134

[5] A. Franklin, A. Balachandran, and C. Murthy, “Online
Reconfiguration of Channel Assignment in Multi-Chan-
nel Multi-Radio Wireless Mesh Networks,” Computer
Commun., vol. 35, no. 16, pp. 2004–13, 2012.

[6] J. Galvez, P. Ruiz, and A. Skarmeta, “TCP Flow-Aware Chan-
nel Re-Assignment in Multi-Radio Multi-Channel Wireless
Mesh Networks,” Proc. IEEE MASS, 2011, pp. 262–71.

[7] C. Chereddi, P. Kyasanur, and N. H. Vaidya, “Design
and Implementation of a Multi-Channel Multi-Interface
Network,” Proc. REALMAN, 2006, pp. 23—30.

[8] P. Li et al., “How to Effectively Use Multiple Channels in
Wireless Mesh Networks,” IEEE Trans. Parallel and Dis-
trib. Sys., vol. 20, no. 11, Nov. 2009, pp. 1641–52.

[9] D. D. Couto et al. “High-Throughput Path Metric for
Multi-Hop Wireless Routing,” Proc. ACM MobiCom,
Sept. 2003, pp. 134–46.

[10] S. Avallone et al., “Performance Evaluation of an Open
Distributed Platform for Realistic Traffic Generation,”
Performance Evaluation: An Int’l. J., vol. 60, no. 1–4,
May 2005, pp. 359–92.

BIOGRAPHIES
STEFANO AVALLONE (stefano.avallone@unina.it) received his
M.S. degree in telecommunications engineering (2001) and
Ph.D. degree in computer networks (2005) from the Uni-
versity of Napoli Federico II. He is currently an assistant
professor with the Department of Computer Engineering at
the University of Napoli. His research interests include com-
puter networks, traffic engineering, QoS routing, and wire-
less mesh networks. He was a visiting researcher at the
Delft University of Technology (2003–2004) and the Geor-
gia Institute of Technology (2005). He is on the Editorial
Board of Elsevier Ad Hoc Networks.

GIOVANNI DI STASI (giovanni.distasi@unina.it) is a postdoc-
toral fellow at University of Napoli Federico II. He received
his Laurea degree in computer engineering from the same
university in 2007. He was a visiting researcher at INRIA
Sophia Antipolis, France (2009), and Karlstad University,
Sweden (2010). His current research interests include
experimental reserch infrastructures and testbeds, routing
and channel assignment algorithms for wireless mesh net-
works, and peer-to-peer traffic optimization.

AVALLONE_LAYOUT_Layout 1 8/26/13 1:26 PM Page 134

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

