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Abstract: Detecting all kinds of intrusions efficiently requires a
global view of the monitored network. This can only be achieved
with an architecture which is able to gather data from all sources.
We have developed a security operation center called SOCBox
which is able to detect coordinated attacks that are not detected by
traditional IDS. In this article, we present the global architecture
of the SOCBox as well as several methods used to test its accuracy
and performance. A real ISP network have been used as well as
experiments in our lab.
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1 Introduction

Ensuring network security requires two modules: protection and
supervision. Protection is composed of hardware, software and a
security policy that must be followed. Even the best protection
is always vulnerable to attacks due to unknown security bugs.
Besides, the network configuration is subject to constant changes
and possibly adds security holes. That is why the network
supervision is an essential part of the security process and is
realized by security experts.

In order to help the supervisors, Intrusion Detection Systems
(IDS) have been developed [3], but these systems have several
flaws. First of all, IDSs have an insufficient rate of detection: ei-
ther too many intrusions are detected or missed [5]. Furthermore,
simple IDSs have no sufficient information to detect coordinated
attacks. Other types of IDS have been created and tested like
distributed one [12]. Cooperation of IDSs is still ongoing work [6].

We have proposed a completely integrated Security Operation

Center (SOC), called SOCBox!, in order to overcome the
limitations of IDS. The SOCBox gathers data from a wide range
of sources (IDS, firewall, router, workstation, etc.) and therefore
has a global view of the network. Its analysis engine can then
correlate all messages generated by all the network components
and find patterns of intrusion.
To measure the detection capabilities and performance of the
SOCBox, an evaluation has been performed with Snort [19] as
a baseline. This evaluation has taken place in two different but
complementary environments: a real Internet Service Provider
network and our laboratory.

The rest of the paper is structured as follows: Section 2 de-
signs the global architecture of the SOCBox. We then focus on
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the collection and the analysis of the data generated by sensors in
sections 3 and 4. In Section 5, we focus on the SOCBox evalua-
tion and we provide details about the experimentation. Section 6
summarizes the main results, presents our conclusions and describe
further research to be performed in the SOCBox design.

2 Global architecture

The SOCBox implements the different type of boxes defined for
network intrusion detection systems in [13]. However, beside the
pure technical aspects involved in such an implementation, it is
necessary to consider the supervision of an IT infrastructure as a
full operational project. We will thus follow the functional steps
of such a project in order to describe both the purpose and the
concepts of selected parts of the architecture described in figure 1.

2.1 Data acquisition

Before setting up sensors and designing any correlation or analysis
rule, it is necessary to evaluate the overall security level of the IT
infrastructure to be supervised. This will make it possible to de-
termine if an intrusion path may effectively lead to an intrusion on
the target system and the criticality associated to such an intrusion
attempt.

Another point to be defined is the security policy, mostly in
terms of access rights, permitted operations, etc.

2.1.1 Vulnerability database

The wvulnerability database holds information about security
breaches and insecure behavior that would either impact the overall
security level or that could be exploited by an attacker in order to
perform an intrusion. The database format must make it possible
to include the following types of vulnerabilities :

e Structural vulnerabilities, i.e. vulnerabilities internal to spe-
cific software such as a buffer overflow, format string, race
conditions, etc.

e Functional vulnerabilities, depending on configuration, oper-
ational behavior, users, etc. These vulnerabilities differ from
the previous ones as they deeply depend on the environment
in which they lie.

e Topology-based vulnerabilities, including networking impact
on intrusions and their consequences.

2.1.2 Security policy

The next step of the supervised system inventory is an organiza-
tional one and, more specifically, a review of security policy aspects



Real-time L Bt |
Monitoring Permanent Risk E on |
Statsical [ - o
‘Analysis 1 Security Activity |
Incident N
Handling 1 System Status
R'Box (SOC Console) R"Box (Customer Portal)
—
° —
g
3 R
2 T Alerts —| r i
S Database
< < Stats _J
°
3 4| Messages < Correlation Customer
:g Status D
K] i
Q
D Box (Local events database) A Box L
T (Correlation Security Policy
T Engine,
o) Client
— Configuration
= Record
Windows 2k / XP  K— ~———
Linux k—
Apache k— o K Box (Knowledge Base)
| syslog
5 ~ s SNMP
3
H Oracle ke (Evers )
= A SMTP N Host based IDS
s Firewall-1 —
I 3 k| (T: HTTP / XML )
isco Pix
s < H Proprietary Integrity Checking
2o Snort K—
3 oS | : Network equipment
= Network DS
2 -
2 Tripwire
Q d T Status Poling Frowal dos Client System
— Integrity N pe— Modelisation
C Box (Collection & Formating Modules) T K system

Figure 1: Global architecture of a SOC

that would impact either event generation and/or the reaction-
reporting processes.

It is clear that the two major aspects of security policy that
need to be reviewed are authorization and testing/audit proce-
dures. These two aspects will provide information concerning be-
havior that sensors would detect. Events generated (administrator
login, portscans, etc.) will then be marked as matching with secu-
rity policy criteria. Others will be analyzed as possible part of an
intrusion attempt.

This information is stored in the Knowledge Base.

2.1.3 Status evaluation

The last part of the Knowledge Base is a detailed security level
evaluation of the systems to be monitored. The objective is to
process such an evaluation through an analyzing engine capable of
integrating the three kinds of vulnerabilities as seen above, as well
as security policy constraints. The engine should provide a list of
vulnerabilities each system is exposed to, the relative impact of
each vulnerability and intrusion paths leading to the activation of
”inactive” vulnerabilities.

In order to be reliable, such an evaluation must be re-generated
each time a new vulnerability is found or one of the monitored
systems is changed.

2.2 Data analysis and reporting

2.2.1 Structural and behavior-lead alerts

The main operations performed that generate alerts are the follow-
ing: correlation, structural analysis, intrusion path analysis and
behavior analysis. Correlation is a stand-alone operation leading
to the creation of contexts against which further analysis will be
made, in order to check if they match the characteristics of an
intrusion attempt. Structural analysis may be compared to an
advanced pattern matching process, used to determine if events
stored within a certain context lead to a known intrusion path or
to an attack tree [20]. Intrusion path analysis is the next step
whose output provides information about the exposure of the tar-
get system to the intrusion attempt detected. Then, the behavior

analysis integrates elements from the security policy in order to
determine if the intrusion attempt is allowed or not.

The purpose of such operations is to generate alerts that not only
match the structural path of intrusion (i.e. scan, fingerprinting,
exploiting, backdooring and cleaning), but also take care of the
security policy defined, as well as criticality of targets systems.

3 Collection and storage

3.1 Data collection

Collecting data from heterogeneous sources implies the setup of
two kinds of agents: protocol and application. The former collects
information from E Boxes, the latter parses information for storage
in a ”pseudo-standard” format. These two modules are connected
by a dispatcher. Such an architecture allows high-availability and
load-balancing systems to be set at any level into the architecture.

Figure 2 shows some architecture examples, based on the details
provided below.

3.1.1 Protocol agents

Protocol agents are designed to receive information from specific
transport protocols, such as syslog, snmp, smtp, html, etc. They
act like server side applications and their only purpose is to listen
to incoming connections from E Boxes and make collected data
available to the dispatcher.

The simplicity of such agents make them easy to implement and
maintain.

The raw format storage is usually a simple file, though direct
transfer to the dispatcher through named pipes, sockets or shared
memory ensures better performance.

From a security point of view, the most important point is to
ensure the integrity of data collected by agents. Therefore, data is
encapsulated into a secure tunnel.
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Figure 2: Collection Macro Architecture Examples

3.1.2 Dispatcher and application agents

The dispatcher’s purpose is to determine the source-type of an in-
coming event and then forward the original message to the appro-
priate application agent. Once again, implementation is relatively
trivial, once a specific pattern has been found for each source-type
from which the data may be received.

Autonomous operations performed by the dispatcher are the
following:

e listening to an incoming channel from protocol agents, such
as socket, named pipe, system V message queue, etc.

e checking pattern matching against a patterns database that
should be pre-loaded in memory for performances considera-
tions.

e sending the original message to an E Box specific application
agent through any suitable outgoing channel.

Application agents perform formatting of messages so that they
match with the generic model of the message database.
Autonomous operations performed by application agents are:

e listening to an incoming channel from dispatchers, such as
socket, named pipe, system V message queue etc.

e parsing the original message into standard fields.

e transmitting the formatted message to corresponding D
Boxes.

3.2 Data formatting and storage

Two kinds of data have to be formatted in a ”standard” man-
ner (i.e. homogeneous and understandable by any module of the
SOCBox): host entry and collected messages.

3.2.1 Host entry

The need for a standardized host data structure appears since:

e sensors may transmit host information in IP address format
or FQDN (Full Qualified Domain Name) format.

e multi-homing techniques provide multiple IP addresses for
the same physical system.

e virtual host techniques provide multiple FQDN for the same
physical system.

e high availability and load balancing systems may hide multi-
ple systems behind a single IP address or FQDN.

It appears that identifying a host either by its IP address or its
FQDN is not reliable. What is more, in the never-ending need for
performance, (reverse) DNS lookup cannot be performed for each
new (IP address) FQDN detected in logs. It is then necessary to
rely on a third-party ID, IP address and FQDN independent: the
host token.

The data structure for storing host information follows the
scheme given in Figure 3.

Host Table

Host Token
@Host_IP_Table
@Host_FQDN_Table

| ,,

Host IP Table Host IP Table
ID ID
IP Address FQDN

Figure 3: Host Entry Data Structure

3.2.2 Messages

Working on the data generated by the different types of equipment,
transmitted via different protocols requires ”standard” formatting.
Although an effort has been made to define a worldwide standard
with IDMEF [7], it appears that the XML bus used is too heavy
and resources consuming, for our purposes of event correlation.
However, a separate translation process must be implemented for
IDMEF compliance. Relations between each structure are given in
Figure 4.
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CVE
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intrusion Type ID —

Figure 4: Formatted message definition structures



4 Correlation

4.1 Overview

4.1.1 Operating the correlation

The correlation’s purpose is to analyze complex information se-
quences and produce simple, synthesized and accurate events. In
order to generate such qualified events, five operations are to be
performed:

e the first, obvious, operation is to identify duplicates and set
a specific flag in order to keep the information and continue
without the need keep multiple identical messages.

e sequence patterns matching is the most common operation
performed by a correlation engine. Its purpose is to identify
a sequence of messages which would be characteristic of an
intrusion attempt. It makes it possible to identify on-going
intrusion processes, as well as complex intrusion scenarios.

e time pattern matching is designed to include another impor-
tant dimension in intrusion analysis: time. This is mainly
used for context (see below) management, as well as slow
and distributed intrusion processes.

e system exposure and criticality analysis, provide information
about the target system’s vulnerability to detected intrusion
attempts. Indeed, it seems inappropriate to have the SOCBox
generating alarms concerning an intrusion scenario based on
a vulnerability that the target system is not exposed to. An-
other piece of information is the criticality of the intrusion
i.e. its overall impact on the supervised system. This helps
to manage the priorities in terms of reaction to multiple in-
cidents.

e security policy matching, is a behavior-based filter that elim-
inates specific events if they match security policy criteria
such as administrator login, identification processes and au-
thorizations / restrictions.

A global overview of correlation operations is given in figure 5
below.

4.1.2 Introduction to contexts

The analysis defined above is based upon a specific structure called
contexts. All correlation operations are performed against these
structures. In simple terms, the definition of a context is the fol-
lowing: a container of formatted data matching a common criteria.
Therefore, any message stored in the formatted message database
is to be part of one or more contexts. Correlation operations will
be done in parallel so that they can be run simultaneously on each
context. Two kinds of context management approaches can be
implemented. The first one is to define independent and distinct
contexts. Each context will contain messages matching every cri-
teria. We define such an architecture as an array of contexts. The
second approach is a hierarchical one. Top level contexts matching
a limited number of criteria are defined. Then sub-contexts, based
on different criteria, are created and so on. This will be defined
hereafter as context tree. As is to be expected, none of the preced-
ing approaches meet all needs, be they in terms of performance or
functionality. A mixed architecture will thus have to be defined.

4.2 Contexts

4.2.1 Context definition criteria

Defining context criteria is done according to security related
events that the SOCBox must react to, even if they are distributed
scanning operations, fingerprinting, massive exploit testing, ac-
count brute forcing, spamming and so on. A full functional ar-
chitecture of contexts is given in figure 6.

The first obvious criteria is the attacking and attacked host’s
ID, which has to be standardized:

e source, defining source as a context creation criteria allows
sweeps detection, identification of the systems used as attack
relays or compromised by worms and targeted hack-proofing.

e target, contexts created by target criteria will provide infor-
mation on scans (be they distributed, slow or "normal”) and,
should it even be noticed, intrusion attempts and system com-
promises.

Two arrays of context should then be defined, one with context
matching sources, another matching targets. Each context of each
array should then be considered as a top-level context for the con-
text trees. The criteria to be matched by the smallest ”branches”
would be target ID (for contexts created by the source ID match)
or source ID (for contexts created by the source ID match).

While working with trivial data, the protocols and the ports of
the targeted systems should form the criteria for the next level of
context ”branches”. This is mainly done in order to isolate single
scanning operations from heavy repetitive attempts to compromise
a system through a specific application. What is more, it helps to
identify the various steps of an intrusion. Indeed one of the most
common intrusion scenarios, is a wide portscan sweep followed by
fingerprinting/version identification on open ports followed by an
exploit launched on systems believed to be vulnerable.

In order to identify which type of message is stored, thus start-
ing a more accurate analysis of messages, a next level of context
generation is performed according to the intrusion type ID. The
last ”branch” of contexts contains specific intrusion ID, i.e. the
characterization of each message. At this level we reach the atomic
(except for duplicates) dimension of each message. This field refers
to the Intrusion Table and will be responsible for the link between
the correlation engine and system status information stored in the
Knowledge Base.

4.2.2 Contexts structure

As any correlation operation is exclusively performed on contexts,
it appears that their structure is probably one of the most impor-
tant aspects of the SOCBox. The functional architecture is made
up of an array of context trees. Each tree contains 4 levels of
branches, as described in figure 6.

4.2.3 Contexts status

Another important characteristic of context is its status. We define
three distinct statuses as detailed below:

e active, context matches specific criteria (usually based on
time but could be any other criteria), which could be a char-
acteristic of an on-going intrusion process. Typically, such a
context appears to be under a heavy load from the arrival
of new messages and its analysis by the correlation engine
should be set to the highest possible priority.

e inactive, such a context either does not match ”active” cri-
teria or did not receive a specific closure code. This means
that it is no longer analyzed by the correlation engine, but
that it can be reactivated by the next message matching the
same context criteria.

e closed, in this state a context is completed. Any new message
matching this context criteria will create a new context.

Context status management is summarized in figure 7.

( New Messages '—>|

Active | Inactive

Closure Code

Y

Closed

Figure 7: Context status management
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4.3 Analysis

4.3.1 Structural analysis

The purpose of structural analysis is to identify ongoing intrusion
attempts, manage context inactivity status and context closure
conditions. In simple terms, structural analysis is a set of oper-
ations performed by independent modules on each context. Each
module is activated by a specific message and performs analysis
using a ”standard” semantic.

The output of the analysis modules is the result of several log-
ical operations between autonomous conditions against fields of
contexts. Figure 8 describes members of such operations.

| Analysis Module |

)
[ |

Message Correlation | ” | Message Correlation |

[ Feacondion | && [ Fieldcongiion | && |

Field Condition |

Figure 8: Analysis module structure

Field conditions have the following structure:
field operator <field | value> [!]

It appears that the power of structural analysis relies on the
number of operators made available. However, the very structure
of contexts provides embedded operations such as source, target,
port correlation. This not only increases the number of ”native”
operators but also significantly improves the performances of struc-
tural analysis. The ! sign indicates that the field condition is to
be matched in order to activate the module.

Two kinds of events can activate analysis modules: messages
and time.

e messages, as described above, some field conditions must be
matched in order to activate an analysis module. A header
containing field conditions to be met, is then generated for
each analysis module. Given the structure of analysis module,
it appears that the header will be a set of logical OR oper-
ations, whose members will be field conditions that require
the least amount of resources to be evaluated.

e time, the analysis module header may also contain timer in-
formation forcing the correlation to be evaluated. This is
mainly used for context closure and time dependent intru-
sions detection such as (slow) portscans, brute forcing, etc.

4.3.2 Advanced correlation

Advanced correlation operations are performed in order to define
the criticality of an intrusion attempt and evaluate if such an in-
trusion attempt is permitted according to the security policy.

The functional analysis step is performed in order to evaluate
system exposure to the intrusion and the overall impact of such an
intrusion on the supervised system. Once the structural analysis
has provided information about an occurring intrusion attempt,
a request is made to Customer Status part of the K Box. This
request contains the Intrusion ID and the Host token of the target.
The response provides the following pieces of information:

e criticality, is a value from an arbitrary scale, typically info-
warning-minor-major-critical based.

e closure code, if the context is to be closed, usually because
the target is not impacted by the intrusion attempt.

e message, a new formatted message to be appended to the ac-
tual context, that may activate additional analysis modules.

The purpose of this last analysis is to define if the attempts
match the security policy. This is mainly used to manage ac-
cess to accounts but can also be implemented in the case of pre-
programmed audits, portscans, etc. In such a situation a closure

code is sent to the context. Technically, this analysis is performed
in exactly the same way as structural analysis i.e. via specific mod-
ules whose structure is loaded from the security policy part of the
K Box.

5 The SOCBox evaluation

In this section, we evaluate the intrusion detection capabilities of
the SocBox and its performance. The SocBox evaluation consists in
running it in a real ISP network and to verify its capacity to manage
events coming from heterogeneous platforms (routers and access
servers, hardware and software firewalls, unix and linux servers,
windows workstations, web and mail servers, a AAA server and
other ISP applications). This test has taken place for a week. After
that, some exploits were executed against the network to check
the capacity of the SocBox to detect various classes of intrusions.
Then, the ability of the SocBox to detect distributed intrusions is
evaluated. After that, the clarity and the relevance of the SocBox
reports are studied. Finally, performance evaluation take place in
comparison with Snort.

5.1 The evaluation network design

The Socbox is evaluated in a real ISP network (Figure 9) which
manages more than 50000 subscribers. This ISP network is com-
posed by a core sub-net and several regional sub-nets.

5.2 Detection capabilities

5.2.1 Capabilities to manage heterogeneous
platform events

For the Socbox be able to manage data coming from sensors, it is
necessary to install log redirection towards it on sensors. To verify
the SocBox capabilities to manage heterogeneous platform events,
we run it in a real situation on a ISP network for a week. This
showed multiple attempts at intrusion into the network servers
(including the SocBox), in particular port scans, authentication
attempts, brute force attacks, sql attacks, mail relay attempts, etc.
These attacks are carried out on sensors running Solaris, Hp ux,
Linux, Windows 2000, Cisco I10S, Pix OS and applications such as
Bind, Tacacs+, Apache, etc.

5.2.2 Intrusions Detection Capability

In this part, some classes of attacks are launched against some
critical sensors and the SocBox itself. The goal is to verify the
intrusion detection capability of the SocBox. Some of the tests
carried out are presented below :

Flood an pollution at- | Detection | Comment

tacks

Flooding the SocBox The SocBox detects
with  Harpoon  [21] multiple  ”authen-
followed by a brute YES tication failed”
force  attack  (with against the access
THC-Hydra [24]) on server.

a Cisco access server

(Victim 3).

Flooding and pollut- The SocBox detects
ing the SocBox with a the brute force at-
random MAC address YES tack on the access
generator (Macof [23]) server (multiple ”au-
followed by a brute thentication failed”).
force attack (with THC-

Hydra) on a router

(Victim 3).
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Figure 9: The ISP network used for the SocBox evaluation
Brute force and pass- | Detection | Comment Web attack Detection | Comment
word cracking attack A Whisker [18] attack The SocBox gener-
Brute force attack The attack is de- on a web server running ates ”target identifi-
against a router with tected. Solaris and Apache 2 on YES cation” alerts.
THC-Hydra YES the ISP site.
Attempt to crack pass- the attack is de-
word by John the Rip- YES tected. Anomaly behavior in- | Detection | Comment
per [15] trusion detection evalu-
ation
Scan and sniff Detection | Comment Attempt to connection The SocBox gener-
Scanning the network The SocBox detects at 9 pm to a windows ates a ”suspicious
with nmap. the scan (data are 2000 server with a user- YES behavior” alarm.
YES collected by the fire- name authorized to con-
wall sensor). nect only between 7 am
Sniffing the network the SocBox is unable and 8 pm.
with Dsniff [22]. NO to detect the attack
be_cause it can not Multi steps attacks Detection | Comment
sniff on a network. Lpr attack (Ipr filel (big The intrusion is
file); rm filel; In -s detected by  the
Fragmentation, inser- | Detection | Comment /etc/shadow filel) YES SocBox.
tion and camouflage
attack _ _ _ Attack against filtered | Detection | Comment
Fragrouter [16] attack The intrusion is ports and services
on.th.e backbone router YES detected by  the Executing a brute force The intrusion is ig-
(Victim 5) from a re- SocBox. attack with THC-Hydra nored by the SocBox
mote host. on a router (Victim YES because it can never
nmap with DECOY op- the SocBox detects 5) having ssh, telnet, succeed.
tion (source IP camou- YES the attack. rlogin and rsh filtered.
flage). Executing a web server The intrusion is ig-
attack on the DNS nored by the SocBox
Offline detection capa- | Detection | Comment server (Victim 4, which YES because it can never
bility does not run a web succeed.
Replaying in the The SocBox gener- server).
ISP site the DARPA YES ates alerts about the As we can see, the SocBox is able to detect various classes of in-
2000 [25] DDOS at- DDOS attacks. trusions, suspicious behavior (defined by the security manager) and
tack data set with . 'S, Sush hich yl 1 v K ger) ¢
TepReplay [ 1]. it can ignore events which generate useless alerts (attacks against
non-vulnerable systems). It also appears that the more sensors




send their logs to the SocBox, the better its detection capability
is. To improve its efficiency it is possible to associate with it an in-
trusion detection system based on a behavioral approach or a tool
which can intercept and format network packets and redirect them
towards it. Online exploits executions and the replay of DARPA
2000 data sets show that the Socbox can detect online and offline
intrusions. The security manager also plays a major role in the
SocBox detection efficiency; the more good rules of detection he
writes, the more efficient the SocBox is. The security manager is
also responsible for actions taken against intrusions.

In summary, we can say that the Socbox has proved its efficiency in
detecting intrusions and in presenting the network security status
clearly by using graphical representations.

5.2.3 Detection of distributed Intrusions

The evaluation of the aptitude of the SocBox for detecting dis-
tributed intrusions is described on Figure 10. The scenario of this
attack is the following:

An attacker wants to hack a host (Victim) located on the ISP core
sub-net and hosting information about subscribers. His idea is to
gain access to Victim by brute force attack and to steal data about
subscribers. Victim is secured and can be acceded only from spe-
cial hosts in the Management LAN and in some regional sub-nets
(for maintenance purpose). The attacker tries to compromise Vic-
tim and unfortunately for him, all his actions are refused. After
further thought, he thinks that it would be easier for him to try to
hack Victim from hosts located on the ISP network. He uses social
engineering technique to know the name of the administrators of
the ISP core and regional sub-nets; this can help to improve the
username database of the brute forte attack tool. After several
attempts at intrusion, he compromises three less secured hosts on
the ISP network (one in the Management LAN and two in regional
sub-nets). From these hosts, he initiates the attack, composed of
the following actions:

e From Attacker 1 located in a regional sub-net, he launches
a quick scan (with nmap) to detect opened ports on Victim.
He sees that ssh and mysql are opened on Victim.

e From Attacker 2 located in the ISP core sub-net, he executes
an OS Fingerprinting with Xprobe2. He see that Victim runs
Solaris 8.

e From Attacker 38 located in another regional sub-net, he
launches a brute force attack (with THC-Hydra) against Vic-
tim to gain access to the mysql database.

This test shows that the SocBox can gather events and alerts

coming from different sensors (Cisco Pix Firewall sensor detects the
quick scan, Snort sensor detects the OS Fingerprinting, and logs
of Victim permit to detect the brute force attack). Because these
events have the same target and they take place approximatively
in the same time, the SocBox matches them with the same context
and generates a suspicious behavior alert. An alarm is also sent
to the security manager for advanced investigation on Attacker 1,
Attacker 2 and Attacker 3. Investigation on these hosts shows that
Attacker acceded them. Then, the security manager concludes that
Victim is attacked by Attacker.
Without correlation of alerts, it would be impossible to detect this
attack. The SocBox is thus able to correlate alerts coming from
divers sources (firewalls, IDS, hosts, etc.) to generate a single alert.
Many NIDS can not detect this kind of multi events intrusion.

5.3 Performance Evaluation

At this stage, we check the aptitude of the SocBox to handle high
bandwidth traffic and its ability to detect intrusions when a mas-
sive attack occurs. We uses D-ITG [4] and IP-Traffic [26] to gen-
erate traffic in this test. The same tests are apply to Snort for
comparison purpose. In spite of the fact that Snort isn’t a Soc and
the SocBox isn’t an NIDS (the SocBox is much more than an NIDS
because it has a global view of a network security), the compari-
son between Snort and the SocBox is justified in this test: Both
monitor the security of a unique host and they generate alerts only
about attacks on this host.

SocBox behavior.

cessing capacity

5.3.1 Evaluation of the SocBox maximum pro-

A victim host (which sends its log to the SocBox via syslog)
is flooded and attacked (Figure 11(a)). Then, we observe the
The Socbox host characteristics are: Pentium
III, 450 MHz, 256MB of RAM. The same tests are carried out
with Snort installed on a host which have the same characteristics

(Figure 11(b)). The tests are summed up in the following tables.

Action The SocBox reac- | Snort reaction
tion

Launching a | The Socbox gen- | Snort generates

Whisker attack | erates ”Target | "WEB-MISC

on a  victim | identification” whisker” alerts.

running Apache. alerts.

Flooding the | The SocBox | Snort generates

SocBox and Snort | generates alerts | alerts about the

with 10° pack- | about the whisker | whisker attack

ets of 500bytes | attack (the | and it ran slowly

each second for | Socbox host | (around 250 MB

15mins followed
by a Whisker
attack.

uses 245 MB of
RAM).

of RAM is used).

Flooding the
SocBox and
Snort with 106
packets of 10
bytes each
ond for 15mins
followed by a
Whisker attack.

sec-

The SocBox
runs slowly and
it detects the
Whisker attack
(the SocBox
host wuses more
than 245 MB of
RAM).

Snort detects the

Whisker  attack
and it runs too
slowly  (around

250 MB of RAM
is used).

Flooding the
SocBox and
Snort with
1,2 % 10% pack-
ets of 10 bytes
each second for

The SocBox de-
tects the Whisker
attack  (around
250MB of RAM
is used by the
SocBox host). It

Snort host has
not enough mem-
ory to continue
(all the memory
is used up).

15mins followed | runs slowly.

by a Whisker

attack.

Flooding the | The SocBox host
SocBox and | has not enough
Snort with | memory.

1,4 * 10% pack-
ets of 10 bytes
each second for

15mins followed
by a Whisker
attack.

After that, ping with large packet flood is carried out against
both the Socbox and Snort, followed by a Whisker attack against
the victim host. The goal is to observe the behavior of the SocBox
and Snort under a strong attack. The victim host characteristics
are: Pentium III, 450 MHz, 256 MB of RAM.

e Action: Sending 20 millions (2 * 107) Ping with 50000 bytes
each one (time between 2 Pings = 0) to the Victim host (via
IP-Traffic), followed by a Whisker attack.

e The SocBox behavior: Up to 1,8%10% Ping, the Socbox is able
to detect the Whisker attack. At 1,9 * 105 Ping the SocBox
host is broken down and is unable to detect the Whisker
attack.

e Snort behavior: Snort generates too many alerts about the
Ping (10% Ping generate 100576 alerts, including 50283 Large
ICMP packets detected). At 10% Ping, Snort generates 4GB
of dumped data and is unable to generate alerts.

5.3.2 Comments

This test proves that the SocBox is able to detect intrusions under
a high traffic or under a massive attack. Under a massive attack
the SocBox uses less resources (CPU and memory) than Snort and



The ISP real network

,.

.:Atta cker 1
L

Regional sub-net 1

N

Regional sub-net 2

Figure 10: Evaluation of the SocBox aptitude for detecting distributed intrusions

has better performance. It also generates far fewer alerts than I
Snort and is able to compact similar alerts to generate one only. E 50
Moreover, the SocBox only records events that match security rules S 45
defined by the security manager. This allows a fine management § 40 t
of the SocBox hard disk space. On the whole, the detection per- £ 35 |
formance of the SocBox is closely related to the following factors: g 30 |
8
e The capacity of the security manager to define good detection s 5y
rules. £ 20
] 15 |-
e The number of active sensors in the network (the more sensors g 0l
we have , the more powerful the SocBox is). 5 5l
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the CPU and RAM).

Concerning Snort, the more powerful its host is (CPU, RAM
and hard disk), the better the detection performance is.
The Socbox and Snort performance, memory usage and hard disk
usage during the Ping test are shown on the following graphs (Fig-

Figure 13: Snort Ping test result
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Figure 12: SocBox Ping test result Figure 14: Snort and the Socbox memory usage during

Ping test
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5.3.3 Clarity of the SocBox reports

The Socbox has a reporting module which allows the generation
of reports in HTML and PDF format. These reports can be gen-
erated in a scheduled manner or on-the-fly. On-the-fly reports are
generated to obtain specific metrics or to troubleshoot when an
incident occurs. Scheduled reports are automatically generated at
regular intervals and are transmitted by email to one or more re-
cipients and stored in a database. The SocBox is able to generate
4 types of report:

e The standard report (user report) gives information about
the starting time and ending time of attempts at intrusions
as well as their sources and targets. This kind of report is
generally used to have a global view of the intrusion activity
in a network.

e The operational report classifies events by intrusion source,
target, date and type. It helps the security manager to im-
prove his network security or to troubleshoot.

e The strategic report gives a macroscopic view of a network
security (number of events related to intrusions, main intru-
sion types, main sources and targets). It is mainly used by
decision-makers to justify the investments.

e A firewall report is a dedicated packet filtering summary re-
port. It gives information about the number of events, the
services most often targeted, operations on firewall, the in-
trusion starting and ending times, the sources and targets
of intrusions. It can help to troubleshoot or to improve the
firewall security.

Reports generated by the SocBox give much information about
the network security, in particular the most active days, the most
attempted intrusions, a temporal analysis of these intrusions, their
principal sources and targets. According to the type of report,
there will be more or less comment on each topic. Graphs enrich
the reports, giving them more clearness and legibility. To have
more details about intrusions, the report users could refer to the

intrusion description provided by the SocBox. We also advise the
security managers to consult the description of the intrusions on
Snort website because it gives more details.

5.3.4 Relevance of the SocBox reports

The SocBox records only events which match security rules defined
by the security manager. A visualization of the recorded events
and generated alerts gives information about the intrusion sources,
their targets, their description as well as their status (success or
failure). It is also possible to see intrusions attempted into a given
target or those executed from a given source. This method allows
a personalized approach of the analysis of intrusions and gives the
security manager a global view of the security of his network. He
will thus be more reactive when an intrusion occurs.

5.4 Well-known intrusion detection sys-
tems evaluations

Various papers coming from both academy and industry laborato-
ries and related to intrusion detection system evaluation have been
published. Some industrial evaluations are biased because the tests
are not always done in an objective way; the behavior of IDSs are
adapted to the data sets and some tests are carried out without
baseline. In the following paragraphs, we will present some well-
known intrusion detection systems evaluations, coming primarily
from academy laboratories.

5.4.1 MIT Lincoln Labs evaluation

Sponsored by DARPA in 2000, this evaluation [11] is one of
the best-known intrusion detection tests. This evaluation uses a
testbed which generates live background traffic containing hun-
dreds of users and thousands of hosts. More than 200 instances
of 58 attack types are embedded in 7 weeks’ training data and 2
weeks’ test data. The goal is to evaluate the efficiency for more
than 18 research IDSs to detect unknown attacks without first
training on instances of these attacks. Automated attacks are
launched against a router and hosts running Unix/Linux and Win-
dows NT. Attacks include Dos, user to root, probe, remote to local
attacks. The drawback of this evaluation is the lack of baseline.

5.4.2 The UCAD evaluation

In this evaluation [17], automated attacks using TELNET, FTP
and RLOGIN sessions were executed to evaluate a NIDS called
Network Security Monitor (NSM) [10]. Scripts of normal and in-
trusion sessions were executed to verify the ability of the NSM
to distinguish between suspicious behavior and normal one. Its
ability to handle high bandwidth traffic was also evaluated. This
evaluation has shown that NSM was unable to detect intrusions
under high CPU load. A similar IDS evaluation [9] was performed
by IBM Zurich in 1998 to improve IDS systems designed to detect
intrusions into FTP servers.



5.4.3 MITRE evaluation

The goal of this evaluation [2] is to investigate the characteristics
and capabilities of network-based intrusion detection systems. In
this evaluation, 7 IDSs were tested using a two-phase approach.
The first phase consisted in launching simple attacks using tools
such as Satan [8]. The goal was to give IDS operators and attackers
an opportunity to familiarize themselves with the IDSs. In the
second phase, simulation of attacks took place. The IDSs were
evaluated according to criteria such as reporting capabilities, off-
line detection capabilities, real-time alert or response capabilities.

5.4.4 The NSS Group evaluation

In this evaluation [14], 15 commercial IDS and Snort were com-
pared using 18 or 66 commonly available exploits such as Dos,
DDos, ports scan, Trojans, FTP, HT'TP or IDS evasion technique
attacks. These systems were evaluated according to the following
criteria: their ease of installation and configuration, their archi-
tecture, the type of reports and analysis provided. Only attacks
reported in ”as straightforward and clear a manner as possible”
were supposed to be detected. In this evaluation, attack detection
rates are difficult to compare with the other IDS evaluations be-
cause the simple detection of an intrusion is not sufficient; each
generated alert must be clearly labeled to be taken into account.

6 Conclusion

Intrusions are clearly taking place and thus there is a need for
operational supervision systems today. Experience shows that a
pragmatic approach needs to be taken in order to implement a
professional SOC that can provide reliable results. The SOCBox
is our response to these new threats.

During its evaluation, the Socbox proved that it is a powerful

tool giving the cartography of network security in a graphical and
ergonomic way. It generates clear reports including graphs for help-
ing the security managers better and has an interface for security
alert consulting. It also has the ability to compact similar alerts
to facilitate the legibility of the generated reports; this can be a
great advantage during a troubleshooting operation for example.
Moreover, the SocBox does not need a powerful host: its detection
performance is closely linked to the capacity of the sensors to send
it their logs.
However, some research are still to be conducted to improve our
architecture: functionalities of the SOCBox have to be distributed
on different network components. This will ensure the system scal-
ability and messages will be better processed.
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