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ABSTRACT
In this work we are concerned with dynamically sharing the
spectrum in the time-domain by exploiting whitespace be-
tween the bursty transmissions of a primary user, repre-
sented by an 802.11b-based wireless LAN (WLAN). For de-
riving such schemes we need to establish a model of the
WLAN’s medium access as to predict its behavior accu-
rately. Moreover, a balance between accuracy and com-
plexity needs to be struck as to render the model useful in
practice. We emphasize that our model is based on actual
measurements at 2.4 GHz using a vector signal analyzer.

We have shown previously that a semi-Markov model is
a viable approach for modeling the busy/idle durations. In
the present paper we extend our results by (i) expanding
the measurement setup and looking at more realistic traf-
fic scenarios, (ii) providing a better approximation to the
distribution of the idle durations, and (iii) fitting a phase-
type approximation to arrive at a computationally simpler
description. The goodness-of-fit of the proposed models is
evaluated using the Kolmogorov-Smirnov test.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-Based Systems]:
Signal Processing Systems; I.6.4 [Simulation and Model-
ing]: Model Validation and Analysis

General Terms
Design, Measurement, Verification.
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WLAN Modeling, Dynamic Spectrum Access, Coexistence.
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1. INTRODUCTION
The spectrum relevant to wireless communications has

gradually become a scarce resource, making it unlikely that
regulators will be able to meet the bandwidth needs of emerg-
ing technologies. Actual measurements show, however, that
at most times and locations, the spectrum is only lightly
used. In fact, a typical utilization of only several percent or
even less is reported [1]. This figure illustrates the weakness
of static frequency allocations and has given rise to envision-
ing schemes that allow so-called secondary-users to access
certain frequency bands dynamically, provided that they
cause no (significant) interference to the actual licensees (re-
ferred to as primary users).

This paper investigates dynamic spectrum access in the
time-domain by reusing whitespace between the bursty trans-
missions of a primary user [2], represented by a WLAN in
the scope of this work. A reliable model of the primary
user’s channel access is indispensable if access strategies for
the secondary user are to be found.

Dynamic spectrum access in the time-domain relies on
the existence of sufficient whitespace between bursty trans-
missions. Indeed, we believe that this is the case in many
practical scenarios. For illustration consider the baseband
signal recorded by a signal analyzer for a Voice-over-IP con-
ference session over WLAN shown in Fig. 1 (detailed setup
parameters are discussed later). The packet transmissions
can easily be discerned from the noise floor leaving large
amounts of white space. In fact, the channel was found to
be idle for 89% of the time.

This remaining whitespace can be used in numerous appli-
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Figure 1: Baseband signal of a WLAN supporting a
VoIP conference session.



cations. Consider wireless sensor networks whose heteroge-
nous deployment and sporadic transmissions make an allo-
cation of separate frequency bands unlikely. Nevertheless,
given that most sensor networks communicate at low-rates,
reusing the whitespace of other applications appears rea-
sonable. Furthermore, our model can be applied to reduce
interference between different standards in shared bands.
Consider the coexistence of WLAN and Bluetooth in the
2.4 GHz ISM band as an important example.

1.1 Main Contribution
In this paper we propose a model for the busy and idle

durations of a WLAN. Our contribution includes both a
measurement component as well as the statistical analysis
of the empirical data.

In terms of the measurement setup we present an antenna-
based testbed as well as an isolated RF-setup, which guar-
antees our measurements to be free of interference. We can
thus ensure that the collected data has not been corrupted
by WLAN traffic in adjacent areas.

Furthermore, this paper addresses realistic traffic scenar-
ios (FTP, Voice-over-IP) which are likely to arise in practice
and compares these to synthetic traffic originating from a
traffic generator.

In a previous paper [3] we have shown that a semi-Markov
process is a viable model for our setup. In the present paper
we significantly extend our results by considering a mixture
distribution to differentiate between the idle periods due to
the transmission standard (inter-frame spaces, contention
window) and a truly unused (‘free’) channel. We show that
augmenting the model in this way provides for a significantly
better fit with the empirical data.

While the mixture distribution fits the data accurately,
it might render subsequent analysis cumbersome given that
heavy-tailed distributions are usually hard to analyze an-
alytically [4]. As a consequence, we also fit a phase-type
(hyper-Erlang) distribution, which has the nice property
that it corresponds to the time-to-absorption in a continuous-
time Markov process (CTMP) and usually allows for more
tractable results.

The proposition of the above models is justified by em-
ploying the Kolmogorov-Smirnov test, showing an excellent
goodness-of-fit.

1.2 Related Work
Dynamic spectrum access is an emerging area that has re-

cently received considerable attention, both in terms of the-
oretical contributions as well as practical testbeds and im-
plementations [5]. Sparked by projects such as the DARPA
XG program [6] or the European DRiVE Project [7] vari-
ous methodologies for efficiently sharing the spectrum have
been explored. The majority of proposed techniques can be
classified according to whether the spectrum is shared in the
spatial or temporal domain, with each area having its own
practical limitations and challenges.

In the spatial domain, the reliable sensing of primary users
is of main concern, requiring the detection of very weak
signals [8] possibly through cooperation among secondary
users [9].

In the temporal domain, the main challenge is to iden-
tify spectral opportunities between bursty transmissions by
predicting the primary user’s medium access, and finding
control schemes that efficiently exploit the remaining whites-

pace. In [2, 10] such optimal control policies are discussed
within a partially-observable decision framework, relying on
a Markovian assumption for the primary user’s behavior.

2. MEASUREMENT SETUP
In this work we identify the primary user with an 802.11b

based WLAN operating in the 2.4 GHz ISM band. Our re-
sults should, however, extend to other primary user’s pro-
tocols given that they use multiaccess protocols similar to
CSMA/CA (as used in the 802.11 standards). Different
from related publications that capture packets by commer-
ical WLAN adapter cards operating in a special mode we
employ a vector signal analyzer to record raw complex base-
band data which is subsequently processed to find the start
and end times of packets. This approach guarantees an ac-
curate and verifiable characterization of the channel’s idle
and busy periods.

For recording the baseband data we used an Agilent 89-
640A vector signal analyzer (VSA) [11] which internally
downconverted the RF signals to an intermediate frequency
and then was configured to sample at a rate of 44 MHz.

In this work we consider both a WLAN communicating
via antennas, as well as an RF-isolated setup that guaran-
tees our measurements to be free of interference from other
devices operating in adjacent frequency bands. The setup is
illustrated in Fig. 2 and Fig. 3, respectively.

2.1 Antenna-based setup
The antenna-based propagation setup consists of a Net-

gear WGT624 wireless router and three computers with
wireless adapter cards (two Netgear WG311T and one WG-
511T; cf. Fig. 2). The setup operated in Channel 11, which
represents a 22MHz frequency band centered at 2.462 GHz.
All the equipment was located in the same room, resulting
in a high-SNR setup with no hidden terminals. Using the
VSA, we verified that interference from adjacent channels
was minimum although a completely interference-free setup
could not be guaranteed.
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Figure 2: Antenna-based measurement setup.

2.2 Isolated RF-setup
Besides the antenna-based setup, we also considered the

isolated RF-setup shown in Fig. 3. It consists of a Linksys
WRT54GC wireless router and three workstations with Net-
gear WG311T wireless adapter cards. All the devices are
connected to a Broadwave Technologies resistive power di-
vider via RG174U coaxial cables and SMA connectors. The
VSA is also connected to the divider resulting in a fully iso-
lated setup. Strictly speaking there is still some residual



interference that couples directly via the workstations into
the wireless adapter cards. However, given that all devices
are connected with coaxial cables this interference is very
small compared to the desired signal and can be neglected.

The Netgear router used for the antenna-based setup could
not be used for the isolated measurements as well since its
built-in antenna was non-detachable. The use of two differ-
ent routers caused our setup to differ in terms of the type
of synchronization preamble used. While the Netgear router
could be configured to use only long-synchronization pream-
bles, the Linksys router did not allow for specifying this op-
tion. As a consequence most of the time a short preamble
was transmitted (given the high SNR setup). While this
leads to slightly different packet durations, the qualitative
behavior of our results remained unaltered.
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Figure 3: Isolated measurement setup.

2.3 Traffic generation
Each of the workstations was used to generate traffic us-

ing the Distributed Internet Traffic generator (D-ITG) [12].
The software allows for a flexible statistical characterization
of the traffic, including varying packet lengths and inter-
departure times. A detailed specification of the settings is
provided with the measurement results in Sec. 4.

Additionally, we also investigate typical usage scenarios of
WLAN by using the popular “Skype” voice-over-IP (VoIP)
client to set up a conference call within the WLAN, using
the traffic generator to simulate G.711 codec based voice
communication, and using an SFTP client to download files
from a central server. A detailed treatment of the results is
again deferred to Sec. 4.

3. SENSING STRATEGIES
The two measurement setups described in the last section

both yield time captures of the complex baseband signal.
Given these data, we process the signals to determine the
exact start and end of each packet. Clearly, this fully deter-
mines the channel’s idle/busy durations.

We consider two different sensing strategies depending on
whether the transmission standard of the primary user is
assumed to be known. In the former case, the detection of
the packets shall be based on energy. In the latter case we
can exploit the standard-specifics to achieve better perfor-
mance [3].

3.1 Energy-based detection
If the primary user’s transmission standard is unknown,

a natural approach for detecting the start and end of pack-

ets is based on the transmitted energy. In order to achieve
satisfactory performance we consider blocks of N samples
whose length is shorter than the smallest packet length [3].
The detection problem can then be formulated as

H0 : Yi = Vi, i = 1, . . . , N (1)

H1 : Yi = Si + Vi, i = 1, . . . , N, (2)

where Yi denotes the complex baseband samples, Vi are noise
samples, Vi ∼ CN (0, σ2

0), and Si denotes the signal samples
drawn from a complex Gaussian, Si ∼ CN (0, σ2

1). Lacking
any information on the transmission standard of the primary
user, the Gaussian assumption for Si appears reasonable.

The hypothesis testing problem defined above is standard
[13] and the optimal Neyman-Pearson detector is given by

T (y) =

NX
i=1

|yi|
2
H1

≷
H0

γ, (3)

where the threshold γ is determined according to the prob-
ability of false alarm, which amounts to

α = Pr(T (y) > γ|H0) = 1 − Γ̃r(N,
γ

σ2

0

), (4)

where

Γ̃r(N, ξ) =
1

Γ(N)

Z ξ

0

tN−1e−tdt (5)

is the regularized gamma function and Γ(N) is the complete
gamma function. Similarly, the power of the detector is
given by

β = Pr(T (y) > γ|H1) = 1 − Γ̃r(N,
γ

σ2

0
+ σ2

1

). (6)

The above expressions show that the detection performance
depends on the SNR = σ2

1/σ2

0 as well as the block length N .
For our setup we chose N = 44 samples, which corresponds
to 1µs long blocks. If we demand α = 1 − β < 10−5 then
we can see that we have to guarantee that the SNR is above
4.29 dB which is easily met in our setup.

Finally, it has to be noted that the Gaussian assumption
for the noise Vi might not be appropriate if significant in-
terference occurs. Indeed, this might be a limiting factor if
we consider that the WLAN channels are partially overlap-
ping. Suppressing this interference by a filter may thus be
necessary in practice.

3.2 Feature-based detection
The energy-based detection scheme described in the last

section is based on the assumption that the primary user’s
transmission standard is unknown. In some applications,
however, it is reasonable to assume that the transmission
specifics are known to the primary user. This knowledge can
in turn be exploited to improve the detection of packets.

The layout of an 802.11b physical layer (PHY) frame is
shown in Fig. 4. It consists of a PLCP preamble, split into a
block of scrambled ‘1’s (‘0’s for the short-preamble) and the
start-of-frame delimiter (SFD) indicating the beginning of
the PLCP header. The SFD can be used to precisely detect
the start of the packet. The information provided in the
header consists of a Signal, Service, and Length field as
well as a CRC protecting these three blocks.

From our viewpoint the Sfd and the Length field are
most interesting; the former determines the start of the



packet while the latter provides the duration (and thus the
end) of the packet.

PLCP Preamble
144bits

PLCP Header
48bits

PSDU
PLCP service data unit

SYNC
128bits

SFD
16bits

SIGNAL
8bits

SERVICE
8bits

LENGTH
16bits

CRC
16bits

Figure 4: Physical layer preamble in 802.11b (long
preamble).

The receive processing for the feature-based detection scheme
is depicted in Fig. 5. The complex baseband data collected
at a rate of 44 MHz is first passed through a Gaussian pulse
shaping filter with a bandwidth-symbol time product of BTs =
1/2. In order to obtain chip-synchronization the filtered sig-
nal is correlated with the 11-sample Barker sequence spec-
ified by the standard [14]. The resulting signal shows peri-
odic peaks whenever the spreading sequence lines up with
the input signal. We detect these peaks and downsample
the signal to the symbol rate of 11Mbps. Subsequently,
we despread and demodulate the DBPSK/DQPSK encoded
preamble. The frequency offset at the receiver is noticeable
but can be neglected since the signals are differentially en-
coded. After successful decoding, the resulting bit stream is
descrambled and the start-of-frame delimiter (SFD) is de-
tected. In the same way, the Signal, Service, and Length

field are extracted and the CRC check is performed to ensure
that the extracted information is correct.
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Figure 5: Receive processing for feature-based de-
tection.

4. MEASUREMENT RESULTS
In this section we present the measurement results for the

statistics of the busy/idle durations of the channel. We in-
vestigate different traffic scenarios as pointed out in Sec. 2.3.
In particular, we first consider constant length Udp traffic
with Poisson distributed inter-arrival times. This allows us
to parameterize the ‘business’ of the channel by increasing
the rate parameter λ of this distribution. Second, we con-
sider FTP and Voice-over-IP traffic to investigate whether
our idealized setup extends to practical traffic scenarios. For
a better understanding of the results we start this section
with a brief illustration of WLAN’s medium access in order
to keep this paper self-contained.

4.1 WLAN Medium Access Protocol

The 802.11 standard for WLAN [14,15] uses Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) to
control the station’s access to the medium (cf.Fig. 6). This
implies that before transmitting a packet, the station has to
first sense the medium.

If the channel is free, the station continues sensing for the
distributed coordination function inter-frame space (DIFS).
If the channel remains idle during the entire period, the
station can go ahead and start transmitting.

After a packet transmission, the receiver has to confirm
reception immediately by transmitting an acknowledgement.
Only a short inter-frame space (SIFS) is necessary as to give
priority to the (required) transmission of acknowledgements
(cf. Fig. 6).

If the channel is busy in the first place the station has to
defer access until the medium becomes idle again. Then,
after a DIFS, a contention window is used to avoid col-
lision between the multiple stations trying to access the
medium. Specifically, each station generates a uniform ran-
dom number i ∈ {0, . . . , 31} and defers transmission for
iTslot = i · 20 µs before accessing the channel (given that
no other station has already started to access the channel
before).

Busy

Contention
windowS

IF
S

Ack

DIFSDIFS

Busy Busy

Figure 6: Medium access in an 802.11b-based
WLAN.

The standard provides some more technical details that
are not addressed above. In particular, if collisions occur
the length of the contention window is increased. These
specifics, however, do not manifest themselves in our mea-
surement results and shall thus not be addressed in this
paper.

4.2 Measurement validation
We first look at a simple measurement scenario to further

illustrate the specifics of the medium access and to validate
our measurement setup. In particular, we consider the iso-
lated measurement setup depicted in Fig. 3 with only one
PC and the wireless router turned on (the other ports of
the resistive power divider we terminated to eliminate re-
flections). The traffic generator was then used to generate
UDP packets of constant length 512 B with constant inter-
arrival times at a rate of 105pkts/s. This rate is too high
to be transmitted across the channel but ensures that the
workstation’s transmit buffer is never empty.

Using the setup described above we used the VSA to cap-
ture 100 blocks of complex baseband data, of duration 0.25 s
each. The blocks were then processed using both sens-
ing strategies discussed in Sec. 3. The results of energy-
and feature-based detection match nicely leading to the his-
tograms for the busy/idle durations shown in Fig. 7.

The histograms indeed reflect the characteristics of the
standard. First, the histogram of the busy durations de-
picted in Fig. 7(a) shows only three components, corre-
sponding to the transmission of acknowledgement packets
(t ≈ 0.11 ms), data packets (t ≈ 0.51 ms) and beacon frames
(t ≈ 0.76 ms), respectively. Given that we forced the data
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Figure 7: Measurement validation using 1PC
(cf. Sec. 4.2)

packets to be of constant length, this result is in accordance
with our expectations.

The histogram of the idle durations reflects the standard
as well. We see a discrete component at t ≈ 10 µs, which
nicely corresponds to the SIFS. Furthermore, we see 32 dis-
crete components, each spaced 20 µs apart. These corre-
spond to the contention window as described in Sec. 4.1.

4.3 UDP Traffic with Poisson Inter-arrivals
In the last section we have validated the measurement

setup using a simplified traffic scenario. In this section
we are now using all three workstations together with the
wireless router (cf. Fig. 2 and Fig. 3). The traffic gener-
ator was again used to generate UDP packets of constant
length of 512 B but the inter-arrival rates for each worksta-
tion were now drawn from independent Poisson distributions
with common but varying rate parameter λ. As λ increases,
the number of transmitted packets per unit time increases
and consequently the amount of whitespace decreases.

The histograms for the busy and idle periods are shown for
λ = 100 pkts/s in Fig. 8. In particular, the busy durations
are again discrete as in Fig. 7(a) with the components corre-
sponding to the acknowledgement packets, the data packets,
and the router’s beacons, respectively. The idle durations on
the other hand allow for two preliminary conjectures. First,
there is a significant component around 0.7 ms (correspond-
ing to the effect of the contention window and the DIFS).
Second, the tail of the histogram appears to decay slower
than exponentially, suggesting that a heavy-tailed distribu-
tion might be a good fit.

Given the above observations as well as the standard spe-
cifics it makes sense to define the following set of states
depending on the state that the channel is in.
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Figure 8: Histograms for the UDP traffic scenario
(cf. Sec. 4.3)

Data The channel is busy due to the transmission of a data
packet. The sojourn time in this state is deterministic
and amounts to the time required to transmit the 512 B
size packet, i.e. 0.51 ms.

Sifs The channel is idle due to the short inter-frame space
required between a data packet and its subsequent
acknowledgement. The sojourn time in this state is
10µs.

Ack The channel is busy due to the transmission of an ac-
knowledgement packet. The sojourn time is determin-
istic and amounts to 0.11 ms.

Cw The channel is idle but there are primary users contend-
ing for the medium. The sojourn time in this state can
be (approximately) derived from the standard. We as-
sume a finite support from [0, 0.7 ms] (the size of the
contention window). The type of the distribution de-
pends on how many terminals are contending for the
medium at the same time. Given that we are mainly
concerned with a lightly used channel a uniform dis-
tribution will turn out to be a good fit.

Free The channel is idle since none of the primary users
has packets to transmit. From the viewpoint of dy-
namic spectrum access the time spent in this state is
essentially defining to what extent the channel can be
reused. A generalized Pareto distribution will turn out
to be a good fit for the sojourn time in this state.

The Sifs, Cw, and Free state each correspond to an idle
medium. In our statistical analysis we will focus on the
latter two since the Sifs duration is purely deterministic
and too short to be used for dynamic spectrum access (only
10 µs).



While the histograms depicted in Fig. 8 give a first impres-
sion on the distribution of the idle durations, more insight
can be gained by looking at the empirical distribution func-
tion, which is defined as the fraction of observations smaller
than t [16]

Fe(t) =
#i : yi ≤ t

n
, (7)

where yi, i = 1, . . . , n correspond to n independent samples.
The empirical distribution function is shown in Fig. 9 for
several values of the rate parameter λ. We can make two im-
portant observations. First, the idle duration (whitespace)
decreases with λ, i.e. for λ1 < λ2, Fe(t; λ1) < Fe(t; λ2), ∀t.
Second, for λ ≤ 200pkts/s we can clearly see that the distri-
bution of the idle times is a mixture of the contention win-
dow and the distribution of the truly ‘free’ channel (note the
bend in the curves at 0.7 ms). Furthermore, the vertical line
in Fig. 9 illustrates the finite support of the contention win-
dow’s distribution. We can see that the slope of Fe within
that region is approximately constant, suggesting that a uni-
form distribution as an appropriate fit (this is also suggested
by the standard specifics). The tail distribution correspond-
ing to the free channel shows heavy-tailed behavior and will
be analyzed in detail in Sec. 5.
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Figure 9: Empirical cdf for the idle durations.

4.4 Representative Traffic Scenarios
In addition to the Udp traffic, we have also looked at a

variety of typical traffic scenarios, including file transfers
and Voice-over-IP sessions over the WLAN. The resulting
empirical cdfs for the idle durations are shown in Fig. 10
and are discussed separately in the following.

First, consider file transfer via secure-FTP from a remote
server. In order to collect enough baseband data a text file
of approximately 100 kB was transferred 1000 times using
a secure-FTP client. The resulting curve shows that there
is little remaining whitespace. The effect of the contention
window is well-visible by the bend in the empirical cdf at
0.7 ms.

Second, we used D-ITG to generate traffic according to
the G.711 codec (used in some VoIP clients). We consider

the case of one and three codecs running simultaneously
on each of the workstations. The resulting curves show an
almost idle channel in the case of one active codec, while the
channel appears quite busy in the case of three.

Finally, we used the popular “Skype” client to set up a
conference call within the WLAN. A prerecorded audio sam-
ple was used to simulate the speech conversation on each of
the workstations. The resulting empirical cdf shows that the
channel is mostly idle.
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Figure 10: Empirical cdf for FTP and VoIP traffic.

In summary, the empirical cdfs for the traffic scenarios
shown in Fig. 10 show a similar behavior compared to the
Udp traffic considered before. Specifically, the tails of the
distribution appear to be heavy-tailed again. In contrast to
the Udp setup, however, the contention window’s distribu-
tion does not seem to be uniform. While we have (mostly)
considered stationary traffic scenarios in this work, we be-
lieve that our results extend to the nonstationary case by
tracking the variations in traffic.

5. SEMI-MARKOV MODEL
The definition of states given in Sec. 4.3 allows us to con-

vert the processed measurement data to a sequence of states.
Note however, that the states Cw and Free are not observ-
able since we can only detect an idle medium but not con-
clude whether the system is in either of the states. We shall
refer to the lumped version of Cw and Free as the Idle

state for brevity.
In a previous paper [3] we have shown that a continuous-

time semi-Markov model is an appropriate fit. We shall
briefly review this result and then provide an extension to
the model with a better goodness-of-fit across λ.

A semi-Markov model can be viewed as an extension to
a continuous-time Markov process with separate statistical
specification of the transition behavior and sojourn time
within each state [17]. The transition behavior in a semi-
Markov process retains the Markovian property with transi-
tions from state i to j occurring with probability pij . In con-
trast to a CTMP though, given that a transition i → j oc-
curs, the sojourn time t in state i (before transitioning to j)
can be specified arbitrarily according to some cdf Qij(t) [17].



Recall that in a CTMP the sojourn times in all states need
to be exponentially distributed [18].

For specifying the parameters of the semi-Markov process
we treat these two parts separately. First, the transition
behavior is estimated using the observation sequence and
then distributions for the sojourn times are fit to each state.

5.1 Estimating transition probabilities
First, we need to find the transition probabilities given

the sequence of states obtained by measurement. To this
end we can use the well-known likelihood estimator for the
transition probability [17,19]

pij =
nij

ni
, (8)

where nij is the number of transitions i → j in our observa-
tion sequence, and ni is the total number of state i occurring
in the sequence. Using the above estimator, we have shown
in [3] that the sequence of states

Data → Sifs → Ack (9)

is essentially deterministic since its transition probabilities
are very close to one. In fact, this does not come as a sur-
prise provided that our system is operating at high SNR
and the above sequence simply corresponds to a successful
transmission. It should be noted that while collisions still oc-
cur infrequently in our setup, their effect appears negligible.
The transition diagram resulting from the above analysis is
depicted in Fig. 11.

Data SIFS ACK

CW

Free

Idle

1 1

pc

pf

1
1

Figure 11: Transition diagram of the semi-Markov
model.

5.2 Specifying the sojourn times
So far, we have arrived at the transition diagram shown

in Fig. 11. Since the transitions Data → Sifs → Ack are
deterministic and the sojourn time in each of these states is
deterministic as well, we only need to fit the sojourn time
the Idle state (and the substates Cw and Free).

In [3] we have shown that a generalized Pareto distribu-
tion provides a good fit to the tail of the idle distribution.
However, especially for increasing λ the fit is rather poor for
small values of t, since the effect of the contention window is
not taken into account. In the present paper we show that
the overall goodness-of-fit can be significantly improved by
separating the effects of the contention window and the free
channel.

As a matter of fact, the sojourn time F (t) in the Idle

state (the lumped version of Cw and Free) is a mixture

distribution,

F (t; θ) = pcFc(t) + pfFf (t; θ), (10)

where Fc(t) is the cdf of the contention window (assumed
uniform on [0, Tc] and Ff (t;θ) denotes the generalized Pareto
cdf of the unused channel depending on the unknown pa-
rameters θ. The transition probabilities pc and pf are also
shown in Fig. 11.

There are several approaches for estimating the unknown
parameters of a mixture distribution. The Expectation-
Maximization (EM) algorithm [20] is a well-known tech-
nique, but computationally expensive to apply in our case.
We shall hence pursue a slightly different approach but will
come back to the EM-algorithm when fitting a phase-type
distribution in Sec. 6.

In order to simplify the analysis we can exploit some struc-
ture in (10). In fact, we know that the support of Fc(t) is
limited to [0, Tc] (cf. Sec. 4 and Fig. 9, Tc ≈ 0.7ms). Hence,
if we discard all observations yi ∈ [0, Tc] (whether or not
they are really coming from Fc(t)) we are no longer dealing
with a mixture but can estimate the parameters of Ff (t; θ)
directly.

According to the above we are concerned with estimat-
ing the parameters of the generalized Pareto distribution
from left-truncated data. Let the truncated data gained by
discarding all idle times smaller than the threshold Tc be de-
noted by ỹi, i = 1, . . . , Nt. Assuming a generalized Pareto
distribution we have the following expression for the pdf

ff (t; k, σ) =
1

σ

�
1 + k

t

σ

�−1−1/k

, (11)

where k denotes the shape, and σ denotes the scale param-
eter [21]. The cdf is given by

Ff (t; k, σ) = 1 −

�
1 + k

t

σ

�−1/k

. (12)

Provided that we can only use the left-truncated samples
ỹi for estimating the parameters the maximum likelihood
estimate of the parameter vector θ = [k, σ]T is given by [22]

θ̂ = arg max
θ

NtY
i=1

ff (yi; θ)

1 − Ff (Tc; θ)
, (13)

where the term in the denominator is due to the left-trunc-
ation of the data at Tc. The maximization in the above
formula was performed numerically, using an initial value
obtained by a moment estimate for the non-truncated data
[21].

Given that we have estimated one of the terms in the mix-
ture distribution (10), and realizing that Fc(t) is a uniform
distribution on [0, Tc] we can find pc and pf , thus fully spec-
ifying the desired approximation to the empirical cdf. The
fitted distribution as well as the empirical cdf are shown in
Fig. 9 for λ = 25 pkts/s and λ = 100 pkts/s, respectively.
The mixture distribution shows a very good fit, which will
be assessed quantitatively in the next section. The fitted
parameters are shown in Tab. 1.

5.3 Kolmogorov-Smirnov Test
In order to assess the goodness-of-fit of the fitted distribu-

tion we employ the Kolmogorov-Smirnov (K-S) test. This



technique allows to discern whether N independent obser-
vations are drawn from some given distribution F (t), [23]

H0 : Yi ∼ F (t), i = 1, . . . , N (14)

H1 : Yi ≁ F (t), i = 1, . . . , N. (15)

It turns out that for analyzing the above hypothesis testing
problem, the K-S statistic can be employed

D = max
t

|Fe(t) − F (t)|, (16)

where Fe(t) is the empirical distribution constructed from
the N observations as defined in (7). While the D-value
already allows for a quantitative assessment of the goodness-
of-fit, it is still influenced by the number of observations
N we used in constructing Fe(t). For that reason, a final
assessment is usually based on the p-value defined by

p = Pr(D ≥ d|H0), (17)

where d denotes the realization of D constructed from the
data. It turns out [23] that the p-value is independent of
the distribution F (t) so that (17) can easily be evaluated
by Monte-Carlo simulation or by using an appropriate table
[22, 24]. Usually, a value of p ≈ 0.1 is deemed high enough
to consider the observations coming from F (t).

We applied the K-S test to our problem. The resulting
d and p-values are shown in Tab. 1 together with the pa-
rameter estimates θ̂. The fitted distributions are also plot-
ted in Fig. 12 showing an excellent fit with the empirical
cdf. Moreover, we can see that ignoring the effect of the
contention window and simply fitting a generalized Pareto
distribution (direct fit) to the non-truncated data results in
a rather poor fit as λ increases.
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Figure 12: Empirical cdfs and fitted distributions.

6. PHASE-TYPE APPROXIMATION
While the mixture distribution fitted to the empirical cdf

in the last section provides a very good fit especially at small
to medium λ (that is at those values that are of most con-
cern to us), there are other worthwhile approaches to this
problem.

λ [pkts/s] 25 50 75 100 150 200

Direct fit
k -0.2705 -0.3225 -0.3171 0.2552 -0.2180 0.0146
σ 0.0138 0.0072 0.0045 0.0018 0.0016 7.88 · 10−4

d-value 0.0550 0.0727 0.0950 0.1486 0.1019 0.0547
p-value 0.0936 0.0103 0.0002 0 0.0001 0.0962

Mixture fit
k -0.3014 -0.3604 -0.4014 -0.4893 -0.3199 0.0164
σ 0.0149 0.0080 0.0053 0.0053 0.0021 8.09 · 10−4

d-value 0.0162 0.0178 0.0137 0.0311 0.0301 0.0499
p-value 0.9992 0.9996 1.0 0.7067 0.7405 0.1603

Hyper-Erlang fit
d-value 0.0293 0.0167 0.0163 0.0210 0.0316 0.0240
p-value 0.7724 0.9987 0.9991 0.9770 0.6878 0.9295

Table 1: Parameter estimates and goodness-of-fit for
a direct fit, a mixture fit, and a hyper-Erlang fit to
the empirical data.

Although it is apparent from the empirical data that the
channel’s idle periods show heavy-tailed behavior, fitting
such a distribution directly is not the only option. In fact,
from the perspective of applying the model, heavy-tailed
distributions have the disadvantage of being difficult to an-
alyze analytically [4,25]. For this reason, we consider fitting
phase-type distributions in the following.

Phase-type distributions form a class of distributions that
describe the time to absorption of a CTMP with a set of
transient and a single absorbing state. These distributions
are frequently used in statistical modeling [4, 25, 26] , since
they allow to approximate heavy-tailed behavior within the
framework of CTMP by expanding the state space.

In practice the usefulness of fitting a phase-type distribu-
tion ultimately depends on how many states (each having
exponential sojourn time by definition) are needed to ap-
proximate the heavy-tailed behavior accurately. Ultimately,
we face a tradeoff between obtaining a ‘nice’ distribution for
each of the states, and having a larger number of them.

Phase-type distributions can be classified into numerous
groups, including but not limited to hyper-exponential, Er-
lang, and hyper-Erlang distributions [25]. While, hyper-
exponentials (a mixture of exponential distributions) are
frequently using in statistical modeling [4] they are not an
appropriate choice in our case. In fact, it can be shown
that using hyper-exponential distributions we can only ap-
proximate distributions that have a Coefficient of Variation
(CoV) greater than one [25]. From the empirical data, how-
ever, we can infer that we are dealing with a CoV smaller
than one.

Instead, we shall consider a hyper-Erlang distribution,
that is a distribution that is modeled by the CTMP depicted
in Fig. 13. This class of distributions can approximate em-
pirical distributions with arbitrary CoV and has furthermore
received interest lately [26]. In particular, an efficient EM-
based algorithm has been proposed in [25], which is used
to fit the distribution and shall be briefly outlined in the
following.

6.1 Expectation-Maximization Algorithm
In this section we show how to fit an M -component mix-

ture distribution to the empirical distribution gained by
measurement, that is we need to find a set of parameters
µ = [µ1, . . . , µM ] and mixture coefficients α = [α1, . . . , αM ]
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Figure 13: Transition diagram of CTMP resulting in
an overall hyper-Erlang distribution. The absorbing
state is denoted by ‘(0)’.

such that

f(t; α, µ) =
MX

i=1

αifEr(t, µi), (18)

where

fEr(t;µi) =
(µit)

li−1

(li − 1)!
µie

−µit (19)

is the pdf of an Erlang distribution with shape parameter
li (assumed to be known) and rate parameter µi. Each
Erlang distribution (19) in the mixture (18) can be viewed
as generated by one of the chains in the CTMP depicted in
Fig. 13.

For estimating the unknown parameters θ = [α, µ]T given
observations yi, i = 1, . . . , N , we can adopt a maximum
likelihood approach arriving at

θ̂ = arg max
θ

NX
k=1

log

"
MX

i=1

αifEr(yk; µi)

#
. (20)

Unfortunately, the maximization in the above formula is not
easy to carry out since the expression involves the logarithm
of a sum [25]. However, we would be able to simplify (20) if
we knew from which mixture each expectation were drawn
from. Clearly, we are not given this additional information
but we can interpret it as missing data and find its distri-
bution.

More precisely, let us associate every observation yi with
an index zi indicating from which mixture yi is drawn from.
It can then be shown [25] that the probability mass function
pZ(z) of zi is found by Bayes’ rule given some initial estimate

θ̂ = [α̂, µ̂]T ,

pZ(z|yi; θ̂) =
α̂zfEr(yi; µ̂z)PM

k=1
α̂kfEr(yi|µ̂k)

(21)

Given the above pmf we can evaluate the expected value
of (20) and maximize this function with respect to the un-
known parameters,

θ̂ = arg max
θ

Ez

(
NX

i=1

log [αZi
fEr(yi; µZi

)]

)
. (22)

It is shown in [25] that the maximization can be carried out

in closed-form yielding

α̂i =
1

N

NX
k=1

pZ(i|yk; θ̂) (23)

µ̂i =
li
PN

k=1
pZ(i|yk; θ̂)PN

k=1
pZ(i|yk; θ̂)yk

. (24)

The iterative procedure for finding the unknown parame-
ters α and µ can now be summarized at follows [25]. First,
start with an initial estimate θ = [α, µ]T and compute the
pmf pZ of the unobserved data zi using (21). Then, maxi-
mize the log-likelihood function averaged over pZ by using
the closed form expressions (23) and (24). This yields a new
estimate for θ and continue to apply the procedure itera-
tively.

It remains to specify how to find optimal values for the
number of mixtures M , as well as the integer-valued shape
parameter li, i = 1, . . . , M for each of the Erlang distribu-
tions. We have explored different values and obtained the
best goodness of fit using l1 = 2, l2 = 2, and l3 = 3 for a
reasonable choice of M = 3 mixture components.
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Figure 14: Hyper-Erlang fit for the empirical data.

6.2 Kolmogorov-Smirnov Test
We again investigated the goodness-of-fit for the hyper-

Erlang distribution using the K-S test. The results are
shown in Tab. 1 and plotted in Fig. 14. Again, the K-S
test confirms the hypothesis that the fitted distribution is
an accurate model across λ. Furthermore, we have included
the empirical distribution for the VoIP setup using “Skype”.
The hyper-Erlang distribution also provides for an excellent
fit in this case.

7. CONCLUSIONS
In conclusion we have proposed stochastic models that

can be used to predict the idle durations between the bursty
transmissions of a WLAN. Our contribution both involves
a measurement-based component as well as the statistical
analysis of the data.



Since the measurements are based on raw data gathered
by a vector signal analyzer we were able to validate the
setup and guarantee accurate results using both antenna-
based and isolated-RF setups. Two sensing strategies were
implemented to identify problems that would arise in an
actual implementation and to verify the correct operation
of the sensing algorithms.

The statistical analysis of the gathered data significantly
extends our previous results and provides a very good fit
with the empirical distribution. Furthermore, we propose
to fit a hyper-Erlang distribution which might represent a
good tradeoff between modeling accuracy and tractability of
the model. Goodness-of-fit techniques are used to validate
both fitting approaches.

Finally, we plan to further investigate our model’s fit in
practical traffic scenarios. In the paper, we have already
addressed VoIP and FTP-based traffic, yet there are many
more scenarios to consider (HTTP-traffic, video-streaming,
etc.).
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[25] A. Thümmler, P. Buchholz, and M. Telek, “A Novel
Approach for Fitting Probability Distriubtions to Real
Trace Data with the EM Algorithm,” in Proc.
International Conference on Dependable Systems and
Networks (DSN), June 2005, pp. 712–721.

[26] R. El Abdouni Khayari, R. Sadre, and B. Haverkort,
“Fitting World-Wide Web Request Traces with the
EM-algorithm,” Performance Evaluation, vol. 52,
no. 2, pp. 175–191, Apr. 2003.


	Introduction
	Main Contribution
	Related Work

	Measurement Setup
	Antenna-based setup
	Isolated RF-setup
	Traffic generation

	Sensing strategies
	Energy-based detection
	Feature-based detection

	Measurement results
	WLAN Medium Access Protocol
	Measurement validation
	UDP Traffic with Poisson Inter-arrivals
	Representative Traffic Scenarios

	Semi-Markov Model
	Estimating transition probabilities
	Specifying the sojourn times
	Kolmogorov-Smirnov Test

	Phase-type approximation
	Expectation-Maximization Algorithm
	Kolmogorov-Smirnov Test

	Conclusions
	References

