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Abstract—Although cloud computing has become an impor-
tant topic over the last couple of years, the development of cloud-
specific monitoring systems has been neglected. This is surprising
considering their importance for metering services and, thus,
being able to charge customers. In this paper we introduce
a monitoring architecture that was developed and is currently
implemented in the EASI-CLOUDS project.

The demands on cloud monitoring systems are manifold.
Regular checks of the SLAs and the precise billing of the resource
usage, for instance, require the collection and converting of
infrastructure readings in short intervals. To ensure the scalability
of the whole cloud, the monitoring system must scale well
without wasting resources. In our approach, the monitoring data
is therefore organized in a distributed and easily scalable tree
structure and it is based on the Device Management Specification
of the OMA and the DMT Admin Specification of the OSGi.
Its core component includes the interface, the root of the tree
and extension points for subtrees which are implemented and
locally managed by the data suppliers themselves. In spite of the
variety and the distribution of the data, their access is generic
and location-transparent.

Besides simple suppliers of monitoring data, we outline a
component that provides the means for storing and preprocessing
data. The motivation for this component is that the monitoring
system can be adjusted to its subscribers – while it usually is
the other way round. In EASI-CLOUDS, the so-called Context-
Stores aggregate and prepare data for billing and other cloud
components.
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I. INTRODUCTION

Clouds are complex environments consisting of physical
hardware, virtual machines and applications. The hardware
is hosted in large data centers that can be operated more
efficiently than single computers or small server rooms. In
order to increase the hardware utilization, the hardware is
usually virtualized. Instead of on physical nodes, applications
are run on virtual machines (VMs) so that several VMs share
the resources of a single physical machine.

Aside from providing hardware and software services,
a cloud provider also monitors key performance indicators
(KPI) of the systems and services. In computing centres
in general, system monitoring helps to detect hardware and
software problems, to improve the resource utilization and to
ensure the system’s performance and security. In cloud systems

monitoring is also essential for offering measured services
and for minutely charging customers for their resources and
services consumed. Finally, the service level agreements (SLA)
between cloud provider and customer are verified.

A monitoring system that works well for small clouds does
not necessarily work well for large clouds. An increase in the
number of (virtual) servers results in an increase of monitoring
data and can lead to an overload of components: network,
databases etc. [2]. A scalable monitoring system must therefore
eliminate all bottlenecks and avoid the collection and storage
of unnecessary data.

This paper introduces a monitoring architecture that is
developed in the EASI-CLOUDS project. We will describe
the architecture’s components, their interactions and argue
why it is scalable. Moreover, we will outline the reference
implementation that is currently realized within the EASI-
CLOUDS project.

The remainder of the paper is organised as follows. Section
II presents the monitoring architecture and its components,
section III arguments for its scalability. The related work is
discussed in section IV before the paper is concluded with
section V giving a summary and an outline of future work.

II. DESCRIPTION OF MONITORING ARCHITECTURE

A state-of-the-art cloud infrastructure like EASI-CLOUDS
requires a wide range of system information in order to
provide secure, scalable and billable on-demand services. The
cloud needs to be administered and monitored to improve the
scheduling of the VMs with respect to SLA compliance and
energy efficiency. The architecture described in this paper con-
sists of three types of components, namely the Data Suppliers,
the Data Manager and the Data Storage and Preprocessing.

The monitoring data necessary for the aforementioned tasks
has to be gathered from various data suppliers such as the in-
frastructure, the PaaS software and the applications themselves.
For convenience, we will concentrate on infrastructure level
monitoring, which is the main supplier of monitoring data.
From an architectural point of view, the other data suppliers
behave in a similar way. That is, they provide monitoring data
to the data collecting unit, which is called Data Manager.

The Data Manager is the centrepiece of our architecture
which organizes all the monitoring data and offers methods
for adding and retrieving it. Its interface is the access point



for consumers and supplies data from diverse sources in a
transparent way. The data is arranged in a tree structure based
on data handlers which represent one data supplier each. The
architecture is completed by the Data Storage and Preprocess-
ing component, which is the only component that preprocesses
data and retains items for longer periods. In order to avoid
the storage of unnecessary data, this component is only used
for special tasks. In EASI-CLOUDS, the Data Storage and
Preprocessing keeps the accounts and stores SLA violations
for the billing-as-a-service component. Moreover, it memorizes
severe errors and security attacks for later analyses. The Data
Storage and Preprocessing extends the data manager’s API to
offer its services.

The monitoring system and the data flow are depicted
in Figure 1. Components exchange information either via
message brokers or web services. The message brokering
protocols are AMQP and XMPP. The REST style is used for
the web services.

In the following subsections, we will describe the compo-
nents of the architecture in more detail.

A. Data Manager

The configuration and monitoring of cloud-based services
pose a large number of problems because of different man-
agement standards and paradigms. Many specifications and
protocols have been introduced in the last decades, but not all
of them have proven to be effective and hardly any protocol
can claim to be a standard [5]. This is a problem for cloud
providers because they cannot support all protocols, and if
they choose one particular management protocol, then they
will limit their choice of components to the ones supported by
the selected protocol.

The two main challenges today are the heterogeneity of
the management landscape and the different paradigms for
remote management involving proprietary and non-proprietary
interfaces. There is an urgent need for a general and easy-
to-use management data model which allows the transparent
integration of all those techniques and principles. This re-
quires a protocol-independent definition of the management
data provided at runtime by services or agents via different
standards and protocols. The solution lies in the introduction
of an abstraction layer which decouples the consumers from
the specific data providers, so that these data can be accessed
without depending on the underlying service implementation.
The cloud environments require a scalable and flexible man-
agement system for handling their monitoring and configu-
ration tasks. This comprises modularity, extensibility, being
light-weighted together with a high degree of fail-safety and
system availability. We are confronted with changing customer
requirements and with new services arising at runtime which
have to be monitored and configured depending on their indi-
vidual management capabilities. This requires an innovative
management solution realized in the form of an umbrella
environment that aggregates and homogenizes the available
monitoring and configuration covering the differences in data
addition, retrieval and representation.

1) Management Principle: Almost all management stan-
dards are based on specific object models and provide primitive
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functions. We adapt this approved and well-established man-
agement paradigm and extend it by means of a hierarchical
data model combined with modification functions such as
addition and removal of instances, event notification, etc. In
EASI-CLOUDS, we propose a solution which is guided by the
Device Management Specification of the Open Mobile Alliance
(OMA) [15] and the DMT Admin Specification of the OSGi
Alliance [17] for fulfilling these requirements.

Our approach comprises a distributed management tree
that covers all protocol-specific parameters for data acqui-
sition through specific handler implementations. These are
termed data handlers and they are realized in the form of
an independent software component (Figure 1). It can be
dynamically provisioned at runtime based on the requirements,
on the monitoring and configuration system. This means that
through the management system, only those parameters can be
accessed that has data consumers. When specific management
data needs no longer to be present, its data handlers can be
disposed for maximizing the system’s performance.

2) Architectural Outline: The architecture of the manage-
ment tree is depicted in Figure 2 and it is implemented in
a component-oriented fashion. The core module contains the
base management tree (also termed as root data handler) and it
offers a Java-based API. There are standard adapter implemen-



Fig. 3. Representation of Data handler for Infrastructure Level Monitoring

tations available for example, DMT Admin, that can be used
for accessing the management tree with in OSGi environments.
For remote access, a REST-based skeleton implementation
is avalaible which exposes the management tree’s pull-based
access capabilities. Furthermore, the tree uses the Extensible
Messaging and Presence Protocol (XMPP) and Advanced
Message Queuing Protocol (AMQP) for remotely notifying its
subscribers. It is guaranteed that the registered listeners receive
only those events for which they are authorized.

At runtime, the data handlers are mounted to their corre-
sponding location using their extension points within the man-
agement tree. Each implementer organizes his management-
relevant information in a self-defined hierarchical structure. As
already stated in [6], [7], [8], we suggest a strict separation
of monitoring and configuration data. It means that a data
handler offers isolated subtrees for representing its monitoring
and configuration information. This approach guarantees the
separation of concerns and takes into account that there is
always a temporal offset between the trigger of a state change
and its completion. Thus, the reconfiguration process itself
and its actual outcome can be monitored by the runtime
management system.

B. Data Supplier

The data suppliers are responsible for collecting monitoring
data and providing them to the Data Manager via data
handlers. There is a wide range of data suppliers in cloud
environments. In this paper, we concentrate on infrastructure
monitoring which monitors the cloud’s physical and virtual
infrastructure (see Figure 3). The cloud system of our archi-
tecture is grouped in several sub-clouds that are managed and
monitored separately. Each sub-cloud has its own virtualization
and monitoring software as well as its own data handler.

Each data handler structures its infrastructure monitoring
data in a subtree that is integrated into the tree of the Data
Manager. The root of this tree is termed root data handler.
It has the URI “.” and defines extension points for other
data handlers. For example, the data handler identified by

the REST skeleton /infrastructure/cloud 1 would be mounted
at ./infrastructure/cloud_1. In order to update its subtree, the
data handler requests monitoring data from the Infrastructure
Monitoring Data Supplier at regular intervals. This way current
values are always readily available for fast access whenever
the data is requested via the Data Manager’s API. The data
handler preprocesses the data in order to remove redundancy
and to sort them into the tree. The structure implemented in
EASI-CLOUDS regards the VMs as children of the users and
the resources that are assigned to a VM as the children of this
VM.

As shown in Figure 3, the data passed to the data handler
is first aggregated from various sources by the Infrastructure
Monitoring Data Supplier. Information about the users and
their services is provided by the Infrastructure as a Service
(IaaS) or Platform as a Service (PaaS) software itself together
with information about the virtualized infrastructure. Some
of these IaaS and PaaS packages like OpenNebula or Cloud
Foundry offer built-in monitoring tools, whereas others like
OpenStack (currently) depend on external tools. Common
tools are Nagios, Ganglia and collectd, which use plug-ins
to monitor the infrastructure.

1) Implementation: The current implementation of Data
Supplier in the EASI-CLOUDS project is a work in progress
and based on the software components named in Figure 3:
The IaaS software is OpenStack, an open source project man-
aged by the OpenStack Foundation. When the EASI-CLOUDS
project started, it did not include a monitoring system1. Open-
Stack uses libvirt to communicate with the hypervisor and to
manage the VMs’ operating systems. libvirt supports different
hypervisors and eases the access by offering a generic API.
Finally, the third software is Nagios, a monitoring software that
is widely used in computing centers. It comes with thousands
of plug-ins, among others plug-ins for libvirt and OpenStack.

The Infrastructure Monitoring Data Supplier was newly
implemented in the EASI-CLOUDS project. It gathers mon-
itoring data from Nagios, OpenStack and libvirt and offers
them via a REST API that is consumed by the respective
data handler of the Data Manager. The REST API mimics
the monitoring interface of OpenStack, which was outlined,
but not implemented when the supplier component was devel-
oped. The data provided by Nagios is retrieved from plug-
ins, especially so-called check plugins, which are deployed
on the virtual machines. They monitor services and report
the resource utilization of virtual machines at runtime. The
plug-ins perform system calls on the (virtual) servers and read
out dynamic parameters like the current CPU, memory and
I/O utilization of a virtual machine. Whenever a new virtual
machine is created in OpenStack, it has to be registered with
Nagios. For the VM’s configuration we use Puppet.

OpenStack and libvirt provide static parameters. OpenStack
supplies user and project details and information about the
hosts, VMs and images (from its database). Additional infor-
mation about the virtualized hardware is directly polled from
libvirt which provides more details about the virtual machines,
their assigned resources and operating systems.

1In the latest release (April 2013), the component Ceilometer implements
parts of OpenStack’s monitoring API.



C. Data Storage and Preprocessing Component

The task of the Data Storage and Preprocessing component
is to persist and preprocess selected monitoring data, what
is neither supported by the Data Suppliers nor by the Data
Manager. The filter and sort operations applied by the data
handlers could be regarded as data preprocessing, but only
insofar as it is necessary to insert the data items at the correct
places. The preprocessing performed by this component, on
the other hand, serves the provision of context-enriched data.
The idea is to shift some of the logic and storage tasks to the
monitoring environment. In this way, the monitoring system
gets adjusted to meet the subscribers requirements although it
is usually the other way around.

One such example is the billing component that charges
the customers for the used services. In the EASI-CLOUDS
project, it embodies the billing-as-a-service idea and is a plug-
in component that can be easily employed in other cloud
systems. Since it does not collect the data itself, the Data
Storage and Preprocessing performs the task of aggregation
of the resource usage of users and VMs. Other management
tasks that can benefit from stored and context-enriched data are
the observance of SLAs and the analysis of system failures.

The results from the Data Storage and Preprocessing com-
ponent are provided to the consumers via the Data Manager.
Citing the example use case from above, the Billing component
requires the aggregated resource usage of VMs. It uses the
Data Manager’s REST interface for obtaining this information.
The tree identifies the data handler that is responsible for
answering the request and, in this example, it finds the data
handler of the Data Storage and Preprocessing (see Figure 1).
The Data Storage and Preprocessing component gets the
necessary details by registering itself with the tree for the
resource usage events and the tree notifies it at regular time
intervals. It preprocesses and persists the obtained information
in a distributed database and publishes them using a REST in-
terface. The data handler then uses this interface for retrieving
the aggregated resource usage information of VMs.

1) Implementation: The implementation of the Data Stor-
age and Preprocessing is called the context-processing plat-
form, whose main components are instances of the so-called
ContextStore. The ContextStore is ideally suited to combine
different data sources and calculate significant contexts. In the
area of cloud monitoring, this platform can be used to aggre-
gate arbitrary monitoring events and it provides meaningful in-
put for high level components like billing or SLA management.
This is the difference from traditional monitoring approaches,
as each cloud service has potentially its own characteristics
how it can be monitored and how service delivery aspects
have to be combined with low-level monitoring data like cpu-
utilization or memory allocation.

The ContextStore is based on the event programming
paradigm and supports user-defined serialization, transporta-
tion and persistence storage mechanism on a plug-in basis.
It has the ability to connect to an arbitrary number of other
ContextStores distributed across the network. It also offers a
high degree of flexibility by using pluggable solution-specific
context handlers.

The ContextStore persists the data items as ContextEvents
in a database. This simplifies the design of handlers that do

Fig. 4. Context Store Architecture

not only need the recent event but also access to previous
events to correlate the information. Aside from the payload, the
ContextEvents have a timestamp, a sender ID and belong to an
event type. The ContextStore supports local persistence as well
as distributed storage. ContextEvents may also be propagated
between ContextStores. In a typical cloud scenario this is
useful as whole resources and, thus, local ContextStores may
disappear if no longer needed.

If it is necessary to transport ContextEvents across system
boundaries to another ContextStore, the pluggable ContextStor-
eRemote component (see Figure 4) provides a REST API or
message-based protocol (XMPP) implementation for the data
transportation. The components for persistence and serializa-
tion are also designed to be pluggable and can be adapted to
intended purpose. Currently, support for json/xml serialization
and jdbc/android (MySQL, Oracle, sqlite) databases for per-
sisting ContextEvents are available. For sending or receiving
ContextEvents from the ContextStore, the interface IContex-
tHandler must be implemented. Additionally, a utility package
is available which offers pluggable components for bridging
OSGi and ContextEvents. A recorder and a player module
for ContextEvents help to test the system. For development
of ContextStore clients a REST proxy is available that offers
the Java-CS-API directly and hides all the transport specifics.

III. SCALABILITY OF THE ARCHITECTURE

This sections analyzes the scalability of our monitoring
system. Such a system is scalable if an increase in the number
of data sources and requests does not result in the neglectance
or loss of data or in an increase in the response time.

Following this definition, the monitoring system has to
avoid bottlenecks by automatically adjusting its resources to
the cloud’s size and the amount of monitoring data. In the fol-
lowing sections, we will explain how the different components
of the system achieve this.

The communication between these components is based on
REST interfaces and message brokering. Part of the reason
why these techniques are used in EASI-CLOUDS is their
excellent scalability ([9], [21], [16], [4]). The efficiency of
REST interfaces can be further improved by using caching,
filtering, ETags and the 100 status of HTTP.



A. Scalability of the Management Tree

The management tree implementation provides a location-
transparent access to the available management data. These
data are not stored within the component itself; it rather offers
a homogeneous and consistent interface for data retrieval and
manipulation.

To ensure scalability within large distributed monitoring
environments, the management tree itself is distributed across
the network. A management tree implementation can therefore
be placed close to those components which require monitoring
and configuration. This approach reduces the data that has to
be transmitted over the network to a bare minimum. When the
monitoring environment grows, e.g. when new components are
added or when disjoint monitoring environments are merged,
the management tree can be rearranged or extended. In order to
maintain location-transparent access of the management data,
these management trees can be nested. They can be added
to an existing management tree in the form of data handler
implementations forwarding calls to the remote data provider.

The data handler approach has several advantages: On the
one hand, it allows a transparent nesting of disjoint manage-
ment tree implementations. On the other hand, it allows the
extension of the monitoring environment by means of new data
handler implementations. Therefore, new components which
require monitoring and configuration can be made visible and
accessible within the monitoring domain. The management
system is represented in the form of a distributed tree con-
sisting of a variety of different data handler implementations.
Within a cloud federation, a cloud provider can authorize other
federation members to mount one or more of his subtrees
on their own. Thus, each management tree offers an entry
point for conducting monitoring and configuration tasks. The
monitoring and configuration infrastructure can be adapted
at runtime by mounting and unmounting the corresponding
data handler implementations, each equipped with specific
management capabilities. The management system itself can
be customized in order to fulfill the requirements imposed by
the surrounding environments concerning SLA monitoring or
component deployment.

The separation of data access and data storage ensures
that the management tree scales well in high-dynamic envi-
ronments. It is not responsible for data persistence, because in
most cases only a subset of the accruing low-level monitoring
data must be stored for future tasks. But it is obvious that there
is a need for data pre-processing and aggregation, in order to
minimize the volume that has to be actually persisted.

B. Scalability of Infrastrucure Monitoring Component

As described in Section II-B1, the data of the Infrastructure
Monitoring Data Supplier is provided by OpenStack, libvirt
and Nagios. We assume that all OpenStack clouds (including
libvirt) are not scaled beyond their capabilities so that scaling
the cloud actually implies setting up new OpenStack instances
once the existing instances have reached their limits.

In this section we therefore only consider Nagios and
the question whether and how Nagios has to be extended to
monitor an OpenStack cloud. As shown in performance tests
([13], [18]), Nagios can efficiently monitor a few hundred

services per second, while OpenStack can host thousands of
VMs. In order to scale with the cloud, Nagios can either adapt
the time interval of the checks or increase its capability. The
latter can be achieved by running several Nagios instances on
the same cloud or by using a distributed monitoring solution.
Nagios offers several such solutions, e.g., the load balancers
Mod_Gearman, Nagios Fusion and Distributed Nagios eXecu-
tor (DNX) [14], whose task it is to distribute the workload
among worker nodes. The system can scale by adding and
removing worker nodes.

C. Scalability of Data Storage and Preprocessing

As described in Section II-C, the component for Data
Storage and Preprocessing is realized as a context-processing
platform. This platform consists of ContextStores that persist
and exchange data in form of ContextEvents.

The scalability of the storage can be guaranteed by em-
ploying cloud databases like Apache Cassandra or the Oracle
Database. Due to the vast amount of monitoring data, it is
generally advisable to store as little data as possible. The
removal of unnecessary data is supported by the ContextStore
as it provides the tools for filtering and aggregating data as
well as a garbage collection.

For the exchange of ContextEvents with another Con-
textStore or with a data handler integrated into the Data
Manager’s tree structure, REST APIs and XMPP are used
because of their excellent scalability. The respective XMPP
servers can be scaled by cascading or by federation [10].

Besides storage and communication, the actual data pro-
cessing could become a bottleneck as well. If this is the case,
the respective ContextStore can be split into two or more
ContextStores that keep the connection by communicating via
REST or XMPP. In order to reduce their communication to
a minimum, the preprocessing tasks will be treated as logical
units that are only split if it is absolutely necessary.

IV. RELATED WORK

This section provides an overview of the related work.
While there are many papers about cloud monitoring systems,
only few consider their scalability.

In [11], Alcaraz et al. present a scalable and elastic
distributed monitoring system based on a peer-to-peer archi-
tecture, which consists of a data layer, a processing layer
and a distribution layer. The data sources on the data layer
are described in a metadata language and integrated using
specific adaptors. The data is retrieved using SQL-like queries.
In the processing layer an operator tree is generated for each
query and the distribution layer is responsible for executing the
operations across the cloud environment. The authors show in
experiments that their monitoring system is elastic and scalable
and that new VMs and data sources can be dynamically
integrated into the cloud infrastructure. However, their solution
does not support storing data for longer periods.

Canali et al. [3] argue that cloud monitoring systems do
not scale well due to the large amount of data that is collected
from the infrastructure. They propose to identify similar VMs
in order to reduce the monitoring data that is sent and stored.
Clustering is used to group VMs with similar resource usage



and only the data of one representative is forwarded. In an
experiment with 110 VMs, running either database servers or
webservers, they achieve an accuracy of at least 85% while
reducing the data by a factor of 20.

The scalable monitoring framework VOtus, introduced by
Suhail et al. [12], is an extension of Otus [19]. It monitors
Hadoop jobs in virtualized clusters and stores the data in a
database for analyzing and debugging the application. They
achieve scalability by using Apache HBase, a distributed
database system.

Wang et al. [20] describe three architectures for improving
the scalability of their Run-Time Correlation Engine (RTCE),
which correlates and analyzes large volumes of log data from
enterprise applications. Besides load balancers, they line out
an architecture with so-called Distributed Event Correlation
Engines (ECE) which gather and locally correlate data before
forwarding them to a master node. Since the ECE instances
are distributed over the network and since each ECE can work
independently, the system can scale with the cloud.

General concepts and properties of cloud monitoring sys-
tems are explained and discussed by Aceto et al. [1]. They
provide an extensive list that could be used as a checklist
for monitoring systems. Besides the improvement of basic
properties like scalability, they suggest to focus more on
standardization and energy efficiency.

V. CONCLUSION

In this paper, we have described a scalable monitoring
system for cloud computing that is currently developed in
the EASI-CLOUDS project. The monitoring data are locally
collected from various suppliers, but integrated in a global tree
structure that provides location-transparent access to them via
a generic interface. To potentially adapt the monitoring data to
the requirements of the subscribers, the system has a context-
processing platform for data storage and preprocessing.

The EASI-CLOUDS project develops a cloud concept in
which IaaS, PaaS and SaaS can be offered as billable services
with SLAs. In order to manage the hardware resources and
to avoid SLA violations, the scalable monitoring system is
an essential component. Our future work will focus on the
integration of further data suppliers and on an easily extendible
base implementation of the context-processing platform.
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