
From the Wisdom of the Hive to Intelligent

Routing in Telecommunication Networks:

A Step towards Intelligent Network Management
through Natural Engineering

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Universität Dortmund

am Fachbereich Informatik

von

Muddassar Farooq

Dortmund

2006



ii

Tag der mündlichen Prüfung: 01.02.2006

Dekan: Prof. Dr. Bernhard Steffen

Gutachter: Prof. Dr. Horst F. Wedde (Universität Dortmund)

Prof. Dr. Heiko Krumm (Universität Dortmund)



iii

Dedication

This thesis is dedicated to my father Barkat Ali and my mother Asmat. This should not be
considered as a traditional dedication because my father is not a person but an institution. He
retired as a senior bank executive. The financial experts could imagine the stress related to such a
job. He used to teach me at least for two to three hours daily in my primary school after coming
from his tiring job routine. I still remember that once he was posted in a rural town of Saudi
Arabia, I was unable to go to any school for two years because of unavailability of any English or
Urdu medium school. However, I have the honor to go to the school of my father. He taught me
everything from science to mathematics and from drawing to literature during these two years. I
just used to go to Dhahran province at the end of the academic year to take my final examination
in an Urdu medium school. Some of you might be surprised to know that I got second position
both in grade 5 and grade 6 and nearly missed the top one by a couple of marks. I think that
without his tremendous hard work I would have not been able to be successful in my life. I believe
that the world would be a better place for many children if their father could give them only 20%
of the time that my father gave to me. I thank you and salute you my teacher, tutor and father.
This thesis is your thesis and this success is your success. My mother is a house wife and she gave
me all what a mother could give to her child. Without her strong encouragement and prayers, I
would have not achieved this success in my life. I am thankful to God that He gave me parents
like you.



iv

Acknowledgments

First, I shall thank Prof Dr. Horst F. Wedde, who showed his confidence in me by allowing me to
tread on a labyrinthine research path where many other professors would have not even dared to
think of. He always encouraged me and remained patient while I was reading the two masterpiece
books: The Dance Language and Orientation of Bees and The Wisdom of the Hive. Finally, his
patience and confidence was generously rewarded once our paper won the best paper award at
ANTS conference in Brussels in 2004. Currently, we are working on two projects that are inspired
from the bee behavior: BeeHive deals with routing in fixed networks and BeeAdHoc deals with
routing in Mobile Ad Hoc Networks (MANETs). The projects have received enormous attention
by the Nature inspired routing algorithm groups around the world. Moreover, my special gratitude
goes to Prof Wedde, the way he has thoroughly read the draft version of this manuscript. Last
but not least he pushed a lazy person like me to the limits to finish the writing of this manuscript
in time. I would also like to thank Prof Dr. Heiko Krumm and Dr. Thomas Bartz-Beielstein for
their valuable comments and suggestions on an earlier version of the manuscript. These helped in
improving the quality of the manuscript.
My stay at LS III is a story of dedicated friendship. I consider this friendship even a bigger
achievement than BeeHive or BeeAdHoc. Frank-Thorsten Breuer and his parents accepted us like
family members in their family. Every couple of months they invited us for a dinner or a party at
their home. Arnim Wedig took care of me with his nice tea and cookies. He also assisted me in
the procurement of expensive computational resources for our projects. Mario Lischka helped me
in quickly learning LaTex. I must not dare to forget Mrs Düsenberg, who as we call her, is the
heart of our department. She is reputed to be our de facto psychotherapist. She gave me useful
tips how to be a successful husband.
BeeHive would have never been realized inside the network stack of the Linux kernel without the
dedicated work of my students Yue Zhang and Alexander Harsch. I find myself lucky that I had
the opportunity to supervise them in their Master theses. Constantin Timm deserves my special
indebtedness for developing a plotter utility that automated the process of reading the data files
and then plotting the important performance values in the figures. I would also like to thank
Gianni Di Caro at IDSIA, Switzerland. We extensively exchanged emails and our discussions
resulted in identifying the important directions for our BeeHive project.
BeeHive project would have not been successful without two special persons: my wife Saadi (Dua)
and my son Yousouf. Saadi is my girl friend, my love and then of course my wife. She has and
is still sacrificing her career in order to enable me to quickly finish my projects and the current
manuscript. She is a gynecologist and I wish that a day would come when I could do something
for her as well. Yousouf kept me busy in everything except my BeeHive project. He showed me
that there are more important things in life than BeeHive e.g. Teletubbies and Barney. I now
remember their names by heart (Tinky-Winky, Dipsy, Laa-Laa and Po) because we have seen
them almost daily during past couple of months.



v

Contents

List of Figures ix

List of Tables xi

List of Algorithms xii

1 Introduction 1
1.1 Motivation of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 An engineering approach to Nature inspired routing protocols . . . . . . . . . . . . 5
1.4 The scientific contributions of the work . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 A simple, distributed, decentralized multi-agent system . . . . . . . . . . . 6
1.4.2 A comprehensive routing system . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 An empirical comprehensive performance evaluation framework . . . . . . . 6
1.4.4 A scalability framework for (Nature inspired) agent-based routing protocols 8
1.4.5 Protocol engineering of Nature inspired routing protocols . . . . . . . . . . 8
1.4.6 A Nature inspired Linux router . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.7 The protocol validation framework . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 A Comprehensive Survey of Nature Inspired Routing Protocols 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Organization of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Network routing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Features landscape of a modern routing algorithm . . . . . . . . . . . . . . 14
2.2.2 Taxonomy of routing algorithms . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Ant Colony Optimization (ACO) routing algorithms for fixed networks . . . . . . . 19
2.3.1 Important elements of ACO in routing . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Ant-based control (ABC) for circuit switched networks . . . . . . . . . . . . 20
2.3.3 Ant-based control (ABC) for packet switched networks . . . . . . . . . . . . 22
2.3.4 AntNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Ant Colony Routing (ACR) and AntNet+SELA QoS aware routing . . . . 24
2.3.6 A brief history of research in AntNet . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Evolutionary routing algorithms for fixed Networks . . . . . . . . . . . . . . . . . . 28
2.4.1 Important elements of EA in routing . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 GARA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 ASGA and SynthECA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 DGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Related work on routing algorithms for fixed networks . . . . . . . . . . . . . . . . 34
2.5.1 Artificial Intelligence community . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Networking community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 From the Wisdom of the Hive to Routing in Telecommunication Networks 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Organization of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 An agent-based investigation of a honey bee colony . . . . . . . . . . . . . . . . . . 44

3.2.1 Labor management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



vi

3.2.2 The communication network of a honey bee colony . . . . . . . . . . . . . . 45
3.2.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 Distributed coordination and planning . . . . . . . . . . . . . . . . . . . . . 45
3.2.5 Energy efficient foraging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.6 Stochastic selection of flower sites . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.7 Group organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 BeeHive: The mapping of concepts from Nature to networks . . . . . . . . . . . . . 46
3.4 The bee agent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Estimation model of agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Goodness Of a neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Communication paradigm of agents . . . . . . . . . . . . . . . . . . . . . . 52
3.4.4 Packet switching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 BeeHive algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 The performance evaluation framework for Nature inspired routing algorithms . . 58
3.7 Routing algorithms used for comparison . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.1 AntNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.2 DGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.3 OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.4 Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Simulation environment for BeeHive . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.8.1 simpleNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.8.2 NTTNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.8.3 Node150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Discussion of the results from the experiments . . . . . . . . . . . . . . . . . . . . . 64
3.9.1 Congestion control behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9.2 Queue management behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.9.3 Hot spots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.9.4 Router crash experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.9.5 Bursty traffic generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.9.6 Session-less network traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.9.7 Size of routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 A Scalability Framework for Nature Inspired Routing Algorithms 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1.1 Existing work on the scalability analysis . . . . . . . . . . . . . . . . . . . . 100
4.1.2 Organization of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 The scalability model for a routing algorithm . . . . . . . . . . . . . . . . . . . . . 103
4.2.1 Cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.2 Power model of an algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Scalability metric for a routing algorithm . . . . . . . . . . . . . . . . . . . 105

4.3 Simulation environment for scalability analysis . . . . . . . . . . . . . . . . . . . . 105
4.3.1 simpleNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2 NTTNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.3 Node150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.4 Node350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.5 Node650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.6 Node1050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Discussion of the results from the experiments . . . . . . . . . . . . . . . . . . . . . 106
4.4.1 Throughput and packet delivery ratio . . . . . . . . . . . . . . . . . . . . . 108
4.4.2 Packet delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.3 Control overhead and suboptimal overhead . . . . . . . . . . . . . . . . . . 112
4.4.4 Agent and packet processing complexity . . . . . . . . . . . . . . . . . . . . 114
4.4.5 Routing table size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



vii

4.4.6 Investigation of the behavior of AntNet . . . . . . . . . . . . . . . . . . . . 119
4.5 Towards empirically founded scalability model for routing protocols . . . . . . . . . 121

4.5.1 Scalability matrix and scalability analysis . . . . . . . . . . . . . . . . . . . 123
4.5.2 Scalability analysis of BeeHive . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.5.3 Scalability analysis of AntNet . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5.4 Scalability analysis of OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 BeeHive in real networks of Linux routers 129
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1.1 Organization of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2 Engineering of Nature inspired routing protocols . . . . . . . . . . . . . . . . . . . 130

5.2.1 Structural design of a routing framework . . . . . . . . . . . . . . . . . . . 131
5.2.2 Structural semantics of the network stack . . . . . . . . . . . . . . . . . . . 134
5.2.3 System design issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Natural routing framework: design and implementation . . . . . . . . . . . . . . . 136
5.3.1 Algorithm-independent framework . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.2 Algorithmic-dependent BeeHive module . . . . . . . . . . . . . . . . . . . . 137

5.4 Protocol verification framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5 The motivation behind design and structure of experiments . . . . . . . . . . . . . 147
5.6 Discussion of the results from the experiments . . . . . . . . . . . . . . . . . . . . . 148

5.6.1 Quantum traffic engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.6.2 Real world applications traffic engineering . . . . . . . . . . . . . . . . . . . 161
5.6.3 Hybrid traffic engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6 Conclusion and Future Works 165
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2.1 Quality of Service (QoS) routing . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2.2 Cyclic paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2.3 Formal analysis framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2.5 Intelligent and knowledgeable network engineering . . . . . . . . . . . . . . 171
6.2.6 Bee colony metaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Natural Engineering: The need for a distinct discipline . . . . . . . . . . . . . . . . 174

A Software Protocol Engineering for Linux Routers 175
A.1 Networking code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.2 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.2.1 socket buffer sk buff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.2.2 Network device structure net device . . . . . . . . . . . . . . . . . . . . . . 177
A.2.3 Socket structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.3 Datalink layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3.1 Receiving packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.4 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.4.1 Receiving packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.4.2 Sending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.5 UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.5.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.5.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.6 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.6.1 TCP header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.6.2 TCP states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



viii

A.6.3 Three way handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.7 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.7.1 Policy routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.8 NetFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.8.1 Calling hook functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.8.2 Searching the hook table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.8.3 Actions of hook functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.9 Nature inspired routing protocols in the Linux kernel . . . . . . . . . . . . . . . . . 197
A.9.1 Agent propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.9.2 Queue management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.9.3 Quality evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

References 201



ix

List of Figures

1.1 Natural protocol engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 A taxonomy of routing protocols for fixed telecommunication networks . . . . . . . 18
2.2 Pheromone routing table in ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Routing table in DGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Routing classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Bee agents flooding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Goodness of a neighbor (different options) . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Communication paradigm of bee agents . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Performance evaluation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 SimpleNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 NTTNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Node150: figure is captured from OMNeT++ plotter . . . . . . . . . . . . . . . . . 64
3.8 Congestion control behavior in simpleNet (throughput and packet delay) . . . . . . 65
3.9 Congestion control behavior in simpleNet (packet delivery ratio and session com-

pletion ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.10 Congestion control behavior in simpleNet (control and suboptimal overhead) . . . 67
3.11 Congestion control behavior in simpleNet (agent and data processing complexity) . 68
3.12 Congestion control behavior in NTTNet (throughput and packet delay) . . . . . . 70
3.13 Congestion control behavior in NTTNet (packet delivery ratio and session comple-

tion ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.14 Congestion control behavior in NTTNet (control and suboptimal overhead) . . . . 72
3.15 Congestion control behavior in NTTNet (agent and data processing complexity) . 73
3.16 Congestion control behavior in Node150 (throughput and packet delay) . . . . . . 75
3.17 Congestion control behavior in Node150 (packet delivery ratio and session comple-

tion ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.18 Congestion control behavior in Node150 (control and suboptimal overhead) . . . . 77
3.19 Congestion control behavior in Node150 (agent and data processing complexity) . 78
3.20 Queue management/control behavior of algorithms (packet delivery ratio and packet

delay) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.21 Queue management/control behavior of algorithms (session completion ratio and

session delay) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.22 Hot spot is Node 0 in NTTNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.23 Hot spot is Node 0 in Node150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.24 Router 20 and Router 43 crashed at time = 500 seconds . . . . . . . . . . . . . . . 88
3.25 Router 20 crashed at 300 seconds and Router 43 crashed at 500 seconds and both

were repaired at 800 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.26 Bursty traffic behavior in NTTNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.27 Bursty traffic behavior in Node150 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.28 Session-less network traffic for NTTNet . . . . . . . . . . . . . . . . . . . . . . . . 93
3.29 Session-less network traffic for Node150 . . . . . . . . . . . . . . . . . . . . . . . . 95
3.30 Size of routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 The scalability behavior in different situations . . . . . . . . . . . . . . . . . . . . . 101
4.2 Node350: figure is captured from OMNeT++ plotter . . . . . . . . . . . . . . . . . 106
4.3 Node650: figure is captured from OMNeT++ plotter . . . . . . . . . . . . . . . . . 107
4.4 Node1050: figure is captured from OMNeT++ plotter . . . . . . . . . . . . . . . . 107
4.5 Throughput (Mbits/sec)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Packet delivery ratio (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



x

4.7 Packet delay (msec)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.8 Routing overhead (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.9 Suboptimal overhead (%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.10 Agent processing complexity per node (in billions) . . . . . . . . . . . . . . . . . . 117
4.11 Packet switching complexity per node (in billions) . . . . . . . . . . . . . . . . . . 118
4.12 The size of the routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.13 The behavior of AntNet (agents sent, received and deleted) . . . . . . . . . . . . . 120
4.14 The behavior of AntNet (agent life in hops and sec) . . . . . . . . . . . . . . . . . 121

5.1 Monolithic implementation in kernel space . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Monolithic implementation in user space . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3 Hybrid implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4 Protocol block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.5 NetFilter hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6 Block diagram of BeeHive module . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.7 Top level routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.8 IPs table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.9 Neighbors table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.10 Detailed bee routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.11 Protocol verification framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.12 simpleNet topology: 8 routers, 9 bidirectional links each of 10 Mbits/sec . . . . . . 146
5.13 Experiments 1-4 (packet delivery ratio and packet delay) . . . . . . . . . . . . . . . 150
5.14 Experiments 1-4 (session completion ratio and session delay) . . . . . . . . . . . . 151
5.15 Experiments 5-7 (packet delivery ratio and packet delay) . . . . . . . . . . . . . . . 153
5.16 Experiments 5-7 (session completion ratio and session delay) . . . . . . . . . . . . 154
5.17 Experiment 8 (throughput and packet delay) . . . . . . . . . . . . . . . . . . . . . 155
5.18 Hot spot experiments (packet delivery ratio and packet delay) . . . . . . . . . . . . 157
5.19 Hot spot experiments (session completion ratio and session delay) . . . . . . . . . . 158
5.20 Router down (packet delivery ratio and packet delay) . . . . . . . . . . . . . . . . . 159
5.21 Router down (session completion ratio and session delay) . . . . . . . . . . . . . . 160
5.22 FTP experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.23 FTP experiments with 15 downloads . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1 Routing classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Jitter (msec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3 Distribution of packets that follow cyclic paths . . . . . . . . . . . . . . . . . . . . 170
6.4 Nature inspired distributed and autonomous router . . . . . . . . . . . . . . . . . . 172

A.1 Networking code in the Linux kernel tree . . . . . . . . . . . . . . . . . . . . . . . 175
A.2 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.3 TCP packet processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.4 fib table structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.5 fib node structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



xi

List of Tables

2.1 Wired best-effort networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Wired QoS networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Classification of routing algorithms for fixed networks . . . . . . . . . . . . . . . . 40

3.1 Processing complexity of different forms . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Intra foraging zone routing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Symbols used in the BeeHive algorithm . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Input parameter symbols used in the chapter . . . . . . . . . . . . . . . . . . . . . 59
3.5 Output parameter symbols used in the chapter . . . . . . . . . . . . . . . . . . . . 60
3.6 Performance parameters for congestion control behavior in simpleNet . . . . . . . . 69
3.7 Performance parameters for congestion control behavior experiments for NTTNet . 74
3.8 Performance parameters for congestion control behavior in Node150 . . . . . . . . 76
3.9 Performance parameters for different buffer capacities in NTTNet . . . . . . . . . . 83
3.10 Performance parameters for hot spot and router down experiments . . . . . . . . . 87
3.11 Performance parameters for bursty traffic generators on NTTNet . . . . . . . . . . 91
3.12 Performance parameters for bursty traffic generators on Node150 . . . . . . . . . . 91
3.13 Performance parameters for Session-less traffic in NTTNet . . . . . . . . . . . . . . 94
3.14 Performance parameters for Session-less traffic in Node150 . . . . . . . . . . . . . . 95

4.1 Performance values for MSIA = 4.6 sec . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Performance values for MSIA = 2.6 sec . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3 Performance values for MSIA = 1.6 sec . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4 BeeHive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.5 AntNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.6 OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7 Scalability Matrix for BeeHive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.8 Scalability Matrix for AntNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.9 Scalability Matrix for OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Symbols used in the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 The mapping of Hosts to IP Addresses in SimpleNet . . . . . . . . . . . . . . . . . 147
5.3 Parameters for traffic generator for Experiments 1 to 10 . . . . . . . . . . . . . . . 148
5.4 Important performance values for Experiments 1 to 4 from . . . . . . . . . . . . . 152
5.5 Important performance values for Experiments 5 to 7 . . . . . . . . . . . . . . . . 152
5.6 Important performance values for Experiment 8 . . . . . . . . . . . . . . . . . . . . 156
5.7 Important performance values for hot spot experiments . . . . . . . . . . . . . . . 156
5.8 Important performance values for router down experiments . . . . . . . . . . . . . 160
5.9 Performance values from SQTG and D-ITG . . . . . . . . . . . . . . . . . . . . . . 163
5.10 Important performance values for UDP and VoIP experiments . . . . . . . . . . . 164



xii

List of Algorithms

1 Bee launching and processing algorithms . . . . . . . . . . . . . . . . . . . . . . . . 56
2 Packet switching and neighbor maintenance algorithms . . . . . . . . . . . . . . . . 57



1
Introduction

During the past years, telecommunication networks have become a special focus of research, both
in academia and industry [76, 77, 162]. This is certainly due to the unprecedented growth of
the Internet during the last decade of the previous century as it developed into a nerve center
of the communication infra-structure [136]. One important reason for the success of the Internet
is its connection-less packet-switching technology (no connection is established between a sender
and a receiver). Such a paradigm results in a simple, flexible, scalable and robust network layer
architecture [109, 15, 152]. This is in contrast to traditional connection-oriented telecommuni-
cation networks in which a circuit is reserved for a connection between a sender and a receiver
[76, 77, 162].
The Internet success motivated researchers to realize the dream of Ubiquitous Computing, includ-
ing the concept of ”one person–many computers” [223, 225, 224, 226]. Research and development
in Ubiquitous Computing resulted in an exponential growth of smart hand-held computing de-
vices, which have to be inter-connected and connected to the Internet to satisfy highly demanding
users. In turn, these requirements resulted in a phenomenal growth in wireless telecommunica-
tion networks and their supporting Internet Protocol (IP) (which is the standard protocol for the
network layer of the Internet) on wireless networks. However, these wireless networks require an
infra-structure (base station) for providing connectivity to mobile terminals. In the sequel, work
on Mobile Ad-Hoc Networks (MANETs) has become a vigorous effort. Here mobile terminals
communicate with one another without the need for a communication infra-structure. These net-
works have turned useful or even indispensable in search and rescue operations, disaster relief
management and military command and control.
Ubiquitous Computing has created a demanding community of users, who are utilizing its potential
in novel applications like World Wide Web (WWW), Computer Supported Collaborative Work
(CSCW) Environments, E-commerce, Tele-medicine, E-learning etc. An essential feature of most
of these applications is the ability to transmit audio and video streams to the participants under
some Quality of Service (QoS) constraints. The users want all of these services on their desktops
as well as on their mobile terminals. Such challenging requirements can only be met if a network’s
resources are utilized in an efficient manner.
The efficient utilization of limited network resources and infra-structures by enhancing/optimizing
the performance of operational IP networks is defined as Traffic Engineering [12, 135]. These
goals are accomplished by devising efficient and reliable routing strategies. The important fea-
tures and characterizations of such routing protocols are: load-balancing, constraint-based routing,
multipath-routing, fast re-routing, protection switching, fault-tolerance and intelligent route man-
agement. Currently, the Internet community employs multi-path routing algorithms like MPLS
(Multi-protocol Label Switching) [148], which is based on managing virtual circuits on top of the
IP layer, and hence lacks scalability and robustness. Another approach avoids completely the use
of virtual circuits and manages the resources of each session by doing per-flow fair scheduling of

1



2 Motivation of the work

the links. Nevertheless, flows are setup along the shortest paths determined by the underlying
routing protocols. The reservation of flows are managed by Resource Reservation Protocol (RSVP)
[243, 207]. However, the deterministic service guarantees are provided to real time applications
using the Interserv architecture [24, 243]. In large networks, this per flow mechanism does not
scale (they have hundreds of thousands of flows), therefore, RSVP has been extended in [86] by
replacing the per-flow routing state with per source/destination routing state. This results in a
state size that grows only quadratically with the number of nodes. Both of these protocols suffer
from serious performance bottlenecks because they utilize the single-path routing algorithm Open
Shortest Path First (OSPF) at IP layer. Consequently, the bandwidth of the single path is quickly
consumed which results in a high call blocking probability [207].
The major challenge in traffic engineering in a nutshell is to to design multi-path routing proto-
cols for IP networks in which multiple/alternative paths are efficiently discovered and maintained
between source and destination pairs. Such routing protocols will provide solutions to existing
technical challenges, by using the connection-less paradigm of the IP layer.

1.1 Motivation of the work

We believe that a complete reengineering of the network layer is the logical solution to not only
traffic engineering problem but also to network management. The growth of the Internet demands
design and development of novel and intelligent routing protocols that would result in an intelligent
and knowledgeable network layer. Currently, the network layer is relegated to just switching data
packets to the next hop based on the information in the routing tables collected by non-intelligent
control packets. The new protocols, however, have to be designed with a careful engineering vision
in order to reduce their communication, processing and router’s resource costs.
The research in agent-based routing systems has resulted in developing many novel networking sys-
tems [199, 44, 89, 132]. The algorithms utilize software agents, which have the following properties
[247]:

• Autonomous: the capability of performing autonomous actions.

• Proactive: the capability of exhibiting opportunistic and goal-oriented behavior and taking
initiative where appropriate.

• Responsiveness: the capability of perceiving the environment and responding in a timely
fashion to the changes that occur in it.

• Social: the capability of interaction with other artificial agents and humans when appropriate
in order to achieve their own objectives and to help others in their activities.

This design paradigm, therefore, focuses on robust and intelligent agent behavior. In [228], White
blames Artificial Intelligence (AI) community for this state of the helm. The AI community
has been strongly influenced by Symbol Hypothesis [143] and first order predicate logic. The
symbols and theorem proving are the classical tools, which are based on Resolution Principle
[158]. Consequently, such systems coordinate their activities by exchanging symbolic information
and theorem proving. In addition, all properties of a system could not be inferred by representing
knowledge in a symbol formula and then manipulating it using the first order predicate logic
[161, 228]. Another shortcoming is the Frame problem, which results due to the need of specifying
state and state transitions. The measured data obtained from real world systems has to be
represented in symbols, which leads to the sensor fusion problem. The connectionist systems or
artificial neural networks try to overcome these problems. However, their black box nature makes
it difficult to synthesize and utilize them in distributed network systems [228].
The real world networks represent a dynamic environment in which good routing decisions need
to be taken in real time under a number of performance and cost constraints, therefore, applying
such complex paradigms to achieve intelligence in the network layer is not feasible. The processing



Introduction 3

complexity and communication cost of launching such complex agents will be overwhelming and
they would also consume significant amounts of a router’s resources, especially in large networks.
The above-mentioned problems in traditional agent-based approaches could be easily solved if we
follow a dramatically novel paradigm for designing the agents: agents need not be rational in order
to solve complex problems [228]. This conjecture, at first, appears to completely boggle the mind
because it suggests that intelligence could result from simple non-intelligent agents. However, the
systems which are based on this design paradigm are rigorously studied in Swarm Intelligence [17].
It takes the inspiration from self-organization in natural colony systems e.g. ants or bees [27] and
utilizes their principles as a metaphor to design simple agents that take decisions based on local
information without the need of a central complex controller. However, such agents are situated
in their environment and they utilize either a direct agent-agent communication paradigm or an
agent-group paradigm in which they indirectly communicate through the environment. In [27, 20],
the authors have defined the basic ingredients of Self-organization, which are the following:

1. The positive feedback in the system amplifies the good solutions that the agents have discov-
ered. Consequently, other agents are recruited to exploit these good solutions.

2. The negative feedback in the system helps in counterbalancing the positive feedback, as a
result, good solutions could not dominate forever.

3. Amplification of random solutions helps in discovering and exploring new solutions.

4. Multiple interactions help in enabling individuals to use the result of their own activities as
well as of others’ activities.

In this way a colony is able to achieve a complex and intelligent behavior at a colony level which
is well beyond the intelligence and capabilities of an individual in the colony. We believe that
self-organization systems have all the features that we could wish in large network systems.

1.2 Problem statement

We believe that the complexity of the manifold task of endowing intelligence and knowledge to
network layer through self-organizing agents, which are inspired from communicative and evalua-
tive principles of a honey bee colony, is overwhelmingly phenomenal. Therefore, in our research,
we take a cardinal first step to achieve this objective. Our problem statement could be outlined
as: efficient, scalable, robust, fault-tolerant, dynamic, decentralized and distributed solutions to
the traffic engineering could be provided within the existing connection-less model of IP through
a Nature inspired population of agents, which have simple behavior. The agents explore multiple
paths between all source/destination pairs and then distribute the network traffic on them. This
approach could significantly enhance the network performance.
Our routing protocol should be able to meet the following challenging requirements:

1. The agents must not require existing Multi-Agent System (MAS) software for their re-
alization. Rather their behavior and learning algorithm should be simple enough to be
implemented directly in the network layer by utilizing semantics of C/C++ languages.

2. The processing complexity of agents must be kept at a minimum level and the time a router
spends in processing them should only be a fraction of the time that it spends in switching
data packets. This requirement is necessary because the performance of a router could
significantly degrade if agent processing steals mosts of its time [242].

3. The agents must explore the network in an asynchronous manner.

4. It must be robust to loss of agents.

5. The size of agents must be such that they could fit into the payload of an IP packet. This
requirement will significantly reduce the communication related costs.



4 Problem statement

6. It must be able to scale to large networks.

7. It must be designed with a vision to install it on real world routers. Therefore, the simulation
model must be realizable inside the network stack of a Linux router.

8. It must be realizable in real world routers without the need for additional resources both
in hardware or software. This requirement would simplify its installation, though in a cost
effective manner, on existing routers.

9. It must not require synchronization of clocks in the network.

10. It must not require that the routing tables of different routers should be in a consistent state
for taking correct routing decisions.

1.2.1 Hypotheses

The study of honey bees has revealed a remarkable sophistication of their communication capa-
bilities. Nobel laureate Karl von Frisch deciphered and structured these into a language, in his
book The Dance Language and Orientation of Bees [206]. Upon their return from a foraging trip,
bees communicate the distance, direction, and quality of a flower site to their fellow foragers by
making waggle dances on a dance floor inside the hive. By dancing zealously for a good foraging
site they recruit foragers for the site. In this way a good flower site is exploited, and the number
of foragers at this site are reinforced. A honey bee colony has many features that are desirable in
networks:

• efficient allocation of foraging force to multiple food sources;

• different types of foragers for each commodity;

• foragers evaluate the quality of food sources visited and then recruit optimum number of
foragers for their food source by dancing on a dance floor inside the hive;

• no central control;

• foragers try to optimize the energetic efficiency of nectar collection and foragers take deci-
sions without any global knowledge of the environment.

In our work we make the following hypotheses

(a) H1: If a honey bee colony is able to adapt to countless changes inside the hive or outside
in the environment through simple individuals without any central control, then an agent
system based on similar principles should be able to adapt itself to an ever changing network
environment in a decentralized fashion with the help of simple agents who rely only on local
information. This system should be dynamic, simple but efficient, robust, flexible, reliable
and scalable because its natural counterpart has got all of these features.

(b) H2: If designed with a careful engineering vision, Nature inspired solutions are simple
enough to be installed on real world systems. Therefore, their benefit-to-cost ratio should
be better as compared with existing real world solutions.

We believe that all of these objectives can be achieved by contemplating on novel paradigms
for developing agents. The research, however, is of multidisciplinary nature because it involves
cross-fertilization of ideas from Biology, AI, Agent Technology, Network Management and Net-
work Engineering etc. Therefore, we developed a Natural Engineering approach 1 to successfully
accomplish our objectives in a given time frame.

1The focus of our work is on following an engineering approach for Nature inspired routing protocols. However,
the engineering approach itself is general enough and complements the existing approaches of Bionik [142, 160] and
CI (Computational Intelligence) [3].



Introduction 5

1.3 An engineering approach to Nature inspired routing
protocols

In this section we will introduce our engineering approach that we followed in the design and
development of a routing protocol inspired from a natural system (a honey bee colony).

Definition 1 (Natural Engineering) Natural Engineering is an emerging engineering disci-
pline that enables scientists/engineers to utilize inspirations and observations from organizational
principles of natural systems, and to transform them into structural principles of software organi-
zation of algorithms or industrial product design, in search of efficient/optimal solutions for real
world problems under resource constraints.

The above-mentioned concept emphasizes six aspects:

1. Understanding the working principles of natural systems.

2. Developing algorithmic models of the organizational principles of natural systems.

3. Understanding the operational environment of target systems.

4. Mapping the concepts from the natural system to the technical system.

5. Adapting the algorithmic model to the operational environment of a technical system.

6. Following a testing and evaluating feedback loop in search of optimum solutions under the
resource constraints (time, space, computation, money, labor etc.).

There is no clear-cut way to achieve a 1-1 match between structures/principles in Nature life or-
ganizations and working principles in technical systems. The most important challenge, therefore,
is to identify a natural system of which the working principles could be appropriately abstracted,
for deriving suitable principles to work in a given technical system. Instead of adding numerous
non-biological features to a natural system, we believe that it is more advisable to look to other
natural systems for inspiration. In our case we chose honey bee colonies because the foraging
behavior of bees could be transformed into different types of agents performing different routing
tasks in telecommunication networks. Both systems have to maximize the amount of a commodity
(nectar delivered to hives and data delivered to nodes respectively) as quickly as possible, under
a permanently and even unpredictably changing operating environment.
The major focus of research is to design and develop cost efficient Bio/Nature inspired business
solutions for highly competitive markets. Therefore, the development of a Nature inspired routing
algorithm must follow a feedback oriented engineering approach (see Figure 1.1) that incorporates
most of the features discussed above.
First we considered the ensemble of constraints under which the envisioned routing protocol is
supposed to operate:

• Non-availability of a global clock for trip time calculation.

• Routers and links could crash.

• Routers have limited queue capacity.

• Links have a BER (bit error rate) associated with them.

• The requirements from the Linux kernel routing framework needed to support the protocol.

• The requirements of the IP protocol, which is currently used in the network layer in the
Internet.



6 The scientific contributions of the work

At the same time we decided that the bee agents should explore the network, collect impor-
tant parameters, and make the routing decisions in a decentralized fashion (in the style as real
scouts/foragers do decision making during collecting nectar from flowers). Bee agents should mea-
sure the quality of a route and then communicate it to other bee agents like foragers do in Nature.
The structure of the routing tables should provide the functionality of a dance floor for exchanging
information among bee agents as well as among bee agents and data packets. Moreover, we must
be able to realize it in a real kernel of the Linux operating system later on.
We implemented our ideas in a simulation environment and then refined our algorithmic mapping
through the feedback channel 1 (see Figure 1.1). During this phase we did not use any simulation
specific features that were not available inside the Linux kernel, e.g. vector, stack or similar data
structures. Once we reached a relative optimum of the BeeHive concept, we started to develop
an engineering model of the algorithm. The engineering model can be easily transported to the
Linux kernel routing framework. We tested it in the real network of Linux routers and refined our
engineering model through the feedback channel 2 (see Figure 1.1). We evaluated our conceptual
approach in two prototype projects: BeeHive [221], which deals with the design and development
of a routing algorithm for fixed networks, and BeeAdHoc, the goal of which is to design and develop
an energy efficient routing algorithm for Mobile Ad Hoc Networks (MANETs) [217, 218, 219].

1.4 The scientific contributions of the work

In this section we will list the general scientific contributions achieved during our research in the
past four years. The reader will appreciate the overwhelming complexity of the work due to the
diverse nature of accomplishments achieved in the BeeHive project. Some of the information might
be duplicated here but we believe that it is important to make the section self-contained.

1.4.1 A simple, distributed, decentralized multi-agent system

We have developed a simple and distributed multi-agent system in which a population of agents
collectively achieve an objective. The agents are simple entities with limited processing and
memory capabilities and they take their decisions based on their local view of the network state.
The state is determined by local information, which is collected in a small region around their
launching node. Such a simple agent model is the result of borrowing communication principles
from the wisdom of the hive. The agents try to undertake the daunting task of optimizing a
number of competing performance values like throughput, packet delay etc. under different cost
constraints.

1.4.2 A comprehensive routing system

The multi-agent system, as described above, was instrumental in designing and developing a
multi-path routing protocol, BeeHive, which is dynamic, simple, efficient, robust, flexible and
scalable. As demonstrated by our results, the algorithm achieves a similar or better performance as
compared with the existing state-of-the-art algorithms. BeeHive, however, achieves this objective
with significantly lesser costs in terms of processing, communication and router’s resources. The
algorithm does not require an access to the complete network topology rather it works with a local
view of the network. The agents take their decisions in an autonomous and decentralized fashion.

1.4.3 An empirical comprehensive performance evaluation framework

The other major contribution of the work is a comprehensive performance evaluation framework,
which calculates a number of important performance values and the associated costs of a routing
algorithm. The framework can also vary a number of network configurations from traffic patterns
to network topology. As a result, the developer of a routing protocol can study the behavior of an



Introduction 7

Natural Algorithm to

System Algorithm

Mapping

Working

Environment

Natural

System

Model

Testing &

Evaluation

Engineering

Model

Algorithmic

Model

Testing & Evaluation

on real system

1

2

Figure 1.1: Natural protocol engineering



8 Organization of the thesis

algorithm on a wide operational landscape with a focus on its benefit-to-cost ratio in an unbiased
manner. The framework proved to be useful in identifying reasons behind the anomalous behavior
of BeeHive in different scenarios. Subsequently, we were able to improve our algorithm through
the feedback channel 1 as shown in Figure 1.1.

1.4.4 A scalability framework for (Nature inspired) agent-based routing
protocols

We developed a comprehensive framework that facilitates the study of the scalability of agent-based
distributed systems in general and of routing protocols in particular. The framework provides a
formal model and a set of empirical tools to protocol developers that are useful in investigating the
scalability of their protocols at an early stage of development. To our knowledge, this is the first
model that provides an unbiased way of studying the scalability of (Nature inspired) agent-based
routing protocols.

1.4.5 Protocol engineering of Nature inspired routing protocols

One of the most important contributions of our work is the vision of Natural Engineering which
has been introduced in the last section. We believe that developing a Nature inspired system,
which can be installed or utilized in real world systems is a challenging task. The Nature inspired
community, at times, lack the vision about the real operational environments. As a result, most of
the proposed solutions were never realized in the intended real world systems. Our work, according
to our knowledge, is an important step from ”Swarm Intelligence” to ”Natural Engineering”. We
believe that the work will stimulate other researchers to adopt a similar approach for their projects
as well.

1.4.6 A Nature inspired Linux router

Our Natural Engineering approach significantly helped us in developing an algorithmic model in
the simulation environment that is mostly independent of the underlaying features of a simulation
system. It rather utilizes only those components in a simulation environment which are available
in real world Linux routers. This approach showed its benefits once we started developing an
engineering model in the form of a Nature inspired Linux router because we were able to make
this quantum leap with significantly limited man power and computing resources.

1.4.7 The protocol validation framework

Another important contribution of the work is a comprehensive validation framework in which we
implemented the same traffic generators in the simulation and in an application layer of a Linux
network stack. We also utilized the same network topology both in simulation and real network
of Linux routers. Our validation principle is: if we generate the same traffic patterns in identical
topologies both in simulation and real network, then the performance values of the algorithms
should be traceable from one environment to another with acceptable deviations. We are happy
to report that, according to our knowledge, BeeHive is the first Nature inspired algorithm which
has been implemented in real networks and has shown substantial performance benefits for existing
real world applications.

1.5 Organization of the thesis

The work presented in this thesis is organized into six chapters. Each chapter, except the first and
the last, will provide a comprehensive review of the research conducted in a particular phase of our
Natural Engineering cycle, which starts from conceiving the ideas from the working principles of a
natural system, developing an algorithmic model from them, and realizing the algorithmic model



Introduction 9

both in a simulation environment and in a real network of Linux routers. The realization phase,
both in simulation and real networks, is complemented by extensive testing, analysis, evaluation
and feedback channels.

Chapter 2–A Comprehensive Survey of Nature Inspired Routing Protocols.
The chapter presents the true challenges that a routing protocol is expected to meet in complex
networks of the new millennium. We provide classifications of the algorithms either based on their
characteristics or on their design philosophy. The basic objective of the survey is to understand
the design doctrine of different communities that are involved in the design and development of
routing algorithms. This will motivate the researchers to develop state-of-the-art routing algo-
rithms through a process of cross-fertilization of useful features and characteristics of different
design doctrines. We classify the communities into three categories: Networking community, Ar-
tificial Intelligence (AI) community and Natural Computing (NC) community. The focus of the
survey presented in Chapter 2 is on the algorithms developed by the Natural Computing commu-
nity. We provide a detailed survey of routing algorithms which are inspired from the pheromone
laying principles of ant colonies. The algorithms are based on Ant Colony Optimization (ACO)
metaheuristic. We also provide a comprehensive review of the routing algorithms which are based
on the principle of evolution in natural systems. Later in the chapter, we introduce the routing
algorithms which are based on the principles of Reinforcement Learning. These routing algorithms
are developed by Artificial Intelligence community. Finally, we briefly summarize the routing al-
gorithms, which have recently been developed by the Networking community. The comprehensive
survey proved helpful in identifying the merits and deficiencies of existing state-of-the-art routing
protocols developed by different communities. The chapter is based on the following technical
report.

• Horst F. Wedde and Muddassar Farooq. Nature Inspired Routing Algorithms for Telecom-
munication Networks: A Comprehensive Survey. Technical Report 802, Department of Com-
puter Science, University of Dortmund (a part of this report will appear in a special issue of
Elsevier Journal of System Architecture on Nature Inspired Applied Systems (NIAS) in the
summer of 2006).

Chapter 3–From the Wisdom of the Hive to Routing in Telecommunication Networks.
The chapter describes the most important steps in our Natural Engineering approach. The chapter
starts with a brief introduction to the foraging principles of a honey bee colony. We present the
biological concepts in such a manner that the reader conveniently conceives a honey bee colony as
a population based multi-agent system, in which simple agents coordinate their activities to solve
the complex problem of the allocation of labor to multiple forage sites in dynamic environments.
The agents achieve this objective in a decentralized fashion with the help of local information
that they acquire while foraging. We argue that an efficient, reliable, adaptive and fault-tolerant
routing algorithm has to also deal with similar daunting issues.
We then provide the mapping of concepts from a natural honey bee colony to an artificial multi-
agent system, which can be utilized for routing in telecommunication networks. The mapping of
concepts appears to be a crucial step in developing an algorithmic model of an agent-based routing
system. We emphasize the motivation behind important design principles of our BeeHive routing
algorithm. We provide a comprehensive description of our bee agent model by emphasizing the
communication paradigm utilized by the bee agents, which is instrumental in reducing the costs
associated with a routing algorithm: communication, processing and router’s resources. Later in
the chapter, we introduce our comprehensive empirical performance evaluation framework that
calculates a number of preliminary and auxiliary performance values. These values provide an
in depth insight into the behavior of a routing algorithm under a variety of challenging network
configurations.
Finally, we introduce our extensive experimental framework in a simulation environment. The ex-
periments are designed through extensive brainstorming exercises in order to meticulously analyze



10 Organization of the thesis

the behavior of a routing protocol under diversified network operations. The results obtained from
our performance evaluation framework are discussed. We compare BeeHive with a state-of-the-
art ACO routing algorithm, AntNet, a state-of-the-art evolutionary routing algorithm Distributed
Genetic Algorithm (DGA), OSPF and Daemon. Daemon is an ideal algorithm that can instantly
access the complete network topology and size of the queues in all routers to take an optimum
routing decision. The algorithm, though, is not realizable in real networks due to the associated
costs, but, nevertheless, serves as an important benchmark for different algorithms.
The results of the experiments unequivocally suggest that BeeHive is able to achieve similar or
better performance under congested loads as compared with AntNet and is able to achieve similar
or better performance under normal static loads as compared with OSPF. However, this excellent
performance of BeeHive is achieved with significantly smaller communication and processing costs
and the routing tables which have the order of the size as in OSPF. The chapter is based on the
following published papers [221, 216], and the technical report [215]:

1. Horst F. Wedde, Muddassar Farooq, and Yue Zhang. BeeHive: An Efficient Fault Tolerant
Routing Algorithm under High Loads Inspired by Honey Bee Behavior. In Marco Dorigo,
M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Sttzle, editors, Proceed-
ings of the Fourth International Workshop on Ant Colony and Swarm Intelligence (ANTS
2004), volume 3172 of Lecture Notes in Computer Science, pages 83-94, Brussels, Belgium,
September 2004. Springer Verlag. Winner of the Best Paper Award ANTS 2004.

2. Horst F. Wedde and Muddassar Farooq. A Performance Evaluation Framework for Nature
Inspired Routing Algorithms. In Franz Rothlauf and other, editors, Applications of Evolu-
tionary Computing – Proceedings of EvoWorkshops 2005, volume 3449 of Lecture Notes in
Computer Science, pages 136-146, Lausanne, Switzerland, March/April 2005.

3. Horst F. Wedde and Muddassar Farooq. BeeHive: Routing Algorithms Inspired by Honey
Bee Behavior. K”unstliche Intelligenz. Schwerpunkt: Swarm Intelligence, 18–24, Nov 2005.

4. Horst F. Wedde and Muddassar Farooq. BeeHive: New Ideas for Developing Routing Al-
gorithms Inspired by Honey Bee Behavior In Handbook of Bioinspired Algorithms and Ap-
plications, Albert Zomaya and Stephan Olariu, Ed. Chapman & Hall/CRC Computer and
Information Science, Chapter 21, 321–339, 2005.

5. Horst F. Wedde and Muddassar Farooq. BeeHive: An Efficient, Scalable, Adaptive, Fault-
tolerant and Dynamic Routing Algorithm Inspired from the Wisdom of the Hive. Technical
Report 801, Department of Computer Science, University of Dortmund.

Chapter 4–A Scalability Framework for Nature Inspired Routing Algorithms.
The chapter presents a new scalability framework that designers and developers of the routing
algorithms, in general, and of Nature inspired routing protocols, in particular, can utilize to ana-
lyze the scalability of their routing protocols. We believe that our new framework will enable the
designers of routing protocols to establish the scalability of their routing protocol in an early stage
of protocol engineering [113]. Such a framework will be instrumental in practicing the principles
of Software Performance Engineering (SPE), which also emphasizes the consideration of perfor-
mance and scalability issues early in the design and architectural phase in order to rectify the
deficiencies in a simulation environment. This will not only obviate the risk of a disaster once the
algorithm is deployed on large scale networks, but also avert the cost overruns due to tuning or
redesign of the algorithm later in the protocol engineering cycle. Consequently, such a pragmatic
protocol engineering cycle will be capable of reducing the time to market of a new protocol.
Our scalability model defines power and productivity metrics for a routing protocol. The pro-
ductivity metric provides an insight into the benefit-to-cost ratio of a routing protocol. The cost
model includes the communication, processing and memory costs related to a routing algorithm.
We believe that the productivity of a routing algorithm is an important performance value which
can be used for an unbiased investigation of a routing protocol. Later we define a scalability



Introduction 11

metric which is a ratio of productivity values of two network configurations and its value should
be ideally 1 if the algorithm is perfectly scalable from one network configuration to the other.
The framework is general enough to act as a guideline for analyzing the scalability of any agent-
based network system. However, in our work, we restricted our analysis to only three protocols
due to lack of high performance simulation platforms. We studied the scalability behavior of Bee-
Hive, AntNet and OSPF in 6 topologies which vary in their degree of complexity and connectivity.
The size of the topologies is gradually increased from 8 nodes to 1050 nodes. According to our
knowledge, this is the first extensive effort to empirically study the scalability of Nature inspired
routing protocols.
The results demonstrate that BeeHive is able to deliver superior performance both under high
or low network traffic loads in all topologies. We believe that an engineering vision during the
design and development phase, in which we emphasized the scalability as an important metric,
has significantly helped in achieving better scalability metrics for the majority of the network
configurations as compared with AntNet and OSPF. It took more than six months to extensively
evaluate the algorithms under a variety of network configurations. The chapter is based on the
following technical report.

• Horst F. Wedde and Muddassar Farooq. A Scalability Framework for Agent Based Routing
Protocols. Technical Report 804, Department of Computer Science, University of Dortmund.

Chapter 5–BeeHive in real networks of Linux routers.
This chapter describes the second phase of our Natural Engineering approach: the realization of
an engineering model of BeeHive inside the network stack of the Linux kernel and then comparing
its performance values with OSPF in a real network of eight Linux routers. The work presented
in the chapter is novel in the sense that, to our knowledge, BeeHive is the first Nature inspired
routing algorithm which has been realized and tested in real networks.
The chapter begins by illustrating different design options that are available for realizing a Nature
inspired routing algorithm in a Linux router. We then describe the motivation behind our engi-
neering model that we realized in a Linux router. Subsequently, we define the software architecture
of our Nature inspired Linux router. Here, we emphasize the challenges that we encountered be-
cause of the unique features of the BeeHive algorithm.
We also migrated our performance evaluation framework to the application level of the Linux
network stack. The motivation behind this significant step is to follow the protocol verification
principle: if we generate the same traffic patterns through the same traffic generators both in
simulation and real networks and utilize the same performance evaluation framework again both
in simulation and real networks then the performance values obtained from the simulation envi-
ronment should be traceable to the ones obtained from real Linux network with minor deviations
provided our simulation environment depicts a somewhat realistic picture of a real network. We
believe that this verification principle will help in tracking the performance values in simulation
with their counterparts in real networks. If the values were similar, then this would strengthen
our thesis: Nature inspired routing protocols, if engineered properly, could manifest their merits in
real networks.
Finally, we discuss the results obtained from extensive experiments both in simulation and in a
real network. We feel satisfied because the performance values obtained from the simulation are
consistent to the values in the real network with an acceptable degree of deviation. This, accord-
ing to our knowledge, is the first substantive work which shows the benefits of utilizing Nature
inspired routing protocols in real networks running real world applications, e.g. File Transfer
Protocol (FTP) and Voice over IP (VoIP). The success in this phase satisfyingly concludes our
last phase in the protocol development cycle of our Natural Engineering approach. The chapter is
based on the following technical report.

• Horst F. Wedde and Muddassar Farooq. Bee Inspired Linux Routing Framework: A Step
from Swarm Intelligence to Natural Engineering. Technical Report 803, Department of Com-
puter Science, University of Dortmund.



12 Organization of the thesis

Chapter 6–Conclusion and Future Work.
In this chapter, we summarize the contributions of our work. We stress the need for the Natural
Engineering approach because this significantly helped us in successfully designing a dynamic,
simple, efficient, robust, flexible and scalable multi-path routing algorithm and then installing it
in a real network of Linux routers. We believe that a similar approach can help in realizing other
Nature inspired algorithms in their respective real environments.
We conclude the chapter with interesting future directions. The most important one is: design
and development of a dedicated Nature inspired router in hardware which optimally runs Nature
inspired routing algorithms. Before this step is taken, we have to reengineer BeeHive in such a
fashion that it is capable of seamlessly replacing OSPF in the existing packet switched IP networks.



2
A Comprehensive Survey of Nature Inspired

Routing Protocols

The major contribution of the chapter is a comprehensive survey of existing state-of-the-art
Nature inspired routing protocols developed by researchers who are trained in novel and dif-
ferent design doctrines and practices. Nature inspired routing protocols have been becoming
the focus of research because they achieve the complex task of routing through simple agents
which traverse the network and collect the routing information in an asynchronous fashion.
Each node in the network has a limited information about the state of the network, and it
routes data packets to their destination based on this local information. The agent-based
routing algorithms provide adaptive and efficient utilization of network resources in response
to changes in the network catering for load-balancing and fault management. The chapter
describes the important features of stigmergic routing algorithms, evolutionary routing algo-
rithms and artificial intelligence routing algorithms for fixed telecommunication networks.
We also provide a summary of the protocols developed by the networking community. We
believe that the survey will be instrumental in bridging the gap among different communities
involved in research of telecommunication networks.

2.1 Introduction

The design and development of multi-path, adaptive and dynamic routing algorithms has been
approached by different communities of researchers, each having a strict traditional design philoso-
phy, leaving little room for cross-fertilization of novel ideas between different research communities.
This provided us the grist for the mill for providing a comprehensive survey of routing protocols,
designed and developed by different communities of researchers, for different types of telecom-
munication networks: circuit-switched and packet-switched. The major objectives of the survey
are:

• to understand the basic design concepts and doctrines of the different communities, and then
contemplating the strengths and short-comings of each approach.

• to create awareness among the researchers about state-of-the-art routing algorithms devel-
oped by other communities.

• to create a vision about future directions/challenges for routing protocols as they may be
employed in totally different operating environments like sensor networks.

• to allow for cross-fertilization of ideas which will help in taking a comprehensive approach
to counter the challenges of complex large-scale telecommunication networks.

• to create an intelligent and knowledge-aware network layer implicitly taking care of network
management and traffic engineering, by virtue of its intelligent routing algorithms.

13



14 Network routing algorithms

• to lay the ground for a comprehensive performance evaluation framework, for the purpose
of comparative evaluation of routing protocols.

2.1.1 Organization of chapter

The rest of the chapter is organized as follows. Section 2.2 will provide major challenging re-
quirements that a routing protocol should be able to meet, then giving rise to a taxonomy of
routing protocols in Section 2.2.2. We will first provide an overview of Ant Colony Optimiza-
tion (ACO) metaheuristic in Section 2.3, and then discuss in detail different routing algorithms
inspired from ACO. Section 2.4 will outline important features of Evolutionary Algorithms (EA)
and then describe corresponding routing algorithms. Subsequently, we will conclude our survey
of routing protocols for fixed networks in Section 2.5. We will briefly discuss the state-of-the-art
routing protocols that are based on the traditional design paradigm of distance vector or link-state
routing methods. Finally, we conclude our survey by emphasizing the cross-fertilization of design
principles of different approaches, for the purpose of a comprehensive approach to solutions for
the challenges of modern telecommunication networks.

2.2 Network routing algorithms

In this section, we briefly outline the challenges facing the telecommunication sector because of an
ever increasing demand for intelligent/integrated multimedia services from the user community.
The solutions to such challenges lie in a multi-dimensional landscape of requirements for designing,
developing and implementing intelligent routing algorithms. These features are summarized in Sec-
tion 2.2.1. In Section 2.2.2, we will outline a taxonomy of routing algorithms according to several
criteria, reflecting different design doctrines, switching strategies, and network environments.

2.2.1 Features landscape of a modern routing algorithm

The design goals of a routing algorithm are summarized in the following:

• Optimality of a routing algorithm could be defined as the ability to select the best route [38].
The best route could be defined in terms of a quality metric, which in turn might depend on
a number of parameters i.e. hops, delay or a combination of both. A routing algorithm can
easily compute a best path in a static network but it becomes a daunting task in a dynamic
network.

• Simplicity is a desirable feature of any routing algorithm. A routing algorithm should be
able to accomplish its task with a minimum of software and resource utilization overhead.
Simplicity plays an important role when a routing algorithm has to run on a computer with
limited physical resources [38].

• Robustness of a routing algorithm could be described as its ability to perform correctly in
the face of unusual or unforeseen situations like hardware failures, high load conditions and
incorrect implementations [38]. A router has to quickly react to the anomalies and re-route
the packets on alternative paths. This property is also known as fault-tolerance.

• Convergence is the process of agreement, by all routers, on optimal paths. In face of router
failures, a routing algorithm should be able to make all routers quickly agree, through trans-
mitting update messages, on alternative optimal routes. Routing algorithms that converge
slowly can cause loops or network outages [38].

• Flexibility is the ability of a routing algorithm to quickly and accurately adapt to a variety
of network circumstances. They should be programmed to adapt to changes in the available
network bandwidth, routers’ queue size, and network delay, among other variables [38].



A Comprehensive Survey of Nature Inspired Routing Protocols 15

• Scalability is the ability of an algorithm to operate in large networks without an associated
increase in demand for software/physical resources and resource utilization overhead. The
control packets should occupy a small bandwidth, they should have small processing overhead
and routing tables should occupy small memory etc.

• Multi-path Routing exploits the resources of the underlying physical network, by providing
multiple paths between source/destination pairs [118]. This requirement allows the protocols
to achieve higher transfer rates than given by the bandwidth of a single link. Multi-path
feature also helps in doing load balancing in the face of congestion, allowing for delivering
more packets with smaller delays at the destination.

• Reachability is the ability of a routing algorithm to find at least one path between each
source/destination pair [198].

• Quality of Service (QoS) is the ability of an algorithm to administer better service to selected
real time traffic like multimedia by providing dedicated bandwidth, controlled jitter and
latency [38].

2.2.2 Taxonomy of routing algorithms

Routing algorithms have been classified in [73] according to criteria reflecting upon fundamental
design and implementation options like

• Structure. Are all nodes treated equally in the network?

• State Information. Is network-scale topology information available at each node?

• Scheduling. Is routing information continually maintained at each node?

• Learning model. Do packets or nodes have an intelligent learning model?

• Queue control. Do nodes employ load-balancing to manage growth of queues?

Such issues could be raised and discussed under all following dimensions of networking as they
are grouped below, under the topics routing strategy/policy, design doctrine, specific aspects of
telecommunication networks:

Routing strategy/policy

Here we provide only a brief overview explaining the concepts of the taxonomy in [38].

• Static versus Dynamic. Static routing algorithms are simple table mappings established by
network administrators before the routing begins. Such algorithms can react to changes
only if the network administrator alters these mappings based on his experience with traffic
patterns in the network.
Dynamic algorithms update their routing tables according to changing network circum-
stances by analyzing incoming routing update messages and rerunning the algorithms to
calculate new routes. This feature makes them suitable for todays large, constantly chang-
ing networks.

• Single-Path versus Multi-path. Single-Path routing algorithms determine the best path to
a destination while multi-path routing algorithms discover and maintain multiple paths to
a given destination. This feature allows them to multiplex the traffic to the destination on
multiple paths, as a result, both their throughput and reliability are higher than in case of
single-path routing algorithms.



16 Network routing algorithms

• Flat versus Hierarchical. Flat routing algorithms consider all nodes in the network to be
peers and they maintain an entry in their routing tables for all routers. This allows peers
to discover a best route at the cost of transmitting more control packets and maintaining
larger routing tables. Hierarchical routing algorithms form a logical group of routers and
organize them into areas, domains and autonomous systems. Such algorithms require two
types of routers, intra-domain routers, which route traffic within a domain, and backbone
routers, which route traffic between domains. The advantage of such organization is that it
mimics the traffic patterns of organizations in which most of communication occurs within
small areas like factory locations in a big company. So each location could work with simple
intra-domain routing algorithms. In this manner such organization requires significantly
smaller routing tables which, in turn, require smaller memory storage and little waste of
bandwidth for maintaining routes.

• Intradomain versus Interdomain. Intra-domain routing algorithms route data packets within
the same domain only while inter-domain routing algorithms route data packets between
domains. Within a domain or Autonomous System (AS), system administrators could select
their own routing policy. Due to the different nature of such algorithms, an optimal intra-
domain routing algorithm may not necessarily be an optimal inter-domain routing algorithm.

• Link-State versus Distance Vector. In links-state algorithms each node floods the status
of its links to all nodes of the network. Then each router constructs a graph of the com-
plete topology and applies the Shortest Path First routing algorithm for obtaining the next
hop on a shortest path to each destination and storing it in its routing table. In distance
vector algorithms, routers send updates only to their neighbors. Link-state algorithms con-
verge quickly, scale better but require more CPU power and memory than distance vector
algorithms, therefore, they are expensive to implement and support.

• Host Intelligent vs Router Intelligent. In host intelligent algorithms a host determines the
entire route to a destination and appends it as a header to each packet, known as source
routing. Other routers in the system simply forward the packets to the next hop contained
in the header of the packet. In next hop routing algorithms routers are intelligent and they
discover and maintain paths while executing their algorithms, therefore, they are termed as
router intelligent algorithms.

• Global vs Local. In global routing algorithms, each node requires the information about all
nodes, their inter-connectivity and cost of links for constructing a graph and then applying
path finding algorithms on it. In contrast, local algorithms do not have access to information
about the complete topology, rather they work with a local traffic model, maintained at each
router, for reaching at a routing decision.

• Deterministic vs Probabilistic. Deterministic algorithms associate, for every destination in
the routing table, an outgoing interface identifier and a cost associated with choosing that
interface. Probabilistic algorithms associate probability values to all neighbors of a node,
through which a packet could reach its destination, depending on the costs of the links to
the neighbors. A neighbor with a higher probability value is supposed to be on a better
path than a neighbor with a lower probability value. The probabilities of all neighbors are
normalized such that their sum always remains one. Probabilistic algorithms multiplex the
network traffic on different paths, depending on their probability value, and hence have
better performance than deterministic algorithms, but they require more memory and CPU
power [198].

• Constructive vs Destructive. Constructive algorithms begin with an empty set of routes
and incrementally add routes till final routing tables have been constructed. In contrast
destructive algorithms start with a fully connected graph as an initial condition in which all
routes are available, and gradually those paths are removed from the routing tables which
do not exist in the network [202].



A Comprehensive Survey of Nature Inspired Routing Protocols 17

• Best effort vs QoS. Best effort algorithms do not provide any guarantee that the demands of
the applications would be met while QoS algorithms reserve the resources in the network to
meet the demands of the applications. QoS algorithms provide guarantees to the applications
through a policy of admission control.

Design doctrine

Routing algorithms could alternatively be classified on the basis of the design philosophy of their
developers. The researchers in each community have been trained with a certain design and
analysis doctrine which leaves little room for cross-fertilization of ideas from other communities.
In this subsection, we briefly provide an overview of these communities that will help the reader
in understanding the design principles of different types of routing algorithms. Given a mutual
understanding of the various backgrounds of these communities there is a chance for developing
state-of-the-art routing algorithms for the networks of the new millennium. We have categorized
important routing algorithms according to their design doctrine in Figure 2.1. This figure can also
be used as a road map for our survey of routing protocols for fixed telecommunication networks.
The communities are discussed in the sequel:

(a) The Networking community has pioneered the work in the field of packet switched networks.
The roots of this work go back to the development of ARPANET and a novel routing algo-
rithm, which is based on an asynchronous Bellman-Ford algorithm [15, 136]. Later on many
dynamic and multi-path routing algorithms have been developed by following the classic
methodology for routing protocol development: non-intelligent link-state packets are used
to collect information about the costs of neighbors and then to propagate them in the whole
network. Consequently, they all suffer from the same shortcomings: ”wrong” or ”out-of-
order” local estimates have a global impact [48], and the algorithms require a global system
model to execute Dijkstra’s shortest path algorithm [44]. The algorithms could be classified
as global and deterministic routing algorithms.

(b) The Artificial Intelligence Routing community works in two different areas: Machine Learn-
ing and Agent-based Learning. The first community uses Reinforcement Learning (RL) [104]
techniques, developed as a branch of Machine Learning, in order to propose routing algo-
rithms for packet switched networks. Examples are Q-routing [23] and PQ-routing [37], both
are based on Q-learning [212, 213]. Such algorithms are adaptive, decentralized, dynamic, lo-
cal and deterministic. Agent-based learning methods resulted in specific routing algorithms
[199, 44, 89, 132, 48]. The major advantages of such algorithms are summarized as follows:

• The algorithms do not require an a priori global system model of the network, rather
they utilize a local system model as observed by the agents.

• The agents gather the network state in a decentralized fashion and leave the corre-
sponding information on visited nodes. This enables them to make routing decisions in
a decentralized fashion, without the need of a global controller.

• The algorithms have the ability to adapt autonomously to changes in the network, or
in traffic patterns.

• The management of the network comes as a complimentary benefit of using such mobile
agents.

The major emphasis of such routing algorithms is on designing intelligent agents for doing
routing, management and control of networks in an autonomous manner. The multi-agent
systems provide a good infra-structure for design and development of such mobile agents
[188, 227, 85, 199, 89, 114, 132], however, the intelligence is achieved at the cost of complex
design paradigms [95, 32, 239, 238, 149, 246, 247, 98, 100, 25, 59, 177].



18 Network routing algorithms

(c) The Natural Computing research has two major directions: Evolutionary computing [82] [96]
and Swarm Intelligence [17]. Evolutionary computing takes the evolution process in living
cells as a basis for developing algorithms/systems. Consequently, evolutionary routing algo-
rithms employ the evolutionary operators of selection, cross-over and mutation for on-line
adaption to cope with changes in network environments. DGA (Distributed Genetic Algo-
rithm) [120] is one such routing algorithm. The second emerging area, Swarm Intelligence,
studies different self-organizing processes in Nature and utilizes their principles as an inspira-
tional metaphor to propose novel solutions to different daunting classical scientific problems.
The novelty comes again from the fact that such systems lack one central complex controller,
which normally co-ordinates/schedules different tasks in the system, by virtue of its access
to the global system state. On the contrary, these population-based systems have simple
entities that have only local knowledge but together they form an intelligent system [17],
[196]. ABC [168], AntNet [52], and BeeHive [221] belong to this class of routing algorithms.
Nature inspired routing algorithms are mostly adaptive, decentralized, local, dynamic and
probabilistic.

Fixed Telecommunication 
Networks

Networking 
Community

Swarm 
Intelligence

Evolutionary 
Algorithms

Artificial 
Intelligence 
Community

MP-Scout (2.5.2)
OSPF (2.5.2)

MDVA (2.5.2)

MPDA (2.5.2)
M-Path (2.5.2)

Packet switched

Q-Routing (2.5.1)
PQ-Routing (2.5.1)

Packet switchedPacket 
switched

Circuit 
switched

ABC (2.3.2)
ABC-Smart   
(2.3.2)

ACO Bee Colony

AntNet-FA (2.3.4)
AntNet-CO (2.3.4)
ACR (2.3.5)
AntNet+SELA (2.3.5)

BeeHive (Chapter 3)ABC (2.3.3)

Packet 
switched

Circuit 
switched

GARA (2.4.2)SynthECA (2.4.3)
DGA (2.4.4)ASGA (2.4.3)

Figure 2.1: A taxonomy of routing protocols for fixed telecommunication networks

Specific aspects of telecommunication networks

We will restrict our survey of routing algorithms to only two types of telecommunication networks
namely, connection-oriented circuit switched networks and connection-less packet switched net-
works. We also focus on the Natural Computing algorithms for these two types of the networks,
however where appropriate, we will provide a brief summary of the algorithms developed by other
communities.
Each type of network comes with a different set of requirements that a routing algorithm should
meet. Topology changes are less frequent in fixed telecommunication networks but the traffic
patterns are non-deterministic. Therefore a routing algorithm should be able to do congestion
control. In connection-oriented networks, a circuit is reserved for each connection between a
pair of source and destination, therefore, a routing algorithm should have good admission control
through efficient resource utilization, in order to reduce the call blocking probability.



A Comprehensive Survey of Nature Inspired Routing Protocols 19

2.3 Ant Colony Optimization (ACO) routing algorithms for
fixed networks

In this section, we first briefly summarize important elements of the ACO metaheuristic in Section
2.3.1, and then provide a survey of two state-of-the-art routing algorithms designed on the basis of
ACO metaheuristic: ABC (Section 2.3.2), which is designed for circuit switched telecommunication
networks, and AntNet (Section 2.3.4), which is designed for packet switched telecommunication
networks.

2.3.1 Important elements of ACO in routing

The Ant Colony Optimization (ACO) metaheuristic has been inspired by operating principles of
ants [18], which empower a colony of ants to perform complex tasks like nest building and foraging
[64]. We summarize important elements of ACO, which have been utilized in routing algorithms,
in the sequel.

Stigmergy

The ants are able to find the shortest path from their nest to a food source by sharing information
through stigmergy [64, 47]. Stigmergy is a form of communication in which social insects like ants
communicate indirectly through the environment [84, 47]. Ants lay pheromone while foraging. As
a result, the concentration of pheromone on the shortest path is reinforced at a higher rate than
the other paths. Ants tend to prefer higher pheromone concentration paths, which results in a
majority of ants using a shortest path for foraging in a steady state [47]. Stigmergy is the most
important element of the ACO metaheuristic and has been instrumental in developing a society
of mobile ant agents, as they cooperate in solving discrete optimization and control problems
[64, 63, 62, 67, 124, 65]. Here we limit our survey to applications of ACO to telecommunication
networks.

Pheromone control

Bonabeau et al. have pointed out in [18] that the success of ants in collectively locating shortest
paths is only statistical. If many ants initially happen to choose a non-optimal shortest path,
other ants will follow this path which will result in pheromone reinforcement along this path.
Consequently, ants will travel on a stagnating non-optimal path in a steady state. However, if
we assume that ants do find shortest path in a steady state even then this stagnation is not
helpful because if all packets follow the shortest path then this will lead to congestion on this
path. Consequently, the path becomes non-optimal and other non-optimal paths may become
optimal due to changes in network conditions, or due to discovering of new paths after changes in
the topology [174]. Therefore, it is extremely important to counter stagnation through intelligent
pheromone control strategies. We outline some of these strategies here, however, the interested
reader will find a detailed discussion in [174].

• Evaporation. In ACO algorithms, the values of pheromone tij in all links is decreased by
a factor p such that: tij ← tij(1 − p) [63]. This helps in reducing the influence of past
experience during decision making.

• Aging. The amount of pheromone that an ant lays on a path decreases with its age, an older
ant lays less pheromone than a younger one [169]. Since ants mostly assume symmetric links
(in which cost of links in both directions are the same). The solution for asymmetric links
is that ants measure the costs during a forward trip and deposit pheromone on a backward
trip.
Evaporation and Aging favor present experiences which result in discovery of new paths by
avoiding stagnation.



20 Ant Colony Optimization (ACO) routing algorithms for fixed networks

• Limiting and smoothing pheromone. Some authors circumvent the problem of stagnation
by setting an upper bound tmax of pheromone for every edge (i,j) [189]. This reduces the
preference of ants for optimal paths over non-optimal paths. However, one should be careful
that pheromone limiting, if not used in conjunction with evaporation, will make all paths
equal once the pheromone value reaches tmax for all links. Pheromone smoothing ensures
that only a small amount of pheromone is permitted on paths where the current pheromone
concentration is closer to tmax. Consequently, a few dominant paths are not generated. But
this feature might lead to a situation in which the number of ants that prefer to select a non-
optimal path keep increasing because ants deposit more pheromone on these non-optimal
links, even though an optimal path might remain optimal in a steady/stable state.

• Pheromone-heuristic control. The authors of [65, 67] use the amount of pheromone in a link
combined with a heuristic function to influence the decision of an ant. The heuristic function
njd for telecommunication networks is determined by the queue length qj (number of bits
on network interface of neighbor j in a router). Finally, this heuristic, based on the current
state of the network, is combined with a long-term learned goodness pjd of using neighbor j
for reaching a destination d [52]. Such a hybrid approach enables a routing algorithm to be
responsive to transient changes in the networks. However, setting the weight value in the
formula in which the heuristic factor is combined with the long term learned goodness of a
link is very sensitive. If a policy exceedingly emphasizes the weight of heuristic component
then it might cause oscillations, and inadequate emphasis would make the algorithm not to
react to transient changes in the networks.

• Privileged pheromone laying. The authors of AntNet [52, 55] enhance the ACO metaheuristic
by a concept of privilege pheromone laying. In their algorithm, ants first evaluate the quality
of their solution and then deposit the amount of pheromone based on the quality. They model
the quality of a solution as a function of the trip time of a forward ant, the best known trip
time, and few other statistical parameters. The experiments reported in [52, 55] reveal that
such a policy results in better convergence and performance. Later on the authors of [189]
devised the FDC fitness landscape approach, which compares the fitness of a solution of each
ant with an optimal solution and then deposits the amount of pheromone. The experiments
reported in [189] confirm that FDC contributes to obtaining accurate and better results.

2.3.2 Ant-based control (ABC) for circuit switched networks

Schoonderwoerd et al. [169, 168, 167] were the first to apply the ACO metaheuristic to routing
and load-balancing problems in circuit-switched telecommunication networks. As a symmetric
network, a circuit-switched network reserves a virtual circuit between a sender and a receiver by
explicitly connecting them through cross-bar switches. Consequently, the major challenge is to
distribute the calls over multiple switches so that the system can support a maximum number of
possible calls during peak hours. Such a network is not able to admit a call if all input ports of a
cross bar switch are connected to its output ports. Consequently, congestion could be defined as
a function of the number of used connections in a cross bar switch [76, 77, 162]. The performance
of a switching algorithm is measured in terms of the number of calls which are blocked or failed
due to congestion [6].
In the ABC algorithm, each node in the network stores the following attributes [169]:

• The capacity is the number of simultaneous calls that a node (cross-bar switch) can manage.
The remaining free capacity of a switch is also stored.

• A pheromone based routing table in which probability values, representing goodness of a
node’s neighbors for reaching each destination are stored. Each row i in the table represents
a destination and each column j represents a neighbor. Each probability value pjd represents
the goodness of choosing j as a next hop for reaching destination d.

• A probability value of this node being the end point of a call.



A Comprehensive Survey of Nature Inspired Routing Protocols 21

6

4

5

8

9

3

2

7

1
1

1
2

1

1

1
1

2

1

1

Routing Table at Node 9

4 5 6 8

1 p41 p51 p61 p81

2 p42 p52 p62 p82

3 p43 p53 p63 p83

4 p44 p54 p64 p84

5 p45 p55 p65 p85

6 p46 p56 p66 p86

7 p47 p57 p67 p87

8 p48 p58 p68 p88

Figure 2.2: Pheromone routing table in ABC



22 Ant Colony Optimization (ACO) routing algorithms for fixed networks

In ABC, an ant, launched by node s and traveling towards destination d, will update the probability
values for its source node at each intermediate node passed. We now refer to Figure 2.2 to illustrate
the relevant aspects of the ABC algorithm. Let us assume that an ant has been launched by node
3, and its destination is node 9. Once the ant reaches node 5, it will update the p33 value in the
routing table and once it reaches at node 9 then it will update the p53 in the routing table of node
9. This will influence the ants which are traveling towards node 3 and are passing through node
9. This approach, therefore, has been specifically designed for symmetric links [52, 174].
Schoonderwoered et al. used aging, delaying and noise techniques to counter stagnation in the
probability values in the routing tables. The amount of pheromone δp that an ant is allowed to
deposit is given by the formula δp = 0.08

age + 0.005. The purpose of delaying is to increase the
transit time of certain ants proportional to the spare capacity of the node. The delay is defined
as delay = 80× e−0.075×r where r is the remaining capacity of a node. Consequently, the rate at
which ants are transmitted from congested nodes is reduced, and due to aging mechanisms the
ants deposit less pheromone on the nodes, which they subsequently visit. In this way the influence
of the ants, which visited a congested node, on other ants is reduced. Finally, a certain ratio of
ants do not follow the paths according to the pheromone values in the routing tables. Rather
they follow random paths where they may discover new and better routes in dynamic networks.
Schoonderwoered et al. have experimentally verified that the ABC algorithm, on the average,
drops less calls as compared with the algorithm of Appleby and Steward [6]. Moreover, it quickly
reacts to changes in the topology.
Bonabeau et al. extended ABC with the idea of smart agents [19], which utilize the concept of
dynamic programming: the agents update the probability values for all visited nodes, at a given
node, rather than just for their source node. Consider e.g. an ant agent launched from node 1
(see Figure 2.2) and traveling towards node 9 via nodes 3 and 5. At node 3 it will update the
probability value p11, at node 5, it will update the probability values p31 and p33 and at node
9 it will update the probability values p51, p53 and p55. Consequently, ABC with smart agents
reduced the number of calls which were dropped as compared with ABC and it was also able
to react to changes in the topology. However, smart agents use a similar policy as used by ants
in ABC for updating the routing tables. Compared to ABC agents, smart agents have a more
complex behavior but the objective is achieved with fewer agents.
The authors of [164] have studied the behavior of ABC on a different network topology and
confirmed the earlier results published by the authors of ABC. Recently they enhanced the original
ABC in their work reported in [163]: if the age of an ant that arrived at a node is greater than
the current maximum age stored at the node then it decreases the goodness (pheromone) value
rather than increasing it. This concept is known as anti-pheromone. They also employed the
probabilistic routing method as used for phone calls on a topology of 25 nodes. Their modified
algorithm has shown a certain degree of improvement as compared with original ABC.

2.3.3 Ant-based control (ABC) for packet switched networks

Subramanian et al. [191] developed an algorithm for packet-switched networks on the basis of the
ideas of ABC. They designed two types of ants: regular and uniform. Regular ants update the
pheromone values in the routing tables based on the accumulated cost of traveling to a node. In
Figure 2.2, an ant traveling from node 3 to node 9 via node 5 will update the value p53 at node 9
based on the accumulated cost of the path from node 3 to node 5 and then from node 5 to node
9. Uniform ants randomly select their next hop and they update the pheromone values in the
routing tables based on the costs in the direction opposite to their travel. A uniform ant traveling
from node 3 to node 9 will update the value p53 at node 9 based on the cost of link from node 9
to 5 and node 5 to 3. The algorithm assumes that each node has determined the cost information
of the link to its neighbors.
Heusse et al. [93], based on ideas of ABC, proposed an algorithm with cooperative asymmetric
forwarding (CAF) for routing in packet switched networks. Their basic idea is: once a data packet
is traveling from node 5 to node 9 then it carries with it the cost of link c59, which is a sum of
waiting and propagation delay, from node 5 to node 9. At node 9, it leaves this value in a reverse



A Comprehensive Survey of Nature Inspired Routing Protocols 23

routing table. Once an ant, which is traveling from node 6 to node 3 via node 9 arrives at node
9 and selects neighbor 5 as a next hop then it carries with it this value. At node 5, it adds this
cost to c96 to determine the accumulated cost c56. It carries with it the estimates of reaching all
nodes which it had visited, and then updates all corresponding entries. At node 5, it will update
p99 and p96 depending upon c59 and c56. The algorithm will not work properly under low traffic
load scenarios in which a small number of data packets are sent on the network. As a result, an
ant will carry old values in the reverse routing tables which might degrade the performance of the
algorithm. Moreover, an additional reverse table is required to be maintained.
Van der Put and Rothkrantz [201, 200] designed ABC-backward based on the concept of for-
ward and backward moving ant agents. The algorithm applies AntNet concepts (to be introduced
shortly) to ABC. The algorithm can be used on cost asymmetric networks. The authors have
experimentally verified that ABC-backward has a better performance than ABC on both cost
symmetric and cost asymmetric networks. ABC-backward solved a serious fax-distribution prob-
lem faced by KPN telecom (largest telephone company in Netherlands).

2.3.4 AntNet

AntNet was proposed by Di Caro and Dorigo in [51], [54], [50], [52]. It is inspired by the principles
of the ACO metaheuristic but has additional network specific enhancements as well. The algorithm
is designed for asymmetric packet-switched networks, and the primary objective of the algorithm
is to maximize the performance of a complete network. The algorithm implicitly achieves load
balancing by probabilistically distributing packets on multiple paths.
In AntNet the network state is monitored through two ant agents: Forward Ant agent and Back-
ward Ant agent. The agents are equipped with a stack on which node address and the trip time
estimate to the nodes are pushed. A Forward Ant agent is launched at regular intervals from a
source to a certain destination depending upon the amount of traffic generated for the destination
at the source. The probability pid for launching a Forward Ant agent to destination d at node i
is pid = fid∑D

k=1
fik

, where fid is the number of bits flowing from node i towards node d and D is

total number of nodes in the network. Forward Ant agent uses the normal queues to experience
the true network conditions. If a Forward Ant agent follows a cyclic path then the data about
the nodes which lie on the cyclic path are removed from the stack. However, the agent is allowed
to explore the network if the time it spent in the cycle is less than half the Forward Ant agent
lifetime. Once Forward Ant agent reaches its destination, it creates a Backward Ant agent and
transfers all information to it. Backward Ant agent visits the same nodes as Forward Ant agent
yet in a reverse order, and it modifies the entries (deposit of pheromone) in the routing tables
in accordance with the trip time from the nodes to the destination. A Backward Ant agent is
only allowed to update entries in the routing tables of the intermediate nodes if it discovers a
good sub-path from the intermediate node to the destination. The goodness is defined based
upon the trip time. The trip time values are calculated by taking the difference of entrance times
of two subsequent nodes pushed onto the stack. The updating of routing tables only influences
data packets and Forward Ant agents, which are traveling from node i to node d. The nodes in
AntNet maintain the average trip times, the best trip times, and the variance of the trip times for
each destination. In this way, information is statistically maintained at each node in the network,
for subsequent routing decisions. Backward Ant agent uses the system priority queues so that it
quickly disseminates the information to the nodes.
AntNet uses the heuristic function lj = 1 − qj∑N

k=1
qk

, where qj is the number of bits in queue

of neighbor j and N is the total number of neighbors. The heuristic function favors neighbors
with smaller queue lengths. Pjd is the goodness of neighbor j for reaching destination d. Back-
ward Ant agent enhances the goodness of neighbor, from where it arrived, using the formula
Pjd ← Pjd + r(1− Pjd), where r is a reinforcement factor, and it decreases the goodness value of
other neighbors using the formula Pkd ← Pkd(1−r)(k 6= j). Pjd is a long-term learned value which
provides an insight about the goodness of a neighbor for a particular destination. The reinforce-



24 Ant Colony Optimization (ACO) routing algorithms for fixed networks

ment factor is defined as a function of the current trip time, the best trip time and the statistical
confidence intervals. Finally, this Pjd value is combined with the heuristic value lj (just defined)
to react to current state of the network using the formula P ′

jd = Pjd+αlj
1+α(N−1) , where α weighs the

heuristic function with the probability values stored in the routing tables.
AntNet applies the concept of stochastic spreading of data packets along all paths according to the
goodness of the paths. However, the goodness, Pjd is further rescaled to reward better goodness
solutions more than ones of lower quality. The rescaled values are stored in an another table,
which is used during the switching of data packets. The concept of using two tables, one for ant
agents and another for data packets has been elaborated in [48].
Di Caro and Dorigo have conducted a number of experiments on different topologies like simpleNet,
NSFNet and NTTNet which are reported in [51], [54], [50], [52]. They have chosen throughput
and 90th percentile of packet delays as the performance parameters. The experiments reported
have shown that AntNet outperforms, with respect to throughput and delay, all other competitors,
which consist of Q-routing, PQ-routing, Shortest Path First (SPF) and OSPF, except the Daemon
algorithm. The improvement in performance is achieved at a cost of less than 1% of the bandwidth
occupied by ant agents.
The authors proposed a variant of AntNet, known as AntNet-FA or AntNet-CO, in [55]. In AntNet-
FA, Forward Ant agents do not have to wait in the queue to measure the queuing delay. Rather
they use an estimation model to estimate the delay. This feature allows a Forward Ant agent to
use priority queues as well. The estimation model estimates the trip time tij from node i to j
using the formula tij = pdij + qj

bij
, where pdij is the propagation delay of the link from node i to

j, qj is queue length in bits of neighbor j at node i and bij is the bandwidth of the link from node
i to j. Such a policy facilitates the quick spreading of the routing information specially in large
topologies. The authors have reported in [55] that the performance of AntNet-FA is significantly
better than AntNet on a 150 node topology.
The AntNet algorithm utilizes the concept of privileged pheromone laying along with heuristic
pheromone control to react to changes in the traffic patterns. Let us assume that a Forward Ant
wants to find a path from node 9 (please see Figure 2.2) to node 2. Interestingly, AntNet will
maintain the routing table entries p62 and p82 for reaching node 2, although it is impossible to
reach node 2 via node 6 and node 8. Consequently, p62 and p82 will be zero. However, it might be
possible that q6 and q8 are significantly smaller than q5 and q4. Therefore, it is possible once p62

and p82 are combined with a heuristic value then new values for p62 and p82 will be non zero. This
will lead to sending data packets with destination 2 to node 6 and node 8, which of course is an
error in the algorithm, but to our knowledge the problem has never been addressed to date. After
subsequent loops, a Forward Ant or a data packet may ultimately reach node 2 through nodes 5
or 4.
The ant agents, by utilizing stack and making forward and backward trips, may occupy a signifi-
cantly large portion of bandwidth, in comparison to ant agents of ABC in large topologies. The
agents perform complex computations once they arrive at a node. As a result, the processing
complexity of ant agents will be significantly higher than the ant agents of ABC. However, we
believe that a thorough experimental study needs to be done to evaluate the scalability of AntNet
in large topologies.

2.3.5 Ant Colony Routing (ACR) and AntNet+SELA QoS aware rout-
ing

Di Caro has discussed ACR in [48], which is a general framework for designing fully distributed and
adaptive systems for network control and management. ACR can be viewed as a distributed society
of static agents, which are known as node managers, and mobile agents, which are proactively
or reactively launched in the network. Node managers autonomously manage node activities
by learning and then following stochastic management policies based on local pheromone values,
which represent goodness of different control actions. However, they expand their ”sensory field” to
acquire information about their environment with an adaptive generation of mobile agents. Mobile



A Comprehensive Survey of Nature Inspired Routing Protocols 25

agents take an active preceptors role on behalf of the node managers which launch them. These
agents collect the important parameters which act as input parameters to learning strategies of
node managers. A node manager, based on the feedback provided by preceptor agents, might alter
its control actions. Stochastic decision policies are well suited for non-stationary and distributed
environments because they help in spreading data over multiple paths thus implicitly providing
load-balancing as well. A preceptor agent may either follow a point-to-point mode by following
pheromone tables for already discovered destinations, or it might follow a broadcast strategy for
a destination which is not known at a node. The broadcast strategy helps in replicating the
active perceptions to discover as many good options as possible. Active preceptors are situated
at a lower level in the hierarchy than node managers, and hence must not be allowed to directly
modify internal state of the node managers. Preceptors simply communicate to the node managers
the collected information, and they may accept or reject the information. This contributes to
designing secure systems, in which malicious agents could not directly modify the internal state
of node managers, and to practicing an object oriented design (information hiding). Effectors are
mobile agents which have a deterministic precompiled behavior. They are used to carry out highly
specialized tasks like allocation/deallocation of resources. In QoS routing, this will help in finding
the paths to a destination in which enough network resources can be reserved to meet the QoS
guarantees for the application. As a multi-path routing system ACR will obviate to discover new
paths in case of router failures since ”backup” paths are already available. In this way, multiple
ant colonies can coexist together and manage the activities of a node in a social agreement with
all other nodes.
AntNet+SELA [56] was designed to provide QoS guarantees to a variable bit rate (VBR) traffic in
ATM networks. ATM networks provide statistical guarantees by reserving virtual circuits either
on a per flow basis or on a per destination basis. The node managers which do both admission
control and routing are designed as stochastic estimator learning automata (SELA) [150] to be
applied to a distributed routing system for ATM networks [7]. The node managers utilize active
preceptors to proactively update a link-state database in which the goodness values of different
paths leading to a destination are stored. Active preceptors utilize different routing tables than
data packets. When a new application arrives at a node then two groups of active preceptors are
launched. The first group consists of path-probing setup ants which probe k different paths leading
toward the destination, and the second group consists of path-discovering setup ants which make
use of existing pheromone tables to discover new QoS-feasible paths for the applications. Both
agent groups reserve resources temporarily as they traverse the paths. Path-discovering setup ants
bias their decision on the current status of queue lengths to calculate the goodness of a neighbor
(the value of α is set much higher (please refer to Section 2.3.4)). Moreover, they always choose
the link which has the highest probability value. If the probability values of two best links differ
minimally then the ants are allowed to replicate themselves on both links, however, replication
is allowed only once for a better control of the number of ants. If a traversed path does not
meet the QoS requests, an effector ant is generated which follows the same path but in reverse
order to free the allocated resources. However, if an ant is able to locate a QoS feasible path to
a destination then it comes back to the source node and provides information about the path to
the node manager. If multiple ants have come back then a node manager may decide whether to
split the traffic load from the application on multiple paths or not. Now the application can start
sending the packets. Effector agents (monitor ants) are periodically launched, once the application
is running, to provide feedback about the state of the links to the node managers. The feedback is
helpful in doing load-balancing if the current network load is not balanced. Once the application is
finished then effector agents are launched over the paths used by the application to free allocated
resources. The management scheme can handle QoS and best-effort traffic at the same time (by
utilizing routing tables built by proactive monitor ants).

2.3.6 A brief history of research in AntNet

Oida and Kataoka [145] decided to improve an earlier version of AntNet in which the status of
data link queues was not used in the goodness formula (yielding no pheromone heuristic control).



26 Ant Colony Optimization (ACO) routing algorithms for fixed networks

Without this queue dependency feature, AntNet will suffer from stagnation once the goodness
of any link of a neighbor reaches 1. The authors of [145] modified the routing table updating
rules to avoid the ”locking” of routing tables. Their algorithms DCY-AntNet and NFB-Ants,
upon comparison with an earlier version of AntNet [49], performed much better under challenging
situations. Doi and Yamamura [60, 61] also proposed a few additional heuristics to avoid in AntNet-
FA the above-mentioned locking problem. In fact AntNet-FA does not suffer from the locking
problem [48]. Their algorithm, BNetL, showed similar performance as compared to AntNet-FA.
The authors of [74, 75] have developed a multi-agent system, which consists of static and mobile
agents (ACR concept), for multiple-criteria load-balancing on a network of processors.
Oida and Sekido [146, 147] proposed the Agent-based Routing System (ARS) as an enhancement
of AntNet for QoS routing. Each service class (in terms of bandwidth) has its own colony of
ants. The ants move in a ”virtually constrained network” and take their decisions based on the
values in the routing tables and the amount of bandwidth already reserved by the ants of the
colony. The ants of a colony use only those links whose available bandwidth is greater than the
bandwidth constraint assigned to the colony. If the available bandwidth of a link is very small
then the probability of selecting it is already made low. If an ant took too many hops or none
of the out-going links has enough remaining bandwidth, then the journey of the forward ant is
terminated.
Baran and Sosa [14] made the following improvements to AntNet-FA:

• Intelligent initialization of routing tables is done in which the entries in the routing tables
are not uniformly initialized. Rather the probability values for these destinations, which
happen to be neighbors of a node, are initially given a higher value.

• The algorithm explicitly sets the pheromone value of a neighbor for reaching a destination
to zero if the link to the neighbor or the neighbor crashes. This pheromone value is evenly
distributed among the remaining neighbors, through which a destination is still reachable.
This feature makes AntNet-FA fault tolerant.

• Uniform ants, like those proposed in [191], are introduced to counter the stagnation of the
entries in the routing tables of the nodes. However, we must again emphasize that AntNet-
FA does not suffer from stagnation because of its heuristic pheromone control and privileged
pheromone laying features.

• The ant agents make greedy deterministic decisions instead of random proportional ones.
The policy might make ant agents infinitely loop in a cyclic path, if its greedy deterministic
decisions force it to follow a cyclic path.

• The number of ants living in the network have been arbitrarily limited to four times the
number of links. The authors did not provide a reason for this value. This approach might
help in reducing the control overhead of ant agents when network is experiencing congestion
but this will also impair the responsiveness of the algorithm to dynamic network traffic
situations.

The authors of [129] replaced the stochastic decision policy of AntNet with a deterministic greedy
policy, which does not use a queue heuristic. The authors compared this version of AntNet with
OSPF on small tree, ring and star topologies, by simulating FTP traffic using TCP Tahoe. In
a steady state both algorithms showed a similar performance. Also a hybrid QoS aware rout-
ing algorithm was developed [129, 130] by combining useful features of AntNet and ABC. This
algorithm provides soft guarantees on two parameters: end-to-end delay and throughput. The
algorithm utilizes two types of ants, one for each constraint. The delay ants are similar to the
ant agents utilized by AntNet. The throughput ants inherit behavior of ants in ABC: they are
artificially delayed at each node proportional to the occupied bandwidth which is measured as a
local exponential average of the link utilization. Their virtual delay is a measure of the available
bandwidth in the network. The experiments conducted used the same traffic patterns and topolo-
gies as mentioned before. The results revealed that the performance of the AntNet-like algorithm



A Comprehensive Survey of Nature Inspired Routing Protocols 27

is similar to OSPF, however, it scales better than OSPF under an increase in traffic load.
The authors of [106] have provided a brief overview of so called Swarm Intelligence (in practice
ACO) algorithms for routing in networks. They then proposed an Adaptive-SDR algorithm in
[105], which organizes the network into clusters by using a centralized k-mean algorithm. Once
the partition process is complete then the algorithm maintains inter-clustering and intra-clustering
routing tables at each node. Multiple colonies of ants are used to discover and maintain these
different routing tables. In this manner the number of ants which need to be sent in the network
is reduced because a node only maintains routes to the nodes within the cluster and not to all
nodes in the network. However, the implementation of AntNet in [105] is not correct because
it was asserted that AntNet deterministically routes data packets on highest probability paths,
which is in contradiction to the stochastic spreading feature of AntNet [48]. The comparison of
Adaptive-SDR with AntNet (in the erroneous version as explained above), OSPF and RIP showed
that Adaptive-SDR achieves the best results regarding the throughput and average delay. The
experiments were conducted on 16 and 48 nodes network topologies in NS-2 simulator.
Jain [99] implemented a version of AntNet quite similar to that reported in [129] on the NS-2 sim-
ulator. In her algorithm, data packets are deterministically forwarded in a greedy fashion to the
highest probability neighbor. The experiments were run on gird networks of different sizes. The
two AntNet algorithms exhibited the same behavior under low load scenarios, but this single-path
AntNet algorithm [99] quickly adapted to new situations. Sim and Sun [174] proposed the MACO
approach for load-balancing in connection-oriented networks, which utilizes multiple colonies each
laying its own type of pheromone. An ant is expected to choose a path which has a higher
pheromone concentration of its own type, and due to a concept of pheromone repulsion an ant is
less likely to prefer a path with a higher concentration of pheromone, laid by ants of other colonies
in order to find good (disjoint) paths. The advantages of using MACO in circuit switched routing
is that it spreads data packets over multiple paths without significantly increasing the routing
overhead.
Tadrus and Bai [194] developed the QColony algorithm for QoS routing based on principles similar
to the ACR framework. QColony nodes maintain different types of pheromone tables for different
types of constraints. The algorithm utilizes different classes of agents, each of which has a different
priority and serves different tasks, e.g. searching a best-effort or QoS path. Each ant is routed
with the pheromone table that corresponds to its type, and it updates the routing table with a
weight which is dependent on its age and priority. The ants build tables in a proactive and on
demand manner that are used to find feasible paths at session startup time. An application session
could specify its acceptable range of bandwidth and maximum number of hops. Once the session
has started, QColony also sends soldier ants, who provide multiple paths for load balancing and
fault tolerance, and favor paths having smaller hop count values. The experiments described in
[194] show that the performance of QColony is comparable to ARS and to the selective flooding
algorithm [36] for small topologies and under low network traffic load, yet its performance is sig-
nificantly better for large networks and heavy traffic loads. The authors of [190] and [30] have
proposed simpler algorithms for QoS routing as compared with QColony.
Carrillo et al. [31] have done a preliminary study on the scalability of AntNet, which is merely
based on a simple theoretical formulation. It is not verified through extensive experiments on large
scale topologies. They have argued through their theoretical model that AntNet is scalable. How-
ever, the correctness of the findings, without experimental verification, is a serious shortcoming
in their study. Zhong and Evans [245] did a preliminary study in which they outlined important
attacks that ant agents, launched by malicious nodes, could make. They did point out that using
certificates is not a feasible option for the AntNet algorithm because of the processing complexity
of the approach. However, they did not provide a technical solution to the problem that could
be implemented in the system. Their idea is to send a verification ant which follows the best
path toward a destination when the goodness of a neighbor increases above a threshold. The
trip time could be calculated either by dividing the round trip time by two, or by measuring the
difference between the entrance time at destination and launching time at source, assuming that
clocks are perfectly synchronized using GPS service. Similarly, Yang et.al [241] are the first ones
who implemented AntNet in the application layer of the network stack and then did experiments



28 Evolutionary routing algorithms for fixed Networks

on a small topology of 5 nodes. The results of their experiments show the advantages of dynamic
reinforcement, which is based on the trip time of ants, over constant reinforcement.
Similarly, Yang et.al [241] are the first ones who implemented AntNet in the application layer of
the network stack and then did experiments on a small topology of 5 nodes. The results of their
experiments show the advantages of dynamic reinforcement, which is based on the trip time of
ants, over constant reinforcement.
We have summarized the history of ant algorithms for best effort routing in Table 2.1, and of ant
algorithms for QoS routing in Table 2.2.

Authors Algorithm name Year References
Di Caro and Dorigo AntNet,AntNet-FA 1997 [49, 52, 51, 55, 54, 50, 53]

Subramanian, Druschel, and Chen ABC Uniform ants 1997 [191]
Heusse, Snyers, Guerin, and Kuntz CAF 1998 [93]

van der Put and Rothkrantz ABC-backward 1998 [201, 200]
Oida and Kataoka DCY-AntNet,NFB-Ants 1999 [145]
Gallego-Schmid AntNet NetMngmt 1999 [80]

Doi and Yamamura BntNetL 2000 [60, 61]
Baran and Sosa Improved AntNet 2000 [14]

Jain AntNet Single-path 2002 [99]
Zhong and Evans AntNet security 2002 [245]
Kassabalidis et al. Adaptive-SDR 2002 [106, 105]

Yang et al. AntNet on LAN 2002 [241]

Table 2.1: Wired best-effort networks. The table is reproduced from thesis of Di Caro [48] with
his kind permission

Authors Algorithm name Year References
Schoonderwoerd et al. ABC 1996 [169, 168]

White, Pagurek, and Oppacher ASGA 1998 [234, 235]
Di Caro and Dorigo AntNet-FS 1998 [53]

Bonabeau et al. ABC Smart ants 1998 [19]
Oida and Sekido ARS 1999 [147, 146]

Di Caro and Vasilakos AntNet+SELA 2000 [56]
Michalareas and Sacks Multi-swarm 2001 [129, 130]

Sandalidis, Mavromoustakis, and Stavroulakis Ant-based routing 2001 [163, 164]
Subing and Zemin Ant-QoS 2001 [190]
Tadrus and Bai QColony 2003 [194]
Sim and Sun MACO 2003 [174]

Carrillo, Marzo, Fabrega ,Vila and Guadall AntNet-QoS 2004 [30]

Table 2.2: Wired QoS networks. The table is reproduced from thesis of Di Caro [48] with his kind
permission

2.4 Evolutionary routing algorithms for fixed Networks

In this section, we provide a brief survey of routing algorithms, which have been developed on the
background of Evolutionary Algorithms (EA), which in turn are inspired by the evolution process
in living cells. A description of the principles of evolutionary algorithms, and their application
to different optimization problems, is discussed in [82, 96] and a comprehensive survey about
evolutionary strategies is provided in [16].



A Comprehensive Survey of Nature Inspired Routing Protocols 29

2.4.1 Important elements of EA in routing

We first summarize the important features of evolutionary algorithms which have been successfully
employed in routing algorithms.

Chromosomes

The algorithms model the solutions of a problem by encoding it as a gene, chromosome, or an
individual. The algorithm randomly generates a population of the individuals by randomly altering
different genes (options) in the individuals. In a routing algorithm an individual is a string that
consists of a sequence of nodes.

Fitness

The agents are launched by the nodes, which traverse the sequence of nodes encoded in the chro-
mosomes. Once an agent returns to its source node, the fitness of its corresponding chromosome
is evaluated on the basis of the routing information collected by the agent. The fitness can be
defined as a function of trip time or hop count etc. Its definition plays an important role in the
performance of an algorithm.

Evolutionary operators

The algorithms apply selection, cross-over and mutation operators on individuals which are based
on the Darwinian notion in biology. After the fitness evaluation of all individuals of the first gener-
ation, the n fittest individuals are selected for replication in the new generation. Some of them are
taken as parents for a cross-over operation in which a partial solution of one individual is combined
with the partial solution of another individual and vice versa. Finally, a part of solution in an
individual is replaced by some another random value, and this is termed mutation. Mutation and
cross-over operators provide diversity within a population. The selection operator ensures that
a portion of a population consists of the fittest individuals from the previous generation. In this
way an algorithm is not only able to strive for the optimal solution but also avoids stagnation.
In routing algorithms, it corresponds to keeping the so far best discovered routes and also discov-
ering/evaluating new routes, through mutation and cross-over operators. Extremely poor routes
are to be extincted through continuous application of genetic operators. Evolutionary algorithms
thus provide adaptation in dynamically changing environments. The approach Munetomo took in
[139, 140] is promising because evolution is a distributed process in which each individual indepen-
dently adapts to its environment without the need for having explicit communication with other
individuals. An evolution process is also robust to changes in the environments. These features
make evolutionary algorithms appealing for telecommunication networks. A detailed survey has
been provided in [176]. Here we will just provide a brief summary of three state-of-the-art routing
algorithms, namely GARA [141], ASGA [229] and DGA [120].

2.4.2 GARA

Munetomo [141, 139] developed the Genetic Adaptive Routing Algorithm (GARA), which utilizes
path genetic operators to identify a subset of routes which should be monitored. The fitness of a
route is calculated by normalizing observed communication latencies among alternative routes to
the same destination. The algorithm periodically applies path genetic operators, which remove
the entries for the routes whose destinations do not frequently receive data packets and the route
with a worst fitness value. As a result, routing table only contains routes to the destination where
packets are frequently sent. In GARA path mutation and path cross-over operators are based on
the topology. Through a mutation operator, a mutation node is randomly selected from a route
leading to a particular destination. In the next step, a neighbor of a mutation node is randomly
selected and then the source node, the selected neighbor and the destination node are connected
by Dijkstra’s shortest path algorithm. In the cross-over operator, a router, which exists in two



30 Evolutionary routing algorithms for fixed Networks

routes leading to the same destination, is selected as a cross-over point. The sub-routes after
the cross-over point are then exchanged. This limits the cross-over to those routes which have at
least one common node. We will illustrate both operations in the topology in Figure 2.3. Let us
assume that we want to apply the mutation operator to route 9-4-2 and we select node 4 to be
the mutation node. We select neighbor 3 of node 4 as a replacement. Now once we try to join
node 9 with node 3 and node 3 with node 2 we get the new route 9-4-3-1-2. Let us assume that
we want to apply the cross-over operator to routes 8-9-4-3 and 8-4-2-1-3. We again select node 4
as a cross-over point and achieve two new routes: 8-4-3 and 8-9-4-2-1-3. The algorithm ”learns”
about new routes by utilizing the above-mentioned strategies. GARA is a host intelligent routing
algorithm. It requires that the sender node puts the complete route in the header of each data
packet. As a source routing approach, it does not scale well for large networks where the overhead
of putting the complete route into each packet will considerably increase the size of the packet,
and hence cause congestion and waste of bandwidth. Therefore, the authors decided to switch to
partial source routing in which only a few initial hops are put in the source header and then it
switches to next hop routing [140].

2.4.3 ASGA and SynthECA

White et al. combined important concepts of the Ant System [66] with the ideas of genetic
algorithms into the routing algorithm, ASGA (Ant System with Genetic Algorithm), for circuit-
switched networks [229, 234, 235]. The algorithm can be utilized for point-to-point, point to
multipoint, and multi-path routing in circuit-switched networks. The algorithm follows a standard
genetic algorithm in which an initial population of ant agents is generated, which are assigned
random parameter values for pheromone (αd) and cost sensitivity (βd) parameters for reaching
destination d. These explorer agents are launched in the network and they follow their journey
according to the pheromone values in the routing tables. During exploration they maintain an
internal cost path variable Cd, instead of the trip time td. However, the authors did not clearly
define Cd and lij , the cost function of a link between node i and node j, for circuit-switched
networks. After crossing a link from i to j, the ants update their cost variable using the formula
Cd = Cd + lij . Once the explorers reach their destination they start their return trip and update
the pheromone tables by using modified Ant System equations. After they arrive at their source
node, the path found is written into a buffer, their fitness is evaluated and associated with (αd, βd)
parameters in an another table. Finally, for the second iteration, the genetic algorithm applies
selection, cross-over and mutation operators on the current generation to create a population for
the second iteration. The new generation of explorer agents is again assigned (αd, βd) values.
The genetic algorithm empowers the explorers to keep on exploring alternate paths; this feature,
coupled with evaporation, privileged pheromone laying and pheromone heuristic control, enables
the algorithm to avoid stagnation. In the ASGA algorithm, a source node decides, depending on
the percentage of ants that followed the same path, whether the network or router resources should
be reserved for a call. This objective is achieved by launching allocator agents [235], which allocate
resources along the paths selected. Similarly, when a path is no longer needed then deallocator
agents are launched. They deallocate the networks resources used in the nodes and links. The
system also utilizes evaporator agents which circulate in the network and evaporate the pheromone
concentrations that had been laid on a path to promote exploration. The authors have evaluated
and described the merits of ASGA in [91, 233]. They conducted preliminary experiments on
smaller/simple topologies, and the results show that the algorithm is dynamically able to compute
shortest paths, and that the genetic adaptation of (αd, βd) considerably contributes to improving
the performance of the algorithm. However, the considerable overhead in terms of bandwidth and
processing, was not evaluated. Moreover, the performance of ASGA was not compared to other
state-of-the-art Nature inspired routing algorithms.
Based on ASGA a general framework SynthECA (Synthetic Ecology of Chemical Agents) [230, 91,
233, 228] has been developed . A detailed review is made in [174, 230, 232, 231], and a detailed
description is provided in [228]. SynthECA manages point-to-point, point-to-multipoint and multi-
path routing like ASGA, with an additional feature for fault location detection and management



A Comprehensive Survey of Nature Inspired Routing Protocols 31

[230, 232].
The agents in SynthECA are described by a tuple, which consists of emitters, receptors, chemistry,
migration decision function (MDF) and memory. The emitters associated with the agents generate
chemicals, their production rate is controlled by an Emitter Decision Function (EDF), and they
are deposited in the ambient environment of an agent. Receptors sense chemicals in the agents’
environment according to their Receptor Decision Function (RDF) and then take appropriate
actions. The emitters and receptors are digitally encoded with 0,1 or #, where # is a wild card.
For example a receptor with encoding 10## can detect chemicals 1000, 1001, 1010 and 1011
[230]. The chemistry associated with an agent is a set of rules, which determine how different
types of chemicals can react together to produce different chemicals, thereby changing the local
environment of an agent. The agents in SynthECA utilize five types of chemical reaction rules
among pheromones:

1. X → ‘nothing’ (evaporation property)

2. X + Y → Y (survival of the fittest)

3. X + Y → Z (reproduction/stigmergy)

4. X + Y → X + Z (survival of the fittest)

5. X + Y →W + Z (reproduction/stigmergy)

Rule 1 ensures dynamism, and all other rules allow the receptor ants to communicate important
network state information to other ants. Rule 2 and Rule 4 can allow high priority traffic to use
the resources in the network while low priority traffic could be either discarded or diverted to
another route. Rule 3 and Rule 5 can be used to communicate inhibitory or excitatory messages
to other ants, which will cause these to detour from faulty portions in the network in the first
case, or be attracted to good paths in the second case. The memory within an agent stores special
chemicals, for which no emitter and receptor is defined, to determine next hop for the agent: MDF
(the migration detection function mentioned above) determines the next hop of the agent, as a
function of chemical values and link costs.
The system consists of three classes of agents: route finding agents (RFA), connection creation
monitoring agents (CCMA) and fault detection agents (FDA). The route finding agents have al-
ready been described in the beginning of the section and they are explorers, allocators, deallocators
and evaporators. The purpose of CCMA agents is to monitor the quality of connection parameters
using special q-chemicals [230]. Finally, Fault Detection Agents observe the quality of different
links by accessing q-chemicals laid by CCMA agents. Their job is to look for high q-chemical
values above a threshold, and take remedial actions if needed.
SynthECA consists of a colony of different types of ant-like agents, which utilize chemical features
along with ACO principles (Section 2.3) to solve a problem. Moreover, the agents undergo con-
tinuous evolution through an evolutionary algorithm at each node. The system is quite complex
when compared with ACR (Section 2.3.5). We believe a thorough analysis about the complexity
of such a system is necessary, both in terms of needed processing power and network resources,
before a clear judgment about its benefits can be made, in comparison to all previously discussed
approaches.

2.4.4 DGA

Liang et al. have studied the impact of the size of the routing table on the performance of AntNet
[119]. They reduced the number of entries in the routing table of AntNet and termed the new
algorithm AntNet-local, thus decreasing routing table information, hence the overhead for making
routing decisions. The experiments conducted in NTTNet [119] reveal that AntNet-local has a
significantly poor performance as compared with AntNet-global both in terms of throughput and
delay. However, they did not discuss the trade-off between reduced overhead and quality of paths
selected.



32 Evolutionary routing algorithms for fixed Networks

They then developed the Distributed Genetic Algorithm (DGA) [120] based on the concepts of
GARA [120]. The following features of DGA allows for an easy application of genetic operators:

• Each node initializes a population of agents with size size = links2 × c1 where c1 is a
constant. The formula is motivated by the fact that higher degree routers have to explore
more links and connections between and across neighbors. Initially, only half of the agents
are launched in the network.

• Each agent in DGA is modeled as a chromosome of integers, which represent next hop offsets.
Once an agent enters a node i, it picks up the offset number mi from the chromosome, and
then applies the formula indexi = mi%Ni where Ni is number of neighbors of node i. The
agent then identifies a link with offset indexi, counting clockwise from the entering port.
The link is selected as the next hop. The number of entries in the chromosomes are restricted
to m (currently 6). The size of a chromosome determines how many hops, starting from the
source node, an agent is allowed to take. This representation is then independent of the
network connectivity, and hence simplifies the design of genetic operators. Each agent is
equipped with a stack which carries the address of the visited nodes and trip time value to
the visited nodes from the source node.

• An agent terminates its journey if it has visited the last entry in the chromosome. However,
if indexi ends up being at the same link from where the agent arrived then the next hop is
selected from the remaining neighbors in a random fashion and accordingly the entry in the
chromosome is altered. If no next hop can be selected because the agent has already visited
all of the neighbors then the chromosome is truncated and the forward agent is converted
into a backward agent.

• The backward agent only modifies the routing tables at its source node. Its fitness function

is defined as f =
∑Di

k=1
αi

k×tk∑Di

k=1
tk

, where Di is number of explored destinations at node i, and

tk is the trip time value for destination k. αi
k is defined as αi

k = mi
k

Ti
, where mi

k is the total
number of packets generated for node k at node i while Ti is the total number of packets
generated for all discovered destinations at node i. The definition assigns a high fitness
value to an agent which has discovered a low latency path to a destination (where more data
packets are sent). The ID of an agent, its fitness, the nodes it visited, and the trip time to
the nodes are stored in a routing table (please refer to Figure 2.3).

• The authors of DGA have introduced the concept of aging, by periodically decreasing the
fitness values (f) of the agents, and at the same time increasing the trip time values (tk)
through formulas f = f × c2 and tk = tk

c2
. This will avoid stagnation in the routes. c2 is set

between 0.8 and 0.9.

• Once four agents return to a node then selection, cross-over and mutation operators are
applied to the two best agents. Since chromosome representation is not dependent on the
topology, one can simply use the traditional genetic operators. The two new agents are
inserted into the node population after deleting the two worst agents from the population.

• Periodically, every 500 or 700 msec, each node passes its 3-5% best individuals to its neigh-
bors.

• Once a node wants to forward a data packet whose destination has been discovered then it
is forwarded through the agent which has the shortest trip time value to the destination.
However, if the destination is still not discovered then the packet is routed through the agent
which has the highest fitness value.

The authors compared their algorithm with AntNet-local on NTTNet, under a low traffic load
of about 35 packets/sec. The results demonstrate that DGA is able to deliver more packets as
compared with AntNet-local, but with a higher delay. The authors dropped data packets which



A Comprehensive Survey of Nature Inspired Routing Protocols 33

6

4

5

8

9

3

2

7

1
1

1
2

1

1

1
1

2

1

1

Routing Table at Node 9

Agent ID Agent Fitness node ID and Trip time (ms)

85 0.32 (4,10),(3,30),(1,35),(2,55),(4,65), (8,65)

234 0.45 (6,10),(7,20)

31 0.66 (4,10),(8,15),(9,20),(6,25),(7,30)

… ... ...

25 0.81 (5,10),(3,15),(4,25),(2,30),(1,35)

1

Figure 2.3: Routing table in DGA



34 Related work on routing algorithms for fixed networks

followed a cyclic path, yet did not provide a proper justification for it. We provided a detailed crit-
ical review on DGA in [216]. DGA is a complex and sophisticated algorithm which launches half
of the population at start up. Consequently, agents occupy approximately 50% of the bandwidth
which is really not acceptable. The authors did not provide results for OSPF and AntNet-global.
Our study [216] shows that at 35 packets/sec the performance of DGA is significantly inferior
compared to both OSPF and AntNet-global. Another important drawback of DGA is that its
control overhead increases with a decrease in traffic load. Ant agents use the same buffers as
data packets, and since a next generation of agents is launched from a node once it receives four
agents from the previous generation. Consequently, more agents will be traveling on the network
if their trip time is small and this happens on a small topology or under low traffic loads, or both.
This behavior is in contrast to the expectation: more exploration under high traffic load and low
exploration under low load. Last but not least, the authors themselves were not sure about the
complexity of searching and storing the population based routing tables employed by DGA. An
exemplary routing table is shown in Figure 2.3.

2.5 Related work on routing algorithms for fixed networks

We now provide a very brief review of the algorithms developed by the Artificial Intelligence (AI)
community and the Networking community. The motivation of doing this is to introduce state-
of-the-art routing algorithms developed by these communities, which will provide the basis for
cross-fertilization of ideas among all communities.

2.5.1 Artificial Intelligence community

The artificial intelligence community has applied Reinforcement Learning (RL) [104] algorithms,
developed as a branch of machine learning, to propose routing algorithms for packet switched net-
works. The two well known algorithms are Q-routing [23] and PQ-routing [37], which are based
on the Q-learning [212, 213] algorithm.
Q-routing employs an on-line asynchronous decision policy which is based on local information.
Every router maintains Q-values, which represent the goodness of a neighbor for reaching a partic-
ular destination. The value Qi(j, d) is an estimate of the time at node i that a packet will take for
reaching destination d via neighbor j. Once the neighbor j receives a packet it will immediately
send a feedback packet to node i with a new estimate Q′

j(d) = minz∈N(j) Qj(z, d), which is the
best trip time estimate held at node j for destination d. If the feedback packet took tji time,
which is the sum of the propagation delay on the link and the queuing delay at node i then node
i could revise its estimate according to the formula δQi(j, d) = η(Q′

j(d) + tji − Qi(j, d)), where
η is the learning rate which is a standard feature of iterative algorithms and is generally set to a
value which satisfies the stochastic approximation convergence [202]. The authors used a value of
0.5 in their experiments. In this way the time-to-go estimates are updated using the exponential
averaging. Finally, the data packets are deterministically routed through the neighbor which has
the lowest associated Q-value (highest goodness). The deterministic routing policy will keep on
sending the data packets through the neighbor with the lowest Q-value until the Q-values of the
other neighbors drop below the Q-value of the selected neighbor. If a neighbor recovered from
a transient overload then it would never be selected as a next hop until the Q-value of all other
neighbors become worse than its own. This feature provides no room for load-balancing. The au-
thors conducted their experiments on an irregular grid of 6× 6. The results show that Q-routing
performs similar to the Shortest Path routing algorithm under low network loads, and performs
significantly better under higher network loads. Moreover, the control overhead is directly pro-
portional to the number of data packets switched by a node, which under high network load could
be unacceptable.
Choi and Yeung [37] proposed the Predictive Q-routing algorithm known as PQ-routing, which



A Comprehensive Survey of Nature Inspired Routing Protocols 35

overcomes the above-mentioned problem. Moreover, they contemplate in [37] that Q-routing does
not always converge to shortest path under low loads. In PQ-routing, they do controlled exploration
of congested paths by occasionally sending probe packets along the paths. The probing frequency
depends on the network traffic and recovery rate of a path. Q-values are updated in a similar
way as in Q-routing. However, a more sophisticated routing policy is employed. The recovery
rate of each neighbor is determined based on the difference in two subsequent δQ values for each
neighbor. Then, based on the recovery rate of all neighbors, existing Q-values and best estimated
Q-values, the next hop leading to a particular destination is selected. The authors conducted a
number of experiments on a 13 node topology, and a 6×6 irregular grid. The results demonstrate
that the adaptation time of PQ-routing is significantly smaller once traffic patterns or topologies
change because PQ-routing utilizes the concept of recovery rates. PQ-routing is generally better
than Q-routing under both low load and varying network conditions, but its performance becomes
comparable with Q-routing under high load conditions.

2.5.2 Networking community

The most important work in the field has been contributed by the Networking community, which
also considers itself as pioneering packet-switched networks. The roots of its work go back to
the development of ARPANET and a routing algorithm for it that is based on asynchronous dis-
tributed Bellman-Ford algorithm [15, 136]. The basic idea of the algorithm is that each router
maintains only best known cost paths to each destination. Each router forwards its current routing
table to all of its neighbors, as a vector of distances to all nodes in the network. Once the neigh-
bors receive the estimates then they compare these estimates sent by their neighbors with their
own estimates. If a neighbor’s cost estimate to a destination is less than the current estimate of a
node then the node accordingly updates its routing table with the new estimate. The algorithm
iteratively progresses toward stability. After the first iteration, the routers know the current best
path costs to all routers which lie within one hop diameter of the routers. The diameters keep
on expanding by one with each iteration until each router has routing information for all nodes
in the network. The algorithm, however, suffers from count-to-infinity and the looping problems
[15, 136, 152]. As ARPANET grew bigger, many researchers proposed novel adaptive routing algo-
rithms in [29, 79, 78, 109]. In 1980s ARPANET was transformed into NSFNET, which became the
T1 US backbone. OSPF, which is a link-state routing protocol, was developed for NSFNET. The
link-state routing algorithms avoid looping and count-to-infinity problems. OSPF is currently the
state-of-the-art routing algorithm employed as an Interior Gateway Protocol (IGP). The Routing
Information Protocol (RIP) [90, 123] algorithm based on the asynchronous distributed Bellman-
Ford algorithm is used for routing within an AS (autonomous system) in the Internet [137]. OSPF
stores the entire topology of a network in a weighted directed graph, in which each edge corre-
sponds to a link, and each node corresponds to a router. The cost of a link is a function of the
propagation delay of the link. However, the network administrators are also allowed to change
these costs based on their on-field knowledge about network traffic loads. Each node in the OSPF
algorithm estimates the costs of the links to its neighbors. It then encapsulates the addresses of
its neighbors and the costs of the links to the neighbors in a link-state packet and broadcasts it to
all of them. The neighbors, in turn, send the link-state packet to their neighbors and so on until
all nodes in the network get the packet. Each node builds the network topology in a distributed
fashion. Finally, each node builds a shortest path tree to all destinations by considering itself as a
root. The shortest paths from the root to all nodes are calculated using the deterministic Dijkstra
Algorithm [57]. The next hop on the shortest path to each destination is stored in a routing table.
The interested reader can find a detailed description of this algorithm in [137] and its complete
implementation in [138]. However, none of the algorithms tries to maintain multiple paths to a
destination at a given node. This shortcoming results in an under-utilization of network resources
which consequently results in their poor performance.
In the last decade of the previous century research started on multi-path routing algorithms. Chen,
Durschel and Subramanian developed an algorithm MP-Scout [34, 36, 35] in which multiple paths



36 Related work on routing algorithms for fixed networks

are maintained at a given node for each destination node. MP-Scout is based on the concept of
backward learning for determining the loop free multi-paths. A simple version of MP-Scout is
known as SP-Scout in which a destination node periodically floods scout messages. Each scout
message is uniquely identified with a tuple (d, Cd, x) where Cd is the cost to reach d and x is
an increasing sequence number. Cd is initially set to zero. The time interval between two scout
floodings is known as a broadcast interval (BI). When a node i receives a scout message from its
neighbor j for destination d then the node first updates the cost parameter of the scout to C ′

d

where C ′
d = Cd + Cij , where Cij is the cost of the link from node i to neighbor j. During the

first BI, the node immediately forwards the first received scout to all neighbors of the node except
from which it arrived. The node might receive more scouts from other neighbors within the same
BI but they are not forwarded once a scout has already been forwarded. Consequently, it will
just remember the best scout, and the neighbor from which it has been received is termed as the
designated neighbor (next hop) for its source node. In subsequent intervals, the scouts from the
designated neighbors are forwarded only. If i did not receive any scout from the designated node
in the last BI, then it will again flood the first scout and update its designated neighbor for the
source node of scout message. In MP-Scout, the scout message is identified with a tuple (d, Cd,
sID, pID) where pID corresponds to a path ID while sID is the scout ID, d is its launching node
and Cd is the cost to reach d. The launching node modifies the pID for scout messages launched
on different links. Based on the pID it can identify whether the paths through different scouts can
lead to a loop. The algorithm also applies two types of thresholds: scout and data. A scouting
threshold sets a limit K for best known routes to be maintained at an intermediate node. How-
ever, this may result in propagating the scouts which have traversed inferior paths. The algorithm
applies the concept of data threshold in which a scout which advertises a path with a greater cost
than the minimum cost path (by a given percentage) is discarded. Each data packet carries an
additional path ID field in its header to enable the routers to forward it to a next hop node which
lies on this path ID. Equal-cost multi-path (ECMP) [137] is a routing technique in which multiple
packets are distributed, typically in a simple round-robin fashion, on multiple paths by assigning
equal costs to them. Optimal splitting by using such ECMP is not possible as the costs are not
updated and they do not model traffic loads. A better optimal splitting algorithm, OSPF-OMP,
has been proposed in [204]. OSPF-OMP samples the current network traffic load via opaque LSA
within an OSPF area. The information carried can be link loading, link capacity and a measure of
packets dropped. The information contained in a LSA is used to change load splitting decisions.
Recently, Vuturkey has proposed three multi-path routing algorithms: The Multi-path Partial
Dissemination Algorithm (MPDA) [210], MPATH [209, 208] and Multi-path Distance Vector Al-
gorithm (MDVA) [207]. All of these algorithms make use of loop-free invariants (LFI) discussed
in [210] to ensure loop freedom at every instance. The condition is: for each destination d, a node
i can choose a successor n whose distance to d, as known to i, is less than the distance of node i
to node d. The interested reader will find a complete review of these algorithms in [211].
MDVA [207], as the name suggests, is a multi-path distance vector algorithm which tries to over-
come count-to-infinity and the looping problems in the distance vector algorithms as discussed
in the beginning of the subsection. The algorithm avoids looping by sending the cost estimates
along a directed acyclic graph (DAG) rooted at a destination. Each node in DAG computes its
cost to the destination by using the costs reported by ”downstream” nodes, and it reports its
costs to the ”upstream” nodes. This method is called diffusing computation and was suggested
in [58] in order to ensure that a distributed computation will always terminate if they are per-
formed in an acyclic fashion. MDVA uses a RIP-like algorithm to compute the cost Di

d of reaching
destination d from node i, and SGd (DAG) which is defined by a link set consisting of successor
nodes leading to destination d. The paths in SGd should have the loop-freedom and connectivity
characteristics for efficient routing. Each node in the network maintains Di

d, the successor set Si
d,

the feasible distance FDi
d, the reported distance RDi

d, and SDi
d, which is the shortest possible

distance through the successor set. The table also stores a set of waiting neighbors in a diffusing
computation. Each node also maintains a neighbor table in which Di

jd, the values for the distance
of neighbor j to d as communicated by j, are stored. The link table stores the cost lij for the



A Comprehensive Survey of Nature Inspired Routing Protocols 37

adjacent link to each neighbor. At startup time, a node initializes all distances in its tables to
infinity, and all successor sets to null. If a link is down or a node is unreachable then its cost
is considered infinity. Nodes executing MDVA exchange messages of the form (type, d, c) where
type could be QUERY, UPDATE and REPLY, and d is destination node and c is the distance
to destination node. Upon arrival of a message, a node updates its routing tables. This step
is repeated if the cost or status (up/down) of an adjacent link changes. When an adjacent link
becomes available then the node sends an update message of type (UPDATE, d, RDi

d) for each
destination d over the link. When an adjacent link to a neighbor j fails then the neighbor table
associated with neighbor j is deleted and the cost of the link is set to infinity. Similarly, when
the cost of the link to j (lij ) changes then lij is set to the new cost, and the vector tables for each
destination are updated. A node can be either in ACTIVE or PASSIVE state with respect to a
destination. Initially, all nodes are in the PASSIVE state, and as long as the link cost decreases,
MDVA works like RIP and nodes will remain in the PASSIVE state. However, if the distance to a
destination increases, either because an adjacent link cost changed or a message is received from
a neighbor, then the diffusing computation (ACTIVE state), as described before, is started by
sending QUERY messages to all neighbors with the shortest distance SDi

d through Si
d, and then

waiting for the neighbors to reply. If the increase in distance is due to a query from a successor,
the neighbor is added to the list of waiting neighbors waiting for a reply. When all replies have
been received via REPLY message, the node can be sure that the neighbors have incorporated
the distances that the node reported, and it is now safe to migrate to the PASSIVE state. If a
node in the ACTIVE state receives a QUERY message from a neighbor which is not in Si

d then a
REPLY is immediately sent. However, if it is in Si

d then a test is made to verify if SDi
d increased

beyond the previously reported distance. If it did not, then a reply is immediately sent. However,
if it did increase then the QUERY is blocked, and the neighbor is added to the neighbors’ list.
The replies to such neighbors are deferred until the node is ready to go to the PASSIVE state.
When all replies have been received and the distance Di

j increased again then the ACTIVE phase
is extended by sending a new set of queries, otherwise the active phase ends. In case that the
ACTIVE phase continues then no REPLY messages are sent to the pending queries, otherwise all
replies are sent and the node enters the PASSIVE state.
MPDA [210, 211] is obtained by applying loop-free invariants conditions to the PDA algorithm, a
link-state routing algorithm in which ”enough” routing information in the network is propagated
so that each router has sufficient link-state information to compute the shortest paths to all desti-
nations. In PDA, a router communicates information to its neighbors about only those links that
are part of a minimum-cost routing tree, and the router validates the link information based on
the distances to the head of the links, and not on sequence numbers. In PDA, a router maintains
the following information:

1. The main topology table, Ti, stores the characteristics of each link known to router i. Each
entry in Ti is a triplet (h,t,c) where h is the head, t is the tail and c is the cost of the link
h→ t.

2. The neighbor topology table, T i
j , is associated with each neighbor j. The table stores the

link-state information communicated by neighbor j.

3. The distance table stores the distances from router i to each destination based on the values
in Ti and the distances from each neighbor j to each destination based on the values in T i

j

for each j. The distance of node i to node d in Ti is denoted by Di
d; the distance from j to

d in T i
j is denoted by Di

jd.

4. The routing table stores, for each destination d, the successor set Si
d and the feasible distance

FDi
j which is used by MPDA to enforce LFI conditions.

5. The link table stores, for each neighbor j, the cost lij of the adjacent link to the neighbor.

The routers exchange link-state update (LSU) messages which contain one or more entries specify-
ing addition, deletion or change in cost of a link in the router’s main topology table Ti. Initially, a



38 Related work on routing algorithms for fixed networks

router initializes all distance type variables with infinity, and node type with null. Once a router
receives a LSU from its neighbors then it updates its routing tables and, based on the informa-
tion, constructs a shortest path tree. A router only communicates the differences in the tree to its
neighbors. When two or more neighbors report different costs of the same link then the conflict
is resolved in favor of the neighbor reporting the shortest distance. In case both report the same
costs then the tie is broken in favor of the lowest address. In MPDA, the routers operate in two
states: ACTIVE and PASSIVE. If a router is in the PASSIVE state and there is no change in its
topology Ti, then the router has nothing to report and it remains in this state. However, if the
router, in the PASSIVE state, receives an event that changes its topology, the router sends those
changes to its neighbors, and goes to the ACTIVE state and waits for acknowledgments (ACKS).
Please remember that LSUs are acknowledged in MDPA and inter-neighbor synchronization spans
only a single hop, unlike the synchronization in [58] which potentially spans the whole network.
In the ACTIVE state the router updates only T i

j and lij . The topology table Ti is updated at
the end of the ACTIVE phase, after acknowledgments from all neighbors have been received. In
this way router i incorporates the latest changes that occurred during the ACTIVE phase in Ti.
If no changes occur in Ti then the router does not have to report anything and goes back to the
PASSIVE state, otherwise a new LSU is sent to the neighbors and the router immediately goes to
the ACTIVE state again. When a router detects that an adjacent link failed, any pending ACKS
from this neighbor are considered to have been received. MPDA could not suffer from deadlocks
because all LSUs are acknowledged in a finite time.
MPATH [209, 208] belongs to the class of routing protocols in which distance-vectors are combined
with the identity of predecessor nodes, which are just before the destination node on a shortest
path. The following information is stored at each node

1. The main distance table contains Di
d and pi

d, where Di
d is the distance of node i to destination

d and pi
d is the predecessor to destination d on a shortest path from node i to node d. The

table also stores, for each destination d, the successor set Si
d, the feasible distance FDi

j , the
reported distance RDi

j , and two flags changed and report-it.

2. The main link table Ti is the node’s view of the network and contains links represented by
(m, n, c) where (m, n) is a link with cost c.

3. The neighbor distance table for neighbor j contains Di
jd and pi

jd where Di
jd is the distance

of neighbor j to d as communicated by j, and pi
jd is the predecessor of d on a shortest path

from j to d as notified by j.

4. The neighbor link table T i
j is the neighbor j’s view of the network as known to i and contains

link information.

5. The adjacency link table stores the cost lij of the adjacent link to each neighbor j. If a link
is down its cost is infinity.

Each message contains an update entry like (d, c, p), where c is the cost of the node sending the
message to destination d and p is the predecessor node on the path to d. Each message carries
two flags: query and reply. MAPTH is based on PATH, which essentially uses the same update
procedures as PDA but differs only in the types of messages exchanged. We skip the details for the
sake of brevity but the interested reader will find the details in [209, 208]. MPATH maintains a
routing graph in the form of a link set SGd for destination d which remains a directed acyclic graph
(DAG) at every instant. Consequently, the shortest-path trees are also shortest path multipaths.
The routers operate in two states: ACTIVE and PASSIVE. The router only switches from the
PASSIVE state, which is a steady state, to the ACTIVE state once it receives a message indicating
that its cost to a destination has increased above the previously reported RDi

d. The node then
sends an update message by setting a query flag in it. While in the ACTIVE state, a node is
allowed to update Si

d after it received replies form all its neighbors. The router goes back to the
PASSIVE state if none of the distances was increased beyond RDi

d. Otherwise, the router will
remain in the ACTIVE state and start the above-mentioned cycle again. When a router detects



A Comprehensive Survey of Nature Inspired Routing Protocols 39

that an adjacent link failed, an implicit reply with infinite distance to the destination is assumed.
This mechanism ensures freedom from deadlocks and that all routers will switch to the PASSIVE
state with correct distances to destinations. All of these algorithms follow the classic model of
a network routing protocol development: they use non-intelligent link-state packets to collect
the information about the costs to neighbors and then propagate them in the complete network.
Consequently, they suffer from the same problems: ”wrong” or ”out-of-order” estimates have a
global impact, and the link-state algorithm requires a global system model to execute Dijkstra’s
shortest path algorithm. The algorithms are complex and they slowly react to changes in the
topologies.
The algorithms discussed in this chapter can be easily classified along two dimensions: route
discovery and packet switching. Some algorithms discover routes in a probabilistic manner, and
some in a deterministic manner and this holds for packet switching as well. Figure 2.4 classifies
the representative algorithms along these lines. The classification of the routing algorithms with

Probabilistic

D
et

er
m

in
is

tic
Pr

ob
ab

ili
st

ic

Deterministic

Packet Switching Policy

R
ou

te
 D

is
co

ve
ry

 P
ol

ic
y

OSPF,
MP-Scout,
MPATH,
MPDA
MDVS;

RIP

    

AntNet-FA,
ABC

DGA

Figure 2.4: Routing classification

respect to the other design axis, introduced in Section 2.2.2, is provided in Table 2.3.

2.6 Summary

The efficient utilization of network resources is becoming an important issue in traffic engineering.
One solution to such challenges is to design efficient, decentralized, fault-tolerant and multi-path
routing algorithms which accomplish the task of routing with no access to global topological in-



40 Summary

Routing Algorithms
Feature AntNet-FA ABC DGA BeeHive Q-Routing MDVA MPDA MPATH OSPF
Static (S) vs.
Dynamic (D)

D D D D D D D D D

Host Intel-
ligent (HI)
vs. Router
Intelligent
(RI)

RI RI RI RI RI RI RI RI RI

Single Path
(SP) vs.
Mulipath (M)

M S S M M M M M S

Constructive
(Co) vs.
Destructive
(De)

De De De Co De De Co Co Co

Fault Tolerant No No Yes Yes No Yes Yes Yes Yes
Global (G) vs.
Local (L)

L L L L L G G G G

Flat (F) vs.
Hierarchical
(H)

F F F Hybrid F F F F F

Loop Freedom No No No No No Yes Yes Yes Yes
Load Balanc-
ing

Yes Yes No Yes No Yes Yes Yes No

Stigmergy
(St) vs. Direct
Communica-
tion (Dc)

St St - Dc - - - - -

Best Effort
(B) vs. QoS
(Q)

B B B B B B B B B

Table 2.3: Classification of routing algorithms for fixed networks



A Comprehensive Survey of Nature Inspired Routing Protocols 41

formation. In this chapter we have provided a comprehensive survey of state-of-the-art routing
algorithms designed and developed by communities, which have different design doctrines. We
believe that the survey will be instrumental in initiating an integrated approach to routing in
telecommunication networks by allowing cross-fertilization of design principles from different de-
sign philosophies.
We have briefly introduced two types of Nature inspired routing algorithms: ACO inspired and
Evolutionary. The agents in ACO inspired routing algorithms communicate indirectly through
the environment (stigmergy) and the agents provide positive feedback to a solution by laying
pheromone on the links. Moreover, they have negative feedback through evaporation and aging
mechanisms which avoids stagnation. The evolutionary algorithms achieve adaptivity by apply-
ing the genetic operators of cross-over, mutation and selection to their population of agents. We
believe that the detailed survey was instrumental in identifying the benefits and shortcomings of
the existing state-of-the-art Nature inspired routing algorithms. Consequently, we were able to do
a comprehensive requirements engineering for our BeeHive algorithm.



42 Summary



3
From the Wisdom of the Hive to Routing in

Telecommunication Networks

The major contribution of the chapter is a dynamic, simple, efficient, robust, flexible and
scalable multi-path routing algorithm, BeeHive, which is inspired from the foraging principles
of honey bees. The communicative model of bees was instrumental in designing intelligent
bee agents, which are suited for large and complex topologies. The results obtained from the
extensive simulation experiments conclude that bee agents occupy smaller bandwidth and
require significantly smaller processor time as compared to the agents of existing state-of-
the-art algorithms. However, even with such simple agents, BeeHive achieves similar/better
performance as compared to that of state-of-the-art routing algorithms like AntNet.

3.1 Introduction

The major contribution of the work presented in this chapter is a dynamic, simple, efficient,
robust, flexible and scalable multi-path routing algorithm, BeeHive, which has been designed
based on inspirations from the wisdom of the hive. We turned these concepts into an engineering
approach thus allowing us to realize the resulting algorithm in a network stack of Linux 1 The
engineering approach is a result of discussions with network engineers in our system management
group who have extensive experience working with Cisco routers. Consequently, we adopted only
those features in the algorithm design phase which are easily realizable in a real Linux router.
We set the following challenging requirements for BeeHive in order to simplify its implementation
in the network stack of a Linux system:

1. BeeHive must utilize only forward moving agents to accomplish the routing task.

2. Bee agents must not contain any stack for carrying out their duties.

3. The portion of bandwidth occupied by bee agents should be less than 1% of the bandwidth.

4. The algorithm must not maintain any statistical variables to calculate the quality of a link.

5. The time needed to process bee agents at a node should be kept to a minimum possible.

6. The size of a routing table in BeeHive must be of the same order as that of OSPF.

7. BeeHive must be able to scale to large network topologies.

8. BeeHive must be able to handle router/link failures in the networks.

1Linux was chosen because it is an open source free operating system. The availability of source code significantly
helped in replacing OSPF with BeeHive in the routing framework.

43



44 An agent-based investigation of a honey bee colony

9. The performance of BeeHive must be at least as good as that of existing state-of-the-art
routing algorithms like AntNet and DGA under high traffic loads, and better than that of
OSPF under low/static traffic loads.

10. The implementation of BeeHive in a network simulator must not use any simulator specific
features that are not available inside the network stack of Linux kernel.

The motivation behind challenges 1 and 2 is two-fold: one, the size of an agent is not dependent
on the number of hops it makes, and this results in significantly smaller waste of bandwidth of
the network (challenge 3). Secondly, the time to process stack-less agent at a node turns out to
be significantly smaller than in the presence of a stack. The result of meeting challenge 2 and 4
is of direct impact on meeting challenge 5. The smaller routing tables (challenge 6) provide two
benefits: they occupy small memory, and secondly, they can be easily loaded into the cache of a
router for doing efficient packet switching. If BeeHive is able to meet challenges 1 to 6 then it is
expected to meet challenge 7 automatically.
Our results from extensive simulations clearly demonstrate that bandwidth which bee agents oc-
cupy is significantly smaller than the one used by ant agents in AntNet. The time to process
agents in BeeHive is also significantly smaller than that of ant agents in AntNet. Also, the size of
the routing tables is significantly smaller than in AntNet. However, even with a simpler agent and
learning model, BeeHive achieves similar or better performance as compared with AntNet. The
advantages of BeeHive over AntNet become more obvious in larger topologies.

3.1.1 Organization of the chapter

We will provide a short review of working principles of a honey bee colony in Section 3.2 which will
help the reader in comprehending the bee behavior and how it differs from ant behavior. This will
assist the reader in understanding the mapping of concepts from Nature to Networks as described
in Section 3.3. We will define our agent model in Section 3.4, based on this we will introduce our
algorithm in Section 3.5. In Section 3.6 we will introduce our performance evaluation framework.
This constitutes another important contribution of the work presented in this chapter. It is meant
as a basis for an unbiased evaluation of the routing algorithms. We will provide a brief description
of existing state-of-the-art routing algorithms, with which BeeHive is compared, in Section 3.7
emphasizing the novel direction of our work. Section 3.8 will describe our simulation environment
for the extensive experiments reported in Section 3.9. Finally, we will provide a short summary
that concludes the chapter.

3.2 An agent-based investigation of a honey bee colony

In this section we briefly outline the organizational principles of a honey bee colony that will
enable computer scientists to develop agent-based algorithms for different optimization and real
world problems. A honey bee colony pragmatically solves the most interesting multi-objective
optimization problem: how to allocate resources to different tasks under a constantly changing
operating environment so that the colony maximizes its profit. The interested reader can find
details in [170, 206]. This is the same problem that many researchers try to solve in the field of
multi-objective optimization [183, 46, 26] under dynamic and time-varying environments.

3.2.1 Labor management

A honey bee colony is organized with morphologically uniform individuals but with different
temporary specializations. The benefit of this approach is that it enhances a colony’s flexibility to
adapt its response according to an ever changing environment while at the same time doing the
tasks with an acceptable level of efficiency. For example, a nectar forager is able to extensively
forage at a discovered flower site as she does not waste time in storing the nectar inside the hive.



From the Wisdom of the Hive to Routing in Telecommunication Networks 45

Moreover, a bee colony is able to adapt the activity level of its specialists according to the group’s
needs. For example, nectar foragers may become pollen foragers if the amount of protein that
they receive from nurse bees falls below a threshold level, or nurse bees might take the role of
food-storer bees if the rate of processing nectar is slower than the rate of collecting nectar (foragers
indicate this through a tremble dance).

3.2.2 The communication network of a honey bee colony

A honey bee colony utilizes a hybrid communication network that consists of signals and cues for
information exchange among its members. Signals are information-bearing actions or structures
that have been shaped by the natural selection to convey specific information in a unique wise
manner. Cues are variables that likewise convey information about the state of the colony but
have not been modeled by the natural selection to convey that information [175]. Signals enable
direct communication among the members of a honey bee colony via waggle dance, tremble dance
and shaking signal while cues enable indirect communication among the members through the
environment shared by them. Both mechanisms provide an efficient information exchange mech-
anism that empowers the members to mostly communicate indirectly (group-to-one paradigm),
and when required, directly using the one-to-one paradigm.
A good example of a cue is the search time for finding a food-storer bee that a forager experiences
once she wants to unload her nectar. A nectar forager uses this cue to get an estimate of both
nectar collecting and nectar processing rates of the colony; higher search time to find a food-storer
bee is an indicator to the forager that the rate of processing nectar is slower than the rate of
collecting nectar. Consequently, she will decide to perform a tremble dance instead of a waggle
dance. The forager, by doing a tremble dance, will achieve two objectives: one, she will recruit
more food-storer bees to increase the rate of processing nectar, and two, she will request other
foragers, on the dance floor, to stop performing waggle dances, as a result, the rate of collecting
nectar will be decreased.

3.2.3 Reinforcement learning

A colony experiences a strong fluctuation in the external supply or internal demand (or both)
for its commodities: nectar, pollen and water. The feedback signals, both negative and positive,
are important to regulate their amount so that the colony has sufficient stockpile of each of these
commodities. This is achieved by recruiting unemployed foragers for finding good supply sites
through waggle dances. A forager decides to dance only if the quality of the food site, visited by
her, is above a certain threshold or it experiences a very small search time to locate a food-storer
bee for its commodity (a cue that the colony needs the commodity). By keeping the search time
within certain thresholds, the honey bee colony reinforces the foraging labor at a site in times of
need and vice versa. A stochastic model for the foraging behavior has been presented in [171].
Sumpter used this basic model to come up with an agent-based model in [192]. Sumpter’s model
provides a solid foundation for developing an agent-based Reinforcement Learning algorithm [104].

3.2.4 Distributed coordination and planning

A honey bee colony achieves coordination among its thousands of members without any central
authority. The colony does not have a hierarchy where some individuals require information and
then allocate tasks to different members and monitor them. Each individual decides to do a job
depending upon the need of the colony that it estimates using the above-mentioned communication
facilities and measures.

3.2.5 Energy efficient foraging

The foragers tend to optimize the energetic efficiency of foraging at a flower site. For example, if
during an average foraging trip a forager collects G units of energy, expends C units of energy, and



46 BeeHive: The mapping of concepts from Nature to networks

spends time T, then energetic efficiency could be defined as (G − C)/C. Consequently, the sites
that are in the neighborhood of the hive get preference than the sites far away from it [170]. That
is why von Frisch believed that (short distance) foragers which return from nearby sites perform
round dances while other (long distance) foragers perform waggle dances [206]. This principle
enables a colony to collect the commodities at an optimum expenditure of energy.

3.2.6 Stochastic selection of flower sites

The unemployed foragers on the dance floor observe, at the maximum, two or three dancers
and then decide to choose one among them at random. They do not broadly survey the dance
floor to identify the best flower site. This concept is contradictory to human society where well
informed customers are crucial to proper functioning of competitive markets. According to Seeley,
this stems from the fact that whereas the individual human tries to maximize her or his own
profit, the individual forager seeks to maximize her colony’s profits [170]. This ”sacrifice for group
principle” enables a colony to distribute its forager force over different flower sites rather than
allocating it to the best site only. Such a policy results in quick reallocation of foragers, which
were foraging at the best site, to other discovered sites, once the best flower site is about to fade
away.

3.2.7 Group organization

The employed foragers that collect nectar from the same type of flowers recognize one another in
the hive through the flower fragrance that clings to their body. Only group companions respond
to the dances and they show no interest in the dances performed by the foragers of other groups,
which have been foraging at other types of flowers. However, the employed foragers might switch
into another group if the quality of their flower site degrades to an extent where it is no more
profitable to continue foraging at this site [206].
In the next section we will elaborate the most important step of our engineering approach: the
mapping of concepts in a honey bee colony, discussed in the previous section, to an operating
environment of real packet switching networks. This step will help the reader in understanding
our algorithm described in Section 3.4.

3.3 BeeHive: The mapping of concepts from Nature to net-
works

In this section we briefly illustrate the mapping of concepts from Nature to Networks, one of the
most important steps in Natural Engineering, that will simplify for the reader to trace back the
origin of important features of our BeeHive algorithm within the principles of a honey bee colony.

1. We could consider each node in the network as a hive that consists of bee agents. Each
node periodically launches its bee agents to explore the network and collect the routing
information that provides the nodes visited with the partial information on the state of the
network. These bee agents can be considered as scouts that explore and evaluate the quality
of multiple paths between their launching node and the nodes that they visit.

2. Bee agents provide to the nodes which they visit, with the information on the propagation
delay and queuing delay of the paths they explored. These lead to their launching node
from the visited nodes. One could consider the propagation delay as a distance information,
and the queuing delay as a direction information (please remember bee scouts also provide
these parameters in their dances): this reasoning is justified because a data packet is only
diverted from the shortest path to other alternate paths when large queuing delays exist on
the shortest path.



From the Wisdom of the Hive to Routing in Telecommunication Networks 47

3. A bee agent decides to provide its path information only if the quality of the path traversed
is above a threshold. The threshold is dependent on the number of hops that a bee agent
is allowed to take. Moreover, the agents model the quality of a path as a function of the
propagation delay and the queuing delay of the path; lower values of the parameters result
in higher values for the quality parameter.

4. The majority of the bee agents in the BeeHive algorithm explore the network in the vicinity of
their launching node and very few explore distant part of the network. The idea is borrowed
from honey bee colony resulting in not only reducing the overhead of collecting the routing
information but also helping in maintaining smaller/local routing tables.

5. We consider a routing table as a dance floor where the bee agents provide the information
about the quality of the paths they traversed. The routing table is used for information ex-
change among bee agents, launched from the same node but arriving at an intermediate node
via different neighbors. This information exchange helps in evaluating the overall quality of
a node (as it has multiple pathways to a destination) for reaching a certain destination.

6. A nectar forager exploits the flower sites according to their quality while the distance and
direction to the sites is communicated to it through waggle dances performed by fellow
foragers on the dance floor. In our algorithm, we map the quality of paths onto the quality
of nodes for utilizing the bee principle. Consequently, we formulate the quality of a node,
for reaching a destination, as a function of proportional quality of only those neighbors that
possibly lie in the path toward the destination.

7. We interpret data packets as foragers. Once they arrive at a node, they access the information
in the routing tables, stored by bee agents, about the quality of different neighbors of the
node for reaching their destinations. They select the next neighbor toward the destination
in a stochastic manner depending upon its goodness. As a result, not all packets follow the
best paths. This will help in maximizing the system performance although a data packet may
not follow the best path, a concept directly borrowed from a principle of bee behavior: a bee
could only maximize her colony’s profit if she refrains from broadly monitoring the dance
floor to identify the single most desirable food [170] (see Section 3.2).

Now we are in a position to introduce our bee agent model and BeeHive algorithm in the following
sections.

3.4 The bee agent model

Our bee agent model consists of two types of agents: short distance bee agents and long distance bee
agents. Both agents have the same responsibility: exploring the network and evaluating the quality
of the paths that they traverse. They only differ in the distance (hops) that they are allowed to
take starting from their launching node. Short distance bee agents collect and disseminate routing
information in the neighborhood of their source node (up to a specific number of hops) while long
distance bee agents collect and disseminate routing information typically to all nodes of a network.
This helps in collecting the routing information as quickly as possible with a minimum processing
and bandwidth overhead.
The bee agents that are launched from the same node form an affinity group in which they show
interest in each others information. Once the bee agents of the same group arrive at the same
node, but via different neighbors of the node, they access the routing information, collected by
their fellow bee agents in the group, in the routing table. They will decide to discontinue their
exploration of the network after storing their information in the routing table, if one of their
members has already arrived at the node. The communication model among bee agents is realized
as a blackboard system [144].



48 The bee agent model

Definition 2 (Foraging region) The network is organized into fixed partitions called foraging
regions. A partition results from particularities of the network topology and the number of hops
that a short distance bee agent is allowed to traverse. Each foraging region has one representative
node. Currently the lowest IP address node in a foraging region is elected as the representative
node. If this node crashes then the next higher IP address node takes over the job.

Definition 3 (Foraging zone) A foraging zone FZi of a node i consists of all nodes from whom
short distance bee agents can reach this node. A foraging zone may span over multiple foraging
regions.

The basic motivation behind the two definitions above is to combine the benefits of a flat routing
scheme, in which all routers are equivalent, with a hierarchical (cluster) routing scheme, in which
cluster heads (or representative nodes) have more functions to do than ordinary routers in the
cluster. In our hybrid scheme, each node maintains current routing information for reaching
nodes within its foraging zone and for reaching the representative nodes of foraging regions. This
mechanism enables a node to route a data packet whose destination is beyond the foraging zone of
the given node, along a path toward the representative node of the foraging region containing the
destination node. Consequently, our algorithm requires routing tables whose size is of the same
order as that of OSPF, yet a representative node has no special management functions except
launching long distance bee agents. Please remember that in a hierarchical (cluster) routing scheme,
a packet whose destination is outside the current cluster, is sent to the cluster head. The cluster
head forwards it to the cluster head of the cluster which contains the destination node. Finally
the cluster head of the cluster containing the destination node forwards it to the destination node.
The concept of foraging region and foraging zone provides the benefit of smaller routing tables but
without the overhead of routing through cluster heads.
Researchers have proposed a number of algorithms for partitioning a network into clusters [128].
The basic feature of algorithms is that a cluster should be formed in such a manner that the
cluster head (or representative node) should be at the centroid of the cluster. We deliberately
did not use the concept of centroid because we wanted to investigate the performance of BeeHive
without making any optimization to the clustering algorithm. Nevertheless, we would like to
mention that choosing a representative node based on the centroid concept did not significantly
improve the performance of BeeHive. However, this minor improvement in the performance came
at a greater cluster management overhead. Therefore, we did not incorporate any optimizations
in the foraging region formation algorithm. Our results from the extensive experiments clearly
demonstrate that BeeHive is able to provide similar/better performance as compared with existing
state-of-the-art routing algorithms without any such optimizations, which clearly is a proof of its
robustness. Informally, the BeeHive algorithm and its main characteristics can be summarized as
follows:

1. All nodes start the foraging region formation process during the start-up phase. They try to
form a foraging region with the same address as their own address and consider themselves
to be the representative node of the foraging region. Then they launch the first generation
of short distance bee agents to propagate their nomination in their neighborhood.

2. If a node receives a short distance bee agent from a node whose representative node’s address is
smaller than that of the receiving node, then it discontinues its efforts to be a representative
node and rather it joins the foraging region of the representative node with the smaller
address.

3. If a node later on learns that its representative node has joined another foraging region, as
indicated by the short distance bee agents of the representative node, then the node starts
the same election process as explained in Step 1.

4. The nodes keep on launching the next generations of short distance bee agents by following
Steps 1, 2 and 3 until the network is divided into foraging regions and foraging zones. Finally,
each node informs all other nodes in the network to which foraging region it belongs. This



From the Wisdom of the Hive to Routing in Telecommunication Networks 49

step is repeated only if foraging regions are reshaped because of links/nodes failures in the
network.

5. At the end of Step 4 the algorithm enters into a ”normal” phase in which each non-
representative node periodically sends a short distance bee agent, by broadcasting replicas
of it to each neighbor site.

6. When a replica of a particular bee agent arrives at a site it updates the routing information
there, and the replica will be flooded again, however, it will not be sent to the neighbor from
where it arrived. This process continues until the life time of the agent has expired, or if a
replica of this bee agent had been received already at a site, in which case the new replica
will be killed.

7. Representative nodes launch only long distance bee agents that would be received by the
neighbors and propagated as in 6. However, their life time (number of hops) is limited by
the long distance limit.

8. The idea is that each agent while traveling, collects and carries path information, and that it
leaves, at each node visited, the trip time estimate for reaching its source node from this node
over the incoming link. Bee agents use priority queues for quick dissemination of routing
information.

9. Thus each node maintains current routing information for reaching nodes within its foraging
zone and for reaching the representative nodes of foraging regions. This mechanism enables
a node, as explained before, to route a data packet (whose destination is beyond the foraging
zone of the given node) along a path toward the representative node of the foraging region
containing the destination node.

10. The next hop for a data packet is selected in a stochastic fashion according to the quality
measure of the neighbors. The motivation for this routing policy has already been explained
in Section 3.3. Please note that the routing algorithms currently employed in the Internet
always choose a next hop on the shortest path [152].

Figure 3.1 provides an exemplary working of the flooding algorithm. Short distance bee agents
can travel up to 3 hops in this example. Each replica of the shown bee agent (launched by Node
10) is specified with a different trail to identify its path unambiguously. The numbers on the
paths show their costs. The flooding algorithm is a variant of breadth first search algorithm. The
network is partitioned into two foraging regions 0 and 8 by following the above-mentioned Steps
1,2,3 and 4. The foraging zone of Node 10, which spans over both foraging regions, consists of
Nodes 2,3,4,5,6,7,8,9,11.

3.4.1 Estimation model of agents

We now briefly explain the estimation model used by bee agents to estimate the trip time required
by a data packet to reach their launching node from the current node. In BeeHive, the delay tin
that a data packet will experience in reaching a neighbor n from node i is modeled as follows

tin = qin + txin + pdin + pri + prn (3.1)

where qin is the queuing delay for neighbor n at node i, txin and pdin are transmission delay
and propagation delay of the link between node i and neighbor n, respectively, and pri, prn are
protocol processing delays for a packet at node i and node n, respectively. The processing delay,
generally speaking, is negligible as compared to the sum of queuing, transmission and propagation
delays. Hence equation (3.1) can be rewritten as

tin ≈ qin + txin + pdin (3.2)



50 The bee agent model

8

6

7

9

10

2

1

5

3

11

1
1

1
2

1

1

1

1 1

4

0

1

1

1

Foraging Region 0

Foraging Region 8

Rep Node

Rep Node

1

62

760

811

99

88

77

66

765

764

63

62

760

811

99

88

77

66

765

764

63

IFR + IFZ 01 01

FRM

Routing Table at Node 10

Figure 3.1: Bee agents flooding algorithm



From the Wisdom of the Hive to Routing in Telecommunication Networks 51

In equation (3.2), txin models the delay experienced because of the bandwidth of the link while
pdin models the delay that a packet experiences while traveling between two nodes on a link. txin

is dependent on the size of the packet, and the bandwidth of the link between node i and node n,
and pdin is dependent on the distance between node i and node n. For a particular link, both of
these delays do not change with the traffic loads. However, qin is directly dependent on the size
of queue, and this in turn depends on the traffic loads. We approximate qin as

qin ≈
qlin
bin

(3.3)

where qlin is the size of the queue (in bits) for neighbor n at node i, and bin is the bandwidth of the
link between node i and node n. During initialization phase, we approximate the bandwidth and
propagation delays of all the links of a node by transmitting hello packets. The bee agents estimate
the queuing delay for a link by observing the size of the queue (qlin) and using equation (3.3).
Finally, by adding the transmission and propagation delay of the link to it, they approximate the
delay that a packet will experience on the link for reaching neighbor n. Ultimately they update
the trip time tis that a packet will take in reaching their source node s from current node i

tis ≈ tin + tns (3.4)

3.4.2 Goodness Of a neighbor

The goodness of a neighbor j of node l (l has N neighbors) for reaching a destination d is gjd and
defined as follows

gjd =
1

pjd
(e
−

qjd
pjd ) + 1

qjd
(1− e

−
qjd
pjd )∑N

k=1(
1

pkd
(e−

qkd
pkd ) + 1

qkd
(1− e

qkd
pkd ))

(3.5)

The fundamental motivation behind equation (3.5) is to approximate the behavior of the real
network. When the network is experiencing a heavy network traffic load then the queuing delay
plays the primary role in the delay of a link. In this case it is trivial to say that qjd � pjd and we

can see from equation (3.5) that gjd ≈
1

qjd∑N

k=1
1

qkd

. When the network is experiencing low network

traffic then the propagation delay plays an important role in defining the delay of a link. As

qjd � pjd, from equation (3.5) we get gjd ≈
1

pjd∑N

k=1
1

pkd

.

The plot of equation 3.5 is shown in Figure 3.2(a). Once we started developing our engineering
model of BeeHive inside the network stack of Linux operating system as discussed in Section 1.3,
we realized that the kernel library does not support mathematical functions like exponentials,
sine, square root and cosine etc. We implemented the exponential function ourselves in the Linux
kernel, but we observed that the processing complexity of the exponentials is an order of magni-
tude higher than one of simple arithmetic functions. This motivated us to look for other forms
of modeling the quality function represented in equation (3.5). The basic challenge was that it
should capture the network behavior as discussed in the previous paragraph yet it should contain
no exponentials. The reason for having no complex mathematical functions like exponentials,
sine, cosine, square root etc., is that the quality calculation considerably increases the processing
overhead of a routing algorithm, therefore, its processing complexity should be as small as pos-
sible. We tried different options and the following form gave similar results as that of the form
discussed in equation (3.5). The graphical representation of equation 3.6 is shown in Figure 3.2(b).

gjd =
1

pjd+qjd∑N
k=1(

1
pkd+qkd

)
(3.6)

We then used our profiling framework (it will be introduced in Section 3.6) to measure the pro-
cessing complexity (in cycles) of both forms. Table 3.1 summarizes the results. The results are



52 The bee agent model

a summary of ten independent runs and in each run the goodness forms have been evaluated 10
million times to get a more representative value. One can easily see that the new form is approxi-
mately 10 times faster to compute than the one with exponentials. The form with the exponentials
takes on the average 1100 cycles as compared to 105 cycles taken by non-exponential version.
However, this simple form, as the results of our extensive experiments in Section 3.9 demon-
strate, has not resulted in any performance degradation as compared to that of BeeHive algorithm
presented in [221].

Equations Max Min Av
3.5 1109 1093 1099
3.6 118 96 105

Table 3.1: Processing complexity of different forms

3.4.3 Communication paradigm of agents

The forager bees in Nature try to exploit different food sources based on their quality, and the
distance to the flower site is communicated via a waggle dance. In order to use this bee model,
we need to find a mathematical model which assigns an overall quality to neighbor nodes for
reaching a destination. The overall quality of a neighbor node can be further represented as
a function of delays (propagation, transmission and queuing) of different paths leading from this
node towards the destination. Such a model is realized with the help of a communication paradigm
among different replicas of the same agent, which are launched from the same source node. The
communication model is explained in Figure 3.3 in which three paths exist between k and s. Node
s launches three replicas of the same agent on three paths and they arrive through different paths
at node k. Each replica uses the estimation model described above to estimate the queuing delay
and the propagation delay. The replica that arrived earlier is allowed to continue its exploration
further while other replicas are killed. However, the other replicas do communicate their estimates
to the replica, which is allowed to continue the exploration. Using the communication paradigm
the replica calculates pks and qks, which incorporate the estimate of all replicas proportional to
the quality of the path which they traversed. Once this replica continues its exploration of the
network then it tells the other nodes about existence of a path from k to s through which a packet
could reach s with a propagation delay of pks and queuing delay of qks. The other nodes forward
data packets to node k based on the quality which is a function of pks and qks. Once the data
packet is at node k it can take any one of three paths based on the their quality which is calculated
based on the delay estimates of bee agents.

3.4.4 Packet switching algorithm

We use stochastic sampling with replacement [82] for selecting a neighbor as a next hop towards a
particular destination. This principle ensures that a neighbor j with goodness gjd will be selected
as the next hop with at least the probability gjd∑N

k=1
gkd

or more formally , the probability of taking

j as a next hop towards destination d at node i is φi
jd and can be mathematically represented as

φi
jd =

gjd∑N
k=1 gkd

(3.7)

We did not use any rescaling of the probabilities, as done by the authors of AntNet because this
would increase the processing complexity of doing packet switching. Please remember that any
processing during the packet switching also lies on the critical path of a routing algorithm and
hence has to be as efficient as possible. Our experiments suggest that the performance of BeeHive
is same or better than the existing state-of-the-art routing algorithms even without rescaling the
probabilities. This shows that trade-off between the quality of a path decision and its computing
time as utilized in BeeHive does not harm its performance.



From the Wisdom of the Hive to Routing in Telecommunication Networks 53

(a) g = 1

1
p
(e
− q

p )+ 1
q
(1−e

− q
p )

(b) g = 1
p+q

Figure 3.2: Goodness of a neighbor (different options)



54 The bee agent model

p1s, q1s

sk

p2s, q2s

p3s, q3sm

pmk, qmk

pks = g1s*p1s + g2s*p2s + g3s*p3s
qks = g1s*q1s + g2s*q2s + g3s*q3s

pmk, qmk

m sk

pms = pmk + pks
 qms = qmk + qks

m s

Figure 3.3: Communication paradigm of bee agents



From the Wisdom of the Hive to Routing in Telecommunication Networks 55

3.5 BeeHive algorithm

In BeeHive, each node i maintains three types of routing tables: Intra Foraging Zone (IFZ), Inter
Foraging Region (IFR) and Foraging Region Membership (FRM). The Intra Foraging Zone routing
table Ri is organized as a matrix of size (|D(i)| × |N(i)|), where D(i) is the set of destinations
in the foraging zone of node i and N(i) is the set of only those neighbors of i which lie on a
path towards the destination. Each entry Pjd is a pair of queuing delay and propagation delay
(pjd, qjd) that a packet will experience in reaching destination d via neighbor j. Table 3.2 shows
an example of Ri. In the Inter Foraging Region routing table, the queuing delay and propagation
delay values for reaching the representative node of each foraging region through the neighbors
of a node are stored. The structure of the Inter Foraging Region routing table is similar to the
one shown in Table 3.2 where the destination entry is replaced by the representative node of the
region containing the destination node. The Foraging Region Membership routing table provides
the mapping of known destinations to the representative node of their foraging region. In this way
we eliminate the need to maintain O(N × D) (where D is total number of nodes in a network)
entries in a routing table and save a considerable amount of router memory needed to store this
routing table. Please have a look at Figure 3.1. The total number of entries in all routing tables
maintained by Node 10 using BeeHive algorithm are 14. Algorithm 1 and Algorithm 2 describe
the important features of the BeeHive algorithm.

Ri D1(i) D2(i) . . . Dd(i)

N1(i) (p11, q11) (p12, q12) · · · (p1d, q1d)

..

.
..
.

..

.
. . .

..

.
Nn(i) (pn1, qn1) (pn2, qn2) · · · (pnd, qnd)

Table 3.2: Intra foraging zone routing table



56 BeeHive algorithm

Algorithm 1 Bee launching and processing algorithms
procedure launchBeeAgents(s,ni,n)

if t % ∆t = 0 or ni % Packet Limit = 0 then
if s is representative node of foraging region then

hs ← Long Limit, {bv
s is a long distance bee agent}

else
hs ← Short Limit, {bv

s is a short distance bee agent}
end if
if v = 0 then

Frs ← s {claim to be the representative node}
end if
for x← 1 to N do

create a replica bxv
s of bee agent bv

s

find address of neighbor at index x
launch replica bxv

s to neighbor at index x
x++

end for
end if

end procedure

procedure manageRegions(s,Frs,hops,Fri)
if Frs = s && hops < hs then

if Frs < Fri then
Fri ← Frs {withdraw in favor of lower IP node as a representative node}
{If the current representative node of i has joined another foraging region}

else if Fri = Frs && Frs 6= s then
Fri ← i {claim to be the representative node}

end if
end if

end procedure

procedure processBeeAgents(bxv
s ,i)

if bxv
s already visited i or its hop limit reached then

kill bxv
s {avoid loops}

else if bxv
s is inside FZs then

qd← qd + lip

bip
and pd← pd + pip

update IFZ entries qps ← qd and pps ← pd
update qd←

∑
k∈N(i)

(qks × gks)

update pd←
∑

k∈N(i)

(pks × gks)

else
qd← qd + lip

bip
and pd← pd + pip

update IFR entries qpz ← qd and ppz ← pd
update qd←

∑
k∈N(i)

(qkz × gkz)

update pd←
∑

k∈N(i)

(pkz × gkz)

end if
if bjv

s already reached i {∀j 6= x} then
kill bxv

s

else
use priority queues to forward bxv

s to all neighbors of i except p
end if

end procedure



From the Wisdom of the Hive to Routing in Telecommunication Networks 57

i Current node
n Successor node of i
p Predecessor node of i
s source node of a packet
d destination node of a packet
bv
s Bee agent of ID v launched by s

bxv
s Replica x of bv

s

hs Hop limit for bee agents of s
hops Current number of hops
Dsd Data packet launched by s towards d
Frc Foraging region containing node c
FZc Foraging zone of node c

z Representative node of Frs

w Representative node of Frd

qd queuing delay estimate of a bee agent from p to s
pd propagation delay estimate of a bee agent from p to s

Short Limit Hop limit for short distance bee agents (7 hops)
Long Limit Hop limit for long distance bee agents

t current time
tend Time to end simulation
∆t Generation interval for bee agents (1 sec)
∆h Generation interval for hello packets
bip Estimated bandwidth of link from i to p
pip Estimated propagation delay from i to p
lip Size of normal queue at i for p (bits)
ni number of packets received at node i
N number of neighbors of a node
% Modulo operator
= Logical comparison

Packet Limit packet limit for launching bee agents

Table 3.3: Symbols used in the BeeHive algorithm

Algorithm 2 Packet switching and neighbor maintenance algorithms
procedure switchDataPackets(Dsd,i)

if d is within FZi then
consult IFZ of node i to find delays to node d
calculate gkd, ∀k ∈ N(i)

else
consult FRM of node i to find node w
consult IFR of node i to find delays to node w
calculate gkw, ∀k ∈ N(i)

end if
probabilistically select a neighbor n (n 6= p) as per goodness
enqueue data packet Dsd in normal queue for neighbor n

end procedure

procedure manageNeighbors(i)
if t % ∆h = 0 then

send a hello packet to all neighbors
if time out before a response from neighbor {4th time} then

neighbor is down
update the routing table at i
launch special bees to inform other nodes in FZi

end if
end if

end procedure



58 The performance evaluation framework for Nature inspired routing algorithms

3.6 The performance evaluation framework for Nature in-
spired routing algorithms

We now introduce our performance evaluation framework that we used for an unbiased evaluation
of the algorithms presented in Section 3.7. We used the guidelines suggested by Hinningbottom
in [94] as well as our discussions with the Cisco network engineers in our system management
group, for defining the relevant performance parameters of our framework. A prototype version
of the performance evaluation framework was introduced in [216]. Its conceptual block diagram is
illustrated in Figure 3.4. The framework consists of two input modules: the topology generator and

Candidate
Algorithm

Performance

Evaluation
Framework

Traffic
Generator

Topology
Generator

MSIA

MPIA

sessionSize

Router Input Parameters

(Queue Size, Topology)

packetSize

Profiling FrameworkProfiling Framework

Performance Parameters

(Throughput, Delay,
Jitter,….)

Figure 3.4: Performance evaluation framework

the traffic generator. The topology generator generates a topology of a given amount of nodes and
links and assigns a buffer capacity to a router, and the traffic generator enables different traffic
patterns through a variation of different input parameters. The traffic generator can generate
session-oriented traffic in which all packets of a session have the same destination. This type of
traffic tests the congestion control behavior of a routing algorithm. For injecting dynamically
changing traffic patterns, we have defined two states: uniform and weighted. Each state lasts 10
seconds and then a state transition to another state occurs. In a Uniform state (U) a destination
is selected from a uniform distribution while in a Weighted state (W), a destination selected in
the previous Uniform state is favored over the other destinations.
du(U):= θd, (0 ≤ θd ≤ 1)
dw(W ):= θs(du) + (1− θs)θd′ , (0 ≤ θd′ ≤ 1)
θd represents the probability of selecting node d as the destination of a packet in a session. In
a (U) state, θd = 1/D where D is number of nodes in the network. During a (W) state, we are
using θs = 0.4, this means that we favor by 40% the destination from the previous Uniform state
to be also the destination during the current Weighted state. The mechanism above ensures that



From the Wisdom of the Hive to Routing in Telecommunication Networks 59

MSIA Mean of sessions inter-arrival times (sec)
MPIA Mean of packets inter-arrival times (sec)

sessionSize The size of a session in bits
D The number of nodes in a network
lt The number of bi-directional links in a network
βc Buffer capacity (packets) of routers
δl The size of a packet in bytes

Table 3.4: Input parameter symbols used in the chapter

the traffic patterns could be dynamically generated in an arbitrary fashion in order to represent
a decent subset of traffic patterns in real networks. The session-oriented traffic is shaped through
the variables sessionSize, MSIA and MPIA. The size of a session is given by the sessionSize vari-
able. MSIA is the mean of session inter-arrival times at a node and MPIA is the mean of packet
inter-arrival times. The session inter-arrival and packet inter-arrival times are taken from negative
exponential distributions with mean MSIA and MPIA, respectively. The input parameters and
their symbolic representations are shown in Table 3.4.
In a session-less traffic, the destination of each packet is selected from a uniform distribution.

This traffic pattern, under low load, simulates static network conditions. Generally researchers
either use session-oriented or session-less traffic, though we believe that a good routing algorithm
should be able to do congestion control and be competitive under static network loads as well.
This profiling framework has been developed to determine the processing complexity of the agents
and the data packets for each routing algorithm. An ideal routing algorithm should be able to
route data packets as quickly as possible, and the time it spends in processing the agents should
be as small as possible. The framework is based on the rdtsc machine instruction supported by
Pentium architectures [43] that provides cycle-level profiling accuracy. We decided to report the
complexity of a an algorithm in cycles because this parameter is independent of the frequency of
a processor. It is used as a standard parameter by the embedded systems community to report
the complexity of an algorithm running on a hardware system.
Our framework keeps on logging the relevant parameters during the simulation, and it finally
stores them into a data file. It measures a number of parameters which provide a comprehensive
insight into the behavior of an algorithm, over a wide range of the operating environment. In this
way we can evaluate each algorithm in an unbiased manner. The output parameters from the
framework and their symbolic representations are shown in Table 3.5.
Average Throughput. Throughput is a measure of how much traffic is successfully received at

the intended destination in a unit interval of time [94]. A routing protocol should try to maximize
this value.
Packet delay. For all algorithms, we report the average packet delay and 90th percentile of the
packet delays. A good algorithm should be able to deliver packets with minimum delay and with
minimum standard deviation of delays. In the rest of the chapter we use the term packet delay
for 90th percentile of packet delays, for the sake of brevity.
Session delay. Our network engineers suggested that in case of session-oriented traffic, the most
important parameter is the time needed to complete a session. On the application layer at the
destination node one only gets the packets after all packets of a session have been received in the
correct order. The packet delay factors out this waiting time and hence favors multi-path routing
algorithms which in general deliver packets in an out of order manner but with smaller delays.
Session completion ratio. The percentage of sessions that are able to complete without any
support from transport layer protocols. For example, if only one packet in a session is dropped
due to congestion or because the time-to-live (TTL) value becomes zero, we report the session as
an incomplete one. We believe that this parameter indicates the drop pattern of packets in the
face of congestion. Our results substantiate that it is more difficult to maximize this parameter
than throughput.
Packet delivery ratio. This measure tells us how much of the data packets are successfully
delivered at their destination. Under high loads a 1% improvement in packet delivery ratio at



60 The performance evaluation framework for Nature inspired routing algorithms

Tav Average throughput (Mbits/sec)
Pd Packet delivery ratio (%)

Pdrop Packet drop ratio (%)
Ploop Percentage of packets that followed a cyclic path
Sc Session completion ratio (%)
td Average packet delay (msec)

t90d 90th percentile of packet delays (msec)
Sd Average session delay (msec)

S90d 90th percentile of session delays (msec)
Jd Average jitter value (msec)

J90d 90th percentile of jitter times (msec)
qav Average queuing delay (msec)
Aa Average agent processing cycles
Da Average data processing cycles
At Total agent processing cycles (in billions ) per node
Dt Total agent processing cycles (in billions ) per node
Ro Control overhead
So Suboptimal overhead

hsd
i hops packet i took to reach from node s to node d

hsd
o minimum hops needed to reach from node s to node d

hav Average hops count of the data packets

Table 3.5: Output parameter symbols used in the chapter

times may mean about a few 100,000 more data packets delivered at their destination. Again, one
can not observe this improvement via throughput values only.
Packet loop ratio. The percentage of data packets that followed a cyclic path. A cyclic path
represents an error in a routing algorithm and should be reported but we do not have to kill such
packets. The motivation for this approach is that a good stochastic routing algorithm must be
able to quickly recover from such looping and if a packet happens to loop infinitely then it is
dropped once its TTL value becomes zero.
Jitter. The jitter is defined as the difference in arrival times of two subsequent packets of the
same session, sent from the same node, at their destination node. Let packet psd

i and psd
i+1 be

two subsequent packets sent from node s to node d and let ti and ti+1 be their arrival times at
destination node d. Now the jitter can be defined as Jd = ti+1−ti if ti+1>ti else Jd = 0. The jitter
is an important parameter in quality of service (QoS) routing, especially for streaming multimedia
applications. The subsequent packets in video streams should arrive with an acceptable jitter in
order to avoid flickering in relaying the video.
Average Agent Processing Cycles. This parameter defines the processing complexity of an
agent, say ant or bee. The results show a tendency that can be easily reproduced from one run
to another within an acceptable variance. This parameter gives an insight into the complexity of
computations/actions an agent performs at a node.
Average Data Processing Cycles. This parameter defines the processing complexity of switch-
ing a data packet to its next hop. It creates a considerable overhead for a routing algorithm, and
should therefore be as small as possible.
Total Agent Processing Cycles per node. This parameter provides information about the
total number of cycles (in billions) that a node spends in processing the agents. We will see the
effect of accumulating small differences in average agent processing cycles over a longer period of
time.
Total Data Processing Cycles per node. This parameter provides information about the
total number of cycles (in billions) that a node spends in processing data packets. We will also see
the effect of accumulating small differences in average data processing cycles over a longer period
of time.
Control overhead. The ratio of the bandwidth occupied by the routing/control packets and the
total available bandwidth in the network [52]. Generally, the authors report this parameter in
order to show the control overhead of their routing algorithm.
Suboptimal overhead. This metric was introduced in [165], in the context of MANETs. We



From the Wisdom of the Hive to Routing in Telecommunication Networks 61

believe that it is equally relevant in fixed networks. It is defined as ”The difference between the
bandwidth consumed when transmitting data packets from all the sources to destinations and the
bandwidth that would have been consumed should the data packets have followed the shortest hop
count path”. Formally we define the parameter as

So =
∑D

d=1

∑D
s=1

∑K
i=1(h

sd
i − hsd

o )× Lsd
i

Bt
, s 6= d (3.8)

where D is total number of nodes in the network, K is the total number of packets generated, Lsd
i

is the length of packet i (in bits) from source s to destination d, and Bt is the total bandwidth
of the network. We report this parameter because it implicitly includes the additional bandwidth
consumed by data packets when they follow cyclic paths.

3.7 Routing algorithms used for comparison

The focus of our research is on adaptive (flexible) routing algorithms, but we will use OSPF in
our comparative simulation for the sake of comprehensiveness.

3.7.1 AntNet

AntNet has been described in detail in Chapter 2. In rest of the chapter, we use the name AntNet-
CL for the version of AntNet in which a Forward Ant agent uses the same queues that data packets
use while AntNet-CO corresponds to the version of AntNet in which a Forward Ant agent utilizes
priority queues and uses the estimation model described in [55] to estimate its trip time to the
neighbor node. In the rest of the chapter, if not otherwise specified, we will refer to AntNet-CO
as AntNet for the sake of the brevity.

3.7.2 DGA

DGA has been described in detail in Chapter 2. The poor performance of DGA under high
traffic loads, as reported in [221], led us to investigate the problem in more detail. Our research
revealed that launching half of the population of agents during the initialization phase resulted in
approximately 50% control overhead which is not tolerable. Therefore, through rigorous testing we
empirically reached a value of 12 to 16 ant agents, that should be launched during initialization
phase, which reduced the control overhead to about 5 % without any significant performance
degradation. Our experiments also suggest that in this way we have significantly improved the
performance parameters of DGA as compared to those of the original algorithm.
Please note that in contrast to the above-mentioned algorithms, the bee agents, as discussed in
Section 3.1, need not be equipped with a stack to perform their duties. Moreover, our agent
model requires only forward moving agents, and they utilize an estimation model to calculate
the trip time from their source to a given node. This model eliminates the need for global clock
synchronization among routers, and it is expected that for very large networks routing information
can be disseminated quickly with a rather small overhead as compared to AntNet. Our agent model
does not require storing the average trip time, the variance of trip times, and the best trip time
for each destination at a node in order to determine the goodness of a neighbor with respect to a
particular destination. Last but not least, BeeHive works with significantly smaller routing tables
as compared to AntNet.

3.7.3 OSPF

OSPF has been described in Chapter 2. In our implementation we simply take the fixed propaga-
tion costs and do not allow the costs to be changed by the network administrators. As a result,
our implementation makes OSPF a single-path non-adaptive routing protocol. Such approach was
also taken by the authors of AntNet.



62 Simulation environment for BeeHive

3.7.4 Daemon

The daemon algorithm is an ideal algorithm in which all routers can have access to a single global
instance of the network. They can update the costs of the links of the network based on their
current queue lengths. Each router has an instant access to the queue length of all other routers
and it applies the Dijkstra algorithm, for each routing decision, to find the shortest path between
the current node to the destination node. The router updates the cost of the link from node i
to node j (Cij) after queuing the data packet Dsd in its network buffer interface by using the

formula Cij = Lsd
j +lij

bij
+ pij , where Lsd

j is the length of Dsd (in bits). The other parameters
are defined in Table 3.3. The algorithm can not be implemented in real routers because of the
control overhead required to transmit changes in the queue lengths, and the processing overhead
of running Dijkstra’s algorithm for each routing decision. Nevertheless, the algorithm provides a
bench mark for the comparison of the algorithms.

3.8 Simulation environment for BeeHive

In order to evaluate our algorithm BeeHive in comparison with AntNet, DGA and OSPF and Dae-
mon, we implemented all of them in the OMNeT++ simulator [203]. For OSPF we implemented
a link state routing that implements the deterministic Dijkstra Algorithm [57]. For AntNet and
DGA we used the same parameters that were reported by the authors in [52] and [120], respec-
tively. BeeHive, OSPF and Daemon algorithms were given 30 seconds to initialize the routing
tables. In comparison DGA and AntNet were given 50 seconds to initialize the routing tables for
the experiments reported in this chapter. Our simulation server was a Fujitsu Siemens machine
with a Pentium 4 processor of 3 GHz having 1 Giga byte of main memory and 30 Giga byte of
secondary memory. We tested the algorithms on the three network instances simpleNet, NTTNet
and Node150. All reported values for an experiment are an average (µ) of the values obtained
from ten independent repetitions (each lasting 1000 seconds). The performance values of ten
independent repetitions varied in the interval (µ± 5%µ) for a confidence level of 95%.

3.8.1 simpleNet

simpleNet is a small network designed by the authors of [52] to study relevant aspects of a routing
algorithm. We designed the experiments on simpleNet to study the effect of distributing network
traffic loads on multiple paths, an important feature of BeeHive and AntNet. simpleNet is com-
posed of 8 nodes and 9 bidirectional links each of 10 Mbits/sec bandwidth and 1 msec propagation
delay. The topology is shown in Figure 3.5.

3.8.2 NTTNet

The next network instance that we used in our simulation framework is the Japanese Internet
Backbone (NTTNet). It is a 57 nodes, 81 bidirectional links network. The Link bandwidth is
6 Mbits/sec, while propagation delays range from 1 to 5 msec. Moreover NTTNet it is a non-
balanced oblong network with a low degree of connectivity. Hence it puts strong demands on the
routing protocols because in a narrow shaped network, once a packet is forwarded in a wrong
direction, it might not have a chance to be routed to the correct destination. NTTNet is shown in
Figure 3.6. The advantages associated with the design options adopted in BeeHive are expected
to become apparent from the topology of this size and onwards.

3.8.3 Node150

Our next network Node150 is a 150 nodes network with 200 bidirectional links. The link band-
width is uniformly distributed between 6 and 10 Mbits/sec and the propagation delay is uniformly



From the Wisdom of the Hive to Routing in Telecommunication Networks 63

1 2

3 4

5

6

7

8

Figure 3.5: SimpleNet

52
54

55

51

4944 45

43

5

10
13

2 1

3

22

24

20 25

28

34

30
36

0 8

4

6

9 11

7 12
17

18

2316

21

19
26

32

29
15

14 27 39
41

42

5047

48

46

31 33 37
38

53

56

 35

40

         

  f

Figure 3.6: NTTNet



64 Discussion of the results from the experiments

distributed between 1 and 5 msec. The topology was generated using the BRITE (Boston Univer-
sity Representative Internet Topology Generator) software developed by Medina at the University
of Boston. Interested reader will find detailed information about the BRITE topology generator
in [125, 126, 127]. The Node150 topology is shown in Figure 3.7.

Figure 3.7: Node150: figure is captured from OMNeT++ plotter

3.9 Discussion of the results from the experiments

3.9.1 Congestion control behavior

The purpose of the experiments, discussed in this subsection, was to study the congestion control
behavior of the routing algorithms. The nearly saturated traffic load was created by gradually
decreasing the value of MSIA from 8.6 sec to 1.6 sec (Please remember that MSIA and MPIA values
are taken from negative exponential distributions). The performance values of the algorithms in
the following bar charts are represented from left to right for the algorithmic legends from top to
bottom respectively.

simpleNet

The performance values of all of the algorithms were approximately the same once we performed
the experiments by changing MSIA from 8.6 sec to 1.6 sec, MPIA = 0.005 sec, sessionSize =
2130000 bits, δl = 512 bytes and βc = 1000 packets. Therefore, we designed a series of special
experiments in which we enabled the traffic generators only at node 1 and node 7 (see Figure
3.5). We further ensured that all of the sessions originating at node 1 were having node 7 as the
destination and vice-versa, in order to saturate the queues on selected paths. We increased the
sessionSize to 26000000 bits and decreased MSIA from 8.6 sec to 2.6 sec while other parameters
remained the same as discussed above. These traffic conditions did generate a challenging traffic
pattern and showed the advantage of dynamic routing algorithms, BeeHive, AntNet and Daemon,
over classical non-adaptive algorithms like OSPF. Please remember that Daemon has a complete
knowledge about the topology and queue lengths of all routers in it and then it chooses the shortest
path towards the destination while BeeHive and AntNet do a stochastic spread of the data packets
based on the local information, collected by bee or ant agents respectively. Figure 3.8, Figure 3.9,
Figure 3.10 and Figure 3.11 show the important parameters obtained from the experiments.



From the Wisdom of the Hive to Routing in Telecommunication Networks 65

MSIA
8.6 6.6 4.6 2.6

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

           4

           6

           8

          10

          12

          14

          16

          18

          20
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(a) Average throughput

MSIA 
2.6 3.6 4.6 5.6 6.6 7.6 8.6

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(s

ec
)

0

0.1

0.2

0.3

0.4

0.5
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) 90th percentile of packet delays

Figure 3.8: Congestion control behavior in simpleNet (throughput and packet delay)



66 Discussion of the results from the experiments

MSIA
8.6 6.6 4.6 2.6

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

55

60

65

70

75

80

85

90

95

100
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(a) Packet delivery ratio

MSIA
8.6 6.6 4.6 2.6

se
ss

io
n 

co
m

pl
et

io
n 

ra
tio

 (
%

)

           0

          20

          40

          60

          80

         100
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) session completion ratio

Figure 3.9: Congestion control behavior in simpleNet (packet delivery ratio and session completion
ratio)



From the Wisdom of the Hive to Routing in Telecommunication Networks 67

MSIA
8.6 6.6 4.6 2.6

co
nt

ro
l o

ve
rh

ea
d 

(%
)

        0.00

        0.03

        0.05

        0.08

        0.11        0.11

        2.18

        4.25

        6.33

        8.40
DGA

OSPF

AntNet−CO

BeeHive

(a) Control overhead (%)

MSIA
8.6 6.6 4.6 2.6

su
bo

pt
im

al
 o

ve
rh

ea
d 

(%
)

           0

           5

          10

          15

          20

          25
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) Suboptimal overhead (%)

Figure 3.10: Congestion control behavior in simpleNet (control and suboptimal overhead)



68 Discussion of the results from the experiments

MSIA
8.6 6.6 4.6 2.6

ag
en

t p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e 

           0

           2

           4

           6

           8

          10          10

          28

          46

          64

          82

         100
DGA

AntNet−CO

BeeHive

(a) Total agent processing cycles per node (in billions)

MSIA
8.6 6.6 4.6 2.6

da
ta

 p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e 

           2

           4

           6

           8

          10

          12

          14
DGA

AntNet−CO

BeeHive

(b) Total data processing cycles per node (in billions)

Figure 3.11: Congestion control behavior in simpleNet (agent and data processing complexity)



From the Wisdom of the Hive to Routing in Telecommunication Networks 69

MSIA Algorithm td Sd S90d Ploop Jd J90d qav hav Aa Da

8.6 DGA 5.8 31736 32255 3.13 2 6 0.15 3.49 27787 4444
OSPF 3 31732 32243 0 2 5.1 1 2 - -

AntNet-CL 3 31738 32262 0.01 2 5.2 0 2.24 69925 7244
AntNet-CO 3 31719 32219 0.01 2 5.1 0 2.23 71791 7232

BeeHive 3.75 31741 32250 0 2.7 6.2 0.03 2.61 38141 4077
Daemon 2.96 31732 32242 0 2 5.1 0.07 2 - -

6.6 DGA 9.43 31737 32247 2.72 1.6 7.2 0.63 3.51 27960 4186
OSPF 3 31735 32242 0 1.2 3.9 0.5 2 - -

AntNet-CL 3.4 31736 32241 0.01 1.3 3.9 0.1 2.23 70183 7141
AntNet-CO 3.4 31737 32244 0.01 1.4 3.9 0.2 2.22 71779 7112

BeeHive 3.78 31724 32235 0 2 5.2 0.03 2.62 38898 4064
Daemon 3.23 31734 32241 0 1.2 3.9 0.11 2.12 - -

4.6 DGA 31.62 31753 32267 4.81 1.7 14.4 3.79 3.68 28153 3854
OSPF 21.2 31742 32249 0 1 2.2 9.5 2 - -

AntNet-CL 7.7 31733 32249 0.02 1 4.5 1.8 2.25 70390 6952
AntNet-CO 6.6 31744 32261 0.01 1 4.6 1.6 2.22 72353 6950

BeeHive 3.89 31738 32256 0 2 4 0.07 2.62 38657 3979
Daemon 4.6 31741 32246 0 1 2.3 0.43 2.5 - -

2.6 DGA 187.74 31739 32297 2.08 1.7 24.6 38.19 3.89 28397 3284
OSPF 224.5 31768 32300 0 0.8 1 110.9 2 - -

AntNet-CL 79.4 31762 32302 0.14 2.2 25.6 31.1 2.45 71802 6727
AntNet-CO 87.1 31750 32268 0.13 2.1 25.2 34.4 2.43 73728 6715

BeeHive 5.51 31728 32242 0 1 4.6 0.64 2.69 39250 3789
Daemon 32.52 31762 32279 0 0.8 1 8.87 3.15 - -

Table 3.6: Performance parameters for congestion control behavior in simpleNet

Please note that as we move close to saturated traffic loads, the packet delivery ratio of OSPF
and DGA starts trailing significantly behind as compared to that of BeeHive, AntNet and Daemon
algorithms. However, Figure 3.9(b) shows that the session completion ratio of OSPF, DGA and
AntNet is significantly smaller than that of BeeHive and Daemon algorithms. This confirms our
expectation (see Section 3.6): during congestion, a small difference in packet delivery ratio results
in a significantly larger difference in session completion ratio. Please note that BeeHive and Dae-
mon are able to maintain higher throughput, smaller packet delay and higher session completion
ratio than the other algorithms, under all the simulated scenarios.

Figure 3.10 shows that the control overhead and suboptimal overhead of BeeHive and AntNet are
approximately the same. The suboptimal overhead of Daemon is the largest because it tries to
distribute the packets on all available paths based on its global information about the network, as
a result, the average hop count increases to about 3.0 hops. The additional fractional increase in
hav at extreme saturating loads translates to a significant increase in suboptimal overhead. The
control overhead of DGA decreases with an increase in traffic load because it employs a genetic
algorithm. Please remember that in DGA, ant agents use the same buffers as data packets, and
next generations of agents are launched once the node receives four agents from the previous gen-
eration. Consequently, more agents will be traveling on the network if their trip time is smaller
and this happens in a small topology or under low traffic loads, or both. This explains a sharp
increase in the control overhead with an increase in the network traffic.

Figure 3.11 shows the parameters that provide an insight into the processing complexity of the
agents and the efficiency with which a data packet can be switched. The number of cycles that a
node spends in processing bee agents is smaller than ant agents in AntNet, and the packet switching
complexity of BeeHive is significantly smaller than AntNet. These are the benefits of employing
the simple bee agents, and of maintaining small routing tables (see Figure 3.1). We have collected
all other important parameters in Table 3.6.



70 Discussion of the results from the experiments

NTTNet

We continued our study of congestion control behavior on NTTNet, a relatively complex network
topology. We enabled the traffic generators on all of the nodes with the following parameters:
MPIA = 0.005 sec, sessionSize = 2130000 bits, δl = 512 bytes and βc = 1000 packets. We de-
creased the values of MSIA from 8.6 to 1.6 sec. Figure 3.12 and Figure 3.13 show the important

MSIA
8.6 6.6 4.6 2.6 1.6

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

0

10

20

30

40

50

60

70
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(a) Average throughput

MSIA 
1.6 2.6 3.6 4.6 5.6 6.6 7.6 8.6

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(s

ec
)

0

0.5

1

1.5

2

2.5

3

3.5
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) 90th percentile of packet delays

Figure 3.12: Congestion control behavior in NTTNet (throughput and packet delay)

performance parameters. One can easily conclude from the figures that BeeHive, AntNet and Dae-
mon algorithms scale nicely with an increase in the traffic load. The throughput, packet delay and
packet delivery ratio of BeeHive and AntNet are close to Daemon. However, session completion
ratio, as expected, of all algorithms degrades significantly at MSIA = 1.6 sec. Please note that
OSPF and DGA are unable to cope with the congestion but the performance of DGA is worst
among all algorithms.

From Figure 3.14 it is clear that BeeHive has significantly smaller control and suboptimal overhead
as compared to AntNet under all of the conditions. OSPF has the smallest control overhead and
suboptimal overhead but then one should try to complete the picture with other parameters such
as throughput, packet delay and packet delivery ratio shown in Figure 3.12 and Figure 3.13. An
important conclusion from Figure 3.14 is that the suboptimal overhead is an order of magnitude
higher than the control overhead, and hence should be taken into account during the design of an
adaptive routing algorithm. This parameter can be optimized if an algorithm brings more packets



From the Wisdom of the Hive to Routing in Telecommunication Networks 71

MSIA
8.6 6.6 4.6 2.6 1.6

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

50

60

70

80

90

100
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(a) Packet delivery ratio

MSIA
8.6 6.6 4.6 2.6 1.6

se
ss

io
n 

co
m

pl
et

io
n 

ra
tio

 (
%

)

           0

          20

          40

          60

          80

         100
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) session completion ratio

Figure 3.13: Congestion control behavior in NTTNet (packet delivery ratio and session completion
ratio)



72 Discussion of the results from the experiments

MSIA
8.6 6.6 4.6 2.6 1.6

co
nt

ro
l o

ve
rh

ea
d 

(%
)

        0.00

        0.09

        0.17

        0.26

        0.35        0.35

        1.01

        1.67

        2.34

        3.00
DGA

OSPF

AntNet−CO

BeeHive

(a) Control overhead (%)

          15

          20

          25

          30

          35

          40

MSIA
8.6 6.6 4.6 2.6 1.6

su
bo

pt
im

al
 o

ve
rh

ea
d 

(%
)

           0

           3

           6

           9

          12

          15

DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) Suboptimal overhead (%)

Figure 3.14: Congestion control behavior in NTTNet (control and suboptimal overhead)



From the Wisdom of the Hive to Routing in Telecommunication Networks 73

(a) Total agent processing cycles per node (in billions)

MSIA
8.6 6.6 4.6 2.6 1.6

da
ta

 p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e

           0

          10

          20

          30

          40

          50
DGA

AntNet−CO

BeeHive

(b) Total data processing cycles per node (in billions)

Figure 3.15: Congestion control behavior in NTTNet (agent and data processing complexity)



74 Discussion of the results from the experiments

MSIA Algorithm Td Sd S90d Ploop Jd J90d qav hav Aa Da

8.6 DGA 469.31 2803 3531 30.44 102.2 699.8 29.97 15.97 52448 8341
OSPF 38.8 2634 2813 0 5 11 9.2 6.9 - -

AntNet-CL 32.6 2630 2791 4.38 6.9 53.3 1 9 75622 14655
AntNet-CO 32 2630 2792 4.39 6.9 42.8 0.9 8.97 79515 14679

BeeHive 25.28 2622 2773 2.45 6.7 20.9 0.35 7.74 25109 10825
Daemon 20.74 2617 2765 0 4.9 10.9 0.1 6.62 - -

6.6 DGA 587.24 2825 3578 27.61 114.1 784.8 44.42 14.86 50968 8176
OSPF 75.1 2664 2907 0 5 11 15.8 6.88 - -

AntNet-CL 38.6 2637 2818 3.61 7 54.1 1.8 8.92 77933 14745
AntNet-CO 38.3 2636 2811 3.65 6.9 49.8 1.5 8.82 81876 14819

BeeHive 26.03 2622 2773 2.56 6.7 20.4 0.4 7.86 25889 11288
Daemon 22.02 2620 2769 0 4.9 10.9 0.26 6.53 - -

4.6 DGA 738.29 2850 3582 23.17 113.9 801.8 65.91 13.26 50606 8121
OSPF 254.3 2736 3108 0 4 10 49.7 6.8 - -

AntNet-CL 69.4 2669 2917 2.64 9.2 79.3 5.1 8.76 84837 14977
AntNet-CO 72.5 2673 2933 2.88 9.3 80.9 5.6 8.7 88373 14974

BeeHive 30.1 2629 2788 2.5 7 28.6 0.95 7.81 26624 11558
Daemon 21.51 2620 2768 0 4 10 0.2 6.65 - -

2.6 DGA 1078.9 2883 3559 15.03 99.3 747.1 121.19 10.45 53028 8183
OSPF 751.3 2677 2962 0 4 9.9 149.8 6.21 - -

AntNet-CL 235.4 2824 3303 2.65 26.6 182.9 23.9 8.82 104061 15220
AntNet-CO 235.7 2825 3310 2.76 26.1 182.9 23.9 8.83 107924 15249

BeeHive 125.26 2755 3143 3.79 27.9 162.5 12.67 8.06 29733 11702
Daemon 45.83 2647 2836 0 5 13 3.56 6.99 - -

1.6 DGA 1363.84 2861 3382 8.32 69.6 610 190.59 8.1 55964 8317
OSPF 896.6 2695 2989 0 3 8 212.9 5.53 - -

AntNet-CL 987.1 2946 3550 3.03 82 448.3 113.9 8.59 117603 15876
AntNet-CO 1001.8 2985 3637 3.38 64.4 356.8 112.3 8.77 138650 15824

BeeHive 721.16 2854 3391 4.48 116.3 551.2 92.19 7.79 108788 11742
Daemon 666.2 2880 3372 0 10 42 87.64 7.36 - -

Table 3.7: Performance parameters for congestion control behavior experiments for NTTNet

to a destination, with less hops and with a small ploop value. This parameter, to our knowledge,
has received little attention in the Nature inspired routing community.

Figure 3.15 shows the agent processing and data packet processing complexities. The simple design
of bee agents which is a consequence of no stack processing, no complex mathematical formula
evaluation and only forward moving agents, now starts showing its benefits because one can see
an order of magnitude difference between the total time that a node spends in processing the
agents. The processing of the agents in AntNet takes approximately 20 billion cycles as compared
to 5 billion cycles taken by processing of bee agents. One can easily note the sharp increase in the
processing complexity of bee agents to 18 billion cycles at MSIA = 1.6 sec. This is a consequence of
a significant increase in the average processing complexity of bee agents from 30000 cycles to 108788
cycles (see Table 3.7). The increase in the average cycle count appears to be counterintuitive as the
actions that agents take remain the same as in the previous cases. We investigated the problem and
it appeared that under saturated conditions the event handling mechanism of OMNeT++ is time
consuming especially if a packet needs to be flooded. All of the packets except bee agents follow
point-to-point traversal of the network, therefore, the average processing complexity for ant agents
and data packets remain approximately the same. Our conclusion is that under extremely saturated
conditions specially for MSIA = 2.0 sec and below the results of the processing complexity might
not be adequate because of the event-handling mechanism of OMNeT++. Apart from MSIA =
1.6 sec, the average processing complexity of bee agents is always between 20000 to 35000 cycles,
which is reasonably acceptable. The other important parameters are collected in Table 3.7.
Please note that DGA has the same behavior as observed in the simpleNet topology: the control
overhead significantly decreases as the network traffic load is increased by decreasing the MSIA.
The performance of DGA is again the worst. However, our improvements in DGA significantly
improved its performance as compared to the original DGA (see Section 3.7). The performance



From the Wisdom of the Hive to Routing in Telecommunication Networks 75

of the original DGA is reported in [221].

Node150

The time required to simulate the algorithms on a Node150 network increased exponentially.
Therefore, we decided to select the algorithms performing best on the smaller topologies for sim-
ulation on the Node150 network. AntNet-CO is designed for quick spreading of the routing in-
formation, therefore, we did not simulate its counterpart AntNet-CL on a Node150 network. The
poor performance of DGA on small topologies made it an obviously weaker candidate which can
be easily dropped. The time needed to simulate Daemon on NTTNet was significantly greater
than those of the other algorithms, therefore, we did only one set of the experiments for Daemon.
We also think that it makes sense to drop Daemon from our short list as the algorithm is more
or less used as a bench-mark, and it is impossible to implement it on any real network because
of its communication/processing complexity. We did not drop OSPF because it is widely used
routing algorithm in the Internet and we want to always take it as a reference point (this is a
shortcoming in the DGA presentations). We believe that AntNet-CO and BeeHive are two clear
winners from the experiments on smaller topologies and hence it makes perfect sense to compare
their performance with one another. Figure 3.16, Figure 3.17, Figure 3.18 and Figure 3.19

MSIA
4.6 2.6 1.6

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

          30

          50

          70

          90

         110

         130

         150

         170

         190
OSPF

AntNet−CO

BeeHive

(a) Average throughput

MSIA 
1.6 2.1 2.6 3.1 3.6 4.1 4.6

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(s

ec
)

0

0.2

0.4

0.6

0.8

1

1.2
OSPF

AntNet−CO

BeeHive

(b) 90th percentile of packet delays

Figure 3.16: Congestion control behavior in Node150 (throughput and packet delay)

show the same behavior of AntNet and BeeHive as in the previous congestion control experiments.
Both algorithms are able to deliver more packets and complete more sessions with an increase in



76 Discussion of the results from the experiments

MSIA
4.6 2.6 1.6

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

          75

          80

          85

          90

          95

         100 OSPF

AntNet−CO

BeeHive

(a) Packet delivery ratio

MSIA
4.6 2.6 1.6

se
ss

io
n 

co
m

pl
et

io
n 

ra
tio

 (
%

)

          45

          55

          65

          75

          85

          95

OSPF

AntNet−CO

BeeHive

(b) session completion ratio

Figure 3.17: Congestion control behavior in Node150 (packet delivery ratio and session completion
ratio)

MSIA Algorithm Td Sd S90d Ploop Jd J90d qav hav Aa Da

4.6 OSPF 48.8 2638 2820 0 4 10 16.2 5.4 - -
AntNet-CO 111.6 2716 3395 2.46 13.4 188 12.6 8.86 110235 22808

BeeHive 22.12 2621 2769 0.59 6 15 0.3 5.63 34090 13648
2.6 OSPF 235.6 2663 2888 0 4 9.2 70.6 5.34 - -

AntNet-CO 109.2 2710 3134 1.73 14.6 146.6 11.6 8.12 112666 23120
BeeHive 36.77 2642 2817 0.6 7 35.8 2.88 5.62 34399 13399

1.6 OSPF 384 2668 2891 0 3 8 107.6 5.18 - -
AntNet-CO 223.2 2848 3324 1.66 30 221.4 24.8 7.9 119439 23894

BeeHive 129.38 2732 3016 0.62 18.2 113.6 19.38 5.64 47451 13212

Table 3.8: Performance parameters for congestion control behavior in Node150



From the Wisdom of the Hive to Routing in Telecommunication Networks 77

MSIA
4.6 2.6 1.6

co
nt

ro
l o

ve
rh

ea
d 

(%
)

         0.0

         0.5

         1.0

         1.5

         2.0

         2.5

         3.0
OSPF

AntNet−CO

BeeHive

(a) Control overhead (%)

MSIA
4.6 2.6 1.6

su
bo

pt
im

al
 o

ve
rh

ea
d 

(%
)

           0

           5

          10

          15

          20
OSPF

AntNet−CO

BeeHive

(b) Suboptimal overhead (%)

Figure 3.18: Congestion control behavior in Node150 (control and suboptimal overhead)



78 Discussion of the results from the experiments

MSIA
4.6 2.6 1.6

ag
en

t p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e 

           0

          10

          20

          30

          40

          50
AntNet−CO

BeeHive

(a) Total agent processing cycles per node (in billions)

MSIA
4.6 2.6 1.6

to
ta

l d
at

a 
pr

oc
es

si
ng

 c
yc

le
s 

pe
r 

no
de

           0

          10

          20

          30

          40

          50

          60

          70
AntNet−CO

BeeHive

(b) Total data processing cycles per node (in billions)

Figure 3.19: Congestion control behavior in Node150 (agent and data processing complexity)



From the Wisdom of the Hive to Routing in Telecommunication Networks 79

the network traffic load, as compared with OSPF. Please note that both packet delay and session
delay of BeeHive are the smallest among the three algorithms. As expected, OSPF is not able to
scale to increasing network traffic.

The benefit of collecting routing information in small foraging zones around a node in BeeHive
is becoming more apparent as one looks at Figure 3.18(a). The control overhead of BeeHive is
significantly smaller than AntNet and the feature of routing packets in less hops is manifesting its
benefits in Figure 3.18(b). This significant difference in suboptimal overhead is due to the fact
that a smaller number of data packets in BeeHive follow cyclic paths (see Table 3.8), and that
BeeHive delivers data packets at their destination in less hops. One can easily conclude that the
suboptimal overhead of BeeHive is now approaching to that of OSPF.
Figure 3.19 shows the processing complexity for agents and data packets. The simple behavior
of bee agents, as discussed previously, is now showing significant benefits. The total time that
a node spends in processing bee agents is approximately 1/5th of its time processing ant agents.
The reasons for a significantly smaller suboptimal overhead of BeeHive, discussed in the previous
paragraph, are also valid for the smaller packet switching complexity of BeeHive as compared to
AntNet.

Please note that Node150 has links of 6-10 Mbits/sec bandwidth. As a result, the saturation of
queue buffers at MSIA = 1.6 sec is not as visible as it was in the NTTNet experiments. Therefore,
once we look at the average processing complexity of bee agents, it is around 47,000 cycles. This
further strengthened our previous findings that an exponential increase in the average bee agent
processing complexity in NTTNet at MSIA = 1.6 sec stems from specifics of the OMNeT++
simulator, and not from the BeeHive algorithm. BeeHive has clearly manifested its advantages
on a Node150 network over AntNet and we believe that the benefits will be even more apparent
on bigger topologies. We have collected other important performance parameters from these
experiments in Table 3.8.



80 Discussion of the results from the experiments

3.9.2 Queue management behavior

The purpose of these sets of experiments was to study the queue control behavior of the routing
algorithms. We believe that it is important to know how the algorithms scale to different sizes
of queue buffers. This is important for two reasons: one, to get an idea about an optimal queue
buffer size for achieving the best performance, and two, to investigate the benefits that multi-
path routing algorithms can bring on networks which have small devices like PDAs with limited
main memory. Moreover, achieving better performance with small buffer capacities is a desirable
property of any routing algorithm. During these experiments we kept MSIA = 2.6 sec, MPIA =
0.005 sec, sessionSize = 2130000 bits δl = 512 bytes and varied the buffer capacity βc from 50
packets to 4000 packets.

simpleNet

One can not see a significant difference between performance values in simpleNet topology. There-
fore, we skip the results for the sake of brevity.

NTTNet

The behavior of the algorithms during these experiments is summarized in Figure 3.20 and Figure
3.21. One can see from Figure 3.20(a) that BeeHive is able to deliver about 2% more packets
than AntNet for smaller buffer capacities, however, AntNet is able to catch up with BeeHive at
a queue size of 1000 packets. Please note that 2% more packet deliery ratio as compared to
AntNet at βc = 50 results in about 15% more sessions completed (see Figure 3.21(a)), which is a
significant improvement and shows the superiority of BeeHive over AntNet for low buffer capacities.
Figure 3.20(b) shows the real shortcoming of classical non-adaptive algorithms like OSPF where
an increase in buffer capacity does not result in any significant increase in packet delivery ratio or
session completion ratio. This shows that OSPF is unable to manage higher traffic loads because
of lack of its queue management. The performance of DGA improves with an increase in buffer
capacity but is far inferior to BeeHive or AntNet. BeeHive has a better scalability as compared
to all other algorithms except Daemon. On the other hand the Daemon algorithm has the best
performance among all the algorithms. Another important observation from Table 3.9 is that the
jitter value significantly increases for BeeHive and AntNet with an increase in buffer capacity. The
reason is obviously that both algorithms stochastically spread data packets on multiple paths.
As a result, subsequent packets might follow different paths. The difference in arrival time at
destination increases with an increase in buffer capacity and this connects the increasing jitter
behavior with an increase in buffer capacity. The average agent processing complexity (Aa) of bee
agents sharply increases at smaller buffer capacities, and the reason is similar to some OMNeT++
related behavior discussed in the previous Section 3.9.1.
We have collected other important performance parameters in Table 3.9.



From the Wisdom of the Hive to Routing in Telecommunication Networks 81

queuesize 

50 550 1050 1550 2050 2550 3050 3550 4050

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

55

60

65

70

75

80

85

90

95

100 DGA

OSPF

AntNet−CO

BeeHive

Daemon

(a) Packet delivery ratio (%)

queuesize 

50 550 1050 1550 2050 2550 3050 3550 4050

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(s

ec
)

0

1

2

3

4

5

6

7

8

9
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) 90th percentile of packet delays (sec)

Figure 3.20: Queue management/control behavior of algorithms (packet delivery ratio and packet
delay)



82 Discussion of the results from the experiments

queuesize 

50 550 1050 1550 2050 2550 3050 3550 4050

se
ss

io
n 

co
m

pl
et

io
n 

ra
tio

 (
%

)

0

20

40

60

80

100
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(a) Session completion ratio (%)

queuesize 

50 550 1050 1550 2050 2550 3050 3550 4050

90
th

 p
er

ce
nt

ile
 o

f s
es

si
on

 d
el

ay
s 

(s
ec

)

2

3

4

5

6

7
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) 90th percentile of session delays (sec)

Figure 3.21: Queue management/control behavior of algorithms (session completion ratio and
session delay)



From the Wisdom of the Hive to Routing in Telecommunication Networks 83

βC Algorithm Tav td Sd Ro So Ploop Jd J90d qav hav Aa Da

50 DGA 26.14 83.34 2602 2.51 12.74 11.48 11.9 62.9 6.2 9.58 56073 8884
OSPF 36.75 48.3 2611 0.1 2.19 0 4 9 9 6.11 - -

AntNet-CL 43.5 48.7 2613 0.89 9.8 1.52 6 22.6 3 8.17 95167 15178
AntNet-CO 43.26 49.8 2613 0.96 9.79 1.43 6.2 22.6 3 8.19 103831 15220

BeeHive 45 38.43 2616 0.29 8.2 3.02 9 24.6 2.01 7.87 92375 11974
Daemon 46.86 26.43 2622 - 3.38 0 4 10 0.85 6.87 - -

100 DGA 27.84 147.1 2608 1.7 14.51 12.75 18.6 112.4 13.12 10.03 54950 8602
OSPF 36.92 83.2 2612 0.1 2.21 0 4 9 16 6.13 - -

AntNet-CL 43.96 69.7 2621 0.89 10.41 1.74 8 36.8 5.8 8.31 97459 15200
AntNet-CO 43.79 70.6 2623 0.95 10.46 1.76 8 37.2 5.8 8.32 105144 15230

BeeHive 45.25 48.47 2622 0.29 8.3 3.15 11 38.3 3.3 7.88 75369 11970
Daemon 46.92 28.59 2624 - 3.43 0 4 10 1.16 6.88 - -

200 DGA 29.49 268.39 2627 1.06 15.81 13.57 29.5 201.8 26.85 10.25 56699 8422
OSPF 37.15 154.6 2616 0.1 2.26 0 4 9 30.9 6.16 - -

AntNet-CL 44.7 106.1 2641 0.89 11.29 2.01 11.9 65.3 9.8 8.5 100047 15246
AntNet-CO 44.6 108.2 2642 0.93 11.36 2.06 12 64.4 9.9 8.54 106533 15229

BeeHive 45.93 66.46 2637 0.29 8.63 3.47 14.9 63.9 5.56 7.92 63308 11917
Daemon 46.99 32.48 2627 - 3.57 0 4 11 1.71 6.91 - -

300 DGA 30.28 380.92 2647 0.78 16.49 13.97 40.9 292.4 39.66 10.38 56091 8360
OSPF 37.33 227.5 2621 0.1 2.28 0 4 9 45.8 6.18 - -

AntNet-CL 45.19 134.7 2664 0.89 11.79 2.18 14.9 87.3 13 8.61 101292 15285
AntNet-CO 45.03 137.2 2666 0.92 11.89 2.29 15.2 88.6 13.2 8.65 107807 15235

BeeHive 46.18 81.21 2655 0.29 8.74 3.48 18 86.3 7.41 7.95 56092 11893
Daemon 47.03 36.46 2631 - 3.84 0 5 11 2.24 6.97 - -

500 DGA 31.75 601.35 2701 0.52 17.26 14.24 60.1 456.3 64.92 10.44 54618 8318
OSPF 37.59 377 2635 0.1 2.32 0 4 9 75.7 6.2 - -

AntNet-CL 45.82 177.4 2712 0.89 12.33 2.37 19.7 125.8 17.9 8.71 102764 15275
AntNet-CO 45.8 179.8 2715 0.91 12.41 2.53 19.9 125.1 17.9 8.74 107597 15215

BeeHive 46.45 104.33 2686 0.29 8.98 3.66 22.8 123.3 10.26 8 42240 11855
Daemon 47.07 42.75 2639 - 3.89 0 5 12 3.13 6.98 - -

1000 DGA 34.23 1078.9 2883 0.31 18.1 15.03 99.3 747.1 121.19 10.45 53018 8193
OSPF 37.96 751.3 2677 0.1 2.35 0 4 9.9 149.8 6.21 - -

AntNet-CL 46.36 235.4 2824 0.89 12.82 2.65 26.6 182.9 23.9 8.82 104088 15230
AntNet-CO 46.3 235.7 2825 0.91 12.88 2.76 26.1 182.9 23.9 8.83 107259 15135

BeeHive 46.42 125.26 2755 0.29 9.12 3.79 27.9 162.5 12.67 8.06 29752 11705
Daemon 47.1 45.83 2647 - 3.93 0 5 13 3.56 6.99 - -

2500 DGA 36.64 1708.99 3533 0.19 16.34 14.63 128 946.2 221.17 9.74 63386 8148
OSPF 38.3 1869.9 2808 0.1 2.38 0 4 10 366.8 6.22 - -

AntNet-CL 46.72 290.1 2988 0.9 13.09 2.77 33.3 247.6 29.8 8.86 103685 15143
AntNet-CO 46.7 276.5 2973 0.9 13.21 2.93 31 234.3 28.2 8.89 106544 15042

BeeHive 46.58 152.38 2846 0.29 9.24 4 33.4 219.3 15.98 8.08 26875 11605
Daemon 47.1 45.92 2649 - 3.93 0 5 13 3.57 6.99 - -

4000 DGA 37.03 1949.31 3958 0.16 14.86 13.26 122.8 943.8 272.37 9.31 73649 8162
OSPF 38.41 2960.8 2934 0.1 2.39 0 4 10 577.1 6.22 - -

AntNet-CL 46.92 289.3 3012 0.9 13.23 2.85 33.5 247.1 29.6 8.88 104007 15124
AntNet-CO 46.87 289.3 3009 0.9 13.26 2.94 32.4 244.7 29.7 8.9 106661 14993

BeeHive 46.95 151.38 2855 0.29 9.18 3.87 33.1 221.5 15.92 8.04 26719 11562
Daemon 47.1 45.92 2649 - 3.93 0 5 13 3.57 6.99 - -

Table 3.9: Performance parameters for different buffer capacities in NTTNet



84 Discussion of the results from the experiments

Node150

We decided to skip the buffer capacity experiments for Node150 network because experiments
conducted on NTTNet network provided a good insight into this behavior. As we have already
discussed small buffer capacities create a more relevant problem on mobile devices like PDAs. All
modern routers can easily support a queue length of 1000 or more packets because of advancements
in VLSI technology that lead to a cost-effective production of main memory chips.

3.9.3 Hot spots

The purpose of these experiments was to study the behavior of the algorithms in scenarios in
which one node starts attracting bursts of traffic for a short period of time. The situation is quite
common when some broadcasting channel breaks a news and everybody starts accessing its website
then this website is acting as a hot spot in the network. A good dynamic routing algorithm should
be able to manage and cope with hot spots in the networks.

simpleNet

All algorithms were able to cope with the hot spot traffic in simpleNet, therefore, we are skipping
the results for the sake of brevity.

NTTNet

We made node 0 in Figure 3.6 to act as a hot spot from 300 seconds to 800 seconds which means that
all nodes in the network sent data packets to this node with MPIA = 0.04 sec. This hot spot traffic
was superimposed on a normal network traffic of MSIA = 3.6 sec, MPIA = 0.005 sec, sessionSize
= 2130000 bits. The other parameters are δl = 512 bytes and βc = 1000 packets. Figure 3.22
summarizes the results. It is clear from the figure that BeeHive, AntNet and Daemon algorithms
are able to cope with additional network traffic resulting from hot spot traffic. However, the
packet delay of BeeHive is 50% less than that of AntNet. OSPF and DGA are unable to cope with
hot spot traffic yet DGA has the worst performance among all algorithms. The other important
parameters from the experiments are collected in Table 3.10. One can easily conclude that in
almost all performance aspects BeeHive is better than AntNet. Daemon, as expected, has the best
performance parameters (due to its access to the global network state).

Node150

All input parameters for hot spot experiments on Node150 remained the same as in the experi-
ments conducted on NTTNet except for the start and end time. In Nod150 the hot spot (node 0)
was active from 500 seconds to 1000 seconds. From Figure 3.23 it is evident that BeeHive is able
to maintain higher throughput and a significantly smaller packet delay than AntNet throughout
the experiment. Please note that the time during which the hot spot is not active, packet delay
of AntNet is approximately 20 msec greater than OSPF. The reason is that at MSIA = 3.6 sec
no significant congestion resulted in the Node150 network. As a result, distributing packets on
all possible paths, as AntNet does, is not a promising approach. We will explain this behavior
of AntNet later under the session-less traffic experiments. As expected, BeeHive and AntNet are
again able to cope better with the hot spot traffic as compared with OSPF. The other important
parameters are collected in Table 3.10. Please note that at this relatively bigger topology, perfor-
mance parameters of BeeHive are significantly better than AntNet. The reason for it was already
explained during the discussion of congestion control experiments.

3.9.4 Router crash experiments

The purpose of these experiments is to study the fault tolerant behavior of different algorithms.
The experiments provide an insight into how quickly an algorithm adapts its routes if a router



From the Wisdom of the Hive to Routing in Telecommunication Networks 85

time (sec) 

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

0 100 200 300 400 500 600 700 800 900 1000

20

25

30

35

40

45
DGA

OSPF

AntNet−CO

BeeHive

Daemon

BeeHive

DGA

OSPF

AntNet−CO

Daemon

(a) Average throughput

time (sec) 
0 100 200 300 400 500 600 700 800 900 1000

0

0.05

0.1

0.15

av
er

ag
e 

pa
ck

et
 d

el
ay

 (
se

c)

0.15

0.35

0.55

0.75

0.95

1.15

1.35

1.55
DGA

OSPF

AntNet−CO

BeeHive

Daemon

BeeHive Daemon

OSPF

AntNet−CO

DGA

(b) Average packet delay

Figure 3.22: Hot spot is Node 0 in NTTNet



86 Discussion of the results from the experiments

time (sec) 

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

0 100 200 300 400 500 600 700 800 900 1000

60

70

80

90

100

110

OSPF

AntNet−CO

BeeHive

BeeHive

OSPF

AntNet−CO

(a) Average throughput

time (sec) 

av
er

ag
e 

pa
ck

et
 d

el
ay

 (
se

c)

0 100 200 300 400 500 600 700 800 900 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 OSPF

AntNet−CO

BeeHive

AntNet−CO

BeeHive

OSPF

(b) Average packet delay

Figure 3.23: Hot spot is Node 0 in Node150



From the Wisdom of the Hive to Routing in Telecommunication Networks 87

Experiment Algorithm Pd Sc Sd S90d Ro So Ploop qav hav Aa Da

NTTNetHot DGA 74.17 39.08 2865 3570 0.4 16.75 16.38 95.19 11.43 49484 8121
OSPF 87.96 57.04 2721 3098 0.1 2.44 0 118.4 6.75 - -

AntNet-CL 98.06 93.18 2724 3052 1.71 20.07 2.51 19.9 9 105139 14740
AntNet-CO 97.97 93.22 2727 3063 1.76 20.38 2.62 20.9 9.05 109717 14687

BeeHive 98.29 96.09 2667 2898 0.27 7.09 2.98 10.84 8.21 31181 11632
Daemon 98.22 97.11 2624 2777 - 2.43 0 8.63 6.98 - -

Node150Hot OSPF 95.19 89.69 2640 2825 0.2 0.84 0 5.47 5.4 - -
AntNet-CO 98.66 94.43 2709 3203 2.45 10.7 2.19 14.6 8.53 112412 22553

BeeHive 99.55 97.73 2633 2803 0.73 2.17 0.62 7.54 5.77 36148 13606

NTTNetExp1 DGA 67.13 39.12 2795 3434 0.41 10.75 14.84 76.96 11.34 47548 7733
AntNet-CL 92.02 79.54 2679 2960 1.63 10.76 2.12 9.1 8.21 82438 14572
AntNet-CO 92.71 79.58 2690 2994 1.63 10.98 2.41 11.4 8.25 85599 14537

BeeHive 99.67 92.48 2669 2960 0.22 5.02 7.19 6.03 8.09 27003 11447
Daemon 100 96.14 2620 2771 - 1.35 0 0.39 6.68 - -

NTTNetExp2 DGA 64.57 39.07 2800 3455 0.3 9.32 12.82 85.77 10 45750 7628
AntNet-CL 93.73 81.44 2686 2977 1.65 11.46 2.39 9.5 8.32 82947 14630
AntNet-CO 94.17 81.54 2686 2974 1.68 11.29 2.59 9.6 8.3 85699 14557

BeeHive 99.7 93.15 2669 2962 0.22 5.11 7.46 5.83 8.11 26998 11592
Daemon 100 96.84 2621 2772 - 1.32 0 0.43 6.66 - -

Table 3.10: Performance parameters for hot spot and router down experiments

crashes. Two features are of primary importance to handle fault tolerance in networks: one, a
routing algorithm should be able to reroute packets on alternate paths toward their destination
when an existing path is no more available, and two, once a router is repaired then its routing table
should adapt quickly in order to start routing packets as quickly as possible. We do not report ex-
periments for simpleNet, as one can not see a significant difference in performance among different
algorithms and consequently we lack the resources to complete all experiments on Node150, there-
fore, we do only important experiments on Node150. We dropped OSPF from the fault tolerant
experiments because it has significantly poor performance as compared to AntNet and BeeHive
without any router crash. We are including DGA for the sake of completeness otherwise we could
have dropped it easily because it performed worst among all algorithms.

NTTNet

We report two experiments in which we analyzed the fault tolerant behavior of the algorithms.
Experiment1. In Experiment 1 the traffic generator parameters were MSIA = 4.6 sec, MPIA =
0.005 sec, sessionSize = 2130000 bits, δl = 512 bytes and βc = 1000 packets. In this experiment
Router 20 and Router 43 (see Figure 3.6) both crashed at 500 seconds and then remained down
for the rest of the experiment. From Figure 3.6 it is clear that router 20 and 43 are critical
routers in NTTNet. One can easily conclude from Figure 3.24 that BeeHive and Daemon are
able to maintain significantly higher throughput as compared to AntNet. The packet delay of
Daemon is significantly smaller as compared to BeeHive and AntNet, however, BeeHive is able to
maintain approximately half of the packet delay as compared to AntNet. We have collected other
important parameters in Table 3.10. Please note that all performance parameters of BeeHive are
significantly better than AntNet. Packet delivery ratio of BeeHive is approximately the same as
that of Daemon, which shows that bee agents were able to adapt routes once the routers crashed
and AntNet, as expected, is not able to cope with the router crash problem.
Experiment2. All of the traffic generator’s parameters were the same in this experiment as in
the previous experiment except the router crash times. In this experiment, Router 20 crashed at
300 seconds, and Router 43 crashed at 500 seconds and both routers were repaired at 800 seconds.
The throughput and packet delay of algorithms are shown in Figure 3.25. The tendency of the
algorithms is quite similar to the one as shown in Figure 3.24. BeeHive is able to maintain higher
throughput and lower packet delay as compared to AntNet. All other important parameters are
collected in Table 3.10. Daemon is the best performing algorithm among all algorithms while
DGA is the worst performing algorithm. Please note that once Router 43 crashes, multiple paths



88 Discussion of the results from the experiments

time (sec) 

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

0 100 200 300 400 500 600 700 800 900 1000

10

15

20

25

30
DGA

AntNet−CO

BeeHive

Daemon

Daemon

DGA

AntNet−CO

BeeHive

(a) Average throughput

time (sec) 
0 100 200 300 400 500 600 700 800 900 1000

0

0.025

0.05

0.075

0.1

av
er

ag
e 

pa
ck

et
 d

el
ay

 (
se

c)

0.125

0.33

0.535

0.74

0.945

1.15
DGA

AntNet−CO

BeeHive

Daemon

AntNet−CO

BeeHive Daemon

DGA

(b) Average packet delay

Figure 3.24: Router 20 and Router 43 crashed at time = 500 seconds



From the Wisdom of the Hive to Routing in Telecommunication Networks 89

time (sec) 

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

0 100 200 300 400 500 600 700 800 900 1000

10

12

14

16

18

20

22

24

26

28 DGA

AntNet−CO

BeeHive

Daemon

Daemon

DGA

AntNet−CO

BeeHive

(a) Average throughput

time (sec) 
0 100 200 300 400 500 600 700 800 900 1000

0

0.025

0.05

0.075

0.1

av
er

ag
e 

pa
ck

et
 d

el
ay

 (
se

c)

0.325

0.57

0.815

1.06

1.305

1.55
DGA

AntNet−CO

BeeHive

Daemon

AntNet−CO

BeeHiveDaemon

DGA

(b) Average packet delay

Figure 3.25: Router 20 crashed at 300 seconds and Router 43 crashed at 500 seconds and both
were repaired at 800 seconds



90 Discussion of the results from the experiments

still exist via Router 40 to the upper part of the network topology therefore BeeHive is able to
deliver more packets than AntNet.

3.9.5 Bursty traffic generator

The purpose of these set of experiments was to study the behavior of the algorithms under bursty
network traffic. Such traffic consists of sudden bursts of packets followed by a long period of
silence/inactivity (no traffic). Such a scenario is important because it investigates how quickly
an algorithm can react to changes in network traffic. We skip the results for simpleNet as the
performance of all algorithms were approximately the same for bursty traffic.

NTTNet

One can generate bursty traffic patterns using our traffic generator by decreasing the value of
MPIA. In the experiments we decreased the value of MPIA from 0.005 sec to 0.0005 sec, which
made a session to finish in one tenth of the time (260 msec) as compared to at MPIA = 0.005 sec.
However, we kept the value of MSIA constant at 2.6 sec. This resulted in sending 2130000 bits
(size of a session) in 260 msec followed by an inactivity period of approximately 2 seconds. Other
parameters were δl = 512 bytes and βc = 1000 packets. One can see in Figure 3.26 that all

MPIA
0.005 0.0005

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

25

30

35

40

45

50
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(a) Average throughput

MPIA
0.005 0.0005

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(s

ec
)

         0.0

         0.5

         1.0

         1.5

         2.0

         2.5

         3.0

         3.5
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) 90th percentile of packet delays

Figure 3.26: Bursty traffic behavior in NTTNet

algorithms are able to deliver approximately the same number of packets at MPIA = 0.0005 sec



From the Wisdom of the Hive to Routing in Telecommunication Networks 91

MPIA Algorithm Pd td Sc Sd S90d Ro So Ploop Jd J90d hav Aa Da

0.005 DGA 72.81 1079 31.19 2883 3559 0.31 18.1 15.03 99.3 747.1 10.45 53028 8183
OSPF 80.86 751 48.39 2677 2962 0.1 2.35 0 4 9.9 6.21 - -

AntNet-CL 99.17 235 88.18 2824 3303 0.89 12.82 2.65 26.6 182.9 8.82 104061 15220
AntNet-CO 99.2 236 88.68 2825 3310 0.91 12.88 2.76 26.1 182.9 8.83 107924 15249

BeeHive 99.69 125 93.78 2755 3143 0.29 9.12 3.79 27.9 162.5 8.06 29733 11702
Daemon 99.99 46 99.51 2647 2836 - 3.93 0 5 13 6.99 - -

0.0005 DGA 70.91 1322 37.23 1019 1901 0.28 16.5 14.19 103.1 772.8 10.14 52567 7562
OSPF 79.92 910 51.01 721 1297 0.1 2.34 0 1 3 6.23 - -

AntNet-CL 96.68 655 76.39 1113 1968 0.77 12.4 3.02 62.4 358.6 8.77 111788 14600
AntNet-CO 97.26 634 79.66 1111 1967 0.83 12.74 3.21 59.5 343.1 8.82 112325 14592

BeeHive 98 474 83 989 1714 0.29 9.28 4.19 86.2 372.1 8.08 31041 10255
Daemon 99.58 447 96.92 883 1488 - 13.18 0 14 75 8.86 - -

Table 3.11: Performance parameters for bursty traffic generators on NTTNet

MPIA Algorithm Pd td Sc Sd S90d Ro So Ploop Jd J90d hav Aa Da

0.005 OSPF 93.23 236 68.08 2663 2888 0.2 1.26 0 4 9.2 5.34 - -
AntNet-CO 99.16 109 95.89 2710 3134 2.36 12.42 1.73 14.6 146.6 8.12 112666 23120

BeeHive 99.94 37 98.45 2642 2817 0.81 2.37 0.6 7 35.8 5.62 34399 13399

0.0005 OSPF 90.47 393 69.71 628 1002 0.2 1.21 0 1 2 5.32 - -
AntNet-CO 98.18 410 85.41 921 1631 2.25 12.62 1.97 43.2 291 8.21 117440 22950

BeeHive 99 218 91.44 651 999 0.81 2.5 0.7 22.6 129 5.66 36870 11862

Table 3.12: Performance parameters for bursty traffic generators on Node150

as compared to MPIA = 0.005 sec but with a significantly greater packet delay. The packet delay
of BeeHive is quite close to Daemon and significantly lower than AntNet. All other important
parameters are collected in Table 3.11. Please note that all performance parameters of BeeHive
are significantly better than that of AntNet. We again see the same tendency that Daemon is the
best performing algorithm while DGA is the worst performing algorithm. The better performance
of BeeHive is due to its quick spreading of routing information by utilizing only forward moving
agents (see Section 3.4).

Node150

We continued with the bursty traffic experiments on Node150. The traffic generator at a node
received the same parameters as that of the previous experiment. The throughput and 90th
percentile of packet delays are shown in Figure 3.27. BeeHive is able to maintain significantly
higher throughput and lower packet delay as compared to AntNet. All other important parameters
are collected in Table 3.12. Please note that the advantage of quick communication-oriented
spreading of the routing information is now more visible as the performance values of BeeHive are
an order of magnitude better than that of AntNet. Please note that BeeHive has a session delay
of 1000 msec, suboptimal overhead of 2.5%, average hop count of 5.6 as compared to 1631 msec,
12.6% and 8.2 hops for AntNet, respectively.

3.9.6 Session-less network traffic

The purpose of these experiments was twofold, first to test the algorithms in a domain where
the performance of OSPF is the best, and second, to be confident that our implementation of
DGA is functionally correct. The authors of DGA only published their results under a session-less
network traffic with MPIA = 0.035 sec. The poor performance of DGA at higher loads, reported
in the previous sections, required us to verify its functional correctness. One option is to use
the same traffic patterns that the developers of DGA utilized and then compare the results. The
improvements that we made in DGA to make it competitive with other algorithms might have
introduced some undesired side effects. However, our results form such extensive studies further
strengthened our belief that our improved version of DGA was still functionally similar to that



92 Discussion of the results from the experiments

MPIA
0.005 0.0005

av
er

ag
e 

th
ro

ug
hp

ut
 (

M
bp

s)

         105

         110

         115

         120

         125
OSPF

AntNet−CO

BeeHive

(a) Average throughput

MPIA
0.005 0.0005

90
th

 p
er

ce
nt

il 
of

 p
ac

ke
t d

el
ay

s 
(s

ec
)

         0.0

         0.2

         0.4

         0.6

         0.8

         1.0

OSPF

AntNet−CO

BeeHive

(b) 90th percentile of packet delays

Figure 3.27: Bursty traffic behavior in Node150



From the Wisdom of the Hive to Routing in Telecommunication Networks 93

of original DGA. We skip reporting the results for simpleNet for the sake of brevity because the
results do not show any significant difference in performance among the algorithms.

NTTNet

We use the session-less traffic generator in which the destination for each packet is chosen at
random from a uniform distribution. We gradually decreased the load to a static level by increasing
the MPIA from 0.005 sec to 1 sec. The idea is to test the feasibility of the algorithms under static
conditions where OSPF is a state-of-the-art algorithm. At MPIA = 0.005 sec, i.e. under a
significantly high load, BeeHive and AntNet completely outperformed DGA and OSPF but as
the load started to decrease, the packet delivery ratio of OSPF (see Figure 3.28) significantly
improved. Please note that AntNet drops about 2-3% packets at low loads. This came as a
surprise to us. We investigated the problem and it appeared that stochastic distribution of packets
over too many multiple paths, a desired property under high network traffic, is not a promising
approach under static network loads. As a result more data packets followed loops as shown by the
ploop parameter in Table 3.13 and the packets that were dropped were those that have followed
about 100 hops and had not arrived at the destination. The results in Figure 3.28 clearly

MPIA
0.005 0.035 0.25 1

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

70

75

80

85

90

95

100 DGA

OSPF

AntNet−CO

BeeHive

Daemon

(a) Packet delivery ratio

MPIA
0.005 0.035 0.25 1

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(s

ec
)

       0.000

       0.500

       1.000

       1.500

       2.000

       2.500

       3.000

       3.500
DGA

OSPF

AntNet−CO

BeeHive

Daemon

(b) 90th percentile of packet delays

Figure 3.28: Session-less network traffic for NTTNet

demonstrate the superiority of OSPF over all other algorithms under low loads. Please closely
monitor the performance values of BeeHive in comparison to OSPF. It appears that maintaining
only those paths towards a destination whose quality is above a threshold value (bee behavior)



94 Discussion of the results from the experiments

MPIA Algorithm Tav td Ro So Ploop qav hav Pdrop Aa Da

0.005 DGA 36.23 1046.57 0.31 23.21 17.37 112.55 11.65 22.33 48351 6913
OSPF 38.46 627.6 0.1 2.4 0 112 6.23 17.66 - -

AntNet-CL 46.74 35.5 0.79 9.83 1.08 1 8.19 0.01 113576 15599
AntNet-CO 46.74 35.3 0.78 9.45 1 1 8.11 0.01 118669 14525

BeeHive 46.74 33.78 0.3 8.83 3.23 1.32 7.98 0.01 25614 11268
Daemon 46.74 22.03 - 2.44 0 0.27 6.66 0 - -

0.035 DGA 6.67 150.64 4.39 14.1 36.95 2.08 26.69 0.17 51028 9345
OSPF 6.68 20 0.1 0.51 0 10 6.9 0 - -

AntNet-CL 6.68 24 0.75 1.27 0.93 0 8 0.02 116385 15868
AntNet-CO 6.68 24 0.75 1.19 0.87 0 7.88 0.02 123341 15132

BeeHive 6.68 23.03 0.19 1.16 2.66 0.01 7.84 0 25046 11144
Daemon 6.68 19.83 - 0.29 0 0.01 6.58 0 - -

0.25 DGA 0.93 87.67 4.98 2.17 35.25 0.04 28.67 0.01 51629 12036
OSPF 0.94 20 0.1 0.07 0 12 6.9 0 - -

AntNet-CL 0.93 25.5 0.74 0.24 3.15 0 8.6 0.11 115419 16285
AntNet-CO 0.93 25.3 0.74 0.23 3.15 0 8.5 0.11 122168 16097

BeeHive 0.93 22.48 0.17 0.15 1.76 0 7.66 0 25409 11130
Daemon 0.94 19.76 - 0.04 0 0 6.58 0 - -

1 DGA 0.23 86.45 5.04 0.54 32 0.02 28.56 0.06 49657 13465
OSPF 0.23 20 0.1 0.02 0 12 6.9 0 - -

AntNet-CL 0.23 29.9 0.72 0.1 8.77 0 10.08 0.33 116211 16990
AntNet-CO 0.23 30 0.72 0.1 8.72 0 10 0.34 123457 16959

BeeHive 0.23 22.09 0.17 0.04 1.21 0 7.5 0 25508 11178
Daemon 0.23 19.74 - 0.01 0 0 6.58 0 - -

Table 3.13: Performance parameters for Session-less traffic in NTTNet

results in striking a good compromise between AntNet, which maintains all possible multiple
paths towards a destination, and OSPF which maintains a single path towards the destination.
All other important performance parameters are collected in Table 3.13. Our claim is verified by
the performance parameters collected in Table 3.13. The performance of BeeHive is similar or
better than that of AntNet at higher loads (MPIA = 0.005 sec) and similar to that of OSPF under
low loads. Please compare the values of the ploop and hav parameters under a low network traffic
load (MPIA = 1.0 sec).

Node150

We used the same traffic generator parameters as in the previous experiment on Node150 net-
work and the tendency of the performance parameters are approximately the same. It is clear
from Figure 3.29 that AntNet now drops approximately 5-6% of packets and has a significantly
higher packet delay as compared to BeeHive and OSPF under low loads. All other performance
parameters are collected in Table 3.14. The performance values of BeeHive are again quite close
to AntNet under high loads and quite close to OSPF under low loads. Now compare the ploop and
hav values of all algorithms. One can see that about 19% packets enter into loops in AntNet as
compared to 0.7% for BeeHive for MPIA = 1.0 sec. Consequently, the average hop count increases
to 24 hops for AntNet. These results show that for large topologies and for extremely low network
traffic, routing tables in AntNet do not converge, as a result, 5-6 % of packets keep on looping in
the networks. We believe that a threshold-based exploitation of paths, such as the bee behavior,
has been instrumental for BeeHive in getting a performance quite close to OSPF under low loads.

3.9.7 Size of routing table

The size of routing tables utilized by AntNet, BeeHive and OSPF is shown in Figure 3.30. The
benefits of the foraging zone and foraging region concepts become clear for bigger and complex
topologies. For NTTNet, AntNet has 162 entries on the average, in comparison to 78 and 57 for
BeeHive and OSPF respectively. For Node150 AntNet, BeeHive and OSPF have 400, 194 and 150



From the Wisdom of the Hive to Routing in Telecommunication Networks 95

MPIA
0.005 0.035 0.25 1

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

          92

          93

          94

          95

          96

          97

          98

          99

         100
OSPF

AntNet−CO

BeeHive

(a) Packet delivery ratio

MPIA
0.005 0.035 0.25 1

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(s

ec
)

         0.0

         0.1

         0.2

         0.3

         0.4

         0.5

         0.6

         0.7
OSPF

AntNet−CO

BeeHive

(b) 90th percentile of packet delays

Figure 3.29: Session-less network traffic for Node150

MPIA Algorithm Tav td Ro So Ploop qav hav Pdrop Aa Da

0.005 OSPF 118.13 224.4 0.2 1.33 0 73 5.36 3.95 - -
AntNet-CO 122.98 31 2.09 10.57 1.14 0 7.65 0.02 119621 24701

BeeHive 123.03 22.64 0.81 2.7 0.91 0.32 5.7 0 31311 13813

0.035 OSPF 17.57 19 0.2 0.21 0 8 5.4 0 - -
AntNet-CO 17.5 33 2.08 2.03 2.14 0 8.57 0.38 116840 27320

BeeHive 17.57 20.76 0.5 0.38 0.89 0.01 5.69 0 31029 14422

0.25 OSPF 2.46 19 0.2 0.03 0 8 5.4 0 - -
AntNet-CO 2.39 55.2 2.05 0.74 8.36 0 14.47 3.03 114867 29997

BeeHive 2.46 20.49 0.46 0.05 0.78 0 5.65 0 31102 14366

1 OSPF 0.62 18.8 0.2 0.01 0 8 5.4 0 - -
AntNet-CO 0.57 91.2 2 0.36 19.16 0 23.87 6.89 112407 31462

BeeHive 0.62 20.33 0.45 0.01 0.7 0 5.61 0 31421 14830

Table 3.14: Performance parameters for Session-less traffic in Node150



96 Summary

entries respectively in the routing table. The number of entries for BeeHive are a sum of number
of entries of all three routing tables maintained by BeeHive.
Figure 3.30 demonstrates the clear advantage of the way route discovery and maintenance is done
in BeeHive. The concepts of foraging zone and foraging region not only result in smaller routing
tables but also in a smaller routing overhead as compared to AntNet. We believe that for topologies
larger than 150 nodes, BeeHive will maintain significantly smaller routing tables as compared to
AntNet.

topology
SimpleNet NttNet Node150

ro
ut

in
g 

ta
bl

e 
en

tr
ie

s

           0

          50

         100

         150

         200

         250

         300

         350

         400

         450
OSPF

AntNet−CO

BeeHive

Daemon

Figure 3.30: Size of routing table

3.10 Summary

A honey bee colony is able to optimize its stockpiles of nectar, pollen and water through an in-
telligent allocation of labor among different specialists, who communicate with each other using a
sophisticated communication protocol that consists of signals and cues, in continuously changing
internal and external environments. The dance language and foraging behavior of honey bees
inspired us to develop a dynamic, simple, efficient, robust, flexible and scalable multi-path routing
algorithm. The algorithm does not need any global information such as the structure of the topol-
ogy and cost of links among routers, rather it works with the local information that a short distance
bee agent collects in a foraging zone. BeeHive does not utilize an optimized clustering algorithm
to avoid the overhead of routing through cluster heads. It works without the need of global clock
synchronization which not only simplifies its installation on real routers but also enhances fault
tolerance. In contrast to AntNet our algorithm utilizes only forward-moving bee agents that help
in disseminating the state of the network to the routers in real-time. The bee agents take less than
1% of the available bandwidth but provide significant enhancements in throughput and packet
delay over other state-of-the-art approaches.
We implemented two state-of-the-art Nature inspired algorithms (AntNet and DGA) for the OM-
NeT++ simulator and then compared our BeeHive algorithm with them. Through extensive
simulations representing dynamically changing operating network environments we have demon-
strated that BeeHive achieves a better or similar performance as compared to AntNet. However,
this enhancement in performance is achieved with following preferred features:

• Significantly smaller routing tables which have the order of the size as in OSPF.

• Simple agents which resulted in significantly less control overhead as compared to AntNet.

• Simple agents also resulted in significantly less processing complexity as compared to AntNet.

• No infinite loop problems, which AntNet has, under static network traffic.



From the Wisdom of the Hive to Routing in Telecommunication Networks 97

• Performance is competitive to OSPF under low loads.

• Better scalability to large topologies.

• Easier implementation in Linux routers than AntNet or other protocols.



98 Summary



4
A Scalability Framework for Nature Inspired

Routing Algorithms

The major contribution of the work presented in this chapter is a comprehensive framework
for the scalability analysis of distributed routing protocols. The framework models the pro-
ductivity of a routing protocol on a number of performance values. The cost model consists
of processing, communication and resource costs for deploying a routing algorithm in an
operational environment in real world networks. The framework is general enough and can
be easily utilized to investigate the scalability of an agent-based distributed software system.
Finally, we studied the scalability behavior of two state-of-the-art Nature inspired agent-
based routing protocols: AntNet and BeeHive. We also evaluated the scalability of OSPF
which is currently employed in the Internet. The results give valuable insight into the scaling
capacity of agent-based routing algorithms. We believe that the work will motivate designers
of routing protocols to consider scalability as an important metric in the design and devel-
opment of state-of-the-art routing protocols and to empirically validate them according to
this measure.

4.1 Introduction

A routing protocol has to be deployed on large scale telecommunication networks. Therefore, not
envisaging the repercussions of scalability on the performance of a routing protocol might lead to
severe performance bottlenecks. Consequently, the web applications, which utilize the networking
systems running such protocols, might show poor responsiveness resulting in customer dissatis-
faction and loss of valuable revenues in a highly competitive market [180, 179]. Scalability means
the ability of a routing protocol to efficiently transport the network traffic between any pair of
the nodes with adequate quality of service, over a wide range of network configurations. The in-
creased performance should be in proportion to additional costs [103]: processing, communication
and router’s resources.
The major factors that might undermine the scalability of a routing protocol are: excessive con-
sumption of router’s resources and the routing complexity [242]. In order to counter these prob-
lems, designers of the routing protocols have to be equipped with analytical and empirical tools
to systematically investigate the scalability behavior of a routing algorithm. In this chapter, we
present a new scalability framework for a routing protocol, which has the following new features:

• It provides a comprehensive cost model which incorporates the processing, communication,
and router’s resource costs.

• It utilizes a recently proposed concept of total overhead in [165] for calculating the commu-
nication costs rather than the existing practice of taking only the control overhead.

• it provides a quality-of-service value which depends on a number of refined and processed
parameters rather than only delay.

99



100 Introduction

• it utilizes a refined throughput metric for a routing algorithm rather than the raw through-
put.

• It defines power and productivity metrics for a routing algorithm, on the basis of above-
mentioned parameters, which provide significant insight into its benefit-to-cost ratio.

• It defines a scalability matrix, which facilitates the scalability analysis. The matrix enables
a designer to study the scalability of a routing algorithm either across different topologies
by fixing the network traffic load, or on the same topology by increasing the network traffic
load.

• It uses a new comprehensive empirical performance evaluation framework that collects the
relevant performance values required for the scalability framework.

We believe that our new framework will enable the designers of routing protocols to establish
the scalability of their routing protocol in an early stage of protocol engineering [113]. Such a
framework will be instrumental in practicing the principles of Software Performance Engineering
(SPE), which also emphasizes the consideration of performance and scalability issues early in
the design and architectural phase [180, 181, 236, 179], to rectify the deficiencies in a simulation
environment. This will not only obviate the risk of a disaster once the algorithm is deployed on
large scale networks but also avert the cost overruns due to tuning or redesigning the algorithm
later in the protocol engineering cycle. Consequently, such a pragmatic protocol engineering cycle
will be capable of reducing the time-to-market of a new protocol.
The framework is general enough to act as a guideline for analyzing the scalability of any agent-
based network system. However, in this chapter, we limit our analysis to two state-of-the-art
agent-based routing algorithms: AntNet and BeeHive. We will also analyze the scalability of a
classical non-adaptive routing protocol OSPF.
We now briefly discuss the existing work on scalability analysis. We will point out considerable
lack of concrete work on comprehensive scalability analysis for routing protocols. This should
facilitate to emphasize our novel direction of work.

4.1.1 Existing work on the scalability analysis

The scalability analysis has received extensive treatment in the area of parallel computing. Here
the focus is to analyze the scalability of a parallel algorithm on massively parallel platforms. The
important metrics are: speedup, efficiency and scalability [193]. Speedup measures how the rate of
doing work increases with an increase in the number of processors as compared to one processor.
Efficiency is the work rate per processor, and scalability is defined as the ratio of efficiencies on two
platforms. Ideally, efficiency and scalability metrics have a value of unity while speedup is k if k
processors are added from one configuration to another. The interested reader will find the detailed
treatment of the scalability of parallel computing systems and algorithms in [83, 87, 178, 115, 166].
The work on analyzing the scalability of distributed systems is inspired by the work of Giessler
et al. [81], in which they proposed a power metric for computer network systems. The metric
is defined as P = Tav

tr where Tav is the average throughput of the system and tr is the ratio of
average packet delay to the minimum packet delay. Kleinrock extended this definition in [112] to
combined loss and delay systems, and was able to define the optimal operating point at which the
defined power is maximized. In [111], he discussed the effect of flow control procedures on the
throughput in computer networks. Earlier work of Kuemmerle and Rudin presented in [116] is
also of paramount importance because the authors compared the performance of circuit switched
networks with packet switched networks, considering delay performance and usage cost. Our cost
model utilizes some of the definitions presented in their work. In [159], Rosner concluded that
packet switched networks outperform circuit switched networks with respect to both transmission
utilization efficiencies and overall network costs. However, the major focus of these studies does
not relate to comparing the efficiencies of routing protocols, which is the focus of our work.
In [101, 102, 103], Jogalekar and Woodsite, somehow misinterpreted tr (introduced in the last



A Scalability Framework for Nature Inspired Routing Algorithms 101

paragraph), for the average packet delay. As a result, they thought that the power is significantly
influenced by smaller packet delays. Therefore, they modified the definition of power for distributed
systems as

P (k) =
λ(k)

1 + T (k)
T ′

(4.1)

where λ(k) is defined as the throughput, and T (k) is the average response of the system, T ′ is an
acceptable response time for the user and k is the scalability parameter i.e. number of nodes or
users etc. The metric is useful in studying the scalability of distributed systems because the basic
objective of scaling up a distributed system is to support more throughput for a fixed response
time or to reduce the response time for a fixed throughput or a combination of both [101]. In
order to incorporate costs, the authors defined the performance of distributed systems as

F (k) =
λ(k)

(1 + T (k)
T ′ )× C(k)

(4.2)

where C is the cost. Finally, they defined a p-scalability metric Ψp(k1, k
′
1) that defines the scala-

bility of a distributed system from configuration k1 to k′1 as

Ψp(k1, k
′
1) =

F (k′1)
F (k1)

(4.3)

In [102], the authors have shown their view of the scalability behavior of a distributed system as
illustrated in Figure 4.1. The authors arbitrarily suggested that a distributed system is scalable if

Scale Factor (k)

S
ca

la
bi

lit
y 
Ψ

(k
)

1.0 perfect scalability 

positive scalability 

superscalable

threshold case

unscalable

Figure 4.1: The scalability behavior in different situations [102]

Ψp(k1, k
′
1) > 0.8, where 0.8 is a threshold value case to reflect an acceptable benefit-to-cost ratio.

However, as might be expected, the focus of this work was on distributed systems and not on
distributed algorithms or routing protocols.
To our knowledge, the work presented in [31, 30] is the first preliminary treatment of defining the
scalability of an agent-based distributed routing protocol. The authors used equation (4.1) and
argued that the throughput and delay of a routing protocol are functions of the number of links
(L) and the average hops (hav) needed to reach a destination in a particular topology. Therefore,



102 Introduction

the power of a routing algorithm, as described in [31, 30] becomes

P (k) =
L

hav
(4.4)

Consequently, the power has now become a function of the topology rather than of the algorithm.
In their cost model, they simply take the control overhead into consideration. Subsequently, they
defined the performance of a routing protocol F as

F (k) =
L

C(k)× hav
(4.5)

where C is the control overhead. Finally, they defined a scalability metric Ψ(k1, k
′
1) for a routing

protocol as

Ψ(k1, k
′
1) =

L2
C(k′1)×hav2

L1
C(k1)×hav1

(4.6)

where L2, C(k′1) and hav2 are number of links, control overhead and average hops, respectively,
in topology k′1 and L1, C(k1) and hav1 are number of links, control overhead and average hops,
respectively, in topology k1. They took these values from the work of Di Caro and Dorigo [52]
and then concluded that AntNet is scalable from NSFNet to NTTNet because Ψ(k1, k

′
1) > 1.0.

However, their treatment completely lacked an empirical framework.
In [182], the authors have emphasized the need for an empirical simulation environment that in-
corporates a real scalable environment for performance evaluation of distributed algorithms. In
[107], Katz and Yung have proposed a scalable protocol for authenticated key exchange. They
defined four complexity metrics for a network protocol: round, message, communication and com-
putational. The round complexity is simply the number of rounds until the protocol terminates.
The message complexity is the total number of messages sent (regardless of their length) by all
parties in the course of protocol execution. The communication complexity is the total number of
bits communicated throughout the execution of the protocol; this now includes the message length
as well. Computation complexity is the maximum amount of computation done by any player in
the protocol. Our cost model is based on some of their ideas as well.
In [45], Costa et al. have proposed a QoS routing algorithm, Single Mixed Metric (SMM), and
have done its scalability analysis using a simulation environment. In [165], Santivanez et al. in-
troduced a new metric called total overhead for a routing protocol that is defined as follows: total
overhead induced by a routing protocol is the difference between the amount of bandwidth actually
consumed by the network running such protocol minus the minimum traffic load that would have
been required should the nodes had a priori full topology information [165]. This metric includes the
control overhead, the bandwidth occupied by the control messages, and the suboptimal overhead,
resulting from extra hops the packets took in excess of the ideal minimal hop number. However,
the focus of this work was to analytically study the asymptotic scalability with respect to a scalable
parameter. Nevertheless, the total overhead is a valuable concept in analyzing the communication
cost of a routing protocol.
In [237], Woodside proposed a scalability metric for analyzing the scalability of mobile agent
systems. The work is an extension of his earlier work in scalability of distributed systems re-
ported in [101, 102, 103]. He evaluated the new model on a class of mobile agents, using basic and
robust models for the workload and delay. However, he completely ignored the cost in his analysis.

4.1.2 Organization of the chapter

We will introduce our scalability model in Section 4.2 and a description of the simulation environ-
ments is presented in Section 4.3. Section 4.4 provides a comprehensive description of the results
obtained from extensive experiments on a set of topologies varying in their size and complexity.
We will then discuss the empirical results obtained from our scalability model in Section 4.5 and
then comment on the scalability of the algorithms. Finally, we provide a summary of the chapter.



A Scalability Framework for Nature Inspired Routing Algorithms 103

4.2 The scalability model for a routing algorithm

In a sense, a distributed routing algorithm, is a distributed communication system with an objec-
tive to optimize throughput and reduce the packet delay. However, the algorithm has to achieve
this objective with minimal costs. We could, therefore, define the power of a routing algorithm
as a function of a number of performance values, which are collected by our comprehensive per-
formance evaluation framework. In the following subsections we will define the cost model, power
model and scalability model of a routing algorithm in a chronological order.

4.2.1 Cost model

A distributed routing algorithm is a piece of software that has many associated costs with it.
The costs that we will consider in our scalability model are: processing, communication, and
router resources. We will ignore the costs related to the development, implementation, testing,
installation and maintenance of a routing algorithm that arise in a network of real world routers.
Instead we will consider the cost of one important resource of a router, which is memory. Now,
we will define a few parameters that will influence our cost model:

• Control processing ratio Cp: is the ratio of the number of cycles that a node spends in
processing the control packets, to the number of bits that have been delivered in the network.

• Data processing ratio Cd: is the ratio of the number of cycles that a node spends in switching
the data packets, to the number of bits that have been delivered in the network.

• Processing ratio Cβ: is the ratio of the control processing ratio to the data processing ratio
i.e Cβ = Cp

Cd
.

• Total overhead Ct: is the sum of the control overhead and suboptimal overhead which have
been defined in Chapter 3.

• Bandwidth ratio Cw: is the ratio of the total extra bits, which are generated due to the total
overhead, to the total number of bits that are delivered at their destination.

• Memory overhead Cm: is the cost associated with storing routing tables in the memory of a
router.

Cp and Cd define the processing complexity with respect to the number of bits that are delivered at
their destination while Cβ defines the relative processing overhead of control packets with respect
to the packet switching. The motivation for a similar parameter is justified in [116]. A routing
algorithm should spend only a fraction of time in processing the control packets as compared to
packet switching, which is its actual task [242]. A smaller ratio is definitely desirable for a routing
protocol. Ct provides the information about the extra bits, due to total overhead, that have been
propagated in the network per time unit in relation to the total available bandwidth in the network.
Cw is important at low network traffic loads because it is a function of the number of delivered
bits. On the other hand, Ct is important for larger network traffic loads because it increases
with an increase in the network traffic. We believe that both of these costs are complementary to
capture the communication costs of a routing algorithm.
The amount of memory needed to store the routing tables is directly proportional to the number
of entries in the routing tables, therefore, our memory cost model is defined as

Cm =
R

D × log( L
hav

)
(4.7)

where R is number of entries in the routing table, D total number of nodes in the network, L total
number of links and hav is the average number of hops needed to reach a destination. In [31],
Carrillo et al. have shown that the number of links between any (source, destination) pair are a
function of the total number of links in the network, and the average number of hops ( L

hav
). The



104 The scalability model for a routing algorithm

exact combination, however, depends on the routing algorithm and on the topology. Therefore,
R

log( L
hav

)
represents the entries needed to model the number of links between a node and other

destinations. In this way, the cost associated with larger routing tables is defined as a function
of the number of entries in the routing tables and the characteristics of a given topology. So the
total cost C in our cost model is

C = 1 + Cβ + eCt + Cw + Cm (4.8)

eCt is used to emphasize the influence of the total overhead, if Ct ≥ 0.001, because it is a vital
parameter to model the communication cost of a routing algorithm. However, its value otherwise
is relatively small by virtue of its definition. We have added a constant cost of 1 to take care
of the costs related to the operating system functions like context switching, interrupt processing
and network stack processing. We assume that these costs are the same for all routing protocols,
which appears reasonable.

4.2.2 Power model of an algorithm

In [101, 102, 103], the authors, as discussed in Section 4.1.1, have defined the power of a distributed
system as

P =
Tav

1 + ω
(4.9)

where ω corresponds to the ratio of average response time to acceptable response time. In case
of a routing protocol ω becomes the ratio of average packet delay (td) to the acceptable packet
delay ( td

tacc
). For our purpose, we defined tacc = K ∗ tmin where tmin is the minimal packet delay

achieved by any of the algorithms at MSIA = 4.6 sec and K is a constant (1.5 in our case) .
We would like to mention that even this new definition of power is unable to capture the influence
of important performance values of a routing protocol like jitter, session completion ratio and the
standard deviation of the packet delay distributions. Therefore, we now define new parameters
that will enable us to have a comprehensive formula for the power of a routing algorithm. The
session ratio ρ is defined as

ρ = (pd)(2×(1−Sc)) (4.10)

pd and Sc correspond to packet delivery ratio and session completion ratio respectively, and they
are defined in Chapter 3. ρ captures the effect of packet delivery ratio coupled to the session com-
pletion ratio. A good routing algorithm should have packet delivery ratio and session completion
ratio values as large as possible. With this, we will define our scaled throughput Tnet as a function
of this performance value

Tnet = (Tav)1+
ρ
a (4.11)

The value of ρ has been scaled down by a constant value ”a” (currently 10).
ζ is the ratio of the 90th percentile of the packet delays to the average delay (t90d/td). A smaller
value indicates that the algorithm has been able to deliver the majority of the packets within small
deviation from the average delay. In order to incorporate ζ in our power formula, we will define κ

κ = 1− e−
ω
ζ (4.12)

This equation gives weight to the value of ζ only if its value is in proportion to the value of ω.
Otherwise if ω << ζ then the influence of ζ is deemphasized. Similarly, the jitter ratio χ is defined
as the ratio of the average jitter (Jd) to the acceptable jitter Jacc (Jacc is set to 30 msec). We
now define a variable σ with the motivation that χ could only influence the power of a routing
algorithm if its value is significantly greater than Jacc and comparable with the sum of ζ and ω.

σ = 1− e−
χ

(ω+ζ) (4.13)

We define a quality-of-service value, Υ, in the following

Υ = 1 + ω + κ + σ (4.14)



A Scalability Framework for Nature Inspired Routing Algorithms 105

Now we define the power of a distributed routing algorithm γ as

γ =
Tnet

Υ
(4.15)

We believe that equation 4.15 models the power of a distributed routing algorithm as a function
of a number of relevant performance values. Finally, we define the productivity Γ of a routing
algorithm as

Γ =
γ

C
(4.16)

4.2.3 Scalability metric for a routing algorithm

We here define our scalability metric in the same spirit as described in [102, 103, 31]. First, we
define the scalability value Ω of a distributed algorithm with respect to a number of scalability
parameters k1, k2, . . . kn as

Ω(k1, k2, . . . kn) =
Γ

k1 × k2 . . .× kn
(4.17)

Now we are interested whether the algorithm is scalable at a new value k′1 if compared to a scalable
parameter k1. We can reach this decision by defining a scalability metric Ψ(k1, k

′
1) as following

Ψ(k1, k
′
1) =

Ω(k′1, k2, . . . , kn)
Ω(k1, k2, . . . , kn)

(4.18)

We now suggest the following classifications for defining the scalability of a routing protocol. The
classification is based on our experience in evaluating the algorithms (BeeHive, AntNet and OSPF
on large topologies). We say that a routing algorithm is

• perfectly scalable if Ψ(k1, k
′
1) ≥ 1.

• positively scalable if 0.9 ≤ Ψ(k1, k
′
1) < 1.

• nearly scalable if 0.8 ≤ Ψ(k1, k
′
1) < 0.9.

• marginally scalable if 0.7 ≤ Ψ(k1, k
′
1) < 0.8.

• not scalable if Ψ(k1, k
′
1) < 0.7.

4.3 Simulation environment for scalability analysis

The simulation environment has been already introduced in Chapter 3. We tested the algorithms
on six network instances: simpleNet, NTTNet, Node150, Node350, Node650 and Node1050.

4.3.1 simpleNet

simpleNet is defined in Chapter 3 and we will refer to this topology with symbol n8 in rest of the
chapter.

4.3.2 NTTNet

NTTNet is defined in Chapter 3 and we will refer to this topology with symbol n57 in rest of the
chapter.

4.3.3 Node150

Node150 is defined in Chapter 3 and we will refer to this topology with symbol n150 in rest of the
chapter.



106 Discussion of the results from the experiments

4.3.4 Node350

Node350 is a 350 nodes network with 464 bidirectional links. The link bandwidth is uniformly dis-
tributed between 7 and 14 Mbits/sec, and the propagation delay is uniformly distributed between
1 and 5 msec. The topology was generated using the BRITE software. The Node350 topology is
shown in Figure 4.2. We will refer to this topology with symbol n350 in rest of the chapter.

Figure 4.2: Node350: figure is captured from OMNeT++ plotter

4.3.5 Node650

Node650 is a 650 nodes network with 785 bidirectional links. The link bandwidth is uniformly
distributed between 15 and 20 Mbits/sec, and the propagation delay is uniformly distributed
between 1 and 6 msec. The topology was again generated using the BRITE software. The
Node650 topology is shown in Figure 4.3. We will refer to this topology with symbol n650 in rest
of the chapter.

4.3.6 Node1050

Node1050 is a 1050 nodes network with 1295 bidirectional links. The link bandwidth is uniformly
distributed between 11 and 20 Mbits/sec, and the propagation delay is uniformly distributed
between 1 and 5 msec. The topology was generated using the BRITE software. The Node1050
topology is shown in Figure 4.4. We will refer to this topology with symbol n1050 in rest of the
chapter.

4.4 Discussion of the results from the experiments

In this section we discuss the behavior of the algorithms based on important performance values,
obtained from extensive experiments in OMNeT++, like throughput, packet delay, packet delivery
ratio, session completion ratio, control overhead, suboptimal overhead, agent processing complex-
ity, packet switching complexity and the size of the routing tables. The objective of this exercise is
to study the behavior of the algorithms with respect to the above-mentioned performance values
in large topologies. However, we would like to mention that our primary objective is to focus on



A Scalability Framework for Nature Inspired Routing Algorithms 107

Figure 4.3: Node650: figure is captured from OMNeT++ plotter

Figure 4.4: Node1050: figure is captured from OMNeT++ plotter



108 Discussion of the results from the experiments

the scalability behavior of AntNet and BeeHive, and not on the congestion control behavior as in
Chapter 3. The reason for not investigating the congestion control behavior in large topologies
is that we do not have the computational resources to simulate congested load scenarios for large
topologies. Nevertheless, we have included OSPF in our comparison just as a benchmark because
it is a state-of-the-art algorithm for normal/static traffic loads. Please note that OSPF is a single-
path routing algorithm, therefore, it can not scale with an increase in the network traffic load as
suggested by the results presented in Chapter 3 and by Di Caro and Dorigo in [52].
The congestion state for large topologies with greater bandwidths could not be reached with the
same parameters for the traffic generator as in the smaller topologies. The major emphasis of the
work is to answer the question: can Nature inspired stochastic routing algorithms, like AntNet
and BeeHive, competently perform routing in large topologies? The answer will be of great signif-
icance to the networking community in general and to the Nature inspired routing community in
particular.
We gradually decreased the value of MSIA from 4.6 sec to 1.6 sec in all of our experiments. As
discussed earlier, MSIA = 2.6 sec or below can cause a network congestion in n57 but for n650
this might be a normal load. This is due to the fact that the links in n57 have a bandwidth of 6
Mbits/sec while in n650 they are on the average of 19 Mbits/sec. The session size was 2130000
bits, the packet size was 512 bytes and MPIA = 0.005 sec. The buffer size for storing data packets
in routers was limited to 1000 packets. BeeHive and OSPF were given 30 seconds to initialize
the routing tables. In comparison AntNet was given 500 seconds to initialize the routing tables as
done by Di Caro and Dorigo in [52]. In all of the reported experiments, the bee generation interval
is 1 second, the short distance limit is 7 hops. The performance values are obtained from 1000
seconds of experiments unless otherwise specified. They are an average of the values obtained
from ten independent runs for n8 and n57, five independent runs for n150, and three independent
runs for n350, n650, n1050. We have to reduce the independent runs due to limited availability of
high performance computers. Even then, the burdensome effort of the testing took more than 6
months on our simulation server. Out of 6 months, it took approximately 2 months to evaluate the
algorithms on n650 and n1050. Even our current simulation server does not have enough resources
to simulate either congested network traffic load in larger topologies, or topologies greater than
1050 nodes. The worst scenario is with n1050 and MSIA = 1.6 sec, in which case we could only
simulate 150 seconds of the network traffic, therefore, the results from this scenario are provided
to indicate just a tendency. We are actively pursuing our efforts to explore the opportunities to
even simulate congested loads in large topologies for 1000 seconds.

4.4.1 Throughput and packet delivery ratio

Figure 4.5 and Figure 4.6 show the throughput and the packet delivery ratio of the algorithms
as the size of the topology is increased from 8 nodes to 1050 nodes. Each figure consists of three
sub-figures which show the behavior of the algorithms at a particular MSIA value. Figure 4.5
shows that all of the three algorithms are able to maintain approximately the same throughput
till n150. As the topology grows to 350 nodes or more, the throughput of AntNet significantly
starts trailing the other algorithms. The reader has to correlate the throughput with the packet
delivery ratio in Figure 4.6 to get a comprehensive picture. The larger throughput values in Figure
4.5 might mislead on the conclusion that the behavior of BeeHive and OSPF are the same. Figure
4.6(a) shows that at MSIA = 4.6 sec, three algorithms are able to deliver approximately all of
the packets till n150. Beyond this size topology the packet delivery ratio of AntNet dropped from
99% to about 70%, 40%, 30% in n350, n650 and n1050 respectively. OSPF is able to deliver all
packets except in n57 and n1050. In Figure 4.6(b) we can observe a similar tendency for AntNet
at MSIA = 2.6 sec as in the previous case. OSPF starts significantly trailing BeeHive in n57 and
n1050. n57 appears to be a complex topology with a low degree of connectivity as compared with
other topologies, therefore, the performance of OSPF significantly degrades at this instance. The
same tendency for the packet delivery ratio of AntNet and OSPF can be seen in Figure 4.6(c) at
MSIA = 1.6 sec, as in the previous case. The packet delivery ratio of OSPF is significantly lower



A Scalability Framework for Nature Inspired Routing Algorithms 109

as compared with both AntNet and BeeHive in n57. However, as might be expected, the packet
delivery ratio of AntNet significantly degrades after n150. BeeHive, at MSIA = 1.6 sec, is able to
maintain a significantly higher packet delivery ratio than OSPF in all topologies, however, due to
scaling problems in Figure 4.5, the same difference is not obvious in the throughput.
We can easily conclude from this series of the experiments that BeeHive, as far as throughput is

concerned, is able to scale to larger topologies. However, AntNet, in comparison, scales well till
n150 topology but its throughput significantly deteriorates in n350 or larger topologies. The other
performance values of interest are collected in Table 4.1, Table 4.2 and Table 4.3.

Topology Algorithm td Ploop qav hav Pdrop Sc Sd S90d Jd J90d Aa Da

n8 OSPF 2.99 0 1 1.92 0 99.7 2602 2749 4 9.99 - -
AntNet-Co 2.99 0.003 0 2.18 0 99.7 2601 2747 4 9.99 70555 6894
BeeHive 3.26 0 0.019 2.29 0 99.7 2603 2751 4.99 10.9 17920 4107

n57 OSPF 254 0 49.6 6.8 2.51 81.4 2736 3108 4 9.99 - -
AntNet-Co 72.4 2.87 5.59 8.69 0.195 96.9 2673 2933 9.29 80.8 88373 14974
BeeHive 30.1 2.5 0.946 7.81 0.029 99.4 2629 2788 7 28.6 26624 11558

n150 OSPF 48.8 0 16.2 5.4 0.29 96.4 2638 2820 4 10 - -
AntNet-Co 111 2.45 12.6 8.85 0.89 96.7 2716 3395 13.4 188 110235 22808
BeeHive 22.1 0.594 0.3 5.62 0.003 99.6 2621 2769 6 15 34090 13648

n350 OSPF 31 0 8.99 7.66 0.099 98.3 2626 2781 4 10 - -
AntNet-Co 109 10.1 11 15.5 28.1 54.5 2660 3058 27.3 216 289068 34610
BeeHive 25.4 0.257 0.17 7.94 0.014 99.5 2623 2771 5.33 14.6 33547 16590

n650 OSPF 33 0 0 7.42 0.03 99.4 2630 2779 4 10 - -
AntNet-Co 256 10 12 18.1 55.9 28.7 2752 3428 58.6 486 - -
BeeHive 34.8 0.099 0.06 7.72 0.006 99.5 2633 2782 5 13 - -

n1050 OSPF 116 0 12 7.45 9.34 70.1 2634 2787 4 10 - -
AntNet-Co 320 6 18.5 15.2 67.2 16.7 2830 4074 30.5 329 - -
BeeHive 39.1 0.227 0.804 8.13 0.115 98.1 2640 2792 7 27 - -

Table 4.1: Performance values for MSIA = 4.6 sec

Topology Algorithm td Ploop qav hav Pdrop Sc Sd S90d Jd J90d Aa Da

n8 OSPF 2.99 0 1 1.92 0 99.7 2601 2747 4 8.99 - -
AntNet-Co 2.99 0.006 0 2.17 0.001 99.6 2601 2747 4 9.49 70893 6879
BeeHive 3.26 0 0.02 2.27 0 99.7 2602 2748 4 9.99 18107 4096

n57 OSPF 751 0 149 6.21 19 48.3 2677 2962 4 9.89 - -
AntNet-Co 235 2.76 23.9 8.83 0.778 88.6 2825 3310 26.1 182 107924 15249
BeeHive 125 3.79 12.6 8.06 0.309 93.7 2755 3143 27.9 162 29733 11702

n150 OSPF 235 0 70.6 5.34 6.75 68 2663 2888 4 9.19 - -
AntNet-Co 109 1.73 11.5 8.12 0.829 95.8 2710 3133 14.6 146 112666 23120
BeeHive 36.7 0.601 2.88 5.62 0.055 98.4 2642 2816 7 35.8 34399 13399

n350 OSPF 149 0 36.3 7.6 4.42 73.1 2649 2836 4 8.99 - -
AntNet-Co 336 9.32 32 15.5 33.8 44.9 2762 3124 92.3 638 292420 33429
BeeHive 49.2 0.29 3.13 7.96 0.29 94.3 2647 2819 8 44.6 36446 16296

n650 OSPF 73.3 0 5.33 7.41 2.04 79.7 2641 2795 4 8.99 - -
AntNet-Co 316 7.82 19.6 16.3 59.9 24.6 2742 3382 63 492 - -
BeeHive 46.3 0.129 1.54 7.72 0.14 95.7 2645 2798 6 25 - -

n1050 OSPF 160 0 19 7.37 21.1 54.5 2638 2796 4 9 - -
AntNet-Co 391 5.29 26 15.1 69.9 14.2 2766 3615 49 392 - -
BeeHive 80.9 0.183 5.87 8.2 1.158 77.5 2678 2866 16 82 - -

Table 4.2: Performance values for MSIA = 2.6 sec

4.4.2 Packet delay

The 90th percentile of the packet delays is another important performance value to study the
behavior of a routing algorithm. Figure 4.7 shows the behavior of the packet delay as the size
of the topology increases from 8 to 1050 nodes. The values of packet delays are plotted in three
different figures for MSIA values of 4.6 sec, 2.6 sec and 1.6 sec respectively. One observation is
quite obvious: the n57 topology again appears to be more challenging than the other ones. The



110 Discussion of the results from the experiments

Topology
n8 n57 n150 n350 n650 n1050

th
ro

ug
hp

ut
 (

M
bi

ts
/s

)

0

100

200

300

400

500
OSPF

AntNet−CO

BeeHive

(a) MSIA = 4.6 sec

Topology
n8 n57 n150 n350 n650 n1050

th
ro

ug
hp

ut
 (

M
bi

ts
/s

)

0

100

200

300

400

500

600

700

800

900
OSPF

AntNet−CO

BeeHive

(b) MSIA = 2.6 sec

Topology
n8 n57 n150 n350 n650 n1050

th
ro

ug
hp

ut
 (

M
bi

ts
/s

)

0

200

400

600

800

1000

1200

1400
OSPF

AntNet−CO

BeeHive

(c) MSIA = 1.6 sec

Figure 4.5: Throughput (Mbits/sec))



A Scalability Framework for Nature Inspired Routing Algorithms 111

Topology
n8 n57 n150 n350 n650 n1050

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

0

20

40

60

80

100 OSPF

AntNet−CO

BeeHive

(a) MSIA = 4.6 sec

Topology
n8 n57 n150 n350 n650 n1050

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

0

20

40

60

80

100 OSPF

AntNet−CO

BeeHive

(b) MSIA = 2.6 sec

Topology
n8 n57 n150 n350 n650 n1050

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

0

20

40

60

80

100 OSPF

AntNet−CO

BeeHive

(c) MSIA = 1.6 sec

Figure 4.6: Packet delivery ratio (%)



112 Discussion of the results from the experiments

Topology Algorithm td Ploop qav hav Pdrop Sc Sd S90d Jd J90d Aa Da

n8 OSPF 2.99 0 1 1.93 0 99.7 2602 2749 2.99 8 - -
AntNet-Co 2.99 0.005 0 2.18 0.001 99.6 2601 2748 2.99 8 71209 6852
BeeHive 3.3 0 0.04 2.28 0 99.7 2602 2749 4 8.99 18086 4087

n57 OSPF 896 0 212 5.53 33.4 38.2 2695 2989 2.99 8 - -
AntNet-Co 1001 3.37 112 8.77 9.44 38.5 2985 3637 64.4 356 138650 15824
BeeHive 721 4.47 92.1 7.79 11.2 39 2854 3391 116 551 108788 11742

n150 OSPF 384 0 107 5.18 19.9 49.4 2668 2891 3 8 - -
AntNet-Co 223 1.66 24.8 7.9 0.813 87.3 2847 3324 30 221 119439 23894
BeeHive 129 0.622 19.3 5.64 1.42 80.1 2732 3016 18.2 113 47451 13212

n350 OSPF 334 0 72.3 7.41 18.8 43.2 2666 2870 3 8 - -
AntNet-Co 930 6.4 82 13.3 44.8 8.83 2968 3491 154 869 280192 32586
BeeHive 150 0.477 16.6 7.96 6.28 68.9 2679 2888 18.3 109 46559 16266

n650 OSPF 158 0 17.3 7.31 15.5 48.5 2640 2795 3 8 - -
AntNet-Co 425 6.26 35.9 14.9 64.7 15.2 2746 3182 78.3 521 - -
BeeHive 138 0.116 13.6 7.69 6.56 48.4 2654 2819 14 81 - -

n1050 OSPF 215 0 30 7.25 33.3 38.7 2641 2802 3 8 - -
AntNet-Co 579 4.8 49 14.8 78.7 4.08 2785 3365 117 614 - -
BeeHive 197 0.084 20.6 8.19 11 34.9 2676 2869 29.5 157 - -

Table 4.3: Performance values for MSIA = 1.6 sec

packet delay of AntNet, as shown in Figure 4.7(a), is better than OSPF in n57 topology at MSIA
= 4.6 sec. The packet delay of AntNet then keeps on rising in larger topologies and reaches 1800
msec in n1050, which is significantly higher than that of OSPF and BeeHive. A similar trend for
the packet delay for AntNet is observed at MSIA = 2.6 sec and MSIA = 1.6 sec in Figure 4.7(b)
and Figure 4.7(c), respectively. The packet delay of AntNet becomes significantly greater in n350
and larger topologies. At MSIA = 4.6 sec, OSPF has the largest packet delay in n57 and then
it gradually decreases to about 400 msec in n1050. Figure 4.7(b) shows that the packet delay of
OSPF is highest again in n57 and then it gradually drops to 500 msec. A similar trend in packet
delay for OSPF is observed at MSIA = 1.6 sec. However, at this MSIA value, the difference in
the packet delay of OSPF compared with other algorithms is relatively smaller. Please note that
BeeHive has the greatest packet delivery ratio and the smallest packet delay in all of the scenarios.
One can find an important conclusion from the experiments: if the network is in a congestion

state, then BeeHive is able to do excellent load-balancing as shown by the performance values in
n57. Otherwise if the network is not in congestion, then BeeHive is able to utilize a shortest
path like OSPF. This adaptive behavior is the result of exploring the multiple paths in parallel
by a swarm of replicas of bee agents in a small zone around its launching node. Routing the
data packets only on those paths that have a quality value above a certain threshold appears to
strike a good compromise between maintaining just a single path, as OSPF does, and trying to
maintain all possible paths as AntNet tries to do. Moreover, exploring and managing the paths
in a deterministic way, and then distributing the data packets in a stochastic manner on these
paths, provides an excellent mix of stochastic elements with deterministic elements. Please note
that OSPF explores the paths, and routes data packets on them, in a deterministic manner while
AntNet does both functions in a stochastic manner.

4.4.3 Control overhead and suboptimal overhead

In this subsection we discuss the cost overhead associated with the transmission of the agents and
the extra bandwidth consumed by data packets by virtue of taking more hops than in the ideal
case. The benefits associated with the stack-less design of bee agents, and of gathering the routing
information in a local foraging zone, are clearly exhibited in Figure 4.8. Please remember that
the bee agents have a fixed size of 48 bytes. The tendency of control overhead is approximately
similar at different values of MSIA: AntNet has a overhead comparable to OSPF and to BeeHive
up to n150. Then it sharply increases in larger topologies. The obvious reasons are: first, ant
agents are equipped with a stack and its size increases with an increase in hops, and second,
the stochastic exploration enacts a greater chance to run into loops causing a significant waste of



A Scalability Framework for Nature Inspired Routing Algorithms 113

Topology
n8 n57 n150 n350 n650 n1050

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(m

se
c)

0

200

400

600

800

1000

1200

1400

1600

1800
OSPF
AntNet−CO
BeeHive

(a) MSIA = 4.6 sec

Topology
n8 n57 n150 n350 n650 n1050

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(m

se
c)

0

500

1000

1500

2000

2500
OSPF
AntNet−CO
BeeHive

(b) MSIA = 2.6 sec

Topology
n8 n57 n150 n350 n650 n1050

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(m

se
c)

0

500

1000

1500

2000

2500

3000
OSPF
AntNet−CO
BeeHive

(c) MSIA = 1.6 sec

Figure 4.7: Packet delay (msec))



114 Discussion of the results from the experiments

bandwidth. Please note that the control overhead of BeeHive at MSIA values of 4.6 sec (see Figure
4.8(a)) and 2.6 sec (see Figure 4.8(b)) is less than or equal to 1% while at MSIA = 1.6 sec (see
Figure 4.8(c)) in n1050 it increases to about 2%. However, the control overhead is comparable
to OSPF. Figure 4.9 shows the suboptimal overhead of the algorithms. Figures 4.9(a), 4.9(b),
4.9(c) show a similar tendency about the suboptimal overhead. Two observations are apparent:
one, the suboptimal overhead increases with an increase in the network traffic load, and two, the
suboptimal overhead is significantly higher than the control overhead especially in case of n57.
One can easily conclude from Figure 4.9 that the suboptimal overhead of OSPF is the smallest.
This is due to transporting the data packets on shortest paths, however, in congestion scenarios
OSPF delivers less data packets. The suboptimal overhead of AntNet sharply increases after n57
till n350, and then sharply drops at n650 and n1050. The reason for the significant increase is that
the data packets which are routed by AntNet take more hops (hav) to reach their destination, and
the number of data packets which follow cyclic paths (ploop) also increase significantly in larger
topologies. However, the sharp decline in the suboptimal overhead in n650 and n1050 is due to the
fact that only 40% of the data packets or less are delivered (see Figure 4.6) at their destination.
Please remember that the packets which have been dropped are not included in the suboptimal
overhead, therefore, one has to take a comprehensive view by combining Figure 4.9 and Figure
4.6. The suboptimal overhead of BeeHive is significantly smaller as compared with AntNet in all
topologies, and except for n57, it is of the same order as OSPF. BeeHive is able to maintain a
relatively small suboptimal overhead even though its packet delivery ratio is the highest among
the three algorithms.

4.4.4 Agent and packet processing complexity

The next important performance values are the agent processing complexity and the packet switch-
ing complexity of the algorithms. The complexity is measured in terms of the number of cycles
the processor needed to process an agent or switch a data packet. We would like to comment
that our simulation server could not manage to run the simulations in n650 and n1050 without
the need to switch pages from the main memory to virtual memory and vice versa. Therefore,
the disk activity interfered with our performance framework, and it effected both agent and data
processing complexity parameters. Consequently, we decided not to report these parameters for
n650 and n1050 because of the uncertainty caused by the page replacement activity. Nevertheless,
the trend obtained from n650 and n1050 was a simple extrapolation of the cycle complexity values
in small topologies.
Figure 4.10 shows the number of cycles that a node spends in processing the agents during the
experiments. The benefits of stack-less agents, which perform simple mathematical operations and
explore the network in a deterministic fashion in a foraging zone, are clearly inferable in Figures
4.10(a), 4.10(b), 4.10(c). The general tendency of both AntNet and BeeHive is the same: an
increasing processing complexity with an increase in the size of the network, however, the num-
ber of cycles that a node spends in processing bee agents are significantly smaller than that for
ant agents. The difference between the complexity of the ant agents and bee agents significantly
increases in large topologies. Looking at the Aa parameter in Tables 4.1, 4.2, 4.3, it is obvious
that the average processing complexity of a bee agent does not increase significantly, while in case
of an ant agent this value increases from 50,000 cycles for n8 to about 290,000 cycles for n350.
The packet switching algorithm of BeeHive has been carefully designed to have features like no
rescaling of the goodness values, and little search time due to smaller routing tables. BeeHive
only maintains those paths whose quality is above a threshold, therefore, few packets enter into
loops. Consequently, all of these factors ensure that a node spends a significantly smaller number
of cycles in a packet switching algorithm, which is the main task of an algorithm, in comparison to
AntNet. Figures 4.11(a), 4.11(b), 4.11(c) show the same tendency: the packet switching complex-
ity of both algorithms is comparable in small topologies like n8 and then the difference between
them starts increasing in large topologies like n150 and n350.



A Scalability Framework for Nature Inspired Routing Algorithms 115

Topology
n8 n57 n150 n350 n650 n1050

co
nt

ro
l o

ve
rh

ea
d 

(%
)

0

2

4

6

8

10

12

14

16
OSPF
AntNet−CO
BeeHive

(a) MSIA = 4.6 sec

Topology
n8 n57 n150 n350 n650 n1050

co
nt

ro
l o

ve
rh

ea
d 

(%
)

0

2

4

6

8

10

12

14

16
OSPF
AntNet−CO
BeeHive

(b) MSIA = 2.6 sec

Topology
n8 n57 n150 n350 n650 n1050

co
nt

ro
l o

ve
rh

ea
d 

(%
)

0

2

4

6

8

10

12

14

16
OSPF
AntNet−CO
BeeHive

(c) MSIA = 1.6 sec

Figure 4.8: Routing overhead (%)



116 Discussion of the results from the experiments

Topology
n8 n57 n150 n350 n650 n1050

su
bo

pt
im

al
 o

ve
rh

ea
d 

(%
)

0

5

10

15

20
OSPF

AntNet−CO

BeeHive

(a) MSIA = 4.6 sec

Topology
n8 n57 n150 n350 n650 n1050

su
bo

pt
im

al
 o

ve
rh

ea
d 

(%
)

0

5

10

15

20

25

30

35
OSPF

AntNet−CO

BeeHive

(b) MSIA = 2.6 sec

Topology
n8 n57 n150 n350 n650 n1050

su
bo

pt
im

al
 o

ve
rh

ea
d 

(%
)

0

5

10

15

20

25

30

35
OSPF

AntNet−CO

BeeHive

(c) MSIA = 1.6 sec

Figure 4.9: Suboptimal overhead (%)



A Scalability Framework for Nature Inspired Routing Algorithms 117

Topology
n8 n57 n150 n350

ag
en

t p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e

0

20

40

60

80

100

120
AntNet−CO

BeeHive

(a) MSIA = 4.6 sec

Topology
n8 n57 n150 n350

ag
en

t p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e

0

20

40

60

80

100

120
AntNet−CO

BeeHive

(b) MSIA = 2.6 sec

Topology
n8 n57 n150 n350

ag
en

t p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e

0

20

40

60

80

100

120
AntNet−CO

BeeHive

(c) MSIA = 1.6 sec

Figure 4.10: Agent processing complexity per node (in billions)



118 Discussion of the results from the experiments

Topology
n8 n57 n150 n350

da
ta

 p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e 

0

20

40

60

80

100

120
AntNet−CO

BeeHive

(a) MSIA = 4.6 sec

Topology
n8 n57 n150 n350

da
ta

 p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e 

0

20

40

60

80

100

120

140

160

180
AntNet−CO

BeeHive

(b) MSIA = 2.6 sec

Topology
n8 n57 n150 n350

da
ta

 p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 n

od
e 

0

50

100

150

200

250
AntNet−CO

BeeHive

(c) MSIA = 1.6 sec

Figure 4.11: Packet switching complexity per node (in billions)



A Scalability Framework for Nature Inspired Routing Algorithms 119

We did not report the processing complexity of OSPF because the value depends on how efficient
the Dijkstra algorithm is implemented. In order to avoid any controversy, we anyway ignore the
processing costs for OSPF, i.e Cβ = 0 during the scalability analysis.

4.4.5 Routing table size

The benefits of dividing the network into foraging regions and foraging zones are clearly exhibited
in Figure 4.12. The size of the routing table of BeeHive is significantly smaller as compared with
AntNet in larger topologies. Please note that the size of the BeeHive routing table includes entries
in all three routing tables, and its size is approximately the same as the one for OSPF. Running
AntNet requires, on the average, the same number of entries in the routing tables of a node as
the number of the links in the network. Please note that n57, n150, n350, n650, n1050 have 162,
400, 928, 1570 and 2590 bi-directional links, respectively. Figure 4.12 shows clearly that BeeHive
is able to maintain the best performance in all topologies under all network traffic loads, yet with
significantly smaller routing tables.

Topology
n8 n57 n150 n350 n650 n1050

ro
ut

in
g 

ta
bl

e 
en

tr
ie

s

0

500

1000

1500

2000

2500

3000
OSPF

AntNet−CO

BeeHive

Figure 4.12: The size of the routing table

4.4.6 Investigation of the behavior of AntNet

The poor performance of AntNet in large topologies came as a surprise to us because its perfor-
mance values are significantly better in n8, n57 and n150. We are in close contact with Di Caro
at IDSIA, one of the developers of AntNet. He has been kind enough to audit the source code of
our implementation of AntNet. We decided to investigate the reason for this anomalous behavior,
and our performance evaluation framework collected a number of auxiliary parameters that pro-
vided us with a valuable insight into the behavior of AntNet. After some initial brainstorming we
developed two hypotheses for this behavior of AntNet:

• H3: the ant agents could not manage the traffic load in large topologies.

• H4: the exploration of routes and their maintenance is flawed.

We conducted experiments for MSIA = 10.6 sec and MSIA = 20.6 sec in n350, n650 and n1050,
and even at these small network loads the performance of AntNet did not improve. Moreover,
we noted that if a single path routing algorithm like OSPF can manage the load at MSIA =
4.6 sec then a multiple-path routing algorithm like AntNet should be able to manage it as well.
Subsequently, we focused our investigation on H4 and we collected different parameters from the
performance evaluation framework.
Figure 4.13(a) shows the percentage of ant agents that actually managed to return to their source
node. It is interesting to note that the percentage of ant agents that return to their source node



120 Discussion of the results from the experiments

decreases from 80% in n8 to 40%, 20%, 30%, 10%, 5% in n57, n150, n350, n650 and n1050,
respectively. Figure 4.13(b) shows the number of ant agents that were launched per node in the
network and how many of them actually returned to their source node. Figure 4.13(b) again shows
the trend that as the size of the network increases, only a small fraction of the ant agents are able
to return to their nodes. Moreover, each node in AntNet, as suggested by Figure 4.13(b), launches
about 4 ant agents per second. Even if all of these ant agents arrive back at their source node
(which of course is not the case), a node in the n650 network would be able to launch an ant agent
for a destination approximately after every 150 seconds, assuming that all destinations receive the
same amount of traffic. The sampling period for a destination increases further to 250 seconds
in n1050. This shortcoming coupled with the point-to-point mode of transmission for ant agents
further degrades the route discovery and management process, especially in large topologies.
Figure 4.14(a) demonstrates the disadvantage of stochastic exploration that allows ant agents
to loop. The hops values are for the complete journey of an ant, both forward and backward.
The average hop count of the received ant agents is of the order of the nodes in the network.
Consequently, the life time of the ant agents, as shown in Figure 4.14(b), sharply increases with
an increase in the size of the network. It is obvious that the stochastic network exploration coupled
with forward and backward journeys, as expected, is not a promising approach for large networks.
We set the TTL value of ant agents to (1.5 × D), therefore, it is highly unlikely that the ant
agents are dropped because their TTL value has reached zero. Figure 4.14(a) clearly supports this
argument as the hop value of the ant agents are well below the allowable limit.
Our investigation further revealed that the ant agents got deleted because they followed cyclic

topology
n8 n57 n150 n350 n650 n1050

pe
rc

en
ta

ge

0

20

40

60

80

100
ants received

ants deleted

(a) Percentage of ant agents received and deleted

topology
n8 n57 n150 n350 n650 n1050

nu
m

be
r 

of
 a

ge
nt

s

0

1000

2000

3000

4000

5000

6000

7000

8000
ants generated

ants received

ants deleted

(b) Number of ant agents sent, received and deleted per node

Figure 4.13: The behavior of AntNet (agents sent, received and deleted)



A Scalability Framework for Nature Inspired Routing Algorithms 121

Topology
n8 n57 n150 n350 n650 n1050

lif
e 

(h
op

s)
	

0

100

200

300

400

500
ants life 

(a) Ants life (hops)

Topology
n8 n57 n150 n350 n650 n1050

lif
e 

(s
ec

on
ds

)

0

1

2

3

4

5

6

7

8
ants life 

(b) Ants life (sec)

Figure 4.14: The behavior of AntNet (agent life in hops and sec)

paths. Di Caro and Dorigo in [52] kill all those ant agents which spend more than half of their life
in a cyclic path. The motivation behind this feature in AntNet as explained in [52] is: such an ant
agent is carrying an old and misleading memory of the network state and it is counterproductive
to use it to update the routing tables. However, our investigation revealed a side effect of this
feature: once an ant agent follows a cyclic path during the early stage of its network exploration
the condition to kill it is nearly always met because it spends more than half of its life in the
cycle, as a result, it is killed. A substantial percentage of the ant agents that got killed were
those which followed a cyclic path by starting at their source node or within few hops of their
source node. Consequently, the rate at which the routes leading to different nodes are sampled
is significantly reduced. This phenomenon, however, does not yet manifest itself as a serious
bottleneck in relatively small topologies like n8, n57 and n150 where still a reasonable number of
ant agents manage to return to their source nodes, and hence update the routing tables.

4.5 Towards empirically founded scalability model for rout-
ing protocols

Our comprehensive performance evaluation framework introduced in Chapter 3, proved its useful-
ness in validating our scalability model because it calculated the performance values utilized by the
scalability model. We developed a scalability analyzer tool that retrieves the relevant performance
values for calculating the values of different scalability parameters from the database, where the



122 Towards empirically founded scalability model for routing protocols

results of different experiments were stored. Values of relevant parameters are cataloged in Tables
4.4, 4.5, 4.6 for BeeHive, AntNet and OSPF algorithms, respectively. One can summarize from

Topology MSIA Cp Cd Cβ Cw Ct Cm C ζ ω κ χ σ ρ Υ Tnet γ Γ
n8 4.6 0.688 3.3 0.208 0.365 0.007 0.672 3.25 1.53 0.815 0.412 0.166 0.068 0.999 2.29 4.29 1.86 0.574

2.6 0.493 3.27 0.15 0.361 0.013 0.672 3.19 1.56 0.815 0.406 0.133 0.054 0.999 2.27 7.93 3.48 1.089
1.6 0.39 3.28 0.118 0.363 0.021 0.672 3.17 1.63 0.825 0.395 0.133 0.052 0.999 2.27 13.2 5.84 1.83

n57 4.6 5.9 24.8 0.237 1.76 0.047 0.428 4.47 3.24 0.43 0.123 0.233 0.061 0.999 1.61 36.4 22.5 5.04
2.6 4.65 25.9 0.179 1.96 0.094 0.429 4.67 3.45 1.78 0.403 0.929 0.162 0.999 3.35 68 20.3 4.34
1.6 15 26.8 0.561 1.96 0.135 0.426 5.09 2.53 10.3 0.982 3.86 0.26 0.863 12.5 96.8 7.71 1.51

n150 4.6 24.5 22 1.111 0.862 0.019 0.296 4.29 2.07 0.442 0.191 0.2 0.076 0.999 1.71 106 62.3 14.5
2.6 17.4 21.6 0.805 0.781 0.031 0.296 3.91 3.26 0.734 0.201 0.233 0.056 0.999 1.99 199 99.9 25.5
1.6 19.2 21.5 0.892 0.762 0.049 0.296 4 3.2 2.58 0.553 0.606 0.099 0.994 4.23 333 78.6 19.6

n350 4.6 31 36.2 0.857 1.222 0.018 0.241 4.34 1.94 0.508 0.23 0.177 0.069 0.999 1.8 269 149 34.3
2.6 23.9 35.7 0.672 1.128 0.03 0.235 4.06 3.06 0.984 0.274 0.266 0.063 0.999 2.32 505 217 53.5
1.6 33.5 37.1 0.903 1.19 0.043 0.252 4.39 2.76 3 0.662 0.61 0.1 0.965 4.76 691 145 33

n650 4.6 0 0 0 1.149 0.011 0.192 3.35 1.494 0.696 0.372 0.166 0.073 0.999 2.14 534 249 74.4
2.6 0 0 0 0.944 0.016 0.192 3.15 2.11 0.925 0.354 0.2 0.063 0.999 2.34 996 425 134
1.6 0 0 0 0.894 0.023 0.192 3.11 2.44 2.76 0.677 0.466 0.085 0.931 4.52 1514 334 107

n1050 4.6 0 0 0 1.76 0.02 0.181 3.96 2.18 0.782 0.3 0.233 0.075 0.999 2.15 908 420 106
2.6 0 0 0 1.53 0.031 0.181 3.75 2.76 1.61 0.442 0.533 0.114 0.994 3.17 1668 525 140
1.6 0 0 0 1.496 0.044 0.18 3.72 2.54 3.94 0.787 0.983 0.14 0.856 5.86 2312 394 105

Table 4.4: BeeHive

Topology MSIA Cp Cd Cβ Cw Ct Cm C ζ ω κ χ σ ρ Υ Tnet γ Γ
n8 4.6 5.3 5.35 0.99 0.285 0.011 1 4.28 1.66 0.747 0.361 0.133 0.053 0.999 2.16 4.24 1.96 0.457

2.6 3.03 5.33 0.568 0.27 0.019 1 3.85 1.66 0.747 0.361 0.133 0.053 0.999 2.16 7.89 3.64 0.945
1.6 1.87 5.32 0.352 0.259 0.03 1 3.64 1.66 0.747 0.361 0.099 0.04 0.999 2.14 13.4 6.24 1.71

n57 4.6 44.5 35.7 1.246 2.99 0.163 0.883 7.29 4.22 1.034 0.217 0.309 0.057 0.999 2.3 36.6 15.8 2.17
2.6 23.9 36.8 0.651 2.88 0.275 0.883 6.73 3.18 3.35 0.651 0.87 0.124 0.998 5.13 67.8 13.2 1.96
1.6 15.6 40.1 0.388 2.91 0.412 0.883 6.7 2.25 14.3 0.998 2.14 0.121 0.883 16.4 99.6 6.06 0.905

n150 4.6 106 56.7 1.87 4.94 0.112 0.614 9.55 7.03 2.22 0.27 0.446 0.047 0.999 3.53 104 29.6 3.1
2.6 59.6 52.1 1.142 3.66 0.147 0.614 7.58 5.77 2.18 0.314 0.486 0.059 0.999 3.55 195 54.9 7.24
1.6 36.3 52.3 0.694 3.17 0.206 0.614 6.71 3.29 4.46 0.742 1 0.121 0.997 6.32 335 53 7.9

n350 4.6 322 312 1.031 11.7 0.257 0.547 15.5 6.21 2.18 0.296 0.91 0.102 0.738 3.57 164 46 2.95
2.6 203 305 0.664 10.6 0.38 0.547 14.3 4.05 6.72 0.809 3.07 0.248 0.632 8.77 263 29.9 2.09
1.6 142 274 0.517 8.09 0.39 0.547 11.6 2.5 18.6 0.999 5.13 0.215 0.335 20.8 308 14.8 1.272

n650 4.6 0 0 0 25.7 0.22 0.447 28.4 4.6 5.12 0.671 1.95 0.182 0.309 6.97 153 22 0.774
2.6 0 0 0 18.3 0.252 0.447 21 4.42 6.32 0.76 2.1 0.177 0.25 8.25 243 29.4 1.402
1.6 0 0 0 14.2 0.28 0.447 17 3.83 8.5 0.891 2.61 0.19 0.168 10.5 333 31.5 1.85

n1050 4.6 0 0 0 29.4 0.221 0.419 32 5.6 6.4 0.68 1.016 0.081 0.153 8.16 169 20.7 0.647
2.6 0 0 0 20.9 0.256 0.419 23.6 5.1 7.82 0.784 1.63 0.118 0.125 9.72 275 28.3 1.196
1.6 0 0 0 19.3 0.266 0.419 22 3.7 11.5 0.956 3.9 0.225 0.047 13.7 296 21.5 0.976

Table 4.5: AntNet

Table 4.4, when compared with similar Tables 4.5 and 4.6 for AntNet and OSPF, respectively,
that BeeHive has comparable power and productivity as OSPF and AntNet in n8. As expected,
OSPF has the best power and productivity values in this topology. However, in n57 OSPF has the
worst power among all algorithms. This is due to its poor performance values: small throughput
and significantly high packet delays (please refer to Section 4.4). BeeHive has the best power and
productivity in n57 at MSIA = 4.6 sec and MSIA = 2.6 sec. At MSIA = 1.6 sec BeeHive and
OSPF have similar productivity values while the productivity of AntNet is the smallest. AntNet
is trailing BeeHive because it achieves similar performance as compared with BeeHive, but at
significantly higher communication, processing and memory costs. Moreover, n57, as mentioned
before, is a challenging topology, therefore, congestion can already result at smaller network traffic
loads.
n150 appears to be a simple topology with a high degree of connectivity, therefore, the power and
productivity of all algorithms are significantly higher in this topology as compared to n57. In n150,
BeeHive has the best power and productivity for all network traffic loads except at MSIA = 4.6



A Scalability Framework for Nature Inspired Routing Algorithms 123

Topology MSIA Cp Cd Cβ Cw Ct Cm C ζ ω κ χ σ ρ Υ Tnet γ Γ
n8 4.6 0 0 0 0.048 0.001 0.444 2.49 1.337 0.747 0.428 0.133 0.061 0.999 2.23 4.24 1.89 0.76

2.6 0 0 0 0.027 0.001 0.444 2.47 1.337 0.747 0.428 0.133 0.061 0.999 2.23 7.95 3.55 1.438
1.6 0 0 0 0.016 0.001 0.444 2.46 1.337 0.747 0.428 0.099 0.046 1 2.22 13.4 6.04 2.45

n57 4.6 0 0 0 0.781 0.02 0.31 3.11 3.2 3.62 0.677 0.133 0.019 0.99 5.32 35.5 6.68 2.14
2.6 0 0 0 0.636 0.024 0.31 2.97 2.76 10.7 0.979 0.133 0.009 0.802 12.7 50.7 3.98 1.341
1.6 0 0 0 0.482 0.025 0.31 2.81 2.93 12.8 0.987 0.099 0.006 0.602 14.7 63.8 4.31 1.53

n150 4.6 0 0 0 0.469 0.01 0.23 2.71 3.89 0.976 0.221 0.133 0.027 0.999 2.22 105 47.5 17.5
2.6 0 0 0 0.4 0.015 0.23 2.64 3 4.7 0.791 0.133 0.017 0.955 6.5 179 27.5 10.4
1.6 0 0 0 0.33 0.017 0.23 2.57 2.73 7.68 0.939 0.1 0.009 0.797 9.62 239 24.9 9.65

n350 4.6 0 0 0 0.83 0.012 0.206 3.04 3.12 0.62 0.179 0.133 0.034 0.999 1.83 269 146 48.1
2.6 0 0 0 0.703 0.018 0.206 2.92 3.05 2.98 0.623 0.133 0.021 0.975 4.62 471 102 34.8
1.6 0 0 0 0.598 0.021 0.206 2.82 2.52 6.68 0.928 0.1 0.01 0.788 8.61 605 70.2 24.8

n650 4.6 0 0 0 0.755 0.007 0.185 2.94 1.55 0.66 0.345 0.133 0.058 0.999 2.06 532 258 87.5
2.6 0 0 0 0.514 0.008 0.185 2.7 2.49 1.466 0.444 0.133 0.033 0.991 2.94 972 330 122
1.6 0 0 0 0.403 0.009 0.185 2.59 2.39 3.16 0.732 0.1 0.017 0.839 4.9 1275 259 99.9

n1050 4.6 0 0 0 0.762 0.008 0.169 2.94 2.96 2.31 0.542 0.133 0.024 0.942 3.88 788 202 69
2.6 0 0 0 0.515 0.008 0.169 2.69 2.81 3.2 0.678 0.133 0.021 0.805 4.9 1149 234 87
1.6 0 0 0 0.388 0.008 0.169 2.56 2.59 4.3 0.809 0.1 0.014 0.607 6.12 1415 231 90

Table 4.6: OSPF

sec, where OSPF has the best productivity. However, as might be expected from the experiments
reported in Section 4.4 that the power of OSPF starts trailing as compared to AntNet at MSIA
= 2.6 sec, and at MSIA = 1.6 sec under high loads. Yet, it achieves a higher productivity than
AntNet because of its better benefit-to-cost ratio.
In the n350 topology, OSPF has the best productivity among all algorithms at MSIA = 4.6 sec
because the network traffic load at this value can not cause a congestion for this instance of net-
work, therefore, it achieves a similar power as BeeHive, but with lesser costs. Consequently, its
productivity is significantly higher than that of BeeHive. However, as the network traffic load is
increased by taking the MSIA values of 2.6 sec and 1.6 sec, the power and productivity of OSPF
significantly starts trailing BeeHive. Please note that the power and productivity of AntNet in
n350 have significantly degraded and are the lowest among all algorithms. This behavior is due
to its poor performance as described in Section 4.4.
The power and productivity of the algorithms show the same tendency in the n650 topology. The
power and productivity of BeeHive is significantly greater among all algorithms at MSIA = 2.6
sec and MSIA = 1.6 sec, however, at MSIA = 4.6 sec values are slightly smaller than OSPF.
The power and productivity of AntNet is further decreased due to its poor performance. Finally,
BeeHive has again the best power and performance among all algorithms, for all traffic patterns
in n1050. Both values are significantly higher than those of OSPF. Since n1050 is a relatively
difficult topology with a rather low degree of connectivity, the power and productivity of AntNet
is further deteriorated.
One has to be careful in analyzing the scalability of a routing algorithm based on the scalability
metric Ψ introduced in Section 4.2. One drawback of Ψ is that it simply takes the ratio of the pro-
ductivity values in two configurations and then the ratio of the scalability parameters with respect
to which the scalability has to be studied. The ratio factors out the influence of the productivity
value itself e.g. if an algorithm A has productivity values of 0.9 and 1.2 in two configurations
and another algorithm B has productivity values of 10 and 15 then both algorithms are termed
as perfectly scalable although the algorithm A has smaller productivity values in both states.
Therefore, one has to always complete the picture by looking both at Ψ and Γ.

4.5.1 Scalability matrix and scalability analysis

In order to comprehensively analyze the scalability of the algorithms, we have developed a scala-
bility matrix for each algorithm. The scalability matrix is populated under the following rules:

• The topologies are listed in the first column and the first row. Within each topology, different
traffic patterns, modeled by changing the values of MSIA, are listed.



124 Towards empirically founded scalability model for routing protocols

• In this matrix, we are interested in studying the scalability by either keeping the same
topology and changing the traffic patterns, or by keeping the same traffic patterns but
changing the topology.

• An initial configuration is defined by selecting a topology in the first column followed by
choosing an MSIA value. A final configuration is defined by selecting a topology from the
first row and then choosing the MSIA value.

• A transition from an initial configuration to a final configuration is only allowed in the matrix
if the following three conditions are met:

– The topology of the final configuration is extending the current configuration (in terms
of nodes and/or links).

– The MSIA value of the final configuration is smaller or equal to the one in current
configuration.

– The MSIA value of the final configuration is equal to the initial configuration if the
topologies are different.

• If a transition is allowed, then the corresponding value is simply a ratio of Ω2
Ω1

, where Ω2 and
Ω1 are scalability values in the final and initial configurations, respectively (they are defined
in Section 4.2). Basically, we are interested in studying how the algorithm scales for the
same traffic patterns once new nodes are added, or how the algorithm scales to additional
injection of traffic load but for a fixed topology.

• An invalid transition is marked by a ”×”.

Let us take the example of the scalability matrix of BeeHive illustrated in Table 4.7. If we want
to study the scalability of BeeHive from n8, MSIA = 4.6 sec to n350, MSIA = 4.6 sec then
the corresponding entry is 1.38 which shows that the algorithm is perfectly scalable for these
configurations. However, the scalability metric from n57, MSIA = 4.6 sec to n57, MSIA = 2.6 sec
is 0.48, which is an indication that the algorithm is not scalable for these configurations. Similarly,
the following transitions, for example, are not allowed: n8, MSIA = 4.6 sec to n57, MSIA = 2.6
sec and n57, MSIA = 1.6 sec to n57, MSIA = 2.6 sec. We now discuss the scalability of each
algorithm separately.

4.5.2 Scalability analysis of BeeHive

One can easily conclude from Table 4.7 that BeeHive is perfectly scalable at MSIA = 4.6 sec if
n8 is considered as the reference topology. BeeHive is also perfectly scalable at MSIA = 2.6 sec
except in n57 where it is not scalable and in n1050, where it is positively scalable. However, at
MSIA = 1.6 sec, the algorithm is not scalable except for n650 where it is marginally scalable. The
algorithm is also perfectly scalable to an additional network traffic load in n8 topology.
The shortcoming of the scalability metric, as discussed before, manifests itself if one takes n57
as the reference. BeeHive appears to be perfectly scalable for all network traffic loads including
MSIA = 1.6 sec which is counterintuitive. The reason is obvious: the productivity of BeeHive
is significantly smaller in n57 at MSIA = 1.6 sec, therefore, the scalability metric significantly
increases.
If we take n150 as the reference topology then the BeeHive algorithm is perfectly scalable at MSIA
= 4.6 sec. In n150, the algorithm is nearly scalable, perfectly scalable and marginally scalable for
n350, n650 and n1050, respectively, at MSIA = 2.6 sec. A similar tendency is seen at MSIA = 1.6
sec. The algorithm is able to perfectly scale to the additional traffic injected at MSIA = 2.6 sec
but not at MSIA = 1.6.
The algorithm is nearly scalable or better, if n350 is taken as the reference topology, for all
configurations except one, in which additional load is injected in n350 at MSIA = 1.6 sec. The
algorithm also does not scale at MSIA = 2.6 sec and MSIA = 1.6 sec, if n650 is taken as the



A Scalability Framework for Nature Inspired Routing Algorithms 125

reference topology. However, at MSIA = 4.6 sec it is nearly scalable. In n650, the algorithm is
perfectly scalable to an additional injected load at MSIA = 2.6 sec, however, it is not scalable at
MSIA = 1.6 sec. In n1050 the algorithm does not scale to the additional traffic load at MSIA =
1.6 sec.
BeeHive is nearly scalable or better in most of the cases with MSIA = 4.6 sec and MSIA = 2.6
sec, however, for MSIA = 1.6 sec it is not scalable.

n8 n57 n150 n350 n650 n1050
4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6

n8 4.6 1 1.087 1.139 1.254 x x 1.365 x x 1.387 x x 1.61 x x 1.42 x x
2.6 x 1 1.048 x 0.563 x x 1.249 x x 1.119 x x 1.52 x x 0.978 x
1.6 x x 1 x x 0.114 x x 0.565 x x 0.458 x x 0.713 x x 0.43

n57 4.6 x x x 1 0.488 0.104 1.088 x x 1.106 x x 1.288 x x 1.131 x x
2.6 x x x x 1 0.213 x 2.21 x x 1.98 x x 2.7 x x 1.73 x
1.6 x x x x x 1 x x 4.92 x x 3.98 x x 6.21 x x 3.74

n150 4.6 x x x x x x 1 0.994 0.471 1.016 x x 1.183 x x 1.039 x x
2.6 x x x x x x x 1 0.474 x 0.896 x x 1.221 x x 0.783 x
1.6 x x x x x x x x 1 x x 0.81 x x 1.261 x x 0.761

n350 4.6 x x x x x x x x x 1 0.877 0.376 1.165 x x 1.023 x x
2.6 x x x x x x x x x x 1 0.429 x 1.362 x x 0.874 x
1.6 x x x x x x x x x x x 1 x x 1.55 x x 0.939

n650 4.6 x x x x x x x x x x x x 1 1.025 0.503 0.878 x x
2.6 x x x x x x x x x x x x x 1 0.49 x 0.641 x
1.6 x x x x x x x x x x x x x x 1 x x 0.603

n1050 4.6 x x x x x x x x x x x x x x x 1 0.749 0.345
2.6 x x x x x x x x x x x x x x x x 1 0.461
1.6 x x x x x x x x x x x x x x x x x 1

Table 4.7: Scalability Matrix for BeeHive

4.5.3 Scalability analysis of AntNet

The power of AntNet has significantly deteriorated in n350 and onwards, therefore, the scalability
metric is of little significance. However, in n1050 the algorithm appears to perfectly scale to the
additional injected traffic load at MSIA = 2.6 sec because the corresponding Ψ value is 1.038.
However, this is due to the productivity values of 0.647 and 1.196 at MSIA = 4.6 sec and 2.6 sec,
respectively (see Table 4.5). Consequently, their ratio leads to a value of 1.038. One can easily
conclude from the scalability metrics of AntNet, as shown in Table 4.8, that the algorithm is not
scalable for most of the configurations.

4.5.4 Scalability analysis of OSPF

The scalability matrix for OSPF is illustrated in Table 4.9. As expected, the general trend is
that most of the times OSPF is not scalable for MSIA = 1.6 sec, either across different topologies
or within the same topology. Moreover, the scalability metrics are generally inferior to BeeHive.
The exception to this generalization are the cases where the productivity of OSPF is extremely
low in one topology and then it significantly improves in an another topology. One such anomaly
is observed at MSIA = 2.6 sec and n57 as the reference topology. One might conclude that in
this case OSPF is perfectly scalable and its scalability metrics are also of higher value compared
to BeeHive. This is due to the poor productivity of OSPF in n57, as cataloged in Table 4.6.
The productivity of OSPF at MSIA = 2.6 sec increases from 1.34 in n57 to 10.4, 34.8, 122 and
87 in n150, n350, n650 and n1050, respectively. In comparison the productivity of BeeHive (see
Table 4.4) increases from 4.34 in n57 to 25.5, 53.5, 134 and 140 in n150, n350, n650 and n1050,
respectively. The complete picture is that BeeHive has a higher productivity than OSPF in all
cases but its scalability metric is less than the one of OSPF because its productivity in n57 is
significantly higher as compared to OSPF. Right now we are pursuing different options to take
care of such anomalous behavior in our definition of the scalability metric.



126 Summary

n8 n57 n150 n350 n650 n1050
4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6

n8 4.6 1 1.177 1.309 0.668 x x 0.364 x x 0.148 x x 0.02 x x 0.01 x x
2.6 x 1 1.112 x 0.291 x x 0.408 x x 0.05 x x 0.018 x x 0.009 x
1.6 x x 1 x x 0.074 x x 0.246 x x 0.016 x x 0.013 x x 0.004

n57 4.6 x x x 1 0.513 0.145 0.544 x x 0.222 x x 0.031 x x 0.016 x x
2.6 x x x x 1 0.283 x 1.402 x x 0.173 x x 0.062 x x 0.032 x
1.6 x x x x x 1 x x 3.31 x x 0.228 x x 0.179 x x 0.057

n150 4.6 x x x x x x 1 1.32 0.885 0.407 x x 0.057 x x 0.029 x x
2.6 x x x x x x x 1 0.67 x 0.123 x x 0.044 x x 0.023 x
1.6 x x x x x x x x 1 x x 0.069 x x 0.054 x x 0.017

n350 4.6 x x x x x x x x x 1 0.401 0.149 0.14 x x 0.073 x x
2.6 x x x x x x x x x x 1 0.373 x 0.359 x x 0.189 x
1.6 x x x x x x x x x x x 1 x x 0.783 x x 0.253

n650 4.6 x x x x x x x x x x x x 1 1.024 0.833 0.52 x x
2.6 x x x x x x x x x x x x x 1 0.813 x 0.527 x
1.6 x x x x x x x x x x x x x x 1 x x 0.323

n1050 4.6 x x x x x x x x x x x x x x x 1 1.038 0.517
2.6 x x x x x x x x x x x x x x x x 1 0.498
1.6 x x x x x x x x x x x x x x x x x 1

Table 4.8: Scalability Matrix for AntNet

For now, we propose as a Principle: a reference topology for analyzing the comparative scalability
behavior of routing protocols must be chosen in such a fashion that all candidate algorithms should
have similar productivity values in it. This principle is crucial to follow in the current scalability
framework because it takes care of the complex relationship between the performance of a routing
protocol and the topology. Luckily, n8 is one such topology, therefore, the scalability analysis
based on the performance values in this topology is completely unbiased because all of the three
algorithms have similar productivity values for all traffic patterns (see Tables 4.4, 4.5, 4.6).

n8 n57 n150 n350 n650 n1050
4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6 4.6 2.6 1.6

n8 4.6 1 1.07 1.127 0.397 x x 1.237 x x 1.451 x x 1.423 x x 0.69 x x
2.6 x 1 1.053 x 0.131 x x 0.387 x x 0.557 x x 1.046 x x 0.462 x
1.6 x x 1 x x 0.087 x x 0.21 x x 0.231 x x 0.501 x x 0.279

n57 4.6 x x x 1 0.353 0.249 3.11 x x 3.65 x x 3.58 x x 1.73 x x
2.6 x x x x 1 0.705 x 2.95 x x 4.25 x x 7.98 x x 3.52 x
1.6 x x x x x 1 x x 2.39 x x 2.63 x x 5.7 x x 3.18

n150 4.6 x x x x x x 1 0.334 0.191 1.172 x x 1.15 x x 0.557 x x
2.6 x x x x x x x 1 0.572 x 1.44 x x 2.7 x x 1.193 x
1.6 x x x x x x x x 1 x x 1.099 x x 2.38 x x 1.328

n350 4.6 x x x x x x x x x 1 0.411 0.179 0.981 x x 0.475 x x
2.6 x x x x x x x x x x 1 0.436 x 1.87 x x 0.828 x
1.6 x x x x x x x x x x x 1 x x 2.16 x x 1.208

n650 4.6 x x x x x x x x x x x x 1 0.786 0.396 0.484 x x
2.6 x x x x x x x x x x x x x 1 0.504 x 0.441 x
1.6 x x x x x x x x x x x x x x 1 x x 0.557

n1050 4.6 x x x x x x x x x x x x x x x 1 0.716 0.456
2.6 x x x x x x x x x x x x x x x x 1 0.636
1.6 x x x x x x x x x x x x x x x x x 1

Table 4.9: Scalability Matrix for OSPF

4.6 Summary

We have empirically evaluated the behavior of two state-of-the-art Nature inspired routing algo-
rithms and a single-path routing algorithm on a set of topologies ranging from 8 to 1050 nodes.
The results unequivocally demonstrate that BeeHive is able to deliver superior performance both
under high or low network traffic loads, in all topologies. This is a result of considering scalability



A Scalability Framework for Nature Inspired Routing Algorithms 127

as an important factor in the design and development of our bee agent model. The true benefits
of the algorithm are clearly visible in larger topologies. The performance of AntNet, however,
significantly degrades in 350 or higher nodes topologies.
We also proposed power and productivity metrics for a distributed routing algorithm, which de-
pend on a number of important performance values. The productivity metric provides an unbiased
insight into the behavior of a routing algorithm: at what costs does the algorithm improve its per-
formance? Finally, we defined a scalability metric to reach a decision on the scalability of a routing
algorithm and demonstrated that the BeeHive algorithm scales better than the rest of the algo-
rithms in majority of the cases because of its superior benefit-to-cost ratio.
The scalability metric suffers from a shortcoming: it takes the ratio of the productivities in two
configurations, as a result, it simply factors out the magnitude of the productivity. Therefore,
one has to cross-examine it with the productivity value for a comprehensive scalability analysis.
In our future work, we want to rectify this shortcoming. Our idea is that the scalability metric
should not be a simple ratio of the two productivity values but it should be a function of their
magnitude as well. We think that this can be achieved by defining a productivity metric for each
topology as suggested in [165] and then modeling the scalability metric of the algorithm based on
all these factors. Moreover, we would like to modify our simulation model in such a manner that
we are able to run simulations under congested network traffic loads in large topologies.
We believe that the scalability framework presented in this chapter will help the designers of
routing protocols to consider scalability as an important factor in their design and development,
adding empirical validation as a corrective measure at an early stage.



128 Summary



5
BeeHive in real networks of Linux routers

The major contribution of the work presented in this chapter is a Natural Engineering
approach that we developed to design and implement Nature inspired routing protocols in
Linux routers. The approach helped in developing a natural routing framework inside the
network stack of the Linux kernel. The natural routing framework was instrumental in
realizing BeeHive inside the Linux kernel. We developed a protocol verification system
to compare the performance of the algorithms from a simulated network with that of a
real network. We performed extensive experiments in both environments to show that the
performance of BeeHive is significantly better than OSPF. The work is a quantum leap
because we have laid the ground for empirically refuting the deeply routed notion held by
the engineers in the telecommunication industry that Nature inspired routing protocols are
not economically viable because they cannot be implemented with the existing resources. The
work, we believe, will also be instrumental in bridging the gap between different communities
through the process of cross-fertilization of their design doctrines.

5.1 Introduction

The work presented in this chapter was undertaken in order to respond to attitudes and prejudices
from the classical Networking community. There, the belief is strongly held that Nature inspired
routing protocols, though their intriguing character is recognized, can not provide benefits in real
networks as they are only evaluated in simulations. The criticism is that these algorithms do not
pay attention to engineering principles and constraints. Consequently, their installation on real
world routers will require additional hardware and software resources. As a result, the benefit-
to-cost ratio of the algorithms will render them economically nonviable to the telecommunication
market where a cut-throat competition exists between different router vendors. Up to date, ac-
cording to our knowledge, the lack of any empirical work showing the benefits of such algorithms
in real networks has certainly helped to maintain and strength this attitude.
We agree with the engineers working in the telecommunication industry about the current lack
of an engineering vision during the design and development of Nature inspired routing protocols.
AntNet had been proposed eight years ago and DGA was proposed four years ago, and as of today,
these significant and novel algorithms have not been implemented into real networks. So, their
is not yet any commitment to accept Nature inspired routing algorithms in real networks. Given
this, a particular effort is needed to overcome above-mentioned attitude that is widely spread in
industry.
With this in mind, we put a strong emphasis on designing and developing an engineering approach
during the design and development of our Nature inspired protocol. As a particular imperative
we decided that the algorithm must be realizable in existing real world routers, without the need
of additional hardware or software resources to make it economically viable. The algorithm should
not require any software components in the simulation that are not available in the real world
networks. We hold this as a basic principle for Natural Engineering (see Chapter 1). As a result,

129



130 Engineering of Nature inspired routing protocols

this will lead to:

• developing economically viable Nature inspired networking systems, an aspect so far ne-
glected by the Nature inspired routing community.

• ensuring that the algorithm developers avoid making unrealistic assumptions about the en-
vironment of real networks. In particular, algorithms must not utilize any features that are
not available in real world routers.

• taking into account resource constraints in the real world, a fact that has so far received
very little attention in Nature inspired routing community.

• demonstrating that Nature inspired routing protocols can truly deliver performance results
in real networks similar to those obtained in a simulation environment. This will be in-
strumental for refuting the suspicion held in the commercial world. At any rate, it will
still contribute to a radical directional shift of design work in the Nature inspired routing
community.

• providing for cross-fertilization of ideas and paradigms from fundamentally different design
approaches. This opens a good perspective in developing state-of-the-art networking systems
for complex networks of the new millennium.

The major contribution of the work is the engineering approach mentioned above that we realized
while developing our Nature inspired routing algorithm, BeeHive, to operate in packet switched
telecommunication networks. We have implemented BeeHive inside the network stack of Linux
operating system in a real world router. Using our comprehensive performance evaluation frame-
work, we compared its performance with OSPF, in a real network of 8 Linux routers, part of
our network systems lab of LS III at the University of Dortmund. The results obtained from the
extensive experiments reveal that our engineering approach has paid its dividend because Bee-
Hive outperforms OSPF in a real network of Linux routers even in those aspects that had been
considered critical by the Network engineering community.

5.1.1 Organization of the chapter

Section 5.2 will provide an overview of different design approaches available for implementing a
routing algorithm in a real Linux router. The section will also introduce the important engineering
issues that the designer of a Nature inspired routing protocol should consider during the life cycle
of a protocol. We will introduce our natural routing framework in Section 5.3 by highlighting its
algorithmic-independent and the algorithmic-dependent components. The reader will appreciate
that the framework is general enough to realize the relevant features of a Nature inspired rout-
ing protocol. Section 5.4 introduces our protocol verification framework that we developed to
comprehensively compare and evaluate an algorithm both in a simulation environment and in a
real network of Linux machines. We will introduce the motivation behind our experiment design
in Section 5.5 and then discuss the experimental results. Finally, we provide a summary of the
chapter.

5.2 Engineering of Nature inspired routing protocols

The engineering approach is of paramount importance for the realization of a routing protocol in
a real network router [113]. Our extensive research into this intriguing domain has unfolded the
true challenges that one faces in undertaking this strenuous task. We followed the basic software
engineering design principle: a good software organization emphasizes structures and components
that are easily reusable. The reusability is achieved by decoupling their design from the implemen-
tation level details [21, 33]. Such an approach enables a designer to concentrate on top-level design
issues and pay little attention to the implementation details at an initial stage of the protocol de-
velopment. Combined with our Natural Engineering approach, this helped in accomplishing the



BeeHive in real networks of Linux routers 131

challenging task of creating a natural routing framework inside the network stack of the Linux
kernel. We addressed the following issues in the chronological order:

1. Structural design of a routing framework

2. Structural semantics of the network stack

3. System design issues

5.2.1 Structural design of a routing framework

The performance of a routing framework depends on its structure and cost of certain operating
system (OS) functions, such as context switching and interrupt handling [39]. The structure of
a framework defines the partitioning of its important components between the user space and
the kernel space [110]. Consequently, one should carefully make this crucial decision because a
thoughtless or imperfect partitioning of the components between the user space and the kernel
space leads to frequent context-switchings resulting in a poor performance [110, 41]. A structure
should be designed in such a manner that it carefully optimizes the access to the OS functions like
process scheduling, memory allocation and management, and interrupt handling. The extensive
studies done by Kay and Pasquale [108] indicate that the cost of processing an interrupt, copying
a packet from the kernel space to the user space and context-switch overheads are at least as
expensive as the protocol processing. A good routing framework should take all of these factors
into account.
Thekkath et al. [197] have provided a good survey of the choices for partitioning the components
of a protocol stack between the user space and the kernel space. However, their major emphasis
is on structuring a protocol stack and not a routing framework. Nevertheless, the design principles
and choices are valid for a routing framework as well. According to Keshave [110], a designer has
to make a multi-way trade-off among the following factors in order to reach at a suitable decision
on the partitioning problem:

• Software engineering considerations are influenced by the difficulty level of writing, testing
and maintaining the code for the routing framework either in the user space or in the kernel
space.

• customization is the ability of a routing framework to satisfy the requirements of the appli-
cations.

• Security concerns stem from the fact that a user process can harm other user processes. One
has to be careful in placing a service into an untrusted user space as opposed to a trusted
kernel space.

• Performance is the ability of a routing framework to accomplish its task as quickly as possible.
The interested reader will find details about performance enhancement techniques/systems
in [133, 69, 214, 108, 97].

In the following we introduce three basic choices: a monolithic routing framework in the kernel
space, a monolithic routing framework in user space, and a hybrid implementation in the kernel
space and user space. We considered the first one in our routing framework.

Monolithic routing framework in the kernel space

The most important components of a routing framework are: routing tables, route discovery and
maintenance, and packet switching. In this approach, all of these components are encapsulated
inside a module within the Linux kernel. Figure 5.1 illustrates this structure. This routing
framework has the highest security and the best performance, however, it is an ostentatious task to
implement a module inside the kernel and then debug the kernel code. The reasons are: the kernel



132 Engineering of Nature inspired routing protocols

space has only a basic set of data structures that are significantly limited in their functionality.
The important libraries like math, Standard Template Library (STL) etc. available in the user
space are non-existent in the kernel space prolonging the implementation and debug phase. Last
but not least, the routing framework is strongly coupled with the kernel code of a particular kernel
version, and porting it to new enhanced kernel versions may not be straight forward, at times,
which makes its source code difficult to maintain. The interested reader will find further details
in [197, 214].

USER

KERNEL

Application Application

Route discovery
& maintenance

Packet
switching

Routing Tables

Device

Device Driver

Network

Transport

Routing Protocol
Network Stack of

Linux

Figure 5.1: Monolithic implementation in kernel space

Monolithic routing framework in user space

In this approach, all components of a routing framework are implemented as a single process in the
user space [197, 205, 71]. Figure 5.2 illustrates this structure. A user space module provides the
flexibility of using user space data structures and libraries that significantly reduces the time of
realizing a routing framework in a router. The debugging in user space is significantly easier and
straightforward as compared to the kernel space. The routing framework is completely decoupled
from the services/features of the kernel which significantly simplifies its code maintenance. How-
ever, the performance of the routing framework is poor because for each arrival of a packet, two
context-switches are made: one from the kernel space to the user space to find the next hop leading
toward the destination; another context-switch from the user space to the kernel space to enqueue
the data packet at the network interface of the next hop. In case of agents, an additional copy of
the agent is to be made from the kernel space to the user space in order to carry out its detailed
processing in the user space. Finally, the agent is copied back from the user space to the kernel
space. If the CPU scheduler does not give enough preference to the routing framework process
then this scheduling latency degrades the over-all performance of the algorithm. Consequently,
all of these factors significantly degrade the packet-switching rate of a network router. Last but
not least, moving a routing framework into the user space has serious security concerns as well.
However, the solutions to the security concerns are discussed in [69, 72, 197].



BeeHive in real networks of Linux routers 133

USER

KERNEL

Application Application

Route discovery
& maintenance

Packet
switching

Routing Tables

Device

Device Driver

Network

Transport

Routing Protocol

Network Stack of
Linux

Figure 5.2: Monolithic implementation in user space



134 Engineering of Nature inspired routing protocols

Hybrid routing framework

In this approach, the control path is separated from the data path. Consequently, the route dis-
covery and maintenance component is moved into the user space while the routing tables and the
packet-switching components remain in the kernel space. The two modules communicate with
one another via the /proc file system [121]. This approach combines the benefits of easy imple-
mentation in the user space, of handling the complex behavior of agents (which requires special
libraries and tools), with the efficient packet-switching of data packets in the kernel space, without
the need of two context-switches for each routing decision. Figure 5.3 illustrates the approach.
The frequency of agent-processing is significantly smaller as compared to packet-switching under
high loads, therefore, the performance of the algorithm is not significantly degraded. The agent
processing is the most important component of a Nature inspired routing algorithm and this ap-
proach completely decouples it from the corresponding kernel version, therefore, it becomes easier
to maintain such a routing framework.
We decided to opt for the monolithic implementation in the kernel space after thoroughly review-

USER

KERNEL

Application Application

Device

Device Driver

Network

Transport

Route discovery
& maintenance

Proc FS 
System

Packet switching

Routing Tables

Routing Protocol
Network Stack of

Linux

Routing Protocol

Figure 5.3: Hybrid implementation

ing the merits and demerits of the three approaches. The security and performance issues played
a vital role in our decision making process.

5.2.2 Structural semantics of the network stack

The next issue that influences the design of a routing framework is the interface among different
layers of a network protocol stack. Generally, three strategies are employed [110]:

1. The Single context approach calls for a single non-preemptible thread of execution in which
only one packet is processed at a time, by locking the access to the stack. For such a system
the only option available is monolithic implementation in the kernel space.



BeeHive in real networks of Linux routers 135

2. The Tasks-oriented model implements each layer as a task which is scheduled by a central
task scheduler with a pointer to the buffer containing a packet. In this approach a packet
is shepherded through the stack by a sequence of tasks that mutually schedule each other.
Such an approach allows for Quality of Service (QoS) guarantees because a scheduler has the
freedom to schedule high priority tasks over low priority tasks [5]. However, this approach
has a higher latency because of frequent intervention of the scheduler during the journey of
a packet through the stack. For such a system, any of the above-mentioned three strategies
will work.

3. The Upcall architecture associates a thread with each data packet, and it is responsible for all
layers of the protocol processing. High priority threads handle high priority packets. Each
layer registers send and receive entry points with its lower layer. As a result, it can make a
procedure call on the preregistered entry point [40, 97] during the reception or transmission
of the packets. In such a model, no data is copied between the layers that enhances its
performance. Linux has got an upcall architecture, therefore, it is important to identify the
entry points to/from the data link layer and to/from the transport layer. For such a system,
any of the above-mentioned three implementation strategies can be utilized.

The upcall system architecture facilitates to conveniently structure actions of a routing protocol
in an asynchronous manner, as responses to the five basic events shown in Figure 5.4 through
entry/exit points. The NetFilter architecture in Linux [156, 1], based on the concept of Packet

Upper Layer Send

Lower Layer Send Lower Layer Receive

Upper Layer Receive

Time out

Figure 5.4: Protocol block from [110]

Filter [134], provides a simple mechanism for receiving and processing packets from the protocol
stack in the network layer. This helps in realizing a routing framework as a protocol block as
illustrated in Figure 5.4.



136 Natural routing framework: design and implementation

5.2.3 System design issues

A routing framework is part of a distributed system which is built from hardware and software
resources [110]. The development of a routing framework, therefore, requires a thorough under-
standing of system design techniques with a high emphasis on computer networks. An interested
reader will find a detailed treatment on operating systems in [173, 195], on computer architecture
in [92], and on network systems/protocols in Unix in [187, 186, 184, 240, 185]. We, as mentioned
before, followed an engineering approach, which tries to optimally balance the requirements for
constrained and unconstrained resources, during the design and development of a routing frame-
work. We tried to account for the following resources: time, space, computation and labor.

1. Time: Our routing framework must be simple enough so that it requires as little time of
the processor as possible. The framework must not put any additional hardware constraints
on the existing computers for its functionality. This will also decrease its time to market as
well.

2. Space: Like time, space is also a limited resource. Space constraints are expressed by limits
on available memory, data packets in routers, routing tables and other routing information
obtained from the agents. A routing algorithm should try to utilize this resource as effi-
ciently as possible. A carefully designed and efficiently implemented routing framework is a
prerequisite for achieving this goal.

3. Computation: Our framework must be able to work with the low-end Pentium III series
of processors that we have at our disposal in our LS III network systems lab. This will
refute the popular notion held by the networking system community that Nature inspired
approaches are too complex to be realized with the existing hardware and software resources.

4. Labor: Our framework should be designed in such a fashion that we can efficiently implement
it with the help of two full-time software developers working for 8 months. The workload
initially estimated was about 2800 man/machine hours. Luckily, we were able to accomplish
the task in approximately 3000 man/machine hours. A well planned design strategy, as
discussed in the previous section, helped in meeting important milestones and deadlines.
In the first phase, we implemented and tested the BeeHive algorithm in a virtual network
of virtual Linux machines [244], and in the second phase we made the final transition of
realizing the algorithm in a real network of real Linux machines [88].

We agreed to work on a design model that is scalable: it can be easily adapted to new architectures,
systems, and increasing network size. We expect that this feature will significantly reduce the cost
of porting the framework to large heterogeneous systems.

5.3 Natural routing framework: design and implementation

We designed, developed and implemented our natural routing framework with two layers of abstrac-
tion: algorithmic-independent and algorithmic-dependent. The algorithmic-independent frame-
work consists of structures and services that facilitate the realization of a Nature inspired routing
protocol inside the network stack of Linux kernel, by utilizing its interfaces and the services it
offers. As mentioned in the previous section, typically a Nature inspired routing protocol consists
of three components:

1. Agents which collect the information about the state of the network and then store it at the
nodes they visit.

2. Routing tables that act as the repository for storing the routing information collected by the
agents. The tables also cater for information exchange, either directly or indirectly, through
the environment. The Nature inspired routing protocols require specialized tables for their
correct functioning.



BeeHive in real networks of Linux routers 137

3. Packet switching task is achieved by distributing data packets in a stochastic manner as per
quality, which is calculated based on the information in the routing tables along the paths.

An algorithmic-independent framework consists of structures and features that contribute to im-
plementing the above-mentioned components of a routing algorithm.

5.3.1 Algorithm-independent framework

The algorithm independent framework consists of an algorithmic module inside the Linux kernel.
The motivation for a monolithic implementation in the kernel space has been comprehensively
substantiated in the previous section. The framework consists of three components: Agent man-
ager, Agent processor and Packet processor (both for incoming and outgoing data packets). For
these components, we now discuss in detail the implementation of our module.

Agent manager

The task of the agent manager is to periodically or aperiodically launch the agents which collect
the routing information from the network. The agents can be launched either in a broadcast mode,
or in a point-to-point mode, depending on the design of the algorithm. The manager sleeps in
an interruptible fashion after launching the agents. The interruptibility enables the manager to
asynchronously/aperiodically launch the agents if an event of interest occurs.

Agent processor

The agent processor runs in the background as a daemon and is responsible for receiving and
processing the agents. Once it receives an agent it executes the behavior component of the agent.
Subsequently, if the agent needs to update/modify the routing information in the routing tables
then it can request the agent processor to do it, which is the only component authorized to
alter/update the routing table. Once the agent has executed its actions, the agent processor
forwards it, if needed, to all neighbor nodes of the current node (if broadcast mode is selected)
except from which it arrived. Otherwise, in the point-to-point mode, it will forward the agent to
the next hop that is determined by the routing algorithm.

Packet processor

The packet processor is allowed to access the routing information in the routing tables but can-
not modify it. A packet processor can receive packets either in its pre input hook that in turn
is connected to the IP PRE ROUTING of the NetFilter, represented as ”PRE Mangle” in Fig-
ure 5.5, or in its output hook that in turn is connected to IP LOCAL OUTPUT, represented as
”OUT Mangle” in Figure 5.5. The packets passing through the current node are processed in
the pre input hook. If the current node is the destination of the packet then it is delivered to the
transport layer otherwise it will be forwarded to the next hop interface, after consulting the rout-
ing table. The packets that are generated at the current node are processed in the output hook,
and the routing decision is made in this hook.

5.3.2 Algorithmic-dependent BeeHive module

The BeeHive module utilizes the services and interfaces of the above-mentioned algorithmic-
independent routing framework. The tasks of processing and managing the information of the
bee agents is accomplished by utilizing the agent manager and agent processor components of the
framework. The packet switching functionality is achieved through utilizing the services of the
packet processor, and the routing information is maintained in the routing tables that are espe-
cially designed and developed for multi-path stochastic routing algorithms. Figure 5.6 shows in
detail the block diagram of the BeeHive module.



138 Natural routing framework: design and implementation

FWD

IN OUT

Mangle
NAT (Dst)

Mangle
Filter

PRE [ROUTE] POST
Mangle
Filter

Mangle
NAT (Dst)
Filter

Mangle
NAT (Src)

[ROUTE]

Figure 5.5: NetFilter hooks

Bee processing and management

The important task of the agent manager is to periodically or aperiodically launch a bee agent
as depicted in the procedure launchBeeAgents(s,ni,n) in Algorithm 1 (please refer to Chapter
3). The bee agents can also be asynchronously launched once a node receives m (currently 240)
packets; the paths leading to the destination node of frequent network traffic should be sampled
and explored at a higher frequency than the others. The agent manager, once awake, does the
following three tasks:

• It creates a bee agent and writes its own IP address into the source field. It assigns it a bee
agent id and a time to live value (TTL) in term of the number of hops permitted.

• It retrieves the IP address of each valid network interface except of the loopback adapter. It
creates a replica of the bee agent for each valid IP interface and assigns it a distinct replica
id.

• It increments the bee agent id.

The bee agents launched by the agent managers are received at other nodes through the agent
processors. The agent processor, as discussed earlier, is a daemon process that listens on a pre-
defined UDP port, which is reserved for the transmission and reception of bee agents. The tasks
of an agent processor are outlined in the processBeeAgents() method of Algorithm 1 (please refer
to Chapter 3). The concepts of foraging regions and foraging zones are not implemented because
their benefits on a small topology are not obvious. The agent processor does the following tasks:

• If time to live timer (TTL) has reached zero or if the replica already visited the same node
then it is killed (to avoid loops).

• At start up time, the agent processor estimates the propagation delay of the transmission
links connected to its neighbors. The received replica updates its estimate of the queuing
delay by calculating the queue length of the interface of the neighbor, from where it arrived,
at the current node. Similarly, it updates its estimate of the propagation delay.

• The received replica then requests the agent processor to update, in the routing tables, the
estimates of the queuing and propagation delays of its source node for the neighbor from
where it arrived. Please remember that only an agent processor has the permission to modify
the routing tables.

• If available, the replica reads the estimates of the queuing and propagation delays of other
replicas that are also launched from its source node. The replica updates its view of the
network state based on the information communicated by other replicas (see Figure 3.3).



BeeHive in real networks of Linux routers 139

Agent
Processor

Packet
Procesor

B
eeH

ive routing table

Packet
dispatcher

Transport
Layer

Data Link
Layer

NetFilter

Agent
Manager

BeeHive Module

Timer

Network Stack

Bee agents

Data packets generated
at the current node

Packets received from other
hosts

Data packets destined for
other hosts

IP_PRE_ROUTING IP_LOCAL_OUTPUT

IP_LOCAL_INPUT IP_POST_ROUTING

Data packets destined
for the current host

Figure 5.6: Block diagram of BeeHive module



140 Natural routing framework: design and implementation

• If a replica of the same generation (bee agent id) had already been received at the node then
the agent processor kills the current replica.

• The agent processor retrieves the IP address of each valid network interface except the
loopback adapter and the network interface from where the replica is received. The replica
is broadcast to the retrieved IP addresses without modifying its replica or agent id.

Packet processor

The data packets are sent to the packet processor by the packet dispatcher, which is connected
to NetFilter at two interfaces: pre input hook and out hook. The packets generated by the ap-
plications running at the current host are received in the out hook. The packets sent from the
network interface card are received in the pre input hook. The general task of a packet processor
is to access the information in the routing tables, calculate the quality of each neighbor that can
be the next hop towards the destination, and then stochastically choose the next hop toward the
destination.
The floating point operations are not supported in the Linux kernel, therefore, one has to adapt
the packet switching algorithm such that it works with integer numbers only. The simple solution
is to rescale the probabilities in the range from 0 to 100 instead of 0 to 1. We simply rescale
g = K

p+q where K is a large integer value, p is the propagation delay and q is the queuing delay.

Finally the integer probability θjd is θjd = gjd×100∑N

k=1
gkd

, where N is the number of the neighbors of

the current node.
The packet processor can receive a data packet from the network interface card through pre input hook
of packet dispatcher. If the destination of the packet is the current node then it is given to the
upper layers via IP LOCAL INPUT hook of NetFilter, represented by ”IN Mangle” in Figure 5.5,
otherwise the function b route input() is called. This function accesses the bee routing table and
applies the above-mentioned algorithm to find a next hop. The Linux kernel caches the routing
tables for efficient routing of the data packets, under the assumption that the quality of the routes
will not drastically change in small intervals of time. In the b route input() function, the complete
processing relating to routing is done, and finally ip route input() of the network stack is called
by giving it the next hop as the final destination. This simple circumvention makes Linux access
its cached routing tables with the next hop as the final destination. As a result, the packet will
be queued in the network interface of the next hop host that is determined by the BeeHive al-
gorithm. The packet processor calls the ip route output flow output() function for processing the
data packets that have been received through out hook of packet dispatcher. These packets are
generated at the current node. The processing related to routing is quite similar as discussed in
the pre input hook case.

Bee routing tables

The routing tables of the Linux kernel render themselves useless once it comes to supporting
Nature inspired routing protocols because of the following reasons:

• Nature inspired routing algorithms take a routing decision on a packet basis. Therefore the
idea of caching based on session, destination IP, source IP, port and type of service (TOS)
values does not significantly help.

• Nature inspired routing algorithms are multi-path routing algorithms. Consequently, it is
possible to reach each destination host through multiple neighbors and this information has
to be incorporated in the routing tables.

• Nature inspired routing protocols implicitly assume that the hosts are polymorphic. A poly-
morphic host has different IP addresses for each of its network cards but all of these IP
addresses represent the same host. OSPF does not care about this because it finds a single
path to each IP address.



BeeHive in real networks of Linux routers 141

These shortcomings motivated us to design and develop a BeeHive specific routing table that would
not suffer from the above-mentioned limitations. The bee routing table consists of three further
tables as shown in Figure 5.7: IP table, host table and neighbor table. The IP table contains all
the possible destination IP addresses. Each IP address is mapped to a host in host table. If a host
has multiple IP addresses then the corresponding IP entries point to the same host. Each host
points to a neighbor table that contains all neighbors that could lead to the same destination. The
tables are currently implemented with the help of linked list structures. The IP table consists of

struct rt_ip

struct rt_ip

struct rt_ip

struct rt_ip

struct rt_ip

struct rt_ip

struct rt_hosts

struct rt_hosts

struct rt_hosts

struct b_neighbour

struct b_neighbour

struct b_neighbour

Figure 5.7: Top level routing table

a linked list of rt ip structures as shown in Figure 5.8. Each entry in the IP table is linked to an
entry of hosts table, which is a double linked list of rt hosts structures (see Figure 5.8). The basic
idea is that different rt ip structures (IP addresses) of the same host point to the same rt hosts
structure, and a rt hosts structure points to all of its rt ip structures. We maintain a double linked
list of b neighbour structures (as shown in Figure 5.9) that is only accessible through an entry of
a linked list of rt neighbour structures (as shown in Figure 5.10). Each entry in the double linked
list of rt hosts (Host table) points to its own linked list of the rt neighbour structures through
which a packet can reach its destination node. In order to efficiently implement the routing table,
the linked lists of rt neighbour structures of different hosts point to their corresponding entries
in the same double linked list of b neigbhour structures. This significantly improves the fault
management; if a neighbor node has crashed then its corresponding b neigbour entry is made
invalid and this virtually removes it from the linked list of all rt neighbour structures because an
invalid entry is not considered in the routing process. Please refer to Table 5.1 for the description



142 Protocol verification framework

+ip : __u32
+next : struct rt_ip*
+host : struct rt_hosts*

struct rt_ip

+node_id : __u32
+nr_ips : __u8
+b_replica_id[8] : __u8
+previous : struct rt_hosts*
+next : struct rt_hosts*
+rt_n : struct rt_neighbour*
+ip0 : struct rt_ip*
+ip1 : struct rt_ip*
+...
+ipn : struct rt_ip*

struct rt_hosts

+ip : __u32
+next : struct rt_ip*
+host : struct rt_hosts*

struct rt_ip

+ip : __u32
+next : struct rt_ip*
+host : struct rt_hosts*

struct rt_ip

struct rt_hosts

struct rt_hosts

+first : struct rt_ip*
+last : struct rt_ip*

struct rt_list

Figure 5.8: IPs table

of important symbols used in rest of the chapter.

5.4 Protocol verification framework

We have designed and developed a comprehensive and sophisticated protocol verification frame-
work for extensive performance evaluation, comparison and verification of a routing protocol, both
in a simulation environment and in real networks. The conceptual block diagram of the framework
is illustrated in Figure 5.11.



BeeHive in real networks of Linux routers 143

struct b_neighbour

-node_id : __u32
-ip : __u32
-interface : struct net_device*
-queueing_delay : __u32
-propagation_delay : __u32
-echo_requests : __u8
-pnext : struct b_neighbour*
-pbefore : struct b_neighbour*
-last_b_id : __u32

struct b_neighbour

+pfirst : struct b_neighbour*
+plast : struct b_neighbour*
-nr_neighbours : int

struct neighbour_list

-node_id : __u32
-ip : __u32
-interface : struct net_device*
-queueing_delay : __u32
-propagation_delay : __u32
-echo_requests : __u8
-pnext : struct b_neighbour*
-pbefore : struct b_neighbour*
-last_b_id : __u32

struct b_neighbour

Figure 5.9: Neighbors table

The framework consists of the following important building blocks:

1. The traffic generator is a tool that generates arbitrary but realistic traffic patterns which
represent different classes and types of the real network traffic. The traffic generator has
been introduced in Chapter 3.

2. The performance evaluation framework is a tool that calculates the relevant performance
values from the experiments. The framework is comprehensively introduced in [216]. The
framework is also described in Chapter 3

3. The results database and plotter utility is a tool that stores the most important parameters
from the experiments in a database. The plotter utility consists of a set of scripts written in
Perl that reads the results from the database and then presents them, as per choice of the
user, either graphically or in a table.

We have implemented the traffic generator and performance evaluation framework both in the
network simulator OMNeT++ [203] and in an application layer of the Linux operating system
network stack as illustrated in Figure 5.11. By assigning the same values to the above-mentioned
parameters of the traffic generator, we expect to generate nearly similar traffic patterns in a
simulation and real network environments. In the next step of our protocol verification process,
we utilize a topology generator that generates a topology of a given amount of nodes and links.
The links are fully characterized by their bandwidth, propagation delay and bit error rate. During
this process, we select a topology that we will use in our simulation environment and the real
network of Linux routers. The topology is known as simpleNet and it is shown in Figure 5.12.
The detailed description of each Linux router machine that includes its processor, RAM, cache,
hard disk, and the network interface cards is cataloged in Table 5.2.
The protocol verification principle is: if we generate same traffic patterns through same traffic

generators both in OMNeT++ and the Linux network and utilize the same performance evaluation
framework again both in OMNeT++ and the Linux network then the performance values obtained
from the simulation environment should be consistent to the ones obtained from the real Linux
network with minor deviations, provided our simulation environment depicts a somewhat realistic



144 Protocol verification framework

-node_id : __u32
-ip : __u32
-interface : struct net_device*
-queueing_delay : __u32
-propagation_delay : __u32
-echo_requests : __u8
-pnext : struct b_neighbour*
-pbefore : struct b_neighbour*
-last_b_id : __u32

struct b_neighbour

+pfirst : struct b_neighbour*
+plast : struct b_neighbour*
-nr_neighbours : int

struct neighbour_list

+node_id : __u32
+nr_ips : __u8
+b_replica_id[8] : __u8
+previous : struct rt_hosts*
+next : struct rt_hosts*
+rt_n : struct rt_neighbour*
+ip0 : struct rt_ip*
+ip1 : struct rt_ip*
+...
+ipn : struct rt_ip*

struct rt_hosts

struct rt_hosts

struct rt_hosts

+qd : __u32
+pd : __u32
+neighbour : struct b_neighbour*
+next : struct rt_neighbour*

struct rt_neighbour
+qd : __u32
+pd : __u32
+neighbour : struct b_neighbour*
+next : struct rt_neighbour*

struct rt_neighbour

-node_id : __u32
-ip : __u32
-interface : struct net_device*
-queueing_delay : __u32
-propagation_delay : __u32
-echo_requests : __u8
-pnext : struct b_neighbour*
-pbefore : struct b_neighbour*
-last_b_id : __u32

struct b_neighbour

struct b_neighbour

struct rt_neighbour

Figure 5.10: Detailed bee routing table



BeeHive in real networks of Linux routers 145

Traffic
Generator

Candidate
Algorithm

Data General

OMNET++
The network simulator
environment

Performance
Evaluation
Framework

Performance
Evaluation
Framework

Results
database

Network
topology

Linux Router

Figure 5.11: Protocol verification framework

Pgen Total number of packets generated
Prec Total number of packets received
Sto Total number of sessions started
Sco Total number of sessions completed
Tav Average throughput (M/sec)
Pd Packet delivery ratio (%)

sSize size of a session (in bytes)
pSize size of a packet (in bytes)
MSIA Mean of session inter-arrival times (sec)

Ro Control overhead (%)
MPIA Means of packet inter-arrival times (sec)

So Suboptimal overhead (%)
Ploop Percentage of packets that followed a cyclic path
Sc Session completion ratio (%)
td Average packet delay (msec)

t90d 90th percentile of packet delays (msec)
Sd Average session delay (msec)

hsd
o minimum hops needed to reach from node s to node d

S90d 90th percentile of session delays (msec)

hsd
i hops packet i took to reach from node s to node d

Jd Average jitter value (msec)
hav Average hops count the data packets
J90d 90th percentile of jitter times (msec)
βc Queue Length (in packets)

Table 5.1: Symbols used in the chapter



146 Protocol verification framework

1 2

3 4

5

6

7

8

(a) simpleNet in OMNeT++

34

192.168.Roman.Arab

Hagen Siegfried

KriemhildHildebrand

EtzelBrunhilde

Gernot

Gieselher

I

IIIII

IV

V VI

VII

VIII

IX

eth1: 1

eth0: 1

eth1: 2

eth0: 2

eth2: 1
eth1: 1

eth0: 1

eth0: 2

eth1: 2

eth0: 1

eth0: 2

eth1: 2

eth0: 2

eth1: 2

eth0: 1

eth1: 1

eth1: 2

eth2: 1

(b) simpleNet of Linux machines in LS III lab

Figure 5.12: simpleNet topology: 8 routers, 9 bidirectional links each of 10 Mbits/sec



BeeHive in real networks of Linux routers 147

Node Node Address Address
in in in in

OMNet++ Linux Machine specification OMNeT++ Linux

Intel Pentium III, 500 MHz, 512KB L2 Cache, 192.168.1.1
1 Hagen 128MB RAM, 3 Realtek Semiconductor Co., 1 192.168.3.1

Ltd. RTL 8139/8139C+(rev10) network cards 192.168.4.1
Intel Pentium III, 500 MHz, 512KB L2 Cache,

192.168.1.2
2 Siegfried 128MB RAM, 2 Realtek Semiconductor Co., 2

Ltd. RTL 8139/8139C+(rev10) network cards
192.168.2.2

Intel Pentium III, 500 MHz, 512KB L2 Cache,
192.168.3.23

Hildebrand 384MB RAM, 2 Realtek Semiconductor Co., 3
Ltd. RTL 8139/8139C+(rev10) network cards

192.168.5.2

Intel Pentium III, 500 MHz, 512KB L2 Cache,
192.168.2.14

Kriemhild 384MB RAM, 2 Realtek Semiconductor Co., 4
Ltd. RTL 8139/8139C+(rev10) network cards

192.168.6.1

Intel Pentium III, 500 MHz, 512KB L2 Cache, 192.168.5.1
5 Etzel 128MB RAM, 3 Realtek Semiconductor Co., 5 192.168.6.2

Ltd. RTL 8139/8139C+(rev10) network cards 192.168.7.1
Intel Pentium III, 500 MHz, 512KB L2 Cache,

192.168.7.26 Giselher
384MB RAM, 2 Realtek Semiconductor Co., 6

Ltd. RTL 8139/8139C+(rev10) network cards
192.168.8.2

Intel Pentium III, 500 MHz, 512KB L2 Cache,
192.168.8.17 Gernot

384MB RAM, 2 Realtek Semiconductor Co., 7
Ltd. RTL 8139/8139C+(rev10) network cards

192.168.9.1

Intel Pentium III, 500 MHz, 512KB L2 Cache,
192.168.4.28 Brunhilde

384MB RAM, 2 Realtek Semiconductor Co., 8
Ltd. RTL 8139/8139C+(rev10) network cards

192.168.9.2

Table 5.2: The mapping of Hosts to IP Addresses in SimpleNet

picture of a true network. The deviation in performance values might stem from the differences
of the simulation environment from a true Linux network topology such as:

• The clocks in OMNeT++ are perfectly synchronized. But in a LAN of Linux machines they
are synchronized using Network Time Protocol (NTP) [131] that can provide an accuracy
of approximately 10 milli-seconds.

• The network stack processing time during the processing of a packet, both control and data,
is ignored in the simulation environment.

• The context-switching time from kernel space to user space and vice versa is ignored in a
network simulator.

• The latency of scheduling a task, which is dependent on the scheduler of an operating system,
is ignored in the simulation. This is of primary importance once multiple and concurrent
sessions are active in a Linux router.

• The non-availability of high resolution timers in Linux [121] might result in MPIA values
different from OMNeT++.

• The protocol-specific characteristics of Ethernet employed at the data link layer (layer 2),
and its direct influence on the signals at physical layer, and also the transmission medium
are ignored in the simulation for the sake of simplicity.

5.5 The motivation behind design and structure of experi-
ments

The basic motivation behind designing the scenarios for the experiments was to cover a broad
range of operational environments, and to quantify the performance values of different parameters
in a systematic fashion. After extensive brainstorming, we agreed to divide our experiments into



148 Discussion of the results from the experiments

three broad categories according to the network traffic: quantum traffic engineering, real world
applications and hybrid traffic engineering. The idea of quantum traffic engineering is to provide
to each tested algorithm, abstract but repeatable traffic patterns in order to obtain statistically
significant performance values through multiple (in our case 10) independent attempts. We uti-
lized our Scientific Quantum Traffic Generator (SQTG) introduced in Chapter 3 for this purpose.
For real world applications traffic, we used the File Transfer Protocol (FTP) [155] to download
large files. These experiments revealed quantifiable benefits, which are of pertinent interest, to
the industry, in employing different routing protocols. Finally we utilized the Distributed Internet
Traffic Generator (D-ITG) [22, 9, 10, 11, 8] developed at the Universita’ degli Studi di Napoli in
Italy to emulate Voice over IP (VoIP) traffic [28, 4] along with UDP traffic. Moreover, utilizing a
traffic generator developed by a third party would eliminate any bias that might have been intro-
duced to our BeeHive algorithm by our own traffic generator. We call these experiments hybrid
ones because they simulate a real world application (VoIP) traffic but we are not using a true VoIP
application . During the extensive performance evaluation and verification cycle, all performance
values are an average of performance values obtained from ten independent experiments. This
was done to factor out stochastic elements in the network environment or in the algorithms. The
experiments were conducted for 1000 seconds, a good enough time for factoring out transients.

5.6 Discussion of the results from the experiments

In this section, we discuss in detail the results obtained from our extensive experiments, both in
the simulation and in real networks. We discuss the results according to their category type as
introduced in the previous section.

5.6.1 Quantum traffic engineering

We utilized our SQTG for this series of the experiments. We conducted 10 experiments by varying
values of different parameters of the traffic generator. The parameter values are shown in Table
5.3. We generated UDP [153] traffic because it supports an unbiased evaluation of a routing
protocol, in contrast to TCP [154], which has a complex mechanism to adaptively control the size
of the congestion window if packets are lost.

Exp sSize pSize MSIA MPIA βc Source Destination Hot Spot Routers Down
1 2130000 512 1.8 0.005 3000 Hagen Gernot none none
2 2130000 512 1.2 0.005 3000 Hagen Gernot none none
3 2130000 512 1.0 0.005 3000 Hagen Gernot none none
4 2130000 512 0.9 0.005 3000 Hagen Gernot none none
5 1065000 1024 1.8 0.005 1500 Hagen Gernot none none
6 1065000 1024 1.2 0.005 1500 Hagen Gernot none none
7 1065000 1024 1.0 0.005 1500 Hagen Gernot none none
8 4055000 512 1.15 0.005 3000 Etzel Hagen none none
9 1270000 512 1.15 0.005 3000 Etzel Hagen Hagen(100,800)(0.001) none
10 2580000 512 1.15 0.005 3000 Etzel Hagen none Hilderbrand(300,600)

Table 5.3: Parameters for traffic generator for Experiments 1 to 10

Experiments 1,2,3,4

The purpose of these set of experiments is to study the behavior of the algorithms under saturated
network loads. The MSIA value was decreased from 2.0 sec to 0.9 sec in these experiments. The
size of the session was kept constant at 2130000 bytes and the packets were sent from Hagen to
Gernot (see Figure 5.12(b)). The experiments with the same parameters were conducted both in
OMNeT++ and the real network topology. Figure 5.13 shows the packet delivery ratio and 90th
percentile of packet delays distribution obtained both from OMNeT++ and Linux. As expected,
the packet delivery ratio of BeeHive scales better than OSPF both in OMNeT++ and Linux. The



BeeHive in real networks of Linux routers 149

packet delivery ratio of OSPF drops significantly from 99.9% to about 50% as the MSIA value
is decreased from 2.0 sec to 0.9 sec respectively. The reason is obvious: OSPF always utilizes
the single path Hagen-Brunhilde-Gernot while BeeHive distributes packets over two paths Hagen-
Brunhilde-Gernot and Hagen-Hildebrand-Etzel-Gieselher-Gernot. Consequently, BeeHive achieves
17 Mbits/sec throughput (see Table 5.4), which is approximately twice than the one achieved by
OSPF. OSPF saturates the queues of path Hagen-Brunhilde-Gernot, as a result, a significant
queue delay is experienced by data packets. Consequently, one can see from Figure 5.13(b) that
the 90th percentile of packet delays of OSPF is significantly higher (1100 msec) than of BeeHive
(20-25 msec). A reader might find an anomaly in Figure 5.13(b) because it suggests that the
packet delays of the algorithms obtained from a real Linux topology are smaller (approximately
10 msec) as compared to the ones obtained from OMNeT++. Our investigation revealed that it
is the result of a clock synchronization problem. Please remember that NTP, as discussed before,
can provide a resolution of 10 msec only. Consequently, the packet delay in simulation and real
networks might differ in the 10-15 msec range.
The effect of saturated network load is more prominent on the session completion ratio as shown
in Figure 5.14(a). OSPF is hardly able to complete any session at a MSIA value of 1.2 sec or
below. Please note in Figure 5.14(b) that session delay of BeeHive is significantly better than
that of OSPF, both in OMNeT++ and simulation. However, the difference in session delay values
obtained from the simulation and the real network is significant. We investigated the problem and
found that non-availability of high resolution timers in Linux [121] is responsible for it. Our MPIA
value is 5 msec while Linux has a scheduling uncertainty of 10 msec. As a result, a session takes
longer to finish at the source, and this explains the larger session delay for the algorithms in Linux
as compared with OMNeT++. With a MSIA value of 0.9 sec the resources of Linux machines were
nearly consumed and that is why the performance values differ significantly from the simulation
values, mainly because of a significant difference in the operational environment of simulation
and reality. We have collected the important performance values form Linux and OMNeT++
environments in Table 5.4. Please note that most of the parameter values, with few exceptions,
are easily traceable between simulation and reality. One can safely comment: the relative tendency
of the performance values of the two algorithms in both environments is approximately similar.

Experiments 5,6,7

The tolerable error which stems from the performance values of the previous experiments led us
to test the algorithms with less challenging traffic patterns. Therefore, we decreased the size of
a session to 1065000 bytes and increased the size of the packet to 1024 byte. The larger packet
size will ensure that a session finishes faster than the scenarios of the previous subsection. A
smaller session delay will decrease the amount of the sessions that are concurrently active at the
source node. Consequently, it will reduce the error stemming from the scheduling latency of the
Linux scheduler. We decreased the MSIA value from 1.8 sec to 1.0 sec. We hoped to see a better
relatedness of the performance values obtained from OMNeT++ to Linux topology. Figure 5.15(a)
shows the packet delivery ratio of OSPF and BeeHive, respectively, obtained both from simulations
and the real network topology. Both algorithms were able to deliver approximately all of packets
at their destination under such a small network load. However, the 90th percentile of the packet
delays of BeeHive is significantly better than OSPF because BeeHive distributes the traffic load
on multiple paths and this results in significantly smaller queue lengths as compared with OSPF.
Both algorithms are able to complete approximately all of sessions (see Figure 5.16(a)), and with
approximately the same session delay (see Figure 5.16(b)). Please note that the difference in
session delays obtained from the simulations and the real network topology is about 2 seconds
which is reasonably acceptable and supports our thesis: a concurrent number of sessions have to
be scheduled by a Linux scheduler, and because of ambiguity in the scheduling latency the traffic
patterns could differ from the ones in the simulation. The other important performance values are
collected in Table 5.5.



150 Discussion of the results from the experiments

MSIA
0.9 1.0 1.2 1.8

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

40

50

60

70

80

90

100
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(a) Packet delivery ratio

MSIA
2.0 1.2 1.0 0.9

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(m

s)

           0

           5

          10

          15

          20

          25          25

         300

         575

         850

        1125

        1400
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(b) 90th percentile of packet delays

Figure 5.13: Experiments 1-4 (packet delivery ratio and packet delay)



BeeHive in real networks of Linux routers 151

MSIA
2.0 1.2 1.0 0.9

se
ss

io
n 

co
m

pl
et

io
n 

ra
tio

 (
%

)

           0

          20

          40

          60

          80

         100
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(a) Session completion ratio

MSIA
0.9 1.0 1.2 1.8

90
th

 p
er

ce
nt

ile
 o

f s
es

si
on

 d
el

ay
s 

(s
)

0

10

20

30

40

50 OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(b) 90th percentile of session Delays

Figure 5.14: Experiments 1-4 (session completion ratio and session delay)



152 Discussion of the results from the experiments

Algorithm BeeHive OSPF
Environment MSIA 2.0 1.2 1.0 0.9 2.0 1.2 1.0 0.9

LINUX Pgen 2040050 3402747 4082759 4497561 2056660 3382901 4059611 4511485
Prec 2040050 3402747 4082667 4274467 2056660 2144274 2155929 2157964
Ploop 0 0 0 0 0 0 0 0
Sto 500 830 995 1108 502 843 996 1107
Sco 500 830 994 94 502 13 0 0
So 2.785 7.961 9.261 9.706 0 0 0 0
Ro 0.091 0.096 0.089 0.081 0 0 0 0
td 1.8 3 3 4.4 6.9 1245 1247 1248
Sd 24 29.7 28.7 46.6 21 42.1 39.6 38.3
Jd 7 7.1 7 7 12.2 6.9 18.3 19.6

J90d 8 8.1 8 8 8.8 7 21.2 35
Tav 8.8 13.9 16.7 17.5 8.8 8.8 8.8 8.8
hav 2.6 3 3 3 2 2 2 2

OMNET++ Pgen 2060837 3433429 4120063 4577176 2061032 3433665 4120134 4577404
Prec 2060824 3433399 4120007 4577110 2061026 2425433 2428200 2429529
Ploop 0 0 0 0 0 0 0 0
Sto 501 834 1000 1112 500 834 1001 1112
Sco 490 816 980 1088 490 0 0 0
So 2.9 5.7 8.6 10.6 0 0 0 0
Ro 0.1 0.1 0.1 0.1 0 0 0 0
td 6.5 7.8 12.4 15 3 1216 1218 1219
Sd 20.8 20.8 20.8 20.8 20.8 2.2 0 0
Jd 5 5 5 5 5 5 5 5

J90d 8.8 9 9 9 5 5 5 5
Tav 8.4 14 16.9 18.8 8.4 9.9 10 10
hav 2.6 2.7 2.9 3 2 2 2 2

Table 5.4: Important performance values for Experiments 1 to 4 from

Algorithm BeeHive OSPF
Environment MSIA 1.8 1.2 1.0 1.8 1.2 1.0

LINUX Pgen 576914 862343 1035056 575898 861758 1035427
Prec 576914 862343 1035056 575898 861758 1035427
Pd 100 100 100 100 100 100

Ploop 0 0 0 0 0 0
Sto 556 831 998 555 831 999
Sco 556 831 998 555 831 999
Sc 100 100 100 100 100 100
So 0.738 2.354 3.026 0 0 0
Ro 0.014 0.011 0.109 0.003 0.002 0.002
td 2.4 2.5 2.9 160 164 164
Sd 7.3 7.3 7.3 7.3 7.3 7.3
Jd 6.8 7 7 7 7 7

J90d 8.9 8.9 8.9 7 7 7
Tav 4.7 7 8.5 4.7 7 8.5
hav 2.281 2.6 2.642 2 2 2

OMNET++ Pgen 577368 865758 1038789 577343 865777 1038732
Prec 577363 865751 1038781 577341 865773 1038727
Pd 99.999 99.999 99.999 99.999 99.999 99.999

Ploop 0 0 0 0 0 0
Sto 556 834 1000 556 834 1000
Sco 553 829 995 553 829 995
Sc 99.5 99.5 99.5 99.5 99.5 99.5
So 1.636 2.469 2.981 0 0 0
Ro 0.031 0.036 0.039 0 0 0
td 7.5 7.6 7.6 4 4 4
Sd 5.2 5.2 5.2 5.2 5.2 5.2
Jd 6 6.6 6.6 5 5 5

J90d 9.6 9.5 9.5 5 5 5
Tav 4.7 7.1 8.5 4.7 7.1 8.5
hav 2.6 2.6 2.6 2 2 2

Table 5.5: Important performance values for Experiments 5 to 7



BeeHive in real networks of Linux routers 153

MSIA
1.8 1.2 1.0

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

        99.0

        99.2

        99.4

        99.6

        99.8

       100.0
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(a) Packet delivery ratio

MSIA
1.8 1.2 1.0

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(m

s)

           0

           3

           6

           9

          12

          15          15

          46

          77

         108

         139

         170
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(b) 90th percentile of packet delays

Figure 5.15: Experiments 5-7 (packet delivery ratio and packet delay)



154 Discussion of the results from the experiments

MSIA
1.8 1.2 1.0

se
ss

io
n 

co
m

pl
et

io
n 

ra
tio

 (
%

)

        99.4

        99.5

        99.6

        99.7

        99.8

        99.9

       100.0
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(a) Session completion ratio

MSIA
1.8 1.2 1.0

90
th

 p
er

ce
nt

ile
 o

f s
es

si
on

 d
el

ay
s 

(s
)

         5.0

         5.5

         6.0

         6.5

         7.0

         7.5
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(b) 90th percentile of session delays

Figure 5.16: Experiments 5-7 (session completion ratio and session delay)



BeeHive in real networks of Linux routers 155

Experiment 8

We designed this experiment to unveil the true performance of BeeHive. We selected Etzel as
the source node and Hagen as the destination node. Three distinct paths exist between Et-
zel and Hagen: Etzel-Hildebrand-Hagen, Etzel-Kriemhild-Siegfried-Hagen and Etzel-Gieselher-
Gernot-Brunhilde-Hagen (see Figure 5.12(b)). We theoretically expect that BeeHive should be
able to deliver approximately three times more packets at their destination than OSPF. The im-
portant parameters for the traffic generator are listed in Table 5.3. Figure 5.17(a) empirically
substantiates our expectations: the packet delivery ratio of BeeHive is approximately 99.9% as
compared to 35% of OSPF. Figure 5.17(b) shows that the packet delay of BeeHive is 20 msec as
compared to 1431 msec of OSPF. The other important performance values are collected in Table
5.6. As expected, the throughput of BeeHive is approximately 24 Mbits/sec which is three times
higher as compared to 8 Mbits/sec of OSPF. At this load, OSPF is unable to complete even a
single session (Table 5.6) as compared to more than 90% of BeeHive. The session delay of BeeHive
is significantly higher in a real network topology as compared with OMNeT++ because of the
reasons already discussed. During a few runs OSPF was able to finish one or two sessions, and the
session delay was approximately 60 seconds. Please note that the jitter of BeeHive is significantly
smaller than of OSPF in the real network topology. The performance values of the algorithms are
easily traceable from simulation into the real network of Linux routers.

Environment
linux OMNet++

th
ro

ug
hp

ut
 (

M
B

it/
s)

           0

           5

          10

          15

          20

          25

          30
OSPF 

BeeHive 

(a) Throughput

Environment
linux OMNet++

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(m

s)

           0

           5

          10

          15

          20

          25          25

         320

         615

         910

        1205

        1500
OSPF 

BeeHive

(b) 90th percentile of packet delays

Figure 5.17: Experiment 8 (throughput and packet delay)



156 Discussion of the results from the experiments

Environment Linux OMNET++
Algorithm BeeHive OSPF BeeHive OSPF

Pgen 3077866 3049156 3311173 3311178
Prec 3073359 1067326 3311071 1204964
Pd 99.853 35.003 99.998 36.39

Ploop 0 0 0 0
Sto 433 433 435 435
Sco 432 0 401 0
Sc 99.8 0 92.82 0
So 13.994 0 14.243 0
Ro 0.224 0 0.151 0
td 7.2 1348 13.7 1203
Sd 50.4 60.3 39.6 0

S90d 54.4 67.7 39.6 0
Jd 4.8 24.4 5 5

J90d 12.8 77 7.3 5
hav 3 2 2.9 2

Table 5.6: Important performance values for Experiment 8

Environment Linux OMNET++
Algorithm BeeHive OSPF BeeHive OSPF
Scenario No Hotspot Hotspot No Hotspot Hotspot No Hotspot Hotspot No Hotspot Hotspot

Pgen 2134388 2367310 2133851 2202463 2145269 2845271 2145479 2845395
Prec 2134388 2367310 2133851 2151464 2145256 2845257 2145472 2596391
Ploop 0 0 0 0 0 0 0 0
Sto 868 869 868 868 870 870 870 870
Sco 868 869 868 355 859 859 859 552
So 2.578 4.199 0 0 3.403 4.769 0 0.797
Ro 0.116 0.111 0.001 0 0.062 0.075 0 0
td 4.3 3.6 1288 1246 6.575 5.8 3 409
Sd 17.2 18 17.2 28.2 12.4 12.4 12.4 12.4
Jd 7 6.6 7 11.4 5 1.9 5 1

J90d 8.1 8 7 18.8 7.3 3 5 1
Tav 8.7 9.7 8.7 8.8 8.8 11.7 8.8 10.6
hav 2.8 2.8 2 2 2.7 2.4 2 1.7

Table 5.7: Important performance values for hot spot experiments

Experiment 9: Hot spot

The purpose of this experiment is to study the behavior of the algorithms under hot spot traffic.
A session-less hot spot traffic with MPIA = 0.001 sec from Etzel to Hagen was superimposed on
the normal session-oriented traffic. The parameter values for session-oriented traffic are shown
in Table 5.3. The hot spot remained active from 100 seconds to 800 seconds. Figure 5.18(a)
clearly shows that the hot spot traffic is successfully delivered by BeeHive, both in simulation
and real network. In contrast, the packet delivery ratio under OSPF decreased by 3% and 6%,
in simulation and real network respectively. The packet delay of BeeHive, as shown in Figure
5.18(b), is significantly smaller than under OSPF. Similarly, Figure 5.19(a) shows that the hot
spot has significantly effected the ability of OSPF to successfully complete the sessions while on
BeeHive it has a negligible effect. The hot spot traffic has significantly degraded the session
delay of OSPF in the real Linux network and it has negligible effect on BeeHive. The hot spot
has helped in reducing the jitter (see Table 5.7) because now more packets flow between each
(source, destination) pair, and this reduces the inter-arrival time of the packets, originating at the
same node, at their destination node. One can easily see a significant difference in the number
of packets generated during hot spot traffic, between OMNeT++ and Linux in Table 5.7. The
reason is again due to the non-availability of high resolution timers in Linux, as described in the
previous subsections. This explains the negligible effect of the hot spot traffic on the jitter values
in the real network topology. The other important parameters are collected in Table 5.7.



BeeHive in real networks of Linux routers 157

Scenario
No Hotspot Hotspot

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

          90

          92

          94

          96

          98

         100
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(a) Packet delivery ratio

Scenario
No Hotspot Hotspot

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(m

s)

           0

           5

          10

          15

          20

          25          25

         300

         575

         850

        1125

        1400
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(b) 90th percentile of packet delays

Figure 5.18: Hot spot experiments (packet delivery ratio and packet delay)



158 Discussion of the results from the experiments

Scenario
No Hotspot Hotspot

se
ss

io
n 

co
m

pl
et

io
n 

ra
tio

 (
%

)

          30

          40

          50

          60

          70

          80

          90

         100
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(a) Session completion ratio

Scenario
No Hotspot Hotspot

90
th

 p
er

ce
nt

ile
 o

f s
es

si
on

 d
el

ay
s 

(s
)

          12

          17

          22

          27

          32
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(b) 90th percentile of session delays

Figure 5.19: Hot spot experiments (session completion ratio and session delay)



BeeHive in real networks of Linux routers 159

Experiment 10: Router down

The purpose of this experiment was to study the fault tolerant behavior of BeeHive as compared
with OSPF. A good routing algorithm should be able to quickly adapt its routes if a router crashes.
The input parameters for this experiment are in Table 5.3. In this experiment Hildebrand crashed
from 300 seconds to 600 seconds. We also repeated the experiments with the same traffic pattern
but without any router crash. Figure 5.20(a) shows that the packet delivery ratio of BeeHive is
significantly higher than of OSPF even when Hildebrand crashed. Similarly, Figure 5.20(b) shows
that the packet delay of BeeHive is significantly smaller (15 msec) as compared with OSPF (1800
msec). The crashing of Hildebrand also has a negligible effect both on the session completion
ratio (see Figure 5.21(a)) and the session delay (see Figure 5.21(b)) of BeeHive. The important
parameters are collected in Table 5.8. BeeHive was able to quickly reroute the network traffic
over two alternate paths: Etzel-Kriemhild-Siegfried-Hagen and Etzel-Gieselher-Gernot-Brunhilde-
Hagen. One can see in Table 5.8 that the crashing of Hildebrand did not have any significant effect
on the performance values of BeeHive. Please note that the results from the experiments suggest
that OSPF is also able to react to the changes in topology but due to its single-path routing policy
its performance values are significantly inferior to BeeHive. However, if we just look at OSPF in
isolation then its packet delay significantly degraded once Hildebrand cashed (see Figure 5.20(b)).
However, OSPF has approximately same packet delivery ratio in both cases (see Figure 5.20(a)).

Scenario
All router up Router down

pa
ck

et
 d

el
iv

er
y 

ra
tio

 (
%

)

          40

          50

          60

          70

          80

          90

         100
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(a) Packet delivery ratio

Scenario
All router up Router down

90
th

 p
er

ce
nt

ile
 o

f p
ac

ke
t d

el
ay

s 
(m

s)

           0

           5

          10

          15

          20

          25          25

         400

         775

        1150

        1525

        1900
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(b) 90th percentile of packet delays

Figure 5.20: Router down (packet delivery ratio and packet delay)



160 Discussion of the results from the experiments

Scenario
All router up Router down

se
ss

io
n 

co
m

pl
et

io
n 

ra
tio

 (
%

)

           0

          20

          40

          60

          80

         100
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(a) Session completion ratio

Scenario
All router up Router down

90
th

 p
er

ce
nt

ile
 o

f s
es

si
on

 d
el

ay
s 

(s
)

           0

          10

          20

          30

          40

          50
OSPF (Linux)

BeeHive (Linux)

OSPF (OMNET)

BeeHive (OMNET)

(b) 90th percentile of session delays

Figure 5.21: Router down (session completion ratio and session delay)

Environment Linux OMNET++
Algorithm BeeHive OSPF BeeHive OSPF
Scenario No fault Router down No fault Router down No fault Router down No fault Router down

Pgen 4289765 42792034 4260629 4275420 4329813 4330172 4330022 4330022
Prec 4289765 42780121 2153291 2082480 4329781 4329640 2426096 2429090
Ploop 0 0 0 0 0 0 0 0
Sto 866 866 867 911 870 870 870 870
Sco 866 838 0 1 848 826 0 0
So 2.743 19.98 0 0.24 7.246 9.687 0 1.675
Ro 0.08 0.085 0 0 0.105 0.095 0 0
td 7 7 1249.2 1364.6 7 10.1 1217 1214
Sd 35 35.1 47 43 25.2 25.2 0 0
Jd 6.4 4.3 18.9 18.8 5 5 5 5

J90d 10.1 7.4 28.1 28.1 7.3 7.3 5 5
Tav 8.5 17.6 8.8 8.5 17.7 17.8 9.9 10
hav 2.3 3.1 2 2.3 2.7 3 2 2.3

Table 5.8: Important performance values for router down experiments



BeeHive in real networks of Linux routers 161

5.6.2 Real world applications traffic engineering

The purpose of these experiments are twofold: one, to repudiate a strong thesis held by the
networking community: a stochastic routing algorithm brings subsequent packets out of order at
their destination which then might confuse the TCP protocol as it expects an in-order delivery of
packets. Secondly, we wanted to demonstrate the benefits of the BeeHive protocol in real world
applications. We installed an FTP server at Hagen, and files of different size were transfered from
Etzel to Hagen using an FTP client. Please remember that FTP utilizes a reliable TCP protocol
at the transport layer. We repeated the download process of each file ten times, and all the
reported performance values are an average of the values obtained from the ten independent runs.
We consider the results from these experiments crucial for convincing the networking community
about the tangible benefits that Nature inspired algorithms like BeeHive might be able to provide.
We conducted two sets of experiments: first, we started a download of a file of a particular size,
second, we started downloading files, each of same size, after every minute, till 15 minutes.

file size (MByte)
128 256 512 3072

se
ss

io
n 

de
la

y 
(s

)

           0

         300

         600

         900

        1200

        1500        1500

        1800

        2100

        2400

        2700

        3000
OSPF

BeeHive

OSPF (router down)

BeeHive (router down)

(a) Session delay of FTP transfers

file size (MByte)
128 256 512 3072

th
ro

ug
hp

ut
 (

M
B

yt
e/

s)

         0.0

         0.5

         1.0

         1.5

         2.0

         2.5

         3.0
OSPF

BeeHive

OSPF (router down)

BeeHive (router down)

(b) Throughput of FTP transfers

Figure 5.22: FTP experiments

FTP: Experiment 1,2,3,4

In these experiments we downloaded four files of different sizes one after the other. The sizes
of the files were 128 Mbytes, 256 Mbytes, 512 Mbytes and 3 Gigabytes. In another variation of
the experiments Hildebrand crashed during the transfer. We wanted to investigate whether the
algorithms could quickly react to the changes in the topology and to reroute the traffic on the
other paths. The files were download from Etzel to Hagen. Figure 5.22(a) shows the time it took
(in seconds) to transfer these files. Two observations are obvious from Figure 5.22(a): BeeHive



162 Discussion of the results from the experiments

requires approximately half of the download time as compared with OSPF, in all scenarios. Also,
the crashing of Hildebrand during the transfer did not significantly degrade the performance of the
algorithms. The reason for the significantly smaller delay is that BeeHive is able to maintain higher
throughput than OSPF (see Figure 5.22(b)). The results of the experiments are instrumental
because they suggest that BeeHive is able to successfully transport TCP traffic and even with this
protocol its performance is significantly better than under OSPF. We believe that the results will
help in establishing the suitability of Nature inspired routing algorithms in real world networks.

FTP: Experiment 5

In this experiment we started downloading files of 128 Mbytes each from Etzel to Hagen every
minute till 15 minutes. We wanted to investigate which algorithm has a smaller turn-around time
and a smaller time to complete a single download. Figure 5.23 shows that the time to download
each file in BeeHive is significantly smaller as compared with OSPF. The average time for each
download, in case of BeeHive, is approximately 1000 seconds less as compared with OSPF. OSPF
took 3642 seconds to finish the download of all 15 sessions as compared to 2042 seconds taken
by BeeHive. This experiment further backs the results of the experiments from the previous
subsection: BeeHive is able to seamlessly work with TCP, and its performance values are also
significantly better than that of OSPF.

session 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

se
ss

io
n 

tim
e 

(s
ec

)

0

500

1000

1500

2000

2500

3000

3500
OSPF

BeeHive

Figure 5.23: FTP experiments with 15 downloads

5.6.3 Hybrid traffic engineering

The motivation of doing experiments with hybrid traffic engineering is twofold: first, to use a
traffic generator that has been developed by a third party to factor out any bias generated either
in the traffic patterns or in the performance evaluation by our SQTG; second, to statistically
evaluate different performance values for multimedia applications like Voice over IP (VoIP). VoIP
is expected to capture a significant share of voice traffic in telecommunication industry. D-ITG
served our purpose. It can synthetically generate TCP, UDP and VoIP traffic and then evaluate
important performance values at the destination using a performance evaluation module. We
generated UDP traffic, to verify that the tendency observed in the experiments using our SQTG
is traceable to the results obtained from the D-ITG experiments. We also did experiments with
VoIP traffic only, and VoIP traffic coupled with high UDP traffic load.



BeeHive in real networks of Linux routers 163

Traffic Generator Tav td Jd Pgen Prec Pd

SQTG 25.1 7.2 4.8 3077866 3073359 99.9
ITG 24.5 3.4 3.7 2991185 2985347 99.8

Table 5.9: Performance values from SQTG and D-ITG

UDP traffic

In D-ITG, a user can set the rate of packet generation, the size of a packet and its source and
destination nodes. We chose a packet size of 512 bytes, packet rate of 6000 packets/sec, and the
packets are sent from Etzel to Hagen (see Figure 5.12(b)). This scenario is semantically similar
to the traffic load of Experiment 8 discussed in the previous section. We will like to emphasize an
important observation here: D-ITG is not an open-loop traffic generator, rather it tries to generate
only the number of packets which a routing protocol can easily transport without significant packet
drops. One has to carefully interpret the results obtained from D-ITG because the packet delivery
ratio of the compared algorithms might be the same but then the number of packets generated
and delivered are usually different. Consequently, the throughput values would be significantly
different. This behavior of D-ITG makes it difficult to systematically interpret and compare the
performance values of different algorithms because the traffic patterns are adapted in response to
the behavior of an algorithm.
The important performance values are collected in Table 5.10. Please note that the throughput
of BeeHive (24 Mbits/sec) is approximately three times higher than that of OSPF (9 Mbits/sec).
The average delay of BeeHive is 34 msec as compared to 71 msec of OSPF. However, we should
remember that BeeHive is handling three times more packets as compared with OSPF in this
scenario. The jitter value of OSPF, as expected, is better than BeeHive. Finally, we have collected
important performance values for BeeHive, obtained from the current experiment and the ones
from Experiment 8 of our SQTG in Table 5.9. In Table 5.9, one can easily correlate different
performance values obtained from two different traffic generators. However, we can not make such
a comparison for OSPF because D-ITG iteratively reduces the network load if an algorithm is
unable to cope with it.

VoIP traffic

The purpose of these experiments is to verify that BeeHive is able to handle multimedia traffic
in a similar or a better fashion than OSPF. We started 10 parallel VoIP sessions between Etzel
and Hagen which utilized G.711 [2] codec and with one sample per packet. One VoIP session
requires approximately 64 Kbits/sec bandwidth. Ten sessions will need 640 Kbits/sec which is
significantly less than the 10 Mbits/sec bandwidth available in simpleNet. The performance values
are collected in Table 5.10. As expected, both algorithms are able to deliver approximately the
same number of packets, and maintain the same throughput, packet delay and jitter values. We
could not simulate large number of VoIP sessions because D-ITG simply can not manage a large
network load. We expect that BeeHive can outperform OSPF at high load.

VoIP traffic + UDP traffic

The above-mentioned scenario for VoIP traffic generally does not exist in the Internet [70]. Most of
the time voice traffic is multiplexed with data traffic. Some users are surfing, some are downloading
large audio/video files, and in parallel some users are involved in audio or video conferencing. The
purpose of this experiment was to create an environment in which the 10 VoIP sessions have to
share the network with a UDP session generating 3000 packets/sec of 512 bytes size per packet.
All sessions are between Etzel and Hagen. We have collected the relevant parameters in Table
5.10. BeeHive is able to deliver approximately 1 million more packets to their destination by
maintaining a throughput of 13 Mbits/sec as compared to 8.5 Mbits/sec of OSPF. The packet
delay of BeeHive is 2.6 msec as compared to 48 msec under OSPF. At this load, BeeHive is able to
maintain a jitter value of 1 msec as compared to 4 msec of OSPF. One can easily conclude that in



164 Summary

Scenario Algorithm Tav td Jd Pav Pgen Prec Pd

UDP OSPF 8.9 72 1.9 2170 2170526 2170526 100
BeeHive 24.5 34.2 3.7 5981 5994045 5982370 99.8

VoIP OSPF 0.7 0.2 0.012 995 1000000 995719 99.57
BeeHive 0.7 0.4 0.2 995 1000000 996039 99.6

VoIP& UDP OSPF 8.5 48.6 5 2899 2899329 2899158 99.9
BeeHive 13 2.7 1 3991 3999980 3991418 99.79

Table 5.10: Important performance values for UDP and VoIP experiments

case of hybrid traffic patterns, BeeHive is able to outperform OSPF considering all performance
values. We intend to modify D-ITG in such a manner that it can manage a higher number of VoIP
sessions along with UDP and TCP traffic, to further validate our assumption that the true merit
of BeeHive is visible at large network loads. However, the results from the current experiments
can still be considered as a break-through for Nature inspired routing algorithms because for the
first time, to our knowledge, a Nature inspired routing protocol that has been tested in a real
topology of Linux routers showed throughout quantifiable benefits with real applications.

5.7 Summary

The major contribution of the work is a Natural Engineering approach that we followed during the
development of our routing protocol BeeHive and realizing it inside the network stack of the Linux
operating system. The engineering approach was instrumental in incorporating only those features
in the BeeHive algorithm in the OMNeT++ simulator that are also available in the network stack of
Linux. We also designed a protocol verification framework, in which we developed a comprehensive
performance evaluation framework and implemented it both in OMNeT++ and a Linux network.
The framework allowed us to generate similar traffic patterns, both in the simulation and in a real
network of Linux machines. The basic assumption of the framework is: if the simulation results
of BeeHive are of any significance then its behavior should be traceable in a real network of Linux
machines as well. We designed a variety of experiments which utilized real-world applications like
FTP and synthetic traffic generators like SQTG and D-ITG to demonstrate that the behavior of
BeeHive from simulation is consistent to its behavior in a real network of Linux routers. The results
obtained from simulation and a real network of Linux machines also show a strong correlation and
in our view this is a breakthrough work in favor of Nature inspired routing algorithms. Because to
our knowledge, it is the first study that has empirically refuted the suspicious notion held by the
telecommunication industry that Nature inspired algorithms are not realizable with the existing
resources of software and hardware. Of course, our findings will have to be further confirmed in
large networks. Our current results are quite an intriguing stimulation for such plans.
We have deliberately used the low-end Pentium III based machines for the implementation of
BeeHive to prove the fact that the algorithm is realizable with the existing infra-structure and yet
its performance benefits are unequivocally noticeable in real world networks. Future work includes
testing the algorithm on large scale topologies.



6
Conclusion and Future Works

This chapter provides a comprehensive conclusion by emphasizing the scientific and technical
contributions of our project BeeHive. We then outline our vision of extensive future research
that could follow the successful conclusion of our work. We put special emphasis on an
intelligent and knowledgeable router, Nature Inspired Decentralized and Autonomous Router
(NIDAR), which can become a state-of-the-art router for networks of the new millennium.
Finally, we suggest that the time has come to start a Natural Engineering program in our
universities in order to successfully translate novel and cost effective Nature/Bio inspired
business solutions for highly competitive markets.

6.1 Conclusion

We developed a a dynamic, simple, efficient, robust, flexible and scalable multi-path routing algo-
rithm, BeeHive, for packet switched fixed telecommunication networks. The algorithm is a first
important step in endowing the network layer with intelligence and knowledge. An intelligent
network layer is able to optimally manage its network resources. In this work, our focus was to
provide a solution to the challenges in traffic engineering by designing a multi-path routing algo-
rithm for IP networks. Such a paradigm will try to exploit the network bandwidth by utilizing the
connectionless feature of IP. This is in contrast to existing approaches of either managing virtual
circuits on top of the IP layer (MPLS) or administering the resources on a per flow basis (RSVP).
These approaches try to solve the QoS guarantee problems for streaming multimedia applications
while utilizing OSPF at the IP layer. Our hypothesis is that simple and cost-effective solutions
are possible for QoS routing if we reengineer the networking layer and the routing protocols.
An ideal or dream network layer should have the following features: it should be able to discover
and manage its routes in a decentralized and asynchronous fashion without the need to have access
to the global view of the network topology. The diagnosis of fault and its remedial management
should be embedded in the routing system. The network layer should be able to guarantee its re-
sources to streaming network traffic and should be able to enhance the network performance for
best effort traffic. It should be able to do multi-objective optimization between competing and con-
flicting demands according to the network state.
Our observation is that different Natural colony systems, for example a honey bee colony, are
able to achieve similar tasks through simple individuals that have limited memory and processing
abilities. However, they follow simple rules to coordinate their activities. As a result, an intelligent
and coherent pattern emerges at a colony level which is beyond the capabilities of any individual.
According to Seeley [170], a honey bee colony can thoroughly monitor a vast region around the
hive for rich food sources, nimbly redistribute its foragers within an afternoon, fine-tune its nectar
processing to match its nectar collecting, effect cross inhibition between different forager groups to
boost its response differential between food sources, precisely regulate its pollen intake in relation
to its ratio of internal supply and demand, and limit the expensive process of comb building to

165



166 Conclusion

times of critical need for additional storage space. These observations motivated us to make the
following hypotheses in the beginning of our work, which we reproduce for the sake of clarity:

(a) H1: If a honey bee colony is able to adapt to countless changes inside the hive or outside
in the environment through simple individuals without any central control, then an agent
system based on similar principles should be able to adapt itself to an ever changing network
environment in a decentralized fashion with the help of simple agents who rely only on local
information. This system should be dynamic, simple but efficient, robust, flexible, reliable
and scalable because its natural counterpart has got all of these features.

(b) H2: If designed with a careful engineering vision, Nature inspired solutions are simple
enough to be installed on real world systems. Therefore, their benefit-to-cost ratio should
be better as compared with existing real world solutions.

In Chapter 3, we developed an agent model that is inspired from the communication and evaluative
features of a honey bee colony. The bee agents in our model have a simple behavior. As a result, the
algorithm is able to take routing decisions in a decentralized and asynchronous fashion. We have
conducted extensive simulations in OMNeT++ simulator to show the advantages of our algorithm
over existing state-of-the-art routing algorithms developed by Nature inspired routing community.
The BeeHive algorithm is able to achieve better performance values with a simple agent model. We
were able to collect a comprehensive set of performance values through our performance evaluation
framework to study the behavior of a routing protocol over a vast operational landscape.
We then defined a power metric for a routing protocol, which models the performance of a routing
algorithm based on a number of parameters. We also defined a productivity metric that shows the
benefit-to-cost ratio of a routing protocol in an unbiased manner. We then developed a scalability
model to study the scalability of a routing protocol by conducting extensive experiments on six
topologies varying in their size and complexity. We concluded that BeeHive is scalable for most
of the network configurations. The results discussed in Chapter 3 and Chapter 4 are significant
to confirm the validity of H1.
We then moved to a cardinal step in our Natural Engineering approach, in which we developed an
engineering model from the simulation model and implemented it in the network stack of the Linux
kernel. We developed the same traffic generator both in simulation and the application layer of
network stack of the Linux kernel. We then tested our algorithm in a real network of Linux routers
and compared the performance values of our algorithm, both in simulation and in real network,
with OSPF. We can conclude from the results of the extensive experiments in Chapter 5 that the
performance values of BeeHive were traceable from simulated to real networks. BeeHive is the
first Nature inspired routing algorithm, according to our knowledge, that has been implemented
and tested in real networks with the help of existing resources. The success of our efforts lie in
an engineering approach that we followed in our protocol development cycle. The success in this
phase also validates H2.
BeeHive discovers and evaluates multiple-paths in a deterministic fashion by utilizing a variant of
breadth first search. It does not discover all possible multiple paths. Rather only those multiple
paths are utilized whose quality is above a certain threshold. However, BeeHive then spreads
the data packets on multiple paths in a stochastic fashion in order to achieve better performance
values. Our experience suggests that BeeHive properly combines the deterministic elements with
the stochastic elements in a routing algorithm. Therefore, the proper classification of BeeHive is
shown in Figure 6.1.

Concluding remark: We maintain the implicit assumption throughout our work that the
resources of a network including bandwidth have to be utilized in an efficient manner. The
existing fiber optic networks of terabytes capacities provide a substantially greater bandwidth per
user as compared to the networks that existed only a couple of years ago. This might obviate
the need for multiple-path routing algorithms in the short term. However, the lesson of history
is that whenever a resource is in abundance, new and powerful applications are developed that
properly utilize that resource [207]. We strongly believe, therefore, that the need for a network
layer that utilizes its resources in an efficient manner through intelligent routing algorithms can



Conclusion and Future Works 167

Probabilistic

D
et

er
m

in
is

tic
Pr

ob
ab

ili
st

ic

Deterministic

Packet Switching Policy

R
ou

te
 D

is
co

ve
ry

 P
ol

ic
y

OSPF,
MP-Scout,
MPATH,
MPDA
MDVS;

RIP

BeeHive

AntNet-FA,
ABC

DGA

Figure 6.1: Routing classification

not be underestimated in the long term.

6.2 Future research

We believe that the objectives achieved in our project BeeHive are substantially encouraging,
especially for Nature inspired algorithms community, because the work presents a simple Nature
inspired Multi-agent system that is realized both in simulation and inside the network stack of the
Linux operating system. After working for four years on this exciting project, we honestly believe
that the accomplishments have to be followed with rigorous design and development efforts in
order to translate the prototype to an intelligent real world routing system. We did not emphasize
the related implementation details too much because we were interested in illustrating a ”proof of
concept” in the first phase of the project. We believe that the following issues need to be addressed
in any future research work.

6.2.1 Quality of Service (QoS) routing

Our results in Figure 6.2 demonstrate that under high network traffic load the jitter value of Bee-
Hive is significantly higher as compared with OSPF. The jitter values of BeeHive are comparable
to OSPF at MSIA = 4.6 sec (see Figure 6.2(a)). The jitter values of BeeHive are also comparable
with OSPF at MSIA = 2.6 sec (see Figure 6.2(b)) with the exception of n57. However, the jitter
values of BeeHive are significantly inferior to OSPF at MSIA = 1.6 sec (see Figure 6.2(c)). This
is naturally due to the stochastic spreading of data packets on multiple paths as per their quality
(Please remember that BeeHive delivers significantly more packets with smaller delays at higher
loads). Consequently, any two subsequent packets from the same session may follow different
paths and this leads to a higher jitter value. Therefore, we believe that the future research has to



168 Future research

Topology
n8 n57 n150 n350 n650 n1050

Ji
tte

r 
(m

se
c)

0

10

20

30

40

50

60
OSPF

AntNet−CO

BeeHive

(a) MSIA = 4.6 sec

Topology
n8 n57 n150 n350 n650 n1050

Ji
tte

r 
(m

se
c)

0

20

40

60

80

100
OSPF

AntNet−CO

BeeHive

(b) MSIA = 2.6 sec

Topology
n8 n57 n150 n350 n650 n1050

Ji
tte

r 
(m

se
c)

0

20

40

60

80

100

120

140

160
OSPF

AntNet−CO

BeeHive

(c) MSIA = 1.6 sec

Figure 6.2: Jitter (msec)



Conclusion and Future Works 169

address this issue. We propose three solutions to tackle this problem:

• Time based routing stability approach will ensure that the routes, once selected, remain valid
for a certain time tvalid. In this way, the decision to stochastically route data packets does
not happen at the arrival of each data packet. Rather it only happens at regular time
intervals. We believe that by utilizing time based stability of routing decisions, we can still
achieve a better jitter value without compromising the performance of the algorithm. The
disadvantage is that the stability interval is independent of the network traffic load.

• Load based routing stability approach will ensure that the routes, once selected, remain valid
for a certain number of data packets nw. It means that the decision to stochastically route
data packets is taken for every nw packet. The advantage of this approach is that the
stability interval adapts itself according to the network traffic load: the stability interval will
decrease with an increase in the traffic load and vice versa.

• Priority routing approach will treat the multi-media streaming packets in a priority manner,
in which the routes for these types of traffic are reserved at the start of an application session.
We will still be able to distribute the traffic on multiple paths but only on a session basis
rather than on a packet basis for these types of traffic. However, the normal network traffic
will be handled in a best effort manner.

We believe that an extensive study based on the above-mentioned three approaches will provide a
working and optimum solution to the Quality of Service (QoS) routing even under high network
traffic loads.

6.2.2 Cyclic paths

The data packets in the BeeHive algorithm can follow a cyclic path due to its stochastic routing
property. The number of data packets that follow a cyclic path depend on the topology and the
network traffic. Figure 6.3 shows the distribution of packets that followed cyclic paths in different
topologies for different traffic patterns. We have given beneath each subfigure the topology name,
the MSIA value and the percentage of packets that followed cyclic paths. P (1) is the percentage
of packets that followed a cyclic path once, P (2) is the percentage of packets that followed the
cyclic paths twice and P (> 3) is the percentage of packets that followed the cyclic paths thrice
or more. We can safely conclude from our results that the cyclic paths are only short lived and
the probability that a packet might follow a cyclic path for the second time is approximately 1.0%
(total probability) or below in almost all cases. The total probability of following a cyclic path
second time in Figure 6.3(b) is 24% of 3.79% which is 0.91%.
The results of our experiments suggest that even with the cyclic paths, BeeHive is able to out-
perform OSPF. Nevertheless, if we can make BeeHive a loop free algorithm, then it will improve
its acceptability, because Networking community puts a significant emphasis on loop free routing.
However, the real challenge is to achieve loop freedom in a stochastic routing algorithm without
utilizing agents that do not have a stack memory.

6.2.3 Formal analysis framework

The formal model of a routing protocol is an important element of protocol engineering [113].
In our current project, we could not emphasize on this point. The real challenge in the formal
analysis is to formally analyze the behavior of a time-varying, dynamic, non-linear self-organizing
system. To our knowledge, the formal treatment of such systems has received little attention.
We need to develop new techniques for the formal analysis of such systems. The existing work
treats the computer networks as ”Stochastic Networks” [172] in which the behavior of a network
is modeled in terms of the equilibrium probability distribution of packets on different routes. The
equilibrium distribution is used to define objective functions or constraints to model performance
values such as throughput and packet delay. Such probabilistic methods are also utilized to model



170 Future research

P(1) (75%)

P(2) (20%)

P(>3) (5%)

(a) n57 , MSIA = 4.6 sec, 2.5 (%)

P(1) (66%)

P(2) (24%)

P(>3) (9%)

(b) n57 , MSIA = 2.6 sec , 3.79 (%)

P(1) (57%)

P(2) (29%)

P(>3) (14%)

(c) n57 , MSIA = 1.6 sec , 4.47 (%)

P(1) (88%)

P(2) (10%)
P(>3) (2%)

(d) n150 , MSIA = 4.6 sec , 0.594 (%)

P(1) (87%)

P(2) (11%)

P(>3) (2%)

(e) n150 , MSIA = 2.6 sec , 0.601 (%)

P(1) (81%)

P(2) (15%)

P(>3) (4%)

(f) n150 , MSIA = 1.6 sec , 0.622 (%)

P(1) (86%)

P(2) (13%)

P(>3) (2%)

(g) n350 , MSIA = 4.6 sec , 0.257 (%)

P(1) (83%)

P(2) (15%)

P(>3) (2%)

(h) n350 , MSIA = 2.6 sec , 0.29 (%)

P(1) (74%)
P(2) (20%)

P(>3) (5%)

(i) n350 , MSIA = 1.6 sec , 0.477 (%)

P(1) (89%)

P(2) (10%)
P(>3) (1%)

(j) n650 , MSIA = 4.6 sec , 0.099 (%)

P(1) (85%)

P(2) (13%)

P(>3) (2%)

(k) n650 , MSIA = 2.6 sec , 0.129 (%)

P(1) (78%)

P(2) (18%)

P(>3) (4%)

(l) n650 , MSIA = 1.6 sec , 0.116 (%)

P(1) (87%)

P(2) (11%)
P(>3) (2%)

(m) n1050 , MSIA = 4.6 sec , 0.227
(%)

P(1) (85%)

P(2) (12%)

P(>3) (3%)

(n) n1050 , MSIA = 2.6 sec , 0.183
(%)

P(1) (84%)

P(2) (13%)

P(>3) (4%)

(o) n1050 , MSIA = 1.6 sec , 0.084
(%)

Figure 6.3: Distribution of packets that follow cyclic paths



Conclusion and Future Works 171

the Internet and the Web [13]. In [44], an initial attempt has been made to analyze Nature inspired
agent-based routing algorithms. However, the ”Stochastic Networks” are unable to model the self-
organizing and emerging behavior of Nature inspired routing algorithms. Recently, physicists have
started applying the principle of ”Statistical Physics” to come up with an empirical and theoretical
research framework for analyzing the behavior of such self-organized network systems [151, 68].
We already mentioned in Chapter 3 that Sumpter introduced the Weighted Synchronous Calculus
of Communicating Systems (WSCCS) to formally model an agent-based system for a honey bee
colony. Using this model, he studied the foraging behavior of a honey bee colony [192], which of
course is a self-organizing system.
We have done some initial work in [122] utilizing the ”stochastic networks” approach to get an
insight into the behavior of BeeHive in a very simple topology. A preliminary work has also been
done in [220], in which we modeled the behavior of bee agents in our BeeAdHoc [217, 218] algorithm
by utilizing the WSCCS. The initial results from the theoretical model are encouraging. We believe
that a combination of these different approaches will help in developing a comprehensive formal
framework for analyzing self-organizing network systems.

6.2.4 Security

We believe that a thorough investigation of security threats of Nature inspired routing algorithms
is necessary. The developers of Nature inspired routing algorithms always hold the view that one
can always trust a routing agent, which of course is not true in real networks. In [245] a pre-
liminary treatment of security issues relating to AntNet has been presented. We have finished a
comprehensive work on analyzing the security threats that may arise as a result of deploying our
BeeAdHoc algorithm in a MANET environment [220]. We developed a novel security framework
inspired by Artificial Immune Systems (AIS) to counter threats of BeeAdHoc.
The mobile agents in Nature inspired routing algorithms are launched periodically in short in-
tervals of time. If we use the traditional methods that are based on cryptographic techniques
and digital signatures then this will significantly increase the processing overhead. Our experi-
ence working with BeeGuard [220] suggests that such classic security approaches are not suitable
for MANETs and we believe that the corollary can be easily applied to fixed networks as well.
The real challenge in agent-based secure routing algorithm is: to ensure security without utilizing
existing cryptographic techniques and secure IP protocols like IPSec. This is to avoid the process-
ing overhead in routing. We believe that ensuring security with the above-mentioned constraints
would be a challenging and exciting effort.

6.2.5 Intelligent and knowledgeable network engineering

We believe that this task can only be achieved by launching an interdisciplinary effort that requires
cross fertilization among different areas of engineering and science, on one hand, and close coop-
eration between academia and industry on the other hand. The final aim of the research should
be to design and develop a dedicated Nature Inspired Decentralized and Autonomous Router
(NIDAR) that can seamlessly replace existing routers in the Internet. NIDAR is to be designed
from scratch with Intelligence and Knowledge as the key principles. The conceptual block level
diagram of NIDAR is shown in Figure 6.4. It shows the overwhelming complexity of achieving
the task. Our vision is that the task can be achieved in an efficient and systematic fashion if we
divide our objective into three important building blocks: hardware, software and performance
evaluation.

Hardware

NIDAR is to be designed with an engineering vision that simplifies its installation in real networks.
As the routers are required to perform packet switching in real time, it is not advisable to host
any additional computational intensive tasks on such a system. This approach is in line with the
recommendations made by Yu in his work [242]. Our suggestion is to develop NIDAR hardware



172 Future research

Processor
VLSI Processor
Chips

Hardware Boards
Embedded
System Design

Applications
Multimedia (Video/Audio)
Interactive
Ubiquitous Computing

Network Management
Network Monitoring
Network Security
Network Management

Routing
Nature Inspired
Routing Algorithms
BeeHive etc.

OS
Network stack
of the Operating
System

Performance
 Evaluation

&
Testing

Framework

- Hardware Traffic
Generator
- Software Traffic
Generator
-Network of Nature
Inspired Routers
- QoS Applications
such as audio/video
streams
- Performance Evaluation
Framework

Figure 6.4: Nature inspired distributed and autonomous router



Conclusion and Future Works 173

consisting of two sub-systems: one sub-system solely responsible for the packet switching, and one
sub-system performing the agent processing tasks. We would like to realize the packet switching
component of our algorithm in a chip in order to achieve maximum efficiency.
A very attractive option can be the possibility of remote and on-the-fly upgrading of firmware
software on the agent processing sub-system. This feature will help in downloading the new
updates of the algorithm and potential error fixes without bringing back the routers in service
centers.

Software

The software component also consists of two subcomponents: system and application. The system
component consists of an operating system for our hardware platform described in the previous
subsection. We believe that a careful design of an operating system architecture is a rudiment step
in realizing an intelligent network stack. In an intelligent network stack, the important informa-
tion can be exchanged between different layers through a network object [42]. A network object
defines an interface for each layer for storing or retrieving its information. In this way, each layer
is able to acquire a comprehensive view of the network state in order to make intelligent decisions
that could not be made based solely on its information. However, this cross-layer design must be
achieved without violating the open system architecture. We believe, the real time multimedia
audio/video applications, utilizing such an architecture, can interactively communicate with the
network layer. Consequently, either they will get better Quality of Service (QoS) guarantees or
they can gracefully adapt to the available network resources .
The other important benefit of utilizing agent-based routing systems is that network management
can be easily incorporated in the network layer that involves network fault detection, route re-
pair and recovery, resource management, traffic policing etc. Such an intelligent network system
appears to become a core component of future networks.

Performance evaluation

The performance evaluation of NIDAR in hardware and software with the help of a network traffic
generator will be an important validation step. We believe that the performance must be evaluated
both in hardware and software to comprehensively analyze the true benefits of Nature inspired
routing algorithms. The testing and evaluation should be done in real network environments with a
set of different applications in order to continuously improve the design of NIDAR through feedback
channels during an early stage of design and development. The outcome of this approach should
report the quantitative gains over the existing routing systems. The evaluation and validation of
a routing protocol is an important step of protocol engineering [113].

6.2.6 Bee colony metaheuristic

We should emphasize that the foraging model described in [171] [192] can be used for developing
any multi-objective optimization problems for dynamic environments. The important concepts
of BeeHive, such as the bee agent propagation algorithm and bee agent communication paradigm,
can be applied to any optimization problem that can be represented in a graph. However, the
real strength of BeeHive concept lies in dynamic environments in which resources have to be
managed in an optimum fashion or in multi-objective optimization in which competing and, at
times, conflicting requirements have to be incorporated in the objective function. We believe
that it is possible to generalize the bee behavior to develop a new metaheuristic for optimization
problems, that can be applied to different continuous and discrete optimization problems. We call
it Bee Hive Optimization (BHO).



174 Natural Engineering: The need for a distinct discipline

6.3 Natural Engineering: The need for a distinct discipline

We believe now is the suitable time that we seriously evaluate the feasibly of starting a distinct
discipline of Natural Engineering in our universities. In this discipline, the novel algorithms and
systems, which are inspired from Natural systems and which are developed by Natural computing
community, can be engineered for real world applications. However, the major emphasis should
be on cost effective design that can bring substantial saving in costs of designing, manufacturing,
installing and maintaining such systems. We believe that such an engineering discipline requires a
strong interdisciplinary effort resulting in revolutionary design and development paradigms, paving
the way to the development of products that are impossible to achieve with classic engineering
principles.



A
Software Protocol Engineering for Linux Routers

This appendix describes a software engineering approach that will help the developers of the
routing algorithms to support their algorithms inside the network stack of Linux operating
system. We explain in detail the network infra-structure of Linux operating system and then
identify the important interfaces for the implementation of novel Nature inspired routing
algorithms. We believe, the appendix will act as an important guideline for the Networking
community in general and Nature inspired routing community in particular, for realization
and evaluation of their novel algorithms in real Linux routers.

A.1 Networking code

In 1Figure A.1 one can see the hierarchy of the network code in the Linux kernel. The code that
is relevant for networking is located in net/. For our work, IPv4 protocol is of most relevance. Its
relevant files are contained in the folders ipv4/ and core/. The corresponding header files can be
found in the include/ folder.

arch
drivers
fs
include
init
ipc

mm
lib
kernel

net
scripts

asm-*
linux
math-emu
net
pcmcia
scsi
video

802
...
bridge
core
...
ipv4

sched

ipv6

...
wanrouter

Figure A.1: Networking code in the Linux kernel tree [157]

1The appendix is also published as a research report TR-800. Horst F. Wedde, Muddassar Farooq and Alexander
Harsch. Software Protocol Engineering for Linux Routers. Technical Report 800, School of Computer Science,
University of Dortmund, 2005.

175



176 Data structures

A.2 Data structures

A packet is processed by multiple layers inside the network stack of the Linux kernel. The pro-
cessing involves adding or removing the headers by protocols of different layers. The efficiency of
these operations plays an important role in influencing the overall performance of the TCP/IP
stack. Therefore, Linux kernel supports a special data structure sk buff, which stands for socket
buffer. It references the net device structure and the sock structure which will be discussed later
in the appendix.

A.2.1 socket buffer sk buff

The header of file in which the sk buff structure is defined is include/linux/skbuff.h. Each
packet processed by the TCP/IP stack is accessed through this structure.

struct sk buff {
/* These two members must be first. */
struct sk buff *next;
struct sk buff *prev;

struct sk buff head *list;
struct sock *sk;
struct timeval stamp;
struct net device *dev;
struct net device *real dev;

union {
struct tcphdr *th;
struct udphdr *uh;
struct icmphdr *icmph;
struct igmphdr *igmph;
struct iphdr *ipiph;
struct ipv6hdr *ipv6h;
unsigned char *raw;
} h;

union {
struct iphdr *iph;
struct ipv6hdr *ipv6h;
struct arphdr *arph;
unsigned char *raw;
} nh;
union {
struct ethhdr *ethernet;
unsigned char *raw;
} mac;

struct dst entry *dst;

char cb[48];

unsigned int len, data len,
mac len,csum;



Software Protocol Engineering for Linux Routers 177

unsigned char local df, cloned,
pkt type, ip summed;

u32 priority;
unsigned short protocol,security;
void (*destructor)(struct sk buff *skb);

unsigned char *head,*data,
*tail, *end;

...
};

• head and end are pointers to the beginning and end of the occupied memory in the RAM.

• data and tail are pointers to the beginning and end of the buffer in the RAM. The pointers
are different than head and end because they manage extra space to avoid copy instructions
when additional/longer headers are added to the packet.

• mac points to the beginning of the MAC-header while nh and h are pointers to the header
of the routing layer and transport layer respectively.

• stamp holds the arrival time of the packet.

• dev points to the network device that is associated with the packet.

• sk holds the socket to which the packet belongs.

• dst defines the destination or the next hop.

• next and previous are used to maintain a doubled linked list.

A.2.2 Network device structure net device

The header file in which the net device structure is defined is include/linux/netdevice.h. Each
network device is represented with this structure. A structure needs to be registered when its
fields are filled with the values of a device. This is accomplished with the help of the function
register netdevice() in drivers/net/net init.c. The net device structure is quite large, therefore,
the following extract focuses on the most important fields only.

struct net device {
char name[IFNAMSIZ];
unsigned long mem end; /* shared mem end */
unsigned long mem start; /* shared mem start */
unsigned long base addr; /* device I/O address */
unsigned int irq; /* device IRQ number */
unsigned long state;
struct net device *next;
/* The device initialisation function. Called only once. */
int (*init)(struct net device *dev);
/* ——- Fields preinitialized in Space.c finish here ——- */
struct net device *next sched;



178 Data structures

int ifindex;
struct net device stats* (*get stats)(struct net device *dev);
struct ethtool ops *ethtool ops;
unsigned long trans start; /*Time (in jiffies) of last Tx*/
unsigned long last rx; /* Time of last Rx */
unsigned short flags; /* interface flags (a la BSD) */
unsigned mtu; /* interface MTU value */
unsigned short type; /* interface hardware type */
unsigned short hard header len; /* hardware hdr length */
void *priv; /* pointer to private data */
/* Interface address info. */
unsigned char broadcast[MAX ADDR LEN]; /* hw bcast add */
unsigned char dev addr[MAX ADDR LEN]; /* hw address */
unsigned char addr len; /* hardware address length */
void *atalk ptr; /* AppleTalk link */
void *ip ptr; /* IPv4 specific data */
void *dn ptr; /* DECnet specific data */
void *ip6 ptr; /* IPv6 specific data */
void *ec ptr; /* Econet specific data */
void *ax25 ptr; /* AX.25 specific data */
/* Called after device is detached from network. */
void (*uninit)(struct net device *dev);
/* Pointers to interface service routines. */
int (*open)(struct net device *dev);
int (*stop)(struct net device *dev);
int (*hard start xmit) (struct sk buff *skb,

struct net device *dev);
int (*hard header) (struct sk buff *skb,

struct net device *dev,
unsigned short type, void *daddr,
void *saddr, unsigned len);

int (*rebuild header)(struct sk buff *skb);
int (*set mac address)(struct net device *dev,

void *addr);
int (*do ioctl)(struct net device *dev,

struct ifreq *ifr, int cmd);
int (*set config)(struct net device *dev,

struct ifmap *map);
int (*change mtu)(struct net device *dev, int new mtu);
void (*tx timeout) (struct net device *dev);
int (*hard header parse)(struct sk buff *skb,

unsigned char *haddr);
int (*neigh setup)(struct net device *dev,

struct neigh parms *);
int (*accept fastpath)(struct net device *,

struct dst entry*);
...

};

• mtu (maximum transfer unit) defines the maximum length of a frame.

• type holds the type of the device, e.g. ARPHDR IEEE802 for Ethernet 802.2. The constants



Software Protocol Engineering for Linux Routers 179

are defined in if arp.h.

• dev addr holds the MAC address.

• hard start xmit is used to send packets.

• do ioctl is used to send ioctl commands.

A.2.3 Socket structure

Linux uses the concept of kernel sockets. This means that for each socket opened by applications
in the user space, there exists one instance of the structure socket and one instance of the structure
sock in the kernel space. They are the interfaces to the upper and to the lower layers, respectively.
The socket structure is defined in include/linux/net.h.

struct socket {
socket state state;
unsigned long flags;
struct proto ops *ops;
struct file *file;
struct sock *sk;
short type;

};

• type is the identification for the protocol type.

• state is the state of the socket. It can be free, unconnected, connecting, connected or
disconnecting.

• file is a pointer to a file instance of a pseudo file. It is used in Linux (everything is a file) for
communication.

• socket can be used for different protocols, therefore, it has with proto ops a pointer to a
structure that holds the protocol specific data.

The structure sock defined in include/net/sock.h contains the information that is important
for the kernel. The definition of structure is more than 200 lines of code. The pointers are
needed because these structures are stored in hash tables. The sending and receiving of packets
is accomplished by queuing the packets into the write queue and the receive queue respectively.
Some callback functions are associated with the structure to handle special events. The callback
function sk data ready() is called when data can be delivered to the application layer.

struct sock {
struct sock common sk common;
struct sk buff head sk receive queue;
struct sk buff head sk write queue;
struct proto *sk prot;
struct timer list sk timer;
/*Callbacks*/
void (*sk data ready)(struct sock *sk, int bytes);



180 Datalink layer

....
};

sock common defined in include/net/sock.h is referenced by sock. It holds the protocol family
and the state of the connection.

struct sock common {
unsigned short skc family;
volatile unsigned char skc state;
...

};

A.3 Datalink layer

The datalink layer receives the packets from the NIC (network interface card) and delivers them
to the routing layer above it and vice versa. This section does not focus on the issues relating to
the implementation of a driver, but only describes the interface to the driver. Figure A.2 shows
the functions of the datalink layer and their interface to the upper layers.
The functions described in this section are defined or implemented in the following files:

• drivers/net/isa skeleton.c

• include/linux/netdevice.h

• net/core/dev.c

A.3.1 Receiving packets

Packets are received in an interrupt context. The interrupt service routine must not take too
much time otherwise the performance of the entire system will degrade significantly. Therefore,
only three simple tasks are performed during the interrupt processing:

• net interrupt() implemented in drivers/net/isa-skeleton.c is the interrupt handler of the
driver. If the interrupt is caused by an incoming packet then the packet is given to net rx()
for further processing. Otherwise this is an error.

• net rx() implemented in drivers/net/isa-skeleton.c will create a new socket buffer. The
packet is then directly copied into the memory of the kernel using the Direct Memory Access
(DMA) technology. After that the header of the packet is examined to determine the identity
of the protocol. The dev pointer of the sk buff structure is set to the device over which the
packet came in.

• netif rx() will queue the packet in a queue of a processor. This function is, however, not
driver specific. It is implemented in /net/core/dev.c.

Packets are managed in a softnet data structure. Each processor has one softnet data structure
that will enhance the performance on multi-processor systems. It is defined in include/linux/netdevice.h.



Software Protocol Engineering for Linux Routers 181

ip_local_deliver_
finish()

ip_local_deliver()

IP_LOCAL_INPUT

IP_PRE_ROUTING

ip_rcv_finish()

ip_rcv()

net_rx_action()

ip_route_input()

ip_mr_input()

ip_forward()

IP_FORWARD

ip_forward_finish()

ip_fragment()

ip_queue_xmit()

IP_LOCAL_OUTPUT

ip_queue_xmit()

ip_output()

ip_finish_output()

IP_POST_
ROUTING

ip_finish_output2()
neigh_resolve_

output()

dev_queue_xmit()dev.c

ip_input.c
ip_output.c

ROUTING

MULTICAST

ip_forward.c

dev.c

Figure A.2: Software architecture [222]

struct softnet data {
int cnb level;
int avg blog;
struct sk buff head input pkt queue

}

• input pkt queue holds the sk buff head to manage the double linked list of incoming packets.

• avg blog is the average length of the backlog. The backlog is defined as the packets that have
arrived but are still not processed.

• cng level is an integer that represents the congestion level.

When the packet is queued in the softnet data structure, netif rx() raises the NET RX SOFTIRQ
software interrupt by calling the scheduler with a pointer to the softnet data structure before
leaving the interrupt context. Obviously, a defined software interrupt can not be called inside
the interrupt context. net rx action() (also in net/core/dev.c) handles the task of this software
interrupt. It checks the backlog in a circular fashion and gives the packet to the upper layer.
To dequeue a packet, the function skb dequeue() is used. To figure out the type of the packet,
netif receiver skb() is called. This function will determine the type field in the header and find the
function to handle this type of packet (e.g. ip rcv() for ipv4 packets). It sets the corresponding
pointer of the sk buff structure to that function and calls it.



182 Network layer

Sending packets

To send a packet, the datalink layer has to receive a complete packet from the upper layers.
All headers of the upper layers should have been inserted to identify it as a complete packet.
Besides, the destination has to be in the neighbour structure because the datalink layer can not
take routing decisions. To place a packet in the outgoing packet queue, dev queue xmit() defined
in net/core/dev.c is called. The packet is then picked up after some time and sent through the
function hard start xmit(). hard start xmit() can also be used directly with a socket buffer that
carries the necessary information for the datalink layer and the outgoing interface in the form of
a pointer to a net device structure. hard start xmit() is implemented in net/core/dev.c.

A.4 Network layer

The network layer is responsible for the processing of layer 3 protocols. Though the OSI model
tries to split the functionality as strictly as possible, a couple of services are offered from the
network layer to the datalink layer. The most important is routing because the datalink layer
can not take decisions about choosing a next hop. Also the mapping of a MAC address to an IP
address is handled in this layer. The functions described in this section are implemented in the
following files:

• net/ipv4/ip input.c

• net/ipv4/ip forward.c

• net/ipv4/ip output.c

• include/net/dst.h

A.4.1 Receiving packets

The first function that is called in the network layer is the function ip rcv() which is implemented
in net/ipv4/ip input.c. Its parameters are: the socket buffer received, the receiving device
represented with a net device structure and a packet type structure with additional information
about the datalink layer to find the right protocol. ip rcv() first does some sanity checks, i.e.
checking the length of the packet, checksums, the ipv4 or ipv6 version. The NetFilter hook
IP PRE ROUTING has the opportunity to access the packet (see section A.8). In the next
step, a decision has to be made, whether the packet is intended for the local host or has to be
routed to a different host. ip route input() makes the routing decision. As a result of the routing
decision, skb->dst->input points to the function that will be responsible for further processing.
It points either to ip local deliver() or to ip forward().

Receiving

If the packet is intended for the local host, ip local deliver() has to find the correct transport layer
port for the packet. ip local deliver() is implemented in net/ipv4/ip input.c and it takes only
one parameter that is the socket buffer structure. Usually, data payload is delivered to TCP or
UDP. If the packet is not fragmented, the NET IP LOCAL IN hook code is executed and then
the processing continues in ip local deliver finish(). Every protocol in the IP layer has an instance
of inet protocol with pointers to the functions that do either the further processing or handle
errors. ip local deliver finish() will strip off the IP header and will call the appropriate transport
protocol handler function (e.g. tcp v4 rcv() or udp rcv()).

Routing

Two possibilities exist for a packet in the routing process:



Software Protocol Engineering for Linux Routers 183

• The destination is in the local network.

• The destination is a remote host outside the local network.

The latter case is more complex because next hop information is needed. This information can
be found in the routing tables. The lookup already occurred in ip route input(), where the dst
field of the socket buffer structure was set to the correct gateway. The work for ip forward() is
therefore straightforward:

1. if the TTL (Time to Live) field in the IP header is ≤ 1 then drop the packet.

2. decrease the time to live (ip decrease ttl()) field.

3. call the function ip send check().

4. give the packet to the forward NetFilter hook NF IP FORWARD.

5. call the function ip forward finish().

ip forward finish() checks whether appropriate options are set in the IP header. If yes then
ip forward options() takes care of them and calls dst output(). dst output() calls the function that
is stored in the socket buffer as the handler function. The pointer to the handler function is in
skb->dst->output (see details in section A.7).

A.4.2 Sending

The function that is usually used to send data over IP is called ip queue xmit(). ip queue xmit()
does the following steps:

1. make a routing decision if necessary.

2. call ip send check().

3. give the packet to the outgoing hook NF IP LOCAL OUT.

4. call dst output().

ip queue xmit() (implemented in /net/ipv4/ip output.c) first chooses a route. Its parameters
are a socket buffer containing the packet to be sent and a status bit that indicates whether the
packet needs to be fragmented. To enhance performance, this lookup occurs only once for each
socket (since they all have the same destination). ip send check() then calculates the checksum
for the IP header. After the packet is returned from the NetFilter hook, dst output() implemented
in /net/ipv4/ip output.c is called, which calls the function stored in skb->dst->output of the
socket buffer. Usually, the pointer is set to ip output(). If no fragmentation is necessary (packet size
is ≤MTU), ip finish output() (implemented in /net/ipv4/ip output.c) is called with the socket
buffer as parameter. ip finish output() will call the post routing hook IP POST ROUTING.
After the hook, the processing continues in ip finish output2(). Here, the function checks whether
enough memory is available for inserting the mac header. If not, more memory is allocated with
skb realloc headroom(). The actual sending is handled by the function dst->neighbour->output.
Usually, this pointer points to the function dev queue xmit().

A.5 UDP

UDP is a connectionless and unreliable protocol like IP.
The functions described in this section are defined or implemented in the following files:

• include/linux/udp.h

• include/linux/socket.h



184 UDP

• net/ipv4/af inet.c

• net/ipv4/ip output.c

• net/ipv4/udp.c

• net/core/datagram.c

In contrast to IP, the checksum is calculated on both header and payload. UDP is a simple
protocol. The header consists only of source port, destination port, the checksum and information
about the length of the packet (given in octets). The structure of UDP is defined in the header
file include/linux/udp.h:

struct udphdr {
u16 source;
u16 dest;
u16 len;
u16 check;

};

A.5.1 Data structures

For UDP, no complex data structures are used. This section describes the structures that are used
to pass data over the UDP sockets between two hosts.

Passing data

The payload is given using the system call sendmsg() to the socket interface with the help of a
msghdr structure defined in include/linux/socket.h. The data is checked and then copied into
the kernel space. Then the structure is given to udp sendmsg() without any further modifications.

struct msghdr {
void *msg name;
int msg namelen;
struct iovec *msg iov;

kernel size t msg iovlen;
void *msg control;

kernel size t msg controllen;
unsigned msg flags;

};

struct msghdr has the following parameters: msg name is a pointer to a sockaddr in structure
that carries the IP address and a port number; msg namelen holds the length of the msg name
structure. msg iov references an array of iovec structures that hold pointers to the beginning
and to the end of the data; iov len is the length of the array. msg control and msg controllen
specify buffers that are needed for storing control messages. The msg flags are used to copy flags
for packets from the kernel to the user space and from the user space to the kernel space. The
following flags can be passed from the user space to the kernel space.



Software Protocol Engineering for Linux Routers 185

• MSG DONTROUTE says that the destination is in the local subnet and must not be routed.

• MSG DONTWAIT avoids a blocking system call if the data is not yet ready to be sent.

• MSG ERROUTE means that no packet should be fetched except an error message that
might be waiting on the socket.

From kernel space to user space only MSG TRUNC flag is passed. This flag indicates that enough
memory does not exist for storing the data packet. Therefore, part of data might be lost.

The UDP datagram

The union element h of the sk buff structure holds a pointer struct udphdr *uh that points to the
UDP header within the packet. The structure holds the information about the UDP header.

Integration of UDP in the network architecture

UDP has two interfaces: one to the network layer and one to the application layer.

The interface to IP is defined through the static struct inet protocol
udp protocol (defined in net/ipv4/af inet.c). udp rcv() delivers data to UDP, udp err handles
ICMP errors from the IP layer.

struct inet protocol udp protocol {
.handler = udp rcf,
.err handler = udp err,
.no policy = 1,
struct iovec *iov;
u32 wcheck; };

To send data over IP, UDP uses the function ip build xmit() implemented in net/ipv4/ip output.c.
In contrast to ip queue xmit(), ip build xmit() does not contain the full IP relevant data but just
a callback function that can access the necessary data.

The interface to the application layer is defined through a socket that accesses the features
of the transport protocol through the proto structure defined for UDP in net/ipv4/udp.c:

struct proto udp prot = {
.name = ”UDP”,
.close = udp close,
.connect = udp connect,
.disconnect = udp disconnect,
.iotcl = udp iotcl,
.destroy = udp destroy,
.setsockopt = udp setsockopt,
.getsockopt = udp getsockopt,
.sendmsg = upd sendmsg,
.rcvmsg = udp rcvmsg,
.sendpage = upd sendpage,



186 UDP

.backlog rcv = udp queue rcv skb,

.unhash = udp v4 unhash,

.get port = udp v4 get port,
};

• udp close(): when a UDP socket is closed, udp close() calls for all PF INET sockets the
function inet sock release() (implemented in net/ipv4/af inet.c) to free the socket struc-
ture.

• udp connect(): UDP is a connectionless protocol, therefore, this call is only made to define
a socket. As a result, the packets can be routed quickly with the help of the routing cache
entry for this socket. Besides, the state of the connection is set to established state in the
packet header.

• udp disconnect(): the state is set to TCP CLOSE, destination address and port are deleted
along with the corresponding routing cache entry.

• udp ioctl(): The length of the waiting and sending queue can be enquired with the help of
system call ioctl().

• udp queue rcv skb: see below in udp recvmsg().

• udp v4 hash(): The received UDP packets must be queued to the correct socket. The hash
makes the mapping faster. It is calculated using the formula: portnumber % UDP HTABLE SIZE.

• udp v4 unhash() is used to remove the socket from the hash table.

• udp v4 get port(): this function is called from the PF INET implemented in net/ipv4/af inet.c
when a port number is assigned to a socket. The port number may be NULL. In this case
a free port is assigned.

A.5.2 Functions

While the sending process occurs in one step, the receiving of a packet is split into two steps.
After receiving the packet with udp rcv(), it is queued in the receiving socket. From there, it is
picked up by the corresponding user process with the udp recvmsg() system call.

Sending

The function udp sendmsg() (implemented in net/ipv4/udp.c) is always called if a UDP packet
needs to be sent. The parameters are a sock structure with the state of the PF INET socket and
a pointer to the msg structure that holds the destination and the data.
If a socket is already established with udp connect(), the packets do not have to carry the destina-
tion information. Instead, the information about the corresponding socket is only needed. Source
address and source port are then extracted out of the sock structure. They are also available in a
ipcm cookie structure that will later provide this information to the IP layer.
Control messages of the msg control element of the msghdr structure are handled by the ip cmsg send()
function. The IP options can be passed with these control messages. If no additional information
for IP is passed using the function then the default information from the sock structure is used.
If no route entry is in the routing cache or if a routing cache entry has become invalid then a new
one is inserted with the help of ip route output() function.
The sending of a UDP packet itself is accomplished in ip build xmit() with a callback function as
a parameter that is either udp getfrag() or udp getfrag nosum() depending whether the checksum
has to be calculated with the udp header or only for the payload.



Software Protocol Engineering for Linux Routers 187

Receiving

If a UDP packet is received by the IP protocol, it is passed as a pointer in the sk buff structure
to udp rcv() (implemented in net/ipv4/udp.c). Here, the packet length and the checksum are
checked. Then the packet is assigned to a socket and is inserted into its waiting queue. The
insertion is done in udp rcv() by calling the function udp v4 lookup() which will look in the hash
table for the corresponding socket. If a socket is found, udp queue rcv skb() is called which in turn
calls the function sock queue rcv skb() that enqueues the packet in the correct queue. If no socket
is found then an ICMP error message is generated.
udp recvmsg() does the rest of the work. If udp recvmsg() is called through the socket API function
recvmsg() then it removes a sk buff structure from the waiting queue and treats it like a UDP
packet. If the waiting queue is empty then the calling process goes to sleep. Otherwise the payload
is extracted from the packet and data is delivered to the user process.
The transport of sk buff to the user process is is accomplished in udp recvmsg() that calls following
function defined in net/core/datagram.c:

• skb recv datagram() picks up the sk buff structure by calling skb dequeue(). If no packet
is available in the queue then wait for packet() is called that in turn will call schedule() to
relinquish control to the kernel.

• skb copy datagram iovec() is called from udp recvmsg() to copy the payload of the data
packet in the msg iov element of the msghdr structure.

• skb free datagram() will remove the sk buff structure after the payload has been extracted.

A.6 TCP

The TCP protocol has more features and is therefore more complex than UDP. TCP is a connection
oriented reliable protocol. The payload is given to the socket in the right order.
The functions described in this section can be found in the following files:

• include/linux/tcp.h

• net/ipv4/tcp ipv4.c

A.6.1 TCP header

The TCP header holds the status information in the header. The structure of the header is defined
in include/linux/tcp.h and looks like this:

struct tcphdr {
u16 source;
u16 dest;
u32 seq;
u32 ack seq;

#if defined( LITTLE ENDIAN BITFIELD)
u16 res1:4, doff:4, fin:1, syn:1, rst:1,

psh:1, ack:1, urg:1, ece:1, cwr:1;
#elif defined( BIG ENDIAN BITFIELD)

u16 doff:4, res1:4, cwr:1, ece:1, urg:1,
ack:1, psh:1, rst:1, syn:1, fin:1;

#else
#endif



188 TCP

u16 window;
u16 check;
u16 urg ptr;

};

• source and dest are the port numbers each of two bytes long.

• seq is the sequence number. Every sent packet has a sequence number which is equal to the
number of octets sent.

• ack seq holds a number that is equal to the number of octets received.

• doff stands for data offset and is the length of the TCP header.

• reserved is not used because it is reversed by TCP.

• urg, ack, psh, rst, syn and fin are the control flags to handle the connection states.

• window tells the sender to transmit certain number of bytes before the next acknowledgment
arrives.

• check is the checksum of the packet.

• options is a list of variable length.

A.6.2 TCP states

A TCP connection is always in a certain state. The state can be listen, connected etc. Each state
will make a transition to another state after taking a certain action.

CLOSED: A theoretical state where a TCP connection doesn’t yet exist.
LISTEN: A state where TCP connection is waiting for a connection to be established with it.
SYN RCVD: A SYN has been received and a SYN ACK has been sent, and the system is waiting
for an ACK.
SYN SENT: A SYN has been sent to start a connection but the SYN ACK yet has not been
received.
ESTABLISHED: A connection is established.
CLOSE WAIT: After a TCP connection is closed, the specification of TCP prohibits its reopening
within few minutes. This mechanism prevents packets that were delayed in the Internet from
reopening a socket.
LAST ACK: A FIN has been received and one has been sent. Now, one has to wait for the ACK
before moving to the closed state.
FIN WAIT 1: A FIN has been sent, waiting for an ACK or FIN.
FIN WAIT 2: A FIN has been sent and an ACK has been received. The communication could
continue. This connection is half open.
CLOSING: A FIN has been sent and one FIN has been received but the FIN is still not acknowl-
edged.

A.6.3 Three way handshake

A connection has to be established before a TCP connection can be used to transmit data. In the
TCP protocol two mechanisms are used for establishing a connection: passive or active. Before
the connection gets established, the client socket is in state closed and the server socket is in state
listen. The connection establishment happens by transmission of three packets:



Software Protocol Engineering for Linux Routers 189

sk->data->ready() send()

tcp_data_queue()

tcp_data()

tcp_rcv_established()

tcp_v4_do_rcv()

tcp_rcv_state_
process()

tcp_ack()

tcp_data_snd_
check()

tcp_ack_snd_
check() tcp_send_ack()

(delayed)

tcp_sendmsg()

tcp_writer_timer()

tcp_retransmit_skb()

tcp_transmit_skb()tcp_write_xmit()

ip_queue_xmit()ip_local_deliver()

Fast Path

__tcp_v4_loockup()

TCP_ESTABLISHED

tcp_v4_rcv()

tcp_send_skb()

Application

TCP

IP

Figure A.3: TCP packet processing [222]

1. The client sends a SYN to the server. The socket status of the client switches from CLOSED
to SYN SENT.

2. The server receives the packet and returns a packet with the SYN and the ACK bits set.
The status of the server changes from CLOSED to SYN REC.

3. The client socket receives the packet with the SYN and the ACK bits set and changes it to
status ESTABLISHED. Then, it sends an ACK packet back to the server.

4. The server receives the ACK packet and also changes to state ESTABLISHED.

The passive connection establishment

The passive connection establishment is not initiated by the kernel but by a packet with a SYN
flag. This packet is given to the function tcp v4 rcv() (implemented in net/ipv4/tcp ipv4.c).
tcp v4 rcv() finds the listening socket and hands over control to tcp v4 do rcv(). This function first
calls tcp rcv state process() to handle the states. If the socket is in the state TCP LISTEN, the
function tcp v4 conn request() is called. Besides many other things, the function sends an ACK
packet at the end and switches to status TCP SYN RCV.

The active connection establishment

The active connection establishment is initiated by a socketcall system call from the user space that
in turn calls tcp v4 connect(). Here, an IP route to the destination must be found. After the TCP
header is generated, the connection status is set to SYN SENT. Then a SYN packet is sent to the
destination. The rest of the three-way-handshake is handled by tcp rcv synsent state process().



190 Routing

A.7 Routing

The routers forward IP packets from one subnet to others. Usually, the distance in hops decreases
with every router that a packet visits on its way towards its destination. The router needs routing
information to select a next hop for the data packet. This information is called forwarding infor-
mation and is stored inside the fib (forward information base).
The functions described in this section are defined or implemented in the following files:

• net/ipv4/fib rules.c

• net/ipv4/ip fib.h

• net/ipv4/devinet.c

• net/ipv4/fib hash.c

• net/ipv4/route.c

• include/net/ip fib.h

A router has two important functions:

• gather routing information. This is accomplished by exchanging routing information with
other routers to fill the fib with the necessary information.

• routing of IP packets. This action is done by consulting the fib. Afterward, the packet is
sent according to the information in the fib.

The routing itself is the job of the IP layer and that is why it is implemented in the kernel. The
routing information is collected by routing protocols. The interface between the routing and the
routing protocol is the fib.

A.7.1 Policy routing

Since kernel 2.4, routing decisions can depend not only on the destination address but also on a
couple of other factors. An additional rule set selects an appropriate routing table to make the
routing decision. The criteria can be the source address, the network device over which the packet
came or the value of the Type of Service (TOS) field in the IP header.
Each rule has a selector and a type. The selector identifies the packets on which the rules are to
be applied. The type defines what to do with this packet, i.e. use a certain routing table or to
drop the packet. Each rule has an associated priority as well.
By default, the kernel has three unicast routing tables: local, main and default. The local table
holds the routing information about the local devices. The tables main and default are initialized
either by an administrator or a routing protocol. Using policy routing, other 252 tables can be
created and linked to the ruleset.

A.7.2 Implementation

This subsection describes the implementation of the routing rules, the routing table and the
functions that manage the routing table.

Routing rules

In the policy routing, the routing rules decide in which order and in which table to look for the
destination. The rules are traversed according to their priority. The implementation of the routing
rules is in the file net/ipv4/fib rules.c. If policy routing is not compiled into the kernel, this file
will not be compiled. Instead, an inline function in net/ipv4/ip fib.h will be used for the tables
local and main.



Software Protocol Engineering for Linux Routers 191

Data structures The rule set is represented in the kernel as a list of fib rule structures sorted
by their priority. The head of the list is fib rules. The default rule, main rule and local rule rules
are by default in the list. The list is protected with the read-write spinlock fib rules lock. The
structure fib rule contains two pointers to manage the linked list.

struct fib rule {
struct fib rule * r next;
u32 r preference;
unsigned char r table;
unsigned char r action;
unsigned char r dst len;
unsigned char r src len;
u32 r src;
u32 r srcmask;
u32 r dst;
u32 r dstmask;
u32 r srcmap;
u8 r flags;
u8 r tos;

#ifdef CONFIG IP ROUTE FWMARK
u32 r fwmark;

#endif
int r ifindex;

#ifdef CONFIG NET CLS ROUTE
u32 r tclassid;

#endif
char r ifname[IFNAMSIZ];
int r dead;

};

• u32 r preference is the priority.

• unsigned char r table is a reference to the routing table that is eventually used.

• unsigned char r action is the action to be taken (e.g. unicast, prohibit, nat (network address
translation), ...).

• u32 r srcmap and u32 r tclassid are used for nat.

The rest of the structure elements are used for the selection part of the rule. Here, the source
address, the destination address, the network masks and TOS fields and the name of network
interface are stored.

RT-Netlink is the interface to manage the routing rules. The table
inet rtnetlink table[] contains pointers to the functions that are used for adding and deleting
rules. The table is implemented in net/ipv4/devinet.c. For the messages RTM NEWRULE,
RTM GETRULE and RTM DELRULE, the functions inet rtm newrule(), inet dump rules() and
inet rtm delrule() are called.



192 Routing

Interface to routing tables is primarily accessed through fib lookup implemented in fib rules.c
because the routing rules are the gateways to the routing tables. fib lookup () will return the
route to a key (rt key structure) consisting of source address, destination address, incoming and
outgoing interface and the TOS value. If fib lookup () returns without success, the function
fib select default() is called that chooses a default route.

Routing tables

Routing tables are represented within the kernel as complex data structures. The routing table
itself is a fib table structure. Up to 255 routing tables are available if the policy based routing is
employed. For each length of the prefix, the routing table has a pointer to a fn zone structure. In
the fn zone structure, the routing rules of type fib node structure are stored. The actual data
of a routing rule is stored in a fib info structure which is referenced by fn node. The structure
is shown in Figure A.4.

struct fib table defined in include/net/ip fib.h has besides its id (tb id) and the unused field
tb stamp the following fields:

struct fib table{
unsigned char tb id;
unsigned tb stamp;
int (*tb lookup)(struct fib table *tb, const struct flowi *flp,

struct fib result *res);
int (*tb insert)(struct fib table *table, struct rtmsg *r,

struct kern rta *rta, struct nlmsghdr *n,
struct netlink skb parms *req);

int (*tb delete)(struct fib table *table, struct rtmsg *r,
struct kern rta *rta, struct nlmsghdr *n,
struct netlink skb parms *req);

int (*tb dump)(struct fib table *table, struct sk buff *skb,
struct netlink callback *cb);

int (*tb flush)(struct fib table *table);
void (*tb select default)(struct fib table *table,

const struct flowi *flp, struct fib result *res);

unsigned char tb data[0];
};

• tb insert and tb delete are used to insert and remove entries.

• tb dump dumps the entries over the RT-Netlink.

• tb lookup searches the table for a certain key. It is mainly used by fib lookup.

• tb flush deletes all entries marked for deletion.

• tb select default chooses one of the multiple default routes.

struct fn zone holds all entries with the same length of the prefix in a hash table (net/ipv4/fib hash.c).
The hash table is an array of fib node structures. This zone is only created if entries with a specific
prefix length exist. Since the routing algorithm tries to find the route with the longest prefix first,
therefore, it traverses this array of fn zones.



Software Protocol Engineering for Linux Routers 193

fib_tables[255] tb_id: 1
...

fib_table

tb_id: 255
...

tb_id: 254
tb_stamp

tb_lookup()
tb_insert()
tb_delete()
tb_dumb()
tb_flush()

tb_get_info()
tb_select_default()

fn_zones[33]
fn_zone_list

fz_next: 0x0
fz_hash

fz_divisor: 1
fz_order: 0
fz_mask: 0

fz_next
fz_hash

fz_divisor: 16
fz_order: 16

fz_mask: 0xffff

fz_next
fz_hash

fz_divisor: 16
fz_order: 24

fz_mask: 0xffffff

1

254

255

24

16

0

fib_tables fn_zones

fib_node*[1]

fib_node*[16]

fib_node*[24]

Figure A.4: fib table structure [222]

struct fib node is an entry in a routing table (net/ipv4/fib hash.c). In the fn key element a
prefix is stored which is the same for all fn zone structures. fn tos holds the TOS value which can
influence a routing decision. Type and scope are coded in fn type and fn scope. A routing entry
could be found via an fn info pointer in a fib info structure (see figure A.5).

struct fib info is the result of a FIB query (defined in include/net/ip fib.h). The main
information stored here is the outgoing device and the next hop on the way to the destination.
This information is found in a fib nh structure of the fib info. Multiple fib nh structures are stored
in an array to enable multi-path routing to a destination. The number of possible paths is stored
in fib nhs of the fib info structure. The fib nh structure is defined in ip fib.h and contains the
outgoing device (nh oif ), a pointer to the net device structure (nh dev), and the IP address of the
next router (nh gw). The pointers fib next and fib previous are used to maintain a double linked
list. They are used to insert new entries and are tied to the head fib info list.

Functions

As previously mentioned, ip rcv finish() calls the function ip route input() to find the next hop
on the path towards the destination of a packet.

ip route input() is called for every packet coming in through a network device (net/ipv4/route.c).
Parameters are a pointer to a socket buffer, the source and destination addresses of the packet,
the TOS value and a pointer to the net device structure, through which the packet entered the
current node. If the packet is unicast and no route was found in the cache then the function
ip route input slow() is called.

ip route input slow() (net/ipv4/route.c) fills a rt key structure with its parameters before
starting a query with fib lookup(). If this query is not successful, ip rcv finish() will discard the
packet later. If the query is successful then the system can distinguish whether the packet is
intended for the local host or for another host. If more than one route to the destination exist
then fib select multipath() will choose one randomly according to the weights given. Then a new



194 Routing

fib_node*[16]

fn_next
fn_info
fn_key
fn_tos

fn_type
fn_scope
fn_state

fib_node

fib_node

fib_node

fn_next
fn_info

...

fib_node

fib_node

fib_info

fib_info_list

fib_info_cnt

next
pref: 0x0??

...

fib_node

next
prev

fib_treeref
fib_clnref
fib_dead
fib_flags

fib_prefsrc
fib_priority

fib_metrics[..]
fib_nhs
-----------
nh_dev
nh_flags

nh_scope
nh_oif
wh_gw

net_dev

fib_info

Figure A.5: fib node structure [222]

cache entry is inserted with a pointer to the output() function. Additionally, rt gateway is set
using the function rt set next hop(). The dst pointer of the sk buff structure points to dst entry
structure, as a result of calling ip route input()/ip route input slow(). The structure dst entry
looks like:

struct dst entry {
struct net device *dev;
int (*input)(struct sk buff*);
int (*output)(struct sk buff*);
struct neighbour *neighbour;
...

};

• input andoutput are the functions that process incoming or outgoing packets.

• dev specifies the network device that is used to process the outgoing packet. A packet
for the local host has its input pointer pointing to ip local deliver() and output points to
ip rt bug. For a packet that has to be routed, input points to ip forward() and output points
to ip output().

The neighbour field is used to address packets that are destined for a host within the local subnet.
They can be reached within the datalink layer.

struct neighbour {



Software Protocol Engineering for Linux Routers 195

struct net device *dev;
unsigned char ha[MAX ADDR LEN]
int (*output)(struct sk buff *skb)
...

};

dev points to the outgoing network device and ha is the hardware address of the destination
device. output is a pointer to the function that is used to send the packet. Neighbour instances
are created by the Address Resolution Protocol (ARP) layer.

A.8 NetFilter

NetFilter is a framework inside the Linux kernel that gives the opportunity to mangle or filter
packets. The idea of NetFilter is to give the writer of a module the chance to influence the
processing of a packet in a very flexible way without the need to make changes in the network
stack of the kernel. NetFilter gives a chance to do detailed network analysis and create dynamic
filters of different kinds.
The functions described in this section are defined or implemented in the following files:

• include/linux/netfilter.h

• include/linux/netfilter ipv4.h

• net/ipv4/in forward.c

• net/core/netfilter.c

As mentioned in the previous sections that there are NetFilter hooks inside the kernel. NetFilter
hooks work in the following way:

• hooks are implemented in the stack and can execute the NetFilter code.

• NetFilter modules are called from the hooks of the network stack. But they are indepen-
dent from the code. Some standard modules exist that offer common functionality but user
specific functions can also be implemented.

A.8.1 Calling hook functions

Within the function of the network layer, hooks are placed to process NetFilter code. These
hooks split a function into two (e.g. ip forward() and ip forward finish()). This architecture is
chosen because the kernel can also be compiled without NetFilter support. To avoid pre-compiler
directives in the kernel code the NetFilter hooks are not called within a function. A NetFilter
hook is called from the macro NF HOOK defined in <netfilter.h> if compiled into the kernel.
The arguments of the macros are:

#define NF HOOK(pf, hook, skb, indev, outdev, okfn)
(list empty(&nf hooks[(pf)][(hook)]
? (okfn)(skb)
:nf hook slow((pf), (hook), (skb), (indev), (outdev), (okfn))
#endif



196 NetFilter

• pf is the protocol family for which the hook calls the NetFilter code.

• hook is a number that references the hook. It is defined in
<netfilter ipv4.h> in IPv4.

• skb is the current socket buffer.

• indev and outdev are pointers to net device instances through which the packet came and
through which it will leave. The outdev pointer may be NULL before the routing decision
is made.

• okfn is a pointer to a function that is called when the hook is finished.

nf hooks is a global variable holding all NetFilter hooks of a certain protocol family that are sorted
by the hook number. When processing NF HOOK, it is checked whether a hook exists for the
current protocol on the current position. If a hook exists, nf hook slow() is called to process the
code. Otherwise, the processing continues with the function defined in okfn. NetFilter hooks
are called in the functions ip rcv(), ip forward() and ip finish output() for a packet that has to be
routed. In the function ip forward() the IP FORWARD hook is called as shown in the following.
It is the last line of the function (see net/ipv4/in-forward.c):

{
...
return NF HOOK(PF INET, NF IP FORWARD, skb, skb->dev,

rt->u.dst.dev, ip forward finish);
}

In this case, the ok fn pointer is set to ip forward finish().

A.8.2 Searching the hook table

nf hook slow() is called if there is at least one hook function registered. For each protocol family,
there exists a double linked list containing instances of nf hook ops. This list is implemented in
net/core/netfilter.c:

struct list head nf hooks[NPROTO][NF MAX HOOKS];

NPROTO is a number that defines how many different protocols may be used (currently 32).
For each protocol NF MAX HOOKS can be defined (currently 8). nf hook ops are defined in
/include/linux/netfilter.h and look like this:

struct nf hook ops {
struct list head list;
nf hookfn *hook;
struct module * owner;
int pf;



Software Protocol Engineering for Linux Routers 197

int hooknum;
int priority;
...

};

While list is a link to the list head, the other elements represent the following information:

• hook is a pointer to the hook function. This function needs the same parameters as the
NF HOOK macro.

• pf and hooknum hold the protocol family and the hook number. This can also be obtained
from the position of the structure.

• priority is used to define a priority for the hook. Here all signed integers can be used.

Using this list, the matching hook can be called. The further processing is done by nf iterate
which traverses the list and calls the hook functions.

A.8.3 Actions of hook functions

Each hook function will return one of the following values:

• NF ACCEPT accepts a packet. This means that the current routine won’t change the
data in any way.

• NF STOLEN tells the hook function that a packet is stolen and that it will be processed
somewhere else. This means that the packet will not go through the other hooks and it will
not be handed to another layer.

• NF DROP tells the kernel to drop the packet. Like in NF STOLEN, the packet is not
processed in any way. Additionally, the socket buffer structure will be deleted and its memory
is deallocated.

• NF QUEUE will queue the packet in a waiting queue that will deliver the packet to the
user space without processing any further hooks.

• NF REPEAT will repeat the same hook again, therefore, one should carefully avoid loops.

The NetFilter is complemented by iptables that makes its use easier. Moreover, it could be used
from the user space.

A.9 Nature inspired routing protocols in the Linux kernel

This section focuses on the main files and functions in the Linux kernel that are helpful to imple-
ment Nature inspired routing protocols. All Nature inspired routing protocols have three common
properties:

• Exchange routing information (Agent propagation)

• Queue management

• Quality evaluation

A.9.1 Agent propagation

Agent propagation in general means sending and receiving agents that carry the routing informa-
tion needed to make routing decisions. This task can be easily accomplished with UDP packets.



198 Nature inspired routing protocols in the Linux kernel

Sending agents

Agents can be launched by following the steps as shown in the box below. First, a UDP socket
is created with sock create() (implemented in /net/socket.c). Then the receiver is defined with
a sockaddr in structure (implemented in include/linux/in.h). struct msghdr holds the relevant
parameters (see section UDP). Its field msg flags is set to ’0’ before sending (see [117]).

struct socket *clientsocket = NULL;
char buf[64];
struct msghdr msg;
struct iovec iov;
struct sockaddr in to;

/* SOCK DGRAM, IPPROTO UDP make a UDP socket */
sock create(PF INET, SOCK DGRAM, IPPROTO UDP, &clientsocket);
to.sin family= AF INET;
to.sin saddrṡ addr = in action(”w.x.y.z”);
to.sin port = htons((unsigned short) BeeSERVERPORT);
msg.msg name = &to;
msg.msg namelen = sizeof(to);
memcpy(buf,”message”,8));
iov.iov base = buf;
iov.iov len = 8; /* 8 Bytes */
msg.msg control = NULL;
msg.msg controllen = 0;
msg.msg iov = &iov;
msg.msg iovlen = 1;
sock sendmsg(clientsocket, &msg, 8); /*sock sendmsg() in /net/socket.c*/

UDP server

The server that receives the agents is relatively complex. It does not connect to another service
but has to bind itself to a port using the bind() function. A thread has to be created that listens
on the port. The server needs a struct iovec for the address, the size of the data buffer, a struct
sockaddr in for the client data (e.g. IP address and port) and a struct msghdr. The contents of
the struct iovec is modified by the kernel so they have to be initialized each time before calling
sock recvmsg(). This is done in a while loop.

sock create(PF INET, SOCK DGRAM, IPPROTO UDP, &udpsocket);
udpsocket->ops->bind(udpsocket, (struct sockaddr *) &server, sizeof(server));
thread pid = kernel thread(thread, NULL, CLONE KERNEL);

static int com thread(void *data) {
unsigned char buffer[100];
while (!signal pendign(current)){

iov.iov base = buffer;
iov.iov len = sizeof(buffer);
sock recvmsg(udpsocket, &msg, sizeof(buffer),0);

}
complete(&threadcomplete);



Software Protocol Engineering for Linux Routers 199

};

A.9.2 Queue management

The Linux TCP/IP stack offers the possibility to schedule outgoing packets. This is required
because different sessions have different requirements. For example, a FTP transfer needs more
bandwidth and will not care if a single packet gets delayed. In a Voice Over IP (VoIP) session,
bandwidth consumption is low but latency plays an important role. The different strategies to
schedule packets in Linux are called queuing disciplines. Each Network Interface Card (NIC) has
a queuing discipline. A queuing discipline is an algorithm that is transparent to the system and
it decides which packet to send next. Packets can be stored in one or more queues. The queuing
algorithms can be pfifo fast, the Token Bucket Filter or Stochastical Fairness Queuing. They are
all implemented in net/sched/sch *.c. By default, Linux uses the pfifo fast queuing discipline.
pfifo fast consists of three queues ordered by their priority. The packets in the second queue are
only sent when the first queue is empty. Similarly, the packets in the third queue are only sent
when both queue one and queue two are empty. The queuing disciplines bfifo and pfifo also employ
a similar policy, however, they store statistic information about the number of bytes sent and the
number of bytes that are currently in the queue. bfifo stores this information in bytes while pfifo
stores it as the number of packets. To change the queuing discipline, the command line tool tc
can be employed.

A.9.3 Quality evaluation

For routing decisions, the different kinds of delays play an important role. Delays can be queuing
delay, processing delay, transmission delay and propagation delay. This subsection introduces few
methods to calculate them.

Queuing delay is calculated with the help of following formula:

NumberOfBitsInQueue

Bandwidth

The bandwidth of a link can be accessed in the type field of the net device structure, e.g. ARPHRD ETHER
stands for 10 Mbit/s. The meaning of the constants found here are defined in include/linux/if arp.h.
Since kernel 2.6.10, a rate estimator is available that holds the information about how many bits
per second are processed. It is defined in header file include/linux/gen stats.h. The structure
containing the information can be accessed over the qdisc pointer of the used network device.
The number of bits in the queue can be accessed using the statistics of the bfifo/pfifo queues as
described in the previous sub section A.9.2.

Processing delay consists of steps such as looking up a route and changing a header. Net-
Filter hooks could be used to calculate the processing delay. The hooks PREROUTING and
POSTROUTING are the first and the last steps in the processing of a packet. A packet that has
to be routed can be picked up by the PREROUTING hook. Then the hook must timestamp this
packet. The POSTROUTING hook than simply takes a difference of the current time and the
time stamp of packet to calculate the processing delay.

Transmission delay is the amount of time it takes to put a packet on the transmission link.
Transmission delay is determined by the bandwidth of the link and the size of the packet. Both
can be easily determined using the previously mentioned techniques. The formula is:

LengthofPacketInBits

BandwidthInBitsPerSecond



200 Nature inspired routing protocols in the Linux kernel

Propagation delay is the amount of time it takes a packet to travel the distance on a trans-
mission link between two nodes. This is essentially controlled by the speed of the signal inside the
transmission medium and is independent of the networking technology used. As a rule of thumb,
it takes about 20ms to send information over a distance of 1000 kilometers. To calculate the prop-
agation delay, the time when the packet leaves a node and its arrival time at its neighbour need
to be determined. When a packet is transmitted an interrupt is raised by the NIC that reports
the successful transmission. The interrupt also reports a time stamp. When a packet arrives, the
function netif rx() creates a socket structure for the incoming socket and puts a time stamp in
skb->time. The propagation delay can be calculated with the help of following formula after the
packet has returned from the target:

PropagationDelay ≡ ∆t− (2 ∗ TransmissionDelay)− (ProcessingDelay)
2

Here, ∆t is the round trip time.



References 201

References

[1] Packet filtering nat and packet mangling for linux. http://www.netfilter.org.

[2] ITU G.711: Pulse code modulation (pcm) of voice frequencies, November 1988.

[3] In H.-P. Schwefel, I. Wegener, and K. Weinert, editors, Advances in Computational
Intelligence - Theory and Practice, Natural Computing Series. Springer-Verlag, 2003.

[4] VoIP Standards and Protocols. Faulkner Information Services, 2003.

[5] R. Ahuja, S. Keshav, and H. Saran. Design, implementation, and performance
measurement of a native-mode atm transport layer (extended version). IEEE/ACM
Transaction on Networks, 4(4):502–515, 1996.

[6] S. Appleby and S. Steward. Mobile software agents for control in telecommunications
networks. BT Technology Journal, 12(2):104–113, apr 1994.

[7] A. F. Atlasis, M. P. Saltouros, and A. V. Vasilakos. On the use of a stochastic estimator
learning algorithm to the atm routing problem: a methodology. Computer
Communications, 21:538–546, 1998.

[8] S. Avallone, M. D’Arienzo, M. Esposito, A. Pescapé, S. P. Romano, and G. Ventre.
Mtools. IEEE Networks Magazine - Software Tools for Networking, 16(5):3, october 2002.

[9] S. Avallone, D. Emma, A. Pescapé, and G. Ventre. A distributed multiplatform
architecture for traffic generation. In Proceedings of International Symposium on
Performance Evaluation of Computer and Telecommunication Systems (SPECTS), San
Jose, California (USA), July 2004.

[10] S. Avallone, A. Pescapé, and G. Ventre. Distributed internet traffic generator (d-itg):
analysis and experimentation over heterogeneous networks. In ICNP 2003 poster
Proceedings, International Conference on Network Protocols 2003, Atlanta, Georgia (USA),
November 2003.

[11] S. Avallone, A. Pescapé, and G. Ventre. Analysis and experimentation of internet traffic
generator. In New2an’04, Next Generation Teletraffic and Wired/Wireless Advanced
Networking, pages 70–75, 2004.

[12] D. Awduche and A. Chiu(et.al). RFC 3272: Overview and principles of internet traffic
engineering, May 2002.

[13] P. Baldi, P. Frasconi, and P. Smyth. Modeling the Internet and the Web: Probabilistic
Methods and Algorithms. Wiley, 2003.

[14] B. Baran and R. Sosa. A new approach for antnet routing. In Ninth International
Conference on Computer Communications and Networks, pages 303–308, Las Vegas, NV,
USA, 2000.

[15] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Englewood Cliffs, NJ, USA,
1992.

[16] H. G. Beyer and H. P. Schwefel. Evolution strategies - a comprehensive introduction.
Natural Computing, 1(1):3–52, 2002.

[17] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence From Natural to Artificial
Systems. Oxford University Press, 1999.



202 References

[18] E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for optimization from social insect
behaviour. Nature, 406:39–42, 2000.

[19] E. Bonabeau, F. Hénaux, S. Guérin, D. Snyers, P. Kuntz, and G. Theraulaz. Routing in
telecommunications networks with ant-like agents. In Intelligent Agents for
Telecommunication Applications, Second International Workshop, IATA ’98, Paris,
France, July 1998, Proceedings, volume 1437 of Lecture Notes in Computer Science, pages
60–71. Springer, 1998.

[20] E. Bonabeau, G. Theraulaz, J. Deneubourg, S. Aron, and S. Camazine. Self-organization
in social insects. Trends in Ecology and Evolution, 12(5):188–193, May 1997.

[21] Grady Booch. Object-oriented Analysis & Design with Applicatiions. Addison Wesley
Longman Inc, 1994.

[22] A. Botta, D. Emma, S. Guadagno, and A. Pescapé. Performance evaluation of
heterogeneous network scenarios. Technical report, Dipartimento di Informatica e
Sistemistica, Universita’ di Napoli Federico II, 2004.

[23] J. A. Boyan and M. L. Littman. Packet routing in dynamically changing networks: A
reinforcement learning approach. Advances in Neural Information Processing Systems,
6:671–678, 1993.

[24] R. Braden, D. Clark, and S. Shenker. RFC 1633: Integrated services in the internet
architecture: an overview, June 1994.

[25] F. M. T. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur. Desire: Modelling
multi-agent systems in a compositional formal framework. Int. J. Cooperative Inf. Syst.,
6(1):67–94, 1997.

[26] L. T. Bui, Jürgen Branke, and A. Hussein. Multiobjective optimization for dynamic
environments. In Congress on Evolutionary Computation. IEEE, 2006.

[27] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau.
Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ, second
edition, 2003.

[28] K. Camp. IP Telephony Demystified. McGraw-Hill Companies Inc, 2003.

[29] D. Cantor and M. Gerla. Optimal routing in a packet-switched network. IEEE
Transactions on Computers, 23:1062–1068, 1974.

[30] L. Carrillo, J. L. Marzo, L. Fàbrega, P. Vilà, and C. Guadall. Ant colony behaviour as
routing mechanism to provide quality of service. In Ant Colony Optimization and Swarm
Intelligence, 4th International Workshop, ANTS 2004, Brussels, Belgium, September 5 - 8,
2004, Proceedings, volume 3172 of Lecture Notes in Computer Science, pages 418–419.
Springer, 2004.

[31] L. Carrillo, J. L. Marzoa, D. Harle, and P. Vila. A review of scalability and its application
in the evaluation of the scalability measure of antnet routing. In Palau Salvador, editor,
IASTED Communication Systems and Networks CSN 2003, pages 317–323, Benalmdena,
Spain, 2003.

[32] W. Chainbi, M. Jmaiel, and A. B. Hamadou. Conception, behavioral semantics and formal
specification of multi-agent systems. In Multi-Agent Systems: Theories, Languages, and
Applications, 4th Australian Workshop on Distributed Artificial Intelligence, Brisbane,
Queensland, Australia, July 13, 1998, Selected Papers, volume 1544 of Lecture Notes in
Computer Science, pages 16–28. Springer, 1998.



References 203

[33] D. D. Champeaux, D. Lea, and P. Faure. Object-Oriented System Development. Addison
Wesley, 1993.

[34] J. Chen, P. Druschel, and D. Subramanian. An efficient multipath forwarding method. In
INFOCOM 98, pages 1418–1425, 1998.

[35] J. Chen, P. Druschel, and D. Subramanian. A new approach to routing with dynamic
metrics. In INFOCOM 99, pages 661–670, 1999.

[36] J. Chen, P. Druschel, and D. Subramanian. A simple, practical distributed multipath
routing algorithm. TR98-320, Department of Computer Science, Rice University, July 1998.

[37] P. Choi and D. Yeung. Predictive q-routing: A memory-based reinforcement learning
approach to adaptive traffic control. Advances in Neural Information Processing Systems,
8:945–951, 1996.

[38] Cisco. Internetworking technology handbook, 2002.

[39] D. Clark. RFC 817: Modularity and efficiency in protocol implementation. Technical
report, MIT, July 1982.

[40] D. Clark. The structuring of systems using upcalls. Operating Systems Review,
19(5):171–180, 1985.

[41] D. Clark and D. L. Tennenhouse. Architectural considerations for a new generation of
protocols. In Proceedings of the ACM SIGCOMM’90, pages 200–208, Philadelphia, Sep
1990. ACM.

[42] M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-layering in mobile ad hoc network
design. IEEE Computer, 37(2):48–51, 2004.

[43] Intel Corporation. Using the rdtsc instruction for performance monitoring. Application
notes, pentium ii processor, Intel Corporation, 1997.

[44] A. Costa. Analytic modelling of agent-based network routing algorithms. Phd. thesis, The
University of Adelaide, Australia, 2002.

[45] L. H. M. K. Costa, S. Fdida, and O. C. M. B. Duarte. Developing scalable protocols for
three-metric qos routing. Computer Networks: The International Journal of Computer and
Telecommunications Networking, 39(6):713–727, 2002.

[46] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons,
UK, 2001.

[47] J. Deneubourg, S. Aron, S. Goss, and J. Pasteels. The self-organizing exploratory pattern
of the argentine ant. Journal of Insect Behavior, 3:159–168, 1990.

[48] G. Di Caro. Ant colony optimization and its application to adaptive routing in
telecommunication networks. Phd. thesis, Université Libre de Bruxelles, Belgium, 2004.

[49] G. Di Caro and M. Dorigo. Antnet: A mobile agents approach to adaptive routing.
Technical Report IRIDIA/97-12, Université Libre de Bruxelles, Belgium, 1997.

[50] G. Di Caro and M. Dorigo. An adaptive multi-agent routing algorithm inspired by ants
behavior. In In Proceedings of 5th Annual Australasian Conference on Parallel Real Time
Systems, pages 261–272, 1998.

[51] G. Di Caro and M. Dorigo. Ant colonies for adaptive routing in packet-switched
communications networks. In Parallel Problem Solving from Nature - PPSN V, LNCS
1498, pages 673–682, Sept 1998.



204 References

[52] G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for communication
networks. Journal of Artificial Intelligence Research, 9:317–365, December 1998.

[53] G. Di Caro and M. Dorigo. Extending AntNet for Best Effort Quality-of-Service Routing.
In First International Workshop on Ant Colony Optimization, Brussels, Belgium, October,
15-16 1998.

[54] G. Di Caro and M. Dorigo. Mobile agents for adaptive routing. In 31st Hawaii
International Conference on System Science, pages 74–83, Big Island of Hawaii, 1998.
IEEE Computer Society Press.

[55] G. Di Caro and M. Dorigo. Two ant colony algorithms for best-effort routing in datagram
networks. In Proceedings of the Tenth IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS’98), pages 541–546. IASTED/ACTA Press,
1998.

[56] G. Di Caro and T. Vasilakos. Ant-SELA: Ant-agent and stochastic automata learn
adaptive routing tables for qos routing in atm networks. In ANTS2́000 - From Ant
Colonies to Artificial Ants: Second International Workshop on Ant Colony Optimization,
Sept 8-9 2000.

[57] E. W. Dijkstra. A note on two problems in connection with graphs. Numerical
Mathematics, 1:269–271, 1959.

[58] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing computations.
Information Processing Letters, 11(1):1–4, 1980.

[59] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dmars. In
Intelligent Agents IV, Agent Theories, Architectures, and Languages, 4th International
Workshop, ATAL ’97, Providence, Rhode Island, USA, July 24-26, 1997, Proceedings,
volume 1365 of Lecture Notes in Computer Science, pages 155–176. Springer, 1998.

[60] S. Doi and M. Yamamura. Bntnetl: Evaluation of its performance under congestion.
IEICE B, pages 1702–1711, 2000.

[61] S. Doi and M. Yamamura. Bntnetl and its evaluation on a situation of congestion.
Electronics and Communications in Japan, 85:31–41, 2002.

[62] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy. Future
Generation Computer Systems, 16(8):851–871, June 2000.

[63] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw-Hill,
London, 1999.

[64] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization.
Artificial Life, 5(2):137–172, 1999.

[65] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy, 1991.

[66] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics-Part B,
26(1):29–41, 1996.

[67] M. Dorigo and T. Stützle. The ant colony optimization metaheuristic: Algorithms,
applications and advances. In F. Glover and G. Kochenberger, editors, Handbook of
Metaheuristics, volume 57 of International Series in Operations Research & Management
Science, pages 251–285. Kluwer Academic Publishers, Norwell, MA, 2003.



References 205

[68] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks: From Biological Nets to
the Internet and WWW. Oxford University Press, 2004.

[69] P. Druschel, Larry L. Peterson, and Bruce S. Davie. Experiences with a high-speed
network adaptor: A software perspective. In Proceedings of the ACM SIGCOMM’94, pages
2–13, 1994.

[70] J. Durkin. Voice-Enabling the Data Network. CISCO Press, 2003.

[71] A. Edwards and S. Muir. Experiences implementing a high performance tcp in user-space.
In SIGCOMM ’95: Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication, pages 196–205, New York, NY,
USA, 1995. ACM Press.

[72] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvokis, and C. Dalton. User-space
protocols deliver high performance to applications on a low-cost gb/s lan. In SIGCOMM
’94: Proceedings of the conference on Communications architectures, protocols and
applications, pages 14–23, New York, NY, USA, 1994. ACM Press.

[73] L. M. Feeney. A taxonomy for routing protocols in mobile ad hoc networks. Technical
Report ISRN:SICS-T-99/07-SE, Swedish Institute of Computer Science, Kista, Sweden,
1999.

[74] S. Fenet and S. Hassas. Ant.: a distributed network control framework based on mobile
agents. In International ICSC Congress on Intelligent Systems And Applications, pages
831–837. ICSC Academic Press Editor, 2000.

[75] S. Fenet and S. Hassas. A.n.t: a distributed problem-solving framework based on mobile
agents. In Mobile Agents Applications’2000 (12th International Conference On Systems
Research, Informatic & Cybernetic), pages 39–44, 2000.

[76] J. E. Flood(Ed.). Telecommunication Networks. Publishing & Inspec, 1997.

[77] R. L. Freeman. Telecommunication System Engineering. John Wiley & Sons, Inc, 2004.

[78] E. Gafni and D. Bertsekas. Distributed algorithms for generating loopfree routes in
networks with frequently changing topology. IEEE Transactions on Communications,
29:11–18, 1981.

[79] R. Gallagher. A minimum delay routing algorithm using distributed computation. IEEE
Transactions on Communications, 25:73–85, 1979.

[80] M. Gallego-Schmid. Modified antnet: software application in the evaluation and
management of a telecommunication network. In Una-May O’Reilly, editor, Graduate
Student Workshop, pages 353–354, Orlando, Florida, USA, 13 July 1999.

[81] A. Giessler, J. D. Haenle, A. König, and E. Pade. Free buffer allocation - an investigation
by simulation. Computer Networks, 2:191–208, 1978.

[82] D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison
Wesley, Reading, MA, 1989.

[83] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency: measuring the scalability of parallel
algorithms and architectures. IEEE parallel and distributed technology: systems and
applications, 1(3):12–21, 1993.

[84] P. P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez
bellicositermes natalensis et cubitermes sp. la théorie de la stigmergie: essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6:41–81,
1959.



206 References

[85] R. S. Gray, G. Cybenko, D. Kotz, and D. Rus. Mobile agents: Motivations and state of the
art. In Jeffrey Bradshaw, editor, Handbook of Agent Technology. AAAI/MIT Press, 2002.
Accepted for publication. Draft available as Technical Report TR2000-365, Department of
Computer Science, Dartmouth College.

[86] R. Guerin, S. Blake, and S. Herzog. Aggregating RSVP-based qos requests, November
1997.

[87] A. Gupta and V. Kumar. Performance properties of large scale parallel systems. Journal
of Parallel and Distributed Computing, 19(3):234–244, 1993.

[88] A. Harsch. Design and development of a network infrastructure for swarm routing protocols
inside linux. Master thesis, LSIII, The University of Dortmund, Germany, July 2005.

[89] A. L. G. Hayzelden and J. Bigham. Agent Technology in Communications Systems: An
Overview. Knowledge Engineering Review, 1999.

[90] C. L. Hedrick. RFC 1058: Routing information protocol, June 1998.

[91] T. Hendtlass and M. Ali, editors. Collective Intelligence and Priority Routing in Networks.
Springer Verlag, 2002.

[92] J. L. Hennessey and D. A. Patterson. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 1995.

[93] M. Heusse, D. Syners, S. Guerin, and P. Kuntz. Adaptive agent-driven routing and load
balancing in communication networks. Advances in Complex Systems, 1(2-3):237–254,
1998.

[94] G. N. Higginbottom. Performace evaluation of communication networks. Artech house Inc,
Norwood, MA, 1998.

[95] V. Hilaire, A. Koukam, P. Gruer, and J. Pi. Müller. Formal specification and prototyping
of multi-agent systems. In Engineering Societies in the Agent World, First International
Workshop, ESAW 2000, Berlin, Germany, August 21, 2000, Revised Papers, volume 1972
of Lecture Notes in Computer Science, pages 114–127. Springer, 2000.

[96] J. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, 1975.

[97] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implementing
network protocols. IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

[98] C. A. Iglesias, M. Garijo, J. Centeno-González, and Juan R. Velasco. Analysis and design
of multiagent systems using mas-common kads. In Intelligent Agents IV, Agent Theories,
Architectures, and Languages, 4th International Workshop, ATAL ’97, Providence, Rhode
Island, USA, July 24-26, 1997, Proceedings, volume 1365 of Lecture Notes in Computer
Science, pages 313–327. Springer, 1997.

[99] P. Jain. Validation of antnet as a superior single path, single constrained algorithm.
Master thesis, Department of Computer Science and Engineering, University of Minnesota,
USA, 2002.

[100] N. R. Jennings. Agent-oriented software engineering in multi-agent system engineering. In
MultiAgent System Engineering, 9th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, MAAMAW ’99, Valencia, Spain, June 30 - July 2, 1999,
Proceedings, volume 1647 of Lecture Notes in Computer Science, pages 1–7. Springer, 1999.



References 207

[101] P. Jogalekar and C.M. Woodside. A scalability metric for distributed computing
applications in telecommunications. In Proceedings of the 15th International Teletraffic
Congres, pages 101–110, June 1997.

[102] P. Jogalekar and M. Woodside. Evaluating the scalability of distributed systems. In HICSS
’98: Proceedings of the Thirty-First Annual Hawaii International Conference on System
Sciences-Volume 7, page 524, Washington, DC, USA, 1998. IEEE Computer Society.

[103] P. Jogalekar and M. Woodside. Evaluating the scalability of distributed systems. IEEE
Transactions on Parallel Distributed Systems, 11(6):589–603, 2000.

[104] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, May 1996.

[105] I. Kassabalidis, M. A. El-Sharkawi, and R. J. Marks. Adaptive-sdr: Adaptive swarm-based
distributed routing. In Proceedings of the 2002 International Joint Conference on Neural
Networks, 2002 IEEE World Congress on Computational Intelligence, pages 2878–2883,
2002.

[106] I. Kassabalidis, M. A. El-Sharkawi, R. J. Marks, P. Arabshahi, and A. A. Gray. Swarm
intelligence for routing in communication networks. In Global Telecommunications
Conference GLOBECOM, pages 3613–3617. IEEE, 2001.

[107] J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In
Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 110–125. Springer, 2003.

[108] J. Kay and J. Pasquale. The importance of non-data touching processing overheads in
tcp/ip. In SIGCOMM ’93: Conference proceedings on Communications architectures,
protocols and applications, pages 259–268, New York, NY, USA, 1993. ACM Press.

[109] F. Kelly. Network routing. Philosophical Transactions of the Royal Society, 337:343–367,
1991.

[110] S. Keshav. An engineering approach to computer networking: ATM networks, the Internet,
and the Telephone network. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[111] L. Kleinrock. On flow control in computer networks. In Proceedings of the International
Conference on Communications, volume 2, pages 27.2.1–27.2.5, Toronto, Canada, june
1978. IEEE.

[112] L. Kleinrock. Power and deterministic rules of thumb for probabilistic problems in
computer communications. In IEEE, editor, Proceedings of the International Conference
on Communications, ICC, pages 335–347, France, 1979.

[113] Hartmut König. Protocol Engineering (in german). Teubner, 2003.

[114] D. Kotz and R. S. Gray. Mobile agents and the future of the internet. Operating Systems
Review, 33(3):7–13, 1999.

[115] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and architectures.
Journal of Parallel and Distributed Computing, 22(3):379–391, 1994.

[116] K. Kümmerle and H. Rudin. Packet and circuit switching: Cost/performance boundaries.
Computer Networks, 2:3–17, 1978.

[117] E. Kunst and J. Quade. Kern-technik, linux-magazin, October 2004.



208 References

[118] G. M. Lee and J. S. Choi. A survey of multipath routing for traffic engineering. Term
paper, Informations and Communications University, Korea, 2002.

[119] S. Liang, A. N. Zincir-Heywood, and M. I. Heywood. The effect of routing under local
information using a social insect metaphor. In Proceedings of IEEE Congress on
Evolutionary Computing, May 2002.

[120] S. Liang, A. N. Zincir-Heywood, and M. I. Heywood. Intelligent packets for dynamic
network routing using distributed genetic algorithm. In Proceedings of Genetic and
Evolutionary Computation Conference. GECCO, July 2002.

[121] R. Love. Linux Kernel Development. Novel Press, 2 edition, 2005.

[122] C. Madukife. Development of a formal framework to analyze the behavior of swarm routing
protocols. Master thesis, LSIII, The University of Dortmund, Germany, August 2005.

[123] G. Malkin. RFC 2453: Rip version 2, November 1998.

[124] V. Maniezzo and A. Carbonaro. Ant colony optimization: an overview. In C. Ribeiro,
editor, Essays and Surveys in Metaheuristics, pages 21–44. Kluwer, 2001.

[125] A. Medina, , I. Matta, and J. Byers. On the origin of power laws in internet topologies.
ACM Computer Communication Review, 30(2):18–28, April 2000.

[126] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: Universal topology generation
from a user’s perspective. Technical Report BU-CS-TR-2001-003, Boston University, 1
2001.

[127] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: Universal topology generation from
a user’s perspective. In Proceedings of the International Workshop on Modeling, Analysis
and Simulation of Computer and Telecommunications Systems- MASCOTS ’01.
Cincinnati, Ohio, August 2001.

[128] D. Merkle, M. Middendorf, and A. Scheidler. Dynamic decentralized packet clustering in
networks. In Applications of Evolutionary Computing, pages 574–583. Springer Verlag,
April 2005.

[129] T. Michalareas and L. Sacks. Link-state & ant-like algorithm behaviour for
single-constrained routing. In IEEE Workshop on High Performance Switching and
Routing, HPSR 2001, pages 302–305, May 2001.

[130] T. Michalareas and L. Sacks. Stigmergic techniques for solving multi-constraint routing for
packet networks. In Pascal Lorenz, editor, Networking - ICN 2001, First International
Conference, Colmar, France, July 9-13, 2001 Proceedings, Part 1 LNCS 2093, pages
687–697. Springer-Verlag, 2001.

[131] D. L. Mills. RFC 958: Network time protocol (NTP), September 1985.

[132] N. Minar, K. H. Kramer, and P. Maes. Cooperating Mobile Agents for Dynamic Network
Routing, chapter 12, pages 287–304. Springer-Verlag, 1999.

[133] J. Mogul. Ip network performance. In D. C. Lynch and M. T. Rose, editors, Internet
System Handbook. Addison Wesley, 1993.

[134] J. Mogul, R. Rashid, and M. Accetta. The packer filter: an efficient mechanism for
user-level network code. In SOSP ’87: Proceedings of the eleventh ACM Symposium on
Operating systems principles, pages 39–51, New York, NY, USA, 1987. ACM Press.

[135] R. Mortier. Internet traffic engineering. Technical Report UCAM-CL-TR-532, University
of Cambridge, Computer Laboratory, April 2002.



References 209

[136] C. Moschovitis, H. Poole, T. Schuyler, and T. Senft. History of the Internet: A
Chronology, 1843 to the Present. ABC-CLIO, 1999.

[137] J. T. Moy. OSPF Anatomy of an Internet Routing Protocol. Addison-Wesley, 1998.

[138] J. T. Moy. OSPF Complete Implementation. Addison-Wesley, 2000.

[139] M. Munetomo. Designing genetic algorithms for adaptive routing algorithms in the
internet. In Proceedings of GECCO’99 Workshop on Evolutionary Telecommunications:
Past, Present and Future. Orlando, Florida, July 1999.

[140] M. Munetomo. Network Routing with the Use of Evolutionary Methods, in Computational
Intelligence in Telecommunication Networks. CRC Press, 2000.

[141] M. Munetomo, Y. Takai, and Y. Sato. An adaptive network routing algorithm employing
path genetic operators. In Proceedings of the Seventh International Conference on Genetic
Algorithms, pages 643–649. Morgan Kaufmann Publishers, 1997.

[142] W. Nachtigall. Bionik; Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler
(german). Springer-Verlag, 2002.

[143] A. Newell. Physical symbol systems. Cognitive Science, 4:135–183, 1980.

[144] P. Nii. The blackboard model of problem solving. AI Mag, 7(2):38–53, 1986.

[145] K. Oida and A. Kataoka. Lock-free AntNet and its evaluation adaptiveness. Journal of
IEICE B (in Japenese), J82-B(7):1309–1319, 1999.

[146] K. Oida and M. Sekido. An agent-based routing system for qos guarantees. In IEEE
International Conference on Systems, Man, and Cybernetics, pages 833–838, 1999.

[147] K. Oida and M. Sekido. ARS: An efficient agent-based routing system for qos guarantees.
Computer Communications, 23:1437–1447, 200.

[148] E. Osborne and A. Simha. Traffic Engineering with MPLS. Cisco Press, 2002.

[149] S. Ossowski and A. Garćıa-Serrano. Social structure in artificial agent societies:
Implications for autonomous problem-solving agents. In Intelligent Agents V, Agent
Theories, Architectures, and Languages, 5th International Workshop, ATAL ’98, Paris,
France, July 4-7, 1998, Proceedings, volume 1555 of Lecture Notes in Computer Science,
pages 133–148. Springer, 1995.

[150] G. I. Papadimitriou. A new approach to the design of reinforcement schemes for learning
automata: Stochastic estimator learning algorithms. IEEE Trans. Knowl. Data Eng.,
6(4):649–654, 1994.

[151] R. Pastor-Satorras and A. Vespignani. Evolution and Structure of the Internet: A
Statistical Physics Approach. Cambridge University Press, 2004.

[152] L. L. Peterson and B. S. Davie. Computer Networks A Systems Approach. Morgan
Kaufmann Publishers, 2000.

[153] J. Postel. RFC 768: User datagram protocol, August 1980.

[154] J. Postel. RFC 793: Transmission control protocol, September 1981.

[155] J. Postel and J. K. Reynolds. RFC 959: File transfer protocol, October 1985.

[156] G. N. Purdy. Linux Iptables Pocket Reference. O’Reilly & Associates, 2004.

[157] M. Rio, M. Goutelle, T.Kelly, R. Hughes-Jones, J. Martin-Flatin, and Y. Li. A map of the
networking code in linux kernel 2.4.20, datatag, 2004.



210 References

[158] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of
ACM, 12(1):23–41, January 1965.

[159] R. D. Rosner. Circuit and packet switching. Computer Networks, 1:7–26, 1976.

[160] T. Rossmann and C. Tropea. Bionik; Aktuelle Forschungsergebnisse in Natur-, Ingenieur-
und Geisteswissenschaft (german). Springer-Verlag, 2004.

[161] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, second
edition, 2002.

[162] T. N. Saadawi and M. H. Ammar. Fundamentals of Telecommunication Networks. John
Wiley & Sons, Inc, 1994.

[163] H. G. Sandalidis, C. X. Mavromoustakis, and P. Stavroulakis. Ant based probabilistic
routing with pheromone and antipheromone mechanisms. Communication Systems,
17:55–62, 2004.

[164] H. G. Sandalidis, C. X. Mavromoustakis, and P. P. Stavroulakis. Performance measures of
an ant based decentralised routing scheme for circuit switching communication networks.
Soft Comput., 5(4):313–317, 2001.

[165] C. Santivanez, B. McDonald, I. Stavrakakis, and R. Ramanathan. On the scalability of ad
hoc routing protocols. In Proceedings of IEEE INFOCOM 2002. IEEE, June 2002.

[166] S. R. Sarukkai, P. Mehta, and R. J. Block. Automated scalability anaylsis of
message-passing parallel programs. IEEE Parallel and Distributed Technology: Systems
and Applications, 3(4):21–32, 1995.

[167] R. Schoonderwoerd and O. Holland. Minimal agents for communications network routing:
The social insect paradigm. Software Agents for Future Communication Systems, (1), 1999.

[168] R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-like agents for load balancing in
telecommunications networks. In Agents, pages 209–216, 1997.

[169] R. Schoonderwoerd, O. E. Holland, J. L. Bruten, and L. J. M. Rothkrantz. Ant-based load
balancing in telecommunications networks. Adaptive Behavior, 5(2):169–207, 1996.

[170] T. D. Seeley. The Wisdom of the Hive. Harvard University Press, London, 1995.

[171] T. D. Seeley and W. F. Towne. Collective decision making in honey bees: how colonies
choose among nectar sources. Behavior Ecology and Sociobiology, 12:277–290, 1991.

[172] R. Serfozo. Introduction to Stochastic Networks. Springer-Verlag, 1999.

[173] A. Silberschatz and P. B. Galvin. Operating System Concepts (4th Edition).
Addison-Wesley, 1994.

[174] K. M. Sim and W. H. Sun. Ant colony optimization for routing and load-balancing:
Survey and new directions. IEEE Transactions on Systems, Man and Cybernetics-Part A,
33(5):560–572, 2003.

[175] H. A. Simon. Administrative Behavior: A Study of Decision-making Processes in
Administrative Organization. Free Press, New York, 1976.

[176] M. C. Sinclair. Evolutionary telecommunications: A summary. In Proceedings of
GECCO’99 Workshop on Evolutionary Telecommunications: Past, Present and Future.
Orlando, Florida, July 1999.

[177] Munindar P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40–47, 1998.



References 211

[178] A. Sivasubramaniam, U. Ramachandran, and H. Venkateswaran. A comparative evaluation
of techniques for studying parallel system performance. Technical report, College of
Computing, Georgia Institute of Technology, Sept 1994. Tecnical Report GIT-CC-94/38.

[179] C. U. Smith. Designing high-performance distributed applications using software
performance engineering: A tutorial. In 22nd International Computer Measurement Group
Conference, December 10-13, 1996, San Diego, CA, USA, Proceedings, pages 498–507.
Computer Measurement Group, 1996.

[180] C. U. Smith and L. G. Williams. Building responsive and scalable web applications. In
26th International Computer Measurement Group Conference, December 10-15, 2000,
Orlando, FL, USA, Proceedings, pages 127–138. Computer Measurement Group, 2000.

[181] C. U. Smith and L. G. Williams. Performance and scalability of distributed software
architectures: An SPE approach. Parallel and Distributed Computing Practices, 3(4), 2000.

[182] P. G. Spirakis and C. D. Zaroliagis. Distributed algorithm engineering, pages 197–228.
Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[183] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.
Wiley, New York, 1986.

[184] W. R. Stevens. TCP/IP Illustrated: The Protocols, volume 1. Addison Wesley, 1994.

[185] W. R. Stevens. TCP/IP Illustrated: TCP for Transactions, HTTP, NTTP, and the UNIX
Domain Protocols, volume 3. Addison Wesley, 1996.

[186] W. R. Stevens. UNIX Network Programming: Networking APIs – Sockets and XTI,
volume 1. Addison-Wesley, 1 edition, 1997.

[187] W. R. Stevens. UNIX Network Programming, Interprocess Communication, volume 2.
Addison Wesley, 2 edition, 1999.

[188] P. Stone and M. M. Veloso. Multiagent systems: A survey from a machine learning
perspective. Auton. Robots, 8(3):345–383, 2000.

[189] T. Stützle and H. H. Hoos. Max-min ant system. Future Generation Computer Systems,
16(8):889–914, 2000.

[190] Z. Subing and L. Zemin. A qos routing algorithm based on ant algorithm. In Proceedings
of IEEE International Conference on Communications (ICC’01), pages 1587–1591, 2001.

[191] D. Subramanian, P. Druschel, and J. Chen. Ants and reinforcement learning: A case study
in routing in dynamic networks. In Proceedings of 15th Joint Conference on Artificial
Intelligence (IJCAI 97), pages 832–839. Morgan Kaufmann, San Francisco, CA, 1997.

[192] D. J. T. Sumpter. From bee to society: An agent-based investigation of honey bee colonies.
Phd. thesis, The University of Manchester, UK, 2000.

[193] X. H. Sun and L. M. Ni. Scalable problems and memory-bounded speedup. Journal of
Parallel and Distributed Computing, 19(1):27–37, 1993.

[194] S. Tadrus and L. Bai. A qos network routing algorithm using multiple pheromone tables.
In Web Intelligence, pages 132–138, 2003.

[195] A. S. Tanenbaum. Modern Operating Systems. Internals and Design Principles.
Prentice-Hall, International, 1992.

[196] P. Tarasewich and P. R. McMullen. Swarm intelligence: Power in numbers.
Communications of ACM, 45(8):62–67, 2002.



212 References

[197] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska. Implementing network
protocols at user level. In SIGCOMM ’93: Conference proceedings on Communications
architectures, protocols and applications, pages 64–73, New York, NY, USA, 1993. ACM
Press.

[198] M. Thirunavukkarasu. Reinforcing reachable routes. Master thesis, Virginia Polytechnic
Institute and State University, 2004.

[199] R. A. Tintin and D. I. Lee. Intelligent and mobile agents over legacy, present and future
telecommunication networks. In First International Workshop on Mobile Agents for
Telecommunication Applications (MATA’99), pages 109–126. World Scientific Publishing
Ltd., 1999.

[200] R. van der Put. Routing in packet switched networks using agents. Master thesis, KBS,
Delft University of Technology, Netherlands, 1998.

[201] R. van der Put. Routing in the faxfactory using mobile agents. Technical report, KPN
Research, 1998.

[202] S. Varadarajan, N. Ramakrishnan, and M. Thirunavukkarasu. Reinforcing reachable
routes. Computer Networks, 43(3):389–416, 2003.

[203] A. Varga. OMNeT++: Discrete event simulation system: User manual.
http://www.omnetpp.org.

[204] C. Villamizar. Ospf optimized multipath (ospf-omp). In Proceedings of the fourty-fourth
Internet Engineering Task Force, INTERNET DRAFT, draft-ietf-ospf-omp-02,
Minneapolis, MN, USA, February 1999.

[205] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-level network interface for
parallel and distributed computing. In Proceedings of ACM Symposium on Operating
systems principles, pages 40–53, 1995.

[206] K. von Frisch. The Dance Language and Orientation of Bees. Harvard University Press,
Cambridge, 1967.

[207] S. Vutukury. Multipath routing mechanisms for traffic engineering and quality of service in
the internet. Phd. thesis, University of California, Santa Cruz, 2001.

[208] S. Vutukury and J. Garcia-Luna-Aceves. An algorithm for multipath computation using
distance-vectors with predecessor information. In Proceedings of 8th International
Conference of IEEE Computer Communications and Networks, pages 534–539. IEEE
Press, 1999.

[209] S. Vutukury and J. Garcia-Luna-Aceves. A distributed algorithm for multipath
computation. In Proceedings of GLOBECOM, pages 1689–1693, 1999.

[210] S. Vutukury and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay
routing. ACM SIGCOMM Computer Communication Review, 29(4):227–238, 1999.

[211] S. Vutukury and J. J. Garcia-Luna-Aceves. MDVA: A distance-vector multipath routing
protocol. In INFOCOM, pages 557–564, 2001.

[212] C. J. Watkins. Learning from delayed rewards. Phd. thesis, Psychology Department,
University of Cambridge, UK, 1989.

[213] C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 1:279–292, 1992.



References 213

[214] R. W. Watson and S. A. Mamrak. Gaining efficiency in transport services by appropriate
design and implementation choices. ACM Transactions on Computer Systems, 5(2):97–120,
1987.

[215] H. F. Wedde and M. Farooq. Beehive: An efficient, scalable, adaptive, fault-tolerant and
dynamic routing algorithm inspired from the wisdom of the hive. Technical report,
Informatik III, Computer Science Department, University of Dortmund, 2005. TR-801.

[216] H. F. Wedde and M. Farooq. A performance evaluation framework for nature inspired
routing algorithms. In Applications of Evolutionary Computing, LNCS 3449, pages
136–146. Springer Verlag, March 2005.

[217] H. F. Wedde and M. Farooq. The wisdom of the hive applied to mobile ad-hoc networks.
In Proceedings of the IEEE Swarm Intelligence Symposium, pages 341–348, 2005.

[218] H. F. Wedde, M. Farooq, T. Pannenbaecker, B. Vogel, C. Mueller, J. Meth, and
R. Jeruschkat. BeeAdHoc: an energy efficient routing algorithm for mobile ad-hoc
networks inspired by bee behavior. In Proceedings of ACM GECCO, pages 153–160, 2005.

[219] H. F. Wedde, M. Farooq, T. Pannenbaecker, B. Vogel, C. Mueller, J. Meth, R. Jeruschkat,
M. Duhm, L. Bensmann, G. Kathagen, K. Moritz, R. Zeglin, and T. B”̆ning. BeeHive–An
Energy-Aware Scheduling and Routing Framework. Technical report-pg439, LSIII, School
of Computer Science, University of Dortmund, 2004.

[220] H. F. Wedde, M. Farooq, C. Timm, J. Fischer, M. Kowalski, M. Langhans, N. Range,
C. Schletter, R. Tarak, M. Tchatcheu, F. Volmering, S. Werner, and K. Wang.
BeeAdHoc–An Efficient, Secure, Scalable Routing Framework for Mobile AdHoc Networks.
Technical report-pg460, LSIII, School of Computer Science, University of Dortmund, 2005.

[221] H. F. Wedde, M. Farooq, and Y. Zhang. BeeHive: An efficient fault-tolerant routing
algorithm inspired by honey bee behavior. In Ant Colony Optimization and Swarm
Intelligence, LNCS 3172, pages 83–94. Springer Verlag, Sept 2004.

[222] K. Wehrle, F. Pählke, H. Ritter, D. Müller, and M. Bechler. The Linux Networking
Architecture. Prentice Press, 2004.

[223] M. Weiser. The computer for the 21st century. Scientific American, pages 933–940, 1991.

[224] M. Weiser. Hot topics: Ubiquitous computing. IEEE Computer, 1993.

[225] M. Weiser. Some computer science issues in ubiquitous computing. Commun. ACM,
36(7):74–84, 1993.

[226] M. Weiser. The world is not a desktop. Interactions, 1(1):7–8, 1994.

[227] G. Weiß, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. The MIT Press, San Francisco, CA, 1999.

[228] A. R. P. White. SynthECA: A Synthetic Ecology of Chemical Agents. PhD thesis,
Department of Systems and Computer Engineering, Carleton University, August 2000.

[229] T. White. Routing with swarm intelligence. Technical report sce-97-15, Systems and
Computer Engineering Department, Carleton University, Canada, 1997.

[230] T. White and B. Pagurek. Towards multi-swarm problem solving in networks. In 3rd
International Conference on Multi-Agent Systems (ICMAS 1998), 3-7 July 1998, Paris,
France, pages 333–340. IEEE Computer Society, 1998.



214 References

[231] T. White and B. Pagurek. Application oriented routing with biologically-inspired agents.
In Proceedings of Genetic Evolutionary Computation Conference (GECCO), pages
1453–1454, San Francisco, CA, USA, July 1999. Orlando, Florida, Morgan Kaufmann
Publishers Inc.

[232] T. White and B. Pagurek. Emergent behaviour and mobile agents. In Proceedings of the
workshop on Mobile Agents Coordination Cooperation Autonomous Agents, Washington,
Seattle, May 1-5 1999.

[233] T. White, B. Pagurek, and D. Deugo. Biologically-inspired agents for priority routing in
networks. In S. M. Haller and G. Simmons, editors, Proceedings of the Fifteenth
International Florida Artificial Intelligence Research Society Conference, May 14-16, 2002,
Pensacola Beach, Florida, USA, pages 282–287. AAAI Press, 2002.

[234] T. White, B. Pagurek, and F. Oppacher. ASGA: Improving the ant system by integration
with genetic algorithms. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,
D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, Genetic
Programming 1998: Proceedings of the Third Annual Conference, pages 610–617,
University of Wisconsin, Madison, Wisconsin, USA, 22-25 1998. Morgan Kaufmann.

[235] T. White, B. Pagurek, and F. Oppacher. Connection management using adaptive agents.
In Proceedings of 1998 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’98), pages 802–809. CSREA Press, 1998.

[236] L. G. Williams and C. U. Smith. Pasa(sm): An architectural approach to fixing software
performance problems. In 28th International Computer Measurement Group Conference,
December 8-13, 2002, Reno, Nevada, USA, Proceedings, pages 307–320. Computer
Measurement Group, 2002.

[237] M. Woodside. Scalability metrics and analysis of mobile agent systems. In Revised Papers
from the International Workshop on Infrastructure for Multi-Agent Systems, pages
234–245, London, UK, 2001. Springer-Verlag.

[238] M. Wooldridge and N. R. Jennings. Agent theories, architectures, and languages: A
survey. In Intelligent Agents, ECAI-94 Workshop on Agent Theories, Architectures, and
Languages, Amsterdam, The Netherlands, August 8-9, 1994, Proceedings, volume 890 of
Lecture Notes in Computer Science, pages 1–39. Springer, 1995.

[239] M. Wooldridge, N. R. Jennings, and D. Kinny. A methodology for agent-oriented analysis
and design. In ACM Third International Conference on Autonomous Agents, pages 69–76,
1999.

[240] G. R. Wright and W. R. Stevens. TCP/IP Illustrated: The Implementation, volume 2.
Addison Wesley, 1995.

[241] Y. Yang, A. N. Zincir-Heywood, M. I. Heywood, and S. Srinivas. Agent-based Routing
Algorithms on a LAN. In IEEE Canadian Conference on Electrical & Computer
Engineering, 1442-1447 2002.

[242] J. Yu. RFC 2791: Scalable routing design principles, July 2000.

[243] L. Zhang, S. Deering, and D. Estrin. RSVP: A new resource reservation protocol. IEEE
Communications Magazine, 31(9):8–18, 1993.

[244] Y. Zhang. Design and implementation of bee agents based algorithm for routing in high
speed, adaptive and fault-tolerant networks. Master thesis, LSIII, The University of
Dortmund, Germany, 2004.



References 215

[245] W. Zhong and D. Evans. When ants attack: Security issues for stigmergic systems. UVA
CS Technical Report, CS-2002-23, Department of Computer Science, University of
Virginia, April 2002.

[246] H. Zhu. Formal specification of agent behaviour through environment scenarios. In Formal
Approaches to Agent-Based Systems, First International Workshop, FAABS 2000
Greenbelt, MD, USA, April 5-7, 2000, Revised Papers, volume 1871 of Lecture Notes in
Computer Science, pages 263–277. Springer, 2000.

[247] H. Zhu. Slabs: A formal specification language for agent-based systems. International
Journal of Software Engineering and Knowledge Engineering, 11(5):529–558, 2001.


