
Experiences with Synthetic Network
Emulation for Complex IP based Networks

Stefano Cacciaguerra

Technical Report UBLCS-2005-04

March 2005

Department of Computer Science

University of Bologna

Mura Anteo Zamboni 7
40127 Bologna (Italy)

The University of Bologna Department of Computer Science Research Technical Reports

are available in PDF and gzipped PostScript formats via anonymous FTP from the area

ftp.cs.unibo.it:/pub/TR/UBLCS or via WWW at URL http://www.cs.unibo.it/.

Plain-text abstracts organized by year are available in the directory ABSTRACTS.

Recent Titles from the UBLCS Technical Report Series

2003-15 Gossip-based Unstructured Overlay Networks: An Experimental Evaluation, Jelasity, M.,

Guerraoui, R., Kermarrec, A-M., van Steen, M., December 2003.

2003-16 Robust Aggregation Protocols for Large-Scale Overlay Networks, Montresor, A., Jelasity,

M., Babaoglu, O., December 2003.

2004-1 A Reliable Protocol for Synchronous Rendezvous (Note), Wischik, L., Wischik, D.,

February 2004.

2004-2 Design and evaluation of a migration-based architecture for massively populated Internet

Games, Gardenghi, L., Pifferi, S., D’Angelo, G., March 2004.

2004-3 Security, Probability and Priority in the tuple-space Coordination Model (Ph.D. Thesis),

Lucchi, R., March 2004.

2004-4 A New Graph-theoretic Approach to Clustering, with Applications to Computer Vision

(Ph.D Thesis), Pavan., M., March 2004.

2004-5 Knowledge Management of Formal Mathematics and Interactive Theorem Proving (Ph.D.

Thesis), Sacerdoti Coen, C., March 2004.

2004-6 An architecture for Content Distribution Internetworking (Ph.D. Thesis), Turrini, E.,

March 2004.

2004-7 T-Man: Fast Gossip-based Construction of Large-Scale Overlay Topologies, Jelasity, M.,

Babaoglu, O., May 2004.

2004-8 A Robust Protocol for Building Superpeer Overlay Topologies, Montresor, A., May 2004.

2004-9 A Uni£ed Approach to Structured, Semistructured and Unstructured Data, Magnani, M.,

Montesi, D., May 2004.

2004-10 Exact Methods Based on Node Routing Formulations for Arc Routing Problems, Baldacci,

R., Maniezzo, V., June 2004.

2004-11 Mapping XQuery to Algebraic Expressions, Magnani, M., Montesi, D., June 2004.

2004-12 VDE: Virtual Distributed Ethernet, Davoli, R., June 2004.

2004-13 SchemaPath: Extending XML Schema for Co-Constraints, Marinelli, P., Sacerdoti Coen,

C., Vitali, F., June 2004.

2004-14 Intelligent Web Servers as Agents, Gaspari, M., Dragoni, N. Guidi, D., July 2004.

2004-15 SIR: a Model of Social Reputation, Mezzetti, N., October 2004.

2004-16 Algorithms for Large Directed CARP Instances: Urban Solid Waste Collection Operational

Support, Maniezzo, V., October 2004.

2004-17 Supporting e-Commerce Systems Formalization with Choreography Languages, Bravetti,

M., Guidi, C., Lucchi, R., Zavattaro, G., November 2004.

2004-18 Decentralized Ranking in Large-Scale Overlay Networks, Montresor, A., Jelasity, M.,

Babaoglu, O., December 2004.

2004-19 Advanced Collective Communication in WDM Optical Rings, Margara, L., Simon, J.,

Vassura, V., December 2004.

Dottorato di Ricerca in Informatica
Università di Bologna, Padova

Experiences with Synthetic Network
Emulation for Complex IP based Networks

Stefano Cacciaguerra

March 2005

Coordinatore: Tutore:

Prof. Özalp Babaoğlu Prof. Marco Roccetti

 i

Abstract

The development of communication technologies has allowed the proliferation of

network applications that permit an increasing number of users, geographically

distributed throughout the world, to access complex IP-based networks through multiple

devices (for example, networked computers, smart phones and personal digital

assistants). In the effort to test and evaluate the correctness and the performance of these

new applications, many of them must be executed into complex IP-based networks (like

in Internet). Complex IP-based networks integrate very different communication

technologies and administrative domains supporting a high number of users. Hence, there

is no typical network infrastructure but a range of possible ones. Therefore, it is difficult

to build a controllable environment that supports the execution of several concurrent

applications while being able, at the same time, to mimic a wide range of (IP-based)

network configurations. To implement a scenario involving complex IP-based networks,

three traditional approaches are possible: testbed, network simulation, or network

emulation.

Testbed provides a field test over a real network using real applications.

Unfortunately, it is linked to specific network conditions and traffic dynamics. Further, a

testbed hardly supplies a fully controllable environment where these applications may be

evaluated at an affordable cost. Synthetic Network Simulation, instead, provides closed,

controllable environments and reproducible experiments. Unfortunately, it does not

support a real implementation. As a consequence, a transcoding activity is necessary.

Further, this code runs on simulated protocol module whose assumptions may not always

be valid in real networks. Finally, Network Emulation uses the real implementation of

protocols and applications to introduce live traffic into a simple, controllable and

reproducible environment. Unfortunately, the typical capabilities of emulators are limited

to simple packet manipulations. Further, network emulator must support real time

constraints.

Our contribution is the design and the implementation of a “synthetic” emulative

platform (called Interceptor) that reproduces complex IP-based Networks. Our emulative

 ii

platform allows to integrate live traffic coming from real end systems into synthetic

simulative environments. Hence, it is possible to support the execution of real

applications, while simulating complex IP-based networks at a higher abstraction level.

Therefore, Interceptor allows to arbitrarily interpose a number of simulated network

nodes (i.e. routers) and links between (real) end systems. Finally, external workload

traffic generators may be used to exercise both the end systems and the synthetic

emulative networks in a manner which is representative of a user that runs an application.

Interceptor provides many advantages. It provides means for setting network

topological configurations (nodes and links) varying from simple to sophisticated. It

reproduces a wide range of network communication models from single link to general

end-to-end communication. It supplies the possibility to change and update the simulation

model without affecting the network interface. It provides the possibility to interact with

nodes and links at run-time. It connects the end systems without working on a default

gateway. It is transparent to the final user. It reports useful statistics about its

performance.

In particular, to highlight the usefulness and the performance of our “synthetic”

emulative platform three case studies and the comparison with related works are shown.

The three case studies show the effectiveness of Interceptor to evaluate network

applications on complex IP-based scenarios. Its comparison with the Dummynet network

emulator and with the NS-2 network simulator shows its usefulness.

 iii

Acknowledgments

I would like to thank my tutors, Professor Marco Roccetti, for its support throughout my

research efforts towards this thesis and their helpful discussions on the idea in the work.

It has been a very important example for me.

I would like to thank Professor Giorgio Ventre and Dr. Alok Nadan for theirs appreciated

comments and suggestions.

A special thank to my parents and my brother for the constant help.

Last but not least, many thank to my friends, Alessandro, Giovanni, Matteo, Paola,

Stefano, Vittorio, and my girlfriend Teresa.

 iv

 v

Contents

Abstract i

Acknowledgments iii

Contents v

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Problem Statement 2

 1.2 Thesis Contribution 5

 1.3 Outline 9

2 Network Simulation: Background 11

2.1 Advantages and Disadvantages of Simulation 12

2.2 General Issues about Simulation 13

2.3 Network Simulation 14

 2.3.1 Sensitivity to Network Parameters 15

 2.3.2 Analyzing Results 15

2.3.3 Realistic Traffic Sources 16

 2.3.4 Byte Versus Rime Transfers 17

 2.3.5 Variability VS Uniformity 18

2.4 Issue about Network Simulator 18

 2.4.1 Protocol Interactions 19

 2.4.2 Traffic Generation 20

 2.4.3 Workload Modelling 22

 2.4.4 Network Topology 26

 2.4.5 Synthetic Network Topology Generation . . . 30

2.5 Examples of Network Simulators 33

2.5.1 VINT Project and NS-2 34

 2.5.2 OPNET Simulator 37

 2.5.3 GLOMOSIM 38

 vi

2.5.4 Other Network Simulators 40

2.6 Examples of Traffic Generators 41

2.6.1 SURGE: Workload Generator for Web Traffic . . . 42

2.6.2 GISMO: Workload Generator for Streaming Media Access . 44

2.6.3 D-ITG: a Distributable Platform for Traffic Generation . . 47

2.7 Examples of Topology Generators 48

 2.7.1 Waxman 49

 2.7.2 GT-ITM 50

 2.7.3 Tiers 50

 2.7.4 Inet and PLRG 51

 2.7.5 BRITE 51

3 Network Emulation: Background 55

3.1 Emulation Abstraction Layer 57

 3.2 Categories of Emulators 59

 3.3 Parameters 60

 3.4 Emulation Routing VS Emulation Consistency 62

 3.5 Lab-based Environment 65

3.6 Goals 66

 3.7 Examples of Network Emulators 67

 3.7.1 DUMMYNET 67

 3.7.2 NETBED 69

 3.7.3 MODELNET 72

 3.7.4 Other Network Emulators 75

3.8 Simulation Resources: Traffic Generator and Topology Manager . . 78

3.8.1 Traffic Generators 78

3.8.2 Network Topology Managers 79

4 Interceptor: Design Issues 83

4.1 Emulative Interface 88

4.2 Communication Model Management 89

 4.3 Workload Traffic Generation 91

4.3.1 User Equivalents 92

4.3.2 Set of Distributional Models 93

4.4 Network Topology Management 94

4.4.1 The Design of a Network Topology Manager Based on Agents . 97

4.4.2 On Integrating a Network Topology Manager . . . 98

 vii

4.5 Main Advantages 100

5 Interceptor: System Architecture 101

5.1 Emulative Interface 104

5.1.1 libipq API 105

5.1.2 Implementation of an Intermediate Emulation or a Routed Emulation 107

 5.1.3 Implementation of the Emulative Interface . . . 109

 5.2 Event Manager 111

 5.2.1 Service Queue Handler 112

 5.2.2 Communication Model Handler 114

 5.2.3 Delay Controller 115

 5.2.4 Bandwidth Controller 116

 5.2.5 Implementation of the Background Traffic Generation . . 118

5.2.5 Packet Loss Controller 123

 5.3 Network Topology Manager 124

5.3.1 Implementation of an Agent-based NTM . . . 125

 5.3.2 Implementation of an Agent as a Network Node . . . 129

5.4 Simulating Communication Time without Additional Delay . . 131

5.5 The schedule of Interceptor 133

5.6 Implementation of the Workload Traffic Generator . . . 137

5.6.1 M² Workload Generator 137

 5.6.2 M² Traffic Generator 141

6 Interceptor: Case Studies 145

6.1 Evaluation of the C2LD Mechanisms 146

6.1.1 C2LD Mechanism 146

 6.1.2 How C2LD Works 148

6.1.3 Experimental Scenario 150

6.1.4 Synthetic Emulative Scenario 155

6.2 Delivering Multimedia Contents over the Wireless Internet:

from Song Distribution to Interactive Karaoke on Wireless Devices . . 162

 6.2.1 Introduction 163

6.2.2 System Issues 166

6.2.3 A Wireless Internet Application for Music Distribution . . 168

6.2.4 An Experimental Study 179

 6.2.5 Wireless Simulation Modelling 188

 6.2.6 Building a Synthetic Emulative Scenario with Wireless Models . 201

 viii

6.3 A System Architecture for Supporting the Execution of

Agent-based Participatory Simulation Activities 214

 6.3.1 Introduction 215

6.3.2 System Architecture 217

6.3.3 Empirical Results 220

6.3.4 Modelling a Complex System: Organizational Decision

Chemistry on a Lattice 223

 6.3.5 Participatory Simulative Scenarios with Interceptor . . 241

6.3.6 Conclusions of Agent-based Participatory Simulation System . 243

7 Related Work 245

 7.1 Comparisons with Network Emulators: Dummynet . . 245

 7.2 Comparisons with Network Simulators: VINT/NS . . 248

 7.2.1 Differences in designing and implementing the software architectures 250

7.2.2 Building an emulation scenario with VINT/NS: limitations . 252

7.2.3 Setting a simulative scenario: interactivity . . . 253

7.2.4 Comparison of the performances 255

8 Conclusions And Future Works 263

9 References 269

 ix

List of Tables

2.1 Parameters and Techniques Adopted for Network-based Environments from

(Calzarossa et al., 1993) 26

2.2 Distributions Used in the Workload Generator from (Barford et al., 1998) . 44

2.3 Distributions Used in the Workload Generator from (Jin et al., 2001) . . 47

5.1 Example of IPTABLES Commands 108

6.1 The Measured Round Trip Time and Lost Packet Percentage . . . 151

6.2 Fault Percentage 153

6.3 Average URT Percentage Improvement 155

6.4 Average Value of the RTT Measured with a Ping 158

6.5 Confidence Intervals for the Simulative/Experimental Trials . . . 159

6.6 Song-On-Demand: WLNTT Results 183

6.7 Test for Regressive Functions (Wi-Fi, GPRS, UMTS) 194

6.8 Type of Error in Model Validation 199

6.9 Type I Error (α = 0.01) 200

6.10 Type II Error (β) 200

6.11 Rules of movement 230

6.12 Quantitative Characterization of the Various Communities of Entities . . 235

7.1 Emulation Comparison (N: N >1, T: True, F: False) 246

7.2 Simulation Comparison 247

7.3 Technical Report (T: True, F: False) 248

 x

 xi

List of Figures

2.1 Layered Structure for the Workload Characterization of Network-based Environments

from (Calzarossa et al., 1993) 26

2.2 Schema of a Request from (Barford et al., 1998) 44

2.3 Relationship between Client Activities and ON/OFF Times at the Session and Transfer

Layers from (Veloso et al., 2002) 46

3.1 Real and Emulated Protocols 58

3.2 Architecture of Dummynet Reported from (Rizzo, 1997) . . . 69

3.3 Architecture of Modelnet Reported from (Vahdat et al., 2002) . . . 75

4.1 Interceptor: a Synthetic Emulative Platform 84

5.1 System Architecture of Interceptor 102

5.2 IPTABLES over the Netfilter Framework 105

5.3 Incoming Phase 108

5.4 Coming Back Phase 108

5.5 Interceptor over IPTABLES Module of Netfilter Framework . . . 110

5.6 Event Manager: CMs, Controllers and Service Queue . . . 114

5.7 Combination of Live and Background Traffic 117

5.8 Statistical Distributions of IP Packet Size 120

5.9 The State of the Queue with other Real Packets 121

5.10 The State of the Queue in the Second Case 122

5.11 Integration of Event Manager with Network Topology Manager . . 125

5.12 The Architecture of the SPADES 126

5.13 The Implementation of the Integration between the EM and the SPADES as NTM 128

5.14 The Configuration file of the NTM for the above Scenario . . . 131

5.15 Top, the Effect of the Mechanism Supporting Lookahead Real Time in a Scenario where

the Time Spent is 30 Ms and the Time-Select Varies from 0 to 10 ms; Bottom, Confidence

Intervals at 95% of Probability 134

5.16 The Scheme of the States of Interceptor 135

5.17 The Architecture of M²G Workload Generator 138

5.18 The Architecture of SURGE Workload Generator 140

5.19 The Routine that Creates the Files for the Multimedia Server . . . 140

5.20 The Architecture of of M²G Traffic Generator: MasterManager, UserManager and

UserEquivalent 143

5.21 The Architecture of SURGE Traffic Generator: Surgemaster, Surgeclient and Clients 143

6.1 Implementation of the C2LD Service 150

 xii

6.2 Routes between the Client and the Web Replica Servers . . . 151

6.3 C2LD vs. HTTP 154

6.4 URT Improvement Provided by C2LD as the Number of Replicas Grows . 155

6.5 Geographical Scenario 158

6.6 Emulative Scenario 158

6.7 Average Value of Downloading Data Rate: Simulative vs. Experimental

(Client in Italy - Server in the UK) 159

6.8 Average Value of Downloading Data Rate: Simulative vs. Experimental

(Client in Italy - Server in the USA) 159

6.9 Statistical Variation of the Downloading Data Rate: Simulative vs. Experimental

(Client in Italy - Server in the UK) 160

6.10 Statistical Variation of the Downloading Data Rate: Simulative vs. Experimental

(Client in Italy - Server in the USA). 160

6.11 Comparison of Downloading Data Rates between C2LD and HTTP . . 161

6.12 Wireless Application Architecture 169

6.13 Search and Download over the Wireless Internet 172

6.14 Wireless Internet Application: Protocol Stacks 173

6.15 Screenshot of the Data Collector Application 176

6.16 Header of a Karaoke SMIL File 178

6.17 Body of a Karaoke SMIL File 178

6.18 Segmentation of an IP Packet into RLC Data Blocks 180

6.19 Web Server Replicas and Clients: (big picture) Song-on-Demand, (small picture)

Mobile Karaoke 183

6.20 Song-On-Demand: WNTT Results for 5 MB-sized Songs . . . 184

6.21 Song-On-Demand: WNTT Results for 3 MB-sized Songs . . . 184

6.22 Mobile Karaoke: WNTT Measurements for Delivering Song 1 (left graphs) and

song 2 (right graphs) 188

6.23 A Screenshot from the Mobile Karaoke Service 189

6.24 Regressions - Wi-Fi, GPRS and UMTS - PDA 192

6.25 Regression - Wi-Fi – Laptop 193

6.26 Black-Box Model for CM 193

6.27 Wi-Fi - Comparison between Real and Emulated Data –left) PDA right) Laptop . 195

6.28 GPRS - Comparison between Real and Emulated Data. . . . 196

6.29 UMTS - Comparison between Real and Emulated Data. . . . 197

6.30 Emulative Scenario 202

6.31 Wi-Fi - Comparison among Different Numbers of Clients: left) Critical Curve and

right) Single PDA Curve 204

 xiii

6.32 GPRS - Good Coverage – 4 KM/h Comparison among Different Numbers of Clients:

left) Critical Curve and right) Single PDA Curve 205

6.33 GPRS - Good Coverage – 40 KM/h Comparison among Different Numbers of Clients:

left) Critical Curve and right) Single PDA Curve 205

6.34 UMTS – 1080 B -12 erlang – 0Km/h Comparison among Different Numbers of Clients:

left) Critical Curve and right) Single PDA Curve 205

6.35 UMTS – 1080 B -12 erlang – 40Km/h Comparison among Different Numbers of

Clients: left) Critical Curve and right) Single PDA Curve . . . 206

6.36 Comparison between PDA Equivalent and Real PDA 210

6.37 Comparison between 5 PDA Equivalent and 5 Client (first approach) . . 210

6.38 Comparison between 10 PDA Equivalent and 10 Client (first approach) . . 210

6.39 Comparison among 1, 5, 10 and 15 PDA Equivalents 211

6.40 Comparison among 1, 5 and 10 Laptop UEs 212

6.41 Comparison among 1, 5, 10 and 15 Laptop UEs 212

6.42 The 2D Typical Graphical Interface of ABMS 217

6.43 An “Execute and Visualize” Session 218

6.44 System Architecture 219

6.45 A 3D Visual Representation Produced by our Visualizer . . . 222

6.46 A Netlogo-generated visual representation of the same world of Figure 6.45 . 222

6.47 Performances: left) of the ABMS (Server-Side) and right) of the visualizer (Wireless

Device) 222

6.48 Initial Distribution of Entities on the Lattice 228

6.49 Communication Trails 229

6.50 Space-Temporal Evolution of the System (Examples) 231

6.51 a), b) and c). Baseline Runs of the Model 233

6.52 a) Baseline Runs with Friction, and b) Baseline Runs with Different Values of the

RANGE_OVERS slider 234

6.53 Communities of Entities 235

6.54 Effect of Vision-Angle on Routine Formation: (left = 10 degree, right 45 = degree) 236

6.55 Implications of Periodic Changes in the Vision-Angle Parameter

(45deg-10deg-45deg-10deg) 236

6.56 Local Structures and Global System Configurations Induced by Periodic Changes

in the Vision-Angle Parameter 238

6.57 A Virtual World with Textures Based on the Photos of the Authors of this Work . 244

6.58 A 3D World Based on Real Geo-Spatial Data where Virtual Characters are Inserted 244

7.1 Dummynet Reported from (Rizzo, 1997) 247

 xiv

7.2 NS-2 Emulation Interface Reported from (Breslau et al., 2000) . . . 250

7.3 A,B,C Belong to Different LANs Interconnected by Some Routers . . 254

7.4 Route from A to B via C and vice versa with two Aliases . . . 254

7.5 The Hardware/Software Scenario 256

7.6 Different Topologies 256

7.7 The Percentage of the Loss Packets, the Percentage of the Packets Sent with Additional

Delay and the Average Values of the Additional Delays for a Scenario

Comprehensive of Three Senders and, Respectively, either 10 ms Links or 100 ms Links 258

7.8 The Percentage of the Loss Packets, the Percentage of the Packets Sent with Additional

Delay and the Average Values of the Additional Delays for a Scenario

Comprehensive of Six Senders and, Respectively, either 10 ms Links or 100 ms Links 259

7.9 The Percentage of the Loss Packets, the Percentage of the Packets Sent with Additional

Delay and the Average Values of the Additional Delays for a Scenario

Comprehensive of Nine Senders and, Respectively, either 10 ms Links or 100 ms Links 260

Chapter 1

Introduction

The Internet world is composed by several millions of computers, controlled by millions

of individuals and organizations. The core of this inter-network is administered by

thousands of competing operators, and it spans the whole globe, connected by fibers,

satellites, radio-links, dial-up modems, and mobile infrastructures. The development of

these large-scale communication infrastructures has enabled the proliferation of network

applications that provide an increasing number of users, geographically dispersed

throughout the world, with the access to a vast amount of informations. Those network

applications can be implemented following different architectural approaches, such as,

the client-server, the peer-to-peer (P2P) and fully distributed. Relevant examples of

emerging services provided by those applications are: videotelephony, teleconferencing,

instant multimedia messaging, teleworking, telemedicine, real time entertainment,

interactive games and infotainment. This means that a lot of network applications have

been recently developed almost flooding the Internet with their generated traffics. The

different behaviors of all these different applications are able to influence the design and

the implementation of both future infrastructures and provided services, in an endless

cycle (Floyd et al., 2001). An important example of it is represented by Napster. The

planetary success of this distributed tool for music sharing has exponentially increased

the amount of MP3-based traffic generated by its users (Coffman et al., 2001). In essence

distributed applications like Napster are radically accelerating the demand for larger

Chapter 1. Introduction

2

bandwidth. This is only a prominent example beneath which several other network

applications like that generate similar problems. For this reason, it emerges as mandatory

to develop sophisticated tools that allow one to evaluate any kind of modern network

applications prior to its deployment. This thesis provides a support for the study of the

network applications trying to reproduce in a lab-based environment the main features of

complex IP-based networks.

1.1 Problem Statement

To reproduce the behavior of complex IP-based networks, like the Internet, we need to

understand their main characteristics. Floyd and Paxson say that the Internet is “an

immense moving target” with several main properties that make it hard to reproduce

(Floyd et al., 2001). All these properties may be summarized as follows.

As a first fact, the Internet has an enormous capability to unify different network

technologies and administrative domains. However, the main problem in reproducing an

environment like the Internet is that the IP protocol guarantees the connectivity between

different network technologies and different administrative domains, but it does not make

provide them with similar behaviors (Floyd et al., 2001). Secondly, the Internet has a

very large size. This produces two main effects. The range of possible protocol

heterogeneity is very large. This means that if only a little part of the Internet has a

particular behavior, thousands of computers behave in that way. Further, the scalability of

many network protocols and mechanisms are not guaranteed on a priori basis. Many of

them tend to work fine with hundreds or thousands of computers, but they fail if the scale

grows up. Internet changes continuously over time. The number of connections increases

at an ever-accelerating rate (LBNL, 2001). This brings to a further problem, as new and

different kinds of datalink technologies must be integrated. The most prominent example

in this sense is the revolutionary advent of the wireless communication technologies such

as Wi-Fi, Bluetooth, and UWB. These new technologies have a further important

consequence: the traffic dynamics on the Internet may change due to the need of

accommodating novel (unstable) communication environments (take for example the

wireless environments).

Chapter 2. Network Simulation: Background

3

Traditional approaches exploited to access the effectiveness as well as the

performance of a network application in a synthetic environment typically follow three

different ways: testbed development, network synthetic simulation and network

emulation. The idea of developing a testbed is based on two basic assumptions. First, a

real implementation of the protocol (or of the application) to be experimented is

available, and, second, a real networked environment exists where the protocol (or the

application) may be experimented under the full control of the experimenters. The main

problem with such an experimental environment is that it may produce incomplete

results, as it may be bound to some given network conditions (and the corresponding

traffic dynamics) during the test. Further, a testbed hardly supplies a fully controllable

environment where experiments may be reproduced on a large scale at an affordable cost.

Finally, a testbed can be used only to explore the existing Internet, but it does not provide

a support to explore the future of the Internet. Network synthetic simulators provide a

controllable environment and reproduce experiments at an affordable cost. Network

synthetic simulation is probably the best way to follow in order to study the behavior of

an application when its real implementation does not exist. However, the typical problem

with synthetic simulators is that they do not support real protocol implementation and

their direct execution. In this case, the simulationists should decide which protocol

characteristics can be included in their study and which can be ignored, thus creating a

simulative prototype of a new network protocol (or application) of interest. This is

essentially a transcoding activity based on the idea of scaling down the level of

abstraction of simulation. Hence, the obtained simulative code may fail to reproduce the

behavior of the protocol (or the application) due to either possible transcoding bugs or

model simplifications that may lead to inconsistent results. In this respect, there is a

seminal work by Brakmo and Peterson (Brakmo et al., 1996) showing that even if an

abstract specification of the TCP transcode can be mostly useful for rapid

experimentation, however running the actual TCP code must be preferred if errors have

to be avoided. Network emulation, instead, uses a real implementation of a protocol (of an

application) to introduce its generated live traffic into a controllable and reproducible

simple environment. The typical capabilities of emulators are generally limited to simple

packet manipulations and do not cause interference from simulated cross traffic. Hence,

Chapter 1. Introduction

4

the main disadvantages of pure emulation are three. First, with the emulation we need as

many workstations as the instances of the protocol to be emulated. Second, it is not

possible to emulate a host or a link, which is faster than its hardware. Third, the real time

behavior of the software is tied to the available specific hardware.

All these considerations suggest that the two possible alternative solutions for protocol

experimentation amount to either i) exploiting a network simulator equipped with an

emulative interface or ii) expanding the capabilities of a network emulator by means of

synthetic simulative environment. Whichever alternative solution is followed means

providing a dynamic support for managing real protocol implementations, complex traffic

patterns and complicated network topologies.

We have already commented on the difficulty to support real protocol

implementations, as to the management of real traffic patterns, instead, it is worth

mentioning that the production of a sort of traffic mix composed by a range of different

applications is needed to simulate a real scenario. There is hope that a trace-driven

approach may be the best way to capture the full range of traffic mix patterns if one could

collect enough different traces. However, one of the main problems with this approach is

that a lot of real protocol implementations use adaptive congestion control mechanism.

As a result of it, the traffic modeling based on trace capturing may produce inaccurate

results if these traces are used to simulate different contexts where adaptation mechanism

does not come into scene. This does not mean that traffic modeling based on

measurements is fruitless, but a trace-driven source level simulation must be preferred

(Barford et al., 1998). In simple words, we may conclude that traffic modeling based on

measurements produce accurate results only when traces are used to simulate a given

shape of traffic, which resembles, at the application (source) level, to a scenario similar to

that one where traffic capturing is preferred. Hence, the critical point is that a reasonable

solution to the reproduction of a traffic mix must consider a spectrum of scenarios, rather

than one scenario in particular. Unfortunately, this last consideration increases the load of

work required for a single simulation.

Finally, as to the reproduction of complex network topologies, we must recognize this

is a very serious problem. In fact, there is no typical Internet infrastructure but a range of

possible typical network topologies may exists. This fact has promoted in the past the

Chapter 2. Network Simulation: Background

5

development of customized network topology generators that, however, are typically able

to explore only a single property, like locality or hierarchy for example, of the current

structure of the Internet. Further, the network topology is administered by several

competing entities. Each entity does not want to provide topological information to the

others. This fact does not permit to have a global point of view of that network topology,

in general.

As for the choice between a simulator with an emulative interface and an emulator

with synthetic simulative environment, it is worth pointing out the following. In simple

words, two minutes of simulation should take only two minutes of real time. It is possible

to keep this constrain only if we control the performance of the framework. When

simulators are equipped with an emulation interface the main problem is the difficulty to

perform an accurate simulation while meeting the real time deadlines imposed by the

external live traffic injection into simulative environment. Instead, when an emulator is

equipped with synthetic simulative technologies, the main problem is that this kind of

platform must embed a software tool able to generate simulated traffic, as well as to

specify complex network topologies. A few attempts adopt a traffic generator to

reproduce traffic patterns over arbitrarily complex topology scenario where the emulators

run. Obviously this scenario requires some sophisticated solutions to orchestrate the

traffic generation with the concurrent run of several distributed emulators.

1.2 Thesis Contributions

In response to above-mentioned problems, we have designed and developed an emulative

platform (called Interceptor), which incorporates a synthetic simulative environment. Our

emulative platform allows to integrate real end systems (and their applications) into the

synthetic simulative environment. Interceptor interposes a coarse-grained synthetic

environment as an intermediate among real sources of network traffic. Using this

approach, it is possible to support the real execution of network applications on real end

systems (on IP protocol), while simulating at a higher abstraction level complex IP-based

networks (Roccetti et al, 02a). In particular, we are able to support the real execution of

network applications, while maintaining the network communication interface

Chapter 1. Introduction

6

unchanged. This means that we can confine in a lab-based environment such real end

systems, while simulating a large-scale distributed setting with appropriate network

parameters. In particular, Interceptor embodies a network topology manager, which may

be used to interpose a set of arbitrarily connected network nodes (i.e. simulated routers)

between the (real) source and its destination. Using our network topology manager one is

able to specify an arbitrarily complex topological scenario that may be dynamically

modified. Finally, Interceptor exploits an external workload traffic generator that we have

developed to exercise both the end systems and the synthetic complex IP-based networks

in a manner representative of more users that run the same application. In particular,

Interceptor is composed by the four following software components:

• an emulative interface, that exchanges IP packets with real end systems,

• an event manager that schedules events (related to IP packets) based on a

specified simulation model,

• a network topology manager,

• and a workload traffic generator.

The most noteworthy aspect of our contribution amounts to the fact that to the best of our

knowledge, no emulator exists that is able to address altogether the issues mentioned

above. Below we briefly discuss each single software component and emphasize its

novelty.

The Emulative Interface is exploited to introduce live traffic into the synthetic

environment and then, to inject the resulting traffic from the synthetic environment into

the live network. The main characteristic of our emulative interface is that it manages

traffic injection by expressly using the “standard filter channels” of the Linux operating

system (2.4.0 Kernel Family). Indeed, our emulation interface has been developed by

using IPTABLES over Netfilter framework, whose system-calls permit to fetch packets

from the network level (Kernel-mode) to the simulation level (User-mode). In other

words, a filter channel allows to create a tunnel that passes through the emulator and

connects the source node to its destination without the need for a default gateway

installed on a machine the Interceptor runs on. There are several advantages deriving

Chapter 2. Network Simulation: Background

7

from this approach. First, as only standard (OS-based) filter channels are exploited,

neither the contents of IP packets need to be converted into a particular format, nor there

is the necessity to pass through non standard-filter channels to reach the simulation

environment. Second, as there is no need to work with the Interceptor in the role of

default gateway, then emulative experiment can be conducted in a (public) laboratory

without any interference on any other interconnected machine.

The Event Manager implements the event driven scheme to advance a simulation

experiment. Four different types of event are managed, namely: arrival, departure,

simulated-arrival and simulated-departure. The management of the arrival and departure

event is concerned with the operation performed by the emulation interface. Instead, the

management of the simulated-arrival and simulated-departure event is concerned with the

operation performed by the Network Topology Manager. To properly manage the events,

the event manager is able to embed different communication models that may be used to

delay IP packets according to a predefined delay distribution. The embedded simulation

models may be developed according to a coarse-grained approach. Coarse-grained

communication models permit to abstract the simulation at a level, which provides a good

trade off between the accuracy of the experiments and its ability to perform in a real time

fashion. In this way, it is possible to reproduce a wide range of network communication

models varying from simple to sophisticated according to the wanted accuracy. This is a

very critical point when emulative platforms are developed, as the accuracy of the

simulation results must be guaranteed while preserving the real time constrains imposed

by the emulation. To better address this kind of problems, we have also developed a

special mechanism devoted to perform a “lookahead strategy” for the prefetching of

imminent events in the simulation queue. Finally, our event manager embodies a

mechanism, which is able to generate internal IP background traffic. This mechanism

simulates the effect of the presence of other packets inside a link without generating

them. In this way, we pay no cost for the computation of these ones.

The Network Topology Manager provides a support to specify a modeling of complex

network topology and, to decide which simulative communication model can be adopted

in a given experiment. The Network Topology Manager may be used to specify the

number and the type of each simulated node and link. The interaction between the

Chapter 1. Introduction

8

Network Topology Manager and the Event Manager are governed by means of the

simulated-arrival and the simulated-departure event. The most prominent characteristic of

our Network Topology Manager is that it gives users the possibility to manipulate both

simulated nodes and links at run-time. At run-time, indeed, the Network Topology

Manager permits any manipulation of links including the change of: i) the routing table of

any node, ii) the simulative delay distribution between two nodes, and finally iii) the

network topology (without the possibility to create new nodes). Obviously, new nodes

may be added into the simulative scenario at the compile time. Once a given network

topology has been specified the procedural behavior of each active component of the

network may be specified in a rigorous way by embedding in the simulation model the

software code that implements it. This has been made possible by integrating into the

Interceptor a C++ based programming interface based on a multi agent system, called

SPADES.

The Workload Traffic Generator has been developed to reproduce higher numbers of

users running simultaneously the same application. The goal in developing our workload

generator was to exercise final end systems (i.e. final destination for the generated

application traffic) and synthetic simulative networks in a manner representative of more

users that run the same application. As several machines replicate, each one could not run

a copy of the same application (since it would not be practical). Therefore, we have

resorted to the ideas suggested in (Barford et al., 1998; Jin et al., 2001). The SURGE

(Scalable URL Reference Generator) (Barford et al., 1998) generates references matching

empirical measurements of server file size distribution, request size distribution, relative

file popularity, embedded file references, temporal locality of reference, and idle periods

of individual users. Moreover, GISMO (Generator of Internet Streaming Media Objects

and workloads) (Jin et al., 2001) enables the specification of a number of streaming

media access characteristics, including object popularity, temporal correlation of request,

seasonal access patterns, user session durations, user inter-activity times, and variable bit-

rate self-similarity and marginal distributions. In essence, following these ideas, we

developed a realistic workload generator which mimics a set of real users running the

same application on the same machine, permitting to the Interceptor to move up to

Chapter 2. Network Simulation: Background

9

several tens of virtual users who simultaneously exploit the same (real) application on the

same machine, in emulation mode.

Summarizing, our emulative platform is able to reproduce complex IP-based network

scenarios based on a coarse-grained approach, where the performance of the simulation is

favored without sacrificing the accuracy of modeling (Breslau et al, 00). Indeed we

choose to specify the procedural/functional (e.g. network level protocol) behavior of only

the most important network components of a given simulation experiment. Instead, for

known-important components of the simulation only the duration of the corresponding

protocol activity is described according to a predefined delay distributional model. As we

are able to create synthetic network emulation, Interceptor accepts live traffic coming

from real application and introduces it transparently in the synthetic simulative

environment. A set of sophisticated mechanisms (e.g. prefecthing mechanism) have been

devised to support the schedule of the accepted packet in an efficient way while meeting

the emulation real time constrain. Finally, Interceptor is able to accommodate to several

software instances equivalent to users who simultaneously run the same application, in

emulation mode. Based on this reason, we feel that the Interceptor may be very effective

to test the network applications over different complex IP-based networks in a lab-based

environment.

1.3 Outline

The reminder of this work is organized as follows. Session II discusses issues about

network simulation. Session III presents a discussion about the network emulation, as it

aims at managing network simulation and emulative interface together. Session IV

illustrates the design issues of the Interceptor project. The aim of Interceptor is to design

a software architecture supporting synthetic network emulation for complex IP-based

networks. Sessions V describes this system architecture, illustrating which are its

software components, how they work and which is their implementation. Session VI

presents three case studies obtained using the Interceptor. Session VII contrasts it against

other popular tools like NS-2 and Dummynet. Session VIII concludes the thesis by

summarizing the obtained results and by outlining future research.

Chapter 2

Network Simulation: Background

A simulation is the reproduction of a real process or system over time. Simulation

involves the generation of an artificial history of a system and its observation to study the

operating characteristics of the real system. Developing a simulation model promotes the

learning of the behavior of a real system over time. In general, this model describes a set

of assumptions about the dynamics of the real system. These assumptions may be

expressed in different ways, like mathematical, logical and symbolic relationship, among

the entities of the system. Once developed and validated this model, it is possible to

explore the behaviors concerning the real system. In this way, it is possible to evaluate

potential changes on the system to know their impact on system performance without

realizing them. Simulation is very useful to study a system in the design phase. As a

result, the simulation modeling can be used to predict the performance of new designing

systems. Sometimes, a model can be developed in a simple way by adopting

mathematical methods, differential calculus, probability theory, algebraic method and so

on. However, many real-world systems are so complex that adopting the previous

solutions is not enough. In this case, a better solution may be to adopt a computer based

simulation that tries to imitate the behavior of the system over time. In this possible

scenario, data are collected as if they were produced by the real system.

Chapter 2. Network Simulation: Background

12

2.1 Advantages and Disadvantages of Simulation

The output data from a simulation should correspond to that obtained from the

corresponding real system. Differently from the optimization models, simulation models

are run rather than solved. Simulation has some advantages and some disadvantages

(Banks et al., 2001). The main advantages show that it is possible:

• to investigate new policies, decision rules, information flows, operating and

organizational procedures without involving the real system,

• to experiment new hardware designs, physical layouts and transportation

systems without spending money to build a prototype or to rent these

resources,

• to induce certain phenomena to make assumptions about how or why they

occur,

• to speed up or to slow down the phenomena under study by compressing and

expanding the simulation time,

• to understand how or why the variables of the system interact and, also, their

importance concerning the performance system,

• to find the bottleneck of the system showing where its operations are

excessively delayed,

• to facilitate the comprehension about how the system operates and the answer

about “what-if” questions.

Here below, we report the main disadvantages.

• Building a model is not so simple, because time and experience are necessary.

In particular, if two skilled people build two models, these may have some

similarities, but it is unlikely that they will be the same.

• Simulation results are difficult to interpret. It may be hard to determine if an

observation is the result of a system interrelationship or randomness.

Chapter 2. Network Simulation: Background

13

• Simulation processes can be time consuming and expansive. In particular, if an

analytical approach is possible, less time consuming and less expansive, it is

preferred to simulation.

2.2 General Issues about Simulation

The most important issue when performing simulation is accuracy of modeling.

Simulation results have little meaning when the simulative model differs greatly from the

actual system being evaluated. In most simulations, some simplifying assumptions are

required, but the ramifications of any assumption should be thoroughly understood and

evaluated. If possible, the design parameters should be made programmable to the user

rather than fixed by some assumption that will limit the scope of the model accuracy.

This point leads to the next issue. Programmability is important in simulations, which

attempt to determine optimal parameters from a large design space. The user should be

given easy access, e.g., via an input stream, to any parameters that are likely to vary. All

non-essential input parameters should have default values so that the user needs not

clutter up his input stream with parameters that are not of interest. Also, ease of

programmability is very important. If the user has to fill in any input parameter change,

the simulation exercise will be very inefficient.

Simulators can be built according to different approaches: time-driven or event-driven.

In time-driven simulators, the system clock is incremented in identical discrete amounts,

and for each increment, every element in the system is processed to determine if its state

should be updated. For event-driven simulation, an ordered queue of events, where each

event is timestamped, drives the simulation. During each simulation cycle, the head event

is processed and removed from the queue. During the processing of an event, the system

clock is updated to match the timestamp of the event, and other events may be generated

and inserted in the queue. The trade-offs are immediately obvious. For applications in

which a large percentage of the elements in the system change state in every time unit, a

time-driven simulation should be used. In opposition, for applications where events

sparsely populate the timeline, an event-driven simulator is appropriate. Hybrid forms are

also possible. For instance, a time-driven simulation can use a list of active elements in

Chapter 2. Network Simulation: Background

14

conjunction with an event queue of inactive elements. For sake of completeness, we give

you some definitions about three kinds of time: real executive time (or simply real time),

simulative time and executive time. The real executive time (or simply real time) is the

time of the real system we want to simulate. The simulative time is the representation of

time in the simulative model. It is the wall clock of the simulation. Finally, the executive

time is the run time of the simulator.

2.3 Network Simulation

Today, Internet is an integral part of our daily life. As result of the large-scale adoption of

a new generation of network applications, major changes in the infrastructure of the

Internet are being proposed. These changes are designed either to support the growing

traffic or to supply the services required for the new generation of applications. It is

extremely important to build tools for analyzing and comparing these future applications

and these major changes before and after their development (Brakmo et al., 1996). Since

the Internet is a large set of networks, it is not practical to conduct controlled experiments

directly on its infrastructures. This means that there is a need for simulative

environments, which are powerful enough to mimic the behaviors of the Internet, as well

as analysis tools to evaluate the results of these simulations. In this context network

simulation was born.

We can define network simulation as the part of the simulation that mimics network

systems. In literature, we can find the general principles of the simulative experiments

that we should follow to ensure the validity of the results. Typically, these principles are

presented in general terms. One of the main tasks of the simulationist is to apply them to

its specific simulative experiments. In this paragraph, we want to show some practical

guidelines about the network simulation that go beyond the general principles. Most of

these guidelines should substantiate the general simulation principles involving well-

known rules that contain realistic evidence of what happens when they are not followed.

Chapter 2. Network Simulation: Background

15

2.3.1 Sensitivity to network parameters

In general, protocols and communication networks work with discrete entities, like bits

and packets. Several protocol components behave in a discrete manner and several

network parameters have discrete quantities. Since the nature of these complex systems is

discrete, also small changes in the parameters that define a network experiment can

impact in a drastic way the results of a simulation. One of the main guidelines to

investigate is the sensitivity of a simulation to different settings of such discrete values

inside the network parameters. The sensitivity analysis is the systematic investigation of

the reaction of the simulation outputs to the settings of the discrete values of the model

input or to the changes in the model structure. For example, what happens when a

parameter doubles or what happens if a module changes (we do not discuss about

marginal changes or fewer perturbations in the input values). Sensitivity analysis can also

help to optimize and validate the simulative model. Based on experience and on

observations of the real system, the model user and the model designer would probably

know the behavior of the simulation when the input variables are increased or decreased.

In most of the large-scale simulation models, there are many input variables and, thus,

many sensible tests must occur. The model designer must attempt to find the most critical

input variables for testing if varying all input variables is too expansive or time

consuming. If the real system data are available for at least two settings of the input

parameters, objective scientific sensitivity tests can be conducted using appropriate

statistical techniques. In this case, the guideline claims to assign different values to the

parameters of the simulation over the maximum range as possible; in operative mode, this

means to: i) simulate the right cases, ii) perform sensitivity analysis, iii) give confidence

intervals with your results.

2.3.2 Analyzing results

A simulationist should control the results of each simulation to find any instance in which

these outcomes vary significantly from the average. These instances are useful to

highlight possible problems in the simulative environments, in the applications, or, even

Chapter 2. Network Simulation: Background

16

with the implementation bugs. In particular, if we only consider the average as a

significant result, missing important information may occur. In each simulation, it is

important that a simulationist looks at the graphs, which allow him to see the results of all

the experiments, not just the outcome of the average of them. Looking just at the average

may be misleading. One of the important uses of a simulator is to observe the effects on

the experiment tuning the parameters. These observations may help to both find problems

and solutions. This approach is called output analysis and concerns the examination of

the data generated by a simulation. The aim of the output analysis is to predict the

performance of a system or to compare the performance of different system designs. In

general, statistical output analysis is used to evaluate the data produced by the simulator.

If the performance of the real system is measured by a parameter P, the result of a set of

simulation experiments will be the estimator P’ of P. The precision of the estimator P’

can be measured by the standard error of P’. The purpose of the statistical analysis is to

estimate this variance, or to determine the number of observations required to achieve a

desired precision.

2.3.3 Realistic traffic sources

In general, traffic sources are a fundamental part of most network simulations and are

commonly simulated in two ways, by means of Poisson sources, or having multiple “bulk

transfer” connections. There are some limitations if you use Poisson sources. First, these

sources are unable to accurately reproduce either LAN or WAN traffic. Further, Poisson

sources are non-reactive; in fact, they behave the same way regardless of the network

behavior. Differently from the Poisson sources, multiple bulk transfers are able to

produce reactive traffic. The main problem is that the dynamics of this traffic are not

adequate to imitate the behavior of the real one. If we compare the results of the traffic

produced by this simulative approach and by the real system on a graph, the degree of

dissimilarity is, in general, visible. Furthermore, some studies should include traffic

sources that are more realistic than either Poisson or bulk transfers. Today, traffic sources

show that the pattern has self-similarity property, implemented in general by means of a

heavy-tailed distribution. Another important issue is the reproducibility of the traffic

Chapter 2. Network Simulation: Background

17

pattern. Hence, if we configure always a traffic generator with the same initial

parameters, it should produce every time the same pattern, regardless of the other

network components (like the underlying protocols, the number of nodes or the type of

network). The reproducibility of the traffic pattern does not mean that a packet

containing a number “n” of bytes is transmitted exactly at time “t” every run, but rather

that the structural features of the traffic should be reproduced. These traffic sources allow

us to investigate different effects of two different protocols. Summarizing, the

fundamental principles are to adopt realistic reproducible traffic sources and provide

reasons for any distributions used in each simulation.

2.3.4 Byte versus time transfers

The definition of throughput is the amount of data sent over the time necessary to send it.

If we want to compare the difference in throughput between two protocols, one of which

is usually faster than the other, there is the possibility of wrong measurements in certain

cases. In a simulation, during a transfer period, the quantity of traffic may either increase

or decrease. If the quantity increases, the protocol will be measured as slower than its real

capability. This is due to sharing the communication channel with higher levels of traffic

at the end of the test. Vice versa, if the quantity decreases, the protocol will be measured

as faster than its real capability. An alternative way to avoid that the fluctuations of

simulative traffic have different effects on the two comparing protocols and to measure

the throughput is to exchange as much data as possible for a certain amount of time. In

this way both protocols will compete with the same background traffic for the period of

the transfer, but, once more, the measured differences will depend again on the

characteristics of the traffic. Then, comparing the throughput of two different protocols, it

is possible to measure either how much time it takes each to send the same amount of

data, or how much data each can send in the same amount of time. The latter may be

more useful to understand if the obtained measures of the two protocols in a certain time

period were dependent from different traffic fluctuations.

Chapter 2. Network Simulation: Background

18

2.3.5 Variability VS uniformity

In general, a simulation may loose the variability (randomness) that is intrinsic to the real

world. This problem can be generated by an error in designing the simulator or in

configuring simulative parameters. Loosing the variability means making uniform some

characteristics of the real system reproduced inside the simulative environment. The

problem is that the uniformity may be seen as the lack of variability, because it makes

even the degree of randomness of a real system. An example of the uniformity is the start

of all applications at the same time. This scenario is enough unlikely in the real world. If

we do not care about this aspect, it may be easy to have applications that fire at the same

time on all hosts of the simulated network. This lack of variability produces periodic

bursts of data, for example, all hosts send the delayed acknowledgments or start

retransmitting lost packets at the same time. In particular, the effect is equivalent to start

multiple independent communications at the same time. Indeed, a similar burstiness is

also possible when the applications in each node do not fire at the same time. In fact, if

one uses a low number of realistic traffic sources involving multiple communications,

periodical and synchronized behavior of the sources that are not present in the real world

may occur. In this way each traffic source is responsible for a large percentage of the

traffic. Note that this behavior may be not evident, but by means of the Fourier analysis

finding unwanted periodic uniform behaviors is possible. One way to avoid this problem

is to have a lot of traffic sources involving multiple communications. Hence, the basic

principle is to adopt a large number of distributions on everything that needs it.

Unfortunately, dealing with complex simulators, what it is necessary to have distributions

in is not always so clear.

2.4 Issues about Network Simulator

When one wants to design a network system, three different issues must be taken into

account: protocol interactions, traffic pattern generations, and complex network

topologies. Then, in general, in a network simulator a protocol implementation, a traffic

generator and a topology manager should be present. In the history of network

Chapter 2. Network Simulation: Background

19

simulation, the three issues are not always clearly separated and, in some cases, some of

them may be not configurable or only a subset of possible solutions is treated. In this

Section, we analyze the main features of modeling these three issues.

2.4.1 Protocol interactions

One of the main advantages of the network simulation is probably the possibility of

studying the behavior of an application when its real implementation does not exist. This

possibility allows to know a priori the behavior of a new protocol design (or a new

application design) by building a simulative prototype and by testing it inside a network

simulative environment. In fact, differently from the testbeds that need a real

implementation of the testing protocol (or application) and that can be conducted only a

posteriori, a network simulator can use a simplified prototype based on a simulative

language. In this case, the simulationist that implements the simplified simulative

prototype should decide which protocol (or application) characteristics can be included in

its study and which can be ignored. This operation is essentially a transcoding activity

based on the idea of scaling down the level of abstraction of simulation. Some studies

show that the simplified version of the relevant Internet protocols (or applications) may

work well, but there are several studies that are very sensitive to their details. At this

point, the simulationists must face some hard choices about the transcoding activity. Then

the simulative prototype may fail to reproduce the behavior of the protocol (or the

application) due to either possible transcoding bugs or model simplifications that may

lead to inconsistent results. In particular, Brakmo and Peterson (Brakmo et al., 1996)

show the difficulty of reproducing the TCP code and they claim that even if an abstract

TCP transcode is preferred for a quickly simulation, however running the real

implementation of TCP code avoids possible errors. In fact, if after the simulation trails

of new protocol design we want to implement the tested simulative prototype, many

problems may occur. The variations in the implementation of only a single feature, even

if it conforms to the designing of the protocol (or the application) and if it is consistent

with the simulative prototype used in the simulative environment can produce a different

behavior (in the real world) that has a dramatic impact on its performance. The

Chapter 2. Network Simulation: Background

20

implementation of a protocol (or the application) abstraction may behave in unexpected

ways when combined with other protocols and mechanisms inside a real complete

network. Although the Internet is composed by a set of standard protocols (and standard

application), actually each of them is implemented by many different developing

communities, often with very different features. For example, in the (Floyd et al., 2001)

more than 400 different implementations and versions of the TCP protocol have been

identified. These considerations show that the simulationist may be driven to wrong

conclusions and to misunderstand the capability of the protocol (or application). A

solution to avoid the transcoding activity may be the possibility to write a fully detailed

implementation of the protocol (or application) in a simulator. Unfortunately, it would be

very hard to implement a whole complex protocol inside a network simulator due to its

architectural constraints. As a result, no simulator is used to re-implement one of the

common protocols.

A more realizable solution claims that the simulator must facilitate working with

actual protocols, rather than just abstract specifications of protocols. This means to

support real protocol implementations and their direct execution. Then, a possible

alternative to put into practice this last consideration is to explore the network emulation

approach. This approach introduces the real protocol execution inside a simulative

environment. The emulator runs real protocols; this means that the actual behavior like

processing overheads needs not be simulated and a two minute simulation is really two

minutes real execution. For a higher degree level of details see the third chapter.

2.4.2 Traffic generation

Modeling and simulating the Internet means also to reproduce a number of competing

traffic sources. One of the main basic problems of the network simulation is how it is

possible to introduce different traffic sources inside a simulative environment,

reproducing a realistic traffic mix. A possible solution seems to be the collection of

enough traces that capture the full heterogeneity of the Internet world. Many times, this

method fails or results inaccurate. In fact, many Internet protocols adopt adaptive

congestion control that causes these failures. If one of these protocols detects a sign that

Chapter 2. Network Simulation: Background

21

the network is under stress, it suddenly slows down the pace at which it sends packets.

This fact does not produce in its corresponding trace a sign that reflects the unexpected

change. In fact, these mechanisms slow down the rate of their communications if a

congestion is detected anywhere along the end-to-end path between source and

destination. In this way, a person that looks at the traces of an unloaded high-speed link is

not able to understand that its packets might still send at a higher rate, if somewhere

along the end-to-end path enough resources are available. This phenomenon makes the

traffic traces shaped. The use of trace-driven simulation to incorporate the different real

Internet effects is limited by the shaping effect of the rate adaptation from the end-to-end

congestion control. This means that we cannot reuse a trace in another context, because

the communication would not behave in the same way, and would produce inaccurate

results. However, measuring traffic is not fruitless, if one focuses on trace-driven source-

level simulation instead of fixing mind on trace-driven packet-level simulation. Hence,

we do not focus on the volumes of data sent by endpoints, but on only the lower-level

specifics of exactly which packets are sent when they are shaped. Unfortunately, not all

sources can be reliably characterized by traffic traces. For example, the remote login user

is very sensitive to the heavy congestion and may terminate in advance. Another more

general class of examples contains the inherently adaptive applications. These

applications have either their packet-level characteristics or their application-level

behavior shaped by current traffic. Perhaps, another important issue in simulating the

Internet is to explore a scenario with a range of congestion levels. In fact, all degrees of

congestion (from no congestion to all congested) may be observed with non-negligible

probability. In particular, a simulation that focuses only on congested networks is

probably of limited interest without a range of comparison with other simulations that

adopt different degrees of congestion. Predicting the evolution of the congestion in

Internet is as hard as reproducing a realistic traffic mix. For these reasons, it is impossible

to define a typical level of congestion or a typical Internet traffic mix. Hence, we must

keep in mind that we must consider a spectrum of scenarios that can simulate typical

levels of congestion or typical Internet traffic mixes.

As a conclusion of these considerations, we want to illustrate an interesting approach

to reproduce traffic patterns. If we want to generate a traffic patterns we need a workload

Chapter 2. Network Simulation: Background

22

traffic generator. A workload generator is a traffic generator that simulates, at higher

level, the behavior of the studied application, producing, at a lower level, a

communication generating a specific kind of traffic pattern. The topics of the next

Section are how to model a workload and how to characterize a workload for network

systems. In particular, we will describe two well-known examples of workload traffic

generators (SURGE, GISMO).

2.4.3 Workload modeling

The hardware and the software components of a system influence its performance as well

as the load it must schedule. For this reason, the study of the workload is important to

understand the performance indices of the target system (Calzarossa et al., 2000). In

particular, some of these indices depend directly on the workload. Reproducing the

dynamics of a real workload is complex and difficult. Further, if a model may be built, it

should mimic the activities of the real load in a compact, repeatable and accurate fashion.

Even if the real workload emerges from the execution of different competing

deterministic events, it is modeled as non-deterministic, by means of statistical

techniques. This is due to the quantity of data to be measured, to many variables

interacting together and to phenomena to be considered. Here below, the statistical

techniques for building workload models are explained along different steps.

1. Formulation. The parameters to be used for the workload description are selected,

as well as the characterization level and the workload basic component. A

criterion for the assessment of the model representativeness is also identified.

2. Collection of the parameters. It is necessary to collect the different values of the

workload parameters to build a model during the different runs.

3. Statistical analyses of the collected data. This step is divided into the following

sub-steps:

Chapter 2. Network Simulation: Background

23

a. Preliminary analysis. The collected data may be divided into different

workload partitions. The detection of different populations allows to

highlight smaller and more controllable portions of the original data set.

b. Analysis of the parameter distributions. This analysis is conducted by

applying different transformations of the original values of the parameters

or by identifying the outliers. If the outliers are detected, they are removed

to avoid distortion of the classification process.

c. Sampling. To facilitate the scheduling of the amount of collected data with

a realistic quantity of time and memory, one should consider a small

number of components.

d. Static analysis. If the values of the parameters are scaled inside a common

interval, it is possible to achieve a robust classification. In general, the

classification and partitioning of the workload components is achieved by

adopting statistical techniques useful for discovering homogeneous groups

in a given data set. Then, from these groups, it is possible to select some

representative elements in relation to the selection criteria adopted to build

the workload models.

e. Dynamic analysis. If one should mimic the characteristics of the workload

that change their values over time, it would be necessary to consider the

properties of several time series. Possible characteristics of the workload

may be: dynamics of the processing requests and the evolution of the

combinations of the different components execution over time. Different

techniques, such as numerical fitting, statistical analysis of non-stationary

series of events and stochastic processes can represent the analyzed data

sequences in a concise form (i.e. the arrival and departure patterns of

components to the system). A possible approach to describe the dynamics

of the workload is the technique of probabilistic graphs. In particular, it is

Chapter 2. Network Simulation: Background

24

possible to apply user behavior graphs (Calzarossa et al., 1993) to

highlight the dynamics of the workload by replicating the series of

commands submitted by the users. Each user is represented as a graph and

each node of this graph coincides with a specific type of command. A

different number of edges are connected to each node and they represent

the probability of execution of the next command immediately following

the conclusion of the current one. The time spent for each node equals the

time passed running the command, waiting for its conclusion and deciding

about the next one.

4. Representativeness. Finally, the representativeness of the model must be

evaluated. There are different criteria, in particular, there is a performance-

oriented criterion based on a vector V that is composed by different indices of the

workload performance. Hence, the representativeness of the model is measured by

comparing the two vectors Vr and Vm, where the first is the set of performance

indices of the real workload execution, while the second refers to the model

performance. Some examples of possible performance indices are response time,

throughput, and resource utilizations.

Here below, we show how it is possible to apply the workload characterization to

network-based systems. In this context, network-based environments refer to both basic

computer networks considered in isolation, or interconnected together (e.g., WAN, MAN

and LAN). In general, the performance indices of this context are: throughput, channel

utilization and various forms of delay expressed as a function of the traffic nature based

on the user behavior, on the protocol characteristics and on the network infrastructures.

Capturing the essence of the network-based systems is possible by conducting several

sensitivity studies about their performances. These results are achieved by changing the

load over time, the topology of the network under study and the connectivity capabilities.

All these considerations justify the importance of discovering a set of parameters that are

able to capture and reproduce the essence of traffic flowing in the networks. The main

approach to the workload characterization of network-based environments (Calzarossa et

Chapter 2. Network Simulation: Background

25

al., 1993) is based on a layered structure (see Figure 2.1) that divides the workload

components into three basic groups: user terminals, processing nodes and communication

subsystem. According to this approach, the load generated by the users may require

services either from the local processing nodes or from the network (see the dashed lines

in the Figure 2.1). This means that different workload components for different layers

must be designed. To implement the load at each layer probabilistic graphs are adopted.

This is due to their capability to reproduce the static and dynamic properties of the load.

Layer 3 includes the user behavior graphs that are able to capture the dynamics of the

workload by reproducing the sequences of commands run by the users. On layer 2, the

user behavior graphs turn into system graphs that are based on the sequence of requests,

set in arrival time order, coming either from users or the network. Finally, on layer 1, the

system graphs turn into different traffic shapes on the communication subsystem, if the

requests from the upper layer must be processed on remote nodes. This means that the

traffic of layer 1 is described by network graphs that are the representation of the message

flow on the communication subsystem. The workload of network-based environments

can be modeled by considering the interactions among the different layers, summarized in

the points below:

• Measurements of the arrival sequence of the commands submitted by each user

and the building of its behavior graph (layer 3);

• Measurements of the resource consumptions and of the arrival times of all the

requests processed by each node and the building of the system graph (layer 2);

• Measurements of arrival time, length, type and source/destination addresses for all

the messages inside the real load flowing in the network and the building of a

network graph and its corresponding traffic flow (layer 1).

The parameters that can be collected and then used to build a graph for the three layers

and the corresponding modeling techniques are listed in Table 2.1.

Chapter 2. Network Simulation: Background

26

Figure 2.1: Layered structure for the workload characterization of network-based environments
(Calzarossa et al., 1993).

Table 2.1: Parameters and techniques adopted for network-based environments.

Parameters / Techniques Layer Characterization

level Measured Derived

3

User

arrival time
command type

arrival rate
interarrival time
user behavior graph

2

processing node

arrival time
request type
HW/SW resource consumptions

arrival rate
system graph

1

communication

subsystem

arrival time
message type
message length
source / destination nodes

generation rate
interarrival time
network graph
traffic flow matrix

2.4.4 Network topology

The wide-spread development of the Internet has, as a side effect, a variety of inter-

networking problems concerning routing, resource reservation, and administration.

Solving these problems is possible by involving simulation and analysis that try to

reproduce the actual topological structure of the Internet by means of models. In fact,

P1 P2

Communication subsystem

Users
behavior

graph

System
graph

Network graph
Traffic flow

Layer 3
user

Layer 2
processing

Layer 1
network

user
terminals

processing
nodes

T
1

T
2

T
n

T
m

T
…

T
k

Chapter 2. Network Simulation: Background

27

interesting large networks are expensive and difficult to control; for those reasons they

are rarely available for experimental trials. Hence, it is generally more efficient to

conduct trials by adopting simulative scenarios that provides an abstraction of the real

topology of the network. The current state of the art remarks that we can find a lot of

randomly generated or trivial network topologies, but there are few studies about scaling

the results and how these results vary from a topology model to another one (Zegura et

al., 1997). A fundamental question for simulation is what kind of topology we should use

for reproducing a network-based environment. This topology should explain how the

computers in the network are connected with each other and the properties of the links

that implement the interconnection. In general, the largest part of simulative studies

adopts specific topological properties or use synthetically-generated topologies. The

correct way to evaluate the topology-related protocols can be pursued if these studies

show an accurate reproduction of the Internet behavior. This means that the topology

models must show typical properties or invariants of the real structure of the Internet.

However, it is very difficult to pursue the correct reproduction of the Internet behavior

without resolving problems like mapping the actual topology infrastructures, describing

them, and building models that capture its typical characteristics (Medina et al., 2001). In

fact, the topology of the Internet is difficult to reproduce for two main reasons. The

former is that the Internet topology is a target that is constantly evolving and the today’s

network is not tomorrow’s (Floyd et al., 2001). This evolution limits the possibility to

design an accurate map of the structure of the Internet showing the difficulty to validate

the “realism” of any topological model. The latter is that the Internet network

infrastructures (differently from historical centralized public telephone networks) are

controlled by a set of autonomous authorities that are not often willing to exchange low-

level connectivity information (Paxson et al., 1999). Thus, it is possible to design a

scheme of general characteristics of the Internet, but it is not possible to construct an

accurate topological model, due to its decentralized administration and to the lack of

topological details. For these reasons, there are no models that reproduce a typical

Internet topology. Hence, the simulation can explore protocols that are sensitive to

topological structures, only specifying how the protocols perform over a given range of

typical topologies. In spite of all these considerations, simulationists have begun to

Chapter 2. Network Simulation: Background

28

develop topology generators for Internet simulations. Several of them create networks

with locality and hierarchy based on the current Internet. Unfortunately, the largest part

of the considerations regarding the network behavior depends on other simulations and

analyses that show us an approximation of the large-scale nature of network topologies.

In spite of this consideration, these efforts are not fruitless and bring us three main

benefits. First, we can design more efficient protocols that take advantage of its

topological properties. Second, we can create more accurate artificial models for

simulation purposes. Third, we can derive estimates of topological parameters that are

useful for the analysis of protocols and for future speculations on the Internet topology.

Usually the researchers in this area are divided into two groups. The first group consists

of researchers (like us) that study the performance of network protocols and that exploit

topology (generating or designing) tools to obtain excellent synthetic network topologies

for their simulations. Instead, the second group includes researchers that study how to

generate accurate synthetic topologies.

As already said, it possible to describe the general topological characteristics of the

Internet, but it is not possible to model a typical network infrastructure. Here below, we

illustrate the common representation of the network topology to implement the Internet

(Calvert et al., 1997). Designing the topology of a network means modeling the paths

(i.e., sequence of nodes) along which communications flow among nodes. From this

point of view, graphs represent the set of these paths, where nodes stand for switches or

routers, and edges for links between switches or routers. The path may be a direct link or

it may be any channel of communication between two nodes. In a real network more than

a single path may connect two nodes; in general, only the best one according to a chosen

metrics is reproduced inside the model. Again, the simulationists do not model individual

hosts; it is more reasonable that a terminal node is a switch (i.e. a LAN). Further,

modeling the link characteristics (e.g., bandwidth, latency, packet lost etc.) is not a task

of network topology, Usually, these characteristics are described as overhead of the

edges. Today, the general shape of real network topology may be influenced to some

small degree by policies for assignment of IP addresses and government funding of inter-

domain exchange points. From this point of view, the Internet (network) topology is a set

of interconnected routing domains, where each domain is a group of nodes under a

Chapter 2. Network Simulation: Background

29

common administration that shares policy and routing information. Routing domains

range in size from few nodes to thousands. The main characteristic of the network

topology is the routing locality and the hierarchical structure. The routing locality is the

graph between any two nodes in a domain that remains entirely inside the domain, while

the hierarchical structure is the description of the structure with different levels of the

network. From these considerations, each routing domain in a network infrastructure can

be identified as either a stub domain or as a transit domain. A domain is a stub domain

only if the path between any pair of nodes that belong to the domain stays within the

domain. It is the implementation of the routing locality. In general, a stub domain stands

for a group of interconnected LANs (for example a campus network). A transit domain

connects different stub domains in an effective way; in fact each stub domain would be

directly connected to each other by means of transit domains. For this reason, in a transit

domain each backbone node connects to different stub domains (via gateway nodes in the

stub) or to other transit domains. The integration of the transit and stub domains imposes

a hierarchy on nodes. In general, a transit domain stands for wide or metropolitan area

networks (i.e. it comprises a set of backbone nodes). Another difference between stub and

transit domain is that the first one supports only the traffic that originates or terminates

inside it, while the second has not this limitation. Furthermore, stub domains can be

divided into two categories: single- or multi-homed. In the former the stub domain

connects to a single transit domain; in the latter it connects to more than one transit

domain. In particular, it is possible that some stub domains directly connect other stubs.

Hence, from these considerations two general principles about the routing of the current

Internet between two arbitrary nodes emerge. If the two nodes belong to the same stub

domain, the path between them stays completely inside the domain. Instead, if they do

not belong to the same stub domain, the path between them goes from the domain of the

source node, passing through zero or more transit domains, to that of the destination

node.

Chapter 2. Network Simulation: Background

30

2.4.5 Synthetic network topology generation

Graphs are commonly used to model a topological structure, including the one to describe

network systems. Graphs are very useful in order to face up problems ranging from

routing to resource reservation. The literature (Zegura et al., 1997) proposes different

types of graphs like fixed topologies (for example rings, tree or stars), “well-known”

topologies (for example the ARPAnet), and randomly generated topologies. Further, the

literature shows also the limits of the different types, by highlighting how the use of a

model affects the final results. Until now, the selection of a model has depended on the

intuition and the experience of the simulationist, because investigation analyses on the

differences and the similarities among the models have not been carried out. This is due

to the fact that the problem of creating realistic topologies has not been solved yet.

Each of the above types has its intrinsic limitations. Regular topologies are a

simplified overview of current or past real networks. Well-known topologies reproduce

only specific real networks (of the current or past real networks). Random topologies may

not reproduce any (past, present, or future) real network. In fact, most of simulationists

are aware of the risk of drawing conclusions about real networks. For this reason their

papers includes a disclaimer where they specify the topology model used and the

parameters for drawing their conclusions. In (Zegura et al., 1997) three examples, the

network topology model is reported, as it really matters. Then, one must apply different

criteria to model a network topology according to its utilization. For example, if the

purpose is to test an algorithm in a dynamic scenario, the model should generate

topologies with moderate node degree and many routing choices. If the purpose is to

model a particular static network, then the model should accurately reflect this particular

topology.

Here below, we consider three classes of generation methods: flat random graph,

regular and hierarchical. Some of these methods are the direct implementation of the

previous types of graphs. Flat random graph methods build networks as a set of nodes

that are connected by edges with a given probability and without any preordained

structure. Differently from the previous one, the regular generation methods generate

networks with simple and rigid structure, like rings and meshes. The hierarchical

Chapter 2. Network Simulation: Background

31

generation methods create networks by assembling a structure from smaller network

components. These last methods are a compromise between the flat random and the

regular methods, because they impose some high-level structure and fill in details

randomly.

The literature suggests different flat random methods used to model an Internet

topology. All these methods are very similar: given a set of vertices distributed on a

plane, an edge is added between each pair with some probability. The pure random

methods adopt fixed probability. These methods are interesting for their simplicity and

are commonly used, but they do not reflect the structure of real networks. One of the

most famous is the Waxman method (Waxman, 1988), which adds edges with a

probability distribution that is some function of the distance between each pair of nodes.

The probability distribution of an edge from u to v is

P(u,v) = α e-d/(βL)

where 0 < α, β ≤ 1, d is the Euclidean distance from u to v and L is the maximum

distance between any pair of nodes. Several variations on the Waxman method are

proposed in literature. Other methods (Zegura et al., 1997) try to capture locality by

dividing edges based on length in classes, and by assigning a different probability for

each equivalence class of edge lengths:

P(u,v) ={α, if d < r; β, if d ≥ r}

Each pair of vertices is treated in the same way (i.e. by means of the same function) with

respect to the addition of edges. This implies that it may be possible to manage the

quantity of edges, but not to configure the edges according to a preordained scheme. In

fact, these methods generate large sparsely connected graphs. In particular, the

probability that a graph is connected decreases as the number of nodes in the graph

increases. This means that it is unlikely build a graph with a high quantity of nodes that

have on average a low quantity of edges. To solve this problem one can first generate a

partially connected graph and then remove and/or connect the edges to obtain a fully

Chapter 2. Network Simulation: Background

32

connected graph. Another possible solution is to create small sub-graphs and then connect

them by means of a hierarchical structure (as the hierarchical methods do).

In general, analytic studies adopt the regular graphs to evaluate the performance of

network protocols because their structure makes them manageable. The main shapes of

the regular graphs are linear chains, rings, stars and meshes. The general structure is very

simple and makes it possible to conduct a lot of trails in a non-complicated topology. It is

important to highlight that differently from the flat random methods it is possible to

control the number and the configuration of edges. Unfortunately, the regular graph

methods are extremely rigid in their structure.

The previous two methods are not able to capture the hierarchy of the real networks.

Here, two hierarchical methods for generating graphs with locality and hierarchy

properties are presented. The locality is obtained by building small sub-graphs according

to flat random graph methods and the hierarchy is obtained by assembling sub-graphs

according to a specific structure.

The former, the N-level hierarchical method builds a graph by iteratively substituting

each node with a sub-graph. Starting from a first connected graph, each single node in the

graph is substituted by a connected sub-graph. The edges of the first graph are then

connected to nodes belonging to sub-graphs that replace the first level of nodes. In

particular, to build an N-level hierarchical graph, the top-level graph is created by

adopting a scale parameter S1 (in general, by adopting SN, where N represents the level

order). Then, each single node is subdivided again, according to the second-level scale

parameter S2. This operation may be repeated for N levels. At the end, the final graph is

the combination of the scale parameters of each single level and the length between the

two nodes is roughly determined by edge level. The main advantage of the N-level

method is its simplicity because the number and the configuration of edges between each

pair of nodes result in a good approximation, fostering domain locality. A limitation of

this method is that only one type of nodes may be specified.

The latter method generates a hierarchical structure that connects together transit and

stub domains by passing through different steps. The first step generates a connected

random graph using one of the previous methods. At this step, each single node stands for

an entire transit domain. The second step substitutes each node with a connected random

Chapter 2. Network Simulation: Background

33

generated graph that represents the backbone topology of a transit domain. The third step

creates a number of connected random sub-graphs corresponding to each node of the

transit domain. Further it interconnects these nodes by means of an edge to these sub-

graphs that stand for stub domains. Finally the fourth step inserts extra edges between

different nodes: from a transit to a stub or from a stub to another stub. The size of the

graph and the distribution of nodes between transit and stub domains is controlled by the

following parameters: the number of nodes, the average number of nodes for each transit

domain, the average number of stub domains for each transit node, and the average

number of nodes for each stub domain. These methods can create rather large graphs.

Moreover, differently from the flat random graph, this method creates a graph with a high

quantity of nodes that may have on average a low quantity of edges.

2.5 Examples of Network Simulators

Until now, a lot of Network Simulators have been created. These simulators present

widely different characteristics. Some target a specific area of research interest such as a

particular network type or protocol. Others (e.g. NS, REAL and INSANE) target a wider

range of protocols. Some others, with a more general purpose, provide a simulation

language with network protocol libraries (e.g. Maisie and OPNET). Finally, very focused

simulators model details that are relevant to the final user. Concerning this last group, we

highlight either available network topology or available traffic models/generators.

Further, simulators focus on several complementary approaches taken to improve

accuracy, performance or scaling. Some simulators speed up event by processing with

analytic models of traffic flow or by adopting specific queuing behaviors for improving

performance or accuracy. Other simulators improve performance implementing parallel

and distributed systems. In fact, several simulators (e.g. Maisie and REAL) support

multiprocessors or workstation networks. For sake of completeness, in this paragraph, we

show you some well-known workload traffic generators and some topology generators.

Chapter 2. Network Simulation: Background

34

2.5.1 VINT project and NS-2

One of the most important general-purpose network simulator is NS (Bajaj et al., 1999).

Since NS is widely used for network simulation, its modeling language is extensive. NS

is a discrete event simulator targeted at networking research. NS provides substantial

support for simulation of TCP, routing, and multicast protocols over wired and wireless

(local and satellite) networks. NS began as a variant of the REAL network simulator. The

VINT project implemented through the NS simulator and related software provides

several innovations that have improved the way of evaluating network protocols:

abstraction, emulation, scenario generation, visualization and extensibility. VINT/NS

provides several levels of abstraction by scaling the simulation granularity both from

detailed to high-level simulations. It also includes an emulation interface that exchanges

network “live” traffic between real network nodes and the simulator. In VINT/NS a

scenario generation supports the configuration of the simulative experiments.

Furthermore, it provides tools for visualization (Nam) that allow simulationists to see the

complex behavior in a network simulation. It is not so simple to analyze the behavior of a

complex system involved in large scale networks providing only tables of summarized

performance numbers or some plots. For this reason, visualization that shows the

dynamics of the network system allows a deep understanding of protocol behaviors and

debugging. One of the main innovations of VINT/NS is its extensibility. In fact, it is

possible to insert new functionality, to investigate a variety of different scenarios and to

evaluate new protocol designs. VINT/NS adopts two different levels of programming: the

high level allows by means of OTcl scripts to configure predefined modules and the low

level allows the C++ implementation of new modules. Below, we describe the first three

features.

The study of the network protocols is conducted in different ways, either by evaluating

only a single protocol or by aggregating several traffic flows coming from the interaction

of different protocols. Computer resources limit the number of network components like

nodes, links and protocol agents that can be used in an accurate simulation. To overcome

these limitations it is possible to adopt three approaches that improve the performance of

the simulator: tuning the implementation, removing superfluous detail or supporting

Chapter 2. Network Simulation: Background

35

parallelism. A distributed version of NS exists, but the efforts are focused on tuning the

implementation and providing multiple levels of protocol abstraction. The idea is to

remove unnecessary details without violating the validity of the model. VINT provides

different levels of abstraction each of which sacrifices some details to preserve computer

resources. A user can tune simulator performance versus accuracy by adjusting the

simulation abstraction level. This means that one can increase the level of abstraction to

improve the performance of the simulation or decrease it to supply a greater accuracy.

Most simulation experiments are conducted inside a single simulated world that is

executed on a computer or on a cluster of. In this way the simulation exploits only the

protocols developed for the simulative environment. Instead, emulation allows a

simulator to interact with real network nodes by exploiting also all real protocol

executions. Hence, VINT/NS includes an emulation interface useful to evaluate the

dynamic behavior of protocols and their implementations in end-systems. By means of

the emulation interface it is possible to construct a scenario by placing the simulator as an

intermediate node (or end node) along an end-to-end network path. In this scenario, the

simulator introduces live network traffic into its environment. Within this environment,

the live traffic undergoes the dynamics of the simulated network. For this reason, the

simulator exploits a real-time scheduler that supplies the integration between the

simulative environment and the real end-systems. VINT/NS takes advantage from its

emulation interface for evaluating both end-systems and network element behavior.

It is very difficult to conduct simulation experiments under an appropriate set of

network conditions. VINT/NS supports the creation of general events, like link failure, or

the generation of complex traffic patterns and network topologies to generate a scenario.

It is possible to generate a scenario in two ways: by configuring each single network

component or by adopting the automated generation of scenarios. In the first way one can

configure several programmable components, like network topology, traffic models and

dynamic events, according with its pre-defined scheme. The second provides the

automated generation of scenarios that allows simulationists to explore a number of

possible configurations greater than through a manual approach. According with these

two possibilities, VINT/NS supports two types of network topologies: the “pre-defined”

and “automatically generated” ones. In the first case, it is possible to configurate a

Chapter 2. Network Simulation: Background

36

network topology manually or to adopt a pre-defined library configuration. This case

supplies the possibility to implement a network topology varying from simple examples

to the reproduction of real complex networks. Instead, in the second case, it is possible to

generate, in automatic way (by means of GT-ITM), random topologies according to

different parameters such as node degree, levels of locality and of hierarchy. Once more,

according to the two possibilities, VINT/NS provides traffic models, such as traffic

generation support or traffic libraries, for synthetic application of workload models.

These traffic models may include the application of traffic generation, call patterns, or

multicast group membership dynamics and may be derived from empirical data, analytic

models, or generated randomly. VINT/NS supplies a lot of source models either for

unicast or for multicast transport protocols (e.g. several TCP variants, UDP, SRM, RTP,

FTP, Telnet and HTTP). In particular, the framework of VINT/NS permits to include new

traffic models easily. Finally, VINT/NS also provides test generation to analyze the

conditions of a simulation experiment and to evaluate the correctness of a protocol. In

particular, they developed a framework for Systematic Testing of Protocol Robustness by

Evaluation of Synthesized Scenarios (STRESS) that should be useful to find quickly any

possible problematic case in the behavior of a protocol by adopting a systematic synthesis

of test scenarios.

The VINT/NS promoted the extensibility by building programmable and modular

software architecture. For this reason, in this software architecture, the configuration of

the simulation is a program rather than a static configuration file. In fact, a simulation of

the VINT/NS is composed of dynamical objects. The interaction of these objects creates

the simulation. By configuring simulations in this way, the simulationist can extend the

simulator with new primitives or dynamic event handlers that interact with a running

simulation to change its course as desired. To this aim, the VINT/NS takes advantage of a

split programming model, where the simulation core is implemented in C++ language

while simulative scenarios are configured by a program based on an OTcl scripting

language. For this reason, the VINT/NS software architecture adopts two programming

levels to provide flexibility and to maintain performances. In the former, tasks like low-

level event processing or packet forwarding require high performance and are modified

infrequently. At this level, the VINT/NS uses the compiled C++. In the latter, tasks like

Chapter 2. Network Simulation: Background

37

the dynamic configuration of protocol objects, the specification and placement of traffic

sources are often iteratively refined and undergo frequent change. At this level, the

VINT/NS uses a flexible and interactive scripting language like the Object Tcl (OTcl).

The distinction between the simulation core and the simulation configuration level allows

the simulationists to easily configure the simulation environment and it encourages the

implementation of new simulative core objects. This means that, the VINT/NS

architecture implements fine-grained simulation objects in C++ and it combines them

with OTcl scripts to exploit higher-level “macro-objects”.

2.5.2 OPNET simulator

OPNET (Optimized Network Engineering Tool) is a synthetic general-purpose object-

oriented network simulation environment (Chang, 1999). It provides an environment for

the specification, simulation and performance analysis of network communications.

OPNET supports many different communication systems: from a single LAN to global

satellite networks. It is a discrete event simulator. OPNET provides modeling and

simulation designing tool, employs a hierarchical structure to modeling, proposes a

detailed library model specialized in communication networks and offers facilities to

debug, probe and analyze the data produced. A simulation is in general composed by five

phases: the definition of the problem, the building of models, the execution of a

simulation, the analysis of the output data and the decision making. OPNET supplies the

three central phases. It uses a hierarchical structure to design different aspects of the

model being simulated. Further, it supplies a detailed library with models of existing

protocols that can be included with or without change in simulation experiments and it

supports the development new models. Finally, the model can become an executable code

that can be debugged or executed to obtain the output data. This sophisticated object-

oriented network simulation environment has a lot of tools, which help the simulationists

to specify fine-grained models, to identify the interesting elements in the model, to run

the simulation and to analyze the produced output data. These tools are divided into three

different categories: useful to hierarchical model building, running simulations and

analyzing results.

Chapter 2. Network Simulation: Background

38

The first category provides three (Network, Node and Process) editors to develop a

representation of a system being modeled. Network Editor is the physical topology

manager of a communications network. By means of this we can define the position and

interconnection of communicating entities: node and link. The Node Editor specifies in

the node domain the communication devices created and interconnected at the network

level. The process editor builds the process models that describe the logic flows, the

behavior of processors and the queue modules.

The second category provides the Simulation Editor. This editor specifies three steps:

data collection, simulation construction and simulation execution. Before the data

collection a simulationist should decide which information should be extracted from the

simulation. In the second step, the simulationist builds a simulation program and fills in

as an executable file. Finally, OPNET supports different options to run simulations and

different attributes to influence the behavior of the simulation.

The third category provides a Probe Editor, Analysis Tool and Filter Tool. The Probe

Editor provides several different probe types in order to capture different types of output

data (Statistic Probe, Automatic Animation Probe, Custom Animation Probe and Coupled

Statistic Probe). Simulations generate different forms of output that include several types

of numerical data, animation, and detailed traces provided by the debugger. Furthermore,

it supports an interface in C language. By using it, developers may generate proprietary

forms of output. Analysis Tool is useful to view and manipulate the statistical data and to

display information in form of tables or of graphs. The Filter Tool allows the user to

extract data from simulation output files and to display this data in various forms.

2.5.3 GLOMOSIM

GloMoSim (Global Mobile system Simulator; Zeng et al., 1998; GloMoSim, 2001) is a

library supporting sequential and parallel simulation for wireless networks. This library

contains a set of modules that simulate different wireless communications in the protocol

stack. GloMoSim library is written in PARSEC (PARallel Simulation Environment for

Complex Systems; Bagrodia et al., 1997), a C-based language specific for parallel

simulation, which supports a simulative environment based on Maisie simulator. For a

Chapter 2. Network Simulation: Background

39

better comprehension of GloMoSim, we will spend a few words about PARSEC.

PARSEC implements a message-based approach to discrete-event simulation. In

particular, real processes are simulated by entities and events are represented by

transmission of time-stamped messages among corresponding entities. PARSEC has also

a visual-programming environment named PAVE (PARSEC Visual Environment).

Thanks to PAVE, it is possible to support the visual design of PARSEC programs or to

visually configure simulation models using GloMoSim library components. The

execution of a simulator implemented with GloMoSim may be either sequential or

parallel. In particular, the parallel implementation can be executed by adopting different

conservative synchronization protocols and it has been implemented on both shared

memory and distributed memory computers. The GloMoSim exploits its parallel

implementation in order to simulate networks with a very high number of mobile nodes.

GloMoSim wants to maintain the requirements of modularity and scalability. Differently

from other approaches that simulate networks with 100.000 mobile nodes, by allocating

100.000 entities (a one-to-one relation), GloMoSim divides the network into a number of

partitions by adopting an entity as a single layer of the protocol stack for all the nodes of

that partition. Hence, the main aim of the GloMoSim is to support the development of a

modular simulation environment for protocol stacks that can scale up networks, also with

thousands of heterogeneous nodes. To achieve the modularity, GloMoSim is extensible

and is made of standardized units, which can be assembled in different ways. In fact, the

communication protocol stack for wireless networks is divided into a set of layers; each

layer has its own API. By means of these APIs the simulated protocols running on one

layer interact with those at a lower or higher level. The modularity facilitates reliable

comparison of different protocols at a given layer. In fact, if a GloMoSim model

implementation uses correctly the constraints of the APIs defined at each layer, it will be

possible to exchange protocol models at a certain layer without modifying the remaining

layers in the stack. In particular, if we want to maintain the modularity in a parallel

implementation the APIs must bind the interactions among the entities that are running on

different processors or on different machines. These interactions may be messages

exchanged, function calls, or entity parameters according to the implementation. The

modularity in a parallel implementation is possible because a PARSEC library entity

Chapter 2. Network Simulation: Background

40

representing a layer of the protocol stack is largely self-contained. This method

encapsulates the complexity of a specific network behavior inside an entity and makes it

regardless of the other ones. As a solution to support scalability GloMoSim aggregates

more nodes inside one entity reducing the total number of entities. This approach

improves either sequential performance or parallel performance.

2.5.4 Other network simulators

For sake of completeness, in this Sub-paragraph, we report, in concise form, some other

famous and historical network simulators.

BONeS provides several building blocks, modeling capabilities, and analysis tools for

the development and analysis of network products, protocols, and system architectures

(BONeS, 1999). With its recent ATM Verification Environment (AVE), it is specifically

targeted for ATM architectural exploration and hardware sizing.

COMNET III, a graphical, off-the-shelf package, permits simulationists to analyze and

to predict the performance of networks ranging from simple LANs to complex network

systems. Starting with a library of network objects with an object representing real world

objects, the COMNET III object-oriented framework and its GUI gives user simulationist

the flexibility to try different “what if” scenarios.

INSANE is a network simulator designed to test different IP-over-ATM algorithms

with realistic traffic loads derived from empirical traffic measurements. Its protocol stack

provides real-time guarantees to ATM virtual circuits by using Rate Controlled Static

Priority (RCSP) queuing. A protocol similar to the Real-Time Channel Administration

Protocol (RCAP) is implemented for ATM signaling. A graphical simulation monitor can

provide an easy way to check the progress of multiple running simulation processes

(INSANE Homepage).

Maisie is a C-based language for hierarchical simulation (Bagrodia et al., 1994), or

more specifically, a language for parallel discrete event simulation. A logical process is

used to model one or more physical processes; the events in the real system are modeled

by message exchanges among the corresponding logical processes in the model.

Chapter 2. Network Simulation: Background

41

NetSim supplies a very detailed simulation of Ethernet, including realistic modeling of

signal propagation, the effect of the relative positions of stations on network events,

collision detection and handling process and transmission deferral mechanism (Lewis et

al., 1993).

REAL is a simulator to study the dynamic behavior of flow and the congestion control

schemes in packet switch data networks. Network topology, protocols, data and control

parameters are represented by Scenario, which are described using NetLanguage, an

ASCII representation of the network. About 30 modules are provided which can simulate

the behaviors of several well-known flow control protocols (Keshav, 1997).

2.6 Examples of Traffic Generators

The main task of a workload traffic generator is to understand how servers and networks

respond to load variations. In general, generating representative communication traces is

difficult, because the service workload may have a lot of different features.

First, empirical studies have shown that there is a high variability of demands that

derives from CPU loads and a number of open connections. Then, it is important to focus

on the properties of the communications that have high variability, such as request

interarrivals and file sizes. Second, in general, the workload traffic generated by service

requests in a network system may be self-similar. This means that this kind of traffic

exhibits high variability over a wide range of scales. Self-similarity of the traffic forces

the performance of a network system to be negative, thus it is important to reproduce this

feature when a workload generator is designed and implemented. To develop a workload

generator with these properties, it is possible to use a trace-based approach. Trace-based

workload generation adopts prerecorded log files of past traffic and statistical techniques

to reproduce workloads. Although this approach is easy to implement and reproduces the

behavior of a real system, it treats the workload as a “black box”. For this reason, it is

very difficult to obtain an insight into the causes of a system behavior and to tune the

workload to reproduce future conditions or varying demands.

There are many different kinds of workload traffic generator, but in this study we are

interested in those describing Web applications and Multimedia traffic. Here below, we

Chapter 2. Network Simulation: Background

42

want to show you the two main examples: SURGE, GISMO. Finally, we want to

introduce another interesting approach implemented as a distributable platform for traffic

generation called D-ITG.

2.6.1 SURGE: workload generator for web traffic

The SURGE (Scalable URL Reference Generator) is a well-known workload traffic

generator that exercises servers and networks by reproducing the behavior of users that

execute web applications (Barford et al., 1998). SURGE generates a high variability on

the workload. The SURGE tool is composed of two basic parts: one concerning the idea

of user equivalents and the other concerning a set of distributional models.

The idea of user equivalents asserts that the workload generated by this tool should

reproduce the structure of the real traffic generated by different users. In particular,

SURGE tool reproduces the web requests of these users (see the Figure 2.2). Hence, the

intensity of the activity of different users that request the service generated by this tool

should be expressed in user equivalents (UEs). Each user equivalent is a single process

that alternates a time period for making requests of a service and another for lying idle,

during an endless loop. Both the requested services and the idle periods must show the

distributional and the correlation properties of the corresponding population of real users.

Thus a UE is implemented as independent ON/OFF process where ON is referred to

periods during which services are used and OFF to those during which nothing happens.

The distributional models describe the set of probability distribution used by each UE.

Some of them are heavy-tailed, this means that the output of the distribution has a high

variability. The set is composed by the following six statistical properties of Web

streams: File Sizes, Request Sizes, Popularity, Embedded References, Temporal Locality

and OFF Times (see the Table 2.2).

1) The “File Sizes” distributional model describes the set of files stored on the server

matching with empirical measurements. This probability distribution is a

Lognormal joined with a Pareto and properly exercises the file system of the web

server.

Chapter 2. Network Simulation: Background

43

2) The “Request Sizes” distributional model describes the collection of files

downloaded according to empirical size measurements. This probability

distribution is a Pareto and affects appropriately the network. In general, this

distribution is different from the first, because it indicates which single stored file

should be downloaded and how many times (i.e. more or equal than zero times).

3) The “Popularity” distributional model describes the number of requests made to

each single file on the server. This probability distribution follows Zipf’s Law and

is related to the previous two. The distribution of popularity exercises the caches

properly, since popular files typically stay there.

4) The “Embedded References” distributional model describes the number of

embedded references in a web object. This probability distribution is a Pareto and

describes how many objects (images, texts, sounds, etc.) are embedded in each

web page.

5) The “Temporal Locality” distributional model describes the probability that a

requested file will be requested again in the near future. This probability

distribution is lognormal and exercises the caches properly.

6) The “inactive OFF Times” distributional model describes the bursty nature of

requests of a user while the “active OFF Times” distributional model reproduces

the time to transfer web objects. The “inactive OFF Times” distribution is a

Weibull while the “active OFF Times” distribution is a Pareto.

Chapter 2. Network Simulation: Background

44

Figure 2.2: Schema of a request from (Barford et al., 1998)

Table 2.2: Distributions used in the workload generator from (Barford et al., 1998)

2.6.2 GISMO: workload generator for streaming media access

GISMO (Generator of Internet Streaming Media Objects and workloads) is the well-

known workload traffic generator that reproduces streaming media access (Jin et al.,

2001). GISMO exercises servers and networks in a manner representative of a user

requesting streaming media access. This streaming media access is composed by different

characteristics: object popularity, temporal correlation of request, seasonal access

patterns, user session durations, user inter-activity times, variable bit-rate (VBR) self-

similarity and marginal distributions (see the Table 2.3). Thanks to these characteristics,

GISMO generates realistic and scalable streams that are useful to study Internet

streaming media delivery techniques. To reproduce a realistic synthetic streaming access

workload GISMO implements an access model (see the Figure 2.3 and Veloso et al.,

2002). In GISMO, a session is the time of service that begins with a download request

Chapter 2. Network Simulation: Background

45

and ends up with the abortion of an ongoing transfer or with the end of this transfer. The

workload exercises servers and networks as the result of two main aspects: the session

arrivals and the properties of individual sessions.

The former aspect, the session inter-arrival time is the time spent between the arrivals

of two consecutive sessions or of two sessions requesting the same object. The session

arrivals are described by three characteristics implemented as distributional model:

popularity distribution, temporal correlation, and seasonal access frequency.

1) The “Popularity” distributional model describes the relative number of streaming

object made on the server. The distribution of streaming object popularity follows

Zipf’s Law.

2) The “Temporal Correlation” distributional model describes the time passed, once

a file has been requested and it will be requested again in the near future. In

particular, the streaming media accesses requested by different sessions to the

same object may be not completely independent and they may exhibit temporal

correlations. To reproduce this behavior, GISMO assumes that some request

arrivals are correlated, while some others are independent. The distribution of the

Temporal Correlation is a Pareto.

3) The “Seasonal Access Frequency” distributional model describes the seasonal

patterns of the access frequency. Such patterns depend on the type of running

application and on different aspects of location and time. GISMO does not make

any assumptions about this characteristic because it asserts that the distribution of

access frequency at different times should be supplied by its users.

The latter aspect, the properties of individual sessions show the model used for

specifying each single user session. An individual session is described by three

characteristics implemented as distributional model: object size distribution, user

interactivity times, and object encoding.

Chapter 2. Network Simulation: Background

46

1) The “Object Size” distributional model describes the streaming object sizes. This

characteristic is a main cause for session duration; this is due to the fact that if the

download object is larger, the duration of the transfer will be longer. The

distribution of the Object Size is a Lognormal.

2) The “User Inter-activity Times” distributional model describes the moment of the

user activities. These are two kinds: the “stop” and “fast forward and rewind”

activities. GISMO considers the “stop” activity as a partial access and models it as

an aborted session. Hence, the distribution of the “stop” activity is a Pareto.

Instead, it considers the “fast forward and rewind” activities as intra-session

jumps and models them as another Pareto.

3) The “Object Encoding” distributional model describes the autocorrelation of the

variable bit rate needed to transfer this object in real-time. Multimedia objects

have self-similar characteristics. GISMO models the VBR auto-correlation of a

streaming object using a self-similar process and uses a heavy-tailed marginal

distribution to specify the level of burstiness of the bit-rate.

Figure 2.3: Relationship between client activities and ON/OFF times at the session and transfer layers from

(Veloso et al., 2002)

Chapter 2. Network Simulation: Background

47

Table 2.3: Distributions used in the workload generator from (Jin et al., 2001)

2.6.3 D-ITG: a distributable platform for traffic generation

The Distributed Internet Traffic Generator (D-ITG) is a platform able to generate typical

traffic patterns at network, transport or application level (i.e. over the IP stack) according

to the Inter-Departure Time (IDP) and the Packet Size (PS) assessments of real packet

flows (Emma et al., 2004). Along with this approach, a typical traffic flow is identified

by the time between the transmission of two successive packets and the amount of bytes

transmitted with a packet. The values of the two variables may be modeled by stochastic

functions as Cauchy, Exponential, Gamma, Normal, Pareto and Uniform. Further, the D-

ITG supports the setting of the generation seed to run reproducible experiments too. The

runs of D-ITG with the same seed produce the same traffic patterns.

D-ITG works on different operating systems: Linux, Windows and Linux Familiar. It

is implemented as a multithread and as a multitask system and supports TCP, UDP,

ICMP, DNS, Telnet and VoIP protocols. D-ITG is able also to monitor and to log the

performance of the computers involved in its runs. In particular, to measure the

performance it adopts two different modes implemented by One-Way-Delay Meter

(OWDM) and Round-Trip-Time Meter (RTTM) (Avallone et al., 2004a). OWDM

enables to send packets to a specific host and measure the transmission time of each

packet. RTTM enables to transmit packets to a specific host, which sends them back to

the sender. D-ITG promotes to store information both on the receiver and on the sender

side. In addition, it permits the sender and the receiver to delegate the logging operation

to a remote server. This is very useful when the receiver is a PDA or a Palmtop that has a

limited storage capacity.

Chapter 2. Network Simulation: Background

48

The system architecture (Avallone et al., 2004b) of D-ITG is composed by: an Internet

Traffic Generator Sender (ITGSend), Internet Traffic Generator Receiver (ITGRecv),

Internet Traffic Generator Log Server (ITGLog) and finally an ITGSend Manager

(ITGManager). In particular, ITGSend and ITGRecv are synchronized by means of a

Traffic Specification Protocol (TSP). A similar protocol is used between ITGSend and

ITGManager. The TSP Protocol creates a connection between ITGSend and ITGRecv,

authenticates ITGRecv, communicates the information on the generation of a flow,

terminates the connection between ITGSend and ITGRecv. ITGSend can generate traffic

according to single flow mode, multiple flow mode and daemon mode. This last mode

involves ITGManager. In this case the ITGManager implements the workload generator

of the D-ITG platform. For this reason, when ITGSend runs in daemon mode, it stays idle

waiting commands coming from ITGManager. The message, sent by ITGManager, to

request the generation of a specific traffic flow has the same format of that used from

command line. In particular, an ITGManager can control more than one remote ITGSend.

Further, ITGRecv runs by waiting for a TSP connection on the 9000 port. ITGRecv

writes log files that reports the performance of each flow at packet level. The log file can

be stored locally or remotely adopting the ITGLog. Moreover, ITGRecv adopts an

authentication phase that prevents to use ITGSend as a Denial of Service (DoS) attacker.

In this distributed architecture, DoS attacks may be possible only if the attacker controls

the computer where ITGRecv is running. Finally, ITGLog is the server that may receive

remotely the log files both of ITGSend and ITGRecv. In particular, it can be used in

critical situation as for example in a wide area distributed scenario and when device with

limited storage capacity are involved.

2.7 Examples of Topology Generators

As already said, there are different kinds of topology generators. Some generates random

topologies (Waxman, 1988), others imitate the hierarchical properties of the Internet

(Doar, 1996; Calvert et al., 1997), and some others (Jin et al., 2000; Aiello et al., 2000;

Medina et al., 2001) reproduce the connectivity properties of the Internet. Another set of

topologies, for which special generators are not required, are regular topologies (such as

Chapter 2. Network Simulation: Background

49

the mesh, star, tree, ring, lattice, etc). Selecting one of the topology generators depends

on several factors: the nature of the study to be performed, the size of the required

generated topology, the characteristics that the generated topologies may have, etc. In

general, available topology generators can be classified into two categories (Medina et

al., 2001). In the first category there are ad-hoc models based on some considerations:

Waxman models (Waxman, 1988), GT-ITM (Calvert et al., 1997) and Tiers (Doar,

1996). Instead, in the second category there are models based on measurements. This last

category can be further divided into two sub-categories: causality-oblivious and

causality-aware models. In the former, there are causality-oblivious models that

reproduce the power-law distribution (Faloutsos et al., 1999; Jin et al., 2000; Aiello et al.,

2000). These models reproduce well, for example, the outdegree distribution of Internet

topologies, but do not provide any insight concerning why such properties arise in the

Internet. In the latter, there are causality-aware models that try to model basic causes of

the insights of a topology. Example of the possible insights may be why the network

grows incrementally, and new nodes trying to connect to higher-degree nodes (Barabasi

et al., 1999; Medina et al., 2000) (Medina et al., 2000) may belong to a causality–aware

sub-category because its main model tries to reproduce the origin of the power laws in

Internet topologies. Finally, we note that not all existing topology generation models have

been implemented, like the “small-world” model of (Watts, 1999). A brief description of

the main topology generators follows.

2.7.1 Waxman

Waxman (Waxman, 1988) is one of the first topology generators. This generator

produces random graphs and it includes also network specific characteristics. The

Waxman model adopts a probability function to interconnect two nodes, which is

parameterized by the distance that separates nodes in the plane. It has several drawbacks.

First, it does not reproduce significantly the topological maps of real networks. This

means that there is no clear hierarchical structure and the distribution of the links across

the network is improbable. Second, it does not guarantee any connected network. Once it

you generated a network, you must control the connectivity. If this propriety is absent,

Chapter 2. Network Simulation: Background

50

you must discard or modify the generated network. Third, in the network the number of

nodes and links grows in a similar way. This is not likely in real networks because new

links are added for redundancy and not because more nodes joined the network.

2.7.2 GT-ITM

GT-ITM (Calvert et al., 1997) is one of the most famous packages to generate and

analyze graph models of inter-networks. The main component of GT-ITM supplies the

Transit-Stub (TS) model (Zegura et al., 1996) that is useful to replicate the hierarchical

structure of the Internet. The Transit-Stub model does not support the representation of

host systems, but all nodes are routers. As already said in the previous section, first, the

implementation of the TS model generates a connected random graph using a variation of

Waxman method. Second, it produces connected sub-graphs by repeatedly expanding

each node of the first graph and checking the graph for connectivity. If the graphs are not

connected, it discards them. In this way, the final graph is taken at random from all

possible connected ones. Generating a final connected graph may take a long time if the

number of edges is small. Extra edges are added randomly from stub domains to transit or

from stub to stub. Further, this package equips nodes and edges with different types of

information. In fact, each node has a label that shows if it belongs to a transit or stub

node, toact as an identifier to indicate the domain to which it belongs, and to find it inside

the domain. In addition, stub nodes show, the default gateway for the transit domain.

Each edge has a weight that can be used to route packets according to an adequate routing

policy. The GT-ITM release is written in C and includes the necessary libraries from the

Stanford GraphBase (Knuth, 1994).

2.7.3 Tiers

The Tiers (Doar, 1996) is another generator for the reproduction of the Internet topology.

Tiers builds network topologies based on a three-level hierarchy, called tiers. The three

levels of hierarchy are referred to as Wide-Area, Metropolitan-Area and Local-Area

networks. The WAN, MAN and LAN levels correspond respectively to the transit

Chapter 2. Network Simulation: Background

51

domains, stub domains and basic domains. The total number of the transit domains is one,

so this tool is able to describe just a single WAN. Tiers generate each single connected

sub-graphs (corresponding to single domains) by means of the minimum spanning tree

that joins its nodes. The minimum spanning tree is used in general as the basis for laying

out large networks. In this tool, we have two levels of redundancy: intra-network and

inter-network redundancy. Intra-network redundancy means that extra edges are added to

the closest nodes in the network. Instead, Inter-network redundancy means that extra

edges are added to the closest nodes in the next higher domain. These two levels of

redundancy should guarantee some degrees of local connectivity within geographic

constraints. It is possible to represent a lot of connected hosts. In particular, when a node

is a gateway node, the node has two instances: a LAN instance node and a MAN instance

node. The information exchange between the two instances of nodes should reflect the

processing delay and bandwidth constraints within the host. Tiers is written in C++.

2.7.4 Inet and PLRG

Inet (Jin et al., 2000) and PLRG (Aiello et al., 2000) are two generators that try to

reproduce the connectivity of Internet topologies as reported in (Faloutsos et al., 1999).

At the beginning, these generators use a power-law distribution to compute the node

degrees and, afterwards, interconnect nodes adopting different rules. After the first phase

Inet controls if the resulting topology is connected, it joins nodes with a degree greater

than two by means of a spanning tree, it attaches nodes with a degree one to the generated

spanning tree and, finally, deals with the remaining nodes. After the generation of the

node degrees, PLRG clones each node with d degree d times and, finally, the resulting

nodes are randomly joined.

2.7.5 BRITE

The state of the art presents many specific topology generators. This may result

disadvantageous for many reasons. In this way, a simulationist is forced to learn the

differences of any topology generator. This drawback forces, usually, the simulationists

Chapter 2. Network Simulation: Background

52

to use the most popular, the best supported or the easiest one. In the literature, we find

different topology generators that adopt different contexts and have different goals. This

fact implies that the simulationists should use different generators. In particular, the high

number of different generators available makes comparative analyses more difficult.

Another drawback is that developing a new generator is difficult and available generators

are not easily extensible. The real challenge can be described into two issues. The former

is how it is possible to develop a generation tool that represents an interface between the

Internet research and the topology generation research. The latter is how it is possible to

design this tool to facilitate topology generation research. BRITE 1.0 (Medina et al.,

2001) is a universal generation tool that tries to answer to these two questions. BRITE

was born as an alternative to model-oriented topology generators that are very specific.

All other generators described above fall in this category. Instead, a universal generator

should not adopt only a specific set of models, but it should be extended to permit the

addition of new models in an easy way. This means that a universal topology generator

should be flexible and adaptable and should generate representative topologies that

should be employed in different simulation scenarios. Further, it should be as efficient as

possible without losing robustness, it should integrate existing network topology models

and be user-friendly. BRITE is designed as a flexible topology generator that is not

constrained to support any particular topology generation model. BRITE supports

multiple generation models by implementing a model with different degrees of freedom

concerning the layout of the nodes and the method to join them in a connected graph. It

also provides the capability to import topologies generated by GT-ITM, Inet, Tiers, and

BRITE itself, or topological data collected from real networks. In particular BRITE

imports topological data from itself to combine them with other models or other imported

formats. This tool can generate output in its own file format or as the input for the

settings of simulators, like, NS (Fall,1999) and the Scalable Simulation Framework (SSF,

2004). Furthermore, BRITE includes an analysis engine, called BRIANA. BRIANA

supplies a set of analysis routines that should be useful to evaluate any topology model

imported into BRITE. The Architecture of BRITE contains a Model and a Graph as input,

a set of exporting methods as output and function members. The Model data member can

be implemented with multiple specific generation models. It is possible to specify in a

Chapter 2. Network Simulation: Background

53

topology the use of one or more instances of the available generation models. The Graph

data member can be implemented with the minimal functionality required by the

generation models. It is possible to extend or re-implement new or more complex

functionalities without rewriting the remaining code. Finally, the set of export methods

helps us show the output BRITE topologies into specific formats.

The setting of a topology depends on specific generation models being used. In

general, in BRITE, the generation process of a topology is divided into a four phases. In

the first, the layout of the nodes is set up. Then, the nodes are connected. The third phase

assigns the value to the properties of topological components. Finally, the topology is

shown in a request format.

Chapter 2. Network Simulation: Background

54

Chapter 3

Network Emulation: Background

A possible alternative to the synthetic simulation approach is emulation. We cannot

consider emulation as an alternative to simulation or test development, but rather as a

complementary approach. This approach exploits workstations connected by means of

real networks that run modified operating system to simulate slower links and larger

propagation delays. In general, during an emulation, simulated time and real time are

very close (i.e. five minutes of simulated time takes five minutes to run). The main

advantage of this approach is that an emulator runs real protocols. This means that the

behavior of a real protocol and all its implications (like processing overheads for

example) must not be simulated. Unfortunately, this approach shows some limitations

due to the hardware on which emulation runs. In particular, these disadvantages highlight

that: i) to emulate a network with ten hosts one needs ten workstations, ii) it is not

possible to emulate a host or a link which is faster than its hardware and iii) the real time

scheduling of the software is constrained to the frequency of the specific used hardware.

This last consideration draws attention to the available time resolution, which can affect

the accuracy of the emulation (Brakmo et al., 1996). In fact, if an emulator has a time

accuracy of 10 ms, it cannot emulate the exact delay involved in sending packets smaller

than 20 Kb on a 2Mb/s link, because it takes exactly 10 ms to send this amount of bits.

As to network emulation, it promotes the integration of the real network into an

emulative environment, leading to an emulative scenario. Special interfaces called

Chapter 3. Network Emulation: Background

56

emulation interfaces are provided to introduce live network traffic into the emulative

environment and to inject simulated traffic from the emulative environment into the live

network. The role of the network emulator can be different depending on it appearing to

the end systems as a router or as another end system. In the first case, live traffic can pass

through the emulator (transparently to end systems) and it is affected by objects (for

examples different kinds of queues, simulated nodes if the emulation exploits a single

computer or different instances of the emulators if the emulation is fully distributed)

within the emulative environment, or by other traffic on the live network. In the second

case, the emulator is viewed as an end system, so it can generate or receive live traffic by

itself. This means that it can include traffic sources for the generation of live network

traffic as a source host or it can receive the communications from real-world entities as a

destination host. The former approach is currently more adopted than the latter (NS

manual, 2003), as the simulationists prefer to separate the generation of the traffic (due to

the protocol under study) from the emulation of the communication system. In essence,

there are two different modes to manage the packets captured from the real network:

• Opaque mode, where live data are treated as opaque packets, and

• Protocol mode, where live data are interpreted or generated directly by the

emulator.

In opaque mode, the emulator does not interpret the network packets. This means that the

protocol fields of the real packets are not manipulated by the emulator. Hence, live data

packets may be dropped, delayed, re-ordered, or duplicated, but it is not possible to

process specific protocol traffic manipulation that changes one or more values of the

fields of the packet headers (e.g. it is not possible to drop the IP packet with sequence

number 1123). Instead, in the protocol mode, it is possible to manipulate the values of the

fields of the packet headers by interpreting or by generating new arbitrary field

assignments.

In the following Sections, we provide an insight of the proprieties of the network

emulation and examples of the network emulators.

Chapter 3. Network Emulation: Background

57

3.1 Emulation Abstraction Layer

The main aim of any network emulator is to reproduce the behavior of a network scenario

in order to study the performance of the integration between this scenario and the

software communications over it. Therefore, each emulator needs a network model to

mimic a specific network scenario and to characterize its properties. The emulation

interface is a combination of both software and hardware that provides an entry point to

the protocols (or applications) under study within the implemented network model. The

emulation interface is in charge of integrating the emulated network and its live traffic

coming from protocols (or applications) under test, operating either in opaque or in

protocol mode. These protocols (or applications) can be tested at different layers and then

the emulation interface must supply services at different layers, named the emulation

abstraction layers (see the Figure 3.1). The choice of an emulator for a specific scenario

depends on the emulation abstraction layer it supplies for the study of the protocols (or

applications) under test. Providing an adequate emulation abstraction may be made at the

following layers.

• Transport Layer, here emulation reproduces the features of the communication channel

at the transport level (of the stack ISO-OSI), e.g. a TCP or an UDP. The entry point of

this kind of emulators is set at transport layer, so they promote the measurement of the

performances of the applications on their emulated communication channels.

• Network Layer, here emulation mimics the end-to-end behavior of a network connecting

hosts at the network level, by reproducing the performance of the network protocol due to

packet delays, congestion losses, etc. The entry point of this kind of emulators is set at

network layer, so they promote the measurement of the performances of the transport

protocols and the applications on their emulated end-to-end behavior of a network.

• Link Layer, here emulation replicates the behavior of a single network links at the data-

link level due to limited bandwidth, frame delay, etc. The entry point of this kind of

emulators is set at Data-Link layer, in addition to the measurement of the performances of

Chapter 3. Network Emulation: Background

58

the network protocols, they promote the transport protocols and the applications on their

emulated links.

The major research issue of every network emulation approach is how to determine the

maximum possible conformance of the network model implemented by the emulation

abstract layer to the behavior of a real network. Each aspect of the network model should

reproduce physical effects, hardware design, and protocol issues of a real network.

Hence, these considerations show that it is more difficult to realize realistic emulation on

a higher abstraction layer than on a lower. This is due to a great number of factors that

one should consider. For example, network layer emulation should reproduce the effects

of the network level, like routing, queuing, discarding etc. Instead, link layer emulation

approach can exploit the actual implementations of network protocols to create these

effects. From this point of view it emerges that lower emulation abstraction layer will

carry out more realistic results. The authors of (Herrscher et al., 2002b) say that

emulation on link layer is the lowest possible emulation abstraction without using special

hardware.

Figure 3.1: Real and Emulated Protocols

Emulated
Protocols

Real
Protocols

Emulation
Abstraction

Layer

Chapter 3. Network Emulation: Background

59

3.2 Categories of Emulators

There are three possible categories of emulators: central-control, simulation-combined

and trace-based network.

Central-control emulators abstract the network infrastructures to a model with a set of

parameters. This kind of emulators exploits these parameters to reproduce the behavior of

the features of the network infrastructures by creating, for each packet that passes through

it specific network, conditions and traffic dynamics. An emulation experiment is

conducted by connecting hosts to the central-control emulator. Central-control based

emulation may be designed for a particular network such as IP or ATM for example, or

alternatively it may be built to capture some general characteristics. In this latter case, we

have so the called several general purpose emulators. Some well-known genera- purpose

network emulators are ONE (Allman, 1997), Dummynet (Rizzo, 1997), and NIST NET

(Carson, 1997; NIST NET, 1999). Typically this kind of emulators work at network

layer, hence the parameters supported include packet delay distribution, packet drop

pattern, bandwidth, and queues. This approach achieves good results by reproducing

wired network infrastructures even though it does not manage to emulate dynamic

network conditions well. Therefore, central-control emulators may be not able to support

the prerequisites of mobile wireless networks. The main advantage of central-control

emulators is the easy configuration that allows one to analyze the performance of end-to-

end network protocols by tuning emulative parameters. However, this approach is not

able, in general, to supply an emulative environment for the evaluation of topology-

related protocols such as for example multi-hop ad hoc routing.

Simulation-combined emulators expand their capabilities by means of simulation

technologies. Hence, according to this approach it is necessary to adopt, during an

emulation experiment, the abundant resources available in a network simulation. In 1999,

Fall equipped the well-known VINT/NS simulator with an emulative interface and a real

time scheduler. As VINT/NS (Fall, 1999) is an extensible and powerful event-driven

network simulator exploiting protocol modules, algorithms, traffic generator, topology

manager and visualization tools, it was showed that it was possible to combine simulation

and emulation. The main advantage of this approach is the possibility to exploit a large

Chapter 3. Network Emulation: Background

60

amount of simulation resources in the central emulator. Differently from the central

control approach that supplies a limited number of network parameters available, a

simulation-combined emulator can support an environment for the evaluation of

topology-related protocols. However, this kind of emulators inherits the intrinsic

drawbacks of network simulation.

The last category shows the trace-based network based emulators that exploit three

different phases for network modeling: data collection phase, trace distillation phase, and

modulation phase (Satyanarayanan et al., 1997). The first phase collects traces from the

network infrastructures. The second phase builds a network model by means of collected

traces. The final phase mimics the traced network effect in a laboratory. Differently from

the other two approaches that can only try to approximate the network effects, the trace-

based network emulators are interesting because they mimic these effects derived from

real traces. However, the main disadvantage is that this approach can provide a

reproducible environment for the performance evaluation of end-to-end protocols (and

applications) only of the collected network traces.

3.3 Parameters

The parameters of a network model depend on the granularity of the emulation

environment and on the emulation abstraction layer (Dam et al., 1998; Herrscher et al.,

2002a). The main purpose of different emulators is to reproduce networks consisting of

several links, routers, hosts, etc. This means that the parameters of a network model may

be for example (corresponding to the previous components) delay variation, router

queuing, packet reordering. In particular, the parameters concerning the modeling of a

point-to-point or a multipoint link are:

• delay: fixed delay (ms), variable delay (stochastic function leading to a ms value)

• bandwidth limitation: maximum bandwidth (bit/s), queue length (bytes or

packets), type of bandwidth sharing (simplex, half-duplex, or duplex)

• packet loss: probability value, additional burst loss model

Chapter 3. Network Emulation: Background

61

The delay of a packet between two adjacent hosts consists of different possible

components: propagation delay, medium access delay and serialization delay. The

propagation delay is due to the type and the length of the channel between the two

adjacent hosts. Further, it may be comprehensive of additional delays due to the presence

of special devices, like repeaters. If the communication between the two hosts does not

depend on the mobility (i.e. emulation of wireless network) the propagation delay will be

constant. Other possible additional delays may come from particular link layer protocols

that require waiting before starting to send the bits. The medium access delay may be

described by means of stochastic models. A limited bandwidth may introduce the

serialization delay that represents the time spent to send and to receive a packet. This

component is a function of the bandwidth and the respective packet size.

Bandwidth has the generally means how much information can be carried during a

specific time period (usually a second) over a communications link. For example, a link

with a broad bandwidth is one that may be able to carry enough information to support

the succession of images in a video presentation. More technically, bandwidth is the

width of the range of frequencies that an electronic signal occupies on a given

transmission medium. The bandwidth is expressed in bits (of data) per second (bps), (i.e.

a modem that works at 57600 bps has twice the bandwidth as one that works at 28800

bps). We remember that a real communication path usually consists of a succession of

links, each with its own bandwidth. If one of these is much slower than the rest, it is said

to be a bandwidth bottleneck. Hence, the maximum bandwidth of a connection can affect

link performance. The behavior of the bandwidth limitation may be described by a “leaky

bucket”. The bucket has a hole that permits only to the maximum bandwidth bps to

transit into the link. Further, the bucket also has the capacity represented by a FIFO queue

where it can store the surplus traffic. If the queue is full then the incoming packets are

dropped. In particular, the bandwidth limitation in a link can be different depending on

the direction of the connection. This means that the bandwidth can be limited for each

direction separately. In particular for each direction the bandwidth might be shared by all

communications of a multipoint connection.

Two are the main causes for packet loss: link congestion and transmission errors. The

first cause, as explained before, is due to the behavior of the bandwidth limitation that

Chapter 3. Network Emulation: Background

62

drops the surplus packets when link congestion is detected. The second cause is due to

possible transmission errors. This highly depends on the medium of the link. The first

cause is more likely than the second. The packet loss probability is a very dynamic

parameter. As a consequence, a realistic emulation model has to provide this flexibility.

Before concluding this section, it is important to highlight that each parameter

partially depends on the other parameters. In fact, the serialization delay depends on the

bandwidth limitation as well as the packet loss due to the link congestion. Further, the

queue delay depends on the propagation delay of the FIFO queue.

3.4 Routed Emulation VS Intermediate Emulation

As to those emulators that belong to the central-control category and adopt the network

layer as entry point, they must allow the simulationists to integrate real computing objects

(such as network workstations) into the emulative environment. These network objects

may be confined into a lab-based environment and may support the run of complex

distributed applications, while the emulator simulates the effects of their execution in

wired or wireless networks. To exploit their integration capability, the live traffic

produced by the real objects should arrive to or depart from the emulator. In particular,

for IP based network emulator, this is possible by making an emulator able to route IP

packets exchanged between source and destination host as an emulative stream. As

already said, the IP protocol guarantees the connectivity between different network

technologies and different administrative domains. Hence, each network emulator should

be able to route IP packets as typical routers or default gateways do. This approach is

named Routed Emulation (RE). A possible alternative approach is the ability to maintain

consistent networked communications on the emulative scenario. The idea is to send

packets for a certain destination to a virtual address of the emulator. The emulator, aware

of the fact that these packages are not directed to it, introduces them into the emulative

environment, and afterwards it sends them to the final destination. This other approach is

named Intermediate Emulation (IE) and the computer that exploits this ability is called

Intermediate Emulation Server (IES). In general running in RE mode is a stronger

condition than in IC, because the first mode implies the second. Really, the RE is not

Chapter 3. Network Emulation: Background

63

essential and in some cases it may represent a constraint. In this way, the emulator

becomes the default gateway of all computers involved in the scenario; this is not good

because if the emulative experiment is conducted in a (public) laboratory it can interfere

with any other interconnected machine that does not participate in the experiment. In

general a lot of network emulators work in RE mode.

Here below, two methods that allow emulation consistency or routing are described:

virtual host and virtual router method (Bradford et al., 2000).

The virtual host method supports the use of virtual IP number to re-address the hosts

that belongs to the emulative scenario. Suppose A and B hosts with respectively

192.168.1.2 and 192.168.1.3 IP addresses want to communicate by means of the E

emulator with 192.168.1.1 IP address. Further, suppose that A wants to communicate

with B without adopting the 192.168.1.3 IP number, but rather by using a virtual address

of an unused network, like the not routable 10.0.0.0 class. In particular, each real IP

address should have a corresponding virtual address. In this way A can contact B sending

packets addressed to the virtual host 10.0.1.3. At this point, the emulator must listen to

the network to intercept all packets addressed to 10.0.0.0 class and after reading them for

its own use it must route to the final real host. Inside the emulator, each packet can be

manipulated (i.e. a protocol mode is adopted) before delivering it back to B destination.

In fact, in our example, when each packet enters the emulator, the real IP source address

is converted into the virtual 10.0.1.2. Then, just before being put back on the interface

destined for B, the virtual destination address 10.0.1.3 is converted into the real

192.168.1.3. It is important to highlight that the emulator can perform these operations

only if it is able to respond to ARP requests for the virtual addresses. This means that the

default gateway (192.168.1.254) must route the packets from A to B addressing the

10.0.0.0 virtual network to E. If the emulator is not able to respond to these ARP

requests, the default gateway will send these packets to the wider Internet. The address of

the default gateway (192.168.1.254) must be otherwise unused on this network to prevent

other hosts mistakenly trying to route these packets. This configuration permits to

connect directly A with B (without passing through E) by using the default routes for the

real address of B. Moreover, this configuration prevents any kind of interference between

the users of the emulator and the others. The main disadvantage of this method is that it

Chapter 3. Network Emulation: Background

64

fails to apply protocols where IP addresses are carried as data rather than information to

route a packet. Examples of such protocols include Quake network applications and IRC.

This could be resolved by using protocol specific mapping routines in the emulator that

can rewrite data segments. This method allows the network emulator to behave only as

IES because it is in charge of the consistency of the emulative stream, but not of routing.

The virtual router method uses the real IP addresses of the host involved in the

emulative scenario. Suppose that A and B hosts stay on the same network; in this way

they can directly send packets to each other without passing through any other computers.

This means that the packets exchanged between A and B does not exploit the emulation

facility. We can prevent this problem by configuring the A route to B via E emulator.

Vice versa, we can configure similarly the B route to A. Hence, the proposed

configuration allows packets to pass through the emulator as required. In particular, the E

address must be a virtual address reachable by ARP request and able to answer by RARP

response. In fact, if the real IP address of the emulator were used, most likely the top host

operating system on which emulator runs could not route correctly the packets avoiding

the emulation environment and, could even duplicate them. The main disadvantage of

this method is that a route must be configured on each machine for each real destination

within emulative scenario. An appropriate use of the netmask technique can attenuate the

problem above. However, this method forces all packets from A to B (and vice versa) to

pass through the emulator. This means that this method interferes with the other users on

A and B submitting their packets to the emulation. This method imposes the network

emulator to behave as default gateway or IES.

To conclude this Section, we show a method to simulate internal hosts that may appear

“real” to real hosts outside. These simulated hosts, like real ones, respond to pings, and

show up on traceroute through an emulator and may offer other different services. It is

possible to implement small mechanisms working on the IP protocol. The internal host

method forces the emulator to respond to ARP requests on behalf of the internal hosts. In

this way the real hosts can send packets to internal ones. The IP address of the internal

hosts can belong either to the same network of the real hosts or to other virtual networks.

Chapter 3. Network Emulation: Background

65

3.5 Lab-Based Environment

Networks vary widely in scale and performance, from simple local networks connecting

few machines to those spanning the globe, connecting millions of machines. It is clear,

therefore, that there is no single type of network suitable for all users. In order to try to

provide a satisfactory compromise, networks are commonly interconnected. The

interconnection of networks provides additional complications due to the wide range of

heterogeneous network types that may require connection. Similarly, there are also large

variations in the scale of distributed applications that are connected by such networks.

Applications may be thought of as being widely distributed if they involve many

machines or machines separated by large distances. Typically, such applications must

tolerate reduced network performance in comparison to those communicating over a

purely local network. The aim of network emulation focuses on the possibility to

reproduce in a laboratory environment, through an emulator, large-scaled scenarios like

wide area networks or wireless networks. This means emulating wide-area or wireless

network characteristics on one or more interconnected local area networks (LAN). To

reach this aim we must describe the main differences between networks on: delay, packet

loss and different bandwidth. Hence, the emulator running on a LAN should mimic

accurately the performance of wide-area and wireless networks to be effective. Regarding

delay, there is at least an order of magnitude of difference in favor of LANs. Apart from

this obvious difference, delays remain approximately constant in a LAN. Instead they are

very variable over time (for the same path) in a wide-area or wireless network. In

particular, delays between two hosts in the previous two network types depend on causes

like network load, currently used route etc. Differently from a wide-area or wireless

networks that lose packets, on a LAN they are rarely dropped. This makes a substantial

difference in protocol performance, because in the reliable LAN the duplication of the

packets due to their loss never occurs. The last difference depends on the fact that wide-

area or wireless networks consist of heterogeneous hardware or moving devices, so the

value of the bandwidth is due to the different bandwidths over different paths. To sum up,

the performances of a LAN are better than those of wide-area or wireless networks; so it

is possible to use a LAN to reproduce a wide-area or wireless scenario reducing the LAN

Chapter 3. Network Emulation: Background

66

performances. In fact we can manage the best characteristics of a LAN to reproduce the

behavior of the less ones of wide-area or wireless network. In this way it is possible to

reproduce complicated and large-scaled scenarios in a laboratory environment.

3.6 Goals

After the explanation about the network emulation and which are its main features, we

want to specify which are the goals that must be fulfilled (Dam et al., 1998).

• The design of the emulator should not prevent the use of any specific operating

system or hardware in the emulative scenario.

• The operation of the emulator should be transparent to real protocol

implementation under study. This means that a user should not have to rewrite

his/her code nor have to recompile the operating system on his/her computer to

take advantage from the emulative environment.

• If delay, bandwidth and packet loss are the characteristics that describe the

network emulation, they should be flexible enough to reproduce a wide range of

network conditions (we are considering the network layer emulation).

• The emulator should be easily configurable by means of a Graphical User

Interface. Further, by exploiting this GUI it should be possible to update

continuously the emulation over time.

• The emulator should support the management of log files where useful statistical

information is reported.

• The emulator should support a range of possible settings varying from simple to

sophisticated.

Chapter 3. Network Emulation: Background

67

• The installation of the emulator should be simple and not invasive. This means

that it does not involve any changes to a typical laboratory environment. In

particular the emulator should not run on the default gateway machine.

• Again, the emulator should be able to accept and manage adequately packets sent

from end-systems belonging to different LANs. The LANs may be far.

3.7 Examples of Network Emulators

The literature on network emulation shows efforts by various groups. Modeling the

properties of computer networks is the first step for both simulation and emulation. Until

now, a lot of network emulators have been created. These emulators present widely

varying characteristics. There is a large number of central control approaches. These

include Dummynet, NISTNet, ONE. Some emulators improve performance

implementing parallel and distributed systems. This includes ModelNet, IP-TNE, VSI

and NetBed, NetWire, NETShaper. Further, some of them target a specific area of

research interest such as a particular network or protocol like EMWIN (wireless

communication). Others may use a very specific approach, like Delayline that works at

the application level rewriting the socket system calls, or BBN that is a hardware

emulator.

3.7.1 DUMMYNET

One of the most well-known network emulators is Dummynet (Rizzo, 1997). Dummynet

is a simple, flexible and accurate network emulator that was built with modifications to

the communication protocol stack. Dummynet runs on a standalone system by

intercepting communications of the protocol layer under test and by introducing them

into an environment where the effects of finite queues, bandwidth limitations,

communication delays and packet losses are exploited. In simple words, this tool suggests

an approach to insert a model that reproduces a simplified network in an operational

protocol stack and to conduct trails on a standalone system. Dummynet enjoys the

Chapter 3. Network Emulation: Background

68

advantages of both simulation and testbed: control over parameters of emulation,

simplicity, capacity to use real traffic generators and real protocol implementations. This

tool allows to carry out experiments with network protocols by running a set of

unmodified real world applications like FTP, SSH and HTTP on a workstation.

Dummynet is inserted between the interfaces of the network layer and the transport

layer of the protocol stack of the computer on which is executed (see the Figure 3.2).

Therefore, it reproduces the network infrastructures between two host including two

different types of elements in the stream of the communication: routers and links. In order

to simulate their presence, respectively a router is represented as limited queue and

adopted queuing policy, while links are represented as bandwidth limitations,

communication delays and packet loss. The basic configuration of a trail consists of one

or two routers and one link. These elements are modeled by means of a couple of queues

(i.e. router-queue and link-queue) that intercepts the communications between the

protocol layer under observation and its lower layer. The couples may be two, namely

one for each direction of the communication. The router-queue is characterized by a

maximum size, while the link-queue by a bandwidth and a communication delay. When

each communication direction is used, packets are inserted in the router-queue until the

maximum size is reached. At this point, it is possible to adopt a queuing policy and

eventually to reorder the packets randomly. After this point, packets are shifted from

router-queue to link-queue according to the bandwidth limitation. The link-queue adopts

a FIFO policy. Packets stay in this queue for a number of seconds. After this period, they

are removed and sent to the protocol layer under observation. At this point random packet

losses may occur. In particular, the shifting from router-queue to link-queue and the

departure of the packets to the next protocol layer are executed according with a T

periodic task (where T is a submultiple of the communication delay).

Dummynet like the other network simulators and emulators show some limitations to

reproduce the behavior a real system. The main limitations come from the granularity and

the precision of the system clock. The granularity limits the resolution in all timing

related measurements. This is due to the modeling of high-speed networks where the

packet delay becomes comparable with the time quantum of the system clock.

Chapter 3. Network Emulation: Background

69

Figure 3.2: Architecture of Dummynet reported from (Rizzo, 1997)

Another limitation is that the overload of a time-driven system might deliberately delay

some packets or might miss one or more timer ticks. Dummynet works adopting a time-

driven approach with T period and its emulative environment is synchronized with this

period. This kind of synchronization never occurs in real-world networks and might hide

or amplify some phenomena. Finally, we conclude by highlighting that only a prototype

implementing this approach between IP and TCP exists.

3.7.2 NETBED

NetBed (Lepreau et al., 1999; White et al., 2002a-b) is the improvement of a network

experimentation platform that focused on efficient setup and control over emulated

topologies, named Emulab. The main aim of Emulab was to make facility available to

any simulationist and easy to use. Hence, it makes the automation of testbed

configuration possible and it allows both interactive and programmatic exploration of

different experimental conditions. NetBed introduces simulated and distributed nodes

into the original platform and allows their simultaneous use alongside emulated nodes in

mixed, virtual topologies. Reaching this aim is possible for NetBed integrating emulation,

simulation, and live network experimentation into a common framework. The idea behind

NetBed allows to create a virtual topology configuring a set of distributed, emulated, or

Chapter 3. Network Emulation: Background

70

simulated nodes, by means of either graphical tools or via command-line scripts. For this

reason, an experiment is defined by its configuration and any run-time dynamics (e.g.,

traffic generation) specified via general-purpose interface (for example: NS/Tcl scripts).

The automated facility of NetBed includes different settings at different levels of

configuration. In fact, it is possible to manage experimenter accounts, set emulated link

characteristics, and map the virtual nodes. Furthermore, it is possible to link to physical

resources, downloading clean disk images on emulated nodes, setting up network

interfaces and IP addresses. Once an experiment is configured, a simulationist can

interactively log into emulated or distributed nodes. This is possible also because a

NetBed experiment may last from a few minutes to many weeks. All aspects of the

experiment can be controlled via web interface, giving simulationists the possibility to

make multiple runs, to change their parameters or to collect long-term data. Web

interface of NetBed allows experimenters to create, pause, and terminate experiments

remotely. NetBed provides also batch experiment system that permits to the simulationist

to submit a configuration script over the web. When enough hardware resources become

available to run the experiment, it notifies to user that the experiment has started.

One of the main advantages of NetBed is to support heterogeneous resources. In fact, a

complex scenario inclusive of links and nodes may be emulated by traffic shaping, like

Dummynet, may be simulated via NS, or may be realized by exploiting real wide-area

links. In particular, NetBed exploits the emulation facility of NS (NSE) to transfer

packets passing through the simulative environment to the live networks. One of the most

important features of NetBed is the consistent interface that provides to control nodes and

links regardless of their implementation (distributed, emulated, or simulated). The

integration of heterogeneous resources is largely enabled by a database. The database

stores the heterogeneous resources and serves as a level of indirection between front-end,

general-purpose tools, interfaces, back-end and domain-specific implementations. It

presents a consistent abstraction of heterogeneous resources to higher layers of NetBed

and to simulationists.

Finally, the infrastructure of NetBed may be sufficiently flexible to incorporate

wireless mobile virtual nodes and different link types. This possibility will bring

important practical benefits to experimentation in wireless and mobile domain, including:

Chapter 3. Network Emulation: Background

71

automated and efficient creation of virtual topologies, efficient use of resources through

time- and space-sharing, increased fault-tolerance through resource virtualization,

capability to leverage existing tools and easier validation across experimental techniques.

Easiness of use and automated configuration are necessary to enable qualitatively new

approaches. These permit a speed up of the time needed to launch again a NetBed

experiment. In particular, experiment setup cost is even higher in wireless and mobile

domains, which require careful measuring of interference effects and “walk-through”

experiments.

Efficient use of scarce and expensive infrastructure is also important and a

sophisticated testbed system can markedly improve utilization. This approach tries to

minimize the value of the time-sharing (i.e., “swapping out” idle experiments) and space

sharing (i.e., isolating multiple active experiments). The resource efficiency is more

important for wireless and mobile devices since they are less prevalent than PCs. NetBed

virtualizes node names and IP addresses so that nodes and links form equivalence classes.

Any nodes with the same properties and interconnection characteristics are suitable

candidates for a specific class. While virtual nodes may be explicitly bound to specific

physical hosts, the flexibility to allocate from an equivalence class adds a measure of

fault tolerance. This approach is useful in that infrastructure where node or link failures

are anticipated like large-scale clusters, wide-area networks, or unstable wireless

environments. Incorporating wireless and mobile devices under the NetBed infrastructure

brings a mature set of tools and features to these domains. The NetBed extends consistent

control and specification of traffic generators across all experimental methodologies and

allows one to control applications running on wireless nodes by means of the current

event system and standard commands.

The common NS interface makes it easier to compare experimental environments,

thereby facilitating and encouraging validation. Extending this capability to wireless and

mobile nodes will provide an automatic way to compare simulated radio propagation

models with real devices.

This new hybrid approach of experimentation, incorporating resources from multiple

experimental environments, can simultaneously leverage the particular strengths of each.

In particular, a simulationist can leverage the greater scalability of simulation without

Chapter 3. Network Emulation: Background

72

surrendering confidence in the accuracy of the results. According to this approach it is

possible to replace a small “island” of simulated nodes with physical nodes, using live

wireless communication amongst them. Moving or removing this “island” of nodes from

the experiment will yield similar results if the simulative model and the real instantiation

of this model are equivalent. The integrations of such close interactions between live

traffic and simulation require careful synchronization between simulated and real time.

3.7.3 MODELNET

ModelNet (Vahdat et al., 2002) is a scalable and comprehensive large-scale network

emulation environment. In ModelNet, real applications run on edge nodes configured to

route all their packets through a scalable core cluster, physically interconnected by

gigabit links (see the Figure 3.3). This core is responsible for emulating the

characteristics of a specified target topology on a link-by-link basis. In ModelNet,

simulationists execute a configurable number of instances of target applications on Edge

Nodes within a dedicated server cluster. Each instance is a virtual edge node (VN) with a

unique IP address and corresponding location in the emulated topology. Edge nodes can

run any OS, any IP network stack and they may execute unmodified application binaries.

To the edge nodes, an accurate emulation is indistinguishable from direct execution on

the emulated network. ModelNet emulation runs in real time, so packets pass through the

emulated network with the same rates, delays, and losses as a real network. Standard

administrative commands configure edge nodes to route their network traffic through a

separate set of servers acting as Core Routers. The core nodes are equipped with high

performance hardware and modified FreeBSD kernels that enable them to emulate the

behavior of a configured target network under the offered traffic load. The core of the

emulation (i.e. the set of core nodes implementing the emulative environment) routes

traffic through a network of emulated pipes, each with an associated packet queue and

queuing discipline. Packets move through the pipes and queues only by reference. In this

way, a core node never copies packet data. Packets enter the queues coming from VNs or

exit from upstream pipes and go on through other pipes according to their specified

bandwidth, latency, and loss rates. Each queue buffers a maximum capacity that results in

Chapter 3. Network Emulation: Background

73

packet drops when it is overflowed. When a packet exits from the last pipe, the core

transmits the packet to the edge node hosting the destination VN.

ModelNet passes through five phases before running an experiment: Create,

Distillation, Assignment, Binding and Run. The first phase, Create, generates a network

topology, by means of a graph. The edges represent network links and the nodes

represent clients, stub, or transit domains. ModelNet writes the graph using the Graph

Modeling Language (GML). The Distillation phase converts the GML to a pipe topology

that reproduce the network infrastructure. In this phase it is possible to simplify the

network, trading accuracy for reduced emulation cost. The Assignment phase implements

the network topology, mapping the topology of the previous phase to the core nodes. This

map partitions the pipe graph to distribute emulation load across the core nodes. One of

the hard problem, the ideal assignment of pipes to cores, depends on routing, link

properties, and traffic load offered by the applications (it is an NP-complete problem).

The Binding phase allocates VNs to edge nodes and configures them to execute

applications. ModelNet allocates one or more VNs onto each real edge node that binds to

a single core. In this phase different sets of configuration scripts are generated for each

node (i.e. either core or edge nodes). In the core nodes, the scripts install sets of pipes

according to the distilled topology and routing tables between all pairs of VNs. In the

edge nodes, the scripts set edge nodes with emulation-based IP addresses for each VN.

The last phase starts the emulation by running application code on the edge nodes. A

single command script automates the execution of thousands instances of a particular

application across a cluster. In particular, VNs running application instances must bind IP

endpoints to their assigned IP addresses in the emulated network rather than the default

IP address of real node hosting those (VNs). This is fundamental to guarantee the

emulation consistency. In fact, the emulation consistency is obtained by rewriting the

source and destination fields of the outgoing packets with the correct (emulation-based)

values. In this way it is possible to route through the core and to their final destination

correctly.

Here below, it is explained how the core works and, in particular, the packet

processing steps are illustrated. The core is configured to intercept packets entering the

emulated network based on IP address by means of the IP firewall (ipfw). All VNs bind

Chapter 3. Network Emulation: Background

74

to IP addresses of the not routable 10.0.0.0 A class. When the packet is intercepted, the

core kernel module looks up the route for the given source and destination. In the Binding

phase, ModelNet builds a routing table in each core node. This table is filled up with the

pre-computed shortest-path routes among all pairs of VNs obtained in the distilled

topology. Each route is an ordered set of pipes that must be crossed to send a packet from

source to destination. In this way it is possible to show the set of pipes that must be

passed through in the emulated topology. At this point the core creates the descriptor that

references the buffered packet. This descriptor will be scheduled, instead of the buffered

packet, on the set of pipes specified by its route. As this set of pipes are shared by

different competing flows and each has a differently configurable queue, the core is able

to reproduce the packet drop and network congestion effect, due to an application-

specific communication patterns.

The descriptor scheduling adopts a heap of pipes that are sorted by the imminent

timeout. In particular, the timeout of a pipe is the exit time of the first packet in its queue.

The scheduler has a time frequency configured at 10Khz and runs at the highest priority

level. The scheduler checks up on the heap for all pipe timeouts that are later than the

current emulation time. When one or more timeouts expire, all descriptors at the head of

the late queues are removed and are inserted into the tail of the next queue that represents

the next pipe on the route of these packets. If a descriptor on the last pipe and its timeout

is expired, it is delivered to the real link toward the final destination. Then, the scheduler

calculates the new timeout for all pipes that had expiration during the current emulation

time. After this computation, it reinserts these pipes into the heap according to this new

timeout expiration.

To respect the emulation accuracy a coordination of kernel components is necessary.

To achieve this aim the core performs two principal tasks with different priorities. The

first task is managing hardware interrupts to intercept (ingoing) packets from the network

interface. The second aim is to periodically insert packets from a pipe to another pipe or

from a pipe to the final destination. Hence, the second task has a strictly higher kernel

priority than the first. In this way, the core prefers to emulate carefully the delay of the

buffered packets rather than to service ingoing packets. As a result, the CPU saturation of

the core produces dropped (ingoing) packets rather than inaccurate emulation.

Chapter 3. Network Emulation: Background

75

Figure 3.3: Architecture of Modelnet reported from (Vahdat et al., 2002)

Hence, this approach may result in a critical situation where a lot of packets are dropped

at the physical level and the accuracy becomes relative. The core implementation of

ModelNet is based on Dummynet, with extensions to improve accuracy and to support

multi-hop and multi-core emulation.

3.7.4 Other network emulators

For sake of conciseness, in this Sub-Section, we report some other examples of network

emulators.

Delayline (Ingham et al., 1994) can introduce propagation delay and allows to specify

a packet loss probability of an unreliable communication channel before passing the

packets to the actual sockets provided by the operating system. Delayline provides

transport layer emulation through a custom socket implementation. A major limitation of

this tool is that it is designed only for UNIX systems and can only be used for

Chapter 3. Network Emulation: Background

76

applications, which use Berkeley sockets for communication. To make use of the tool, an

application has to be filled in to call the Delayline system calls. Therefore, the tool is not

transparent to applications.

NISTNet (Carson, 1999) has a fixed queue size, but adds delay variation, packet

reordering, and packet duplication. NISTNet is a tool working within the Linux kernel.

As Dummynet, it can introduce bandwidth limitation, delay, and packet loss, and then it

adds delay variation, packet reordering, and packet duplication. NISTNet operates at

network emulation layer and therefore can only be configured on the basis of IP layer

addresses. By using up a number of connected nodes running an emulation tool, a

comprehensive network scenario can be set up.

NetWire (Carniani et al., 2001) is a distributed architecture designed for educational

and research purposes, which provides a synthetic and realistic network environment that

may be used to teach and learn parallel algorithms (or parallel operating systems) as well

as to research and develop new distributed algorithms. NetWire is an architecture based

on a client/server derivation scheme: each client can interact with one or more servers

emulating one or more networks by the NOEL protocol (Network Oriented Emulation

Language), which is an extension of TCL over TCP/IP specifically designed for NetWire.

The user can thus control all the physical parameters of each network or part of it

(communication channels, hubs, network adapters and so on). Furthermore, the NetWire

API library interfaces the synthetic network environment to real software applications

with ease, hiding the whole architecture behind the appearance of a network device

driver, fully compatible with the operating system the applications run on. Moreover,

NetWire already provides a featured Xwindows interface, and because of the integrated

TCL language and the interactions between NOEL and TK, it is possible to quickly build

up new and powerful GUI based programs.

ONE (the Ohio Network Emulator) (Allman, 1997) is a tool that enables researchers

to emulate a network between a pair of interfaces on a single Solaris-based workstation.

The user can control various features of the network, such as propagation delay, queuing

characteristics and bandwidth. In addition, the tool interfaces with Satellite ToolKit

(STK) to emulate variable propagation delays based on the orbits of satellites. ONE was

initially developed by Ohio University’s Internetworking Research Group. The program

Chapter 3. Network Emulation: Background

77

is now maintained in conjunction with the NASA Glenn Research Centre’s Satellite

Networks and Architectures Branch.

IP-TNE (Bradford et al., 2000) (the Internet Protocol Traffic and Network Emulator)

is a network emulator that uses a fast parallel discrete event simulation (PDES) kernel to

model interactions between real IP packets and IP packets generated within a network

emulator. IP-TNE uses the Taskit PDES kernel that has been modified in order to operate

as a real-time system. Taskit is a simulation kernel that implements CCT (the Critical

Channel Traversing) algorithm.

EMWIN/EMPOWER (Zheng et al., 2002a-c) is a new IP-based mobile wireless

emulation. In EMWIN, a target mobile wireless network is precisely mapped to an

emulation configuration in a laboratory private network consisting of several emulator

nodes, each of which is able to emulate multiple mobile hosts. Moreover, the emulator

node can be flexibly configured so that predefined network conditions and traffic

dynamics can be generated in an automatic manner. With EMWIN, the mobility of the

target mobile wireless network with a number of mobile nodes can be faithfully emulated

in a wired network environment.

NETShaper (Herrscher et al., 2002a-b) (Network Emulation Testbed) provides

emulation on link layer that is completely transparent for applications and even protocols

down to the network layer. Therefore, NETShaper can be used to evaluate e.g. routing

protocols in their original form (i.e. without code modifications). NETShaper uses a

bandwidth throttling approach that exactly mimics the actual behavior of saturated

network devices, and therefore works with queuing algorithms provided by the network

layer. Further emulation parameters include fixed delay, variable delay, and frame loss.

Due to its modular architecture, it can be inserted and removed without rebooting

systems. As a trade-off between centralized and distributed emulation, NETShaper

emulative tool can run on several nodes forming a comprehensive scenario, and is

controlled in real-time by a central dynamic network model.

VSI (Xu et al., 2001) (Virtual Socket interface) is a socket-based interface to compose

hybrid component networks with an existing parallel network simulation library called

GloMoSim (Zeng et al., 1998). This work implements a technique to exploit real time

lookahead and shows a detailed analysis of the real time lookahead on the performance of

Chapter 3. Network Emulation: Background

78

hybrid component networks working with parallel execution of simulated components. In

this particular case, the lookahead is the ability of simulated components to foresee the

interactions with physical components. VSI uses the real time lookahead approach to

manage the interactions between operational TCP applications and simulated TCP

protocol models for the parallel simulation. VSI is portable and supports most of the TCP

applications.

Finally we can see an example of hardwar- based emulator. BBN (Milliken, 1993)

offers a hardware-based link emulator that emulates two or more unidirectional optical

links. It can be used for delay emulation of up to 200 ms programmable in increments of

1 microsecond resolution. The emulator itself is essentially a SUN Sparc station with

special hardware and software installed on it. It also provides certain error patterns and

error rates. However BBN is far too expensive to be used by general-purpose protocol

developers.

3.8 Simulation Resources: Traffic Generator and Topology Manager

In this Section, we show some simulation combined based network emulators that exploit

workload traffic generators and some topology generators.

3.8.1 Traffic generators

Workload traffic generators are used to evaluate the performance of different servers and

thus to find their optimizations. The crucial point of this study should show how these

servers perform in a wide area network, like Internet. In particular, different works focus

on understanding the effect of wide area conditions on web servers (Nahum et al., 2001;

NS). In fact, in the real scenario clients geographically far from these servers generate

requests that exploit the wide network infrastructure to reach them. At the beginning, this

scenario was reproduced by using a workload traffic generator, a servers and a LAN. The

workload traffic generator makes real requests to the server interconnected by a high

speed LAN. As already said before, the problem is that a LAN provides excellent

network connectivity with high bandwidth and, in general, no packet loss or re-ordering.

Chapter 3. Network Emulation: Background

79

These performance characteristics are very different from those of a real large-scale

scenario. Therefore, these evaluations are not realistic since the scenario adopting a LAN

interconnection does not capture the wide-area characteristics like modem

communications, high packet loss and large packet delay. Then, the solution is to

connected clients to servers via network emulator. Obviously, the emulator is in charge of

introducing factors as delay and packet loss inside a controllable and reproducible

environment. Hence the workload traffic generators produce the interarrival requests

typical of different clients, while the emulator reproduces the network communication

characteristics. The main difference between this approach and the synthetic simulation

regards the generation of real traffic with real time constrains. An interesting example of

this approach is showed in (Nahum et al., 2001). This paper shows how the reproduced

WAN characteristics affect the performance of a Web server. In particular, the authors of

this paper adopt Dummynet as network emulator and their adaptation of SURGE as

workload traffic generators.

3.8.2 Network topology manager

The creation of complex network topologies in the network emulation is very difficult,

because, in general, they must be physically constructed. This represents one of the main

drawbacks of the network emulation. In general, network emulator includes very simple

topology that may be very specific. In particular, most of them support a host end-to-end

scenario, where the emulator is in charge of transferring directly the packet from the

source computer to the destination. Hence, in the network emulation, trying to create

general network topologies is approached in three different way: combining different

instances of an emulator with VLANs or in a high speed cluster, utilizing an host

adjacency matrix to route the packet (specific for the emulation of Ad Hoc networks), and

integrating emulation, simulation and live network experimentation into a common

framework. The first ways to build a complex scenario for network emulation can be

include the combination of network hardware infrastructure and instances of the same

emulator. An example of this approach uses a cluster of computers connected to a high

performance switch and a separate control network (Herrscher et al., 2002b). If the

Chapter 3. Network Emulation: Background

80

switch supports the virtual LAN technique, VLANs can be used to configure any virtual

topology. In this way each of the virtual network devices has a separate instance of the

emulator. The combination of different instances of an emulator with VLANs permits to

build complex scenarios for network emulation. Another example similar to the previous

one is ModelNet (Vahdat et al., 2002). ModelNet is a scalable and comprehensive large-

scale network emulation environment. In ModelNet, real applications run on edge nodes

configured to route all their packets through a scalable core cluster, physically

interconnected by gigabit links. This core is responsible for emulating the characteristics

of a specified target topology on a link-by-link basis. The core routes traffic through a

network of emulated pipes, each with an associated packet queue and queuing discipline.

In particular, ModelNet maps pieces of topology to different core nodes and distributes

traffic by means of pipes among them. A second way to build a complex scenario for

network emulation is to use a host adjacency matrix to route the packet. The example is

specific for the emulation of Ad Hoc networks. Mobile hosts in a MANET can change

the connectivity of the network at any time. In this scenario the dynamic topology switch

is built (Lin et al., 2002). It can emulate a wireless mobile ad hoc network using standard

ethernet physical connection. The connectivity function is computed on the basis of time

and relative position of each mobile host. In this way, it is possible to map the

coordinates of each pair of hosts evaluating the connectivity between them. The dynamic

topology switch is implemented as a central computer in a star network that controls the

connectivity of each pair of hosts (in this network). The hosts can be any devices, directly

connected to the central computer. In particular, the dynamic topology switch is able to

switch traffic between any pair of hosts, based on its local connectivity table. The table

can be dynamically updated so that the dynamic topology switch can emulate dynamic

mobile ad hoc network topologies using fixed hosts in a wired network. Finally, the third

way to reproduce a topology scenario is by integrating emulation, simulation, and live

network experimentation into a common framework. NetBed (White et al., 2002) realizes

a virtual topology configuring a set of distributed, emulated, or simulated nodes, by

means of graphical tools and command-line scripts. The automated facility of NetBed

includes different settings at different level of configuration. In fact, it is possible to

manage experimenter accounts, set emulated link characteristics, and map the virtual

Chapter 3. Network Emulation: Background

81

nodes. One of the main advantages of NetBed is to support heterogeneous resources. In

particular a complex scenario may be emulated by traffic-shaping Dummynet (Rizzo,

1997) nodes, may be simulated via NS (Fall, 1999), or may be realized by wide-area

links. In particular, NetBed exploits the emulation facility of NS (NSE) to transfer

packets crossing the simulative environment and the live network boundary. One of the

most important features of NetBed is the consistent interface it provides to control nodes

and links regardless of their implementation (distributed, emulated, or simulated).

Chapter 3. Network Emulation: Background

82

Chapter 4

Interceptor: Design Issues

The models adopted to reproduce network traffic communications may follow two

different schemes, namely: either a fine-grained approach or a coarse-grained approach.

In the fine-grained approach (Breslau et al., 2000), the model of network traffic

communications incorporates meticulously the specification of each protocol layer. The

most important feature of this approach is the model accuracy. Hence, according to this

approach, separate simulation models may be defined, e.g., for the data link level in

point-to-point links and LANs, and for the network level in IP based routers and hosts.

However, hardware resource limitations, such as processing time and available memory,

limit the accuracy level of any model specifying how many network nodes, links and

protocols may be modeled. For this reason, the fine-grained approach is typically used in

the networked simulated setting where the simulated time can be a compression or an

expansion of the real executive time. The compression allows the simulator to spent little

time in the reproduction of the least significant part of the model, while the expansion

permits the simulator to use for a longer time the hardware resources in the reproduction

of the most significant part of the model. Again, if the resources are not enough and we

want to maintain a certain level of accuracy the network simulation exploits the hardware

power of cluster of computers.

Moreover, the problem is exacerbated if we want to develop a network emulator (not a

simulator) based on a fine-grained approach. This task may be very difficult to achieve if

Chapter 4. Interceptor: Design Issues

84

too many details must be taken into account during the emulation. This is due to the fact

that an emulator is a real time tool, which uses a real implementation of a running

application (or a protocol) under study. In fact, in a network emulator the simulated time

should be very close to the real executive time (i.e. ts ≈ tr). In this way, it is very difficult

to manage the simulated time in favor of the model accuracy, as the simulation does with

an expansion.

Figure 4.1: Interceptor: a synthetic emulative platform

Interceptor

End-system 1

End-system 2

End-system 3

End-system 4
End-system 5

End-system 6

End-system 7

End-system 8

Node 1

Node 2

Node 4

Node 5

Node 6

Node 3

Chapter 4. Interceptor: Design Issues

85

Another main consideration about the possibility to adopt this approach in the network

emulation is related to scalability problems deriving from the need to integrate the

network communication model with the traffic coming from hundreds of real network

hosts.

Further, in this case, when the emulator collects such external traffic and passes it

through the network communication model, performance degradation in the processing

time may occur. In simple words, the higher is the accuracy of the model reproducing the

network infrastructure inside the simulation environment, the lower is the emulative

performance.

Alternatively, the coarse-grained approach consists of designing network settings and

sacrificing some model details to avoid performance degradation. This approach prefers

performance to model accuracy, without sacrificing its validity. In general, adopting this

approach may be the best solution for network emulation. In fact, if the aim is to maintain

the possibility of integrating external real traffic respecting the time constraint of the

predefined network communication models, the time spent to calculate these constraints

must be as reduced as possible. This means that the time to compute one of these

constraints must be lower than that the (real) traffic must wait inside the emulative

environment. The time to make these computations depends on the number of details that

must be calculated according to network communication model.

Interceptor (the tool we have developed) adopts this latter approach. In essence it is an

emulative platform, which incorporates a coarse-grained (synthetic) simulative

environment. Our emulative platform allows the simulationist to integrate real end

systems (and their running protocols) into its synthetic environment. This is possible by

exploiting either the opaque mode that treats the network data as non-interpreted packets,

or the protocol mode that interprets or generates arbitrary field assignments of live

network traffic. In particular, Interceptor typically works in the opaque mode, but if one

wants to set up the communications between several hosts without enforcing the emulator

to perform as the default gateway, the protocol mode is used.

 To implement both the two modes, Interceptor exploits a centralized intermediate

emulation platform that reproduces the behavior of a complex IP-based network

connecting real end systems (developing a network layer emulation). Using this

Chapter 4. Interceptor: Design Issues

86

approach, it is possible to intercept IP packets exchanged between a couple of real end

systems, and at the same time simulate packet delays and losses according to a predefined

comprehensive end-to-end traffic model that abstracts from complex simulation details.

Interceptor allows simulationists to use real IP-based devices (as sketched in Figure 4.1)

and to introduce real protocol traffic (in form of IP packets) into its synthetic

environment, while maintaining unchanged the network communication interface. Hence,

it allows one to confine in a lab-based environment such real network IP-based devices,

while simulating a complex network infrastructure with appropriate parameters. The

simulative experiments may be conducted by adopting an event-driven scheme that

advances the evolution of this system under real time constraints.

In particular, differently from the typical emulator, Interceptor incorporates two

simulative technologies suitable for manipulating the synthetic environment, namely a

network topology manager and a workload traffic generator. The network topology

manager permits one to specify any network topology model consisting of a set of

arbitrarily simulated network nodes (i.e. routers) between the real source and the real

destination (i.e. real end systems). This manager permits to interpose an arbitrarily

number of these simulated nodes (and links) among the (real) end systems. Further, an

external workload traffic generator is used to exercise both the end systems and the

synthetic environment in a manner representative of a user that runs a real application. In

particular, if we want to expand the capabilities of a network emulator by means of these

simulative technologies trying to avoid the degradation of the performance of the entire

system, a coarse-grained approach must be adopted. Therefore, we define synthetic

emulative platform a network emulator that include a simulative environment capable of

mimicking complex IP-base networks adopting a coarse-grained approach.

As to the categories of the emulator we have discussed in the Section 3.2, we wish to

point out that Interceptor exhibits characteristics which derive from all of them (central-

control emulator, simulation-combined emulator and trace-based network emulator). In

fact, Interceptor is designed and implemented to reproduce the network mechanisms and

traffic dynamics with the trace modulation, to connect real hosts as central-control and to

exploit technologies typically available in network simulators.

Chapter 4. Interceptor: Design Issues

87

• Interceptor is able to reproduce some network effects by applying typical network

mechanisms and traffic dynamics to each packet passing through its synthetic

environment. Therefore, all real hosts that want to make use of this platform in

order to participate in an Interceptor-based experiment must be connected to it as

a central-control emulation does.

• The aim of the Interceptor approach is to combine network emulation with coarse-

grained network simulative technologies so that these resources can be

incorporated in an emulative experiment. Then, from this point of view, we add a

synthetic environment to an emulator like the simulation-combined emulation

does.

• It is not possible to simulate the behavior of real networks without reproducing

the traffic dynamics of different protocols that run into them. From this point of

view, Interceptor adopts trace modulation to create a representation of these

dynamics as the trace-based network emulation does.

Finally, most networks show a very complex behavior as a result of three basic

factors: protocol interactions, traffic patterns generation, and network topology

management. All these factors have been addressed separately within the Interceptor

according to the following design issues.

• The implementation of a protocol is not needed. As an emulator, Interceptor is

able to introduce in its synthetic environment live traffic coming from real

applications and to reproduce typical communication patterns.

• An external traffic generator working on real hosts is adopted. This is able to

exercise the final (real) end systems and the synthetic network environment in a

manner representative of multiple users that run the same application.

Chapter 4. Interceptor: Design Issues

88

• A network topology manager that implements a support for network topology

modeling and communications among simulated nodes inside the modeled

topology is used.

In essence, Interceptor is comprehensive of an emulation interface, an communication

model manager, a workload traffic generator and a network topology manager. We will

discuss these software components separately.

4.1 Emulative Interface

The introduction of live traffic into the synthetic environment and the insertion of the

resulting traffic from the synthetic environment into the live network are made possible

by means of an emulative interface. This component allows the Interceptor:

• To manage packets either in opaque or in protocol mode, and

• To route packets according to an intermediate emulation or a routed emulation

approach.

Both the opaque and protocol mode are made possible by implementing an emulative

interface that uses the “standard filter channels” of the Linux operating system (2.4.0

Kernel Family). In fact, the emulation interface has been built over the Netfilter

framework that implements the “standard filter channels”, by adopting the Netfilter

library. This library allows one to fetch packets from the network level (Kernel-mode) to

the simulation level (User-mode) by means of system-calls and vice versa. In this way, it

is possible to create a tunnel that connects directly the source node to its destination

(passing through the synthetic environment). There are several advantages deriving from

the integration of our platform inside the Netfilter framework. First, this framework

provides a “userspace” application to receive/send datagram to the Data Link layer. For

this reason, it is possible to generate, to modify, to interpret or to simply copy the content

of a datagram (i.e. from the header IP to the payload of the application layer) depending

on the adopted mode. Second, being the platform executed inside the Netfilter

Chapter 4. Interceptor: Design Issues

89

framework, neither the contents of IP packets need to be converted into a particular

format, nor there is the need to pass through non standard-filter channels to reach the

synthetic environment. This avoids additional computational costs due to the conversion

or the packet exchange among standard and non-standard channels.

As to packet routing within the Interceptor, two possible alternatives may be

implemented: intermediate emulation and routed emulation approach. The combination

of IP aliasing technique and of Natting technique makes it possible to exploit the

emulative interface without forcing it to run on the default gateway implementing an

intermediate emulation. This fact allows to carry out the emulative experiment in a

(public) laboratory without any interference on any other interconnected machine.

Instead, by editing the routing tables of the workstations that participate in the

experiment, we can decide that the computer on which Interceptor runs is their gateway,

implementing a routed emulation. In this way, any communication that should not take

advantage of the emulative environment is delayed like those belonging to the emulative

experiment without any good reason.

4.2 Communication Model Management

This component is able to manage the communication model between two real end

system and a simulated node or between two simulated nodes based on the link that is

simulated. In essence, this model is able to simulate IP packet delays and losses

according to a network communication model that abstracts from complex simulation

details. If an IP packet is inserted in a simulated link of the synthetic environment

(Arrival or S-Arrival events), this component calculates the time to pass through it. When

this timeout expires the packet is delivered to the next simulated node (S-Departure

event) or to its real destination (Departure event). This component reproduces a wide

range of network communication models varying from single link (defined by latency,

bandwidth, packet loss parameters) to more general end-to-end communication (related to

empirical distribution, analytical law and stocastical model). The communication model

manager allows a simulationist to tune the level of the simulation granularity, to support

cross traffic and to exploit a mechanism that generates internal IP background traffic.

Chapter 4. Interceptor: Design Issues

90

It is possible to calculate this timeout generated by a communication model by tuning

the level of the simulation granularity. This means that it is possible to calculate the

timeout as resulting from the three main basic characteristics of a single link or as

resulting from an end-to-end communication model that mimics a path including different

links and routers. In particular, in the former case the basic characteristics used to

describe a single link are transmission delay, bandwidth delay and packet loss. Instead, in

the latter, a single model reproducing the communication delays of a path comprehensive

of different links and routers is based on a trace-driven approach that takes into account

the network effects derived from real traces. In this way, it is possible to choose the level

of abstraction of the emulation, which provides a good trade-off between the accuracy of

the experiments and it ability to perform in real time.

It is possible that different source computers send packets towards the same

destination. This means that packets belonging to two different sources might or might

not pass through the same link toward the same destination; both cases are supported. To

support both cases, Interceptor exploits a bandwidth controller, in the first case, and the

management of an end-to-end statistical model, in the latter. In the first case, Interceptor

needs to simulate the existence of only one path between the sources and the destination.

In essence, it is necessary to manage cross traffic and the order of arrival of single

packets is very important. If a packet arrived before the other at the emulative interface,

the first has to reach the final destination (i.e. the order must be respected). Interceptor

supplies this result adopting a bandwidth controller that is in charge of respecting the

order by inserting packet in a FIFO queue. Instead, if it is possible that more paths may

reach the same destination from the same sources, then it should be possible for a packet

to arrive after another reaches the destination (i.e. the order might not be respected).

Interceptor obtains this result by adopting end-to-end communication models that derive

from a statistical distribution. This statistical distribution reproduces the communication

delays necessary to describe the time spent in these different paths by adopting a trace-

based approach that takes into account the network effects derived from real traces. In

this way, if the inter-arrival of two packets coming from different sources is low, the

statistical distribution may delay the first packet with a higher time.

Chapter 4. Interceptor: Design Issues

91

This component also embodies a mechanism, which is able to generate internal IP

background traffic. This mechanism generates internal background traffic that inserts

virtual packets inside a simulated link. The main advantage of this mechanism is that it is

able to simulate the effect due to the presence of these (virtual) packets coming from

other daily internet applications. Every time the mechanism knows how many real and

virtual packets are inside a link, just taking into account how many of them have already

been delivered. In this way, it is always able to compute how many bytes are present in

that link. By means of an equation that computes the quantity of filled-up bandwidth of

that link, the mechanism knows how much time the real packet should wait in queue.

4.3 Workload Traffic Generation

In our opinion, a synthetic emulative platform can emulate effectively large scale (IP)

scenarios if and only if it is supported by a workload traffic generator that generates

traffic in accord with the application under study. In particular, if we think of our tool as

the manager of the interaction between an inter-arrival queue and a service queue (i.e. as

a typical example of simulation of queuing systems), the workload traffic generator will

be in charge of generating the inter-arrivals of IP packets. The goal in developing

workload generator is to be able to exercise the final end systems and the synthetic

network environment in a manner representative of multiple users running the same

application. In particular, the effects of high variability in the workload are reproduced by

considering the network traffic as “self-similar”. This means that network traffic can

show significant variability over a wide range of scales and has a specific impact on

network performance. Adopting this approach, a workload traffic generator that

reproduces multiple users running simultaneously the same application has been

designed. As the replication of several machines, each running a copy of the same

application, is not feasible, we have resorted to the idea suggested in (Barford et al.,

1998). In essence, following this idea, we developed a realistic workload generator,

called M²G (MultiMedia workload traffic Generator), which mimics a set of real users

running the same application on the same machine. This permits to Interceptor to move

up to several tens of virtual users who simultaneously run the same application on the

Chapter 4. Interceptor: Design Issues

92

same machine, in emulation mode. M²G adopts particular workload characteristics to

implement these generators, as SURGE does. These characteristics can be divided into

two main categories: the idea called User Equivalents (UEs) and the set of distributional

models. The definition of UEs is about a single process in an endless loop that alternates

between making requests for remote files, and lying idle. Distributional models are a set

of probability distributions needed by each UE that specifies file sizes, request sizes,

popularity, temporal locality, session length and inactive off-times characteristics to

indicate how requests must be done. In the following subsections the design of UEs and

distributional models of M²G are shown.

4.3.1 User equivalents

M²G extends the concept of UEs to other kinds of applications different from the web

browsing. Also GISMO (another important workload traffic generator) adopts this

approach building a software tool that mimics a configurable set of real users while they

are generating streaming media accesses, conforming to the different distributions. There

are many different kinds of traffic, but we are interested in those describing the requests

for downloading, coming from Web and Multimedia application and, in particular,

generated by mobile devices (such as PDA, Tablet PC and Laptop). For this reason, a

downloading multimedia user equivalent has been developed in Interceptor.

M²G implements the user equivalents in SURGE way. SURGE creates a number of

users specified by the simulationist. These users download the files from a web server

during their session time period within the default period of time (30 minutes). When the

session period of an UE expires, the running process is killed. In this way, during the

entire default period of time, SURGE generates a traffic coming from a decreasing

number of sources. To monitor the performances of multimedia application, it is

important to maintain a constant number of users during the default period of time to

avoid different effects (deriving from the decreasing) on the study of an application (or a

protocol). In particular, if during the study of the performance the number of users

working on that application decreases, the ending workload will be different from the

beginning. According to these considerations, M²G has a mechanism that manages a

Chapter 4. Interceptor: Design Issues

93

fixed number of users during the default period of time. In particular, the number of the

users during the default period is constant. In fact, in M²G, each user requests a number

of files depending on the session length. When an UE ends its session period, it notifies

to M²G and its process is terminated; then a new UE is generated. In this way, M²G is

able to generate a traffic coming from a constant number of sources during the entire

default period of time.

4.3.2 Set of distributional models

The distributional models describe the set of probability distribution used by each UE.

This set is used to generate references matching empirical measurements of server file

size distribution, request for size distribution, relative file popularity, temporal locality of

reference and idle periods of individual users that are required in the reproduction of a

representative workload. M²G set of distributional models includes some distributions

derived from SURGE, from GISMO and some others that we have deduced. The

distributions describe: File Sizes, Request Sizes, Popularity, Temporal Locality, Session

Length and inactive OFF Times.

1) The “File Sizes” distributional model describes the set of files stored on the server

agreeing with empirical traces. This probability distribution is a Lognormal and

properly influences the server file system. The implementation of this distribution

is like the corresponding distribution in GISMO. The M²G provides also with a

module that simulates a multimedia users downloading through a PDA. This kind

of devices has a limited storage capacity, so, in this case, this distribution is

adapted to its limitations.

2) The “Request Sizes” distributional model describes the collection of transferred

files and match them with empirical traces. This probability distribution is a

Pareto and influences the network properly. The implementation of this

distribution is that of SURGE.

Chapter 4. Interceptor: Design Issues

94

3) The “Popularity” distributional model shows the number of requests made to each

file stored on the server. This probability distribution follows Zipf’s Law. The

distribution of popularity affects appropriately the caches, since popular files will

stay in caches. The implementation of this distribution is that of GISMO.

4) The “Temporal Locality” distributional model describes the probability that a

requested file will be requested again in the next future. This probability

distribution is Lognormal and exercises the caches properly. The implementation

of this distribution is that of SURGE.

5) The “Session Length” distributional model describes the time period of a session.

In particular, it defines the number of file requested by a user during its session.

This probability distribution is Inverse Gaussian. The implementation of this

distribution is that of SURGE.

6) The “inactive OFF Times” distributional model describes the bursty nature of an

user requests. In the implementation of the multimedia application the user does

not request one file surfing from a link to another, but it generates a list. Then, in

this case, the “User Think Time” is equal to zero. This means that the

implementation of “inactive OFF Times” distributional model returns to zero. For

sake of completeness and for possible future works we chose to maintain this

feature.

4.4 Network Topology Management

Using an emulator and a workload traffic generator may be not enough to support the

evaluation of some specific topology-related applications or protocols. This evaluation

may be effective only by exploiting a network topology model that inserted a set of

(predefined) interconnected network nodes (i.e. routers) between real sources and

destinations. Interceptor uses a support for network topology modelling. The network

simulation and emulation adopt different solutions.

Chapter 4. Interceptor: Design Issues

95

Typical simulative solutions suggest model-oriented generators designed and

implemented to reproduce specific characteristics of the network. In this situation a

simulationist, in order to understand the correctness and the performance of an

application is forced to repeat the same set of experiments on different model-oriented

generators. One of the main problems of this approach is to make comparative analyses

of these different model-oriented generators.

Instead, the emulative solutions propose very simple specific topology or complicated

solutions involving a lot of high performance switches and powerful computers that

should be administered in a correct way at the same time. In this second case, these high

performance switches and powerful computers are used to implement the core of the

emulation (this core is responsible for emulating the characteristics of a specified target

topology on a link-by-link basis). In these solutions changing topology model means

reconfiguring a part of the computers that worked previously. One of the main problems

is to make comparative analyses of these different topology models implemented in

different way.

Our idea is to integrate the previous components (i.e. an emulative interface, a

communication model manager and a workload traffic generetor) with a support that

describes the topology of a network by tuning all its possible characteristics, without

involving a lot of high performance computers. This support should be implemented by a

tool, called Network Topology Manager (NTM) that describes complex network topology

by offering the possibility to specify the single behaviour of each network object as node

and edge. NTM should be a universal topology manager that is able to support any

topology model just by changing the number and the behaviour of each single network

object. Similarly to the idea of universal topology generation of (Medina et al., 2001),

this tool should provide an environment where making comparative analyses of the same

topology-related application (or protocol) over different topology models may be

possible. In fact, the NTM should allow one to extend a network topology model in an

easy way. The possibility of extending a model makes the NTM flexible, adaptable and

permits to generate representative topologies to be used in different simulative/emulative

scenarios.

Chapter 4. Interceptor: Design Issues

96

Furthermore, our NTM does not involve dedicated high performance computers to run

the core of emulation, but just re-uses the same instances of the Interceptor components

passing specific parameters as an input for computing the communication patterns

between two nodes. For this reason, as it takes advantage of its simulative network

objects, it does not need to administer all computers dedicated to the core of emulation in

a correct way. To understand how our proposal can represent a useful tool to evaluate real

applications, it is necessary to specify which ones are the main network objects of a

complex network topology.

The topological structure of a network is designed as a graph, with nodes representing

routers or general gateways, and edges representing direct connections (transmission

links or networks) among nodes. In this situation, each host (i.e. the end-systems running

the real application) can be represented as a leaf connected to another node (i.e. a router

or a general gateway) of the graph. Additional information about the network can be

added to the topological structure by associating information with the nodes and edges.

For example, nodes might be associated to numbers representing the buffer capacity or

the computational power. An edge might have values of various types, including costs,

such as the propagation delay on the link, and constraints, such as the bandwidth capacity

of the link and such as the packet loss on the link. The nodes in the network may be

placed at random points or according to a specific scenario. Links (represented by edges

between nodes) are added to the network by considering all possible pairs of nodes and

then deciding if a link should exist according to a specific scenario. In particular,

reproducing a network topology means to build a model of a complex system that mimics

the behaviour of each single node and link. In general, the behaviour of each node (i.e.

router or gateway) results from passing through different phases in an endless loop:

sensing, thinking and acting. This means that a node (i.e. router or gateway) is anything

that perceives its environment through its sensors (sensing phase), takes a decision

(thinking phase) and acts in the environment through the actuators (acting phase). In

other words, a node checks its communication channels and the information received

from other nodes, adopts a policy behaviour and, finally, delivers its packets on the

chosen channels or discarding it (implementing the taken choice). Further, each node can

be independent or belong to a group (for example, autonomous system). In the former

Chapter 4. Interceptor: Design Issues

97

case, a node can choose the best possible action at each time step, perceiving the

environment through its sensors without interacting with other nodes. It tries to put into

practice the best action chosen by its thought. In the latter case, it is coordinated with the

other members of the group, adopting a form of communication. This implies that in the

sense phase it also receives this communication, in the thinking phase it tries to select the

best action taking into consideration the previous communication with its partners and in

the acting phase it does put in practice.

4.4.1 The design of a network topology manager based on agents

An interesting approach to design a network topology manager that is in charge of

managing and reproducing a specific scenario like the one described above, is to adopt a

multi-agent system. An agent is a computer system that is situated in some environment,

and that is capable of independent action in order to meet its design objectives. A multi-

agent system consists of a number of agents, which interact among them. In order to

successfully work in their environment, agents have three capabilities: Reactivity,

Proactiveness and Interactivity. The first means that agents are able to perceive their

environment and to respond in a timely way to changes in order to satisfy their design

objectives. This capability generates something similar to the above-described sense

phase. The second means that agents are able to exhibit goal-directed behaviour by taking

the initiative in order to satisfy their design objectives. This capability generates

something similar to the above-described thinking phase and acting phase. Finally, the

third means that agents are able of interacting with other agents in order to satisfy their

design objectives. This capability generates something similar to the above-described

group cooperation.

If we implement a Network Topology Manager as a multi-agent system, the

management mechanism of each node could be represented by an agent and each edge

could be represented by an interaction between two agents. In this approach, each leaf is

an end-system (in particular, in our case an end-system is a real host). Each node should

be capable of independent action and should be able to understand the boundary

conditions to decide its behaviour, as said before and as an the agent does. Our idea is to

Chapter 4. Interceptor: Design Issues

98

build a Network Topology Manager implemented by a multi-agent system, called

SPADES. This multi-agent system should be composed by programmable agents and by

an environment where the agents live. In our idea, the mechanism to manage each node is

a programmable agent (so the management mechanism is programmable). In this way,

inside the same environment we can change at run-time the behaviour of each node. This

possibility should allow one to make the comparative analyses of different topology

models in the same environment. In fact, the NTM should allow one to extend a topology

model adding new policy or specifying different behaviours to each single node. The

possibility of extending the behaviour of a node makes the NTM flexible and the

capability of each node to be reactive makes the NTM adaptable.

4.4.2 On integrating a network topology manager

We will now explain how it is possible to integrate the network topology manager to our

platform. The communication model manager is able to reproduce communication

patterns according to a simulative model that establishes the time needed to transit a

packet from source to destination. To integrate a network topology manager, an incoming

packet should be rebound (from a real source node) among a series of simulated nodes

until it reaches the last simulated one. This last simulated node will be in charge of

delivering this packet to the final real destination host. This means that the

communication model manager should be able to communicate to a node, inside the

NTM, the arrival of a packet and its final destination. Vice versa, the node inside the

NTM should be able to communicate to the communication model manager. In particular,

NTM specifies who the next node is and which model should be adopted to calculate the

timeout for communicating to the next node (inside the NTM) that a packet is arrived.

 To make the integration possible, the communication model manager that handles all

the events (arrival and departure: to interact with the emulative interface) has been

improved to support simulated arrival (S-arrival) and simulated departure (S-departure).

The S-arrival event generated by NTM communicates to the communication model

manager that different packets should wait for the their timeout to expire according to an

appropriate communication model. Vice versa, the S-departure event is generated by the

Chapter 4. Interceptor: Design Issues

99

communication model manager to communicate to NTM that packets arrived to some

nodes.

The main issue in the integration of NTM is that the total time spent inside the

emulative platform should not violate the real time constrain. This means that the time

needed to exchange messages with NTM about each single packet should be not longer

than the time that has been computed for this packet by the predefined communication

model.

Reaching an integration that does not violate the real time constrain is possible only

adopting a coarse-grained approach. Adopting this approach means that we prefer the

performance of emulation instead of reproducing an accurate complicated network

topology model. This should be done without sacrificing the validity of the network

topology model. For this reason, when a simulationist builds an example of topology, it

does not model accurately all nodes, but only the most important for its experiments. This

means that if between two nodes there are other (lesser important) nodes, an end-to-end

model to compute the communication time is adopted. The other (lesser important) nodes

are reproduced as additional delay inside the end-to-end communication model. This

method decreases the number of interactions between the communication model manager

and NTM, so it diminishes the computation time. From this point of view, our approach

is able to represent complex network topology without reproducing all details. In

particular, our aim is to obtain a good synthetic network environment for our synthetic

emulations where it is possible to investigate real applications or protocols (i.e. not to

study how to generate accurate network topologies).

The actual version of NTM allows any configuration of a network topology at a

defined time by composing nodes and links according to a predefined model. Further,

there is also the possibility to manipulate both nodes and links at a run-time. In fact, it is

possible at a run-time to change: i) the routing table of any node, ii) the communication

delay model between two nodes, and iii) the network topology (without the possibility to

create new nodes). Once a given network topology has been specified the procedural

behavior of each active object of the network may be specified in a rigorous way by

embedding in the simulation model the software code that implements it.

Chapter 4. Interceptor: Design Issues

100

4.5 Main Advantages

To conclude this Session we mention the main advantages of our approach:

• the possibility to support the real execution of network applications on real end

systems, while it interposes a synthetic complex IP-based networked scenario

• the platform provides means for setting network topological configurations (i.e. nodes

and links) varying from simple to sophisticated

• the platform is flexible in emulating a wide range of network communication models

(at the network layer emulation), from single link (defined by latency, bandwidth,

packet loss parameters) to more general end-to-end communication (related to

empirical distribution, analytical law and stocastical model)

• the possibility to change and update the simulation model without affecting the

emulation interface

• the platform provides the possibility to interact with nodes and links at run-time

• the platform reports useful statistical information about Interceptor

• the operation is transparent to the user. This means that the user does not have to

recompile application or transport code nor recompile/re-install the operating system

on his end-systems

• the installation of the platform is simple and does not require any major changes to a

typical laboratory environment such as working on a default gateway

• the platform is easily configurable by editing a text file

Chapter 5

Interceptor: System Architecture

Interceptor is an emulative platform, which incorporates a coarse-grained (synthetic)

simulative environment that supports the simulationists when they study network

applications or protocols. This platform adopts typical resources of network simulation

(as network topology management and traffic generation) plus the typical advantage of

network emulation (like the direct use of the real application during the execution of an

experiment). Interceptor implements a synthetic emulative environment for the

reproduction of complex IP-based networks where real applications (or protocols) run

over several real hosts and simulated nodes that communicate through emulated and

simulated links. Interceptor is located inside a laboratory. It allows a simulationist to

experiment real applications by reproducing complex IP-based scenarios inside its

synthetic environment. Interceptor includes the four following software components (see

the Figure 5.1):

• An Emulative Interface (EI), integrated in the “Netfilter” framework, configurable

by means of “IPTABLES” command, that intercepts and manages the IP traffic

coming from or going to real devices,

Chapter 5. Interceptor: System Architecture

102

• An Event Manager (EM) that implements the event-driven scheme to advance the

synthetic emulative experiment; in particular EM manages the communication

models for each experiment,

• A Network Topology Manager (NTM) that allows to describe and manage a

specific IP-based network topology, and

• A Workload Traffic Generator (WTG) that is able to generate workload traffic

reproducing communication patterns typical of more instances of the same

application (or protocol).

Interceptor incorporates an Emulative Interface developed to insert inside its synthetic

environment the real traffic coming from external network hosts. The EI is able to

intercept and exchange real IP packets, while, at a higher abstraction level, Interceptor

simulates complex IP-based networks.

INTERCEPTOR

REAL NETWORKREAL NETWORK

Workload
Traffic

Generator

Workload
Traffic

Generator
Real hosts

Network
Topology
Manager

Network
Topology
Manager

Event
Manager

Event
Manager

Emulative
Interface

Emulative
Interface

S-departure

Arrival

S-arrival

Departure

Real hosts

Figure 5.1: System Architecture of Interceptor

Chapter 5. Interceptor: System Architecture

103

The Event Manager implements the event-driven scheme that advances the synthetic

emulation. The types of events are: arrival, departure, simulated arrival and simulated

departure (called, simply, S-arrival and S-departure). The EM schedules the arrival and

the departure of the IP packets based on the information regarding the real hosts that have

generated those packets or will receive them. The EM also schedules the simulated

arrival and the simulated departure of the IP packets based on the information regarding

the simulated nodes that have received them and will forward to the next ones according

to the reproduced network topology. In particular, the EM manages the communication

models.

The Network Topology Manager manages a network topology specified by means of a

configuration file. The network topology is implemented as a series of simulated nodes

that communicates through appropriate links. The IP packets must pass through this

simulated topology to reach the final destination.

The external Workload Traffic Generator generates workload traffic that in form of IP

packets reaches the Interceptor exercising the synthetic network scenario and the final

(destination) hosts as if multiple users were simultaneously running the same application.

Therefore, the WTG allows (real) hosts of the experiments to move up to several tens of

users who simultaneously run the same application, in emulation mode.

The following example shows how Interceptor works. As in each simulation of

queuing systems, an experiment within Interceptor has an inter-arrival queue and a

service queue (Banks et al., 2001). The WTG or more real applications (controlled by

different users) inject IP packets in the lab network. The EI intercepts these IP packets

and stores in the inter-arrival queue. After, the EI passes them (Arrival event) to the EM

that implements the service queue of synthetic emulative platform. Once an incoming

packet has arrived to the EM, it loops among the stages below until has not passed

through the “synthetic” network.

• The EM computes the amount of (service) time that the packet spends (in the

service queue) before being delivered to the next (simulated) hop adopting an

appropriate communication model that reproduces the communication patterns

between (real) host and (simulated) node or between two (simulated) nodes.

Chapter 5. Interceptor: System Architecture

104

• As soon as this time expires, the EM notifies the next (simulated) node that the IP

packet is arrived (S-Departure event).

• The simulated node (inside the NTM) routes the packet toward the next hop

through a simulated link by indicating its (next) communication model (S-Arrival

event).

Finally, when the IP packet has passed through the synthetic network, EM forwards it to

the final host through EI (Departure event). This host will receive this packet in a

transparent way, without knowing anything about Interceptor.

5.1 Emulative Interface

The Emulative Interface (EI) receives IP packets coming from real hosts (where WTGs or

real applications have generated them). Therefore, the EI allows hosts to interconnect

themselves by means of a multi-homed computer, running the Linux operating system.

The multi-homed computer may play the role of a default gateway or of an intermediate

emulation platform for each internetworked hosts, implementing respectively the routed

emulation or the intermediate emulation. Since EI may perform over a multi-homed

computer among all hosts, sophisticated techniques have been implemented to guarantee

the correct behavior of packet flows through the synthetic emulative scenario.

When IP packets arrive, the EI stores them into the inter-arrival queue by marking its

arrival time and by generating an arrival event. After the generation of this event, the EI

passes them to the EM that implements the service queue, while at a higher level

Interceptor simulates complex IP-based networks. It is worth mentioning that the

application traffic entering Interceptor must exit under real-time constraints (managed by

the EM). In essence, the EM computes the simulation time that the packet must wait

inside the service queue. When this timeout expires (i.e. a departure event is generated),

EM passes the corresponding IP packet to EI that is in charge of sending out this packet

towards its external final destination.

Chapter 5. Interceptor: System Architecture

105

5.1.1 libipq API

The EI adopts the libipq API of the IPTABLES module that works over the Netfilter

framework (Russell, 2002). Netfilter is a framework compiled into the standard Linux

kernel 2.4.0 family, which provides diverse hooks into the Internet Protocol stack over

which loadable modules (like IPTABLES) can mangle packets outside the normal

Berkeley Socket Interface. Hooks are specific points inside the protocol stack. Each

protocol can exploit the five hooks (see the squares of the Figure 5.2). Modules can

listen to the diverse hooks for each protocol. Hence, if a packet crosses the IP stack, the

Netfilter framework checks if anyone has been listening for that protocol at that hook.

Figure 5.2: IPTABLES over the Netfilter Framework

Conntrack
Mangle
Filter

Conntrack
Mangle
D-NAT
Filter

Conntrack
Mangle
S-NAT

Conntrack
Mangle

Conntrack
Mangle
D-NAT

PRE POST FWD

OUT

IN

LOCAL
PROCESSES

Routing

Routing

INTERCEPTOR

Chapter 5. Interceptor: System Architecture

106

In this case, the modules may decide to discard the packet, to allow it to pass, or to ask

Netfilter to queue it into userspace (i.e. a special memory space reachable by users).

IPTABLES is a (loadable) module that implements a packet selection system built

over the Netfilter framework. IPTABLES is composed of two main parts: the kernel-

space modules and the userspace tool. The kernel-space modules are an integral part of

the standard Linux kernel 2.4.0 and they are in charge of performing the appropriate

function on the packets intercepted by Netfilter framework, depending on the previously

defined rules in their rule-lists (called chains). The IPTABLES (at the userspace level) is

a tool that adds, removes or edits rules in the chains. This packet selection system is used

for packet filtering (the filter table), Network Address Translation (the NAT table) and

general pre-route packet mangling (the mangle table). In the filter table, there are the

rules to filter packets without altering them. The IPTABLES filter intercepts and inserts

packets into Netfilter framework at the NF_IP_LOCAL_IN, NF_IP_FORWARD and

NF_IP_LOCAL_OUT points (see the IN, FWD and OUT squares in the Figure 5.2). This

means that for any single packet, there is only one right place to filter it. In other words,

each packet sent to this computer may be filtered at NF_IP_LOCAL_IN hook, each

packet passing through this computer towards another one may be filtered at NF_IP_

FORWARD hook and each packet sent from this computer toward another one may be

filtered at NF_IP_LOCAL_OUT hook. If CONFIG_IP_NF_NAT_LOCAL is defined in

the NAT table, the hooks NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING (see

PRE and POST squares in the Figure 5.2) are used for altering respectively the

destination and source address (see D-NAT and S-NAT table in the same Figure). The

network address translation supports also the connection tracking to restore the altering of

the destination and source fields (Conntrack label in the Figure 5.2). Finally, the packet

mangling table (the mangle table) is used for actual changing of packet information (for

example, the Time-To-Live field of the IP header).

IPTABLES as packet selection system built over the Netfilter framework is very

useful, especially the exploitation of its special target option QUEUE that allows one to

queue the packet coming from the real network towards the userspace. The IPTABLES

tool supplies a “queue handler” (controllable by means of libipq API) that supports the

passing of packets between the kernel and the userspace. For this reason, the libipq API

Chapter 5. Interceptor: System Architecture

107

allows the interaction between the Netfilter framework and the user’ space where user

applications can receive, manipulate, and issue verdicts on IP packets. The following

example shows how to use IPTABLES command to queue packets for userspace

processing:

iptables -A FORWARD -j QUEUE -s 10.0.0.0/255.255.255.0

iptables -A FORWARD -j QUEUE -s 137.204.72.0/255.255.255.0

These rules specify to pass the forwarding IP packets with these source addresses to the

“queue handler” (implemented by the ip_queue module), which will attempt to deliver

the packets to a userspace application. If no userspace application is waiting, packets are

dropped.

5.1.2 Implementation of an intermediate emulation or a routed emulation

The EI is able to route IP packets or to maintain the networked communications on the

Interceptor consistent. The EI may be either an intermediate emulation server or a default

gateway of the communication among the real computers of the experiment with

Interceptor. As well as these considerations, the EI can realize either the Virtual Host

Method or the Virtual Router Method (see the Section 3.4) to implement respectively the

intermediate emulation and routed emulation.

A combination of the NAT and of the IP aliasing techniques is necessary to implement

the Virtual Host Method. In this way, it is possible to address the computer running

Interceptor with different real IPs (using the IP aliasing technique) and to change the

destination and source addresses of an IP packet (adopting the NAT technique).

Implementing the Virtual Host Method is necessary to map one-to-one real laboratory

addresses with (reserved) aliases. This is due to the fact that the real devices should send

packets to the network-reserved class of IP aliases to exploit the emulated/simulated

scenario inside Interceptor.

Chapter 5. Interceptor: System Architecture

108

Figure 5.3: Incoming phase

Table 5.1: example of IPTABLES commands

from A to B
iptables -v -A PREROUTING -t nat -d RESERVED A -j DNAT --to LAB A
iptables -v -A POSTROUTING -t nat -s LAB B -j SNAT --to RESERVED B

Figure 5.4: Coming back phase

In particular, a source sends its packets to a reserved alias address that identifies a

specific destination. When these packets reach the Interceptor, the source address is

mapped with another alias address and the destination is substituted with the real

laboratory destination address. Therefore, during the incoming phase of a packet, the

NAT will replace the IP number of the network reserved class in the field of destination

address with that of the network class of the laboratory (D-NAT, prerouting) and that of

the source with another alias (S-NAT, postrouting) (see the Table 5.1 and the Figure 5.3).

If the destination replays to its source, it will send back the response packets to the alias

address read in the arrived IP packets. This alias individuates as a source the computer on

which Interceptor runs. Therefore, during the coming back phase, the connection tracking

mechanism will be able to recover the packet to original contents, by restoring the

previous address field assignments (see the Figure 5.4). In particular, Interceptor works as

a userspace application of the Forward hook, after the prerouting and before the

postrouting phases (see the Figure 5.2). In this way, it is able to manage IP packets

without taking care of real routing, but only acting as an intermediate emulation server.

This method, furthermore, allows the simulationist to use the lab computers (including

the one on which Interceptor runs) to execute experiments even if other users are present.

RESERVED
ADDRESS B

LAB
ADDRESS A

LAB
ADDRESS B

RESERVED
ADDRESS A

DESTINATION SOURCE DESTINATION SOURCEA B

RESERVED
ADDRESS B

LAB
ADDRESS A

LAB
ADDRESS B

RESERVED
ADDRESS A

DESTINATIONSOURCE A BDESTINATION SOURCE

Chapter 5. Interceptor: System Architecture

109

In this case, eventually, the simulationist must understand how much the traffic of other

users affects the experiment.

The Virtual Router Method is implemented by forcing each workstation to

communicate only through the default gateway. This is possible if the configuration of

the routing table of each workstation (belonging to the experiment) to reach the others

(always belonging to the experiment) has a static route that specifies Interceptor as next

hop for these communications. In this way, using the “route” command, a static route on

a source “A” to send the IP packets to a destination “B” (adopting Interceptor as default

gateway) must be added. This method highlights some limitations. First, only the system

administrator has the privileges to run the “route add” command. Second, all

communications between A and B (including that do not take part to the Interceptor

experiment) pass through the emulative platform.

5.1.3 Implementation of the emulative interface

The libipq API exploiting the IPTABLES module over the Netfilter framework allows

the EI in userspace to read, modify, discard, and finally route IP packets that pass through

the Forward hook, (see the Figure 5.2). The Netfilter framework in Kernel mode allows

the EI to capture to low-level data-stream that reaches gateway through network card.

IPTABLES interfaces the EI (in system user mode) directly with Netfilter framework and

it allows EI to pilot it through libipq API. In this way, the libipq API allows EI to get the

IP packets arrived to the queue handler (in the userspace) or to deliver to it the IP packets

toward the final destination. The libipq API allows the EI to control and to rewrite

headers from the network protocol until application one. The EI waits to exchange IP

packets with the (inter-arrival) queue handler and with the Event Manager, piloted by two

fundamental events (see Figure 5.5):

• the arrival event, a packet is ready on the userspace (i.e. on the inter-arrival

queue), waiting to be inserted in the EM where its departure time is computed (by

means of one or more communication models) and

Chapter 5. Interceptor: System Architecture

110

• the departure event, after a timeout expiration it notifies that packets must leave

EM and must be re-inserted on the network towards their destination.

The former event is generated by the presence on the userspace of a packet coming from

the FORWARD hook. This event is due to IPTABLES command with option QUEUE

that specifies to Netfilter framework to make accessible the stream coming from network

cards at the FORWARD hook. When an IP packet arrives at the userspace, it is inserted

in a (inter-arrival) queue. A system-call of the libipq API captures the arrival event

generated by the queue handler. In our implementation the EI calls this system-call

(ipq_read) to receive incoming IP packets. In fact, the generation of this event activates

the EI code that removes the packet from the userspace and that inserts it into the service

queue (in the EM). Once the packet has been inserted, EI will wait for the (departure)

time when will be forwarded again on real network.

Figure 5.5: Interceptor over IPTABLES module of Netfilter framework

S-arrival
event

NETFILTER

IPTABLES

REAL NETWORK

Departure
event

Arrival
event

Outgoing
Packet

Incoming
Packet

EI

EM

USERSPACE

KERNELSPACE

ETHERNET CARD

S-departure
event

NTM

Chapter 5. Interceptor: System Architecture

111

By means of an adequate routine it is possible to know the exact moment in which IP

packet has arrived on Ethernet card. After the (departure) timeout expires the EM

generates a departure event and passes again the IP packet to EI. The EI inserts the IP

packet in the queue of the userspace, specifying to the queue handler to insert it through

the FORWARD hook in the Netfilter framework by means of another system-call

(ipq_set_verdict). This framework is in charge of routing correctly the packet according

to its address fields and sending it through the Ethernet card outside the laboratory

network. The value of departure timeout is the difference between the moment in which

EI has enqueued actual packet and its departure. The timeout is calculated adopting a

series of communication models (i.e. computing diverse service times) configured by the

simulationist to reproduce a specific large scaled scenario. After an IP packet leaves the

EI, this eliminates the structure referencing this packet.

5.2 Event Manager

The most important component of Interceptor is Event Manager (EM) that manages the

service queue of the entire system. In essence, the EM is in charge of the synchronization

of the components inside Interceptor, by implementing the event-driven scheme of the

entire system. The event driven scheme advances (in real time) the evolution of the state

of the synthetic environment. This scheme schedules the IP packets by managing the

simulation time and the service queue. The main tasks of the EM are two:

• managing the service queue of the action related to the stored live IP packets, and

• calculating the new position of an action (i.e. the service time) inside the service

queue by means of a Communication Model.

The action is a data structure that represents the future operations (related to a single IP

packet) to do when the service time expires. In essence, an action explains, for example,

which is the next hop for this expiring packet, or if the next hop is a simulated node or a

real host. The queue is managed by means of four events: arrival, departure, S-arrival and

S-departure. In particular, the arrival and the S-arrival events generate the insertion of an

Chapter 5. Interceptor: System Architecture

112

action (related to a packet) in the service queue ordered by time expirations (i.e. the

moment at which service times expire), while the departure and the S-departure generate

the extraction of one or more actions (related to diverse packets) from this queue. The

arrival and departure events are necessary to manage the arrival to EM and the departure

from the EM of the live traffic by means of the EI. The arrival event notifies the insertion

in the service queue of a new action related to a packet coming from live traffic, while the

departure the extraction of an action related to a packet that has already exploited the

synthetic scenario and must be inserted again in the live traffic. Instead, the S-arrival and

the S-departure are necessary to implement the communication with simulated nodes

inside the network topological scenario. The EM generates an S-departure event to notify

to NTM nodes that packets are arrived. A node inside the NTM generates an S-arrival

event to notify to EM that an IP packet should be sent to its next hop, after the expiration

of a new service time. The service time represents the time spent to reach the next hop

(i.e. the time spent into the communication channel). The next hop may be a simulated

node or a real (final) host. The new service time is computed adopting the communication

model specified by the node, which generated the S-arrival event. Only when an arrival

event is generated, the communication model is specified on the configuration file.

5.2.1 Service queue handler

The first task of the EM is to manage the service queue of the actions related to the stored

live IP packets (see the Figure 5.6). This task is implemented by a mechanism that

advances simulation time and guarantees that all the actions occur in a correct

chronological order based on the Future Action List (FAL). Interceptor must service the

simulationists with real time constraint. For this reason, a real time version of the Action

Scheduling / Time-Advance Algorithm has been implemented. At each moment the

service queue contains all previously scheduled future actions and the time at which they

occur. The service queue is ordered chronologically by service time expiration. The clock

of the computer running the EM sets the value of the simulated time. The action with

time expiration nearest to the simulated time value is called the imminent action. The

classical Action Scheduling / Time-Advance Algorithm, after generating the action at

Chapter 5. Interceptor: System Architecture

113

time “t”, advanced the simulated time to the next imminent action. This is not possible in

Interceptor, because the real time constraint must be respected. In fact, EM extracts

actions only when the system clock reaches their time expirations. Therefore, when the

clock reaches the time of an action notification, the EM removes from the service queue

the action and executes it generating an S-departure or a departure event. Before the next

action notification, it is possible that new future actions may be inserted with a S-arrival

or an arrival event. In this case, the action is scheduled and inserted into the right position

on the service queue. The process of inserting and extracting actions is repeated until the

synthetic emulation ends. The length and the contents of the service queue change during

the simulation time. The correct management of the service queue will improve the

system efficiency. The operations performed on the service queue are two: the extraction

of the imminent action (or imminent actions) and the insertion of a new action. The

efficiency of the search inside the service queue depends on its logical organization and

on the searching mechanism. Our service queue is ordered according to the next time

expiration, so the first position is that of the imminent action. In this way the searching

cost of an extraction is zero. Instead, the insertion will require the scanning of the queue

until the right position is reached. If the length of the service queue grows up quickly, the

time for scanning will become one of the main bottlenecks of the entire system. Due to

the high variability of the service time expiration, it is not possible to know on a priori

basis in which position of the queue the next action will be inserted. If the length has a

high value, the insertion may be (in unlikely cases) very expensive. To minimize this side

effect, an ordered structure that points to several positions of the queue and that specifies

the service time expiration of the pointed action has been built. In this way, when an

arrival or S-arrival event occurs, the insertion mechanism checks the ordered structure,

which represents the best entry point to begin the scanning of the queue. The cost of this

insertion is the scanning of the ordered structure and of that part of the queue detected by

the entry point. The management of the ordered structure is dynamic because it is bound

to the service queue. In fact, when the action referenced as entry point is extracted (i.e. S-

departure and departure event) the structure must delete this pointer. Vice versa if a new

inserted action becomes a new entry point, a pointer must be added to the structure.

Chapter 5. Interceptor: System Architecture

114

service time
request

service time
replay

ACTION(Y)

EXTRACTION

SMs

DELAY
CONTROLLER

BANDWIDTH
CONTROLLER

LOSS
CONTROLLER

CMH
SMs

DELAY
CONTROLLER

BANDWIDTH
CONTROLLER

LOSS
CONTROLLER

SMs

DELAY
CONTROLLER

BANDWIDTH
CONTROLLER

LOSS
CONTROLLER

CMs

DELAY
CONTROLLER

BANDWIDTH
CONTROLLER

LOSS
CONTROLLER

CM
SMs

DELAY
CONTROLLER

BANDWIDTH
CONTROLLER

LOSS
CONTROLLER

CMH
SMs

DELAY
CONTROLLER

BANDWIDTH
CONTROLLER

LOSS
CONTROLLER

SMs

DELAY
CONTROLLER

BANDWIDTH
CONTROLLER

LOSS
CONTROLLER

CMs

DELAY
CONTROLLER

BANDWIDTH
CONTROLLER

LOSS
CONTROLLER

CM

SQH

Arrival or
S-Arrival

Departure or
S-Departure

EVENT MANAGER

INSERTION
ACTION(X)

Figure 5.6: Event Manager: CMs, Controllers and Service Queue

The policies to decide which of the actions should be referred to as entry point might be

different. In our implementation, the policy is to sample the queue with a fixed number of

actions: this means that each entry point is referred to the next “n” actions (where “n” is

configured by the simulationist). For example, the length of the queue is thousand and

“n” is equal to hundred, (i.e. between two entry points there are hundred packets). In the

worst case, the insertion mechanism scans 110 actions instead of a thousand, where ten is

the size of the ordered structure and hundred is the sample size.

5.2.2 Communication model handler

The second task of the EM (strongly related to the first) is to calculate the new position

(i.e. service time) of an insertion (of an action) into the service queue by means of a

Communication Model (CM). A CM reproduces the delay caused by network

communications between a real host and a simulated node or between two simulated

nodes. In essence, when an Arrival or an S-arrival event is generated, an action related to

Chapter 5. Interceptor: System Architecture

115

a new incoming packet (in the first case) or related to an old packet (in the second case) is

inserted (or inserted again) into the service queue. The node that has generated the

Arrival (real host) or the S-arrival (simulated node) event must specify the parameters of

CM and the next hop for this packet. In this way, the CM handler can compute the service

time for this IP packet. The parameters of a CM depend on time granularity of the

simulation environment and on emulation abstraction layer (i.e. Network Layer

Emulation):

• Delay/ Latency

• Bandwidth limitation

• Packet loss

Then, the EM implements a Delay Controller, a Bandwidth Controller and a Loss

Controller (see the Figure 5.6). Each single controller can be configured to work in

several modes. Further, the three controllers can be combined together in different ways

to model several CMs. In particular, each controller produces, as result, the time that the

IP packet must spent according to its mode. Hence, the (service) time computed by CM

includes the contribution of each configured controller.

5.2.3 Delay controller

The Delay Controller is in charge of reproducing the delay either due to the propagation

time of a channel (i.e. single link) or due to the communication time of a path

comprehensive of several links and routers. It can be configured to operate in five modes,

each of which returns a time as contribution to the computation of the service time.

• Fixed delay: in this mode a constant delay is specified by the simulationist and all

the packets passing through the channel between two nodes are delayed by this

amount. This mode can be used to reproduce the fixed components of delay in

Internet paths.

Chapter 5. Interceptor: System Architecture

116

• Defined delay pattern: in this mode the simulationist specifies with a file the

sequence of delays, which is read by the Delay Controller (in cycles). For

example, the user might specify the delay sequence as 100 ms, 200 ms and 300

ms. The Delay Controller would then delay the first, fourth by 100 ms, the

second, fifth by 200 ms, the third, sixth by 300 ms and so on. This mode is helpful

in debugging network protocols because it provides a high degree of control over

the delays.

• Empirical delay distribution: in this mode the simulationist specifies a file

containing the delay values collected during different trails. Once a packet

requests a delay to this controller the corresponding value in the file is chosen as

the next delay value. This mode can be used to accurately model delay patterns

observed in the Internet.

• Analytical law: in this mode the simulationist can use pre-specified analytical

laws based on suitable parameter. For example, if the suitable parameter is the

packet dimension, when a packet arrives to Interceptor it is possible to calculate

the new delay value; checking the size of the packet and using that formula (see

the Paragraph 6.2).

• Stocastical model: in this mode the simulationist can use pre-specified stocastical

models. When a packet arrives to Interceptor it is possible to calculate the new

delay value through an appropriate statistical distribution. Interceptor presents

different wired/wireless models (see the Paragraph 6.1).

5.2.4 Bandwidth controller

The bandwidth of a channel is one of the most important parameters affecting network

performance. A reasonable approach to introduce bandwidth limitation is a “leaky

bucket”. A leaky bucket limits outgoing traffic to the specified bandwidth. Surplus traffic

is stored in a FIFO queue. If the queue is full, incoming packets are dropped. Leaky

Chapter 5. Interceptor: System Architecture

117

bucket behavior is determined by the bandwidth and the queue length. The packets in the

queue are served at a user-defined rate of “M” bits per second. The value of “M” sets an

upper bound on the bandwidth available to packets passing through the link. For example

if M is set to 10 Kbps it is possible effectively to emulate a 10 Kbps line on a 10 Mbps

link. Therefore the value of M determines the bandwidth of the channel. The bandwidth

can be limited for each direction separately. The maximum queue length is another

configurable parameter.

A better possible approach to reproduce limitation due to the bandwidth is to build a

FIFO queue where a simulated background traffic injector introduces daily traffic. In fact,

to mimic a network scenario, also the real daily traffic coming from other applications (or

protocols) must be reproduced. For this reason, it must be possible to distinguish between

live traffic coming from the applications (or protocols) under study and the background

traffic that represents the traffic coming from all other applications used daily on the

Internet. Hence, a simulated background traffic injector to reproduce the effects of the

daily traffic has been implemented. The background traffic should be expressed as inter-

arrival time and packet dimension that take up space in the FIFO queue. In this way, the

live traffic will compete with the background one to get positions in the FIFO queue

(Dam et al., 1998). The background traffic generation may be used to calculate in a more

realistic way the transmission time of IP traffic between two nodes (for example two

routers). This approach allows one to simulate the taking up in the node (router) queues.

The implementation of our coarse-grained approach (i.e. to maintain the computational

performances, without affecting the simulative consistency) is possible by processing in

the live and background packets.

Figure 5.7: the combination of live and background traffic

FIFO QUEUE

LIVE TRAFFIC

BACKGROUND TRAFFIC

Chapter 5. Interceptor: System Architecture

118

Therefore, live packets are processed one by one, while all background ones are

processed in a cumulative way. In particular, this means that the injector will not create

real background packets, but it will calculate as bytes that will take up space in the queue

between two live packets. Hence, the bandwidth controller handles the injector

mechanism as shown in the Figure 5.7. By controlling parameters like the maximum

queue length and bandwidth value, and with an appropriate background traffic injector,

many interesting delay and loss patterns can be generated by this bandwidth controller.

The controller returns a time (according to the maximum queue length and to the

bandwidth limitation) as a contribution to the calculation of the service time.

5.2.5 Implementation of the Background Traffic Generation

Here below, how to model the background traffic model is shown:

• 0P ,…, nP the IP packets inside the FIFO queue,

•)(jPT the inter-arrival time (in the FIFO queue) of the “j-th” IP packet,

•)(jPS the size of the “j-th” IP packet,

• And B the bandwidth of the queue.

Where iP
_

 is the “i-th” live packet and iP is the “i-th” background packet. Our attempt is

to describe the background traffic as the inter-arrival time of the background packets

)(jPT and their sizes)(jPS by means of the Fractional Sum Difference model (FSD)

(Cao et al., 2002a; Cao et al., 2002b). This model allows the simulationist to compute the

inter-arrival time and the size of an IP packet by means of statistical distributions. In

particular, these two characteristics depend on Active Connection Load (ACL). An ACL

measures the number of transmitting connections that use the same link. The given

distributions show the probability to find specific values of the inter-arrival time or size

depending on ACL. To obtain these results (x =)(jPT or x =)(jPS) their reverse

Chapter 5. Interceptor: System Architecture

119

functions are necessary. In the following formula “x” is the inter-arrival time of an IP

packet (in the bandwidth queue) and Φ is the ACL measure:

α

β 




 −

−=Φ
x

exF 1),(

Where α and β depend on Φ. Instead, in the next formula, “x” is the size of an IP packet

and Φ is the ACL measure (see the Figure 5.8):

Where Ψ(40) and Ψ(1500) depend on Φ (i.e. assuming that 40 bytes is the minimum size

of an IP packet, while 1500 is the maximum). The background traffic injector generates a

series of packet sizes and their inter-arrivals before the beginning of an Interceptor run,

and stores them inside a data structure. During the experiment, the bandwidth controller

checks in this data structure how many background packets are injected between the

incoming live packet and the last one in the FIFO queue. The Figures 5.9 and 5.10 show

two possible states of the FIFO queue when an incoming real packet arrived. The inter-

arrival times of each packet are positioned on the X axis, while their sizes are located on

the Y axis. The arrow shows the next expiring packet. Then, to know how much time a

live packet waits in the queue, it is necessary to compute how many bytes must be

processed before this. Every time an incoming packet enters the FIFO queue, the

possibility is:

• That there are other real packets before it,

• That there are no real packets before it,

• And that the queue is full.

 0 if x <40
F(x,Φ)=)40(Ψ if x =40

1460

 -1 (*40)-(x)(40)Ψ −(1500)Ψ
+(40)Ψ if 40≤ x <1500

 1 if x ≥1500

Chapter 5. Interceptor: System Architecture

120

Figure 5.8: Statistical distributions of IP packet size

The Figure 5.9 describes the state of the queue in the first case. The following formula

allows one to compute the quantity of data “X” (expressed in bytes) between the last real

packet jP
_

 (arrived at the time)(
_

jPT) and the incoming real packet nP
_

 (just arrived at

the time)(
_

nPT):

X = ∑
−

=

1n

ji
ix where

Hence, the time that the packet nP
_

 must wait in the bandwidth queue (defined)PW(n

_

) is

computed by the following formula:

40 1500 x

Ψ(40)

1 - Ψ(1500)

1

F(x,Φ)

0 if BPTPTPS iii *))()((()(1 −− + ≤ 0
xi=
 BPTPTPS iii *))()((()(1 −− + if BPTPTPS iii *))()((()(1 −− + > 0

Chapter 5. Interceptor: System Architecture

121

B
)PS(

B
X)))PT(-)P(T(-)PW(()PW(n

_

n

_

j

_

j

_

n

_

++=

Therefore, this time value is the sum of the three time values (i.e. those divided by the

plus): i) that packet jP
_

 should wait before being processed, ii) that to process the packets

generated by the background traffic and finally iii) the time to process the packet nP
_

itself.

Figure 5.9: The state of the queue with other real packets

The Figure 5.10 describes the state of the queue in the second case. The following

formula computes the quantity of data “X” (expressed in bytes) between the first

background packet 0P (arrived at the time)(0PT) and the incoming real packet nP
_

 (just

arrived at the time)(
_

nPT):

X = ∑
−

=

1

0

n

i
ix where

0 if BPTPTPS iii *))()((()(1 −− + ≤ 0
xi=
 BPTPTPS iii *))()((()(1 −− + if BPTPTPS iii *))()((()(1 −− + > 0

Sizes

Inter-Arrivals)(
_

jPT)(0PT)(1−nPT)(
_

nPT

Chapter 5. Interceptor: System Architecture

122

Hence, the time that the packet nP
_

 must wait in the queue is computed by the following

formula:

B

)PS(
B
X)PW(n

_

n

_

+=

Therefore, this time value is the sum of the two time values i) that to process the packets

generated by the background traffic and ii) the time to process the packet nP
_

 itself. In the

last case, the queue is full and the real incoming packet is discarded. This is due to the

fact that a queue has a maximum length.

Figure 5.10: the state of the queue in the second case

)PW(n

_

is the contribution to the computation of the service time. This approach shows

two main limitations. The first is that each pre-generated data structure containing the

background traffic is dependent on the ACL. For this reason, if the background traffic

injector must be used on links with diverse ACLs, there is the need for a data structure for

each link. The second is the computation of the time that the incoming real packet must

wait in queue. In fact, the computation of)PW(n

_

 may be very expansive. Then, the best

Sizes

Inter-Arrivals)(0PT)(
_

nPT

Chapter 5. Interceptor: System Architecture

123

solution should be to have a statistical distribution that depending on ACL directly is able

to show how much time the incoming real packet must spend in the queue. One of the

main considerations, in reproducing how a router processes the incoming packets,

concerns the interaction between the average of the traffic crossing it and its bandwidth

constraints. Several works reproduce the router as a point of interconnection among

several links where the bandwidth limits are the most important features. This produces

two main possible effects deriving from the quantity of incoming traffic and from the

amount of available bandwidth. In fact, if the average traffic crossing is greater than the

bandwidth limit, the derived effect is that the queue is congested. Instead, if it is lower,

the queue is always empty. We think that is not enough, because the time consumed by

the router in scheduling the packets from a queue to another according to its policy may

be non-null. For this reason, it is necessary to reproduce this behavior as in the next

Paragraph (see the paragraph 5.3).

5.2.6 Packet Loss controller

The Packet Loss Controller is used to assign loss characteristics to the live traffic.

Differently from the other two controllers, Loss Controller does not return a time for the

computation of service time but it (directly) discards the packet. It can be configured to

operate in two modes.

• Fixed loss rates: the unconditional loss probability determines the mean rate with

which packets are dropped by the controller. The packets are randomly dropped

by the controller.

• User defined packet loss sequence: in this mode the user specifies which packets

must be dropped out of a sequence of consecutive packets. For example the user

might specify that in a sequence of five consecutive packets the second and the

third packets must be dropped. With this configuration the controller drops the

second and third packets in every batch of five consecutive packets. This mode

Chapter 5. Interceptor: System Architecture

124

can be very useful in debugging and analysis of network protocols because it

allows the user to selectively drop packets (for example ACK packets).

5.3 Network Topology Manager

The Network Topology Manager (NTM) implements a support for network topology

modeling and for communication management by means of two network entities: nodes

and links. Hence, the NTM represents any network topology as a set of nodes and links.

A node represents router or general gateway while links connect two (simulated) nodes or

a (simulated) node and a (real) host. Additional information about the network can be

added to the topological structure by associating it with the nodes and links. In fact, The

NTM is also in charge of indicating to the EM which is the communication model (and

which are their parameters) to reproduce the passing of an IP packet from a node to the

next one (or from a node to the final host).

The NTM supplies to the simulationist a configuration file where it is possible to

specify the network topology scenario. Once the network scenario is started, the NTM is

in charge of the management of the communication inside the specified topology.

Therefore, when an action (related to an IP packet) must transit through the predefined

topology from a node toward its next one, the NTM replies the indication to EM for

computing the new service time expiration. Therefore, actions related to the live packets

pass alternatively from EM to NTM and vice versa until they reach the last node before

their final destination (see in the Figure 5.11 the vertical arrows).

The interaction between EM and NTM works through two events, named S-arrival and

S-departure. With an S-departure event, the EM informs NTM that an action (related to a

packet) is arrived at a node. With an S-arrival event, the NTM informs the EM that a new

action (related to a packet) generated by a node has arrived. This action specifies the next

node and a precise link to reach it. In this way, the NTM indicates the parameters of the

communication model to the EM.

As Interceptor is a synthetic emulative platform, the source and the destination hosts

are real devices. Therefore, if an action (related to an IP packet) is on the last node (see

the node “C” in the Figure 5.11) before the destination host, a final S-arrival event will be

Chapter 5. Interceptor: System Architecture

125

generated to communicate to the EM to send this packet after the expiration of the next

service time (i.e. the departure time) towards its external networked destination

(generating a departure event). Afterwards, the first S-departure event introduces an

action related to this packet into NTM to a first node (see the node “A” in the Figure

5.11). In Figure 5.11, it is possible to see an example of the interactions between NTM

and EM. In particular, it is possible to see the insertion and the extraction of an action (at

different times) from the service queue. In this Figure, the only service queue is

represented at different times.

Figure 5.11: Integration of Event Manager with Network Topology Manager

5.3.1 Implementation of an agent-based NTM

The Network Topology Manager is implemented by a multi-agent system, called

SPADES. The System for Parallel Agent Discrete Event Simulation (SPADES) is a

middleware system for agent-based distributed simulation. SPADES is designed to build

agent-based simulations where each computational entity receives sensations from a

A

B

D

C

E

S-departure event

S-arrival event

Node / Agent

NTM

Edge / Link

EM Service queue

Action

Arrival event

Departure event

Chapter 5. Interceptor: System Architecture

126

simulated world (sensing phase), spends some amount of computation (thinking phase)

and then returns some actions (acting phase). SPADES provides a world where agents

can live. The world model operates by scheduling simulation events realized one by one,

and the agents simply receive sensations and send actions.

SPADES has four main components (see the Figure 5.12): a simulation engine, a

communication server, agents and a world model. The simulation engine and the

communication server are supplied as part of SPADES, while the agents and the world

model must be implemented by a user according to the simulation of a particular

scenario. The simulation engine adopts a discrete event scheduler to advance the

simulation. This component is in charge of queuing all pending events and coordinating

all network communications. A communication server is in charge of interconnecting all

(TCP/IP) agent communications to the simulation engine. This means that the agents

communicate with their communication server via pipes and this server communicates

with the simulation engine via sockets (see in the Figure 5.12 where lines are pipes and

arrows are sockets).

Figure 5.12: The architecture of the SPADES

Agent

Agent

Agent

Communication
Server

Agent

Agent

Agent

Communication
Server

Simulation

Engine

World
Model

Monitor
Interface

Chapter 5. Interceptor: System Architecture

127

In particular, if no distributed agents are required it is possible to run an integrated

communication server, which is executed in the same process as the simulation engine.

The world model is built by a simulationist to reproduce a particular scenario. The world

model links the simulation engine as a library to constitute a single process. In particular,

the world model inherits the C++ classes of SPADES in order to interact with the

simulation engine. Finally, the agents interface with the communication server by means

of read and write system-calls over pipes, thus the agents may be programmed as the

simulationist wants. Further, it is possible to connect directly the simulation from an

external program and to get periodic updates about the evolution of the simulated world

(like the reproduction of large scaled networks) by means of a monitor interface. This

monitor interface allows one also to send commands back to the simulation engine or to

world model to perform different procedures.

In order to create our NTM by means of SPADES, agents and world models are

implemented according to the simulation of a network topology (see the Figure 5.13).

Along with this idea, the management mechanism of each node is a programmable agent,

while the link represents the communications among the agents.

All agents work inside the world. The world is in charge of synchronizing the agents and

exchanging the messages between them and the EM. In particular, the EM and the NTM

exchange messages by means of the monitor interface. Our world model, (called

NTMWorld) after the starting phase where it takes up its configuration, connects all

agents and sends them their settings (by means of a CreateNormSenseEvent). At this

point, the NTMWorld waits for the setup of all agents and only after that it stops waiting

for a connection on the monitor interface. When a connection is established with the EM,

different messages are exchanged on this channel. In particular, each message contains

information for different agents. When the message reaches the NTMWorld is parsed (by

means of the parseMonitorMessage method) and divided into messages that are sent to

the agents. To obtain this result the NTMWorld adopts the CreateMsgSenseEvent that

creates the senses (that contains the messages) for the specified agents. When the agents

receive the senses, they call the doAction method to interpret the messages, to check their

policy and to write a response message.

Chapter 5. Interceptor: System Architecture

128

Figure 5.13: The implementation of the integration between the EM and the SPADES as NTM

At the end, the agent sends the response to the NTMWorld that uses the parseAct method

to call the MessageToMonitorEvent. This last SPADES event sends the message to EM

through the Monitor interface generating a S-arrival event.

The communication between the NTM and EM works on TCP. An application

protocol has been built to exchange information (i.e. actions) between the NTM and EM.

When a S-departure event is generated one or more packets have expired their service

times and are ready to be delivered to the next nodes of the topology. Then, the EM will

build a new message for the NTM that has the following format:

W <SentData> <<idAgent> <idIPPacket> <destination>>…………………………………
……
…………………………………………………… <<idAgent> <idIPPacket> <destination>>

where “W” informs the Simulation Engine that the message is addressed to the world

model, <SentData> is the number of bytes that the Simulation Engine must receive,

<idAgent> is the identifier of the agent that must receive a message, <idIPPacket> is the

Node/
Agent

Communication

Server

Simulation

Engine

NTMWorld

Model

Monitor
Interface

Event

Manager

S-departure S-arrival

Node/
Agent

Node/
Agent

Chapter 5. Interceptor: System Architecture

129

identifier of the IP packet that expired its service time and <destination> is the final

destination that the IP packet must reach passing through the network topology. The

Simulation Engine receives the message through the monitor interface, deletes the “W”,

waits for <SentData> bytes and passes it to NTMWorld. The NTMWorld parses the

message deleting the <SentData> and dividing it into messages as

<idAgent> <idIPPacket> <destination>

that will be sent to their specific agents (simply reading the <idAgent> field). When the

agent reads the message, he creates a response message (like the following) and sends it

to the NTMWorld:

<nextAgent> <idIPPacket> <CM>

Where <nextAgent> is the identifier of the next agent that after the expiration of the next

service time will receive this action, <idIPPacket> is again the identifier of the IP packet

and CM is the specifications of the communication model that EM must use to compute

the next service time. This next time expiration will generate a future S-departure (or a

future departure event). Once the NTMWorld receives this message, it passes directly

through the monitor interface towards EM generating an S-arrival event.

5.3.2 Implementation of an agent as a network node

The management mechanism for each node is represented by an agent and each link is

represented by an interaction between two agents. The EM asks to the nodes (i.e. agents)

to solve a routing problem for an IP packet. Each agent knows the other ones in its

neighbourhood and which is the kind of channel to directly reach one of them. This

means that each node has its routing table and also a communication table (where it is

specified which is the CM that describes the link to reach directly the next agent). This

information (i.e. routing and communication settings) is read from the agents at the

beginning of an experiment by means of a CreateNormSenseEvent (see the Figure 5.14).

Chapter 5. Interceptor: System Architecture

130

There are two possible kinds of links: emulated and simulated. In the first, the link is

between a simulated (agent) node and a real host. This node can be at the beginning of

the emulated link or at the end. In the second, both nodes are simulated agents

interconnected by a simulated link.

Once it gets a request, each agent supplies a replay where it specifies the next agent,

the identifier of the IP packet and an CM. The CM specifies the kind of link to reach the

next agent and the parameters, the delay due to the node (as router) computation and if

the link is down or up. In the first case, it is possible to specify the characteristics of the

link between the two nodes. In the second, a further delay that reproduces the router

computation can be specified. This delay is derived from the router management, like

time to read routing table, time to get a packet from a link, time spent in the entry router

queue and time to insert packets into the exit queue for a specific link. In the third, a link

can go down or up at a “t” time from the beginning of the Interceptor experiment. In this

case, when a router sends a packet over a link that is down, it discards this packet. In

particular, each packet that is over a link when it is going down is discarded.

Further, it is possible to specify more routes towards the same final destination (inside

a routing table). This means that it is possible to manage the load-balancing policy by

indicating preferences among routes. When an agent chooses the link to the next agent

(toward the final destination) he must take into consideration the preference (and also if

the link is up or down). As a final consideration, there is also the possibility to manipulate

both nodes and links at a run-time simply acting on the agents (i.e. in interactive mode).

A second tool connects the agents through the world by means of the monitor interface.

This tool permits the simulationist to change by means of a command shell the settings of

all agents by adopting the same syntax of the configuration file. In this way, it is possible

at a run-time to update: i) the routing table of any node, ii) the CM between two nodes

(i.e. the communication table), and iii) the network topology (without the possibility to

create new nodes). This operation is executed in mutual exclusion and can involve single

nodes or a group of these. Similar to routing and communication settings at the starting

phase, this operation updates the data structures of the agents at a run-time.

Chapter 5. Interceptor: System Architecture

131

simulated link
#nSrc nDst lQueue delay lDown lUp
node0 node1 r10000 f40000 d50000 u80000

emulated link (real source)
#Src Dst nDst delay
host1 host3 nnode0 f30000
host1 host4 nnode0 f40000
host2 host3 nnode0 f50000
host2 host4 nnode0 f60000

emulated link (real destination)
#Src Dst lQueue delay
node1 host3 r150 europa_gprs_buona v4 gauss
node1 host4 r1000 f30000

route
#nSrc Dst nHop
node0 host3 nnode1
node0 host4 nnode1
node1 host3 nnode255
node1 host3 nnode255

Figure 5.14: The configuration file of the NTM for the above scenario

5.4 Simulating Communication Time without Additional Delay

The emulative interface of Interceptor introduces live traffic into a synthetic environment

that processes this traffic by means of different software components. A synthetic

emulative platform must support the live traffic under real time constraints without

adding additional delay due to the time spent to schedule their software components.

Unfortunately, an excessive amount of incoming real packets (i.e. burst traffic) may cause

the platform to miss time deadlines (i.e. the system becomes livelocked (Fall, 1999)). In

essence, IP packets may leave late because their actions are not extracted from the service

queue at the right moment. It is possible to avoid the livelock by exploiting a prefetching

technique. In particular, we define the lookahead as the duration of the time period

between the imminent action (related to a specific IP packet) and the last event occurred.

node0 node1

host1

host2

host3

host4

Chapter 5. Interceptor: System Architecture

132

The value of the lookahead can affect the simulation performance and the real time

constraint of the emulation. In fact, in this period, it is possible to run the software

components of the simulative environment and the emulative interface avoiding the

livelock. Unfortunately, if real hosts generate burst traffic, the lookahead period is

reduced by involving the performance of Interceptor. This burst traffic may generate a

high number of events within a small time frame during which Interceptor might not keep

up with the real time. The interference between these processes and the real time

constrains depends on the duration of the lookahead. In fact, the greater the lookahead,

the lesser the probability that the interference causes additional delay. Therefore, every

time an action is not extracted by the queue according to its timeout expiration, the

additional delay grows. In particular, this means that every time an S-departure event or a

final Departure event is not generated according to their timeout expirations, the IP

packets leave late the simulated links. Then, the calculation of the time spent (for each IP

packet) before the departure moment may be expressed by the following formula:

Timedeparture = Timearrival + Timewaiting

The Netfilter framework writes the characteristics of each live incoming packet on a

structure, included the arrival time on the Ethernet card (i.e. Timearrival). Timedeparture is the

moment in which the packet leaves Interceptor. Timewaiting is the sum of the times

assigned by the synthetic scenario to the emulated or simulated links by means of several

CMs (i.e. from CM(1) to CM(k-th)):

Timewaiting = TimeCM(1) + TimeLockedCM(1) + … + TimeCM(k-th) + TimeLockedCM(k-th)

TimeLockedCM(x) is the extra time spent if during the passing through the “x” link a

livelock occurs. In an ideal experiment all the TimeLocked components are null. In

particular, the greater the number of the links between two real hosts, the greater the

probability to accumulate additional delay. Being the service queue the repository of all

actions of our synthetic scenario, it is very likely that several of them could expire very

close one to the others. This situation is very dangerous because if the next actions have

very short time expirations, they are forced to wait for “n” cycles of program execution

Chapter 5. Interceptor: System Architecture

133

(i.e. waiting for a higher time). In order to limit additional delay growth and in order to

remove it, a mechanism that supports a prefetching technique has been developed. This

mechanism is able to extract from the service queue all the actions that could violate their

timeout expirations. It is possible to compute the next expiring actions forcing the next

lookaheads to zero. In particular, every time an action reaches the expiration moment, the

mechanism checks up the next ones that fall inside a period given by the current instant

plus a time constant called time-select. The time-select is currently set lesser or equal to

the time granularity of the machine. All actions in the time-select interval are extracted

immediately and their events are generated. In a complex scenario, an action related to an

IP packet might pass through different emulated or simulated links. This implies that the

action is inserted and extracted several times. The mechanism does not affect the

Timedeparture making it lower than the value calculated by the previous CM. This is

possible because, during each insertion phase, the next time expiration is computed by

adding to the previous one the new contribution due to the new CM. This means that the

moment during which the previous event was generated is not taken into consideration,

while the previous time expiration is taken into account. In this way, the least possible

inconsistency is generated; that is for a time lesser than the granularity precision this

action has been inserted into the next link in advance. In this way, it is possible to

amortize the delay of different inserting and extracting phases, without affecting the

Timedeparture by releasing the packet too early or too late. In a few words, the time-select

amortizes the delays due to the additional delay. In this way, this mechanism tries to

perform the extraction of actions without affecting the real execution of the running

applications (see an example on the Figure 5.15).

5.5 The Schedule of Interceptor

Now, we explain how Interceptor works by means of the scheme of its states (see the

Figure 5.16). After the starting phase, where all the settings are configured, Interceptor

enters an endless cycle during which it passes through several states depending on

different events. The first state of the cycle is the QUEUE. In this state, the content of the

service queue is checked up.

Chapter 5. Interceptor: System Architecture

134

Departure Time 30ms

20
22
24
26
28
30
32
34
36
38
40

1
64

1
12

81
19

21
25

61
32

01
38

41
44

81
51

21
57

60
64

00
70

40
76

80
83

20
89

60
96

00
10

24
0

KByte Sent

Ti
m

e
sp

en
t i

ns
id

e
In

te
rc

ep
to

r (
m

s)

Timeselect 0ms Timeselect 5ms Timeselect 10ms

KByte Time-select 0 Time-select 5 Time-select 10
1 35,55055 ±2,50330 33,54004 ±2,05924 34,35844 ±2,53646

321 33,28769 ±0,33491 32,29506 ±0,41853 30,16315 ±0,14194
641 32,95216 ±0,22955 30,86735 ±0,18609 30,15103 ±0,16437
961 33,20946 ±0,19279 31,08551 ±0,21429 30,44385 ±0,21015

1281 34,72764 ±0,49501 32,61661 ±0,24204 29,69390 ±0,11455
1601 33,90771 ±0,28037 30,61524 ±0,13148 29,59947 ±0,09269
1921 34,08215 ±0,24056 32,49469 ±0,29359 30,08475 ±0,13992
2241 33,67372 ±0,12942 31,69343 ±0,16387 29,96314 ±0,12108
2561 33,15287 ±0,11001 31,30406 ±0,14944 30,10470 ±0,10630
2881 33,22671 ±0,17873 31,39224 ±0,13000 30,18140 ±0,11717
3201 32,99217 ±0,10012 31,22876 ±0,12132 29,99103 ±0,10732
3521 32,70544 ±0,08689 31,39384 ±0,11286 29,55307 ±0,08368
3841 32,89831 ±0,11848 32,11900 ±0,13903 29,71712 ±0,07990
4161 33,26725 ±0,13019 31,88860 ±0,12273 30,27629 ±0,10030
4481 33,36183 ±0,17762 31,28810 ±0,09998 29,67142 ±0,07496
4801 33,02575 ±0,07641 31,17460 ±0,09513 29,47609 ±0,07063
5121 33,36983 ±0,10912 32,14417 ±0,12268 30,55266 ±0,11153
5440 33,34212 ±0,07551 31,82486 ±0,11441 29,66567 ±0,06807
5760 33,81028 ±0,10822 32,00908 ±0,10957 30,12530 ±0,08249
6080 33,98785 ±0,08418 31,59159 ±0,09165 29,91044 ±0,07281
6400 32,81368 ±0,06508 32,17445 ±0,10829 30,01412 ±0,07761
6720 32,76928 ±0,06409 31,85753 ±0,09512 29,75066 ±0,07315
7040 33,09119 ±0,11542 31,99053 ±0,09971 29,62027 ±0,06397
7360 32,72658 ±0,05999 31,46644 ±0,08684 29,62752 ±0,05778
7680 33,02072 ±0,07727 31,64469 ±0,08623 30,28782 ±0,07957
8000 33,29145 ±0,08255 31,73705 ±0,08762 30,03947 ±0,06953
8320 33,45153 ±0,07955 31,60649 ±0,07891 29,59380 ±0,05280
8640 34,20061 ±0,08862 31,94323 ±0,08769 29,41757 ±0,05267
8960 33,14709 ±0,05868 31,86399 ±0,09259 29,35969 ±0,04606
9280 32,81908 ±0,06904 31,50544 ±0,07914 30,00423 ±0,06884
9600 33,16915 ±0,10033 31,79180 ±0,08266 29,89044 ±0,06270
9920 33,10744 ±0,08667 32,09470 ±0,08561 30,38015 ±0,07799

10240 33,42284 ±0,06771 31,46365 ±0,06932 29,87044 ±0,06081

Figure 5.15: top, the effect of the mechanism supporting lookahead real time in a scenario

where the time spent is 30 ms and the time-select varies from 0 to 10 ms;
bottom, confidence intervals at 95% of probability

Chapter 5. Interceptor: System Architecture

135

The first time, the queue is empty, so, Interceptor goes to SELECT, where it suspends

itself waiting for the generation of an event that could come from either the EI or the

NTM. If the EI generates an event, Interceptor goes to ARRIVAL. Instead, if NTM

generates an event, it goes to S-ARRIVAL. In ARRIVAL state, a real IP packet is

extracted from the inter-arrival queue that is located inside the EI and inserts into the EM,

where a new action containing the information about this packet is inserted into the

service queue.

QUEUE

do: checkupQueue()

SELECT

do: ready=select()

S-ARRIVAL

do: S_arrival()

DEPARTURE

do: departure()

ENQUEUE

do: enqueue()

ERROR

ARRIVAL

do: rval=arrival()

TIMER SELECT

do: ready=select(timer)

READY

do: ready=computeTime()

START

do: settings

[queue=N
U

LL]

[ready=Emulat ionInterface]

[r
va

l>
0

]

[r
ea

dy
=0

]

[r eady=0 & lastAgent=true]

[ready>0 & lastAgent=true]

[queue<>NULL]

[rval=0]

[rval<0]

[re
ady<0]

[r
ea

dy
<0

]

[re
ad

y=To
po

log
yM

an
age

r]

[ready=TopologyManager]

S-DEPARTURE

do: S_departure()

[ready=0 & lastAgent=false]

[ready=Em
ulationInterface]

[ready>0 & lastAgent=false]

Figure 5.16: The scheme of the states of Interceptor

Chapter 5. Interceptor: System Architecture

136

This insertion brings Interceptor into the ENQUEUE state. The only next state is

READY. Here, the “computedTime” function establishes the amount of actions ready to

be extracted (i.e. this function implements the prefetching mechanism). From this point it

is possible to reach three states.

• If the number of the actions that must be extracted is zero, Interceptor goes to the

TIMER SELECT where it waits for the expiration of the service time of the

imminent action or for an event generated by EI or by NTM. Otherwise if this

number is greater than zero, the field nextAgent of each action is checked up.

• If nextAgent is equal to LASTAGENT, the action sends the IP packet to the final

destination generating a departure event. In this case, Interceptor goes to the

DEPARTURE, where the real packet is inserted into the live network towards its

final destination.

• If nextAgent is different from LASTAGENT, the action sends a message to NTM

generating a S-departure event. In this case, Interceptor goes to the S-

DEPARTURE. In particular, in this last state the action related to the IP packet is

sent to the specific node of the NTM.

From the S-DEPARTURE and the DEPARTURE events Interceptor can go only to the

QUEUE state. The TIMER SELECT is the most critical state because it allows the

Interceptor to go to the five main states. At this point Interceptor calculates the lookahead

time and interrupts itself until this time expires or an event is generated. If during this

period an event is generated by EI or by NTM, Interceptor goes, respectively, to the

ARRIVAL or the S-ARRIVAL. Otherwise if the time expires, it goes to S-DEPARTURE

or DEPARTURE. If Interceptor arrives to the S-ARRIVAL it means that a new action

from the NTM has reached the EM and it specifies the CM and the parameters to

compute the next service time. Once the timeout has been calculated, the new action

(related to a specific IP packet) is inserted according to the service time in the service

queue (ENQUEUE). Finally, there is also an ERROR state, where all spurious data

structures are deleted and Interceptor is forced to go to the QUEUE state.

Chapter 5. Interceptor: System Architecture

137

5.6 Implementation of the Workload Traffic Generator

The WTG fills the inter-arrival queue by sending IP packets (in emulation mode)

according to the communication patterns typical of an application (or protocol). In this

way, it exercises the synthetic networks and the final hosts as if multiple users were

simultaneously running the same application. In particular, our WTG, called M²G

(MultiMedia workload traffic Generator), reproduces the downloading requests, coming

from Web and Multimedia application and in particular generated by mobile devices

(such as Personal Digital Assistant and Laptop). M²G includes the two following

software components: a workload generator and a traffic generator. The workload

generator reproduces the behavior of multiple users generating typical communication

patterns. Therefore, it implements the set of distributional models that indicates how

requests must be done. The traffic generator produces the requests for the multimedia

service according to the workload generator by implementing the User Equivalents.

Hence, it implements the communication protocol of the application generating the

correspondent real traffic. This code is an exchangeable part of the traffic generator,

because different application (or protocol) implementations can be built for different

multimedia services. In particular, the M²G derives from the SURGE and the GISMO

workload traffic generators.

5.6.1 M² workload generator

The workload is generated by means of five routines (developed in C-ANSI) executed in

the following order (see the Figure 5.17):

 1. Zipf

 2. Sizes

 3. Match

 4. Lru

 5. Surfoff

Chapter 5. Interceptor: System Architecture

138

Figure 5.17: The architecture of M²G workload generator

Each routine gets (as input) parameters or files and creates (as output) files. The output

files become either the input of the next routines or the repository of information that will

describe the traffic patterns. If a simulationist wants to change the parameters of any

routines, it will be necessary to execute the workload generator again to get the correct

input files. The workload generator implements the following set of distributional

models.

The “Zipf” routine implements the “Popularity” distributional model that describes the

total number of requests made to each file on the server, during the experiment. The

“Zipf” routine of SURGE requires two input parameters: i) the total number of requests

for the most popular files and ii) the total number of files used in the experiment.

Differently from SURGE, our “Zipf” routine requires just a single input parameter that is

the total number of files used in the experiment. In this way, the GISMO approach that

does not set an upper bound to the maximum number of requests for the most popular

files is adopted. The “Zipf” routine creates an output file, called “zout.txt” which is a two

column list: first column contains the indexes of the files stored on the servers, while the

second column contains the total numbers of requests (for each of them) in descending

order.

The “Sizes” routine implements the “File Sizes”, that is a distributional model that

describes the collection of files stored on the server according to empirical measurements.

The “Sizes” routine requires just a single input parameter that is the total number of files

ZIPF

cnt.txt

Zipf
Distribution

Lognormal
Distribution

Lognormal +
Pareto

Distribution

Lognormal
Distribution

SIZES

MATCH

LRU

SURFOFF

zout.txt

zout.txt

yout.txt

mout.txt

name.txt

Inverse
Gaussian

Distribution

Chapter 5. Interceptor: System Architecture

139

used in the simulation. The “Sizes” routine of SURGE is broken down into three separate

models: one for HTML pages with embedded images, one for embedded images and one

for pages without images. Differently from SURGE, our “Sizes” routine uses just a model

for the multimedia files according to GISMO. Further, the workload generator provides

with a module that simulates a multimedia user downloading through a PDA. In this case,

this distribution is adapted to the size of the file downloaded (from 10 KB to 10 MB) on

these devices that have a limited quantity of memory (≈ 32 MB). The “Sizes” routine

creates an output file, called “yout.txt” which is a column list (i.e. the sizes of the files

that are set up on the server).

The “Match” routine implements the “Request Sizes” distributional model that

generates a one-to-one match between the file sizes and the total requests. The “Match”

routine requires two input files and a single input parameter: i) the “zout.txt” (output of

the “Zipf” routine), ii) the “yout.txt” (output of the “Sizes” routine) files and iii) which

determines which of three matching algorithms to use. In particular, “1” the value can be

the optimal matching over the entire function, “2” the value can be the optimal matching

focusing on the tail only and “3” the value can be the optimal matching focusing on the

head only. The “Match” routine solves the problem of matching the request size

distribution with the collection of file sizes stored on the server. The “Match” routine

creates an output file, called “mout.txt”, which contains the one-to-one mapping of total

requests (column one) to file sizes (column two). This is the original routine of SURGE.

The “LRU” routine implements the “Temporal Locality” distributional model that

generates the actual sequence of multimedia files that will be requested by traffic

generator. The “LRU” routine requires two input files: i) the “zout.txt” (output of the

“Zipf” routine) and ii) the “mout.txt” (output of the “Match” routine). The main

difference between our implementation and that of SURGE is here (see the Figure 5.18).

In fact, also the “LRU” routine of SURGE requires two input files, respectively, the

“objout.txt” (output of the “Object” routine) and the “mout.txt” (output of the “Match”

routine). The “Object” routine (not present in our workload generator) is the program that

generates the descriptions of the objects, which will be requested by SURGE and it is the

implementation of “Embedded References” distributional model. Each object consists of

either a loner file or the combination of a base file and one or more embedded files.

Chapter 5. Interceptor: System Architecture

140

Figure 5.18: The architecture of SURGE workload generator

Figure 5.19: The routine that creates the files for the multimedia server

The “Object” routine requires “mout.txt”, as an input file. The “Object” routine creates an

output file, called “objout.txt” that contains the identifiers of files, which are assigned to

each object. The identifiers are actually indexes into the “mout.txt” file. In our design the

multimedia files have not embedded files, therefore the “Object” routine is not necessary.

For this reason, differently from SURGE implementation, our “LRU” routine requires

the index of all files (i.e. those in “zout.txt”). The aim of this routine is to generate the

actual sequence of files that will be requested by traffic generator. The “LRU” routine

creates an output file, called “name.txt” that contains the sequence of files that are

indexed in the file “zout.txt”.

The “Surfoff” routine implements the “inactive OFF Times” and the “Session Length”

distributional model. In the former case, this routine generates a set of OFF times that are

interposed among the requests during an experiment. In the latter case, this routine

generates the session length in terms of the numbers of multimedia files, which are to be

requested during a session period. The “Surfoff” routine requires the “name.txt” (output

of the “LRU” routine), as input files. The “Surfoff” routine of SURGE generates the

ZIPF

off.txt

cnt.txt

Zipf
Distribution

Lognormal
+ Pareto

Distribution

Lognormal
+ Pareto

Distribution

Lognormal
Distribution

Pareto + Inv.
Gaussian

 Distribution SIZES

MATCH

LRU

SURFOFF
zout.txt

yout.txt

mout.txt

name.txt

Pareto
Distribution

OBJECT

mout.txt

objout.txt

FILES
mout.txt 0.txt

99.txt

Chapter 5. Interceptor: System Architecture

141

“OFF times” limited the maximum to 30 minutes. Differently from SURGE, in our

implementation the value of the “inactive OFF Times” is equal to zero. This is because

the user (in our design) makes requests to the multimedia server by means of a list. The

time to download the multimedia files contained in the list represents the session period

and the number of multimedia files represents the session length. The “Surfoff” routine

creates two output files: i) “off.txt” that contains the set of off times in milliseconds (i.e.

set of zeros in our implementation) and ii) “cnt.txt” that contains the set of file numbers,

which are to be requested during a session period.

Finally, a special routine is necessary to set up the multimedia files on the servers.

This special routine generates a set of simple test files with a specific identificator and

specific sizes according to the “Match” routine (see the Figure 5.19). The special routine

requires the “mout.txt” (output of the “Match” routine), as an input file. This routine

creates the number of output files specified in “Zipf” routine, with the sizes specified in

“Sizes” routine and the identifier, which corresponds to their index in “mout.txt”.

5.6.2 M² traffic generator

The traffic generator creates the requests for the multimedia service together with the

workload generator. The traffic generator has both a multiprocess and multithreaded

implementation and consists of two main parts: MasterManager (MM) and UserManager

(UM). The MM reads, as an input, the files produced by the workload generator, forks to

create children that manage the UMs, and sets up pipes, which are used to synchronize

the UMs. The UM reads the pipes (created by MM), runs the UEs and maintains constant

the number of UEs. Further, the UE contains an exchangeable code that implements the

application protocol of the multimedia service under study. To activate the traffic

generator, the following command is run:

MM {#UserManager} {#UserEquivalent/UserManager} {runtime}

where, the first parameter is the number of generated UM, the second is the number of

generated UEs (for each UM) and finally the third is the default time period of the

experiment (i.e. how many seconds the traffic generator works). When the runtime

Chapter 5. Interceptor: System Architecture

142

expires, the traffic generator will stop the experiment. The MM reads the input files

produced by the workload generator:

• “name.txt” because it contains the sequence of the multimedia files that will be

requested, and

• “cnt.txt” because it contains the session length.

Differently, SURGE (see the Figure 5.20) reads also the “off.txt” file that contains the

Inactive OFF Times. The MM forks a number of times, as specified in the

“#UserManager”, to create children that run and manage the UMs. These children run the

UMs by means of a system-call “system”. Each UM (being a single process) works in

parallel with the MM and the other UMs. MM sets up pipes, which are used to

synchronize the UMs. Through these FIFO pipes the MM communicates the data read

from the input files to UM. In our implementation, there are two pipes:

• “seqfifo” transfers the values read from “name.txt”,

• “cntfifo” transfers the values read from “cnt.txt”,

Differently, SURGE (see the Figure 5.21) also uses two more pipes: the “offfifo” that

transfers the values read from “off.txt” and the “outfifo” that transfers the values of the

indexes that will be used to collect the logging data. Finally, MM waits for the end of the

experiment by listening to the end of all UMs. After this event, it destroys the pipes.

Another difference is that SURGE collects the logging data in a centralized way at the

end of the simulation, storing them in the Surge.log file. In this way, it is not so simple to

understand the behavior of each single UE; for this reason in our implementation each

UE writes its own log file.

To activate the UM, the MM runs the command below (by means of a “system”

system-call):

UM {#UserManager} {#UserEquivalent/UserManager} {runtime} {ID UserManager}

Chapter 5. Interceptor: System Architecture

143

where, the first parameters are the same of MM and the last one is the identifier that MM

assigns to each UM. The UMs need other parameters that are stored on the UM.conf file.

These parameters are the couple IP address / port number of the multimedia servers and

the mode of UEs (i.e. the UEs can run over a Laptop or over a PDA). The UM creates the

requests for the multimedia server by opening a connection with MM and by running

UEs. UM connects the pipes (created by MM).

Figure 5.20: The architecture of M²G traffic generator:
MasterManager, UserManager and UserEquivalent

Figure 5.21: the architecture of SURGE traffic generator:
Surgemaster, Surgeclient and Clients

off.txt

name.txt

Surgemaster

offfifo

Surgeclient

cntfifo

C

C
cnt.txt outfifo

seqfifo

C

Surge.log

RR

R

R

R
R

cnt.txt

name.txt

MasterManager

threadfifo

seqfifo

UserManager cntfifo

Log
UE

UE

UE

Log

Log

Chapter 5. Interceptor: System Architecture

144

From the “cntfifo” pipe it extracts the number “n” of multimedia files. After, from the

“seqfifo” pipe it extracts a number “n” of identifiers of those files. After the connection,

UM runs a “#UserEquivalent/UserManager” number of UEs by means of the system call

“pthread_create()”. Each UE is implemented as a single thread that shares memory with

the others and with the UM. Each UE receives the list of identifiers of the multimedia

files (i.e. the previously extracted data) and requests these to the multimedia server.

When an UE obtains the last one, it writes its performance on its “ID.log” file and it dies

sending a message on the “threadfifo” pipe (see the Figure 5.21). In the “ID.log” file, UE

writes on each row:

• The identificator of UM (it own),

• The identificator of UE (it own),

• The identificator of the multimedia resource

• The size of the downloaded file (in byte), and finally

• The download time (in seconds and microseconds).

Further UM is in charge of maintaining the number of Ues constant. When UM receives

the “ID UserManager” on the “threadfifo” pipe, it knows that the UE, named ID, is dieing

and it is ready to run another one. The UE also implements the application protocol of the

multimedia service. The UM kills all UEs, when the runtime expires.

Chapter 6

Interceptor: Case Studies

This section demonstrates that Interceptor can be useful to evaluate different

(multimedia) network applications and that can support several different scenarios.

Furthermore, it shows different experimental assessments developed to validate the

effectiveness of our proposed synthetic emulative platform. Along with these

considerations, Interceptor becomes useful to evaluate the performance of different case

studies in which mechanisms, applications and network architectures are involved:

• the Client Centered Load Distribution (C2LD) mechanism to accelerate the

downloading of remote files based on the use of replicated Web Servers,

• the wireless Internet architecture to deliver multimedia contents to mobile

devices, and

• the system architecture to support the “participatory simulation” of complex

systems from mobile device.

The first case describes how the C2LD downloading accelerator works. The effectiveness

of this mechanism is shown by means of either experimental campaign or synthetic

emulative campaign. In particular, these campaigns allow the comparison between the

C2LD performance (Ghini et al., 2001) and the downloading of standard HTTP protocol

mechanisms (Fielding et al., 1999). The second case reports on our experience in

developing and evaluating a wireless Internet architecture designed to deliver advanced

Chapter 6. Interceptor: Case Studies

146

musical services to mobile consumers over wireless links. This case shows the

design/development of this architecture and its performance on a synthetic emulative

scenario. Finally, the last case illustrates how it is possible to support the execution of

multi-agent participatory simulation activities inside Interceptor. The users of these

collaborative systems demand tools that are able to visually present the results of

cooperative simulation activities on the screen of mobile devices.

6.1 The Evaluation of the C2LD mechanisms

This section describes how the C2LD works and the effectiveness of this mechanism by

means of the two separate evaluation exercises: an experimental and a synthetic

emulative scenario. The former consists of evaluating the mechanism inside the actual

Internet. In this evaluation, a single browser program, incorporating the mechanism and

accessing a geographically replicated Web service was involved. Unfortunately, the

experimental evaluation was based on a single client. In this way, these results were not

enough to demonstrate the effectiveness of the C2LD mechanism because the typical

scenario (in which it should work) shows a replicated Web service accessed,

concurrently, by a large number (hundreds) of clients. Thus, as it was unpractical to

evaluate the mechanism by reproducing this scenario in the real Internet, the latter

evaluation exercise is conducted by setting a synthetic complex (IP-based) networked

scenario for Interceptor. Hence, a synthetic emulative scenario has been configured

within which the implementation of the C2LD mechanism as part of the client software

has been evaluated. In this scenario, four replica servers supply the Web service for

hundreds of clients.

6.1.1 The C2LD mechanism

In the Internet context, a successful deployment of the geographically-distributed replica

servers approach will depend on the ability to achieve the following two main goals:

• Dynamically binding the client to the most convenient replica server, and

Chapter 6. Interceptor: Case Studies

147

• Maintaining data consistency among the replica servers.

Firstly, the dynamic binding of clients to replica servers can turn out to be difficult to

implement, owing to the location-based naming scheme used in the Web. This scheme

provides a one-to-one mapping (i.e., the Uniform Resource Locator - URL) between a

name of a resource and a single physical copy of that resource; hence, dynamic binding

of a client to distinct replica servers requires that the client-side software be adequately

extended in order to be able to select an available replica, at run-time. Secondly,

maintaining replica consistency on a large geographical scale can be hard to achieve,

without affecting the overall service performance. In addition, the Internet environment is

subject to (real or virtual) partitions that can prevent communications between

functioning nodes; hence, within this environment, both clients and replica servers may

hold mutually inconsistent views about which replica server is available and which is

unavailable. In view of these observations, a mechanism was developed, in order to

provide the clients of a replicated Web service with responsiveness, exploiting the

parallelism inherent to the replicated servers architecture that implements that service.

Specifically, the main goal of this mechanism is to minimize what we name the User

Response Time (URT), i.e. the time elapsed between the generation of a browser request

for the retrieval of a Web page, and the rendering of that page at the browser site (issues

of replica consistency fall outside the scope of this mechanism). To this end, rather than

binding a client to the most convenient replica server, as proposed in (Ingham et al.,

2000), the C2LD mechanism intercepts each client browser request for a Web page, and

fragments that request into a number of sub-requests for separate parts of that document.

Each sub-request is issued to a different available replica server, concurrently. The replies

received from the replica servers are reassembled at the client end to reconstruct the

requested page, and then delivered to the client browser.

The mechanism is designed to adapt dynamically to state changes in both the network

(e.g. route congestion, link failures), and the replica servers (e.g. replica overload,

unavailability). To this end, the mechanism periodically monitors the available replica

servers and selects, at run-time, those replicas to which the sub-requests can be sent, i.e.

those replicas that can provide the requested page fragments within a time interval that

Chapter 6. Interceptor: Case Studies

148

allows the mechanism to minimize the URT. As the mechanism effectively implements

the distribution of client requests among the available replicas, it was called Client-

Centered Load Distribution (C2LD). C2LD can be implemented as an extension of the

client-side software (i.e., in the browser) or as a module of a Proxy server to which the

clients send their requests. The design of C2LD is based on an analytical model (for more

details see (Ghini et al., 2002)) that is essential in order to determine the size of the page

fragment that can be requested to each replica, and the extent of the monitoring period

C2LD to be used in order to execute a Web page request. We have assessed the

effectiveness of the C2LD mechanism by validating it through both an experimental

evaluation over the Internet, and simulation.

6.1.2 How the C2LD works

In general, in order to access a Web service, a user invokes a browser by providing it with

the URL of that service. However, as explained earlier, the C2LD requires that the user of

Web service sets his/her own User Specified Deadline value (USD i.e. a value that

indicates the extent of time a user is willing to wait for a requested Web page to be

rendered at his/her workstation before invoking the browser that he/she will use to access

that service. Thus, the mechanism provides its users with a configuration procedure that

allows them to set their own USD timeout values before invoking their browser programs

(a default USD value is used if a user does not make use of that configuration procedure).

Once the USD has been set, the C2LD mechanism operates as described below.

Access to a Web service from a browser entails that a HTTP GET method will be

invoked by that browser. The C2LD mechanism intercepts that HTTP GET invocation,

starts the USD timeout and, using the URL in the GET invocation, interrogates the DNS.

The DNS maintains the IP addresses of the NREP replica servers that implement a Web

service. When C2LD submits a request to the DNS to resolve a URL, the DNS returns the

IP addresses of all the replica servers associated to that URL. As the replica servers’

addresses are available to the C2LD mechanism, this mechanism interacts with each

replica as illustrated by the skeleton code in Figure 5.1, and summarized below.

Chapter 6. Interceptor: Case Studies

149

C2LD invokes a HTTP HEAD method on each replica i. The reply from replica i to the

first HTTP HEAD invocation is used by C2LD to: i) get the size of the requested page, ii)

estimate the current data rate that replica i can provide, and iii) assess the size of the first

fragment that can be fetched from that replica. The C2LD maintains a global variable

(download_done, in Fig. 6.1) that indicates whether or not all the fragments of a

requested page have been delivered. Until a page is not fully downloaded, C2LD uses the

Eq. (1) and (2) in the Figure 6.1 to compute the size of the fragment that is to be

requested to the replica i. Where we denote with riDR , the data rate that a given replica

server i is able to provide during a given time interval rik , , with riPS , the size of the

document fragment requested to a certain server i with the request r, and with ∗
riS , the

URT expected from the execution of the request r directed to the replica i. In order to

adjust adaptively to possible fluctuations of the communication delays that may occur

over the Internet, the fragment size is computed each time a fragment is to be requested,

based on the value of the URT experienced in fetching the previous fragment. Thus, in

essence, as the GET request r-1 directed to a given replica i terminates, a new GET

request r can be issued to the replica i with the fragment size value riPS , computed on the

basis of the 1, −riURT response time. Once the requested fragment size has been calculated,

C2LD issues a HTTP GET request to the replica i, in order to retrieve the required

fragment of that size. (Specifically, a fragment of Z bytes size is requested by invoking a

HTTP GET method with the following option set: "Range: bytes=Y-X", where X and Y

denote the bytes corresponding to the beginning and the end of the requested fragment of

size Z, respectively). Note that some of the replica servers may not respond timely to the

HTTP (HEAD and GET) invocations described above (e.g., they may be unavailable

owing to network congestion). Thus, C2LD associates a timeout to each HTTP request it

issues to each server i. If that timeout expires before C2LD receives a reply from a replica

server i, it assumes that the server i is currently unavailable, and places it in a stand_by

list. Replica servers in that list are periodically probed to assess whether they have

become active again. Requests for replicas in the stand_by list are redirected to active

replicas.

Chapter 6. Interceptor: Case Studies

150

/* C2LD */
…
within USD do /* set USD timeout */
…
HEAD(…) /* send HEAD request to replica i */
URT(i) := … /* assess URT replica i can provide */
PS(i,1) := … /* compute 1st fragment size for replica i */
within S do /* set timeout of length S */

if not download_done then /* check if page download completed */
 GET (…) /* get fragment from replica i */

1,

1,
,

−

−=
ri

ri
ri URT

PS
DR ;/* compute expected data rate, based on URT of previous request */ Eq. (1)

 ririri SDRPS ,,, ⋅= ; /* compute size of next fragment to be requested */ Eq. (2)
 else

return;
od

… /* handle S timeout exception */
od

Figure 6.1: Implementation of the C2LD Service

6.1.3 Experimental scenario

A large number of experiments (4000, approximately) were carried out during a two-

month period. These experiments consisted essentially of a client program (i.e. a browser)

downloading Web documents of different size from up to 4 geographically distributed

replica servers. These documents were downloaded by the same client program using

both the C2LD mechanism, and the standard HTTP GET downloading mechanism, for

comparison purposes. In this sub-section, we describe in detail the scenario within which

these experiments have been carried out, introduce the metrics we have used to assess the

implementation, and discuss the performance results we have obtained. The performance

of the C2LD implementation has been evaluated using the Internet to connect a client

workstation (equipped with the C2LD software) with four replica servers (see Figure 6.2).

The client workstation was a SPARCstation 5 running the SunOS 5.5.1 operating system,

located in Bologna (IT). The four different replica servers were running the Apache Web

server over the Linux platform. For the purposes of our evaluation, these servers were

located in four distinct geographical areas. Specifically, a replica server was located close

to the client workstation in Cesena (IT). This Laboratory is four network hops far from

the client workstation in Bologna. The connection between the client workstation and this

Chapter 6. Interceptor: Case Studies

151

Laboratory has a limited bandwidth of 2 Mbps, and is characterized by a rather high

packet loss rate (between 2% and 9%). A second replica server was located in Trieste

(IT). This server was reachable through 9 network hops via a connection whose

bandwidth ranged between 8 and 155 Mbps. A third replica server was located in

Newcastle (UK). This server was reachable through 15 network hops from the client

workstation. Finally, a fourth replica server was located in S. Diego (US). This server

was reachable through a 19 network hops transatlantic connection. Within this scenario, a

replicated Web service can be configured so as to use one of the following 11

combinations of the four available replica servers. Namely, a service can be replicated

across the two servers in Cesena and Newcastle (C+N, in the following), only, or those in

Cesena and Trieste (C+T), or in Trieste and Newcastle (T+N), or in Cesena and S. Diego

(C+S), or in Trieste and S. Diego (T+S), or Newcastle and S. Diego (N+S). A more

redundant service can be implemented across one of the following four combinations of

three servers, instead: Cesena, Newcastle and Trieste (C+N+T); Cesena, Newcastle, and

S. Diego (C+N+S); Cesena, Trieste, and S. Diego (C+T+S); Trieste, Newcastle, and S.

Diego (T+N+S).

Figure 6.2: Routes between the client and the Web replica servers

Table 6.1: The measured round trip time and lost packet percentage

Ping from Bologna to: Cesena Trieste Newcastle S. Diego

RTT 90% of arrived pkt (ms) 107 95 160 450

RTT min (ms) 10 38 59 190

Lost Packet 2%-9% 0% 0% 0%-3%

Chapter 6. Interceptor: Case Studies

152

Finally, a redundant Web service can be implemented across the four replica servers in

Cesena, Newcastle, Trieste, and S. Diego (C+N+T+S). The experiments have been

carried out using all the 11 combinations of replica servers. It is worth noting that the four

machines running the server replicas were moderately loaded during the experiments. In

contrast, the routes to the European Web replica servers were heavily loaded during

daytime; network traffic over these routes typically decreased during the night. The

average network traffic conditions on both the European and transatlantic routes,

experienced during the evaluation of the C2LD mechanism, are reported in the following

Table 6.1. Specifically, in this Table, the first row indicates the 90% of the Round Trip

Time (RTT) obtained with the ping routine from the client workstation in Bologna to the

four replica servers; the second row reports the minimum RTT experienced over the

routes to those servers; the third row reports the packet loss rate we measured over those

routes, as obtained with the ping routine (ICMP).

The following two metrics have been used to evaluate the effectiveness of the C2LD

mechanism: i) the percentage of document retrieval requests successfully satisfied by the

mechanism, and ii) the URT (as defined earlier) the mechanism provides. Both these

metrics capture the principal user requirements; namely, that a requested document is

effectively retrieved, and that it is done timely. Based on these metrics, the evaluation of

the mechanism has been carried out using different values of the following four

parameters: i) the number of server replicas that implement a given Web service, ii) the

data rate that each different server replica can provide, iii) the download monitoring

period adopted by the C2LD mechanism, and, finally, iv) the size of the document to be

retrieved. The performance of the C2LD mechanism has been compared and contrasted

with that provided by the standard HTTP document retrieval mechanism, as this is

implemented by the HTTP GET function. To this end, each replica server maintained a

set of downloadable files of different size, ranging from 3 Kbytes to 1 Mbytes. These

servers were requested to retrieve the same Web document, at the same time of the day

(i.e. under the same network traffic conditions, approximately) using, alternatively, both

the standard HTTP GET request, and the C2LD. The download monitoring period S used

by the mechanism ranged from 50 milliseconds to 10 seconds. A number of experiments

were carried out for each given file size and download monitoring period S. Each

Chapter 6. Interceptor: Case Studies

153

experiment consisted of 15 consecutives download requests. 4 out of 15 of these requests

were executed by invoking the HTTP GET function; the other 11 requests were executed

by the C2LD mechanism. The experiments used files whose size was 3, 10, 30, 50, 100,

200, 500 and 1000 Kbytes. For each file size, the experiments with the C2LD mechanism

were repeated using a different download monitoring period, ranging from 50

milliseconds to 10 seconds. As mentioned earlier, the experiments were carried out on the

11 possible configurations of a replicated service; however, the values reported in the

Tables and Figures in this sub-section are the average of the results obtained in all the

experiments. As a first result, Table 6.2 summarizes the page loss percentage obtained

with the C2LD, and that obtained with the standard HTTP GET downloading mechanism

(performed with S. Diego, Newcastle, Trieste and Cesena, respectively). It can be seen

from this Table that the C2LD mechanism provides a highly available service, since it

always guarantees the downloading of the requested document. Instead, the standard

HTTP mechanism is not always able to provide its client with that document, as shown

by the page loss percentage experienced by the S. Diego and Cesena servers, in

particular. The two higher curves, instead, represent the URT values provided by the two

fastest Web replica servers, when interrogated with the standard HTTP downloading

mechanism. Specifically, the URT values provided by these two replica servers were

obtained as follows. The four different replica servers were exercised with the standard

HTTP mechanism; then, out of these four servers, the URT results obtained by the two

fastest ones were selected to plot the graph in Fig. 6.3.

Table 6.2: Fault Percentage

 USD

(seconds)

C2LD S. Diego

(HTTP)

Newcastle

(HTTP)

Trieste

(HTTP)

Cesena

(HTTP)
50 Kbytes 120 0 % 0.3 % 0 % 0 % 1.65 %
100 Kbytes 120 0 % 0.25 % 0 % 0 % 5 %
200 Kbytes 180 0 % 0.2 % 0 % 0 % 4 %
500 Kbytes 300 0 % 0.3 % 0 % 0 % 1 %
1 Mbyte 600 0 % 0.45 % 0 % 0 % 2.5 %

Chapter 6. Interceptor: Case Studies

154

0

2

4

6

8

10

12

14

16

18

20

22

3 10 30 50 100 200 500 1000 file size (Kbytes)

U
R

T
(s

ec
on

ds
)

2-nd Fastest

Fastest

C2LD

Figure 6.3: C2LD vs. HTTP

As shown in that Figure, the performance of the C2LD mechanism and the HTTP

mechanism are equivalent when the document size less than 50 Kbytes. Instead, when the

document size is larger than 50 Kbytes, the C2LD mechanism outperforms the standard

HTTP downloading mechanism. As already mentioned, the C2LD URT values in Fig. 6.3

represent an average URT value, as it results from all the experiments we have carried

out. For the sake of simplicity in this figure we do not report the value of the variance of

the URT, as measured in the experiments. However, this value for the C2LD mechanism

varied from 0.099 s to 5 s, approximately, depending on the size of the requested page. In

addition, it may be interesting to assess the URT improvement that can be obtained by the

C2LD as the number of replica servers, concurrently used, varies. To this end, we have

carried out experiments in which the number of active replicas was varying from 1 to 4.

Fig. 6.4 illustrates the results of the experiments, in these four cases. Specifically, in these

cases, the URT is measured as a function of the file size. As shown in this Figure, the

larger the number of replicas, the better the URT values; in addition, as the file size

increases, the advantage of using the C2LD mechanism becomes more notable. Table 6.3

shows the average percentage improvement of the URT values that has been experienced

in the experiments depicted in Fig. 6.4, as the number of replica servers grows.

Chapter 6. Interceptor: Case Studies

155

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 500 1000

document
size

(Kbytes)

U
R

T
(s

ec
on

ds
) 1 replica

2 replicas
3 replicas
4 replicas

Figure 6.4: URT improvement provided by C2LD as the number of replicas grows

Table 6.3: Average URT percentage improvement

Number of

Replica Servers

URT percentage

Improvement

2 4%
3 17.2%
4 21.5%

6.1.4 Synthetic emulative scenario

The results discussed in the previous paragraphs indicate that the C2LD mechanism

(when incorporated in a browser’s software) can provide a notable speed-up in the

communications between that browser and a replicated Web service, compared to the

HTTP standard document fetching policy. Unfortunately, the experimental trials were

conducted with a single client. These results were not enough to illustrate the

effectiveness of this mechanism in a real computer network where several C2LD clients

request files, concurrently, to the same replica servers. As it was impractical to configure

and manage the scenario described before by means of experimental trails, it is necessary

Chapter 6. Interceptor: Case Studies

156

to tackle two main problems to find a solution. The former is to confine in a lab-based

environment such real clients and replica servers, while simulating a geographically

distributed setting with appropriate network parameters. The latter is to improve

laboratory scalability, by supporting an increasing number of UEs that run the C2LD

clients.

Interceptor tries to tackle these problems by involving real clients and servers inside a

laboratory and by “synthetic emulating” a complex network scenario. Hence, the core

components of Interceptor (i.e. EI, EM and NTM) synthetic emulate the geographically

network distributed scenario, while the WTG manages the request of the C2LD clients by

scaling up the UEs. For this reason, we develop for Interceptor wired models that

simulate the main communications delay among different geographical area (Europe,

USA, Asia and Australia). Therefore, to validate the effectiveness of Interceptor, different

experimental assessments developed to highlight its capability to reproduce a real

network scenario are shown. Finally, to complete the evaluation of the C2LD, its behavior

is compared with that of the standard HTTP downloading mechanism inside the validated

scenario (by contrasting, as metric, the downloading datarate).

The synthetic emulation trials integrated the synthetic environment with an external

real lab-based scenario where, respectively, four different Web servers and sixty five

client workstations were accommodated. The synthetic environment was designed to

reproduce complex IP-based networks connecting four locations where a real Web

service constituted by four Web replica servers of the Linux Debian official site,

respectively located in Europe (in Newcastle), USA (in San Diego), Asia (in Tokio) and

Australia (in Sydney), and a set of sixty five client workstations distributed in the same

areas as the servers (as shown in Figure 6.5) were accommodated. In addition, on each

single client workstation a number of up to 10 different browsers were simultaneously

running, according to the UE methodology introduced in (Barford et al., 1998). In our

emulative scenario (see the Figure 6.6) the host, that accommodates Interceptor, is

Pentium III 900 with 1 GB RAM connected by means of Ethernet cards (100 Mb/s)

running Linux with Kernel family 2.4.0. The four replica servers are Pentium II 233 with

256 MB RAM connected by means of Ethernet card (100 Mb/s) running Windows 2000

server. The clients are Pentium III 900 with 256 MB RAM connected by means of

Chapter 6. Interceptor: Case Studies

157

Ethernet card (100 Mb/s) running Windows 2000 professional. Interceptor has been

configured in order to simulate both the delay of the IP packets traveling between two

end systems in the same geographical area (e.g. Europe), and the delay of the IP packet

traveling between two end systems located in two separate geographical areas (e.g.,

Europe and Asia). The Table 6.4 reports on the approximately average value of the RTT

measured with a ping using the synthetic emulative scenario. For the sake of simplicity, a

symmetric approach to implement (inside Interceptor) the communication channels is

used and the intra area delay has the same for each area. For this reason, some squares of

the Table 6.4 are not reported and others have the same value.

To validate the effectiveness of this scenario, the first trails are simulation assessments

conducted by considering a single browser (located in Italy) that downloads files of

different sizes from two separate Web servers located, respectively, in England and in the

USA. Along with the simulation trials, two real world experiments directly carried out

over the Internet are also conducted (i.e. necessary for the comparison). The final

downloading datarate was adopted as fundamental metrics for all the experiments. The

following Figures 6.7, 6.8, 6.9 and 6.10 account for the simulative/experimental trials

respectively conducted with the England-based and the USA-based servers. In particular,

each figure contrasts the results related to the simulations with those obtained through the

real Internet. For each figure, the x-axis represents the size of the downloaded files, while

the y-axis represents the datarate (expressed in KB/sec) provided by the server while

downloading those files. As we can see from all figures, the curves of the downloading

datarate values, obtained in both the lab-scaled simulated setting and in the real Internet,

present quite similar slopes. In particular, Figures 6.1 and 6.2 represent the average value

of the obtained results, while Figures 6.3 and 6.4 account for the statistical variation of

those values. For the sake of completeness, table 6.5 reports, in the fourth and fifth

columns, the values of the half-width h of, respectively, the 99% and 95% two-side

confidence intervals, calculated for the trials.

The second trails has been used to compare the performance of two different

methodologies for Web downloading, namely, the standard HTTP protocol and the C2LD

mechanism, by contrasting their respective final downloading datarate inside the already

validated scenario.

Chapter 6. Interceptor: Case Studies

158

Figure 6.5 Geographical scenario

Table 6.4: Average value of the RTT measured with a ping

RTT ms Europe USA Asia Australia
Europe 60 190 310 350
USA - 60 250 240
Asia - - 60 220
Australia - - - 60

Figure 6.6 emulative scenario

REPLICA 1

REPLICA 2

REPLICA 3

REPLICA 4

INTERCEPTOR

EUROPE

USA

ASIA

AUSTRALIA

EUROPE

USA

ASIA

AUSTRALIA

CLIENT I

CLIENT II

CLIENT III

CLIENT IV

CLIENT V

CLIENT VI

CLIENT VII

CLIENT VIII

Chapter 6. Interceptor: Case Studies

159

Table 6.5 Confidence intervals for the simulative/experimental trials

Sim/Exp Size Mean h (99% confidence level) h (95% confidence level)
Simulation UK 3k 7.318 5.842 4.063
Simulation UK 25k 28.228 16.419 11.418
Simulation UK 250k 0.880 0.646 0.449
Simulation US 3k 5.424 5.554 3.819
Simulation US 25k 15.462 8.945 6.220
Simulation US 250k 0.718 0.474 0.330

Experimental UK 3k 6.172 3.208 2.231
Experimental UK 25k 28.91 16.286 11.325
Experimental UK 250k 0.737 0.385 0.268
Experimental US 3k 3.526 1.443 1.004
Experimental US 25k 18.146 3.835 2.667
Experimental US 250k 0.543 0.138 0.096

0
10
20
30
40

0 50 100 150 200 250 300

Size(KB)

D
at

ar
at

e(
K

B
/s

ec
)

SIMULATION UK INTERNET UK

Figure 6.7: Average value of downloading data rate: simulative vs. experimental

(client in Italy - server in the UK)

0
5

10
15
20

0 50 100 150 200 250 300

Size(KB)

D
at

ar
at

e(
K

B
/s

ec
)

SIMULATION US INTERNET US

Figure 6.8: Average value of downloading data rate: simulative vs. experimental

(client in Italy - server in the USA)

Chapter 6. Interceptor: Case Studies

160

0

10

20

30

0 50 100 150 200 250 300

Size(KB)

D
at

ar
at

e(
K

B
/s

ec
)

INTERNET UK SIMULATION UK

 Figure 6.9: Statistical variation of the downloading data rate: simulative vs. experimental

(client in Italy - server in the UK)

0
2
4
6
8

0 50 100 150 200 250 300

Size(KB)Da
ta

ra
te

(K
B/

se
c)

INTERNET US SIMULATION US

Figure 6.10: Statistical variation of the downloading data rate: simulative vs. experimental

(client in Italy - server in the USA)

A set of experiments is carried out to assess the capability of each mentioned method

to support an increasing number of clients, when Web resources of different sizes are

downloaded in a validated scenario. The scenario was that validated before (Figure 6.11)

with a replica server for each geographical area and different number of UEs dispersed in

the USA area (close to the Replica 2). In particular, each UE executes its client to request

files ranged from 850 to 920 times. The size of files stored in each replica server has

range from 0 to 330 KB. These are in agreement with the distribution law of Pareto with

scale k = 1 and shape α = 1.5. From these analyses (see Figure 6.11), it is evident that all

the curves related to the use of the HTTP have different slopes w.r.t. the correspondent

curves obtained with the C2LD. In general, the C2LD (in comparison with HTTP)

generates a considerable delay for small size files, while it generates low delay for big

size files. In fact, there is a file size threshold value (ranging from 55 KB to 110 KB over

different curves) beyond which C2LD outperforms HTTP. In particular, C2LD

outperforms HTTP approximately at 110 KB in the 200 UEs case. If we increase UEs,

subjecting the servers to a greater workload, C2LD outperforms HTTP at lower

Chapter 6. Interceptor: Case Studies

161

dimension (approximately 65 KB in the 400 UEs case and approximately 55 KB in the

650 UEs case). Namely, the larger the file size, the greater is the advantage of using the

C2LD mechanism. This result is in accord with the previous experimental trails of the

Paragraph 6.2.3. In addition, our experiments show that this trend is improved by the

increase of the numbers of clients. In particular, the three HTTP curves have a peak

around 17-23 KB and while increasing file size, they decrease their slopes. Instead, the

three C2LD curves increase their slopes. This analysis allows us to understand two

fundamental aspects:

• HTTP performs better when downloading small files, instead C2LD

downloads big files, and

• C2LD has a better performance increasing the UEs.

Then, we conclude these analyses claiming that the HTTP is suitable for the traffic due to

users surfing on the web sites, while the C2LD for the traffic due to downloading of bulk

data transfer (to es: avi, images, mp3, mpg, operating system iso, patch, rpm, tool and

update). Furthermore, the Figure 6.11 shows that increasing the downloading file size and

increasing the workload (in order of UEs) the C2LD outperforms the HTTP.

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

Size(KB)

D
A

TA
R

A
TE

(K
B

/s
)

C2LD 200 users
C2LD 400 users
HTTP 200 users
C2LD 650 users
HTTP 400 users
HTTP 650 users

Figure 6.11: Comparison of downloading data rates between C2LD and HTTP

Chapter 6. Interceptor: Case Studies

162

These trails highlight that the C2LD is a good mechanism for downloading multimedia

contents. Therefore implementing it inside an architecture that delivers multimedia

contents is a good idea (see the Paragraph 6.2). Finally, these considerations prove the

effectiveness of the mechanism in a real computer network where several C2LD clients

request files, concurrently, to the same replica servers. Furthermore, these analyses

illustrate the benefit of testing a mechanism like the C2LD inside a synthetic emulative

scenario built by means of Interceptor.

6.2 Delivering Multimedia Contents over the Wireless Internet: from Song

Distribution to Interactive Karaoke on Wireless Devices.

Another case study shows the performance of a wireless Internet architecture that delivers

multimedia contents from song distribution to interactive karaoke on mobile devices

(Roccetti et al., 2003a). The pace of developments in wireless technology is enabling a

wide range of exciting applications including location-aware systems, wearable

computers, wireless sensor networks and novel use of cellular telephony systems. Many

of those applications may play the role of key drivers of future wireless technology

provided that they may guarantee affordable access, ubiquitous reach and an effective

service delivery model. In this challenging scenario, a growing demand is emerging for

delivering modern multimedia entertainment services to wireless handheld devices, on a

large scale. In this paragraph, we report on our experience in developing and evaluating a

wireless Internet application designed to deliver advanced musical services to mobile

consumers over wireless links. This contribution is composed by two main parts. The

former shows the design, the development and an experimental campaign on the field of

this application. The latter reports the development and the results of a synthetic

emulative scenario especially configured to evaluate this application.

In essence, our application allows mobile users to listen to songs and to see karaoke

clips on wireless devices by exploiting the Internet as a large musical storehouse. The

Paragraph 6.2.1 shows the world scenario about delivering music. The Paragraph 6.2.2

discusses on some technical obstacles surmounted for integrating the wireless access

technology with the wired Internet. The Paragraph 6.2.3 alongside the operational

Chapter 6. Interceptor: Case Studies

163

description of our wireless Internet application illustrates the design principles followed

to design our system. Field trials have been conducted and confirm that an adequate

structuring of the wireless Internet application may be effective for the delivery of

modern musical entertainment services to mobile consumers. In particular, Paragraph

6.2.4 reports on a large set of performance results gathered from experimental trials

conducted on the field with UMTS technology.

Unfortunately, the previous experimental campaign has been conducted over a single

data link communication type, i.e. UMTS, by means of a single wireless device. To

understand the behavior of our application in a more realistic scenario, several

experiments where it is possible to choose among different wireless technologies and to

scale up the number of users are necessary. Our multimedia service is a distributed

application that integrates wireless and wired communications. For this reason building

experiments in a real scenario is not so simple. In this context, a synthetic emulative

scenario is setup to make an accurate study of this multimedia service. Therefore,

wireless models have been designed and developed for simulating different data link

communication (Paragraph 6.2.5). Further, UEs (Paragraph 6.2.6) able to request the

multimedia service to our application are built.

6.2.1 Introduction

With the advent of the 21st century, market forces are accelerating the pace of wireless

technology evolution. It is widely anticipated that future mobile users will enjoy a near-

ubiquitous access to high-bandwidth wireless networks. Probably, mobile phone services

represent the most prominent example of widespread access to wireless communication

networks. Recently, notable efforts, such as i-Mode and WAP, have been carried out to

exploit the phone-based wireless technology, along with the Internet, to provide web

services to mobile users. As of today, unfortunately, those efforts have resulted in little

more than email access and limited web browsing. Although this situation is slowly

improving, it is easy to envisage that old pricing schemes, along with contents not

suitably formatted for mobile phones, may limit the interest of mobile consumers in

wireless services. However, in parallel with the recent improvements of high-bandwidth

Chapter 6. Interceptor: Case Studies

164

wireless communications, the wired Internet’s progress has determined a significant

innovation among music distribution paradigms. The maturing Distributed File Sharing

technology, implemented by systems like Napster, has enabled the dissemination of

musical contents in digital form, allowing consumers to link to stored music files from

around the world. Hence, with users adopting Internet-enabled cellular phones and

similar handheld devices we may expect that a growing demand may emerge for wireless

services which enable mobile consumers to access music contents from the large musical

storehouse represented by the Web.

In this context, the new wireless (like GPRS, UMTS, and Wi-Fi) technology promise

to be the milestones in the process of building an adequate large-scale infrastructure for

delivering musical services to mobile consumers. Important advantages of the wireless

technology amount to the fact that packets originating from wireless devices can be

directly transmitted to IP networks (and vice versa), while specific QoS guarantees may

be provided over the wireless links. Additionally, they offers higher data rates (from

56Kb/s of the GPRS, going through few Mb/s of UMTS and up to a several Mb/s of the

Wi-Fi) and an increased capacity. These data rates, plus compression techniques, will

allow the access to HTML pages, to video/audio streaming, as well as to enhanced

multimedia services, for laptops and smaller devices. In particular Wireless LAN and

WPAN technologies, used to provide local access to the Internet, are likely to be coupled

with the existing widespread telecommunication infrastructures (e.g., GPRS, UMTS),

thus providing an opportunity to drastically improve the range, throughput and

performance of music distribution services. Nevertheless, it is well known that, even with

the adoption of the wireless technology, various technical communication problems may

arise due to:

• The time-varying characteristics of the wireless links,

• Possible temporary link outages,

• Protocol interference between the radio link level protocols and the Internet

transport protocols, and

• Typical high bit error rates of the radio links.

Chapter 6. Interceptor: Case Studies

165

As a result, all the above mentioned limitations may keep some older applications

designed for music distribution over the wired Internet from working efficiently and

effectively when deployed over wireless mobile communication scenarios.

In this chapter, we describe a modern Wireless Internet application we have designed

to support the widespread delivery of musical services to Internet-enabled mobile phones,

and similar handheld devices, over wireless links. In particular, the prototype

implementation of our wireless application allows mobile consumers equipped with

wireless devices to exploit the Internet as a vast storehouse of music resources, where two

different musical services are provided, namely:

1. A mobile song-on-demand distribution service, and

2. A mobile karaoke distribution service.

The mobile song-on-demand distribution service permits to mobile users to download

and to listen to Mp3 files on wireless devices. Specifically, our wireless application

provides its users with: i) a simple and rapid Internet-based mobile access to a music-on-

demand download service, ii) a robust and widely available music-on-demand

distribution system, based on the technique of replicated web servers, and finally, iii) the

possibility of interactively customize the use of the system. From a user’s perspective, it

is worth noticing that different types of clients may exploit the developed service. In

particular our wireless application may be exploited by the following categories of users.

• Music Listeners, equipped with a wireless device and connected to their wireless

cell, may search for their favorite songs over the Internet, download them onto

their wireless devices, and finally playout them at their earliest convenience.

• Music Producers may wish to exploit our system to distribute their own music

songs to be listened to on wireless devices. (At the current state of the art of our

system, this type of users needs a regular wireline Internet connection in order to

upload to the system their musical resources).

• Musical Service Providers may exploit our system to organize, to build and to

maintain structured repositories of musical resources over the Internet for use

Chapter 6. Interceptor: Case Studies

166

from wireless consumers.

Karaoke is a MTV-type multimedia entertainment service which has gained a lot of

popularity in Asia, US and Europe. With the advent of the wireless Internet and of

Internet-enabled cellular phones, a growing demand is emerging for delivering such kind

of multimedia entertainment service to wireless handheld devices, on a large scale. In this

context, the mobile karaoke distribution service we have developed allows mobile users

to download and to play out (on their wireless devices) multimedia karaoke clips,

constructed out of synchronized multimedia resources, such as music, text and video. A

karaoke clip is represented by means of a SMIL file containing the formal specification

of the media scheduling and synchronization activities concerning all the audio, video

and textual resources which compose that karaoke clip. The important experiences of P2P

systems, such as, for example, Napster, Freenet and Gnutella, are at the basis of our

musical delivery services, but our Internet application is essentially new, in the sense that

it allows a reliable and distributed music sharing service over wireless links.

6.2.2 System issues

The aim of this Section is to discuss some technical issues which are at the basis of the

system we have developed to support the distribution of mobile musical services to

wireless devices. Some of the most prominent technical issues for the development of our

system are those related to the problems of integrating the wireless access technology

with the Internet. It is well known that choosing the wireless technology as a means to

provide mobile access to the Internet poses a number of obstacles. In this context, the first

problem is to decide if advanced TCP/IP based applications will be able to behave well

over radio communications protocols. With regard to this fact, it is important to notice

that the Internet TCP/IP protocol stack has not been especially designed for wireless

communications. The standard Transmission Control Protocol (TCP) provides a sliding

window based ARQ (Automatic Repeat reQuest) mechanism that incorporates an

adaptive timeout strategy for guaranteeing end-to-end reliable data transmissions between

communicating peer nodes over wired connections. Since the ARQ mechanism of TCP

Chapter 6. Interceptor: Case Studies

167

essentially uses a stop and resend control mechanism for ensuring connection reliability,

under question, here, is whether this TCP retransmission mechanism may trigger a TCP

retransmission at the same time when the radio link level control mechanism is already

retransmitting the same data. Secondly, an even more significant problem of mobile

wireless is that of temporary link outages. If a user, in fact, enter an area of no signal

coverage, there is no way that the standard TCP protocol may be informed of this link-

level outage. After having considered all the above challenges, a third and final problem

is strictly related to the internal architecture of those advanced Internet-based applications

that should be accessed through radio interfaces. Those applications, in fact, must exhibit

a high rate of robustness and availability, since the mobile access to those applications

should not be influenced by possible problems occurring at the Internet side. To

overcome the aforementioned obstacles we adopted a number of important strategies,

which are illustrated in the following.

First, in order to ensure both the availability and the responsiveness of our mobile

musical service, we have structured our application according to the special technology of

replicated web servers. Following this technology, a software redundancy has been

introduced at the Internet side by replicating the multimedia resources across a certain

number of web servers distributed over the Internet. A typical approach to guarantee

service responsiveness consists of dynamically binding the service client to the available

server replica with the least congested connection. An approach recently proposed to

implement such one adaptive downloading strategy at the Internet side amounts to the use

of a software mechanism, called the Client-Centered Load Distribution (C2LD)

mechanism (see the Paragraph 6.1). With this particular mechanism, each client’s request

of a given multimedia resource is fragmented into a number of sub-requests for separate

parts of the resource. Each of these sub-requests is issued concurrently to a different

available replica server, which possesses that resource. The mechanism periodically

monitors the downloading performance of available replica servers and dynamically

selects, at run-time, those replicas to which the client sub-requests can be sent, based on

both the network congestion status and the replica servers workload.

Second, our wireless application has been structured following an ALL-IP approach,

where a wireless session level has been additionally developed (on the top of the standard

Chapter 6. Interceptor: Case Studies

168

TCP protocol) to guarantee connection stability in the possible cases of temporary link

outages.

Third, as the download of musical resources over wireless links may experience long

duration (and high costs) our wireless application has been designed to exploit in the

cheapest service class as for example Wi-Fi technology, in general, and UMTS

background class, in particular. We remember that is this kind of service class with lower

costs, since it has been designed for supporting non-interactive, best-effort traffic.

6.2.3 A wireless Internet application for music distribution

The comprehensive visual representation of the architecture of the wireless Internet

application that we have developed is reported in Figure 6.12. The client part of our

software application, running on the wireless device, provides users with the possibility

of searching, downloading and playing out the required musical resources. Musical

resources may be of a different type, based on the musical service selected by the user. If

a consumer wishes to enjoy the song-on-demand delivery service, then musical resources

are represented by simple musical files (typically encoded with the Mp3 format). Those

musical files are stored over different web servers, geographically distributed over the

Internet, which act as music repositories. In general, different web servers can be

managed and administrated by different music service providers, and may also offer

different set of replicated songs. Simply stated, this replication scenario can be thought of

as a loosely coupled replication system, where, potentially, different servers support

different sets of musical resources. Needless to say, each single song may be replicated

within a number of different web servers.

If the selected service amounts to the mobile karaoke, instead, the corresponding

musical resource is represented by a more complex set of data constituting a karaoke clip.

A karaoke clip, in practice, is represented by a textual SMIL-based file with pointers to

all the multimedia resources that compose that given clip. All the multimedia resources

(specified in the SMIL description file) are stored on different replicated web servers,

geographically distributed over the Internet. Like in the case for the song-on-demand

delivery service, those web servers perform as redundant repositories for the multimedia

Chapter 6. Interceptor: Case Studies

169

resources that compose the karaoke clip of interest. As seen from Figure 6.12, between

the mobile clients and the Internet-based multimedia repositories an Intermediate

software System (IS) has been interposed. The responsibilities of the IS are:

• Providing each user device with a wireless access point to the Internet-based

music distribution service;

• Discovering and downloading all those multimedia resources (songs or karaoke

clips) that are requested by a user.

In essence, the IS is constructed out of three main subsystems, namely:

• An Application Gateway subsystem,

• A Discovery subsystem, and

• A Download Manager.

Figure 6.12: Wireless Application Architecture

Application
Gateway

Download
Manager Discovery

IS

Server
Replica 1

Network
Gateway

Server
Replica 2

Server
Replica 3

Base
Station

Mobile Terminals

Base
Station

Mobile Terminals

Chapter 6. Interceptor: Case Studies

170

Those subsystems co-operate to support the download of the required musical resources

to the mobile consumer, as detailed below.

6.2.3.1 Search and Download of Musical Resources

The client part of our application represents the interface between consumers and

services, and provides a set of search-and-download functions. Taking into account that a

typical mobile device (such as a smartphone or a PDA) possesses a very limited memory

capacity and disk size, we have taken the decision to move all the search and discovery

functions to the IS side. This entails that the client part of our application needs the

collaboration of all the IS software subsystems to determine which musical resources are

available, and where they are located. This also implies that users have to perform the

search and download activity by stepping through several different phases.

As an example, a complete search and download session for karaoke clips steps

through three different phases, and is as follows. In a first phase, a user from his/her

wireless device issues to the Application Gateway subsystem a request for a given

karaoke clip. (Such request may refer either to a specific song author or to a given song

title). The Gateway subsystem passes this request down to the Download Manager. The

Download Manager asks to the Discovery subsystem for the complete list of all the

available karaoke clips matching the request issued by the user. The Discovery subsystem

performs the research of the clips required by the client. Such activity steps through two

additional different phases, and proceeds as follows.

First, the Discovery tries to establish a relationship between the titles of the songs

requested by the user and the SMIL description files that represent the required songs.

(Note that different clips stored in different web servers may exist in the system that

matcheshe request issued by the user).

Once this activity is completed, the Discovery passes to the user (via the Application

Gateway) the list of all the clips (and correspondent SMIL files) that match the initial

request. Upon receiving this list, the user chooses one of the proposed clips. This choice

activates an automatic process to download the correspondent SMIL file. It is the

Download Manager, now equipped with all the relevant information needed to locate it,

Chapter 6. Interceptor: Case Studies

171

that downloads the required SMIL file, and finally delivers it to the software application

running on the wireless device. Upon receiving this SMIL file, the software application

running on the wireless device examines that file and, following the specified schedule,

calls again for the help of the Discovery subsystem and of the Download Manager in

order to locate and download all the multimedia resources specified in the SMIL file.

This represents the beginning of the third phase of the discovery/download activity, at

the end of which all the multimedia resources are delivered to the wireless device that can

perform their play back according to the time schedule defined in the SMIL file. It goes

without saying that during this final phase, it is under the responsibility of the Discovery

subsystem to find the web locations of all the required multimedia resources, while the

Download Manager carries out the download activity by engaging all the different replica

servers that maintain a copy of the requested multimedia resources.

Needless to say, in order for the system to work correctly, a preliminary phase has to

be carried out where each karaoke server announces the list of the clips it wishes to make

available for sharing. Each karaoke server that wants to add its own repository to our IS

system may do so by running a software application called the Data Collector which is in

charge of communicating to the Discovery subsystem the list of the clips along with the

associated multimedia resources.

When the song-on-demand service is used, a similar activity is carried out by the

system, with the only difference being that the intermediate phase when a SMIL file is

searched, downloaded and interpreted is not needed. The mobile user may activate the

automatic download of a given song, simply after he has chosen from the list which has

been submitted to him at the end of the first phase. Figure 6.13 illustrates a part of the

evolution of the above-mentioned process (the interface is in Italian language) which has

been developed in our prototype implementation by resorting to the Visual C++

programming language on a Microsoft Windows Pocket PC platform.

6.2.3.2 Design Principles

The next Paragraph is devoted to highlight the technical attributes that were significant

for the development of all the software subsystems we have previously introduced.

Chapter 6. Interceptor: Case Studies

172

Figure 6.13: Search and Download over the Wireless Internet

We have already mentioned that our wireless Internet application exploits a standard

TCP-IP stack for carrying out the communications between the Application Gateway

subsystem and the client part of our application. According to the adopted approach, the

client part of our application works as any other Internet-connected device, and the end-

to-end connection is guaranteed by using the standard TCP protocol. However, to avoid

all possible problems due to the time-varying characteristics of the wireless link, our

wireless application incorporates a session layer developed on the top of the TCP stack.

This additional protocol layer provides stability to the download session, which may

suffer from possible link outages.

Figure 6.14 shows the protocol stack we have designed and developed to support all

the Gateway-related communications. In particular (as shown in the leftmost side of the

Figure) the Gateway subsystem communicates with the client part of the application over

a Wireless link. As seen from the Figure, on the Wireless data link protocol stack an IP

layer, based on the MobileIP (version 4) protocol is implemented. On the top of this

MobileIP level, a standard TCP layer has been built. Finally, to avoid all the network

problems due to the radio link layer, the application layer built on the top of TCP has

been designed as constructed out of two different sub-layers:

• A Session Layer; this protocol layer is devoted to organize and to manage a

download session which may possibly consist of different subsequent

communication patterns, in view of possible link outages.

Chapter 6. Interceptor: Case Studies

173

• An Application Layer; this protocol layer is in charge of supporting the different

connections needed to search and to download songs.

It is worth noticing, here, that our designed session layer provides users with the

possibility of resuming a session that was previously interrupted due to subsequent

temporary link outages. The session management mechanism we have designed and

implemented has a greater importance for the full success of the download activity of

musical resources onto a Wireless device. It is easy to understand, in fact, that very large

files (e. g., songs of about 3/5 MB) have to be delivered to the Wireless terminal, and this

must be carried out in the presence of a wireless access, which typically exhibits a scarce

connection stability and an unpredictable availability. Stated simply, our session layer

works as follows: when the Wireless client application opens a connection to the

Application Gateway, the Gateway assigns a unique identifier to this new session. If,

eventually, the Gateway detects a network failure (i.e., the TCP connection comes out to

be closed), the download status is saved at the Gateway side. In particular, a pointer to the

last byte received of the multimedia resource is saved, along with the session identifier.

At the same time, the identifier of the suspended session is saved at the client side of the

application too. As soon as the mobile client application is able to open a new TCP

connection to the Gateway, the client application tries to resume the interrupted session

by exploiting the session identifier that was previously saved.

Figure 6.14: Wireless Internet Application: Protocol Stacks

Network

Transport

Application

Gateway

TCP

mobileIP

Application
Layer

Session
management

TCP

IP

Application
Layer

TCP

mobileIP

Application
Layer

Session
management

Mobile
Terminal

Download
Manager

TCP

IP

TCP

Download
Manager

Application
Layer

TCP

IP

Web Server
Application

Layer

HTTP
Layer

 C2LD
Application Layer

IP

HTTP Layer

Web Server

Session

Network

Transport

Application

Network

Transport

Application

Chapter 6. Interceptor: Case Studies

174

As a final note, it is important to remind that the session management mechanism we

have developed is suitable for recovering sessions that are interrupted due to temporary

link outages, but it is not adequate to recover from system failures occurring at the

Wireless terminal or at the Application Gateway subsystem.

The Download Manager is the real agent responsible for the download process. It has

been incorporated in our application built on the top of the HTTP protocol. With the aim

of maximizing the service availability and responsiveness, it makes use of the web server

replica technology along with the Client-Centered Load Distribution (C2LD) mechanism.

The C2LD mechanism implements an effective and reliable download strategy that splits

the client’s requests into several sub-requests for fragments of the needed resource. Each

of these sub-requests is issued concurrently to a different available replica server. The

C2LD mechanism is designed so as to adapt dynamically to state changes both in the

network and web servers: in essence, it is able to monitor and select at run-time those

replicas with the best downloading performances and response times. Figure 6.14 shows

the Download Manager protocol stack. As seen from the Figure, the Download Manager

has to communicate with each different web server replica, and hence forks into different

children processes for each different requested resource. Each process uses a C2LD

application protocol to carry out different download activities from different web server

replicas. It is worth noticing that the use of the C2LD mechanism does not force music

providers to organize musical repositories, which are all perfect replicas of the same list

of musical resources. A musical resource, in fact, may be replicated within only some of

the available server replica of our system.

The software component of our developed system where the relevant information

about musical resources are stored and indexed is the Discovery subsystem. The main

responsibility of the Discovery is to perform a sort of naming resolution for musical

resources, which are requested by clients. In particular, it carries out the activity of:

• Accepting user’s requests to establish a formal relationship between them and the

correspondent musical resources stored in the system.

• Locating the exact Internet location where a given musical resources is stored

throughout the entire system composed of replicated web servers.

Chapter 6. Interceptor: Case Studies

175

To carry out this activity, the Discovery subsystem calculates for each of the

multimedia resource embedded in the system a 32 bit-long identifier (called the

checksum). This value is computed on the basis of both the file content and of other

additional information (such as file name, file creation time, file length, song title and

author). Two different indexes are maintained by the Discovery subsystem: the former is

needed to resolve users’ requests and the latter is used to locate the corresponding

musical resources. We have devised a decentralized method to calculate the checksum.

According to this scheme, each host server computes the checksum of its musical files

and communicates the results to the Discovery system. To minimize both the

computational and the traffic overheads, each server has to run a software application

locally, termed the Data Collector, which provides the possibility to add or delete the

musical resources to be referenced by the Discovery system. In essence, the Data

Collector locally performs the checksum computation, and after having computed the

checksum of all the files that a given music provider wishes to distribute, opens a TCP

connection toward the Discovery subsystem. As a final task, the Data Collector

application uploads the computed checksums to the Discovery subsystem. It is worth

noticing that the Data Collector is implemented as a Java application to enhance the

software portability, and also meets standard security constraints; as it can only read from

the local file system, but it cannot execute local write operations. To minimize both the

computational and the traffic overheads, each server has to run a software application

locally, termed the Data Collector, which provides the possibility to add or delete the

musical resources to be referenced by the Discovery system. In essence, the Data

Collector locally performs the checksum computation, and after having computed the

checksum of all the files that a given music provider wishes to distribute, opens a TCP

connection toward the Discovery subsystem. As a final task, the Data Collector

application uploads the computed checksums to the Discovery subsystem. It is worth

noticing that the Data Collector is implemented as a Java application to enhance the

software portability, and also meets standard security constraints; as it can only read from

the local file system, but it cannot execute local write operations. Figure 6.15 shows a

screenshot of the Data Collector application.

Chapter 6. Interceptor: Case Studies

176

Figure 6.15: Screenshot of the Data Collector Application

As seen from the Figure, two different kinds of information must be specified: the

address of the Discovery subsystem (under the form of IP and port numbers) and the

complete address of the server where the musical resources are stored (including the data

path within the local file system).

6.2.3.3 Structuring Karaoke Clips

The SMIL mark-up language is an XML-derived technology designed to integrate

continuous media into synchronized multimedia presentations. SMIL allows one to: 1)

manage the timing behavior of the presentation, 2) manage the layout of the presentation

on the device screen, and 3) associate hyperlinks with media objects. The design of a

SMIL-based presentation is performed according to two different phases: first, the author

creates spatial regions that will contain the associated multimedia objects, then those

multimedia objects are specified along with the timing schedule of their presentation. A

SMIL file contains two main elements: a header (between <head> and </head>) and a

body (between <body> and </body>). A SMIL header may specify spatial areas by using

the <region> tag. (In a SMIL header it is also possible to define meta tags that allow one

to insert meta-information). In a SMIL body, it is possible to define which multimedia

objects are to be loaded in specific regions. To this aim, tags such as <video> for video

files, <audio> for audio files, and <text> for text strings are exploited. The SMIL body is

Chapter 6. Interceptor: Case Studies

177

also used to schedule the synchronization of different multimedia objects. Two basic

synchronization methods are provided:

• parallel (<par>,</par>): all multimedia objects are executed concurrently in their

own regions;

• sequential (<seq>,</seq>): with the sequential method, each multimedia objects is

executed in its own region according to a predefined sequential time schedule.

By using the SMIL technology, it is easy to specify a karaoke clip that includes audio,

video and the text that periodically flows following the song melody. An example of a

karaoke clip, specified by using SMIL, is presented in Figures 6.16 and 6.17 (the title of

the song is A little respect, by WHEATUS). In particular, Figure 6.16 reports a code

fragment with the SMIL header. As shown in the Figure, two different regions are

defined, respectively termed region1_1 and region1_2. Three meta tags are used to

specify: i) title, ii) author of the song, and iii) title of the album that contains the song.

Figure 6.17 shows a code fragment representing the body of the SMIL file in which the

following three different multimedia objects are executed in parallel:

• An audio file (respect.wma),

• A video file (respect.wmv), loaded in region1_1,

• Asequence of textual information, flowing on the screen in region1_2 for a

limited time duration, which is specified in seconds by using the dur attribute.

Summing up, the wireless karaoke service we have provided exploits the SMIL

technology, thus allowing users to enjoy:

1. A search session where karaoke clips may be searched by simply indicating a part

of the song title or a part of the author name;

2. A download session during which the SMIL file, and, subsequently, the

associated multimedia resources are downloaded;

Chapter 6. Interceptor: Case Studies

178

3. A playout session when the SMIL player plays back the multimedia objects

according to the time schedule specified in the SMIL file.

Figure 6.16: Header of a Karaoke SMIL File

Figure 6.17: Body of a Karaoke SMIL File

<smil>
<meta id="meta1" name="Titolo" content="A little respect" />
<meta id="meta2" name="Autore" content="Wheatus" />
<meta id="meta3" name="Key1" content="Wheatus" />
<head>

<layout>
<root-layout/>
<region id="region1_1" top="76%" left="2“

 height="24%" width="100%"/>
<region id="region1_2" top="1" left="15"

 height="75%" width="100%"/>
</layout>

</head>

<body>
<par>

<video src="respect.wmv"
 region="region1_2" fit = "slice" repeatCount="6">

</video>
<audio src="respect.wma"></audio>
<seq>

<text begin="6s" dur = "7s" region="region1_1">
I tried to discover a little something to make me

</text>
<text dur = "10s" region="region1_1">

sweeter Oh baby refrain from breaking my heart
</text>
...
<text dur = "4s" region="region1_1">I hear you calling</text>
<text dur = "17s" region="region1_1">

Oh baby please give a little respect to me.
</text>

</seq>
</par>

</body>
</smil>

Chapter 6. Interceptor: Case Studies

179

6.2.4 An experimental study

This Section introduces an experimental study we have conducted in order to assess the

effectiveness of our proposed musical services. We carried out several experiments

(about 4000) consisting of the download either of a set of Mp3-type songs or of a set of

different karaoke clips, according to the selected service. During the experimentation of

the song-on-demand distribution service, four different replicated web servers were

exploited at the Internet side as song repositories, which were dispersed throughout the

world; as per the mobile karaoke service, instead, we used three different replica servers

that were located within a metropolitan scenario. The communication between the IS and

the mobile client was simulated by means of an UMTS simulator which was able to

produce the transmission delay time of each frame at the UMTS radio link layer. Detailed

information concerning the experimental models we adopted for our experiments are

discussed below.

6.2.4.1 UMTS Simulation Model

At the date of the experimentations, no real measurements of UMTS wireless data were

available, hence in our experiments the communication between the IS system (at the

Internet side) and the mobile client application was carried out through a simulated

UMTS network (running the background traffic class). To this aim, an UMTS simulator

provided by the “Fondazione Marconi” (a public Italian foundation for wireless

computing) was exploited. The UMTS network simulator we used was able to return after

simulations Wireless Network Transmission Time (WNTT) values, that is, the time spent

to download musical resources, as computed at the UMTS radio link control (RLC) layer.

The simulated transmission of an IP packet over an air interface is illustrated in Figure

6.18. The RLC layer received a PDCP frame, which comprised an IP data packet to

which various headers were added for each different level of the protocol stack (indeed,

the PDCP layer was not simulated, for the sake of simplicity). We conducted experiments

with IP packets coming from the Internet of different possible sizes (namely, 160, 480

and 960 bytes). The resulting PDCP frames were then segmented into RLC data blocks,

Chapter 6. Interceptor: Case Studies

180

each of which was 36 bytes large. The result of this segmentation activity at the RLC

level was that 5, 15 and 30 RLC data blocks were needed to transmit IP packets with the

dimension of 160, 480 and 960 bytes, respectively. Summarizing, if the transmission slot

was available, 10, 30 and 60 milliseconds were needed to transmit over the air interface

IP packets with the dimension of 160, 480 and 960 bytes, respectively. It goes without

saying that the obtained WNTT values depended on some operational parameters, such as

the amount of traffic present in the simulated cell, the number of active clients and their

speeds. WNTT measurements included also the time spent for possible retransmissions at

the RLC level.

The main problem that derives from adopting an approach where simulated results for

RLC frames (traveling over the wireless link) are combined to the real measurements

obtained for the TCP segments (traveling over the wired Internet) is that segment errors

and resulting retransmissions at the TCP level are not taken into account. To solve this

problem, our experiments included the possible retransmission time delays incurred at the

TCP level obtained by exploiting an external delay management mechanism. This

external delay management mechanism was designed to take into account the typical

TCP error recovery method based on received ACKs.

Figure 6.18: Segmentation of an IP packet into RLC data blocks

RLC SDU

3B RLC-Header 1B CRC 32B payload

TCP Packet

20B IP-Header

IP Packet

20B TCP-Header

Mp3 Packet

SDU TCPTCP Packet

RLC Blocks
Segmentation

Reassembly

RLC

Chapter 6. Interceptor: Case Studies

181

The delay mechanism compared the WNTT values obtained through the UMTS

simulation against the timeout values computed by TCP. If the simulated WNTT value

was larger than the correspondent TCP timeout value, then a retransmission must have

occurred at the TCP level. In such one case, the WNTT value of that given TCP segment

was augmented by an additional value chosen as equal to the next WNTT value extracted

from the set of the UMTS-based simulated values. Consequently, the TCP timeout value

was updated as follows. If a retransmission at the TCP level was detected according to

the method mentioned above, then the subsequent TCP timeout value was calculated as

double w.r.t. to the previously computed value. If no retransmission at the TCP level was

detected, then the traditional adaptive formula for the calculation of the TCP timeout

value, as proposed by Jacobson, was followed. Below, we present the two different

measurement architectures (along with obtained results) we adopted at the Internet side to

evaluate, respectively, the song-on-demand distribution service and the mobile karaoke

service we have implemented.

6.2.4.2 Song-On-Demand: Measurement Architecture and Results

To evaluate the efficacy of the song-on-demand distribution service we have

developed, we used four different web servers, geographically distributed over the

Internet, providing the same set of 40 different songs. The four different replica servers

were respectively located in Finland, Japan, USA and New Zealand (see Figure 6.19).

Our designed Intermediate System was running over a Pentium 3 machine (667 MHz,

256 MB RAM) equipped with the Windows 2000 Server operating system, and was

located in Italy (Bologna). Finally, the UMTS device, on which the client of our

application was running, was emulated by means of a Pentium 2 computer (266 MHz,

128 MB RAM) equipped with the Windows CE operating system. In order to provide the

reader with an approximate knowledge of the transmission times experienced over the

considered Internet links, it is worth mentioning that the Round Trip Times (RTTs),

obtained with the ping routine, between the client and the four different servers (i.e.,

Finland, Japan, USA and New Zealand) measured, respectively 70, 393, 145 and 491 ms.

Chapter 6. Interceptor: Case Studies

182

As far as the downloading process is concerned, we took the two following basic

assumptions:

• Mp3 file dimension: in our experiments we used 40 different Mp3-based songs,

whose correspondent file dimension ranged from 3 to 5 MB. The file dimension

of 3-5 MB corresponds to the average file dimension of the songs maintained in

the Napster system.

• Number of downloads activities: our software application provides support to two

different types of song download services: the former consists of downloading a

single song, the latter amounts to the downloading of a complete set of songs

(song compilation). To evaluate the performance of our system under both these

circumstances, we conducted the following different experiments:

o A set of independently replicated experiments consisting of the download

of single songs.

o A set of independently replicated experiments, with each one consisting of

the download of a set of songs. The number of songs for each compilation

ranged in the set of (3, 5, and 10). These three values were chosen based

on the consideration that the average disk capacity of typical Mp3 players

never exceeds 50 MB.

For the sake of brevity, in this chapter we only report on the results we obtained for the

download of single songs. Later we report on a large set of results obtained during many

experimental trials based on the above mentioned models. In particular, we begin by

presenting the measurements we obtained for our wireless application at the Internet side.

In essence, with the term WireLine Network Transmission Time (WLNTT) values, we

refer to the time spent over the wired Internet links to download a requested song from

the replicated web servers towards the IS at the Internet side. These measurements have

been compared with those that may be obtained by downloading the same Mp3-based

song with a standard HTTP GET method. The first row of Table 6.6 reports those results

for Mp3 files whose size is 5 MB.

Chapter 6. Interceptor: Case Studies

183

Figure 6.19: Web Server Replicas and Clients: (big picture) Song-on-Demand,
(small picture) Mobile Karaoke

Table 6.6: Song-On-Demand: WLNTT Results

HTTP C2LD
(4 Servers) Finland USA Japan New Zealand

Download time
(seconds)

32.547

47.889

122.191

248.740

624.195

C2LD
improvement
(percentage)

_

32%

73.4%

86.9%

94.7%

bologna

helsinki

st
oc

kh
ol

m

new yorkdetroits. francisco

los angeles

tokio

auckland
bologna
cesena

Chapter 6. Interceptor: Case Studies

184

0

200

400

600

800

1000

1200

1400

0 40 70
speed (km/h)

tim
e

(s
ec

)

6 erlang
12 erlang
15 erlang

background
traffic

(erlang)

5 MB

Figure 6.20: Song-On-Demand: WNTT Results for 5 MB-sized Songs

0

100

200

300

400

500

600

700

800

900

0 40 70
speed (km/h)

tim
e

(s
ec

)

6 erlang
12 erlang
15 erlang

background
traffic

(erlang)

3 MB

Figure 6.21: Song-On-Demand: WNTT Results for 3 MB-sized Songs

The second row shows the average WLNTT percentage improvement obtained by our

system that exploits the already mentioned C2LD mechanism, with respect to the

standard HTTP protocol. As shown in the Table, our system obtains an average

percentage improvement over the fastest HTTP replica, which is equal to 32 %. As

already mentioned, with the term Wireless Network Transmission Time (WNTT) values

we refer to the time spent to download songs to the mobile devices through the wireless

links. (It is worth reminding that these values have been obtained through UMTS

Chapter 6. Interceptor: Case Studies

185

simulations). Figures 6.9 and 6.10 show the WNTT values (respectively, for 5 MB-sized

songs and 3 MB-sized songs) depending on the two following traffic parameters:

• The speed at which users move throughout the cell (expressed in Km/h),

• The additional traffic in the cell (expressed via Erlang values).

In addition, it is worth noticing that the WNTT values we have plotted have been

obtained by averaging over all the experiments conducted with IP packets of different

dimensions (i.e., 160, 480, 960 bytes). The main considerations that derive from an

analysis of the results presented in Figures 6.9 and 6.10 are: i) the larger the traffic in the

cell (and the users’ speed), the larger the corresponding WNTT values, and ii) the best

WNTT result may be obtained when the mobile device is completely still. (In such one

case a data rate of about 12 KB/s may be obtained). Additionally, it is also worth noticing

the impact that the download time values, obtained at the Internet side, have on the total

time requested to download songs on UMTS terminals. The obtained average download

delays at the Internet side (about 33 seconds) seem to be quite irrelevant if compared with

the WNTT values which have been experienced on the wireless links (ranging from 250

to 1325 seconds, i.e. from about 4 to about 22 minutes). This optimal result at the Internet

side is probably due to the use of the adopted web replication technology along with the

use of our distribution mechanism (C2LD). Note, in fact, that if we try to download songs

from a single web server (such as the New Zealand web server) with the standard HTTP,

this can lead to an increase of the WLNTT value by about 600 seconds (10 minutes).

6.2.4.3 Mobile Karaoke: Measurement Architecture and Results

To evaluate the efficacy of the mobile karaoke distribution service we have implemented,

three different web replica servers were used. They all maintained the same set of

karaoke clips, along with the associated multimedia resources. As shown in Figure 6.19,

out of these three web servers, two were located on the same LAN at the Department of

Computer Science of the University of Bologna (namely a 100 Mb/sec Ethernet). Instead,

the third server and the IS system were deployed on a different 100 Mb/sec Ethernet LAN

Chapter 6. Interceptor: Case Studies

186

located in a remote site of the University of Bologna (the Computer Science Laboratory

of Cesena). The two different LANs were approximately at a distance of 10 hops each

from other, interconnected through a 34 Mb/sec link. The IS application was running over

a Pentium 3 machine (800 MHz, 512 MB RAM) equipped with the Windows 2000

Professional operating system. Finally, the client side of our mobile application was

emulated on a Pentium 3 machine (667 MHz, 512 MB RAM) equipped with the

Microsoft Pocket PC operating system emulator. (It is worth mentioning that the round

trip times, obtained with the ping routine, between the emulated client and the three

different web servers measured about 10 milliseconds, in average). As far as the

downloading process is concerned, we took the two following basic assumptions:

1. SMIL files: we used SMIL files with dimensions ranging from 3 to 4 KB. SMIL

files of such dimensions are typically enough large to specify complete karaoke

clips;

2. Multimedia resources: SMIL files were used, which typically pointed to two

different multimedia objects: i) a WMA (Windows Media Audio) file, and ii) a

WMV (Windows Media Video) file. As per audio files, we used a set of WMA

files with dimension ranging approximately from 1.5 to 2.0 MB, corresponding

to songs sampled at 64 Kb/sec (and lasting approximately from 3.5 to 4 minutes).

As per video files, we used WMV video clips lasting approximately 30 seconds,

with a quality needing a data rate of 190 Kb/sec, thus yielding file dimensions

ranging from 750 to 850 KB. As previously explained, the execution of audio

and video resources were synchronized (along with textual information) by using

SMIL commands. In the case when an audio file had a duration larger than the

video file, the execution of the video file was scheduled to be repeated till the

conclusion of the music song.

As far as the obtained results are concerned, the first consideration is about the time spent

over the wired links to download karaoke clips from the replicated web servers towards

the IS (i.e., WLNTT results). Those WLNTT results amounted to quite small values.

Chapter 6. Interceptor: Case Studies

187

Indeed, 0.2 seconds, in average, were needed to download the SMIL files, while 5/6

seconds, in average, were measured to download the corresponding multimedia objects.

Much larger values were measured for the WNTT results experienced over the wireless

link. Like in the case of simple song distribution, those measurements were taken

depending on the two following traffic parameters: i) the speed at which users moved

throughout the cell, ii) the additional traffic in the cell. The WNTT values needed for

delivering SMIL files to the mobile device were as much as 1 second, in average. Instead,

as an example, in Figure 6.21, the WNTT values are reported that were measured to

deliver, over the wireless link, the multimedia resources of two different karaoke clips,

respectively: “Loosing my religion” by REM (hereinafter referenced as song 1) and “A

little respect” by WHEATUS (hereinafter referenced as song 2). In particular, song 1 was

composed by a WMA audio file of 2.15 MB and by a WMV video file of 765 KB. Song 2

was composed by a WMA audio file of 1.6 MB and by a WMV video file of 850 KB.

Figure 6.22 presents three different graphs for each song, with each different graph

plotted for a different Erlang value. In each different graph the WNTT values needed to

deliver the audio and the video file are presented separately, through two different curves.

Each curve varies depending on the user speed. (Yet again, it is worth noticing that the

WNTT values we plotted were obtained by averaging over all the experiments conducted

with IP packets of different dimensions). As in the case of simple song distribution, it is

easy to notice that: i) as the traffic in the cell increases, the corresponding WNTT values

increase, and ii) the lowest WNTT results may be obtained with the mobile device still.

In addition, the karaoke clip for song 1 was available at the handheld device after an

average time interval ranging from about 3.5 to 9.5 minutes ([220, 570] seconds), while

the karaoke clip for song 2 was delivered to the UMTS device after an average time

interval ranging from about 3 to 8 minutes ([180, 490] seconds). To conclude this

Section, it is worth noticing that the WNTT results obtained for the mobile karaoke

service appear to better than those obtained with the song distribution service only due to

the fact that, in the case of mobile karaoke, multimedia resources of smaller size were

exploited in the field trials.

Chapter 6. Interceptor: Case Studies

188

6 erlang, song 1

0

50

100

150

200

0 40 70

km/ s

audi o

vi deo

6 erlang, song 2

0

20

40

60

80

100

120

0 40 70

km/ s

audi o

vi deo

12 erlang, song 1

0

20

40

60

80

100

120

140

160

0 40 70

km/s

se
cs audio

video

12 erlang, song 2

0

20

40

60

80

100

120

140

160

0 40 70

km/s

se
cs audio

video

15 erlang, song 1

0
50

100
150
200
250
300
350
400
450
500

0 40 70

km/s

se
cs audio

video

15 erlang, song 2

0

50

100

150

200

250

300

350

0 40 70

km/s

se
cs audio

video

Figure 6.22: Mobile Karaoke: WNTT measurements for delivering song 1 (left graphs) and song 2 (right
graphs)

6.2.5 Wireless simulation modelling

In the previous Paragraphs, our experience on implementing a wireless Internet

application, designed to support the distribution, on a large scale, of musical resources

(from simple songs to synchronized karaoke clips, as shown in Figure 6.23) has been

reported. Our application allows mobile consumers to play songs or karaoke clips on

handheld wireless devices by exploiting the Internet as a vast storehouse of music

resources. Experimental results show that fast large-scale wireless musical services may

be provided. Measurements confirm that both songs and karaoke clips may be

Chapter 6. Interceptor: Case Studies

189

downloaded from the Internet to wireless devices in few minutes. It is widely discussed if

the role of wireless networks is limited to extending the Internet reach, or if there are

basically new applications that may be enabled by the wireless access. We claim that our

wireless application demonstrates that exciting musical services may be implemented

profitably using the wireless technology available today.

Unfortunately, the experimental evaluation was based on a single client exploiting the

UMTS data link communication. In this way, these results confirm the feasibility study of

this wireless (i.e. UMTS) Internet application, but they were not enough to demonstrate

the effectiveness of the application (and its distributed architecture) over also other

different wireless infrastructures (for example, GPRS and Wi-Fi) while it is exploited by

a large number (hundreds) of clients. It is very difficult to reproduce, in the real Internet,

a complex experimental scenario where a distributed system architecture connects to

replicated servers who are geographically dispersed in a wired network, which is reached

by an increasing number of users that connect through wireless devices.

Figure 6.23: A Screenshot from the Mobile Karaoke Service

Chapter 6. Interceptor: Case Studies

190

Starting from this point, we report on the design, the development and the results of a

synthetic emulative scenario especially configured to reproduce the above-specified

conditions. In this contest, wireless models to simulate different data link communication

have been obtained from regression analyses of real data traces (Roccetti et al., 2002b)

(Salomoni, 2003) and have been embodied in the Event Manager as communication

models. In particular, the real data come from three wireless infrastructures, namely

GPRS, UMTS and Wi-Fi using a Personal Digital Assistant (Figures 6.24) as final device

and from Wi-Fi, using a Laptop (Figure 6.25). After the modeling phase, it is necessary to

verify that models represent the true system behavior closely enough for be used as a

substitute for a real scenario. The verification process is concerned with building the

model right. It is used in comparison to the conceptual model of the computer

representation that implements that concept. Further, it is necessary to increase to an

acceptable level the credibility of the models. The validation process is concerned with

building the right model. It is used to determine that a model is an accurate representation

of the real system.

6.2.5.1 Regression and Verification

This section shows how to build a model by means of the real data obtained during on-

the-field trials and how to verify it by adopting regressive tests (that confirm it goodness).

Specific attributes of each different technology were varied to build the correspondent

CM. In essence, the model may be thought as a black-box (see Figure 6.26), where the

input variables (I={IN.1,…,IN.k}) represent these (real) attributes of the wireless

infrastructure, while the output (O={OUT}) is computed on the basis of a regressive

function (f(I)=O) that accounts for the time needed to transmit/download files (in form

of IP packets) over a wireless link (i.e. Download Time). To carry out this analysis

several regressive functions have been created (Cacciaguerra, 2002). Only those that

turned out to verify well the regressive tests have been used as CMs for the synthetic

environment(see Table 6.7). Each kind of wireless infrastructure has it own input

attributes. For the sake of completeness, it is worth mentioning all the input attributes of

each wireless infrastructure was: i) the size of the transmitted file (expressed in KB), ii)

Chapter 6. Interceptor: Case Studies

191

the speed at which users move throughout the cell (expressed in Km/h), iii) the additional

traffic in the cell (expressed via Erlang values), iv) the coverage quality (good: device

under coverage; bad: hand over situations) and v) sizes of the TCP segments (expressed

in byte). In particular, the attributes may be qualitative and quantitative. If the attribute is

qualitative, a number of models for each value of this characteristic has been created. For

example, in GPRS case, we have created a model for good and another for bad coverage

(see GPRS case in Table 6.7). Instead, if the attribute is quantitative, this characteristic

varies with continuity in the model (see, for example the size of transmitted file in GPRS

case).

In conclusion, we report (in Figures 6.24 and 6.25) on the modeling results obtained

for the examined wireless architectures. From up to bottom, the simulative models for the

Wi-Fi, GPRS and UMTS connections are presented where the time needed to

transmit/download test files (Download Time expressed in seconds) is the output value,

which depends on the input attribute values mentioned previously.

6.2.5.2 Experimentations

For a better understanding of these results, it is worth reporting the following

considerations on the hardware components involved in the experiment and on the values

of the attributes monitored during these trails. The downloaded files used for the

experiments were stored on a Web server (a Pentium 3 machine, 1 GHz, 512 MB RAM

with Windows 2000 Advanced Server). Each client runs on a PDA or a Laptop (an IPAQ

3850 compact with Microsoft Pocket PC or a DELL Inspiron 8000 Pentium III 900 GHz

512 MB RAM with Windows XP pro). To collect real traces over the Wi-Fi

infrastructure, a PCMCIA expansion pack with IEEE 802.11b card and a Access Point

connected directly to LAN of server Web was adopted. In this case, we assumed that

users were still and their numbers were quite low. This is a typical housework case,

where:

i) The size of the transmitted file (expressed in KB),

ii) The speed at which users move throughout the cell is near zero,

Chapter 6. Interceptor: Case Studies

192

iii) The number of users in the coverage area is low, and

iv) The coverage quality is good.

Figure 6.24: Regressions - Wi-Fi, GPRS and UMTS - PDA

Chapter 6. Interceptor: Case Studies

193

Figures 6.25: Regression - Wi-Fi - Laptop

The obtained regressive functions are shown, respectively, on the top of Figure 6.24 for

the PDA and on the Figure 6.25 for the Laptop. The (above) hypotheses justify that the

regressive function has one (dimension) degrees of freedom on a plane (i.e. the size of the

transmitted file).

In the GPRS case, the IPAQ was equipped with a GPRS expansion pack. In particular,

the output of a traceroute command has shown the path (of the real IP packets) from PDA

to Web server. In this way, it was possible to estimate communication traffic either via

wireless or via wired. The attributes of GPRS architecture are:

i)The size of the transmitted file (expressed in KB),

ii)The speed at which users move throughout the cell (expressed in Km/h),

iii)The number of users in the coverage area represent an metropolitan case, and

iv)The coverage quality (good: device under coverage; bad: hand over situations).

The regressive functions obtained of two models are planes (Figure 6.24, middle).

Figure 6.26: Black-Box Model for CM.

Chapter 6. Interceptor: Case Studies

194

Table 6.7: Test for Regressive Functions (Wi-Fi, GPRS, UMTS)

Wi–Fi Function R 2R 2
adjR Fisher Durbin

Watson
Std Err of
estimate

PDA 2
0 bxaxYf ++= 1,000 1,000 --- --- --- ---

Laptop 2
0 bxaxYf ++= 0,998 0,997 0,997 14330 1,99 0,0887

X: File Size [KB]

GPRS Function R 2R 2
adjR Fisher Durbin

Watson
Std Err of
estimate

Good
coverage byaxf += 0,997 0,994 0,993 1212,111 1,922 19,0794

Bad
coverage byaxf += 0,993 0,987 0,985 513,892 2,572 37,9972

X: File Size [KB] y: User’s Speed [Km/h]

UMTS
b1080 Function R 2R

2
adjR Fisher Durbin

Watson
Std Err of
estimate

6
Erlang byaxf += 0,999 0,999 0,999 6260,119 2,002 2,3966

12
Erlang byaxf += 0,956 0,913 0,855 15,759 2,379 47,237

15
Erlang

22 dycxaxf ++= 0,911 0,829 0,716 7,290 2,337 94,5876

X: File Size [KB] y: User’s Speed [Km/h]

Finally, there are no UMTS repeaters in Italy. Hence, to study this wireless architecture

an UMTS network emulator on PDA is adopted. The emulator is designed by

“Fondazione Marconi” and uses background class. The attributes of UMTS architecture

are:

i) The size of the transmitted file (expressed in KB),

ii) The speed at which users move throughout the cell (expressed in Km/h),

iii) The additional traffic in the cell (expressed via Erlang values) and

v) The sizes of the TCP segments (expressed in byte).

Chapter 6. Interceptor: Case Studies

195

The regressive functions obtained are planes or hyper-planes (Figure 6.24, bottom). To

obtain more verifiable models, we adopted qualitative approach. For example the values

of v) attribute are just two, so two different models have been created.

6.2.5.3 Validation of the Wireless Models

After the modeling and verification phases, it is necessary to pass through the validation.

To control the viability of our wireless models, we have followed two alternative

schemes (Cacciaguerra et al., 2003). According to the first scheme, we have contrasted

the real data collected with on-the-field trails, with the results generated by our wireless

models. In particular, these data are carried out with the scenario explain in the Paragraph

6.2.6, see the Figure 6.30. Based on the second scheme, instead, we have evaluated the

probabilities of rejecting a valid model (Type I error) and accepting an invalid model

(Type II error). As to the first scheme, we have obtained an average difference of approx.

5% between real and simulated data. Examples of this validation activity are reported in

Figures 6.27-6.29, for respectively the Wi-Fi, GPRS and UMTS architectures.

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real Wi-Fi Emulative Wi-Fi

0

1

2

3

4

5

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real Wi-Fi Emulative Wi-Fi

Figure 6.27: Wi-Fi - Comparison between real and emulated data –left) PDA– right) Laptop

Chapter 6. Interceptor: Case Studies

196

0

100

200
300

400

500

600

0 500 1000 1500 2000 2500
 File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real GPRS Emulative GPRS

Good coverage - 0 Km/h

0
100
200
300
400
500
600
700

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real GPRS Emulative GPRS

Bad coverage - 0 Km/h

0

100

200
300

400

500

600

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real GPRS Emulative GPRS

Good coverage - 4 Km/h

0
100
200
300
400
500
600
700
800

0 500 1000 1500 2000 2500

File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real GPRS Emulative GPRS

Bad coverage - 4 Km/h

0
100
200
300
400
500
600
700

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real GPRS Emulative GPRS

Good coverage – 40 Km/h

0
100
200
300
400
500
600
700
800
900

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real GPRS Emulative GPRS

Bad coverage - 40 Km/h

Figure 6.28: GPRS - Comparison between real and emulated data

Chapter 6. Interceptor: Case Studies

197

0
50

100

150
200

250

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real UMTS Emulative UMTS

1080 B - 0Km/h - 6 erlang

0

50

100

150

200

250

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real UM TS Emulative UM TS

1080 B - 40Km/h - 6 erlang

0

50

100

150

200

250

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real UM TS Emulative UM TS

1080 B - 0Km/h - 12 erlang

0

100

200

300

400

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real UM TS Emulative UM TS

1080 B - 40Km/h - 12 erlang

0

50

100

150

200

250

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real UM TS Emulative UM TS

1080 B - 0Km/h - 15 erlang

0
100

200
300
400

500
600

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

Real UM TS Emulative UM TS

1080 B - 40Km/h - 15 erlang

Figure 6.29: UMTS - Comparison between real and emulated data

Chapter 6. Interceptor: Case Studies

198

According to the second scheme, and based on the standard theory for the calibration

of the simulative models, we have formally conducted a statistical test of the null

hypothesis, as described above in Equation 6.1. After an experimental campaign to test

these models, we compared the simulative results with the real ones. Then, we adopted

two validity’s tests, named Type I error (or α) and Type II error (or β). Both them test the

null hypothesis (see the Table 6.8).

00)(: µ=TEH
versus Eq. 6.1

01)(: µ≠TEH

The validation test consist of comparing the average delay of the system response 0µ to

the model response E(T). In particular, when testing hypothesis, rejection of the null

hypothesis 0H is a strong conclusion, because

() α= trueis | rejected 00 HHP Eq. 6.2

and the level of significance α is small (α = 0.01). The equation above says that the

probability of making the error of rejecting 0H when 0H is in fact true is low (α = 0.01).

This means the probability of declaring the model invalid when it is valid. Failure to

reject 0H must be considered as a weak conclusion unless the power of the test has been

estimated and found to be close to 1. In other words, this test detects no inconsistency

between the sample data and the specified mean 0µ . The test t student is used to study

Type I error. Instead the β, where

() β= trueis | rejected tofailing 10 HHP Eq. 6.3

is the probability of accepting the model as valid when it is not. The power of the test is

the probability of detecting a departure from 00 : µµ =H when such departure exists. This

power may also be expressed as 1 - β . In the validation context, the power of the test is

the probability of detecting an invalid model.

Chapter 6. Interceptor: Case Studies

199

Table 6.8: Type of Error in Model Validation

Statistical Terminology Modeling Terminology Associated
Risk

Type I: rejecting 0H when

0H is true
Rejecting a valid model α

Type II: failure to reject 0H
when 1H is true

Accepting an invalid model β

To consider failure to reject 0H is a strong conclusion. The modeler would want β to be

small. β depends on the sample size n and on the difference between T and 0µ . For a

fixed sample size n, increasing α will decrease β. Once α is set, and the critical difference

to be detected is selected, the only way to decrease β is to increase the sample size. A

Type II error is the more serious of two types of errors, and thus it is important to design

the simulation experiments to control the risk of accepting an invalid model.

According to this validation approach we carried out the test hypothesis H0 with a

probability of rejecting H0, when H0 is true, equal to α = 0.01 and a sample of n = 30

experiments. Hence, we have computed the test statistics:

nS
TEt 0

0
)(µ−

= Eq. 6.4

where µ0 is the specified value in the null hypothesis H0, E(T) is the average delay of the

model response and S is the standard deviation of T. In Table 6.9, we have reported the t0

values when different wireless technologies are used to download files of three different

sample sizes (5KB, 1MB, 2MB). Obviously, the values of t0 are functions of E(T) and µ0

as reported in Table 6.9. Comparing our t0 results with a t-student value equal to

46.201.01,2 ==− tt nα , we can conclude that we have not rejected a valid model as the

following inequality is satisfied:

01.00 tt < Eq. 6.5

Chapter 6. Interceptor: Case Studies

200

Further, we have conducted a test hypothesis H1 to compute the probability of accepting

the model as valid when it is not valid, i.e. the β (see Equation 6.3). This test statistics has

been conducted with the value δ̂ of the difference between E(T) and µ0 computed over

the sample values. In Table 6.10, we have reported the β values when different wireless

technologies are used to download files of three different sample sizes (5KB, 1MB,

2MB).

Table 6.9. Type I error (α = 0.01)

5KB 1MB 2MB Test
n=30

µ0 E(t) t0 µ0 E(t) t0 µ0 E(t) t0
PDA 0.20 0.22 0.02 18.1 18.5 0.26 32.4 32.9 0.20

Wi–Fi
Laptop 0.24 0.21 1.40 1.93 1.92 0.07 4.12 4.14 0.15

GPRS 1.28 0.40 0.93 256.1 253.3 0.75 550.2 552.0 0.66

UMTS 0.60 0.20 0.52 101.0 101.6 0.17 211.8 205.2 1.28

Table 6.10. Type II error (β)

5KB 1MB 2MB
Test
n=30

^
δ β ^

δ β ^
δ β

PDA 0.47 0.2 0.47 0.2 0.37 0.25

Wi–Fi

Laptop 4.42 0.1 0.22 0.25 0.48 0.2

GPRS

1.70 0.1 1.36 0.1 1.21 0.1

UMTS

0.95 0.1 0.32 0.1 2.34 0.1

Obviously the values of β are function of δ̂ . It is possible to observe that in most

situations the probability of accepting a wrong model is satisfying (10%). In a few

situations this probability increases up to 25%. This occurs typically when the Wi-Fi

Chapter 6. Interceptor: Case Studies

201

technology is exploited. This result does not take us unaware as with this technology we

have large variations in throughput due to different loads.

6.2.6 Building an Emulative Scenario with Wireless Models

The wireless models of Interceptor have been used to test the Intermediate software

System (IS) and its music delivering service. The IS is hosted in an Internet server and it

is in charge of managing all the communications between the mobile devices and the

Internet infrastructures. In particular, the IS integrates:

• The wireless communication with the mobile devices and

• The wireline communication with the replicated Web servers.

In essence, IS is in charge of implementing a reliable and responsive discover-and-

download service based on the user’s requests over the integration of the wireless and

wired network. This means making service request to IS by means of a PDA that sends IP

packets to it via wireless. Then, when a service request has reached IS, the IS downloads

the data from the replicas via wired and reply to the mobile device via wireless (see in the

Figure 6.30). Hence, reproducing this network scenario in a laboratory is possible by

connecting Web server replicas, IS and mobile devices to Interceptor. In this case,

Interceptor is in charge of reproducing, at the same time, wireless and wired

communications by adopting the appropriate wireless and wired communication models.

In particular, the computer, that hosts Interceptor, interconnects network workstations

from different LANs (10.0.0.0/24, 10.0.1.0/24 and 10.0.2.0/24; see the Figure 6.30). This

computer is Pentium III 900 with 1GB RAM running Linux (2.4.0 Kernel family) and has

three Ethernet card (100 Mb/s). Each Ethernet card is plugged to a single network:

• eth0 the LAN (10.0.0.0/24) that contains the computer running IS,

• eth1 the LAN (10.0.1.0/24) that contains the replica servers, and

• eth2 the LAN (10.0.2.0/24) connected to the rest of the world.

Chapter 6. Interceptor: Case Studies

202

Figure 6.30: Emulative Scenario

The computer, that accommodates IS, is Pentium III 900 with 512 MB RAM connected

by means of Ethernet card (100 Mb/s) running Windows 2000 server. The four replica

servers are Pentium II 233 with 256 MB RAM connected by means of Ethernet card (100

Mb/s) running Windows 2000 server. Finally, there is also a PDA IPAQ 3870 linked by

means of an USB 1.0 cable (11 Mb/s) to a workstation running PocketPC 2002/WinCE.

This workstation stays inside the 10.0.2.0/24 LAN and forwards the IP packet coming

from the USB device to the Ethernet card.

In the previous (real) experiments (see the Paragraph 6.2.4), IS was tested with a

mobile device. The aim of this (synthetic emulative) campaign is to test the performance

of IS by scaling up the number of users (on mobile devices). In this context, the wireless

(communication) models are useful to simulate the communication delay between a

mobile terminal and its base station. Scaling up the number of users (i.e. mobile devices)

is possible by means of two different approaches. The former adopts, as mobile device,

the PDA linked via cable to the LAN (see the Figure 6.30), while other workstations run

REPLICA 1

REPLICA 2

REPLICA 3

REPLICA 4

SWITCH
100 Mbit

INTERCEPTOR

10.0.1.1

10.0.1.2

10.0.1. 3

10.0.1.4

10.0.2.14

10.0.2.10 10.0.1.10

10.0.0.14

10.0.0.10

IS

10.0.2.0

10.0.2.0

PDA

Chapter 6. Interceptor: Case Studies

203

some clients that request service to IS. Also the workstations were delayed with the

wireless (communication) models and request file sizes in PDA fashion. The latter adopts

a Workload Traffic Generator that reproduces the requests coming from Web and

Multimedia application when a user exploits mobile devices (such as PDA and Laptop).

6.2.6.1 First Approach: Real PDA and PDA approximation

In this former approach, the performance of the IS are monitored by the real PDA (linked

via cable to the LAN), while different workstations make service request to generate

workload as coming from several traffic sources. This was only a first approach useful to

study the behavior of our application running on a PDA when the IS is stressed. This

(synthetic emulative) campaign starts by generating the traffic with 5 clients and

continues by doubling them until the limits of IS are not reached. Each client is able to

interface with IS using its communication protocol and runs a simple program that

requests cyclically the same series of files. The communication of each client passes

through the synthetic environment and is delayed with the wireless (communication)

models. The models and their (respective) attributes adopted in this campaign for the

wireless communications are:

• Wi–Fi

• GPRS

o Good coverage, 4 Km/h

o Good coverage, 40 Km/h

• UMTS

o Frame Dimension 1080, 12 Erlang, 0 Km/h

o Frame Dimension 1080, 12 Erlang, 40 Km/h

Two different graphs report the average values of the download time increasing the size

of the requested file, for each trail: the former highlights the behavior of the critical curve

while the latter that of the single PDA. This is due to the fact that the two curves are very

different in scale and it is not possible to plot them in the same graph without losing same

Chapter 6. Interceptor: Case Studies

204

important details. In the Wi-Fi plot (Figure 6.31, left), the curve with 40 clients increases

the download time, quickly. The Figure 6.31 on the right is more interesting because

(showing the curve of the single PDA) highlights that increasing the number of clients the

performance of IS decreases and, in particular, the download time increases very quickly.

Also in both the GPRS cases (Figures 6.32 and 6.33, left) the curve with 40 clients is

critical for IS. Differently from the previous case, until 20 clients are reached, the system

is stable and the download time seems independent of this number. In particular, the

single PDA curve has lower performance than the 5, 10 and 20 curves (Figures 6.32 and

6.33, right). This is due to the implementation of the client. In fact, each client requests

the same files to the same replica servers; in this way the default caching technique of

each web server decreases the average of download time. For example, when the second

request reaches the web server, it finds the wanted files in cache. This fact is present in

each case. The UMTS cases are similar to GPRS. 40 clients are critical for IS (Figures

6.34 and 6.35, left) and until 20 clients are not overcome, the system is stable and the

download time seems independent of this number (Figures 6.34 and 6.35, right).

Differently (from the GPRS), there is less difference between the performances of the

single PDA than that of clients until 20.

0

200
400

600
800

1000
1200

1400

0 500 1000 1500 2000 2500

File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 C + PDA 10 C + PDA
20 C + PDA 40 C + PDA

0

50

100

150

200

0 500 1000 1500 2000 2500

File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 C + PDA 10 C + PDA
20 C + PDA 1 PDA

Figure 6.31: Wi-Fi - Comparison among different numbers of clients:
left) critical curve and right) single PDA curve

Chapter 6. Interceptor: Case Studies

205

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 C + PDA 10 C + PDA
20 C + PDA 40 C + PDA

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500

File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 C + PDA 10 C + PDA
20 C + PDA 1 PDA

Figure 6.32: GPRS - good coverage – 4 KM/h Comparison among different numbers of clients:
left) critical curve and right) single PDA curve

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500

File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 C + PDA 10 C + PDA
20 C + PDA 40 C + PDA

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500

File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e[

s]

5 C + PDA 10 C + PDA
20 C + PDA 1 PDA

Figure 6.33: GPRS - bad coverage - 40 KM/h Comparison among different numbers of clients:
left) critical curve and right) single PDA curve

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500

File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 C + PDA 10 C + PDA
20 C + PDA 40 C + PDA

0

50

100

150

200

250

0 500 1000 1500 2000 2500

 File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 C + PDA 10 C + PDA
20 C + PDA 1 PDA

 Figure 6.34: UMTS – 1080 B -12 erlang – 0Km/h Comparison among different numbers of clients:
left) critical curve and right) single PDA curve

Chapter 6. Interceptor: Case Studies

206

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500
 File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 C + PDA 10 C + PDA
20 C + PDA 40 C + PDA

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500
File Dimension [KB]

D
ow

nl
oa

d
Ti

m
e[

s]

5 C + PDA 10 C + PDA
20 C + PDA 1 PDA

Figure 6.35: UMTS – 1080 B -12 erlang – 40Km/h Comparison among different numbers of clients
 left) critical curve and right) single PDA curve.

There are two final considerations related to all these curves. The former relates to the

bandwidth of the wireless infrastructure and the latter to the number of clients. The

bandwidth is different in the three infrastructures and causes different behaviors. In the

UMTS and the GPRS the bandwidths are lower while in the Wi-Fi is higher. Until both

UMTS and GPRS requests do not overcome 20 clients, the interarrival request rate is not

critical for IS, because the bottle-neck of this communications is the wireless link (low

bandwidth). In this case, the IS wired downloader is faster than the IS wireless uploader.

Differently, in the Wi-Fi case, the IS wired downloader is slower than the IS wireless

uploader. For this reason, the interarrival request rate stresses more the IS. The results of

these two cases are that the users adopting a Wi-Fi infrastructure download the same files

speeder that those using UMTS/GPRS one. Further, the performance of IS is sensitive not

only to kind of wireless infrastructures, but also to the increasing number of clients.

When the requests come from 40 clients (independently of the wireless infrastructure), IS

is not able to manage the service and, consequently, the download time increases quickly.

There are two possible ways to increase the performances of IS. In the former the power

of the hardware components should be increased or the components of IS should be

distributed. In the latter, a caching technique on IS should be adopted. This caching

technique should store the most requested files on the Gateway component. In this way,

the IS prevents to download, again, the requested file from the replica. This may be more

effective in the Wi-Fi case, where the bottleneck is the wired communication. A side

effect of this campaign is a first comparison between GPRS/UMTS and Wi-Fi

Chapter 6. Interceptor: Case Studies

207

infrastructures. In fact, while GPRS/UMTS supply an efficient service of mobility but a

low bandwidth, the Wi-Fi does not supply an efficient service of mobility, but a high

bandwidth. GPRS/UMTS have a large diffusion because it can adopt the GSM

infrastructure. This infrastructure has good coverage and mobility in a lot of country, but

probably, when the multimedia applications will request a higher bandwidth, the Wi-Fi

will win this challenge.

6.2.6.2 Second Approach: M²G and PDA UEs

We developed a Workload Traffic Generator (called M²G) that is in charge of

reproducing the behavior of a user running Web and Multimedia application on its mobile

devices and of generating its corresponding communication traffic. In this second

approach, the hardware configuration of the synthetic emulative scenario is the same of

the previous one except for the absence of PDA. In fact, differently from the previous

case, the workstations run the M²G instead of simple clients that request cyclically the

same series of files. As already mentioned before, the Wi-Fi is considered better for the

multimedia applications (i.e. its download times are lower than those of GPRS/UMTS),

so this synthetic emulative scenario adopts, as wireless infrastructure, only the Wi-Fi.

Each M²G (running on a workstation) simulates a multimedia user that downloads files

through a PDA (called “PDA” user equivalent). The “PDA” user equivalent is useful if

not enough real PDAs may be involved in the synthetic emulative scenario. Building a

“PDA” user equivalent over a workstation is possible by reproducing its following

features: the storage capacity, the communication capability and the hardware power.

Each PDA has a limited short quantity of memory (≈ 32 MB; during the 2002/2003) to

store data. To reproduce this feature on a larger storage workstation, an appropriate file

size distribution is adopted. In this case, the distribution of the size of the downloaded

files is limited by the storage capacity of a PDA (i.e. from 10 KB to 10 MB). The

communication capability of a PDA is related to two main aspects: the communication

delay due to network infrastructure and the implementation of the socket options. Being

the PDA a mobile device, it adopts a wireless card. In our scenario, the communication

delay (due to pass through a wireless infrastructure) is reproduced by the apposite Wi-Fi

Chapter 6. Interceptor: Case Studies

208

CMs. The second aspect is related to the study of the socket options for PDA that are

different from the default ones used on a standard PC. The getsockopt system call showed

the socket options of the PDA (PocketPC 2002/WinCE). For this reason, at the

beginning, each PDA equivalent set its socket options (by means of the system call

setsockopt). In particular, the getsockopt system call highlighted that the size of the

receive buffer and of the send buffer were 4 KB (lesser than a standard PC). Finally, the

hardware power of a PC is higher than that of a PDA: speeder CPUs, speeder buses and

larger caches. To obtain a final version of the PDA equivalents we should study a way to

limit the hardware power of the PC (this work is on progress). In this Paragraph, we use

the approximation of the PDA equivalents working with the implementation of the first

two features.

The behavior of each PDA user equivalent passes through different phases. It connects

the IS, it opens a session, it requests a list of files (song, clip and text), it downloads these

from IS and finally it closes the session. The plots generated by PDA user equivalents are

reported in Figures 6.36-6.38. These plots show the comparison between the curves that

interpolate the resulting data of this second approach and that obtained in the first

approach (Figure 6.31). Finally, the Figure 6.39 reports all curves produced with different

PDA user equivalents. This Figure highlights the behavior of the IS by increasing the

number of the PDA user equivalents. In the Figure 6.36, the curve interpolating the data,

requested from 1 PDA equivalent, shows a linear slope. In particular, the PDA equivalent

is able to download a file of 1 MB less than 20 seconds. This Figure highlights the

comparison between the behavior of a single client running on a real PDA and that of a

PDA user equivalent. The two plots are very close from 0 KB to 1 MB. The main

difference is that one has a linear slope and the other has a quadratic one. This Figure can

claim that the PDA equivalent represents an upper bound of the behavior of the real PDA.

In the Figure 6.37, the curve interpolating the data, requested from 5 PDA equivalents,

has a linear slope. It is very interesting because both curves present a linear slope and

they are very close. In particular, the performance of the trails with PDA equivalents are

just better than the others until 1MB (less than 20 seconds) while after this threshold

these makes just worse. In the Figure 6.38, also the curve interpolating the data, requested

from 10 PDA equivalents, has a linear slope. This Figure shows a little difference

Chapter 6. Interceptor: Case Studies

209

between the two curves: there is an increment of 4 seconds for 1MB and of 8 seconds for

2MB in the data monitored in the first approach. The behavior of the 10 clients is more

stressing than that of the same number of PDA user equivalents generated by the M²G.

The reason is that the 10 clients request cyclically without any pause while the M²G

alternates a phase in which each PDA user equivalent make requests, to a phase in which

each PDA user equivalent dies and another one will be born. In this last phase, the PDA

equivalent does not load the IS and the replica servers with its request. In this way, the

performance of the other PDA user equivalents is better. In the Figure 6.39, it is possible

to see that also the function interpolating the data requested from 15 PDA user

equivalents has a linear slope (there is not a corresponding curve in the first approach).

Finally, in this last Figure all the curves of the PDA equivalents are reported. In this way,

it is possible to highlight some final remarks on increasing the number of PDA

equivalents. All the curves have a linear slope. The download time of the files delivered

by IS increases with the number of PDA user equivalents. Also this second approach

shows that scaling up the number of the PDA user equivalents (for example 20 as in the

first approach) the communications with the IS become critical. In this case, the IS was

not able to deliver its service satisfying the requests coming from all PDA user

equivalents. In particular, the log files show that a lot of PDA user equivalents were not

able to open or to conclude its session in a correct way. The problems were two kinds:

related to connect IS and to receive the file. In the former case, the PDA user equivalent

tries to reconnect until a timeout expires. After the expiration, the session is close and

another PDA user equivalent is born. Most probably also this next PDA equivalent will

have the same problem of the previous one. In the latter case, the PDA equivalent that

does not receive any communication on the connected socket, after a timeout expiration,

contacts the IS asking for an acknowledgement. If the IS does not respond, the PDA

equivalent closes the session, otherwise, if it does, the service goes on until the expiration

of another timeout or the conclusion of this session is reached. In both cases, the result is

that the number of active PDA user equivalents is lesser than that specified at the

beginning of the simulation. For this reason, the active UEs can exploit to the utmost the

IS, showing better performances.

Chapter 6. Interceptor: Case Studies

210

0

10

20

30

40

50

0 500 1000 1500 2000 2500
Size [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

1 PDA Equivalent Real PDA

Figure 6.36 Comparison between PDA equivalent and real PDA

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500
Size [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

5 PDA Es 5 Client

Figure 6.37 Comparison between 5 PDA equivalent and 5 client (first approach)

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500
Size [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

10 PDA Es 10 Client

Figure 6.38 Comparison between 10 PDA equivalent and 10 client (first approach)

Chapter 6. Interceptor: Case Studies

211

0

10

20

30

40

50

0 500 1000 1500 2000 2500Size [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

1 PDA E 5 PDA Es 10 PDA Es 15 PDA Es

Figure 6.39 Comparison among 1, 5, 10 and 15 PDA equivalent

6.2.6.3 Second Approach: M²G with Laptop UE

The plots generated by the monitored data resulting from a user equivalent running on a

Laptop are reported here. Today, modern Laptops have the same hardware characteristics

of Desktops when the level of battery is good. So, it is not necessary to reduce the

performances of a Desktop (to simulate a Laptop) if the hypotheses claim that the level of

battery is good. Therefore, in this case, it is important only to use the appropriate file size

distribution and the appropriate wireless models. To compare the results of these trials

with the previous ones we use the same file size distribution. The reason is that this file

size distribution may also reproduce the sizes of file coming from services like

distribution of songs and distributed karaoke. To adopt the appropriate wireless

(communication) models (for Laptop) it is necessary to specify during the configuration

phase of Interceptor. In the next Figures (6.40-6.41), functions interpolating the resulting

data are reported. In particular, these Figures show the download time by increasing the

Chapter 6. Interceptor: Case Studies

212

size of the downloading file when a fixed number of UEs run on a Laptop. The curves

with 1 and 5 UEs have a linear slope while that with 10 UEs (see the Figure 6.40) is

quadratic. The first two curves show, more or less, the same downloading time for files of

the same sizes. Instead, the curve with 10 UEs is not so close to the previous ones,

showing a high variability of the data (for example a file of 400 KB is downloaded by an

UE in 8 seconds and by another in 43 seconds). The UEs running on a Laptop are able to

request and download files speeder than the PDA equivalents. Therefore, the behavior of

these UEs results more stressful for the IS, so its performance decreases more quickly

when the number of UEs increases (see Figure 6.40). In particular, the curve with 15 UEs

shows better performance than 10 UEs (see Figure 6.41).

0

20

40

60

80

100

0 500 1000 1500 2000 2500
Size [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

1 UE 5 UEs 10 UEs

Figure 6.40 Comparison among 1, 5 and 10 Laptop UEs

0
10
20
30
40
50
60
70
80

0 500 1000 1500 2000 2500
Size [KB]

D
ow

nl
oa

d
Ti

m
e

[s
]

1 UE 5 UEs 10 UEs 15 UEs

Figure 6.41 Comparison among 1, 5, 10 and 15 Laptop UEs

Chapter 6. Interceptor: Case Studies

213

The log files show that a lot of UEs were not able to open or to conclude their session

(look at the Figure 6.41: the number of the active UEs was between 5 and 10; in

particular, closer to 5). Concluding, the downloading time increases with both the number

of the UEs and the size of requested file. For example, with a file of 1.5 MB there is no

trouble in the case with 5 UEs, but with 10 UEs some of them were enable to download.

Finally, (where is possible) the curves of M²G with Laptop and with PDA UE are

compared. The behavior of both cases is similar:

• the downloading time increases with the size of the requested files showing a

linear slope,

• the downloading time increases with the number of the UEs, and finally

• after a certain threshold the downloading has critical problems because the IS is

not able to provide correctly the delivery of its multimedia service.

The main difference is the value of the critical threshold that is lower in the Laptop case

(10 VS. 20). Therefore, it is possible to support 10 users adopting a Laptop as final

device, while it is possible to support 20 users adopting a PDA (with lesser performance

for each user!). The results of the comparison involve two main considerations: the wired

network is the bottleneck, and the higher is the speed on the wireless network, lower the

critical threshold. This synthetic emulative platform reproduces either the delay due to the

wired networks (from the IS to the replica servers and vice versa) or that due to wireless

networks (from IS to final devices and vice versa). In particular, the model of the wireless

device for the Laptop is about four times faster than that for the PDA (due to the better

performance of the Laptop: better CPUs, buses, etc.). In this scenario, the wired network

is the bottleneck of the entire service. In fact, the wired downloading time (i.e. the time

for downloading a file from replica servers to IS) is the same in both cases because they

adopt the same communication model. This explains because the downloading times

calculated on the final Laptops and PDAs depend only on the wireless communication

models. Furthermore, the higher the speed on the wireless network, the lower the critical

threshold. In fact, if the transmitting times are lower, the number of interarrival requests

Chapter 6. Interceptor: Case Studies

214

is higher. Then, increasing the number of UEs means increasing the number of these

interarrival requests. Further, IS must run a session manager for each UE (to supply the

multimedia service) and this action has a cost. If these UEs do not receive data, saturate

the capability of IS and go in timeout. After this moment, IS refuses the new connections.

Then, decreasing the wireless downloading time (i.e. the time for downloading a file from

the IS to the final device) means increasing the interarrival requests. This explains the

fact that Laptop case reaches with a lower number of UEs more quickly the critical

threshold.

6.3 A System Architecture to Support the Execution of Agent-Based Participatory

Simulation Activities

In this last Paragraph, we show how it is possible to integrate agent-based participatory

simulation activities within Interceptor. The use of participatory simulation based on

multi-agent models to mimic and control complex systems is becoming increasingly

common. The users of these collaborative systems demand tools that are able to interact

with the remote environment from any-device and to present visually the results of these

cooperative simulation activities on their screens. Furthermore, they want to connect the

remote environment from any-where using their fixed or mobile device and to play these

cooperative simulation activities any-times. It is possible to exploit the integration of the

wireless communication connectivity and the Internet, and instructing their agents to play

also if the user is not online. As Network Topology Manager of Interceptor, an agent-

based model simulative platform is integrated. Then, it is possible to use it either to

manage the topology of complex computer networks or to model environment for

participatory simulation activities. In this Paragraph, we want to demonstrate that

Interceptor could be useful to emulate the communication delay of the interactions of the

participants with the remote environment. Differently from the Paragraph 6.2, where the

multimedia delivery service passes transparently through Interceptor, in this case, the

remote environment is integrated in Interceptor. This means that the service end-points

are inside Interceptor. By means of these considerations, we want to demonstrate that

Interceptor can be useful to build participatory simulative scenarios inside a Laboratory.

Chapter 6. Interceptor: Case Studies

215

Along with this idea, we show a software prototype of architecture implementing an

agent-based participatory simulation, built on the Netlogo platform (Cacciaguerra et al.,

2004). Hence, we explain how is possible to build agent-based participatory simulation

activities within Interceptor substituting the Netlogo platform for SPADES middleware.

6.3.1 Introduction

The wireless revolution has started with Internet phones and continued with many kinds

of wireless hand devices that allow users to access the Internet. Thanks to the technical

developments in high-speed chips, mobile networks and software protocols, the wireless

technology is enabling a wide range of exciting possibilities, including, for example,

wireless sensors networks, wearable computers, ubiquitous computing and innovative use

of Web phones. In this context, it is easy to envisage that future mobile users will enjoy a

near ubiquitous access to the vast storehouse of technical and intellectual resources

offered by high bandwidth (wireless) networks. For example, in social organizations, or

in collaborative human environments, workers are starting to exploit wireless

technologies to connect to colleagues and carry out different kinds of cooperative tasks,

including brainstorming, task planning, resource sharing, instant messaging, and waving

the Internet together. In essence, due to the use of these new technologies, secure virtual

spaces (or environments) may be created where workers, after been identified, may

cooperate to accomplish common tasks. In this challenging scenario, a great popularity

has been gained by a modern form of “semi-automatic” collaborative scheme, named

participatory simulation (Kanter, 2003). With the term participatory simulation Wilensky

and Stroup (Wilensky et al., 2000) refer to such role-playing cooperative activities aimed

at exploring how complex dynamic systems evolve over time. As an example of

participatory simulation consider that of a virtual stock exchange, where each player

could play the role of a virtual buyer or of a seller who engages in the activities of the

resulting share exchange dynamics. Obviously, we have just mentioned only a simple

example, but a wide set of possible content areas for participatory simulation include

different scientific and technical fields, ranging from the spread of a disease, to the flow

of energy in an electric network, to the diffusion of innovation, to the distribution of

Chapter 6. Interceptor: Case Studies

216

goods in an inventory system (Lomi et al., 1999). From a scientific standpoint,

participatory simulation typically employs some form of Agent Based Modeling

Simulation (ABMS) technology. Simply put, an ABMS platform is a programmable

modeling environment for simulating complex systems where programmers can give

instructions to several independent agents working in parallel. In essence, in an ABMS

the global state of the system emerges as a result of the interaction of hundreds, or

thousands, of elementary agents engaged in a variety of local processes such as exchange,

cooperation and competition. These agents (which may be either completely controlled

by humans or automatically programmed) can play their moves based on an intrinsic

capability of local investigation and local action. Perhaps the most common way to

present the simulation results produced by the complex interactions of an ABMS-based

virtual world is visual display. A prominent example of using visual representation to

display the results of ABMS-based simulation is reported in Figure 6.42, where we show

the typical graphical interface of these platforms by means of three different models. The

problem here is that the actual ABMS-based software platforms only provide for limited

graphical functionalities. For example, well known ABMS platforms such as Netlogo,

Swarm, Jas, and Repast only render their agent based models through a 2D raster

graphics visualization methodology (Netlogo, 1999; Swarm, 1999; JAS, 2002). In this

context, the main contribution of our work is the design of a distributed architecture that

allows remotely to control your agents inside the ABMS-based virtual environments and

to represent visually, by means of a 3D visualization engine, simulation results of these

virtual environments on mobile devices, such as laptops, PDAs and smart phones. From a

graphical standpoint, it is worth mentioning that, as typical 3D rendering problems are

here exacerbated by the need to display virtual worlds on wireless (possibly handheld)

devices, we resorted to special rendering techniques based on triangular meshes that

guarantee an optimal trade off between fast visual reproduction and device compatibility.

Alongside a detailed description of the architecture of our remote control and

visualization engine, we report a set of experimental results which confirm that an

appropriate integration of the remote control and the visualizer with the software

architecture of the ABMS system enables a fast 3D representation on wireless devices.

Chapter 6. Interceptor: Case Studies

217

Figure 6.42 The 2D typical graphical interface of ABMS

This study is organized as follows. In Paragraph 6.3.2, we illustrate the main features

of the software architecture (i.e. a prototype based on Netlogo platform) of the agent-

based participatory simulation we designed. In Paragraph 6.3.3, we present a set of

empirical results we obtained with a prototype implementation of our software

architecture. Again, Paragraph 6.3.4 presents an example of modeling a complex system.

Furthermore, in Paragraph 6.3.5, we show how is possible to build participatory

simulative scenarios within Interceptor emulating the participation of users

geographically dispersed in different country. Finally, the Paragraph 6.3.6 concludes our

work with some hints for future developments of our work.

6.3.2 System architecture

We have designed a (client-server) software architecture able to support the execution of

ABMS-based virtual worlds and their 3D rendering on wireless devices (see Figures

6.43-6.44). The three main software components of our architecture are the following: i)

the ABMS platform, ii) the 3D visualizer and, iii) the wireless network communication

subsystem. As shown in Figure 6.43, a complete “execute and visualize” session of our

system works as follows. Initially, a user from his/her device issues an order to his/her set

of controlled agents in a virtual world. This order is intercepted by a dedicated user

process, termed Agent Manager (AM). After collecting orders from a given user, the AM

sends them to its software counterpart on the ABMS platform, called the Request

Manager (RM). Apart from the RM, the ABMS platform (hosted on a wired machine) is

Chapter 6. Interceptor: Case Studies

218

comprised of a State Updater (SU) and a Snapshot Creator (SC). In essence, the SU

computes, on a periodical basis, a new state of the virtual world, based on the interactions

with the system users. After that a new state has been computed, the SC constructs a text-

based image of the newly calculated state. Upon reception of these data, the visualizer

displays them on the screen of the wireless device. It is worth pointing out that all the

above-mentioned communications are carried out by the wireless network

communication subsystem based on a TCP/IP stack.

The AMBS platform, on the top of which our system is built, is partially based on the

Netlogo software environment (Netlogo, 1999). In particular, the RM and the SU are

technologies provided by Netlogo; instead, we developed a Snapshot Creator (SC) that is

able to capture the states of the system generated by Netlogo, and to transform them into

input parameters for our visualizer. As to the functions provided by Netlogo, it is

important to notice that all the most complex models produced by Netlogo may be built

based on three different types of agents, namely: observers, turtles and patches. In

substance, each model has only one observer that represents the most general framework

where all other agents live and cooperate. Turtles, in turn, are the most active types of

agents which can be defined in a Netlogo model: they can perform several types of

actions, on a local basis, ranging from spatial movements, to visual interpretation of other

agents actions, and generic data exchange.

State
Updater

Request
Manager

Snapshot
Creator

AM

Visualizer

ABMS
platform

Wireless
devices

AM

Visualizer

Figure 6.43 An “execute and visualize” session

Chapter 6. Interceptor: Case Studies

219

VI

II

III

I

IV

V

Requests Manager

State Updater

Snapshot Creator

Snapshot Manager

Virtual World Creator

Rendering Engine

ABMS
PLATFORM

3D
VISUALIZER

Figure 6.44 System architecture

Finally, patches are agents, which are typically used, within the Netlogo framework, to

represent static pieces of information, such as background colors and spatial landscapes,

for example. Patches may also represent “resources” that turtles produce and/or consume.

Hence, within Netlogo, agents are able to perceive their environment and respond to

changes in a timely fashion, further they are able to interact with each other to perform

cooperative activities. Our contribution to the Netlogo platform, here, has been that of

developing a software modul, which captures, on a periodical basis, all the data which

refer to a given model and inputs them into a FIFO queue. Subsequently, following the

order given by the queue, the data are fetched and sent to the visualizer for 3D rendering,

as described in the following Subsection.

The main obstacles that need to be tackled for the development of the visual engine for

an ABMS system concern the choice of the most appropriate structuring of the

hardware/software architecture. This architecture must be able to render visually on a

wireless device the states of the 3D virtual worlds generated by the simulative platform.

To this aim, we have developed a visual engine, based on open source graphical libraries,

whose architecture is depicted in Figure 6.44 The main software components of our 3D

visualizer are the Snapshot Manager (SM), the Virtual World Creator (VWC) and the

Rendering Engine (RE). Upon receiving data into a FIFO queue from the ABMS through

a wireless connection, the SM manages the subsequent activity of data decompression,

and checks for their integrity. In turn, the VWC extracts data from the FIFO queue and

Chapter 6. Interceptor: Case Studies

220

creates the 3D virtual world based on a scene graph model which exploits triangular

meshes as basic 3D objects (Clarke Wilson, 1994; Bethel et al., 2002; Clark, 1976). This

is accomplished by following an augmented reality strategy, where real images, captured

with a camera, can be attached to the virtual world generated by Netlogo. The final

activity is performed by the RE which renders in 3D on the wireless screen the virtual

world generated by the VWC. It is important to mention that our RE is able to support the

introduction of graphical optimizations (such as the use of textures) without affecting the

rendered data. In addition, it has the capability to sustain dynamically the display of a

given frame rate (on the wireless device) while scaling down with respect to the graphical

quality of the rendered 3D objects. Further, this software module allows for frame

skipping, when a too large transmission delay is experienced at the client side. Finally, it

is worth mentioning that our RE displays the virtual world generated by the VWC based

on the OpenRM/OpenGL graphical libraries (Bethel,1999 ;Segal et al., 2002), the main

advantage of this graphical library being its portability across different operating systems.

(Thus, our visualizer may run on different hardware equipments, such as laptops, tablet

PCs and PDAs.)

6.3.3 Empirical results

To test the efficacy of this architecture, we developed an experimental study based on the

use of the following prototype implementation of our system. We run the Netlogo-based

ABMS platform (RM+SU+SC) on a server equipped with a Windows 2000 Pentium III,

working at 900 MHz and with 512 MB RAM. The client, instead, was running on either a

laptop machine (a Dell Inspiron 8200 equipped with a NVIDIA GeForce4 Go 440 with

64Mb of RAM) or on a PDA (iPAQ 3970). The laptop mounted a Windows 2000 OS,

while the PDA mounted the Familiar Linux OS equipped with the GPE x-Windows

graphical interface (Familiar, 2003; GPE, 2003). Both clients were connected to the

server through a TCP/IP wireless connection on a Wi-Fi 802.11b network.

Now we wish to illustrate the results we obtained both on a visual and on a numerical

standpoint. To this aim, in Figure 6.45 we present the 3D results we have obtained by

rendering, on the wireless device, the virtual model termed “Climb-the-Hill” produced by

Chapter 6. Interceptor: Case Studies

221

the Netlogo engine. Several considerations are in order here. First, we wish to point out

that our 3D models are rendered dynamically, following the evolution of the simulative

models produced by Netlogo. In the example above, turtles are rendered, in a timely

fashion that climbs the hill, looking for the highest patch in their neighborhoods (local

maximum).

Second, it is easy to understand that the observer may manipulate dynamically the

virtual world, for example by changing the perspective under which the world is

considered, or by zooming on a detail, or by highlighting (using wireframe techniques)

the lattice over which the turtles play their moves. This final characteristic is of particular

interest when the observer wants to verify if the visual representation rendered by our 3D

engine matches the underlying numerical data. Based on the consideration that our 3D

engine guarantees that the correctness of the numerical data is maintained in the visual

representation, it is easy to understand that local visual manipulations of the virtual world

are made possible, without affecting the integrity of the performed operations. As a final

consideration, with respect to the discussion above, we wish to encourage the reader to

note that a great visual difference exists between the graphical 3D representation, which

our system is able to produce and the standard 2D graphical representation generated by

the Netlogo platform shown in Figure 6.46 as an alternative display strategy.

Besides the visual results, it is also important to provide quantitative measurements,

which capture the performance of our designed system. To this aim we carried out two

different sets of experiments. The former set (30 experiments) refers to the ability of the

ABMS platform to update the virtual state of the virtual world, as a function of the

number of agents. In Figure 6.47, we plotted the average number of states, on a

logarithmic scale, that our ABMS platform is able to generate per each second, depending

on the number of agents involved in the simulation. In particular, the lower curve

accounts for the performance of the ABMS system including the data export activities

performed by the Snapshot Creator (SC) we have developed. It is easy to assume from an

analysis of Figure 6.47 that the larger the number of agents, the lower the number of the

states of the virtual world that can be updated per each second. For example, Figure 6.47

shows that with a thousand of cooperating agents the ABMS platform is able to provide

state updates at the very low frequency of 1.5 states per second.

Chapter 6. Interceptor: Case Studies

222

Figure 6.45 A 3D visual representation produced by our visualizer

Figure 6.46 A Netlogo-generated visual representation of the same world of Figure 6.45

Figure 6.47 Performances: left) of the ABMS (server-side) and right) of the visualizer (wireless device)

Chapter 6. Interceptor: Case Studies

223

The latter set of experiments aims at highlighting the number of frames per second that

may be displayed by our visualizer on the wireless client device, yet again depending on

the number of agents involved and on the quality of the 3D rendered graphical objects. In

particular, in Figure 6.47 right, the number of the frames per second are plotted which

were obtained, on average, over thirty different experiments carried out on wireless

devices, as a function of the number of agents involved in the simulation. Precisely, three

different curves are plotted, denoted as low, middle and high, respectively. The curve

denoted as low represents a situation where the quality of the rendered image was

obtained with 8 triangular-meshed faces per each graphical object. The quality of the

middle curve was obtained by exploiting 32 faces per each rendered object. The quality

of the high curve was, instead, obtained with 128 faces. As shown in the Figure, the

larger the number of agents, the lower the number of frames which may be created and

visualized per each second. Further, the higher the graphical quality of the rendered 3D

object, the lower the number of frames that can be displayed per each second. From a

comparative analysis of Figures 6.47 left and right, it is easy to understand that our

visualizer has been tuned to support a rate of rendered frames, which is attuned with the

frequency according to which the ABMS platform provides updates of the virtual world

state. In other words, from a communication viewpoint it is sufficient for our wireless

communication subsystem to be able to transport, over the air, per each second the same

number of state updates produced by the ABMS platform. This would guarantee a perfect

synchronization between the producer (the ABMS platform) and the consumer (the

visualizer). Following this consideration, our experiments with an iPAQ 3970 PDA,

equipped with the pocketGL graphical library, show that an average rate of 10-15 frames

per second may be safely tolerated over a Wi-Fi connection with a hundred of agents.

6.3.4 Modeling a complex system: organizational decision chemistry on a lattice

The software architecture, we have designed, supports the modeling of different complex

systems simulating their components by means of different types of agents. In this way, it

is possible to reproduce the behavior of each complex system by writing appropriate code

for each kind of agent of this software architecture. Therefore, to prove the usefulness of

Chapter 6. Interceptor: Case Studies

224

this architecture, the usefulness of modeling complex systems with multi-agent platforms

must be highlighted. Along with this consideration, a concrete example exploring the

original insight of the “Garbage Can Model” of organizational choice (GCM) proposed

by M. Cohen, J. March, and J. Olsen (1972) is shown. From this viewpoint, we realize a

simple multi-agent model that explores organizational decision processes with NetLogo

(Lomi et al., 2003a-b). This Paragraph shows how it is possible to implement the

“Garbage Can Model”, which are its features and a series of experimental trails obtained

by varying the initial settings and the value of the characteristics of the agents.

6.3.4.1 Introduction

Social organization can be studied at many different levels of abstraction and analysis.

For example, in the analysis of organizational decision making processes a common

strategy is to reduce a complex social activity to an individual constrained optimization

problem. Understandably, this analytical strategy emphasizes the information properties

of alternative organizational arrangements (Burton et al., 1995) and the capacities of

decision makers (individually and in teams of variable size) to find, assemble, exchange

and process the various pieces of information that formal organizations produce and

make available to its participants (Miller, 2001). Typically, organizational decision

processes are assumed to follow a “logic of consequence” according to which the

outcomes of decisions are evaluated in terms of personal preferences (March, 1994).

According to consequence framework, a number of coherence assumptions are needed

for inferring from the observable consequences of decisions, an implicit decision rule

such that the organization as a whole can be said to behave as if it were following that

rule (McFadden, 1976).

An alternative way of thinking about how decisions happen in organizations,

concentrates on the aggregate flows of problems, solutions, opportunities and decision

makers through organizational networks (Padgett, 1980). This perspective focuses on

how aggregate regularities are produced and reproduced through the interaction of

elementary components (“agents”) defined at lower levels. Such a view starts with a very

different position on what the term “organization” means when referred to socially

Chapter 6. Interceptor: Case Studies

225

constructed entities. Organizations are seen as regulated and partly self-maintaining

flows emerging from the interaction of elementary agents. Organization “structure” is

patterns in these flows that may take the form, for example, of routines (i.e. systematic

connections between actual or potential “problems” and “solutions”). Within the broadly

defined field of “Organization Science,” a prominent example of this second strategy to

make sense of organizational decision processes is the Garbage Can Model of

Organizational Choice (GCM), originally proposed by M.D. Cohen, J.G. March and J.P.

Olsen (1972). The motivating claim behind the GCM is that: “[A]lthough organizations

can often be viewed conveniently as vehicles for solving well-defined problems […] they

also provide sets of procedures through which participants arrive at an interpretation of

what they are doing and what they have done while in the process of doing it. From this

point of view, an organization is a collection of choices looking for problems, issues and

feelings looking for decision situations in which they might be aired, solutions looking

for issues to which they might be the answer, and decision makers looking for work”

(Cohen et al., 1972). Our effort is based on the intuition that (within the original GCM)

the representation of “organizational decisions” as outcomes of quasi-random collisions

among “participants,” “problems,” and “solutions” invites development of a more explicit

bio-chemical metaphor for organizational decision process (Fontana et al., 1994). In this

view, new constituents of an organizational system are generated from within by the

interaction of elementary “agents” following different laws of composition (Padgett et al.,

2003). The present work is not the only or the first attempt to reconstruct the GCM. Other

examples are available that have emphasized and developed different aspects of the

original model (Masuch et al., 1989; Warglien et al., 1995). Since its appearance, the

implications of the GCM have also been explored in a number of empirical contexts

(Carley, 1986; Cohen et al., 1974; Levitt et al., 1989; March et al., 1976; March et al.,

1986) and theoretical elaborations (March, 1978). Differently from the other examples, at

the heart of our representation is a co-evolutionary view of organizations whereby

“participants,” “problems” and “solutions” have to interact to produce decisions, but at

the same time are transformed through and by the interaction process that they activate.

Chapter 6. Interceptor: Case Studies

226

6.3.4.2 Model issues

In this model, organizations are viewed as crossroads of time-dependent flows of four

distinct classes of entities: “problems”, “solutions”, “participants” and “opportunities”.

Collisions among the different entities generate events called “decisions”. In our

NetLogo-based reconstruction of the GCM, the type of decision is determined by the

relative levels of energy accumulated by “participants” and “opportunities” up to the

moment of collision. We make no attempt to reproduce all the features of the original

model. Some features of our representation are not present in the original model and are

included to cast new light on specific aspects of decision processes in organizations. Our

model is a highly preliminary attempt to represent organizational decision processes

when agents live in a structured socio-physical space, and are capable of reproducing, i.e.

of creating identical copies of them. In its current state of development the model serves

mainly didactic purposes and as an illustration of the value of the NetLogo programming

environment for representing complex organizational systems. The general learning point

that the model can be used to illustrate is that dynamic complexity at the organizational

level does not depend on complexity at level of individual agents. We claim that there is a

conceptual link between aspects of social organizations and the study of emergence in

natural and artificial systems. Furthermore, we realize a module to represent and explore

a variety of theoretically grounded mechanisms that may be behind the emergence of

organizational routines. For this purpose we define routines as relatively stable self-

reproducing communities of “problems,” “solutions,” and “participants”; the basic

constituent elements of organizations. In our model, these communities of entities emerge

from decentralized activities of opportunity seeking and problem solving defined at the

level of individual agents. In this way, we try to extend the basic GCM representation by

bringing to light, and developing more clearly, its more constructive features that are

implicit in the tendency of the basic constituent elements of organizations to (i) reproduce

by creating copies of themselves; (ii) give rise to new entities through interaction, and

(iii) impose order in their environment through the routinization of problem solving

activities. The main goal of our modeling exercise is to suggest one possible way in

which individual task-oriented activities performed by agents endowed only with local

Chapter 6. Interceptor: Case Studies

227

communication and sensory capacities may give rise to regular patterns of organization at

more aggregate levels.

6.3.4.3 Implementation of the model

Here below, we present the logics behind the implementation of our model. We start by

describing the basic lattice representation of our agent-oriented organizational structure,

and the characteristics of the entities that populate our simplified organizational world.

Then, we describe the collision and transformation rules that regulate the interaction

among entities in the lattice. Finally we discuss the main characteristics of the entities in

terms of their communication capacities, and sensory and information processing

mechanisms. This section introduces the notion of organizations as ecologies of entities.

To build an effective connection between this image of organizations and computational

models we need to define: i) the basic structure of the organizational environment, ii) the

rules of interaction and transformation among the various entities populating this

environment, and iii) The sensory and information processing mechanisms of the entities.

We discuss these issues in turn (here below).

Consider the stylized structure of the organizational environment (called world)

inhabited by three types of entities called “Problems”, “Solutions” and “Participants”. A

fourth type of object called “Choice Opportunities” - or simply “Opportunities” - emerges

from the collision among individual “Problems” and “Solutions”. Suppose that each

object is randomly allocated to sites in a two dimensional lattice with periodic boundary

conditions (see the Figure 6.48). Assume that entities are endowed with an initial level of

energy. During their life on the lattice, entities dissipate energy by moving around.

Entities move following a random walk through the lattice. An entity expires when its

energy level is zero. Entities can also increase and exchange their energy levels through

collisions. When a maximum (exogenously set) level of energy is reached, participants

and opportunities reproduce by splitting, i.e., by forming identical copies of themselves.

In keeping with the original formulation of the model, both participants (“decision

makers”) and choice opportunities are characterized in terms of energy levels. Energy

exchange among the different types of entities is regulated by the rules of interaction and

Chapter 6. Interceptor: Case Studies

228

transformation (called collision rules) described below. Collisions between “Participants”

and “Opportunities” give rise to three possible outcomes, each inducing specific types of

“decisions.”

• If (Energy-of-Participant > Energy-of-Opportunity), then the participant destroys

the opportunity. As a consequence the opportunity disappears and the participant

increases its own energy level (new-energy-of-participant = old-energy-of-

participant + energy-of-opportunity). The outcome of this collision is called

decision by “Resolution.”

• If (Energy-of-Participant < Energy-of-Opportunity), then the opportunity destroys

the participant. As a consequence the participant disappears and the opportunity

increases its own energy level (new-energy-of-opportunity = energy-of-participant

+ old-energy-of-opportunity). The outcome of this collision is called decision by

“Flight.”

• If - within a given range - (Energy-of-Participant = Energy-of-Opportunity), then

the opportunity separates into its component elements: a problem and a solution.

In this case the “problem” and the “solution” retain the energy level of the

opportunity. The energy level of the participant remains unchanged. The outcome

of this collision is called decision by “Oversight.”

Figure 6.48. Initial distribution of entities on the lattice

Chapter 6. Interceptor: Case Studies

229

In our model, mobility and task-oriented behavior of the entities are controlled by the

sensory and information processing mechanisms. In particular, they are implemented by

three parameters defining (i) local communication capacity (or “coverage area”), (ii)

search capacity (or “vision”) and (iii) sensitivity to information (or “attention”). We

assume that entities communicate by leaving information trails that other entities might

be able to detect and follow by means of theirs sensors. This simple biologically-inspired

communication mechanism has a strictly local character (i.e. it occurs only in a limited

neighborhood of sites defined around the entities). The patches (or “sites”) visited by the

various entities accumulate and dissipate information, thus the shape and strength of

information trails change continuously as the entities navigate their simplified

organizational world. As Figure 6.49 shows, the different intensity of information trails is

represented in the model by a color scheme according to which black patches contain no

information and white patches signal the presence of the strongest information trails. The

various shade of green represent intermediate situations, with the information content of

the patches increasing from dark green to light green patches. Entities are endowed with a

generic sensory (information-detection) mechanism and a visual mechanism that allows

them to follow the gradient of information intensity stored in the patches within their

range of vision.

Figure 6.49: Communication trails

Chapter 6. Interceptor: Case Studies

230

Table 6.11: Rules of movement

to move

 if else (information > detect-threshold) ;1

 [turn-toward-information] ;2

 [rt random rotate-angle - random rotate-angle + rotate-bias] ;3

 fd 1 ;4

End

The sensory mechanism is based on a threshold function: entities can only detect

information above a minimum (exogenously set) threshold. This implies that (above this

threshold) entities are attracted to patches with higher levels of information. This process

of local optimization is used to guide the entities’ search behavior. When entities do not

sense the presence of information in their vicinity their movement follows a random walk

through the lattice. The visual mechanism is defined in terms of the angle of vision (in

degrees) within which an entity can actually detect information. Thus, the movement of

entities on the lattice is driven by the distribution of information across patches that are

within their angle of vision as illustrated by the pseudo-code reproduced in Table 11.

In words, if an entity reaches a patch (or a “site”) holding sufficient information (i.e., an

amount that is greater than the threshold), the entity uses its search capacity defined

above to choose the best direction (see instruction in rows 1 in Table 11). The best

direction is that toward the greater quantity of information (see instruction in row 2). If

the entity is positioned on a patch that does not contain sufficient information (i.e., it is

below the information detection threshold), the entity chooses a random direction driven

by the Rotate-Angle and Rotate-Bias parameters (see instruction in rows 3). The Rotate-

Angle is the maximum amount, in degrees, that an entity can turn left or right in its

random movements. When Rotate-Angle is set to zero, an entity will hold its direction

constant until it finds an information gradient to follow. The Rotate-Bias is the bias of an

entity’s average rotation. When Rotate-Bias = 0, on average the entity will move straight

ahead. When Rotate-Bias > 0, the turtle will tend (on average) to rotate to its right. When

Rotate-Bias < 0, the turtle will tend (on average) to move to its left. Finally, when a

direction is chosen, the agent moves one step in that direction (instruction in row 4). The

Chapter 6. Interceptor: Case Studies

231

relatively simple, biologically-inspired communication and sensory mechanisms that we

have defined are sufficient to induce complex clustering behavior. As Figure 6.50

illustrates, the system evolves over time from a disordered initial state toward a state

clearly characterized by a higher degree of spatial organization and temporal stability. In

the next section we conduct a series of computational experiments to learn more about

the emergence of these patterns of self-organization.

t=0 t=10

t=50 t=100

Figure 6.50. Space-temporal evolution of the system (examples)

Chapter 6. Interceptor: Case Studies

232

6.3.4.3 Experimental campaign

Three different kinds of trails have been conducted to explore the behavior of our model.

The first series of these trails show the typical behaviors of the model starting from

baseline runs. The second series explore the routinization either with visual or with

numerical data. Finally, the third series explain the emergence of different system

behavior driven by the angle of vision whether with visual or with numerical data.

Figures 6.51 a), b) and c) report the results of baseline runs. Above each (time series)

plot the relevant sliders show the setting up of the parameters of the model. Further,

Figures 6.51 also report various monitors that provide final numerical information. For

example, the INIT-ENERGY sliders in Figure 6.51 a) imply that most of the participants

are endowed with an initial energy level that is greater than that of solutions and

problems. Because the energy of an opportunity is computed as the average of the energy

of its parent entities (problems and solutions) in this configuration the energy of

participants will tend to be higher than the energy of opportunities. Thus when a

participant and an opportunity collide, the “decision style” prevalent in the system is

likely to be “by resolution.” As the various monitors illustrate, after 300 time periods

(‘ticks’), the number of decisions “by resolution” (70) is more than twice the number of

“decisions by flight” (25), and five times the number of “decisions by oversight” (14). In

the second baseline run illustrated in Figure 6.51 b), the energy level is likely be the same

across all types of entities. In this case, when participants and opportunities collide, we

have little prior information to guide our prediction about the decision style that will be

prevalent in the system. After 301 periods (or “ticks”), the number of decisions “by

resolution” (57) is again somewhat greater than the amount of flights (37), and is five

times greater than the number of decisions “by oversight” (14). Number of participants,

problems and solutions in case 4 (b) are comparable to the corresponding numbers in of

Figure 6.51 a), but the number of opportunities in the system has almost doubled (42 vs.

25). Decisions “by resolution” are less frequent in this system (70 vs. 57) and the number

of decision “by flight” is higher (37 vs. 25). Finally in the situation illustrated in Figure

6.51 c) it is likely that the most of solutions and problems will be endowed with a level of

energy that is higher than that of participants.

Chapter 6. Interceptor: Case Studies

233

Figure 6.51: a), b) and c). Baseline runs of the model

In this case, when a participant collides an opportunity the resulting decision will be

likely to be “by flight.” After 302 simulation steps, the number of decision “by flight”

(65) is more than twice the amount of decisions “by resolution” (30), and eleven times

greater than the number of decisions “by oversight” (6). The number of participants

surviving in this system has dropped dramatically (44 vs. 108). These simple experiments

confirm a considerable degree of sensitivity of the system to changes in initial conditions

in predictable directions. So far we have experimented exclusively with conservative

model configurations. The model is very sensitive to friction that we can manipulate

experimentally by setting the corresponding sliders to desired levels (that can be

interpreted as “search costs” for participants and “timing” or “duration” for

opportunities). Figure 6.52 a) illustrates what happens when dissipation of energy

through movement is allowed. After 267 time periods we have no participants left, only 4

solutions, 8 problems and 1 opportunity. The system halts because it is no longer possible

to take decisions. As expected, the value of RANGE_OVERS controls the number of

decisions “by oversight” that will be taken (Figure 6.52 b).

Routines are defined as relatively stable self-reproducing communities of entities

(participants, problems and solutions) connected by information flows. These connections

form localized areas of high information intensity (visible as adjacent white patches of

Chapter 6. Interceptor: Case Studies

234

variable size and shape) with clear boundaries. The study of the routinization highlights

the forces that regulate the dynamics of routine formation and dissolution in our

simplified organizational world. In other words, we want to learn how order (in the form

of recurrent patterns of actions and stable relationships among organizational entities)

might emerge in garbage can decision processes. The first step in this direction

necessarily involves the definition of an accounting mechanism capable of identifying the

distinct clusters and of keeping track of what goes on within the different clusters of

adjacent patches.

Figures 6.52: a) Baseline runs with friction, and b) baseline runs
 with different values of the RANGE_OVERS slider

For example, Figure 6.53 shows a space-time frame of the model and how entities are

grouped into distinct clusters. Table 6.12 provides basic demographic information about

the composition of the different communities of entities (note that the lattice has periodic

boundary conditions, i.e., its surface is a torus). In the actual implementation of these

ideas a “routine” (R) is defined in terms of the following tuple:

R=(#C-pat #C-tur #C-par #C-opp #C-sol #C-pro #C-nrg #C-inf)

Where, #C-pat is the number of patches in a cluster; #C-tur is the number of entities in a

cluster (= #C-par + #C-opp + #C-sol + #C-pro); #C-nrg is the total energy present in the

Chapter 6. Interceptor: Case Studies

235

cluster, and #C-inf is the total quantity of information present in the cluster. Figure 6.53

illustrates the routines that are active in the specific time period to which the space-time

frame refers. Table 6.12 summarizes the basic properties of the different clusters. The

first column in the table reports the coordinates of the patches that identify the distinct

clusters produced by the model. The second columns provide information that could be

used to reconstruct the evolutionary trajectory of the size distribution of clusters over

time.

Figure 6.53: Communities of entities

Table 6.12: Quantitative characterization of the various communities of entities

X Y #C-pat #C-tur #C-par #C-opp #C-sol #C-pro #C-nrg #C-inf

-15 15 149 48 34 8 1 5 2883 408.8

3 13 35 11 7 0 3 1 1042.5 71.0

-4 -2 95 24 15 4 4 1 949.5 171.5

-12 -4 2 1 1 0 0 0 83.0 2.2

15 -8 1 1 0 1 0 0 35.5 1.1

-15 15
3 13

-4 -2
-12 -4

15 -8

Chapter 6. Interceptor: Case Studies

236

The communities of entities that we have interpreted as the analogues of

organizational routines are produced endogenously by our model. The graphs reported in

the bottom of Figure 6.54 show, both the number of clusters (blue line), as well as the

proportion of patches located within clusters (grey line) tends to increase over time. In

this model, routines are very sensitive to the variation in the parameters that define the

sensory mechanisms of the entities. Along with this consideration it is possible to claim

that there is the emergence of structures driven by individual search capacity (called

vision).

Figure 6.54 Effect of Vision-Angle on routine formation:
(left = 10 degree, right 45 = degree)

Figure 6.55 Implications of periodic changes in the Vision-Angle parameter
(45deg-10deg -45deg-10deg)

Chapter 6. Interceptor: Case Studies

237

This is shown clearly in the two panels in Figure 6.54. The panel to the left in Figure

6.54 is produced by a model in which all agents have Vision-Angle = 10. In the panel to

the right all agents have Vision-Angle = 45. The aggregate patterns produced by this

change in individual information search capacity are appreciably different. As clearly

illustrated in the time-series plots of Figure 6.54, the space-time frame to the left suggests

the presence of a high number of clusters with few patches and a small number of bigger

clusters. The frame to the right of Figure 6.54 implies the presence of a smaller number

of clusters each containing an approximately equal number of patches. In Figure 6.55, we

report a time series plot that illustrates the implications of periodic changes in the Vision-

Angle parameter every 100 time periods. Figure 6.56 below reports the three pairs of

space-time frame that represent the global state of the system immediately before and

immediately after these changes. For example, the first frame in the first pair of frames at

the top of Figure 6.56 represents the configuration of the system at time t=95 (when

Vision-Angle = 45deg). The second frame in the first pair of frames represents the global

configuration of the system at time t=105, immediately after changing the Vision-Angle

to from 45deg to 10deg. As we discussed, the size distribution of clusters and their shape

is highly sensitive to changes in the parameters that define the sensory mechanisms of the

entities and, consequently, their search strategies.

6.3.4.4 Concluding remarks and future works

We have discussed a highly preliminary attempt to represent organizational decision

processes when agents live in a structured socio-physical space, and are capable of

reproducing, (i.e. of creating identical copies of themselves). According to the original

“Garbage can model of organizational choice” (Cohen et al., 1972) on which our model

is based, three different types of agents populate the organizational space: “problems,”

“solutions” and “participants.” A fourth species, “opportunities”, is produced

endogenously as a combination of “problems” and “solutions.” Our model does not

attempt to reproduce all the features of the original GCM.

Chapter 6. Interceptor: Case Studies

238

Figure 6.56 Local structures and global system configurations induced
by periodic changes in the Vision-Angle parameter

Chapter 6. Interceptor: Case Studies

239

For example, access structures (i.e., predefined connections between problems and

choices) are not represented directly in the current model, which is based on very

different topological assumptions about the physical structure of the space in which the

various entities live. Further, some features of our model are not present in the original

GCM. For example, evolutionary concerns related to reproduction rates of the various

entities are central to our reconstruction, but are absent in the original model in which the

arrival of “problems” “solutions,” “opportunities” and “participants” into the system is

regulated by time-dependent, but otherwise exogenously given stochastic flows. The

model that we present is based on a minimalist representation of an organizational world

and no attempts are made to introduce elements of realism, or to suggest possible

empirical contextualization. While we make no claim that actual social agents should

conform even remotely to these assumptions (Carley et al., 1994), we note that in our

representation complexity at the system level does not seem to depend on complexity at

level of the agents’ architecture. In its current form the simulator serves mostly didactic

purposes. For example, it could be used as a computer-based learning environment to

introduce students of social and economic institutions to a number of central issues in the

study of organizational decision processes, and to the related representation problems.

We see at least two directions for future research.

The first involves treating the model as a quasi-experimental observation-generation

mechanism. Information on the states that the various entities occupy at any given time

and on the duration of the entities in these states can be produced and treated as empirical

data. Under certain assumptions statistical models could be estimated to explore patterns

of state and time-dependence of the different entities on the lattice as a function of

different combinations and levels of experimental parameters. The main idea behind such

an analysis would be to arrive at a characterization of “organizational performance” in

terms of patterns of duration dependence of problems, participants, solutions and

opportunities. For example, stochastic models of state transition with multiple

destinations could be estimated to explore conditions under which “problems” might tend

to transform themselves into opportunities. In this perspective, the analysis of the

conditions affecting the survival of “problems,” “participants,” and “solutions” on the

lattice could reveal interesting aspects of the underlying model. A similar strategy has

Chapter 6. Interceptor: Case Studies

240

recently been followed by March, Schultz and Zhou (March et al., 2000) in their detailed

empirical study of rules in organizations. A second direction for further research involves

additional programming work to inject elements of stability into Garbage Can decision

making processes. Since its appearance, a historical criticism of the GCM has been based

on its apparent inability to represent elements of stability, inertia and routinization and

therefore to capture adequately what many consider being the most obvious feature of

organizations (Cyert et al., 1963; Hannan et al., 1989; Nelson et al., 1982; Padgett,

1980). In an attempt to address this problem, we presented a model in which “routines”,

relatively stable, self-reproducing and well bounded communities of “problems,”

“solutions,” “opportunities” and “participants”, emerge from simple local rules of

information search and transmission that control the behavior of simplified mobile

agents. The main learning point that the model can be used to illustrate is that complexity

at the organizational level does not depend on architectural complexity at level of

individual agents. This broad conclusion suggests the possibility of developing a

conceptual link between aspects of social and economic organization, and the study of

emergence in other natural and artificial systems; a link that remains poorly understood

within current sociological and economic theories of organizations.

Finally, we retain that the model presented in this work is nothing more than a first

step in a search for more constructive representations of organizational decision processes

(i.e. for representations that do not presuppose the existence of entities that are meant to

be explained (Fontana et al., 1996)). Even as a first step the models falls short of its own

promises in many respects. Perhaps the most obvious shortcoming involves the fact that

the boundaries around primitive entities in the model are not allowed to change or evolve.

In our model, entities are capable of reproducing, but their structure is kept constant

throughout the simulation. In other words, the entities in the model might change

quantitatively (e.g., their energy level may change), but they are capable of limited

qualitative change as a consequence of their encounters with other entities (this is

particularly true for participants, perhaps less so for “problems” and “solutions”). As a

consequence and as a reflection in part of the original formulation of the Garbage Can

Model, the state space of the model depends almost exclusively on a set of exogenous

conditions with extremely limited scope for innovation, learning and the development of

Chapter 6. Interceptor: Case Studies

241

novelty at scales not specified at the level of individual entities (Crutchfield, 1994). In the

context of our continuing modeling efforts, we believe that the main challenge ahead will

be to remove these limitations, without increasing the complexity in the architecture of

individual entities that populate the organizational landscape.

6.3.5 Participatory simulative scenarios within Interceptor

Here, we want to explain how it is possible to build participatory simulative scenarios

within Interceptor emulating the participation of users geographically dispersed in

different country. Along with this proposal, two are the main considerations. The former

shows how is possible to build a participatory simulative scenarios within Interceptor,

while the latter illustrates how is possible to run a participatory simulation inside a

Laboratory emulating the participation of users geographically dispersed in different

countries.

To build an Agent Based participatory simulation within Interceptor, the integration of

an Agent Based Modeling platform is necessary. Along with this consideration, it must be

possible to give instructions to several independent agents working in parallel inside

Interceptor. These agents may be either completely controlled by humans or

automatically programmed and must exchange information (more precisely, sensations

and actions) among them in a shared virtual environment. Inside this shared virtual

environment each of them can play their moves based on an intrinsic capability of local

investigation and local action. We remember that Interceptor adopts an Agent Based

Modeling platform (i.e. SPADES, the System for Parallel Agent Discrete agEnt

Simulation that is a middleware system for agent-based distributed simulation) as

Network Topology Manager. Therefore, the integration of an Agent Based Modeling

platform within Interceptor is already done. In this way, building the reproduction of

diverse complex system (inside a participatory simulation) is possible simply

implementing different virtual environments (i.e. different worlds) and types of agents

inside an Agent Based Modeling platform. Therefore, instead of adopting the “network

topological” environment (i.e. NTMWorld; see the Figure 5.13) and the “router” agents

in the highest component of the stack of the Interceptor system architecture (see the

Chapter 6. Interceptor: Case Studies

242

Paragraph 5.3), we implement an environment and agents in accord with the simulation

of other (i.e. not related to computer networks) complex systems. The ABMS platform

integrated inside the prototype for our agent-based participatory simulation activities is

partially based on Netlogo software. Nothing prevents us from substituting Netlogo with

SPADES (look at the “execute and visualize session” Figure 6.43). Differently, from

Netlogo that provide us, the Hubnet client to control remotely our agents, SPADES give

us the possibility to interface directly our agents. Further, regarding the ABMS platform

of Figure 6.44, the Request Manager and the State Updater components can be provided

by SPADES. We can also write a version of the Snapshot Creator to capture the evolution

of the states of the complex system generated by SPADES. Again, all the most complex

models produced by Netlogo may be built based on three different types of agents (i.e.

observers, turtles and patches) that can find corresponding ones in SPADES. Each model

has only one observer that represents the most general virtual environment where all

other agents live; its corresponding one is named World. Turtles that are the most active

types of agents and patches that represent static pieces of resources are for SPADES

simply active and passive agents. Finally, the software modules for the management of

the 3D visualization can be directly connected to SPADES. In this way, we can build

participatory simulative scenarios with Interceptor.

In particular, to play a participatory simulation is necessary to pilot the remote agents

in a remote environment by means of an Agent Manager. These Agents live, interact and

cooperate in the same remote centralized world. In our design, this world is inside the

synthetic simulative environment of Interceptor (on the top of the stack of its system

architecture). So, the communications of the Agent Managers (geographically distributed

among multiple machines) must pass through the Emulative Interface of Interceptor to

reach their software counterpart in the virtual environment. Then, it is possible to delay

these communications with the remote environment by intercepting them. Once, a packet

with new moves (for an agent) reaches the Emulative Interface is delayed according to a

predefined emulative communication model. In fact, it is possible (if the configuration

file is set up opportunely) to emulate the network communication delay between the real

hosts, where users play, and the computer, where Interceptor runs. This is the typical

operation that permits to the incoming packets to be delayed in accord with a specific CM

Chapter 6. Interceptor: Case Studies

243

before being deliver to one of the “entry” nodes of the synthetic topology. The Event

Manager performances this operation by reading the configuration file (i.e. only after an

arrival event). This means to configure all agents present inside the simulation

environment as a possible entry simulated node to the proposed network topology. In this

way, we can build participatory simulative environments inside a Laboratory emulating

the participation of users geographically dispersed in different country. These

participatory simulative environments allow to play model (i.e. not only network model)

like the “Garbage can model of organizational choice” (Cohen et al., 1972) inside

Interceptor.

6.3.6 Conclusions of agent-based participatory simulation system

We have designed and developed a software architecture able to support the execution of

agent-based participatory simulation activities and to render them in a 3D virtual world

over wireless devices. We have conducted several empirical trials (both visual and

numerical) that confirm that the structuring of the software architecture we have devised

is able to guarantee the visual delivery of ABMS-based virtual worlds on wireless devices

in a timely fashion. We have presented also a complete example of modeling a complex

system. Hence, we report the design issues and an experimental campaign of the revision

of the “Garbage can model of organizational choice”. Finally, we have explained how is

possible to build participatory simulative scenarios within Interceptor simulating the

participation of users geographically dispersed in different country. In particular, these

users can participate to the simulations and can play model like he “Garbage can model

of organizational choice”. Furthermore, we wish to point out here that the visual aspect of

the 3D virtual worlds we are able to reproduce with our system is very realistic as our

current implementation permits us to manage textures and other augmented reality-based

objects in a sophisticated fashion. As an example of the use of texture-based 3D virtual

worlds we report in Figure 6.57 a landscape where the photos of the four authors of this

paper are mounted on the represented surfaces. Further, in Figures 6.58 two visual

examples of use of 3D worlds are depicted which were obtained based on real geospatial

data and augmented with virtual characters. We wish to conclude by mentioning that

Chapter 6. Interceptor: Case Studies

244

possible future developments of our system may foster new applications relevant to the

field of participatory simulation such as mobile business, digital cinema, edutainment,

multiplayer games and pervasive computing on wireless devices (Camponovo et al.,

2003; Ferretti et al., 2003a; Ferretti et al., 2003b; Espinoza et al., 2001; Bates et al.,

1998; Iacucci et al., 2000; Chen et al., 1993; Colella et al., 1998; Resnick et al., 1998).

Figure 6.57: A virtual world with textures based on the photos of the authors of this work

Figure 6.58: A 3D world based on real geo-spatial data where virtual characters are inserted

Chapter 7

Related Work

The literature on network emulation and simulation shows efforts by various groups. A

lot of tools have been built, with different peculiarities. In this chapter, the comparison

among the features of our Interceptor and the other tools are highlighted. In particular,

Interceptor is compared with a well-known network emulator, named Dummynet (Rizzo,

1997) and with a well-known network simulator, named VINT/NS (Bajaj et al., 1999).

The reason is that Dummynet represents a stand point for all network emulators because

it is one of the first emulators and because it has been integrated as the main atomic

component inside the most recent and complex works in this field. Instead VINT/NS

represents a standard de facto in the network simulation due to its capability of modelling

complex network systems maintaining high performance execution. In particular, being

VINT/NS a network simulator that incorporates an emulation interface, it represents the

best choice for a comparison.

7.1 Comparisons with Network Emulators: Dummynet

The main difference with the network emulator, in general, and Dummynet, in particular,

is that Interceptor introduces both a network topology manager and a traffic generator

inside its architecture. In fact, some network emulators are used together with traffic

generators (Nahum et al., 2001: where they use Dummynet and SURGE) and some others

Chapter 7. Related Work

246

have theirs own specific network topology manager (White et al., 2001b; Vahdat et al.,

2002: where they use Dummynet as the main atomic component), but nobody has both

(see the Paragraph 3.8). Interceptor integrates a network topology manager general

purpose while, outside, a workload traffic generator, running on different real hosts,

exploits it. Also the work behind Interceptor has been inspired by Dummynet (Rizzo,

1997). Two are the most important features that typically characterize network emulator

tools, namely: the mechanisms adopted to integrate the models within the emulative

environment with the emulative interface (see Table 7.1), and the mechanisms for

avoiding interference from I/O processing, when the tool works in emulation mode (see

Table 7.2).

As far as the former problem is concerned, Dummynet works by exploiting a finite

queue at the interface between the TCP and IP layers in order to delay packets (left top

side of Figure 7.1). An important limit of this approach is that Dummynet is able to

manage just a single communication link for each router running an emulated TCP/IP

stack (left bottom side of Figure 7.1). If several communication links have to be emulated

simultaneously, several TCP/IP stacks must be emulated running over different machines

(right side of Figure 7.1). A consequence of this fact is that Dummynet lacks a

configurable tool to build simulation scenarios based on an arbitrary network topology.

To fill this gap, more recent network emulators, like Netbed and ModelNet (based on

Dummynet) have built complex network topologies, by physically involving high

performance switches and powerful computers.

Table 7.1: Emulation Comparison (N: N >1, T: True, F: False)

EMULATOR /
SIMULATOR

EMULATION

LEVEL

NUMBER OF LINK

COMMUNICATIONS

PACKET
FORMAT

STREAM

SIMULATED

SIMULATION
SCENARIOUS

NS-2

IP

1 – N

NS packet

Static routing

Dynamic routing
(unicast &
multicast)

T

DUMMYNET

IP

1

IP packet

TCP

F

INTERCEPTOR

IP

1 – N

IP packet

All over IP

T

Chapter 7. Related Work

247

Figure 7.1: Dummynet (reported from (Rizzo, 1997))

Table 7.2: Simulation Comparison

EMULATOR /
SIMULATOR

APPROACH

SIMULATION EVENT

APPROACH

EVENT TYPE

NS-2

Fine

Discrete event

Next pending

DUMMYNET

-

Periodic time event

Periodic time

INTERCEPTOR

Coarse

Discrete event

Packet arrival and departure

In these network emulators, more instances of Dummynet work on different

computers linked by the switches in order to implement the emulative scenario that

reproduces the characteristics of a specified target topology on a link-by-link basis.

Therefore, to change a topology model it is necessary to reconfigure a part of the

computers working in the previous run. Further, to scale up the number of nodes of the

network topology it is necessary to increase the number of computers involved in the

experiment. Hence, conducting comparative analyses of different executions results more

difficult.

Interceptor instead exploits the libipq libraries (Russell, 2002) in order to attach to

packets, belonging to different communication channels, their correspondent delay

values. In simple words, a single router running Interceptor is able to manage the

emulation of several incoming communication channels. Furthermore, it can introduce

these packets, coming from different communication channels, into its synthetic

environment implementing a complex network topology. In order to avoid interference

from the I/O processing when in emulation mode, Dummynet manages incoming packets

during emulation by using a periodic time-driven approach, with a T given period. The

Chapter 7. Related Work

248

problem here may be due to the fact that an excessive amount of incoming network traffic

may cause the system to miss time deadlines. The direct consequence of this is that the

emulator may become livelocked (Fall, 1999), i.e., notable performance degradation may

be experienced in the emulation process. On the contrary, Interceptor uses a discrete

event-driven approach to manage the advance of the synthetic emulation. Further, as

already said, Interceptor adopts a prefetching mechanism to prevent the violation of real

time constrain (see the Paragraph 5.4). Finally, we illustrate some technical details (see

Table 7.3). Dummynet and Interceptor are both standalone systems and are written in

“C”. Both Dummynet and Interceptor work only on a specific operative system,

respectively, FreeBSD and Linux. In particular, Dummynet needs to recompile the

(FreeBSD) kernel to work while Interceptor is currently supported as from the family

2.4.0 versions of the (Linux) kernel.

7.2 Comparisons with Network Simulators: VINT/NS

Most of network simulators have been designed and implemented as synthetic programs

working on a single machine or on a cluster, without any live traffic introduction. Among

the network simulators, NS-2 results one of the most suitable to be compared with

Interceptor. The NS-2 has been designed and implemented as a network synthetic

simulator working on a single machine, without any live traffic introduction (see

Paragraph 2.5.1).

Table 7.3: Technical Report (T: True, F: False)

EMULATOR /
SIMULATOR

ARCHITECTURE

DEVELOPING
LANGUAGE

OPERATING

SISTEM

COMPILING

KERNEL

WHY

COMPILING
KERNEL

NS-2

Integrated in NS-2

system

C++ / OTcl

FreeBSD, Solaris

& Linux

F

-

DUMMYNET

Standalone system

C

FreeBSD (version

3.4.0 or upper)

T

Including

Dummynet

INTERCEPTOR

Standalone system

C/C++

Linux (kernel
2.4.0 or upper)

F

-

Chapter 7. Related Work

249

Only later an emulative interface and a real time scheduler have been integrated in NS-2

to introduce live traffic inside its simulation environment (Fall, 1999). For this reason,

one of the main differences between NS-2 and Interceptor is the approach to the problem.

Differently from NS-2, Interceptor is specifically developed as a system that intercepts

live network packets by means of its emulative interface and introduces them in its

synthetic simulative environment. In fact, NS-2 exploits a detailed fine-grained

simulation model, while Interceptor adopts the coarse-grained approach to model network

settings sacrificing simulation details, while it maintains the possibility of integrating

external live traffic. Both NS-2 and Interceptor use a discrete event-driven approach to

manage emulation/simulation. However, NS-2 has a single process software architecture

that builds a monolithic structure. Instead, Interceptor interfaces and synchronizes

different processes building a distributable architecture. In particular, all nodes (agents)

belonging to the synthetic environment (of Interceptor) are single processes that can be

distributed on a cluster of computers. For this reason, it is possible to integrate into the

same synthetic environment different kinds of nodes that adopt different behaviours (for

example different routing policy) and that can be configured at a run-time. Further, each

single agent is fully programmable and at compile time it can be inserted in the

environment. Finally, some different technical choices are shown on Table 7.3.

Interceptor is a distributable standalone system, while NS-2 emulator (i.e. the emulative

interface and the real time scheduler) is integrated into NS-2 system. Both Interceptor and

NS-2 are written in “C/C++”. NS-2 runs on several operative systems: FreeBSD, Solaris

and Linux, while Interceptor works only on Linux. Both Interceptor and NS-2 are

currently supported by the operative system (where they run). The next paragraphs

highlight more details about prominent differences in the software architecture, in the

building of an emulative scenario, in the setting of a simulative scenario and, finally,

several plots illustrate the comparison of the performances between the two systems.

Chapter 7. Related Work

250

7.2.1 Differences in Designing and Implementing the Software Architectures

When designing and implementing Interceptor, the computation for the management of

the synthetic environment should not violate the real time constrain to integrate and

process external live traffic by means of emulative interface. To prevent this violation, an

appropriate mechanism must be adopted to integrate the models (i.e. that reproduce

complex IP-based networks among the end-systems) within the synthetic environment

with the emulative interface (see Table 7.1). NS-2 has the problem of integrating the

emulative interface into the simulation. It has its own network packet format to manage

the integration between the simulation model and the emulation interface (Figure 7.2).

The emulation interface transforms IP datagrams into a particular NS-based format. In

essence, NS converts network-native packets into simulator-compatible packets providing

live network access (Fall, 1999). The problem with this approach is related to the fact that

this transformation causes additional computational overhead. Instead, Interceptor stores

each packet inside the synthetic environment without modifying it. This environment

checks the packet and uses a model to calculate the simulation (service) time. No

additional overhead is caused, because our architecture uses the IP format datagrams.

Further, an appropriate real-time scheduler that avoids the interference from I/O

processing, when the tool executes in emulation mode (see Table 7.2) must be built. The

real-time scheduler of NS-2 runs by selecting the next imminent event, by executing it

and returning to execute the next event.

Figure 7.2: NS-2 emulation interface (reported from (Breslau et al., 2000))

Chapter 7. Related Work

251

NS-2 is single-threaded and only one event is executed at any given time. If more events

must be executed at the same time, their execution is performed on the first-scheduled

first-served policy. Further, NS-2 does not support the partial execution of events or pre-

emption. In particular, the real-time scheduler (adopted when NS-2 is on emulation

mode) is implemented as a subclass of the list scheduler (i.e. one of the NS scheduler:

list, heap and calendar). The list scheduler is implemented by using a simple linked-list

structure. The list is handled in time-order (from imminent to latest), so event insertion

and deletion require scanning the list to find the appropriate entry. Instead, the imminent

event is always the head of the list. This implementation preserves event execution in a

FIFO manner for simultaneous events. Therefore, the problem of avoiding interference

from the I/O processing when in emulation mode is due to the fact that an excessive

quantity of incoming network traffic may arrive. This fact may cause the system to miss

time deadlines and to become livelocked (Fall, 1999). The real-time scheduler of

Interceptor is similar to that of NS-2 but exploits a prefetching mechanism that: i) pays

attention to the additional delay due to computation time and ii) handles the service queue

(i.e. simple linked-list structure) avoiding that very close (in time) events were delayed

waiting for their turn in the next simulation/emulation cycles. In the former case, this

mechanism is able to calculate the simulation time of each packet in charge of the time

spent transmitting and processing it. In particular, the mechanism controls the time to

physically transmit a real packet from an end-system to another in the real lab without

passing through Interceptor and the time to process this packet inside Interceptor. The

processing time includes the phase where the packet is introduced into the architecture

and that where the packet is injected outside in the real world. Therefore, the real

execution time is equal to the simulation time subtracting the time calculated by this

mechanism. Further, in the latter case, this mechanism is in charge of checking up all the

expiring events in the service queue during a given period of time (up to 10 msec.) and

eventually prefetches these if the system is becoming overloaded. This means that, every

times, a service time expires all the events included in that period are prefetched (where

10 msec. is the minimum time granularity).

Another way to preserve the real time constrain is to build mechanisms of the

simulative/emulative architecture that avoid extra computation if not necessary. For

Chapter 7. Related Work

252

example, Interceptor provides with a mechanism (i.e. background traffic injector) that is

able to inject virtual packets inside the synthetic environment. These virtual packets are

not real and are only useful to create background traffic. This virtual traffic is not injected

outside in the real world. With regard to this last consideration, it is not necessary that

this kind of packets, different from the live packets, really exist inside the simulative

environment. This kind of packets exists only in the phase of computation of the

simulative delay and has no real size. These packets for the architecture are only system

messages and no additional computation needs to manage them (i.e. it is not necessary to

create and to delete background packets). In NS-2 this possibility is not supported; the

only way to reproduce background traffic is to adopt other real computers generating real

traffic (this possibility is supported also by Interceptor). However, in this way these

background packets must have an NS-based format and they are processed as the others.

This approach may cause additional computation as it manages a higher number of

packets. This fact can disadvantage the real packets.

7.2.2 Building an Emulation Scenario with VINT/NS: Limitations

To build an emulation scenario with VINT/NS it is necessary that the computer, on which

the emulator runs, acts as a default gateway for the other computers in this experiment.

This implies the configuration of static rules in the routing table of each computer (taking

part in the experiment). The official documentation about creating an emulative scenario

with VINT/NS reports that if A wants to communicate to B via C, static rules in the

routing table must be added:

• to add a static route on A to send the IP packets with B destination to C,

 route add B_IP C_IP, vice versa

• to add a static route on B to send the IP packets with A destination to C,

 route add A_IP C_IP.

The “route add” command defines which is the next hop for the sent packets. Using this

command includes some limitations.

Chapter 7. Related Work

253

• Only the system administrator has the privilege to run the “route add” command.

In this way the simulationist should have the system administrator’s privileges on

each machine he wants to use. This is not always possible.

• All communications between A and B pass through C. In a lab with different

users, everyone who wants to send packets from A to B (or vice versa) delivers

them through C. For this reason, it is not possible to send packet directly from A

to B, or vice versa.

• In a particular case, if there are some routers between source and destination (see

the Figure 7.3), the simulationist must be able to configure each of them to route

the packets coming from A toward B to C. In this case, the simulationist should

have the network administrator’s privileges.

In particular, the last point that makes feasible the integration of computers belonging to

different LANs is only possible if the transmission latency between the two hosts (i.e. A

and B) is small with respect to the network emulated latency that the scenario tries to

reproduce. This means that geographical networks are emulated by using LANs

sufficiently close. Instead, Interceptor adopts an emulation consistent approach by

implementing the virtual host method with IP Aliasing and IPTABLES techniques. As

already said (see the Paragraph 5.1.2 and the Figure 7.4), Interceptor must not be the

default gateway. In this case Interceptor adopts a virtual address to send a packet from A

to B via C. Differently from VINT/NS, in this approach the only requirement is to have

the system administrator’s privileges of the computer where Interceptor runs.

7.2.3 Setting a Simulative Scenario: Interactivity

The Interactivity is the possibility to interfere with the synthetic environment modifying

it at a run-time. Interceptor supports this feature while NS-2 does not. To support this

feature it is necessary to build a reactive synthetic environment that allows the

simulationist to interact with each entity of its environment. These interactions must

allow the simulationist to configure the entities at run-time.

Chapter 7. Related Work

254

Figure 7.3: A,B,C belong to different LANs interconnected by some routers

Figure 7.4: Route from A to B via C and vice versa with two aliases

In particular, to interact in a consistent way with the simulative environment, it is

necessary to respect both the real-time constraints of the emulation and the run-time

constraints of every single packet passing over each simulated node and link. For this

reason, if the simulationist interacts with an entity (like a node or a link), it is extremely

important that all the packets currently passing through this entity undergo new settings.

This means that if the simulation model claims that the current packet should pass

through the entity after the time at which the interaction is done, this packet undergoes

the new settings, vice versa if the packet passes before, it does not. Interceptor works

according to this run-time approach. The multi-agent system that implements the NTM

allows the simulationist to interface each node/agent of the modelled network topology

during the evolution of the simulation. This approach allows the simulationist to set at

run-time several functionalities of each node and of each link (see Paragraph 5.3.2). For

this reason, Interceptor does not compute a priori the time spent by the next packet and

does not know a priori the simulated path between the source and the destination. This

implies that Interceptor is forced to compute the next hop and the communication delay

to reach it every time a packet reaches each node of the topology. In fact, it may be

possible that in the meantime the simulative scenario has been changed.

Interceptor

Chapter 7. Related Work

255

NS-2 does not support the interactivity because it does not allow simulationist to

interface with nodes and links during the simulation. The simulationist can only setup the

configuration file before the beginning of the simulation. When a packet arrives at the

simulative environment, NS-2 already knew the (static) network topologies and the

characteristics of each link and node. For this reason, it knows the amount of time that

this packet should wait inside the environment to simulate the passing through the path

between the source and the destination. This means that it has already known (been the

simulator a deterministic program) the path to reach the final destination (for the each

incoming type of packet) and the time spent (for each hop before the destination). The

only exception to this behaviour is when dynamic topologies are configured. Also these

network dynamics are established on a priori basis: the startTime and finishTime

variables set the configuration time during which a specific topological change occurs.

This operation forces NS-2 to control that a packet does not pass through a wrong

scenario. The network dynamics are only related to the characteristics of links. Hence, it

is possible to model dynamic network topologies, where links may go down and may

forces nodes to change routing policy.

7.2.4 Comparison of the performances

A series of experiments has been made in order to compare Interceptor and NS under the

same conditions. The hardware scenario (see Figure 7.5) is composed of three computer

running UDP senders (i.e. Pentium III, 677 MHz, 256 MB RAM, ethernet card 100

Mbit/sec., Linux Red-Hat 9.0), a single one running UDP receivers (i.e. Pentium III, 900

MHz, 512 MB RAM, ethernet card 100 Mbit/sec., Linux Red-Hat 9.0) and a final one

where Interceptor or NS-2 are accommodated (i.e. as the previous). In order carry out

comparable experiments on Interceptor and NS (see Paragraph 7.2.1), the computer

accommodating the emulator/simulator must be the default gateway for all the network

communications. The software scenario (see Figure 7.7) is obtained by increasing the

number of UDP senders that generate traffic for an increasing number of UDP receivers.

Each UDP sender sends an UDP datagram (i.e. 100 KB) and freezes for a time (i.e. 12

msec.), until the total number of sent datagrams (i.e. 1000 times) is not reached.

Chapter 7. Related Work

256

Figure 7.5: The hardware/software scenario

Figure 7.6: Different topologies

Each UDP receiver checks up the number of received datagrams and their integrity. The

UDP datagrams (sent) reach the emulator/simulator (in form of IP packets) where they

pass through diverse network topologies. These network topologies are differentiated by

the number of the involved nodes and the length of the path between source and

destination (see Figure 7.6). In these experiments, the capability of the emulative

platform to support a higher detailed simulative environment by maintaining the real time

constraints is tested. Hence, the experiments adopt network topologies with increasing

complexity by monitoring the performance of the emulative interface. For this reason, it

is interesting to evaluate the capability to schedule all received packets without

10.0.1.1

SENDER
10.0.2.2 SENDER

10.0.3.3

RECEIVER
10.0.4.4

SENDER
10.0.1.1

10.0.2.1 10.0.4.1

EMULATOR/
SIMULATOR

10.0.3.1

TOPOLOGY

TOPOLOGY 6

TOPOLOGY 2 TOPOLOGY 3

TOPOLOGY 4 TOPOLOGY 5

TOPOLOGY 1

Chapter 7. Related Work

257

discarding anyone. If the emulative platform is too busy to schedule packets instead of

intercepting the incoming ones, these are discarded. The main aim of these experiments

was to find a limit to the representation of Interceptor. This limit is quantified when the

number of packets sent with additional delay reaches the 1% of the received ones.

Further, it is important to evaluate the time difference between the time that a packet

should have spent inside the simulative environment and that computed by the simulation

for each packet. If this difference is positive, it means that packets are sent from the

emulator/simulator to the receiver with additional delay. For each network topology of

Figure 7.6 the number of senders (i.e. 3, 6 and 9) and the latency of each link (i.e. either

10 or 100 msec.) are varied by conducting more than 500 trails. The results obtained in

these trails are shown on plots (see Figures 7.7-7.9) as the average of the monitored

metrics according to the chosen topology. The metrics are: the percentage of the loss

packets, the percentage of the packets that are send toward the final destination with

additional delay (greater than 10 msec.) and the average values of the additional delays.

As shown in the plots with 3 or 6 senders, Interceptor is able to maintain the

percentage of the packet loss (lower than 0.1%) and the packets sent with additional delay

low (lower than 0.12%). We have established that the limit to the representation of

Interceptor is reached when the percentage of packets sent with additional delay is greater

than 1%; this occurs in the experiment with 9 senders and, respectively, with topology 6.

Therefore, from the comparison between the two emulators/simulators, we report that

NS-2 has a lower percentage of packets sent with additional delay but the average values

of the additional delays are greater than Interceptor. In particular, NS-2 shows no

constant behavior in the percentage of the loss packets and its bursts are much greater

than the corresponding values of Interceptor when they occur. In these cases, NS-2

generates single trails that are not reliable where it lost up to approximately 13,4% of the

transmitted packets (i.e. it lost 400 packets over 3000). Instead, in the worst case of

Interceptor a single trail lost 2,86% of transmitted packets (i.e. it lost 86 packets over

3000). To conduct this series of trails, we adapt Interceptor to work in an ideal

environment for NS-2. These trails are conducted imposing the computer where NS-2

runs as default gateway. Interceptor does not require this constrain. Further, the core of

the emulation/simulation will work exclusively on one computer.

Chapter 7. Related Work

258

3 senders - 10ms links

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Topologies

%
 P

ac
ke

t L
os

s

Interceptor Ns2

3 senders - 100ms links

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Topologies

%
 P

ac
ke

t L
os

s

Interceptor Ns2

3 senders - 10ms links

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Topologies

%
 P

ac
ke

ts
 w

ith
 D

el
ay

Interceptor Ns2

3 senders - 100ms links

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Topologies

%
 P

ac
ke

ts
 w

ith
 D

el
ay

Interceptor Ns2

3 senders - 10ms links

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Topologies

A
dd

iti
on

al
 D

el
ay

 (m
s)

Interceptor Ns2

3 senders - 100ms links

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6

Topologies

A
dd

iti
on

al
 D

el
ay

 (m
s)

Interceptor Ns2

Figure 7.7: The percentage of the loss packets, the percentage of the packets sent with additional delay and
the average values of the additional delays for a scenario comprehensive of three senders and, respectively,

either 10 ms links or 100 ms links.

Chapter 7. Related Work

259

6 senders - 10ms links

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Topologies

%
 P

ac
ke

t L
os

s

Interceptor Ns2

6 senders - 100ms links

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Topologies

%
 P

ac
ke

t l
os

s

Interceptor Ns2

6 senders - 10ms links

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Topologies

%
 P

ac
ke

ts
 w

ith
 D

el
ay

Interceptor Ns2

6 senders - 100ms links

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Topologies

%
 P

ac
ke

ts
 w

ith
 D

el
ay

Interceptor Ns2

6 senders - 10ms links

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Topologies

A
dd

iti
on

al
 D

el
ay

 (m
s)

Interceptor Ns2

6 senders - 100ms links

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6

Topologies

A
dd

iti
on

al
 D

el
ay

 (m
s)

Interceptor Ns2

Figure 7.8: The percentage of the loss packets, the percentage of the packets sent with additional delay and
the average values of the additional delays for a scenario comprehensive of six senders and, respectively,

either 10 ms links or 100 ms links.

Chapter 7. Related Work

260

9 senders - 10ms links

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Topologies

%
 P

ac
ke

t L
os

s

Interceptor Ns2

9 senders - 100ms links

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6

Topologies

%
 P

ac
ke

t L
os

s

Interceptor Ns2

9 senders - 10ms links

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6

Topologies

%
 P

ac
ke

ts
 w

ith
 D

el
ay

Interceptor Ns2

9 senders - 100ms links

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6

Topologies

%
 P

ac
ke

ts
 w

ith
 D

el
ay

Interceptor Ns2

9 senders - 10ms links

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Topologies

A
dd

iti
on

al
 D

el
ay

 (m
s)

Interceptor Ns2

9 senders - 100ms links

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Topologies

A
dd

iti
on

al
 D

el
ay

 (m
s)

Interceptor Ns2

Figure 7.9: The percentage of the loss packets, the percentage of the packets sent with additional delay and
the average values of the additional delays for a scenario comprehensive of nine senders and, respectively,

either 10 ms links or 100 ms links.

Chapter 7. Related Work

261

Interceptor runs different processes one for each node, one for the each software layer.

This is the main reason for decreasing the performance with 9 senders (i.e. increasing the

interarrival of the packets and the number of nodes). By distributing these processes

among few computers (for example only two) or by adopting a multi-processor hardware

computer the system architecture of Interceptor can scale up its performances. All these

processes are necessary to allow the simulationist to interact with the simulative

environment at run-time (feature that NS-2 does not support). Concluding, the

performances of Interceptor are very close to those of NS-2. For this reason, it is possible

to interact in an active way at run-time with the simulative environment, eventually

running an emulative scenario on a computer that does not work as a default gateway,

with performances similar to larger diffuse NS-2. This means that the improved

management of the scheduler (the prefetching mechanism) and the implementation (in

accord with the coarse grained approach) of components that avoid extra computation

allow a “real-time” and “run-time” constrained architecture (like Interceptor) to maintain

the performances of the NS-2.

Chapter 7. Related Work

262

Chapter 8

Conclusions And Future Works

We designed and implemented a synthetic emulative platform that reproduces complex

IP-based networks, called Interceptor. In particular, Interceptor is an emulative platform,

which incorporates a synthetic coarse-grained environment, specifically developed to

inject traffic coming from real network devices (running real applications) into simulated

complex IP-based networks. A clear advantage of the coarse-grained approach our

simulator is based on, derives from the fact that a large amount of the incoming live

traffic may be processed, through the emulative interface, without remarkable

performance degradation taking place during the simulation process. Interceptor provides

many other advantages. It allows to set from simple to sophisticated network topology by

reproducing a wide range of network communication models from single link to more

general end-to-end communications. It supplies the possibility to change and update the

synthetic environment without affecting the network interfaces at configuration time,

while it provides the possibility to interact with simulated nodes and links at run-time.

Furthermore, external workload traffic generators may exercise both end systems and

synthetic emulative networks in accord with UE technology. Along with this idea, we

developed a workload traffic generator that reproduces a high number of users running

simultaneously the same application. A clear advantage of UE technology, on which our

workload traffic generator is based, is the fact that it allows to move up several virtual

Chapter 8. Conclusions and Future Works

264

users who simultaneously run the same application on the same computer in emulation

mode.

Using Interceptor, we have obtained synthetic emulative results for well-known

network applications, whose comparison with real experimental trials has confirmed the

viability of our design choices. For this reason, Interceptor results useful to study the

performance of network applications over complex IP-based networks. In essence,

Interceptor works by delaying packets at the IP level, while the upper layers are directly

executed in the synthetic network emulative environment. Three case studies show the

effectiveness of Interceptor in evaluating network applications on synthetic complex IP-

based networks within a lab-based scenario.

The first case illustrates the effectiveness of the C2LD mechanism (i.e. a Web

download accelerator based on the use of replicated Web Servers) has been assessed

through the following two separate evaluation exercises: in an experimental and in an

synthetic emulative scenario. Unfortunately, the experimental evaluation was based on a

single client. These results were not enough to show the effectiveness of the C2LD

mechanism in the general case in which a replicated Web service is accessed by a large

number of clients (say, hundreds), concurrently. In this case, the contribution of

Interceptor was to provide the design and the development of a synthetic emulative

scenario within which more clients running the C2LD mechanism accessed, concurrently,

the same replicated Web service. The plots obtained by the data monitored inside this

scenario were useful to evaluate mechanisms in comparison with the standard

downloading mechanism of HTTP.

The second of case studies shows the performance evaluation of an Wireless Internet

architecture implementing a Song-on-Demand distribution service (from song

distribution to interactive karaoke) for mobile devices. In this case, we reported on our

experience in developing and evaluating this Wireless Internet application designed to

deliver advanced musical services to mobile consumers over wireless links. The

contribution of Interceptor was to provide the design and the development of the

synthetic emulative scenarios built to evaluate this Song-on-Demand distribution service.

We needed to use our synthetic emulative platform for two main considerations: the

previous experimental campaign for evaluating this service has been conducted over a

Chapter 8. Conclusions and Future Works

265

single wireless infrastructure (i.e. UMTS) and by means of just a single mobile device.

Therefore, to understand the behavior of this service in a real scenario we needed a

platform that provides several synthetic emulations where we can choose among different

wireless infrastructures by scaling up the number of mobile devices. We implemented the

appropriate scenarios and we ran a campaign by adopting Interceptor. In particular, these

trails highlight that the main trouble of these architecture is due to scaling up of the

number of mobile devices.

The last case explains the integration of participatory simulation based on multi-agent

models to mimic complex systems within Interceptor. The users of these collaborative

systems demand tools that are able to interact with the remote environment from mobile

devices and to present visually the results of these cooperative simulation activities on

their screens. In this context, we have explained how it was possible to build participatory

simulative scenarios within Interceptor by emulating the participation of users

geographically dispersed in different countries. Differently from the previous cases,

where the service passes transparently over Interceptor, in this case the remote

environment is the synthetic environment (i.e. the service end-point is inside the synthetic

environment of Interceptor).

The results shown in these three case studies have confirmed that Interceptor may be

successfully adopted to evaluate network architectures, applications and mechanisms

since it guarantees a good compromise between the performance of the emulation and the

accuracy of the synthetic IP networks.

The comparison with the related works have demonstrated that Interceptor permits a

simulationist to interact in an active way at run-time within the synthetic environment

with performances similar to larger diffuse NS-2. This means that the improved

management of the scheduler due to the prefetching mechanism and the implementation

of components (based on a coarse grained approach) that avoid extra computation allow

the “real-time” and “run-time” constrained Interceptor to maintain the performances of

the NS-2.

Future works with Interceptor will be devoted to the study of three main aspects:

architectural improvements, architectural extensions and new case studies. The main

improvement in the system architecture concerns the prefetching mechanism that

Chapter 8. Conclusions and Future Works

266

prevents the livelocked problem. When a time expiration occurs (i.e. every time a packet

arrives to the next node of the topology) this simple but effective mechanism checks how

many other actions (related to the real IP packets) will expire in a very short time. In our

implementation, all future actions (related to IP packets) are queued in the service queue

(of the entire system) ordered by next time expiration. When the (service) timeout of the

next imminent action is expiring, the prefetching mechanism checks up all the other

actions whose timeout will expire in the next “time-select” period and schedule all of

them. The value of the “time-select” parameter (based on microsecond) is established at

configuration time. An interesting improvement of this mechanism relates to set

dynamically (i.e. during the run of a synthetic emulative experiment) the values of “time-

select” parameter. The dynamic choice of the “time-select” value may be obtained by

checking up the number of actions inside the service queue (if it was increasing,

decreasing or constant), the distribution of their interarrival times and if the last

scheduled action was just in time or not. To prove the effectiveness of this new dynamic

prefetching mechanism useful statistics about its performance should be reported.

With reference to architectural extensions, several new software modules may be

useful to improve the reproduction of possible network effects. Each synthetic complex

network is composed by two main kinds of entities: nodes and links. If we want to

reproduce all possible network effects, it is necessary to increase the number of features

of each single entity. Therefore, we can improve the features of the nodes by

implementing software modules for different routing policies and different load balancing

techniques. To further explore the generality of our approach, we can also implement

extensions to our architecture in order to support the movement of the nodes. In this way,

it becomes possible to reproduce wireless ad-hoc scenarios. Relating to the features of the

links, new communication models for each controller (i.e. Latency/Delay, Bandwidth and

Loss controllers) may be studied and implemented.

With regard to the new case studies, we promote the evaluation of the performance of

our distributed architecture that supports networked multiplayer games (Ferretti et al.,

2003). By moving server functionality to the boundaries of the network it is possible to

provide robustness, congestion control, scalability and cheating prevention. This

architecture replicates the game state on the system, filters messages and uses application

Chapter 8. Conclusions and Future Works

267

access points so as to optimize the communication with the clients. Our approach allows

the distribution of the characters’ information over the network and at the same time the

replication of the virtual world’s state only where necessary. Actually, we are planning a

campaign of trails (Ferretti et al., 2004; Palazzi et al., 2004a; Palazzi et al., 2004b). The

typical scenario of this system architecture should be the Internet. Hence, we should

evaluate the performance of this system architecture in a synthetic complex IP-based

network scenario, using Interceptor. To further increase the effectiveness of our

approach, we should implement a virtual player in line with UE technology.

Chapter 8. Conclusions and Future Works

268

References

(Aiello et al., 2000) W. Aiello, F. Chung, and L. Lu, “A Random Graph Model for
Massive Graphs”, In Proceedings of 32nd Annual Symposium in Theory of Computing,
2000.

(Allman, 1997) M. Allman, A. Caldwell, and S. Ostermann, “ONE: The Ohio Network
Emulator”, In Technical Report TR-19972, Ohio University, August 1997.

(Avallone et al., 2004a) Stefano Avallone, Antonio Pescapè and Giorgio Ventre,
“Analysis and experimentation of Internet Traffic Generator”, In Proceedings of
International Conference on Next Generation Teletraffic and Wired/Wireless Advanced
Networking (New2an’04), St. Petersburg , Russia, February 2004.

(Avallone et al., 2004b) Stefano Avallone, Donato Emma, Antonio Pescapè and Giorgio
Ventre, “A Distributed Multiplatform Architecture for Traffic Generation”, In
Proceedings of International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS’04), San Jose, CA, USA, July 2004.

(Bagrodia et al., 1994) R. Bagrodia, and W. Liao. “Maisie: A Language for Design of
Efficient Discrete-Event Simulation”. In IEEE Transactions on Software Engineering,
April 1994.

(Bagrodia et al., 1997) R. Bagrodia and R. Meyerr, “PARSEC: A Parallel Simulation
Environment for Complex System”, In Technical Report, UCLA, 1997.

(Bajaj et al., 1999) S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M.
Handley, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie, P.
Sharma, K. Varadhan, Y. Xu, H. Yu, and D. Zappala, “Improving Simulation for Network
Research” In Technical Report 99-702, University of Southern California, March 1999.

(Banks et al., 2001) J. Banks, J. S. Carson II, B. L. Nelson, D. M. Nicol, “Discrete-Event
System Simulation”, Third Edition Book, Pretience Hall, Upple Saddle River NJ, 2001.

(Barford et al., 1998) P. Barford, M.E. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation”, In Proceedings of ACM
Performance'98/SIGMETRICS, 151-160, Madison, WI, 1998.

(Barabasi et al., 1999) A.L. Barabasi and R. Albert, “Emergence of Scaling in Random
Networks”, Science, pages 509–512, October 1999.

(Bates et al., 1998) J. Bates, M. D. Spiteri, D. Halls, J. Bacon, “Integrating Real-World
and Computer-Supported Collaboration in the Presence of Mobility”, In Proceedings of
the IEEE 7th International Workshops in Enabling Technologies: Infrastructure for
Collaborative Enterprises, Stanford, CA, June 1998.

References

270

(Bethel, 1999) W. Bethel, RM Scene Graph, White Paper, December 1999,
http://www.r3vis.com/RMSceneGraph.

(Bethel et al., 2002) W. Bethel, R. Frank, J. D. Brederson, “Combining a Multithreaded
Scene Graph System with a Tiled Display Environment”, In Proceedings of the 2002
IS&T/SPIE Conference on Electronic Imaging and Technology, San Jose, CA, January
2002.

(Bradford et al., 2000) R. Bradford, R. Simmonds, B. Unger, “A Parallel Discrete Event
IP Network Emulator”, In Proceedings of 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, San Francisco,
CA, August 29 - September 01, 2000.

(Brakmo et al., 1994) L. Brakmo, S. O’Malley, L. Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance”, In Proceedings of ACM
SIGCOMM’94, pp. 24–35, 1994.

(Brakmo et al., 1996) L. S. Brakmo, L. L. Peterson, “Experiences with Network
Simulation”, In Proceedings of ACM SIGMETRICS ‘96 Philadelphia, PA, USA, May
1996.

(Breslau et al., 2000) L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P.
Huang, S. McCanne, K, Varadhan, Y. Xu, H. Yu, “Advances in Network Simulation”,
IEEE Computer, 59-67, May 2000.

(Burton et al., 1995) R. Burton and B. Obel, “Strategic organizational diagnosis and
design: Developing theory for application”, Kluwer Academic Publishers, Boston, MA,
1995.

(Cacciaguerra, 2002) S. Cacciaguerra, “Wireless Simulation Modeling within
Interceptor”, In Proceedings of the Italian Society for Computer Simulation Conference
(ISCS’02), Brindisi, Italy, December 2002.

(Cacciaguerra et al., 2003) S. Cacciaguerra, M. Roccetti, V. Ghini and S. Ferretti, “On
Using An Emulative Middleware To Model Wireless Networks: Simulation Results And
Validation”, In Proceedings of the 1st European Simulation and Modelling Conference
(ESMC’03), Naples, Italy, October 2003.

(Cacciaguerra et al., 2004) S. Cacciaguerra, M. Roccetti, M. Roffilli and A. Lomi, “A
Wireless Software Architecture for Fast 3D Rendering of Agent-Based Multimedia
Simulations on Portable Devices”, In Proceedings of the 1st IEEE Consumer
Communications and Networking Conference (CCNC’04), IEEE Communications
Society, Las Vegas, Nevada (USA), January 2004.

References

271

(Calvert et al., 1997) K. Calvert, E. Zegura, and M. Doar, “Modeling Internet topology”,
In IEEE Communication Magazine, June 1997.

(Calzarossa et al., 1993) M. Calzarossa and G. Serazzi, “Workload Characterization: a
Survey”, In Proceedings of the IEEE, 8(81):1136-1150, 1993.

(Calzarossa et al., 2000) M. Calzarossa, L. Massari, and D. Tessera “Workload
Characterization Issues and Methodologies”, In Performance Evaluation - Origins and
Directions, volume 1769 of Lecture Notes in Computer Science, pages 459-484,
Springer-Verlag, 2000.

(Camponovo et al., 2003) G. Camponovo, Y. Pigneur, “Analyzing The Actor Game In M-
Business”, In Annals of Telecommunications, , Vol. 58, January - February 2003.

(Cao et al., 2002a) J. Cao, W. S. Cleveland, D. Lin and D. X. Sun “Internet Traffic Tend
Toward Poisson and Independent as the Load Increases” In NonLinear Estimation and
Classification Book, eds. C.Holmes, D. Denison, M. Hansen, B. Yu, and B. Mallick,
Springer, New York, 2002.

(Cao et al., 2002b) J. Cao, W. S. Cleveland, D. Lin and D. X. Sun “Internet Traffic:
Statistical Multiplexing Gains”, In Proceeding of Workshop on Internet and WWW
Measurement, Mapping and Modeling (DIMACS’02), 2002.

(Cardellini et al., 2001) V. Cardellini, E. Casalicchio, M. Colajanni, “A Performance
Study of Distribuited Architectures for the Quality of Web Services”, In Proceeding of
34th Hawaii International Conference on System Sciences, 2001.

(Carley, 1986) C. Carley, “Efficiency in a garbage can: Implications for crisis
management”, in J.G. March, J.G., and R. Weissinger-Baylon (Eds.), Ambiguity and
command: Organizational perspectives on military decision making, Marshfield, MA,
Pitman, 1986.

(Carley et al., 1994) K. Carley and A. Newell, “The nature of the social agent”, Journal
of Mathematical Sociology, 19(4): 221-262, 1994.

(Carniani et al., 2001) E. Carniani, R. Davoli, “The NetWire emulator: a tool for
teaching and understanding networks”, In Proceedings of the conference on Integrating
Technology into Computer Science Education (ITiCSE’01), ACM Press, pp. 153–156,
2001.

(Carson, 1997) M. Carson, “Application and protocol testing through network
emulation”, 1997. http://www.antd.nist.gov/itg/nistnet.

(Carson, 2000) M. Carson, “NISTNet Network Emulator”, 2000,
http://www.antd.nist.gov/itg/nistnet/

References

272

(Chang, 1999) X. Chang, “Network Simulations with OPNET”, In Proceedings of the
Winter Simulation Conference, 1999.

(Chen et al., 1993) D. Chen, W. Stroup, “General Systems Theory: Toward a
Conceptual Framework for Science and Technology Education for All”, In the Journal
for Science Education and Technology, 1993.

(Clark, 1976) J. Clark, “Hierarchical Geometric Models for Visible Surface Algorithms”,
In Communications of the ACM, October 1976.

(Clarke Wilson, 1994) S. Clarke Wilson, “The Design of Virtual Environments – Value
Added Entertainment”, In Computer Graphics, Vol. 28, N. 2, 1994.

(Cohen et al., 1972) M.D. Cohen, J.G. March, and J.P. Olsen, “A garbage can model of
organizational choice”, In Administrative Science Quarterly, 17:1-25, 1972.

(Cohen et al., 1974) M.D. Cohen and J.G. March, “Leadership and ambiguity”, Book
McGraw Hill, New York, NY, 1974.

(Colella et al., 1998) V. Colella, R. Borovoy, M. Resnick, “Participatory Simulations:
Using Computational to Learn about Dynamic Systems”, In Proceedings of the Computer
Human Interface Conference, Los Angeles, CA, April 1998.

(Crutchfield, 1994) J.P. Crutchfield, “Is anything ever new? Considering emergence”, In
A. Cowan, D. Pines and D. Meltzer (Eds.) Complexity: Metaphors, models and reality,
Perseus Books, 515-538.Cambridge, MA, 1994.

(Cyert et al., 1963) R.M. Cyert and J.G. March, “A behavioral theory of the firm”, Book,
Prentice-Hall, New Jersey,1963.

(Dam et al., 1998) K. K. Dam, L. M. Ni, “Design and Implementation of a Network
Emulator”, In Technical Report MSU-CPS-ACS-98-16, Michigan State University, May
1998.

(Doar, 1996) M. Doar, “A Better Model for Generating Test Networks”, In Proceeding of
IEEE GLOBECOM, November 1996.

(Emma et al., 2004) D. Emma, A. Pescapè and G. Ventre, “Analysis and experimentation
of an open distributed platform for synthetic traffic generation”, In Proceeding of 10th
International Workshop on Future Trends in Distributed Computing Systems
(FTDCS’04) Suzhou, China, May 2004.

(Espinoza et al., 2001) F. Espinoza, P. Persson, A. Sandin, H. Nyström, E. Cacciatore and
M. Bylund, “GeoNotes: Social and Navigational Aspects of Location-Based Information
Systems”, In Proceedings of the Ubiquitous Computing International Conference,
Atlanta, GA, September- October 2001.

References

273

(Familiar, 2003) Familiar Linux distribution official site, 2003,
http://familiar.handhelds.org

(Fall, 1999). K. Fall, “Network Emulator in the Vins/NS Simulator”, In Proceedings of
the 4th IEEE Symposium on Computers and Communications, pp. 244-250, Red Sea,
Egypt, July 1999.

(Faloutsos et al., 1999) M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law
Relationships of the Internet Topology”, In ACM Computer Communication Review,
Cambridge, MA, September 1999.

(Ferretti et al., 2003a) S. Ferretti and S. Cacciaguerra “A Design for Networked
Multiplayer Games: an Architectural Proposal”, In Proceedings of the Euromedia
Conference, Plymouth (UK), April 2003.

(Ferretti et al., 2003b) S. Ferretti, M. Roccetti, “On Designing an Event Delivery Service
for Multiplayer Networked Games: An Approach based on Obsolescence”, In
Proceedings of the 7th International Conference on Internet, Multimedia Systems and
Applications, Hawaii, Honolulu, August 2003.

(Ferretti et al., 2004) S. Ferretti, M. Roccetti & S. Cacciaguerra, “On Distributing
Interactive Storytelling: Issues of Event Synchronization and a Solution” In Proceedings
of the 2nd International Conference on Technologies for Interactive Digital Storytelling
and Entertainment (TIDSE 2004), (S. Gobel, U. Spierling, A. Hoffmann, I. Iurgel, O.
Schneider, J. Dechau, A. Feix Eds.), Darmstadt (De), Lecture Notes in Computer Science
n. 3105, Springer Verlag, 219-231, June 2004.

(Ferris et al., 1946) C. L. Ferris, F. E. Grubbs, and C. L. Weaver, “Operating
Characteristics for the Common Statistical Test of Significance”, In Annals of
Mathematical Statistics, 1946.

(Fielding et al., 1999) R. Fielding,J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee, “Hypertext Transfer Protocol - HTTP/1.1”, RFC 2616, June 1999.

(Floyd et al., 2001) S. Floyd, V. Paxson, “Difficulties in Simulating the Internet”, in
IEEE/ACM Transactions on Networking, February 2001.

(Fontana et al., 1994) W. Fontana and L. Buss, “The Arrival of the Fittest: Toward a
Theory of Biological Organization”, In Bulletin of Mathematical, Biology, 56: 1-64,
1994.

(Fontana et al., 1996) W. Fontana and L. Buss, “The barrier of objects; From dynamical
systems to bounded organizations”, in J. Casti and A Karlqvist (eds) Boundaries and
Barriers: 56-116, Addison Wesley, 1996.

References

274

(Ghini et al., 2001) V. Ghini, F. Panzieri, M. Roccetti, “Client-centered Load
Distribution: A Mechanism for Constructing Responsive Web Services”, In Proceedings
of 34th IEEE Hawaii International Conference On System Sciences (HICSS-34), Maui,
Hawaii, January 2001.

(Ghini et al., 2002) V. Ghini and F. Panzieri, “QoS-Adaptive Middleware Services”,
Ph.D Thesis, Bologna, Italy, February 2002

(GloMoSim, 2001) GloMoSim official site, February 2001,
http://pcl.cs.ucla.edu/projects/glomosim/

(GPE, 2003) GPE, The GPE Palmtop Environment official site, 2003,
http://gpe.handhelds.org

(Hannan et al., 1989) M. Hannan and J. Freeman, “Organizational ecology”, Harvard
University Press, Cambridge, MA, 1989.

(Herrscher et al., 2002a) D. Herrscher, A. Leonhardi, and K. Rothermel, “Modeling
Computer Networks for Emulation”, In Proceedings of the 2002 International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA'02), Las
Vegas, NE, June 2002.

(Herrscher et al., 2002b) D. Herrscher, K. Rothermel, “A Dynamic Network scenario
Emulation Tool”, In Proceedings of the 11th International Conference on Computer
Communications and Networks (ICCCN 2002), Miami, FL, October 2002.

(Iacucci et al., 2000) G. Iacucci, K. Kuutti, M. Ranta, “On the Move with a Magic Thing:
Role Playing in Concept Design of Mobile Services and Devices”, In Proceedings of the
ACM Symposium on Designing Interactive Systems, Brooklin, NY, 2000.

(Ingham et al., 1994) D. Ingham and G. Parrington, “Delayline: A Wide-Area Network
Emulation Tool”, In Computing Systems, Vol. 7, No. 3, pp. 313-332, 1994.

(Ingham et al., 2000) D. Ingham, S.K. Shrivastava, F. Panzieri, “Constructing
Dependable Web Services”, In IEEE Internet Computing, Vol. 4, N. 1, pp. 25-33,
January-February 2000.

(JAS, 2002) JAS official site, 2002, http://sourceforge.net/projects/jaslibrary/

(Jin et al., 2000) C. Jin, Q. Chen, and S. Jamin, “Inet: Internet Topology Generator”, In
Technical Report Research Report CSE-TR-433-00, University of Michigan at Ann
Arbor, 2000.

(Jin et al., 2001) S. Jin, A Bestavros “GISMO: Generator of Internet Streaming Media
Objects and workloads”, In ACM SIGMETRICS Performance Evaluation Review,
November 2001.

References

275

(Kanter, 2003) T. G. Kanter, “Attaching Context-Aware Services to Moving Locations”,
In IEEE Internet Computing, Vol. 7, N. 2, March - April 2003.

(Knuth, 1994) D. Knuth. “The Stanford GraphBase: A Platform for Combinatorial
Computing” in Addison-Wesley book, 1994.

(Lepreau et al., 1999) J. Lepreau, C. Alfeld, D. Andersen, K. van Maren, “A Large-Scale
Network Testbed”, In SIGCOMM’99 New Research Session, Cambridge, 1999.

(Levitt et al., 1989) B. Levitt and C. Nass, “The lid on the Garbage Can: Institutional
Constraints on Decision Making in the Textbook Publishing Industry”, Administrative
Science Quarterly, 34(2), 190-207, 1989.

(Lin et al., 2002) T. Lin, S. F. Midkiff, J. S. Park, “A Dynamic Topology Switch for the
Emulation of the Wireless Mobile Ad Hoc Networks”, In Proceedings of IEEE
Conference on Local Computer Networks (LCN’02) Tampa, Florida, USA, November
2002.

(Lomi et al., 1999) A. Lomi, E. R. Larsen, “Learning with Simulation: Understanding
the Strategic Implications of Deregulation and Competition in the Electricity Industry”,
in Proceedings of the Workshop on Agent Simulation: Applications, Models, and Tools,
Chicago, IL, October 1999.

(Lomi et al., 2003a) A. Lomi, S. Cacciaguerra “Organizational Decision Chemistry on a
Lattice”, In Proceedings of the Seventh Annual Swarm Users/Researchers Conference
(SwarmFest’03), Notre Dame, Indiana (USA), April 2003.

(Lomi et al., 2003b) A. Lomi, S. Cacciaguerra, “The Emergence of Routines in an
Organizational Decision Chemistry”, In Proceedings of the First European Social
Simulation Association Conference (ESSA 2003), Groningen, Netherland, September
2003.

(March et al., 1976) J.G. March and J.P. Olsen, “Ambiguity and choice”, Bergen,
Universitetsforlaget, 1976.

(March, 1978) J.G. March, “Bounded rationality, ambiguity and the engineering of
choice”, Bell Journal of Economics, 9: 587-607, 1978.

(March et al., 1986) J.G. March and R. Weissinger Baylon, “Ambiguity and command:
Organizational perspectives on military decision making”, Marshfield, MA, Pitman,
1986.

(March, 1994) J.G. March, “A primer on decision making”, The Free Press, New York,
NY, 1994.

References

276

(March et al., 2000) J.G. March, M. Schultz and X. Zhou, “The dynamics of rules”,
Stanford University Press, Stanford, CA, 2000.

(Masuch et al., 1989) M. Masuch and P. LaPotin, “Beyond garbage cans: An AI model of
organizational choice”, Administrative Science Quarterly, 34: 38-67, 1989.

(McFadden, 1976) D. McFadden, “The revealed preferences of a government
bureaucracy: Theory”, In Rand Journal of Economics. (6) No. 2 (Autumn): 401-416,
1976.

(Medina et al., 2000) A. Medina, I. Matta, and J. Byers, “On the Origin of Powerlaws in
Internet Topologies”, In ACM Computer Communication Review, 30(2):18–28, April
2000.

(Medina et al., 2001) A. Medina, A. Lakhina, I. Matta, and John Byers, “BRITE: An
Approach to Universal Topology Generation”, In Proceedings of the International
Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems (MASCOTS’01), August 2001.

(Milliken, 1993) W. Milliken, Product Overview on BBN Long-Link Emulator, 1993.

(Miller, 2001) J. Miller, “Evolving information processing organizations”, in A. Lomi,
and E. Larsen (Eds.) Dynamics of Organizations: 307-328. Boston, MA/Palo Alto, CA.
MIT Press/AAAI Press, 2001.

(Nahum et al., 2001) E. M. Nahum, M. C. Rosu, S. Seshan and J. Almeida “The Effects
of Wide-Area Conditions on WWW Server Performance”, In Proceedings of ACM
SIGMETRICS/Performance, Cambridge, MA, 2001.

(Naylor et al., 1967) T. H. Naylor and J. M. Finger “Verification of Computer Simulation
Models”, In Proceedings of the Management Science, Vol. 2, pp. B92-B101.

(Netlogo, 1999)Netlogo official site, 1999, http://www.ccl.sesp.northwestern.edu/netlogo

(Nelson et al., 1982) R.R. Nelson and S.G. Winter, “An evolutionary theory of economic
change”, The Belknap Press of Harvard University Press, Cambridge, MA, 1982.

(NIST NET, 1999) N. Advanced Network Technologies Division. NIST Net home page,
1999, http://www.antd.nist.gov/itg/nistnet/

(NS) “The Network Simulator 2 official site”, http://www.isi.edu/nsnam/ns/

(NS, 1999) B. N. research group. NS home page, 1999, http://www-
mash.cs.berkeley.edu/ns/ns.html

References

277

(NS manual, 2003) Manual, Notes and Documentation of The Network Simulator 2,
2003, http://www.isi.edu/nsnam/ns/ns-documentation.html

(Padgett, 1980) J.F. Padgett, “Managing garbage can hierarchies”, Administrative
Science Quarterly, 24(4): 583-604, 1980.

(Padgett et al., 2003) J.F. Padgett, D. Lee, N. Collier, “Economic production as
chemistry”, In Proceedings of Forthcoming in Industrial and Corporate Change, 2003.

(Paxson et al., 1999) V. Paxson and S. Floyd, “Why We Don’t Know How To Simulate
The Internet”, In Proceedings of the Winter Simulation Conference, Atlanta, GA, January
1997.

(Palazzi et al., 2004a) C. E. Palazzi, S. Ferretti, S. Cacciaguerra & M. Roccetti, “On
Maintaining Interactivity in Event Delivery Synchronization for Mirrored Game
Architectures”, In Proceedings of the 1st IEEE International Workshop on Networking
Issues in Multimedia Entertainment (NIME'04) - GLOBECOM 2004 - Satellite
Workshop, (G. Pau, M. Roccetti, S. Lee Eds.), Dallas (USA), IEEE Communications
Society, November 2004.

(Palazzi et al., 2004b) C. E. Palazzi, S. Ferretti, S. Cacciaguerra & M. Roccetti, “A RIO-
like Technique for Interactivity Loss Avoidance in Fast-Paced Multiplayer Online
Games: a Preliminary Study”, In Proceedings of the 2nd Annual International Workshop
in Computer Game Design and Technology (GDTW'04), Liverpool (UK), November
2004.

(Resnick et al., 1998) M. Resnick, U. Wilensky, “Diving into Complexity: Developing
Probabilistic Decentralized Thinking through Role-Playing Activities”, In Journal of the
Learning Sciences, Vol. 7, N. 2, 1998.

(Rizzo, 1997) L. Rizzo, “Dummynet: a Simple Approach to the Evaluation of Network
Protocols”, In ACM Computer Communication Review, January 1997.

(Roccetti et al., 2002a) M. Roccetti, V. Ghini, P. Salomoni, A. Gambetti, D. Melandri, M.
Piaggesi, D. Salsi, “The Structuring of a Wireless Internet Application for a Music-On-
Demand Service on UMTS Devices”, In Proceedings of the ACM Symposium on
Applied Computing (SAC'02), ACM Press, Madrid (Spain), March 2002.

(Roccetti et al.,2002b) M. Roccetti, V. Ghini & S. Cacciaguerra, “Interceptor: a Tool for
Enabling Large-Scale Simulation of Software Distributed Applications in a Networked
Laboratory”, In Proceedings of the 6th World Multiconference on Systemics,
Cybernetics and Informatics (ISAS/SCI 2002), IIIS Press, pp. 242-246, Orlando, FL,
USA, July 2002.
(Roccetti et al.,2002c) M. Roccetti, P. Salomoni, V. Ghini, S. Ferretti, S. Cacciaguerra
and A. Sorcinelli, “MoKa: a Wireless Internet Application for Delivering Mobile
Karaoke on UMTS Devices”, In Proceedings of the IASTED International Conference on

References

278

Communications, Internet and Information Technology (CIIT’02), St. Thomas, Virgin
Islands (USA), November 2002.

(Roccetti et al., 2003a) M. Roccetti, P. Salomoni, V. Ghini, S. Ferretti & S. Cacciaguerra
"Delivering Music over the Wireless Internet: from Song Distribution to Interactive
Karaoke on UMTS Devices", in Handbook of Wireless Internet, (B. Furht, M. Ilyas eds.),
CRC Press, pp. 537-565, Boca Raton, USA, March 2003.

(Russell, 1999) R. Russell. The Linux IP firewall chains page, 1999,
http://www.rustcorp.com/linux/ipchains/

(Russell, 2002) R. Russell, “NAT HOWTO”, “Netfilter Extensions HOWTO”, “Netfilter
Hacking HOWTO”, “Packet Filtering HOWTO, February 2002,
http://netfilter.samba.org/documentation/index.html#HOWTO

(Salomoni, 2003) P. Salomoni, “A Multimedia Mobile City Guide for Outdoor Learning”,
In Proceedings of the ICSEE/Western MultiConference on Computer Simulation
(ICSEE/WMC'03), Orlando, FL, January 2003.

(Satyanarayanan et al., 1997) M. Satyanarayanan and B. Noble, “The Role of Trace
Modulation in Building Mobile Computing Systems”, In Proceedings of the 6th
Workshop on Hot Topics in Operating Systems, Cape Cod, MA, May 1997.

(Segal et al., 2002) M. Segal, K. Akeley, The OpenGL Graphics System: A Specification
(Version 1.4), http://www.opengl.org

(Sibal et al., 1994) S. Sibal, A. DeSimone, “Controlling alternate routing in general
mesh packet flow networks”, In Proceedings of the ACM SIGCOMM’94, pp.136–147,
1994.

(Sidhu et al., 1993) D. Sidhu, T. Fu, S. Abdallah, R. Nair, R. Roltun, “Open shortest path
first (OSPF) routing protocol simulation”, In Proceedings of the ACM SIGCOMM’93,
pp. 53–62, 1993.

(SSF, 2004) SSF version 2.0, Scalable Simulation Framework, January 2004,
http://www.ssfnet.org/

(Stevens, 1998) W. R. Stevens, “Unix Network Programming, Networking APls: Sockets
and XTl, Volume 1”, Prentice-Hall, 1998.

(Swarm, 1999) Swarm official site, 1999, http://www.swarm.org

(Vahdat et al., 2002) A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J.
Chase, and D. Becker, “Scalability and Accuracy in a Large-Scale Network Emulator”,

References

279

In Proceedings of the 5th Symposium on Operating System Designand Implementation,
Boston, MA, december 2002.

(Veloso et al., 2002) E. Veloso, V. Almeida, W. Meira, A. Bestavros, S. Jin, “A
Hierarchical Characterization of a Live Streaming Media Workload”, In Proceedings of
the ACM SIGCOMM Internet Measurement Workshop, 2002.

(Warglien et al., 1995) M. Warglien and M. Masuch, “The logic of organizational
disorder”, Berlin, De Gruyter, 1995.

(Watts, 1999) D. J.Watts, “Small Worlds”, a Princepton Studies in Complexity Book,
1999.

(Waxman, 1988) B. M. Waxman, “Routing of Multipoint Connections”, in IEEE journal
Selection Areas Communication, vol. 6 no. 9, pp 1617-1622, 1988.

(White et al., 2002a) B. White, J. Lepreau, S. Guruprasad, “Lowering the Barrier to
Wireless and Mobile Experimentation” in Proceedings of the First Workshop on Hot
Topics in Networks (HotNets-I), October 2002.

(White et al., 2002b) B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, A. Joglekar, “An Integrated Experimental Environment for
Distributed Systems and Networks”, in Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI '02), pp. 255-270, December 2002.

(Wilensky et al., 2000) U. Wilensky, W. Stroup, “Networked Gridlock: Students
Enacting Complex Dynamic Phenomena with the HubNet Architecture”, In Proceedings
of the Fourth Annual International Conference of the Learning Sciences, Ann Arbor, MI,
June 2000.

(Xu et al., 2001) K. Xu, M. Takai, J. Martin and R. Bagrodia, “Looking Ahead of Real
Time in Hybrid Component Networks”, In Proceedings of Workshop on Parallel and
Distributed Simulation (PADS’01), Lake Arrowhead, CA, May 2001.

(Zegura et al., 1996) E. Zegura, K. Calvert, S. Bhattacharjee, “How to Model an
Internetwork”, In Proceedings of IEEE INFOCOM, April 1996.

(Zegura et al., 1997) E. W. Zegura, K. L. Calvert, M. J. Donahoo, “A Quantitative
Comparison of Graph-Based Models for Internet Topology”, In IEEE/ACM Transaction
on Networking, vol. 5 no. 6, December 1997.

(Zeng et al., 1998) X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a Library for
Parallel Simulation of Large-scale Wireless Networks”, In Proceedings of the 12th
Workshop on Parallel and Distributed Simulations, pp. 154-161, Banff, Canada, May
1998.

References

280

(Zheng et al., 2002a) P. Zheng and L. M. Ni, “EMPOWER: A Scalable Framework for
Network Emulation”, In Proceedings of the 2002 International Conference on Parallel
Processing (ICPP'02), In Press, Vancouver, Canada, 2002.

(Zheng et al., 2002b) P. Zheng and L. M. Ni, “Experiences in Building a Scalable
Distributed Network Emulation System”, In Technical Report MSU-CSE-02-18,
Department of Computer Science and Engineering, Michigan State University, 2002.

(Zheng et al., 2002c) P. Zheng and L. M. Ni, “EMWIN: Emulating a Mobile Wireless
Network using a Wired Network”, In Proceedings of the Workshop on Wireless Mobile
Multimedia (WOWMOM’02), Atlanta, GE, September 2002.

	scaccia.pdf
	scaccia.pdf
	List of Figures

