
Implementing and Evaluating
the DYMO Routing Protocol

Master’s Thesis

ROLF EHRENREICH THORUP

ADVISOR: LARS KRISTENSEN

FEBRUARY, 2007

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

DENMARK

Abstract

In a Mobile Ad hoc Network (MANET), mobile nodes move around arbitrarily,
nodes may join and leave at any time, and the resulting topology is constantly
changing. Routing in a MANET is challenging because of the dynamic topology
and the lack of an existing fixed infrastructure. The Dynamic MANET On-demand
(DYMO) protocol builds on previous proposed routing protocols for MANETs.
This thesis present a design and implementation of DYMO for Linux and an ex-
perimental practical evaluation of DYMO with respect to quantitative performance
metrics. The thesis contains a survey of implementation challenges that stem from
the lack of system-service support for on-demand MANET routing protocols and
a survey of implementation solutions addressing these challenges. The actual im-
plementation consists of a user space routing daemon and a Linux kernel module,
based on the netfilter framework. In the practical evaluation, the measured met-
rics are route discovery latency, TCP and UDP throughput, and end-to-end latency.
Many of the experiments have been conducted in both an emulated and a real setup.
Furthermore, the thesis present measurements to determine the limits of TCP based
services in MANETs, the so-called ad hoc horizon. The results of the experiments
showed performance in the emulated setup to be better than the real setup. In
the UDP and TCP experiments, the maximum achieved throughput was 3-4 times
better in the emulated setup than in the real setup. Furthermore, the evaluation
showed results to be comparable to previous experiments with the related Ad hoc
On-demand Distance Vector protocol. The experiments involving the ad hoc hori-
zon indicated that conclusions based on previously obtained simulation results are
correct.

II

Danish Summary

Et mobilt ad hoc-netværk (MANET) består af en mængde af mobile enheder som
bevæger sig frit rundt, og som selv danner en rutningsinfrastruktur, så hver enhed
fungerer som router. Rutning i et mobilt ad hoc-netværk er en stor udfordring på
grund af den dynamiske typologi og typiske hardware-variation for eksempel for-
skel i radiosendestyrke og batterilevetid. Dynamic MANET On-demand (DYMO)
rutningsprotokollen bygger på tidligere erfaringer med eksisterende protokoller
bl.a. Ad hoc On-demand Distance Vector (AODV) og Distance Vector Routing pro-
tokollerne og er på nuværende tidspunkt centrum i det arbejde, som bliver udført
af MANET arbejdsgruppen under the Internet Engineering Task Force. Målet for
dette speciale er at lave et review af DYMO specifikationen ved at implementere
denne, samt at lave en evaluering af protokollen ved brug af praktiske eksperimen-
ter.

Implementation

Specialet præsenterer design og implementation af DYMO til Linux. For at kun-
ne implementere DYMO undersøges de udfordringer der ligger i at implementere
en on-demand MANET protokol. Udfordringerne er en konsekvens af nuværende
operativsystemers manglende understøttelse til at identificere de hændelser, som
er essentielle for en on-demand protokol. Herefter præsenterer specialet en række
løsningsmuligheder og designvalg, som kan benyttes til at implementere DYMO til
Linux. De nævnte løsningsmetoder er kernekode modifikation, snooping samt net-
filter hooks. Den faktiske implementation består af en user-space rutningsdæmon
(eng: routing daemon) og et Linux kernemodul og benytter netfilter. Implementa-
tionen af rutningsdæmonen er skrevet i sprogene Lua og C. Selve rutningslogikken
er skrevet i Lua, og denne del er indlejret i en C-del, som implementerer netværks-
I/O og main loop. Kernemodulet er skrevet i C og implementerer netfilter-delen,
håndtering af aktive ruter, pakkekø samt kommunikation med rutningsdæmonen
i user-space. Vi har i implementationen af rutningsdæmonen fokuseret på porter-
barhed. Derudover giver vi en beskrivelse af, hvordan mængden af trafik mellem
kernelmodul og rutningsdæmon kan begrænses samtidig med at rutningsdæmonen
holdes tilstrækkelig opdateret.

Eksperimenter

Valget af de udførte eksperimenter er baseret på en gennemgang af tidligere eks-
perimenter typisk udført med protokollen AODV. Dette skyldes at der i skrivende
stund ikke er lavet praktiske evalueringer af DYMO, men kun evalueringer baseret
på simulation. De udførte og beskrevne eksperimenter er route discovery latency,

iii

IV

UDP og TCP throughput samt end-to-end delay. Derudover er der udført ekspe-
rimenter med formål at bestemme grænser for brugbarhed af services baseret på
TCP i ad hoc-netværk. Denne grænse benævnes ad hoc horisonten, og er et mål for
det maksimale antal af hop eller enheder, der kan være i et netværk før svartider
og hastighed føles utilstrækkelig. De fleste eksperimenter er udført i to forskelli-
ge opstillinger. Dels i en (emuleret) opstilling hvor bærbare computere er placeret
i det samme lokale, men hvor forbindelserne mellem enheder programmatisk er
brudt ifølge den ønskede netværkstopologi. Dels i en opstilling hvor de bærbare
computere er placeret fysisk adskilt i overensstemmelse med den ønskede topo-
logi. De overordnede resultater opnået i forbindelse med eksperimenterne viser,
at resultaterne i den emulerede opstilling er bedre end i den virkelige opstilling. I
målingerne af UDP og TCP hastighed er throughput 3-4 gange bedre i den emule-
rede opstilling. Målingerne i forbindelse med ad hoc horisonten bekræfter tidligere
simulationsresultater i at ruter på og over 3 hop medfører forringet anvendelighed
af services baseret på TCP.

Acknowledgements

I thank my advisor Lars Kristensen for his excellent support and guidance during
the course of this project, for supplying me with hardware and additionally extend-
ing the period I could have access to the hardware. The support I have received has
been indispensable and unsurpassed.

I thank Jeppe Brønsted for useful suggestions and comments. I am grateful
to Peter Gade Jensen for helping with office discipline during parts of the writing
process and for the countless pots of coffee shared. In addition, I am grateful for
his and Thomas Jakobsen’s company on numerous Fridays in Ada-020.

I thank my mother Clara Ehrenreich for proof-reading the thesis draft and I
thank all my family for their patience and encouragement. Finally, a special thanks
goes to Anna Laura for her understanding and for keeping me sane throughout.

v

VI

Contents

1 Introduction 1
1.1 Mobile Ad Hoc Networks . 1
1.2 The DYMO Routing Protocol . 2
1.3 Evaluation of MANET Routing Protocols 3

1.3.1 Evaluation of MANET Routing Protocols using Network
Simulators . 3

1.3.2 Experimental Evaluation of the DYMO Routing Protocol . 3
1.4 Aim of Thesis . 4
1.5 Methods . 5
1.6 Thesis Outline . 5

2 Mobile Ad Hoc Networks and Routing Protocols 7
2.1 Application of MANETs . 8
2.2 Conventional Wired Network Routing Protocols 8

2.2.1 Distance Vector Routing 9
2.2.2 Link State Routing . 10

2.3 MANET Routing protocols . 11
2.3.1 On-Demand Routing Protocols 11
2.3.2 Table-Driven Routing Protocols 11
2.3.3 MANET Routing Protocol Challenges 12

2.4 The AODV Routing Protocol . 12
2.4.1 Route Discovery . 13
2.4.2 Route Maintenance . 14

2.5 The DSR Protocol . 15
2.5.1 Basic Route Discovery 15
2.5.2 Route Maintenance . 16
2.5.3 Route Discovery Optimizations 17
2.5.4 Route Maintenance Optimizations 17

2.6 The OLSR Protocol . 18
2.6.1 Neighbour Discovery . 20

3 The DYMO Routing Protocol 21
3.1 Protocol Overview . 22
3.2 Route Discovery . 23
3.3 Route Maintenance . 25
3.4 Generalized Packet and Message Format 27

3.4.1 The Message Header . 27
3.4.2 The Message Body . 29

vii

VIII CONTENTS

4 Implementation Approach 31
4.1 Challenges . 32

4.1.1 Identifying the On-demand Ad Hoc Routing Challenges . 33
4.2 Implementation Techniques on Linux 34

4.2.1 Kernel Modification . 36
4.2.2 Snooping . 36
4.2.3 Netfilter . 38
4.2.4 Additional Implementation Issues 40

5 DYMO-AU Design and Implementation Overview 43
5.1 Design Approach . 43
5.2 Implementation Overview . 44

5.2.1 Packet Queue . 45
5.2.2 Expiry List . 45
5.2.3 Netlink Communication 45
5.2.4 Netfilter Hooks . 45

5.3 The Lua Programming Language 46
5.4 User Space-Kernel Space Interaction 47

5.4.1 Message Types . 47
5.4.2 Communication Interface in the Daemon 48
5.4.3 Route Discovery Example 48
5.4.4 RERR Processing Example 49

5.5 Discussion . 49
5.5.1 Errors in the DYMO Specification 50
5.5.2 Limitations of the DYMO-AU implementation 51
5.5.3 Portability . 51

6 DYMO-AU Design and Implementation Details 53
6.1 The User Space Routing Daemon 53

6.1.1 Timer Queue . 53
6.1.2 select I/O Multiplexing Main Loop 55
6.1.3 DYMO and Control Packet Dispatching 56
6.1.4 DYMO Message Processing 57
6.1.5 Routing Message Processing 57
6.1.6 Route Discovery . 58
6.1.7 Route Error Processing 58
6.1.8 Routing Table . 58

6.2 The Kernel Module . 61
6.2.1 Packet Queue . 61
6.2.2 Expiry List . 62
6.2.3 Netlink Communication 63
6.2.4 Netfilter Hooks . 64

6.3 Updating Route Timeouts . 66
6.3.1 Packet-triggered Update of Timeouts 66

CONTENTS IX

6.3.2 Timeout-triggered Update of Timeouts 68
6.3.3 On-demand Update of Timeouts 70

7 Experimental Evaluation 73
7.1 Related Work and Testbeds . 74

7.1.1 Evaluation Testbeds . 76
7.1.2 Summary . 79

7.2 Experiments . 79
7.2.1 Experimental Set Up . 81

7.3 Route Discovery Latency . 82
7.3.1 MobiEmu Setup . 83
7.3.2 Real Setup . 84
7.3.3 Comparing MobiEmu and Real Setup Results 85

7.4 UDP Performance . 86
7.5 End-to-End Delay . 89
7.6 TCP Performance . 92

7.6.1 FTP Performance . 93
7.7 Ad Hoc Horizon . 95

7.7.1 Measuring TCP Unfairness 96
7.7.2 Measuring HTTP Download Times 97

7.8 Experiences Learned . 99

8 Conclusions and Future Work 101
8.1 Summary . 101

8.1.1 Implementation . 101
8.1.2 Experimental Evaluation 103

8.2 Conclusions . 104
8.2.1 Implementation . 104
8.2.2 Experimental Evaluation 105

8.3 Future Work and Research . 105
8.3.1 Implementation . 105
8.3.2 Practical Evaluation . 108

A Setting Linux Kernel Parameters 109

B Contents of the CD-ROM 111

References 113

X CONTENTS

1
Introduction

The use of wireless technology has become a ubiquitous method to access the Inter-
net or connect to the local network whether in a corporate, educational, or private
setting. Practically all laptop computers are currently sold with a built-in wireless
adapter. In handheld units like PDAs, wireless adapters have also become standard
and are now being introduced in some types of mobile phones. It is much easier
and inexpensive to deploy a wireless network compared to a traditional wired net-
work, as the required effort and cost of running cables are negligible. Furthermore,
additional devices can be added to the network at no extra cost.

In order for a wireless equipped device to access other computers on the (wire-
less) local network or connect to the Internet it must associate with a wireless
access point. A wireless access point is a device that allows devices equipped with
wireless adapters to be linked together in a local area network (LAN) and to con-
nect to a preexisting wired LAN and via a gateway to get access to the Internet.
Such networks are called wireless local area networks (WLANs) as the wireless
access point is linking wireless devices without wires. Because of the convenience
of not having to rely on wires, WLANs have become immensely popular.

When devices equipped with wireless adapters are part of a WLAN and are
managed by a wireless access point, their coordination is controlled by a central-
ized entity. The devices rely on the presence of a fixed infrastructure, i.e., wireless
access points to work. Laptop computers must be within the range of a wireless
access point to connect to other devices because the laptops must communicate via
the access point.

1.1 Mobile Ad Hoc Networks

If communication between wireless equipped devices is desired, the reliance upon
an existing infrastructure as well as its implied limitations on mobility can be a ma-
jor obstacle. In such cases, the wireless equipped devices themselves must operate
autonomously to provide connection such that a device not directly within trans-
mission range of another device is able to communicate. Each wireless capable

1

2 INTRODUCTION

device must function as a router and forward packets. Thus, communication can
be via multiple wireless hops. In the following, such wireless equipped devices are
referred to as nodes. Additional challenges arise as nodes may move around arbi-
trarily resulting in networks with constantly changing, random multi-hop topolo-
gies. Such a network is called a mobile ad hoc network (MANET) because the
nodes in the network are mobile and communicate without a pre-established fixed
infrastructure, but instead form a routing infrastructure in an ad hoc fashion. Fig-
ure 1.1 shows the difference between a WLAN and a MANET. In a WLAN, the
mobile nodes are managed by the wireless access point. In a MANET, the mo-
bile nodes must work together in a distributed fashion to enable routing among
the nodes. Because of the lack of centralized control, routing becomes a central
issue and a major challenge as the network topology is constantly changing. The
mobility patterns and the condition under which a routing protocol is supposed
to work can vary considerably. Furthermore, the number of mobile nodes in the
network can range from a few to several hundreds or thousands. Because of the di-
verse envisioned working conditions, several MANET routing protocols have been
proposed.

AP

(a) WLAN. (b) MANET.

Figure 1.1: Nodes in a WLAN managed by an access point and nodes in
MANET independently forming a routing infrastructure.

1.2 The DYMO Routing Protocol

An example of a routing protocol for MANETs is the Dynamic MANET On-de-
mand (DYMO) routing protocol [CP06a]. The DYMO routing protocol is a re-
cently proposed protocol currently defined in an IETF Internet-Draft and is thus,
work in progress. It is currently in its sixth version. DYMO belongs to the cate-
gory of MANET routing protocols called on-demand or reactive routing protocols.
An on-demand protocol only tries to discover a route to a destination, when it is
actually needed by an application.

The DYMO protocol and the specification of it are new, and at the time of
writing two implementations exist, NIST DYMO [KBb] and DYMOUM [RR]. To
evaluate a protocol specification, especially a protocol draft, it is important that
several implementations are made available by independent sources. An imple-
mentation is a review of the specification as it is necessary to carefully read and

1.3 EVALUATION OF MANET ROUTING PROTOCOLS 3

understand the specification in order to implement it. In addition, when several
implementations are available they can be tested for interoperability. If two imple-
mentations are found not to be interoperable, it can be because the specification is
unclear and parts of it can be interpreted wrongly. Eventually, for an Internet-Draft
to be promoted to an RFC at least two independent implementations must exist and
be interoperable [Bra96].

1.3 Evaluation of MANET Routing Protocols

One of the ways we can compare different MANET routing protocols is to compare
quantitative performance metrics measured while conducting experimental evalu-
ations in a MANET. Examples of such metrics include end-to-end delay, route
discovery latency, and average number of bits transmitted compared to the number
of bits delivered.

1.3.1 Evaluation of MANET Routing Protocols using Network
Simulators

One way to perform such measurements involving MANET routing protocols is
with the use of network simulators. Ns-2 [BEF+00] is an example of a simulator
that is heavily used in MANET research. A network simulator is a valuable tool
to allow experiments and evaluations of protocols in an environment that is easy to
control and where changing the test parameters, for instance, the topology, is easy.
Accordingly, a lot of research in MANET routing protocols involving protocol
evaluation is conducted with the use of network simulators. However, a simulator
inevitably leave out some of the characteristics of a real network, as the real world
behaviour of radio waves propagation is complex and thus difficult and computa-
tional complex to mimic in a simulator [KNG+04]. Using a network simulator is a
convenient way to assist with the evaluation of MANET routing protocols, but it is
also important to test implementations of MANET protocols outside a simulator, as
a protocol must be tested in the real world environments in which it was envisioned
to work.

1.3.2 Experimental Evaluation of the DYMO Routing Protocol

An experimental evaluation of the DYMO routing protocol is interesting as the
DYMO specification is new and few results have previously been obtained with real
world experiments: Karygiannis et al. [KAA06] measured the number of control
packets using AODV and DYMO, respectively. Conducting practical experiments
is also interesting as we can compare our results to results obtained previously with
related protocols. DYMO is a successor to the Ad Hoc On-Demand Distance Vec-
tor (AODV) [PBRD03] routing protocol. AODV is also an on-demand MANET
routing protocol and it works similarly to DYMO. Several experimental evalua-
tions involving implementations of AODV have been conducted. As DYMO is a

4 INTRODUCTION

successor to the AODV protocol and a motivating factor is to investigate how an
implementation of DYMO fare when compared to results obtained using AODV.
It is interesting to examine if the results obtained from an experimental evaluation
of DYMO would be substantially different from the experimental results obtained
with AODV.

Another motivating factor for conducting experimental evaluations is to check
if a routing protocol implementation works. For example, is the implementation
working according to the specification, i.e., is it able to discover routes according
to the specification and to keep routes updated while they are being used? It is
impossible to formally evaluate if a routing protocol implementation is working
according to the specification, but it is possible to validate the correctness when
setting up computers to perform the practical experiments. This is the case as one
can constantly monitor the routes that have been created and if the time stamp of a
route is properly updated. Furthermore, if the implementation writes to a log file,
the files from each of the nodes can be examined if there is doubt with regards
to correctness. Aside from correctness, the stability of the implementation is also
tested when performing practical experiments. The implementation is tested in
more extreme situations compared to the more gentle tests conducted during the
development process when then implementation is usually not tested for extended
periods.

1.4 Aim of Thesis

The focus of this thesis is on the implementation of the DYMO routing protocol
and experimental evaluation of routing in MANETs in which our implementation
of the DYMO protocol is deployed. The goals of this thesis are:

• To review the DYMO Internet-Draft by implementing the speci-
fication. The implementation will be based on previously docu-
mented implementation experience.

• To use the implementation to evaluate the DYMO protocol with
regards to various quantitative performance metrics.

The DYMO routing protocol is defined in an IETF Internet-Draft. The draft
was initially published in February 2005, and currently it has seen six revisions, the
fourth being a major one which changed the packet layout. At the time of writing,
the latest specification is from October 2006. Because of the frequent updates, none
of the other available implementations have been updated to conform to revision
later than the third. As a consequence, we do not test interoperability between
different DYMO implementations in this thesis.

1.5 METHODS 5

1.5 Methods

We will implement the fourth version of the DYMO Internet-Draft. We will make a
review of some the currently available MANET routing protocol implementations
and the associated challenges and methods as described in the MANET literature.
As the specification is constantly being fine-tuned and updated, the DYMO spec-
ification will be implemented so that it is easy to update it to conform to newer
versions of the Internet-Draft. Furthermore, the implementation will be developed
such that it easy to conduct the experimental evaluations when the implementation
process has finished. This means that it should be easy to query the implementa-
tion and get readings of the internal state of the implementation, for example, the
content of the routing table.

We will perform practical evaluations using an experimental setup with wire-
less equipped laptop computers. We will survey the previous experimental evalua-
tions that have been conducted and documented in the literature and use these as a
guide when choosing topologies as well as the specific experiments to conduct.

To assist with performing repeatable practical experiments with more than a
few real devices according to a predetermined topology, one can make use of eval-
uation testbeds for MANET protocol evaluation. A MANET evaluation testbed
makes it possible to create and explore different topology scenarios even though
the mobile nodes are statically placed within transmission range of each other. This
makes it much easier to simulate nodes moving around, link breaks between nodes,
and nodes entering and leaving the MANET. Depending on the actual testbed in
consideration, the results obtained can be subject to the same reservation as men-
tioned when describing network simulators. How well the results compare to real
world results will depend on the radio propagation model used by the evaluation
testbed.

We will survey the proposed MANET evaluation testbeds. Based on the survey,
one of the testbeds will be used as a part of our practical experiments. We will
compare the results obtained with the testbed with the results obtained from the
experiments we perform in real setup. With a real setup, we mean a setup where
the nodes are physically placed so that only the nodes, which are supposed to hear
each other according to the chosen topology is actually able to.

1.6 Thesis Outline

The thesis is organized into the following chapters:

Chapter 2 Mobile Ad Hoc Networks and Routing Protocols In this introducti-
on we have not elaborated on the envisioned applications of MANETS nor
have we described any MANET routing protocol in details. In chapter 2 we
describe MANETs and MANET routing protocols in details and specifically
give examples of the operations of three different MANET routing protocols.

6 INTRODUCTION

Chapter 3 The DYMO Routing Protocol The DYMO routing protocol is the fo-
cus of this thesis. To be in a position to understand the following chapters
we give a thorough description of DYMO, its origins, its operations, and its
packet layout.

Chapter 4 Implementation Approach Several MANET protocols proposed pri-
or to the DYMO protocol have been implemented and the challenges in-
volved described and the implementation process has been documented. We
describe the implementation challenges and give an evaluation of existing
implementations with regards to the literature.

Chapter 5 DYMO-AU Design and Implementation Overview In continuation of
the description and identification of implementation challenges of MANET
routing protocols described in chapter 4, we present the design and imple-
mentation of our version of the DYMO routing protocol. The presentation is
divided into two chapters. This chapter gives an overview of the implemen-
tation.

Chapter 6 DYMO-AU Design and Implementation Details We continue the pre-
sentation of our implementation and go into details about the design and
implementation of the individual parts of the implementation.

Chapter 7 Experimental Evaluation We give an outline of experimental evalua-
tions conducted involving the related AODV routing protocol that we have
used as guidelines for our own experiments. We then describe our practical
experiments and the obtained results.

Chapter 8 Conclusions and Future Work We summarize the results described
in this thesis. We then conclude this thesis and list future work and research.

Central concepts in this thesis will be explained, but we assume that the reader
has basic knowledge of distributed systems, wireless networks (including a basic
understanding of the IEEE 802.11 MAC layer), and network protocols. Knowl-
edge of programming languages, especially the C programming language is also
assumed.

We assume that the reader has an understanding of the architecture of Unix-like
operating systems and a solid understanding of system programming, including
network programming, on these types of operating systems.

In chapter 5 and 6, we mention several POSIX system calls and library func-
tions, deliberately without giving further references. We assume that the reader is
able to use the help facilities on a Unix-like system, specifically the manual pages,
to seek additional help if needed.

2
Mobile Ad Hoc Networks and

Routing Protocols

In a mobile ad hoc network (MANET), mobile nodes communicate using wireless
links without a fixed infrastructure such as base stations (access points) or central-
ized control. A typical mobile ad hoc network is a group of laptops operating in
wireless ad hoc mode. Each mobile node acts as a router to enable multi-hop com-
munication. A node is free to move around randomly and as a result, the topology
formed by the nodes is highly dynamic and unpredictable. A MANET can operate
in a stand-alone fashion, or can be connected to a fixed internetwork, for example,
the Internet.

The need for multi-hop routing arises when some nodes are out of transmission
range of others. A node only handles traffic within a local cloud of wireless devices.
As an example consider figure 2.1, in which the circle around the nodes indicates
the transmission range. For node A to be able to communicate with node C and
D that both are out of the transmission range of A, the intermediate node B must
forward packets to the other nodes.

Before moving on with the introduction to MANETs, we describe the hidden
terminal problem; another problem that stems from nodes being out transmission
range of each other. In figure 2.1, if node A and node C transmit to node B simul-
taneously, the packets may collide at node B causing wasted network bandwidth.
The nodes A and C are hidden from each other, as they cannot sense the transmis-
sion of the other node. The use of a virtual carrier sensing mechanism can alleviate
the problem. A node that wishes to transmit data sends a request-to-send (RTS)
message before sending any data packets. The receiver then answers with a clear-
to-send (CTS) message and other nodes hearing the RTS/CTS messages update
their Network Allocation Vector (NAV) according to the time period specified in
the messages [Gas02]. The busy state of the medium is then indicated by carrier
sensing at the physical layer combined with the virtual carrier sensing information
found in the NAV. In the following, we refer to the use of RTS and CTS messages
as the RTS/CTS clearing procedure.

7

8 MOBILE AD HOC NETWORKS AND ROUTING PROTOCOLS

A
B C

D

Figure 2.1: Illustration of multi-hop routing. Every node must act as a router.
The circle around each node shows the transmission range. If A needs to reach
C and D, node B must forward packets from A.

2.1 Application of MANETs

The origins of MANETs are to be found in the US military and one envisioned
use is military. For example, in the battlefield, different units could be able to
communicate even if an existing infrastructure has been destroyed or is untrusted.
Second, MANETs could be used in rescue and disaster relief efforts, for instance
in remote areas with little or insufficient communication possibilities.

A third application area is in sensor networks. A network of autonomously co-
operating sensors can perform tasks not previously possible in traditional networks.
Typically, nodes are relatively small units placed in an environment to monitor
some kind of phenomenon. An example could be vehicle-to-vehicle communica-
tion. A sensor placed on a vehicle could detect road conditions and propagate this
information to other vehicles on the road.

A fourth area is temporary networks, for example deployed at conferences,
meeting rooms, and airports. Wireless Internet connection at airports can be ex-
pensive, and a group of people could share a connection with the use of a MANET.

Finally a fifth application area could be a wireless personal area network with
watches, laptops, PDAs, cell phones, and wearable computing devices sharing and
exchanging information and delivering added convenience for the owner.

Some of the motivation of the different application areas can be summarized as
either total lack of an infrastructure, unwillingness to use any existing infrastruc-
ture, or the desire to extend coverage of an existing infrastructure.

2.2 Conventional Wired Network Routing Protocols

Most MANET routing protocols are based on or borrow ideas from conventional
wired network protocols. Before we go into the details of how the different kinds

2.2 CONVENTIONAL WIRED NETWORK ROUTING PROTOCOLS 9

of MANET routing protocols operate and describe some specific MANET rout-
ing protocols, we make a brief overview of the types of next hop unicast routing
protocols used in conventional wired networks.

2.2.1 Distance Vector Routing

In a distance vector protocol, each node maintains complete information about
distances to each destination via neighbours, i.e., the next hop for that particular
destination. An entry in the routing table consists of a destination address, number
of hops, and next hop for the destination. When a node boots, it discovers each
directly connected neighbour and initializes its routing table to contain information
about these. Periodically a node sends a copy of its routing table to the directly
connected neighbours.

A node T receiving a routing table from S then examines the listed entries and
updates its own table according to the update received from S. An entry is updated
if:

• S knows a shorter route to a node

• The hop count for a destination that T routes through S changes

• S advertises a destination not in the routing table of T

For example, figure 2.2 shows an existing routing table for node T (2.2a) and
an update message from node S (2.2b) that is used to update the routing table of T
(2.2c).

Desti-
nation

Dis-
tance

Next
hop

A 4 R
B 7 S
C 3 S

(a) The existing routing
table for T

Desti-
nation

Dis-
tance

A 2
B 5
C 3
D 1

(b) Routing table
update from S

Desti-
nation

Dis-
tance

Next
hop

A 3 S
B 6 S
C 4 S
D 2 S

(c) The updated routing
table for T

Figure 2.2: The routing table message from S is used to update entries (desti-
nation A,B, and C) or add a new entry (destination D) to the routing table of T.

All distances in advertised routing tables are as seen by the sender. To compare
the distance to a destination X going through S, denoted D(S)(T,X), to its own
recorded distance, which we denote D(T,X), it uses D(S)(T,X) = 1+D(S, X).
For example, using the tables in figure 2.2, the entry of T for B is updated to 6.

One disadvantage of distance vector routing is the possibility of routing loops.
An example leading to a routing loop is depicted in figure 2.3. Initially, a link

10 MOBILE AD HOC NETWORKS AND ROUTING PROTOCOLS

between node C and D exists, C has advertised it, and consequently B and A have
installed the route at distance 2 and 3, respectively. The connection between C and
D then breaks, C updates its routing table setting the distance to D to infinity, but
before its periodically routing table message is broadcasted, it receives a message
from B reporting the link at distance 2. When C next broadcasts its routing table,
advertising node D at distance 3, B updates its D entry and sets the distance to 4.
The series of updates is shown in figure 2.4. The first row shows the entries before
the link break, and the second shows them after C relearns the distance to D from
B.

A B DC

(a)

A B DC

(b)

Figure 2.3: Scenario resulting in a routing loop because of the vanished con-
nection to D.

A B C
(3,B) (2,C) (1,D)
(3,B) (2,C) (3,B)
(3,B) (4,C) (3,B)
(5,B) (4,C) (5,B)

Figure 2.4: Routing table entries (distance, next hop) with respect to D

The problem of the ever-increasing hop count happening after a link break is
called the counting to infinity problem.

2.2.2 Link State Routing

Using link state routing protocols, each node maintains complete topology infor-
mation about the network. The topology information is a map, represented as a
graph G = (V,E), i.e., the routers or nodes in the network are the nodes (V) of the
graph and edges (E) are the links that connects the nodes. There is a link between
two nodes if they can communicate directly.

Instead of sharing its routing table with neighbours as in a distance vector pro-
tocol, nodes share information about its outgoing links. Information about these
links is obtained by periodically testing the connection to neighbours. A node
sends out Hello messages asking whether neighbours are alive and reachable. If a

2.3 MANET ROUTING PROTOCOLS 11

neighbour replies, the link is marked as being up, otherwise, it is marked as being
down.

To let other nodes in the network know about the status (state) of its links, a
node periodically floods a message with the state of each link listed. Combining
all the link state advertisements received, a node builds a map or graph of the net-
work. Using Dijkstra’s shortest path algorithm, the shortest path to all destinations
from the node can be computed. Whenever the link status changes, the routes are
recomputed.

2.3 MANET Routing protocols

The routing of traffic between nodes is performed by a MANET routing proto-
col. MANET routing protocols can be divided into two categories. In table-
driven/proactive routing protocols, nodes periodically exchange routing informa-
tion and attempt to keep up-to-date routing information. In on-demand/reactive
routing protocols, nodes only try to find a route to a destination when it is actually
needed for communication. In the following sections, we first describe the two cat-
egories of MANET routing protocols in more details. We then list the challenges
faced by MANET routing protocols.

2.3.1 On-Demand Routing Protocols

On-demand routing protocols only maintain routes that are actually used. On-
demand protocols use two different operations to find and maintain routes: the
route discovery process operation and the route maintenance operation. When a
node wishes to communicate with some other node it tries to find a route to that
node, i.e., routing information is acquired on-demand. This is the route discovery
operation. Route maintenance is the process of responding to changes in topology
that happens after a route has initially been created. The nodes in the network try
to detect link breaks on the established routes. Examples of on-demand protocols
are DSR (see section 2.5), AODV (see section 2.4), and DYMO (see chapter 3). A
disadvantage of the reactive approach is that when the sending node has to discover
a route to the destination, the initial delay before data is exchanged between two
nodes can be long.

2.3.2 Table-Driven Routing Protocols

Proactive routing protocols maintain routing information continuously. Typically,
a node has a table containing information on how to reach every other node (or
some subset hereof) and the algorithm tries to keep this table up-to-date. Changes
in network topology are propagated throughout the network. Examples of proac-
tive protocols are the Topology Dissemination Based on Reverse-Path Forward-
ing (TBRPF) [OTL04], Highly Dynamic Destination-Sequenced Distance-Vector
Routing [PB94], and OLSR (see section 2.6).

12 MOBILE AD HOC NETWORKS AND ROUTING PROTOCOLS

2.3.3 MANET Routing Protocol Challenges

MANET routing protocols face some challenges to be able to work in the envi-
sioned application areas as described in section 2.1.

Dynamic topology Nodes can appear and disappear at random. Nodes can move
continuously or be powered off when entering sleep mode. This means that,
for example, the routing protocols cannot assume that once information is
gained about the topology, it remains fixed and must consider the cost of
constantly updating routing information.

Resource constraints Nodes can have limited resources with respect to computa-
tional power, e.g., RAM and CPU power available, power supply, and cost of
communication. In addition, there are constraints with regard to bandwidth
on the wireless link, the effects of multiple access, fading, noise, and inter-
ference conditions may severely limit the transmission rate or even prevent
link establishment.

Heterogeneity Nodes can have varying characteristics with respect to the resource
constraints specified above and be more or less willing to participate in rout-
ing.

To give an overview of how MANET routing protocols work, in the follow-
ing, we give descriptions of how three of the many proposed protocols work.
As examples of on-demand MANET routing protocols, we have chosen to de-
scribe AODV [PBRD03] (section 2.4) and DSR [JMH04] (section 2.5). AODV is
the most well-known MANET routing protocol and several implementations ex-
ist [Adh]. AODV is thus far the only on-demand routing protocol promoted from
an Internet-Draft to an experimental RFC. DSR is also an on-demand routing pro-
tocol. It is currently defined by an Internet-Draft, but is on its way to becoming
an RFC [MANa]. DSR is interesting as it in contrast to other MANET routing
protocols uses source routing. As we clarify in chapter 3, both AODV and DSR
are interesting in the context of DYMO as the DYMO routing protocol can be seen
as a simplified version of AODV borrowing ideas from DSR.

We then describe OLSR [CJ03] as an example of a proactive protocol. OLSR
has been defined by an experimental RFC and several implementation are avail-
able [Adh]. Currently a second version of OLSR is being developed [CJ06].

2.4 The AODV Routing Protocol

The Ad Hoc On-Demand Distance Vector [PBRD03] (AODV) routing protocol is a
reactive protocol. As is the case with all reactive ad hoc routing protocols, AODV
consists of two protocol operations: Route discovery and route maintenance.

2.4 THE AODV ROUTING PROTOCOL 13

2.4.1 Route Discovery

Route discovery is the process of creating a route to a destination when a node
lacks a route to it. When a node S wishes to communicate with a node T it initiates
a Route Request (RREQ) message including the last known sequence number for
T and a unique RREQ id that each node maintains and increments upon the send-
ing of an RREQ. The message is flooded throughout the network in a controlled
manner, i.e., a node only forwards an RREQ if it has not done so before; the RREQ
id is used to detect duplicates. Each node forwarding the RREQ creates a reverse
route for itself back to S using the address of the previous hop as the next hop entry
for the node originating the RREQ.

When the RREQ reaches a node with a route to T (possibly T itself) a Route
Reply (RREP), containing the number of hops to T and the sequence number for
that route, is sent back along the reverse path. An intermediate node must only
reply if it has a fresh route, i.e., the sequence number for T is greater than or
equal to the destination sequence number of the RREQ. Since replies are sent on
the reverse path, AODV do not support asymmetric links. Each node receiving
this RREP creates a forward route to T in its routing table, and adds the node
that transmitted the RREP in precursor list for this entry. The precursor list is a
list of nodes that might use this node as next hop towards a destination. Route
discovery is illustrated in figure 2.4.1, where node 2 wants to communicate with
node 9 and floods an RREQ message in the network. Node 9 replies with an RREP.
Intermediate nodes learn routes to both source and destination nodes via the RREQ
and RREP packets.

2
6

3

94

7 RREQ
RREP

Network Link

1

8

10

5

Figure 2.5: Route discovery in AODV. Node 2 wants to communicate with
node 9. Each node forwarding the RREQ creates a reverse route to node 2
used when sending back the RREP.

If an intermediate node has a route to a requested destination and sends back
an RREP, it must discard the RREQ. Furthermore, it may send a gratuitous RREP
to the destination node containing address and sequence number for the node orig-
inating the RREQ. Gratuitous RREPs are sent to alleviate any route discovery
initiated by the destination node. It might not have received any RREQs and has
not learned a route to the originator of the RREQ.

14 MOBILE AD HOC NETWORKS AND ROUTING PROTOCOLS

5

2
6

3

94

7
10

RREQ
RREP

Network Link

1

8

Gratuitous RREP

Figure 2.6: Generation of an RREP by an intermediate node. Node 4 has a
route to node 9 and sends an RREP to node 2 and a gratuitous RREP to node
9.

2.4.2 Route Maintenance

Route maintenance is the process of responding to changes in topology. To main-
tain paths, nodes continuously try to detect link failures (when a neighbour go out
of range, the node itself moves, or some other event limiting the communication
on the link). Nodes listen to RREQ and RREP messages to do this. Furthermore,
each node promises to send a message every n seconds. If no RREQ or RREP is
sent during that period, a Hello message is sent to indicate that the node is still
present. Alternately, a link layer mechanism can be used to detect link failures.
Beside the observation of a link failure, a node must also respond when it receives
a data packet it does not have a route for.

When a node detects a link break or it receives a data packet it does not have a
route for, it creates and sends a Route Error (RERR) packet to inform other nodes
about the error. The RERR contains a list of the unreachable destinations.

If a link break occurs, the node adds the unreachable neighbour to the list. If a
node receives a packet it does not have a route for, the node adds the unreachable
destination to the list. In both cases, all entries in the routing table that make use
of the route through the unreachable destination, are added to the list.

The list is pruned, as destinations with empty precursor lists, i.e., destinations
that no neighbours currently make use of, are removed. The RERR message is
either unicasted (in case of a single recipient) or broadcasted to all neighbours hav-
ing a route to the destinations in the generated list. This specific set of neighbours
is obtained from the precursor lists of the routing table entries for the included
destinations in the RERR list.

When a node receives an RERR, it compares the destinations found in the
RERR with the local routing table and any entries that have the transmitter of the
RERR as the next hop, remains in the list of unreachable nodes. The RERR is then
either broadcasted or unicasted as described above. The intention is to inform all
nodes using a link when a failure occurs. For example, in figure 2.7, a link between
node 6 and node 9 has broken and node 6 receives a data packet for node 9. Node
6 generates a RERR message, which is propagated backwards toward node 2.

2.5 THE DSR PROTOCOL 15

2
6

3
5

94

7
10

Network Link
DATA
RERR1

8

Figure 2.7: Generation of RERR messages. The link between node 6 and
node 9 has broken, and node 6 generates an RERR.

To find a new route, the source node can initiate a route discovery for the un-
reachable destination, or the node upstream of the break may locally try to repair
the route, in either cases by sending an RREQ with the sequence number for the
destination increased by one.

2.5 The DSR Protocol

The Dynamic Source Routing protocol (DSR) [JMH04] allows any host to dynam-
ically discover a source route to any destination in the network. A source route
is a route that is determined by the source and correspondingly, source routing is
a routing technique in which a packet is moved through a network using a path
predetermined by the source node. The path information to use during the routing
is placed in the packet.

As other routing protocols operating on-demand, no overhead is imposed when
nodes are stationary and routes have already been created. Other characteristics
that separate DSR from other on-demand routing protocols, are that source rout-
ing permits intermediate nodes to avoid keeping routing information and that it
guarantees loop-free operation. It is beacon-less, i.e., it does not require exchange
of periodic Hello messages. Furthermore, DSR supports unidirectional links and
asymmetric routes. As all on-demand routing protocols, DSR is composed of two
main mechanism: route discovery and route maintenance.

2.5.1 Basic Route Discovery

In the following, we describe the basic route discovery mechanism. The mecha-
nism is illustrated in figure 2.8. Node 2 has a data packet to send to node 9 and
floods a Route Request (RREQ) in the network, as it does not have a route to node
9 in its route cache. The RREQ packet contains a unique request id generated by
the source node and a record listing the addresses of all intermediate nodes. The
route record is initialized to the empty list by the initiator of the RREQ.

Each node receiving the RREQ rebroadcasts the packet, if the node is not the

16 MOBILE AD HOC NETWORKS AND ROUTING PROTOCOLS

2
6

3
5

94

7
101

8

Network Link
Route Request
Route Reply,
Path1: 2-4-5-9
Route Reply,
Path2: 2-4-6-9

Figure 2.8: The route discovery process for DSR. Node 2 is the initiator and
node 9 is the target. To make the figure more comprehensible, not all possible
routes are shown. Routes involving node 8 or node 10 could for example be
possible.

target, it has not forwarded the packet previously, and it does not find its own
address already listed in the route record. The request id of the RREQ is used
to check for already forwarded packets, i.e., duplicate RREQs. Finally, the node
appends its address to the route record of the packet. In the example in figure 2.8,
forwarded RREQs that would be discarded by the receiver, are not shown.

The RREQ arrives at node 9 via different routes and the node then returns
a Route Reply (RREP) to node 2, the initiator of the route discovery, containing
the recorded route. When node 2 receives the RREP sent by node 9, it saves the
listed route in its route cache for use for subsequent sendings. The RREP can be
returned various ways. If the destination node has a route to the initiator in its
route cache it can use this. It can itself perform a route discovery for the initiator
with the RREP packet piggybacked to avoid an infinite loop of route discoveries.
Finally, the target can use the reversed sequence of hops found in the route record
of the RREQ, which is illustrated in figure 2.8. In the example in figure 2.8, not all
possible returned RREPs are showed. For instance, a RREQ could arrive at node
9 via node 8 and had thus taking the path 2-4-5-8-9. The RREP could then be
returned on the reverse route.

2.5.2 Route Maintenance

Each node transmitting a packet is responsible for ensuring that the next hop neigh-
bour receives the packet. This can be performed in three ways. It can either be done
listening for link-layer per-hop acknowledgements. It can be done using what is
called passive acknowledgements, which means a node hears the next hop node
send packets to its next hop. For example, a node A forwarding a packet con-
firms reception of the packet at the next hop neighbour B, when hearing B send
the packet to node C, the next hop of node B. Finally, a flag can be set in a DSR
control packet requesting explicit next hop acknowledgement.

2.5 THE DSR PROTOCOL 17

Upon detection of a link break when forwarding a packet, a Route Error (RRER)
error packet is sent to the node originating the packet, stating the link that is cur-
rently broken. For example, in figure 2.9, node 9 has moved outside the transmis-
sion range of node 6 and it is unable to deliver the data packet to node 9.

2
6

3
5

94

7
10

Network Link
Data
Route Error

1

8

Figure 2.9: Route maintenance. Node 9 cannot be reached by node 6 anymore
and a RERR is returned to node 2.

Node 6 then returns RERR to node 4 that in return propagates it to node 2,
the original sender, which removes the route from its route cache. It can then use
another cached route (for example, the path 2-4-5-9 learned from the previous route
discovery), or perform a new route discovery for node 9.

2.5.3 Route Discovery Optimizations

A node may extract routing information found in RREQ, RREP, RERR, and ordi-
nary data packets that it is forwarding or overhearing while in promiscuous mode
and add it to its route cache. Promiscuous mode is a state of a network adapter
in which it listens to all traffic on a network, regardless of link-layer addresses.
Routes learned this way, may however be subject to uni-directional links. The
node can always add destinations that are on the forward direction links compared
to itself. For example, in figure 2.8, if node 4 was forwarding a data packet from
node 1 to node 9 it could add the presence of links from itself to node 6, and from
node 6 to node 9. Only if the node knew that the links were bidirectional could it
add the presence of reverse links, for example, in figure 2.8, from itself to node 2.
Bidirectional links could, for example, be ensured by the MAC protocol.

When an intermediate node receives a RREQ it may search its route cache for
a route the target of the RREQ and return a RREP if found. The route record in the
generated RREP is the concatenation of the route found in the route record of the
RREQ and the intermediate nodes idea of the route to the target.

2.5.4 Route Maintenance Optimizations

A route may be shortened in a situation where a node overhears a packet it is not
the intended next hop for, but its address appears in the unused part of the source
route, i.e., the part that has not yet been travelled.

18 MOBILE AD HOC NETWORKS AND ROUTING PROTOCOLS

For example, in figure 2.10, node 6 overhears node 2 transmit a packet to node
4. As node 6 is listed in the unused part of the source route, in this example as the
next hop after node 4, it can infer that node 4 is no longer needed when transmitting
packets from node 2 to 9.

2
6

94

Network Link
Data

Figure 2.10: Node 6 detects that the route to node 9 can be shortened as it
overhears the transmission from node 2 to 4 and it is itself listed in the source
route of the packet.

Node 6 then returns a gratuitous RREP to node 2 indicating the shorter route 2-
6-9, i.e., the returned route is the original source route with the node sitting between
the node sending the overheard packet and the node sending the gratuitous RREP
removed.

2.6 The OLSR Protocol

The optimized link state routing (OLSR) [CJ03] protocol is a proactive routing
protocol that uses an efficient link state packet forwarding mechanism called mul-
tipoint relaying. The purpose of using multipoint relays to flood messages is to
reduce the number of duplicate retransmission while forwarding broadcast pack-
ets. A multipoint relay (MPR) is a node that forward broadcast packets during
the flooding process. Each node selects a subset of its 1-hop neighbours as its
MPRs. We assume the links between nodes are bidirectional (symmetric). This set
is called the MPR set of the node and is the set of nodes that may retransmit its
messages. This set is chosen so that for every node m in the 2-hop neighbourhood
of the node, m can be reached through one of the chosen MPRs. A more detailed
description of how neighbours and two-hop neighbours are detected is described
in section 2.6.1. The OLSR specification suggests the following MPR selection
algorithm for a node X:

• Select from the 1-hop neighbour set (N1(X)) the nodes that cover isolated
nodes of the 2-hop neighbour set (N2(X)), i.e., nodes in N2(X) that are
only reachable from one node in N1(X). For example, in figure 2.11a, when
selecting the MPR set of node 4, node 1 can only be reached via node 2 and
node 2 is thus added to the MPR set of node 4.

• Until all of N2(X) is covered, select from the remaining nodes of N1(X),
the node covering the highest number of nodes in N2(X). Continuing the
MPR selection procedure for node 4 in figure 2.11a, node 5 and node 6 are
chosen next.

2.6 THE OLSR PROTOCOL 19

The resulting MPR set of node 4 are the nodes 2, 5, and 6 and is depicted in
figure 2.11a; all nodes in the 2-hop neighbourhood can be reached through one
of the selected MPRs. Besides the MPR set, each node maintains a subset of
neighbours that have selected the node as MPR. This set is called the MPR selector
set.

The selection of MPR for flooding messages in the network reduces the amount
of traffic in the network because of reduced broadcast message retransmissions.
This is illustrated in figure 2.11. In the network in figure 2.11a, the nodes of the
MPR set of node 4 (nodes 2, 5, and 6) are the only ones retransmitting packets
originating at node 4. A total of four transmissions are taking place. In the net-
work in figure 2.11b, every node forwards the packet from node 4. A total of ten
transmissions are taking place.

Network Link
Node belonging to
MPR set of Node 4

2 6

3
5

94

7 101

8

(a) Forwarding using MPR set.

2 6

3
5

94

7 101

8

(b) Forwarding using flooding.

Figure 2.11: In 2.11a, node 4 has selected the shaded nodes as its MPR set.
Only these nodes forward packets originating from node 4. In 2.11b, every
node retransmit the packets.

Compared to a pure link state routing protocol, two further optimizations are
achieved by taking advantages of the selection of the MPR set. As explained in
section 2.2.2, in a traditional link state routing protocol each node broadcasts mes-
sages that list the state of each its links. Because of how the MPRs have been
selected only nodes chosen as MPRs need to publish their link state. Thus, the first
optimization is achieved as the number of control packets flooded in the network
is reduced.

An MPR node may choose to only report partial link state information, namely
the MPR selector set of the node. As a consequence, the size of control packets
is reduced. This gives the second optimization. Given the link state messages
containing the information about the MPR selector set of all the MPRs, the nodes
in the MANET have enough information to calculate shortest path routes to all
hosts.

Messages containing link state information are called Topology Control (TC)
packets. TC packets are periodically flooded in the network and as described pre-
viously only the MPR subset broadcast the TC packets and only the MPR selector
set of an MPR node is announced in the TC packet.

20 MOBILE AD HOC NETWORKS AND ROUTING PROTOCOLS

2.6.1 Neighbour Discovery

To obtain the necessary topology information for a node to be able to select its
MPR set, it is necessary to get information about its one- and two-hop neighbours.
In addition, information about nodes that have selected a specific node as MPR,
the MPR selector set, must be maintained. This information is obtained by period-
ically sending HELLO messages in which nodes exchange information about their
neighbours, the link state, and type of neighbours.

To initially discover neighbours, a node first sends an empty HELLO message.
The process is illustrated in figure 2.12, where two nodes, A and B, exchange
HELLO packets. In the figure, node A first sends an empty HELLO packet. Node
B receives the packet and in the next sent HELLO message, it includes the address
of A and marks it as an asymmetric neighbour, which means that B has not found
its own address in the HELLO packet received from A. When A receives the packet
from B and finds its own address in the HELLO packet coming from B, it sends
a HELLO packet announcing node B as a symmetric neighbour. Finally, node B
sends a HELLO packet where A is listed as a symmetric neighbour.

A B

HELLO ()
HELLO (A:asym)
HELLO (B:sym)
HELLO (A:sym)

Figure 2.12: Neighbour discovery session.

As a HELLO message contains a list of neighbours of the sending node, a node
receiving the message can maintain its two-hop neighbour set based on this list.
All symmetric neighbours advertised in the HELLO packet, not including the node
itself, is added to the receiver’s two-hop neighbour set. This implies the inclusion
of one-hop neighbours, however, these are excluded when calculating the MPR set.
For each advertised neighbour in a HELLO message, a flag indicates if the sending
node has chosen this neighbour as an MPR. Upon receiving a HELLO packet a
node checks the list of neighbours and compares with its own address. If a match
is found, the sender of the HELLO message is added to the MPR selector set of the
receiver.

3
The DYMO Routing Protocol

The Dynamic MANET On-demand DYMO routing protocol is a newly proposed
protocol currently defined in an IETF Internet-Draft [CP06b] in its sixth revision
and is still work in progress. The version of the protocol described here is the fourth
version as our implementation of DYMO presented in chapter 5 and chapter 6 is
based on this version.

DYMO is a successor of the AODV routing protocol [PBRD03] and is the cur-
rent engineering focus for reactive routing in the IETF MANET working group
[PBRDC]. It operates similarly to AODV, which we described in section 2.4.
DYMO does not add extra features or extend the AODV protocol, but rather sim-
plifies it, while retaining the basic mode of operation.

DYMO is not the first attempt to make an enhanced version of AODV. AODV
with Path Accumulation (AODV-PA) proposed by Gwalani et al. [GBRP03] ex-
tends AODV with the source route path accumulation feature of DSR. As described
in section 2.5.1, in the DSR protocol the addresses of intermediate nodes are ac-
cumulated in the DSR RREQ and RREP packets when they are disseminated in
the network, i.e., every node forwarding an RREQ or RREP adds its own address
to the packet. In this way, nodes also learn about routes to other nodes in the net-
work. AODV-PA makes no other modifications to AODV. Gwalani et al. found
that under conditions of high-load and moderate to high mobility, AODV-PA has
improved performance compared to AODV and also found it scaled better in large
networks. The results were obtained using the ns-2 simulator.

AODVjr proposed by Chakeres and Klein-Berndt [CKB02] removes all but the
essential elements of AODV. This means sequence numbers, gratuitous RREPs,
hop count, Hello messages, RERR messages, and precursor lists are omitted com-
pared with AODV. Furthermore, route lifetimes are only updated when receiving
packets. In AODV, route timeouts are also updated when sending packets. What
remains, is basic route discovery using RREQ and RREP where only the destina-
tion responds to RREQs. To maintain active routes the destination is required to
periodically send connect messages if traffic is unidirectional. Using the ns-2 sim-
ulator, Chakeres and Klein-Berndt found that AODVjr achieves nearly the same

21

22 THE DYMO ROUTING PROTOCOL

performance as AODV, but has much lower control traffic overhead. In addition,
Chakeres and Klein-Berndt estimates the combined implementation and debug-
ging effort of AODVjr to take less than half the time compared with a full AODV
implementation. They also note that AODVjr could easily be extended with, for
example, link layer feedback, RERR messages, and sequence numbers.

Using AODV as a basis, DYMO combines the ideas originated in AODV-PA
and AODVjr. From AODV-PA (and DSR), it borrows path accumulation. As
AODVjr it removes features that may be regarded as extensions to the core func-
tionality: as AODVjr, DYMO removes gratuitous RREP, precursor lists, and Hello
messages. Hello messages are not mandated by the AODV specification either, but
compared to the DYMO specification, their use and packet layout are specified.
Compared to AODVjr, DYMO retains sequence numbers, hop count, and RERR
messages. As of the fifth version of the DYMO Internet-Draft [CP06c], the use of
hop count has been made optional.

In the rest of this chapter, we give a detailed description of the DYMO routing
protocol. The description gives more low-level details compared to the descriptions
of OLSR, DSR, and AODV given in chapter 2. These details are given to provide
a better prerequisite to understand our implementation of DYMO, which we de-
scribe in chapter 5 and 6. Section 3.1 gives a short overview of DYMO besides the
one already given. In section 3.2, the route discovery process is explained and in
section 3.3, we explain the route maintenance process. Finally, in section 3.4 we
describe the packet format used in DYMO.

3.1 Protocol Overview

As is the case with all reactive ad hoc routing protocols, DYMO consists of two
protocol operations: route discovery and route maintenance. Routes are discovered
on-demand when a node needs to send a packet to a destination currently not in its
routing table. A route request message is flooded in the network using broadcast
and if the packet reaches its destination, a reply message is sent back containing
the discovered, accumulated path.

Each node maintains a routing table with information about nodes. Each entry
in the routing table consists of the following fields:

Destination Address: the IP address of the destination

Sequence Number: the destination sequence number

Hop Count: number of hops towards the destination

Next Hop Address: the IP address of the next node on the path towards the
destination

Next Hop Interface: the interface used to send packets towards the destination

3.2 ROUTE DISCOVERY 23

Is Gateway: flag that specifies if the destination node is an Internet gate-
way

Prefix: number that indicates if the destination address is a network
address

Valid Timeout: the time at which the route table entry is no longer valid

Delete Timeout: the time after which the route table entry must be deleted

The prefix value advertises connectivity to a subnet of nodes within its address
space, i.e., it is a network address, rather than a host address. For example, if the
prefix value is 24 and the address of the destination is 192.168.42.50, the node can
forward packets to nodes having addresses with the prefix 192.168.42.X.

Each node must maintain its own sequence number. The sequence number
is incremented each time the node sends a route request message. This allows
other nodes to determine the order of discovery messages to avoid stale routing
information, to detect duplicate messages, and to ensure loop freedom.

3.2 Route Discovery

Route discovery is the process of creating a route to a destination when a node
needs a route to it. When a node S wishes to communicate with a node T, it initi-
ates a Route Request (RREQ) message. The RREQ message and the Route Reply
(RREP) message, which we describe later in this section are collectively known as
Routing Messages (RM) because they are used to distribute routing information.
The sequence number maintained by the node is incremented before it is added to
the RREQ. We illustrate the route discovery process using figure 3.1 as an exam-
ple. In the figure, node 2 wants to communicate with node 9 and thus, node 2 is S,
the source, and node 9 is T, the target destination.

In the RREQ message, the node 2 includes its own address and its sequence
number, which is incremented before it is added to the RREQ. It can also include a
prefix value and gateway information if the node is an Internet gateway capable of
forwarding packets to and from the Internet. Finally, a hop count for the originator
is added with the value 1. Then information about the target destination 9 is added.
The most important part is the address of the target. If the originating node knows
a sequence number and hop count for the target, these values are also included.
To sum up, the RREQ so far contains information about node 2 that originated the
RREQ and node 9, the target destination. The addresses in an RREQ message are
grouped together in what is called an address block and the associated attributes
are grouped together in a TLV block.

The message is flooded using broadcast, in a controlled manner, throughout
the network, i.e., a node only forwards an RREQ if it has not done so before.
The sequence number is used to detect this. Each node forwarding an RREQ may
append its own address, sequence number, prefix, and gateway information to the

24 THE DYMO ROUTING PROTOCOL

2
6

3

94

7
10

RREQ
RREP

Network Link

1

8

5

Orig node: 2
Target node: 9
Forw. node: 4
Forw. node: 6

RREQ
Orig node: 2
Target node: 9
Forw. Node: 4

RREQ
Orig node: 2
Target node: 9

RREQ

Orig node: 9
Target node: 2

RREP
Orig node: 9
Target node: 2
Forw. Node: 6

RREP
Orig node: 9
Target node: 2
Forw. node: 6
Forw. node: 4

RREP

Figure 3.1: The DYMO route discovery process. Node 2 wants to communi-
cate with node 9. Each node forwarding the RREQ creates a reverse route to 2
used when sending back the RREP. When sending back the RREP, nodes on
the reverse route create routes to node 9.

RREQ, similar to the originator node. Upon sending the RREQ, the originating
node will await the reception of an RREP message from the target. If no RREP
is received within RREQ WAIT TIME, the node may again try to discover a route
by issuing another RREQ. RREQ WAIT TIME is a constant defined in the DYMO
specification and the default value is 1000 milliseconds. In figure 3.1, the nodes 4
and 6 append information to the RREQ when they propagate the RREQ from node
2.

When a node receives an RREQ, it processes the addresses and associated in-
formation found in the message. The information for a node I, is compared with
the corresponding entry in the routing table of the node, if one exists. The infor-
mation about the originator found in the RREQ is processed first, but subsequent
entries are processed the same way:

• If the routing table does not contain an entry for the originator, one is cre-
ated. The next hop entry is the address of the node from which the RREQ
was received. Likewise, the next hop interface is the interface on which the
RREQ was received.

• If an entry exists, the sequence number and hop count found in the RREQ is
compared to the sequence number route and hop count in the table entry to
check if the information in the RREQ is stale or should be disregarded.

• If an entry exists and is not stale or disregarded, the entry is updated with the
information found in the RREQ.

If the originator entry in the RREQ is found to be stale or disregarded, the
RREQ is dropped. For other nodes, the information is removed from the RREQ.

3.3 ROUTE MAINTENANCE 25

If an RREQ is not dropped, each node processing the RREQ can create reverse
routes to all the nodes for which addresses are accumulated in the RREQ.

Upon adding an entry for I to its route table entry, the node processing the
RREQ increments the hop count value for I found in the RREQ to correctly re-
flect the number of hops the RREQ has travelled since the node I added its own
information to the RREQ.

When the RREQ reaches the destination node 9, it processes the packet similar
to nodes that have forwarded the packet, and uses the information accumulated
in the RREQ to add route table entries. Specifically, an entry for the node 2 that
originated the RREQ, is installed.

An RREP message is then created as a response to the RREQ, containing in-
formation about node 9, i.e., address, sequence number, prefix, and gateway infor-
mation, and the RREP message is sent back along the reverse path using unicast.

Since replies are sent on the reverse path, DYMO does not support asymmetric
links. The packet processing done by nodes forwarding the RREP is identical to
the processing that nodes forwarding an RREQ perform, i.e., the information found
in the RREP can be used to create forward routes to nodes that have added their
address block to the RREP.

We shortly summarize the route discovery process depicted in figure 3.1: Node
2 wants to communicate with node 9 and floods an RREQ message in the network.
As can be seen in the figure, when node 2 begins route discovery, the RREQ ini-
tially contains the address of the originator and target destination. When node 4
receives the RREQ, it installs a route to node 2. After node 4 has forwarded the
RREQ, it has added its own address to the RREQ, which means it now contains
three addresses. Identical processing occurs at node 6 and it installs a route to node
2 with a hop count of 2 and node 4 as the next hop node.

When node 9 receives the RREQ, it contains four addresses and has travelled
three hops. Node 9 processes the RREQ and install routes using the accumulated
information and as it is the target of the RREQ, it furthermore creates an RREP as
a response. The RREP is sent back along the reverse route. Similar to the RREQ
dissemination, every node forwarding the RREP adds its own address to the RREP
and install routes to node 9.

3.3 Route Maintenance

Route maintenance is the process of responding to changes in topology that hap-
pens after a route has initially been created. To maintain paths, nodes continuously
monitor the active links and update the Valid Timeout field of entries in its routing
table when receiving and sending data packets. If a node receives a data packet for
a destination it does not have a valid route for, it must respond with a Route Error
(RERR) message.

When creating the RERR message, the node makes a list containing the address
and sequence number of the unreachable node. In addition, the node adds all entries

26 THE DYMO ROUTING PROTOCOL

in the routing table that is dependent on the unreachable destination as next hop
entry. The purpose is to notify about additional routes that are no longer available.
The node sends the list in the RERR packet. The RERR message is broadcasted.

The dissemination process is illustrated in figure 3.2. A link between node 6
and node 9 breaks and node 6 receives a data packet for node 9. When we say a
link is broken, it could just be that the time stamp in the route table entry for a node
timed out and the entry has become invalid. Node 6 generates an RERR message,
which is propagated backwards towards node 2.

2
6

3
5

94

7 10
Network Link
DATA
RERR1

8

Figure 3.2: Generation and dissemination of RERR messages. The link be-
tween nodes 6 and 9 breaks, and node 6 generates an RERR. Only nodes
having a route table entry for node 9 propagate the RERR message further.

When a node receives an RERR, it compares the list of nodes contained in the
RERR to the corresponding entries in its routing table. If a route table entry for
a node from the RERR exists, it is invalidated if the next hop node is the same
as the node the RERR was received from and the sequence number of the entry
is greater than or equal to the sequence number found in the RERR. If a route
table entry is not invalidated, the corresponding entry in the list of unreachable
nodes from the RERR must be removed. If no entries remain, the node does not
propagate this RERR further. Otherwise, the RERR is broadcasted further. The
sequence number check mentioned, is performed to only invalidate fresh routes and
to prevent propagating old information. The intention of the RERR distribution
is to inform all nodes that may be using a link, when a failure occurs. RERR
propagation is guaranteed to terminate as a node only forwards an RERR message
once.

In figure 3.2, when the RERR is broadcasted, additional nodes beside node
4 and 2 will receive the message, for example, the nodes 5, 7, and 10. As none
of these use node 6 as a next hop towards node 9, they all drop the RERR after
processing the message.

In addition to acting upon receiving a packet to a destination without a valid
route table entry, nodes must continuously try to detect link failures to maintain
active links. Link failures occur, for example, when a neighbour go out of range,
the node itself moves, or some other event limiting the communication on the link.

3.4 GENERALIZED PACKET AND MESSAGE FORMAT 27

The mechanisms used by a node to monitor active links can be Hello messages,
link layer feedback, neighbour discovery, or route timeouts. Hello messages are
packets that are periodically broadcasted with the intent of detecting the presence
or disappearance of neighbours. However, the fourth revision DYMO specification
draft, does not specify the use or packet layout of Hello messages. Nor is neighbour
discovery explained in details. As of the fifth revision of the DYMO specification
draft, the use of Hello messages and the unspecified neighbour discovery have been
updated to suggest the use of neighbourhood discovery as specified in the MANET
Neighborhood Discovery Protocol (NHDP) [CDD06b].

If a broken link is detected, the node may disseminate an RERR to notify other
nodes about the broken link. The process is identical to the one described above.
Finally, when a node receives an RERR for a destination, to rediscover a route, the
node can initiate a route discovery for the unreachable destination by sending an
RREQ message.

3.4 Generalized Packet and Message Format

As of revision 4 of the DYMO specification [CP06b], the packet format conforms
to the generalized MANET packet and message format [CDD06a]. As the general-
ized message format strives to be extensible and flexible and to represent addresses
in compact way, there is no fixed binary layout of messages. Various fields may or
may not be present depending on flags set in the message and addresses and asso-
ciated attributes may be present in the message using a number of different layouts.
A set of addresses in the message is represented in an address block and the asso-
ciated attributes in a TLV (type-length-value triplet) block that follows right after
the address block.

Using a DYMO RREQ packet as an example, we describe the parts of the gen-
eralized message format applicable to DYMO in details in the following. With
regards to DYMO, a message consists of a message header and zero or more oc-
currences of address block and TLV block pairs.1 As a concrete example of a
packet using the generalized message layout, a DYMO RREQ packet is depicted
in figure 3.3. The first eight octets of the message is the message header and the
following octets consist of an address block and an associated TLV block. The
fields of the message are explained in further details below.

3.4.1 The Message Header

A message header consists at least of six octets and the following fields: msg-type,
msg-semantics, msg-size, and msg-tlv-block-size. The example packet shown in
figure 3.3 has the type DYMORREQ and a specified size of 29 octets, i.e., the size

1In the general case, a message consists of a message header, a message TLV block, and zero or
more occurrences of address block and TLV block pairs. In DYMO, the TLV block following the
message header, is not used and the mandatory tlv-block-size is regarded to be a part of the message
header.

28 THE DYMO ROUTING PROTOCOL

Message
Header

Address
Block

TLV
Block

Head Length = 3 Head

Number of Tails = 2 Originator.Tail Target.Tail tlv-block-size ...

... tlv-block-size =12 tlv-type: DYMOSeqNum

tlv-length = 2

Orig.SeqNum Target.SeqNum

tlv-semantics
Reserved 1 1 0 0

tlv-type: DYMOHopCnt tlv-semantics
Reserved 1 1 0 0 Orig.HopCnt

Target.HopCnt

tlv-length = 4

msg-type: DYMORREQ msg-semantics
Reserved U 0 0 1 msg-size = 29

msg-ttl msg-hopcnt msg-tlv-block-size = 0

Bit 0 21 43 5 76 8 9 1
0 1 12 34 5 6 87 9 2

0 2 3 54 6 7 8 9 3
0 1

Byte
Offset 0 21 3

4

0

12

16

20

24

28

8

Figure 3.3: DYMO Route Request message example. The message contains
information about two nodes.

of both the message header and the following message body. The msg-semantics
fields specifies the interpretation of the rest of the message header as it can option-
ally include a field with the address of the originating node, a ttl field, a hop count
field, and finally a sequence number field. The various bits in the msg-semantics
bit-field are to be interpreted in the following way (the numbers refer to figure 3.3):

Bit 12 If set, the message must not be forwarded if the message type is unknown
to the recipient.

Bit 13 Specifies semantic of the sequence number if included. If set, the sequence
number is type dependent, meaning that the message source maintains se-
quence numbers for each possible message type. If bit 15 is set, i.e., if no
sequence number is included in the message header, this bit must be cleared.

Bit 14 If set, ttl and hop count fields are not included.

Bit 15 If set, originator address and sequence number fields are not included.

In figure 3.3, we see that following the msg-size fields, the message header
includes ttl and hop count fields. This is because bit 14 of the msg-semantics field
is 0, which means that these two fields are included. Similar, bit 15 is set, which
means that the originator address and sequence number are not included. Bit 13 is
cleared as the message header contains no sequence number. No value for bit 12
(the U-bit), is specified. The msg-tlv-block-size field following the hop count field
is 0, which means that no TLV block follows the message header.

3.4 GENERALIZED PACKET AND MESSAGE FORMAT 29

3.4.2 The Message Body

The message body of a DYMO RREQ message consists of a number of addresses
and attributes associated with these addresses. The addresses are contained in one
or more address blocks and the attributes are contained in a TLV block following
each individual address block.

The Address Block Assuming an address can be specified as a sequence of
bits of the form head:tail, to represent a set of addresses in a compact form, the
longest sequence of leftmost octets, the head, can be shared and have different tails,
i.e., the distinct part of the addresses. Thus, addresses contained in an address block
share the same head and have different tails.

As explained earlier in section 3.4.1, when an RREQ is initially created, it con-
tains the address of the originator and the destination as well as sequence number
and hop count. In figure 3.3, we see an example of an address block containing the
addresses of the originator and the destination (target). First appearing at byte off-
set 8 in the figure, is a Head Length field specifying that the head is 3 octets long.
The next 3 octets give the actual value of head. Then a number of tails fields that
in this case specifies that two tails follow. When concatenated with the Head field,
the Originator.Tail field represents the IP address of the originator of the RREQ,
the Target.Tail field represents the destination target node of the RREQ.

As an example, if the three octets of the head were 192, 168, and 42 and the
Originator.Tail field and Target.Tail field contained 50 and 51, respectively, the IP
address of the originator of the RREQ would be 192.168.42.50 and IP address of
the destination target would be 192.168.42.51.

The TLV block After the address block, an address TLV block follows. A TLV
block consists of a tlv-length field, and zero or more occurrences of TLVs (type-
length-value triplets). In figure 3.3, the tlv-block-size fields specifies that the length
of the TLVs that follows are 12 octets. Returning to a TLV, it consists of the
following two fields: tlv-type and tlv-semantics. Depending on the value of the
tlv-semantics bit-field, it can furthermore include the fields: tlv-length, tlv-index-
start, tlv-index-stop, and tlv-value. The length field gives the length in octets of the
data present in the tlv-value field. The two index fields allow the TLV to only apply
to a sequence of the addresses. The overall goal of this flexible message layout is
to let a TLV apply to a varying number of addresses in the address block. The bits
of the tlv-semantic bit-field have the following interpretation (numbering begins
with the least significant bit in the bit-field, the rightmost bit in individual octets in
figure 3.3):

Bit 0 The novalue bit; if set, the TLV contains no length and value fields.

Bit 1 The extended bit; if set, the size of the field is 16 bits (as opposed to 8 bits).

30 THE DYMO ROUTING PROTOCOL

Bit 2 The noindex bit; if set, the TLV the index-stop and index-start elements are
not included.

Bit 3 The multivalue bit; if set, the TLV includes separate values for each of the
specified addresses.

Looking at the DYMO RREQ packet in figure 3.3, we see bit 2 and bit 3 is set
for both TLVs. Consequently, the TLVs include a length and value field, the length
field of the TLVs is 8-bit, the TLVs includes no index-start and index-stop fields,
and finally the TLVs include separate values for all addresses.

The first TLV has the type DYMOSeqNum and a specified length of 4 octets
for the value field. As the associated address block had two entries, the field is
divided into two equal-sized fields. The first gives the sequence number for the
first address in the address block, the originating node, and the last value field
gives the sequence number for the second address in the address block, which in
this case is the last known sequence number for the target.

The second TLV has the type DYMOHopCnt and a specified length of 4 octets
for the value field. Again, the field is divided into two equal-sized fields. The
values specify the hop count for the two addresses in the address block.

4
Implementation Approach

The list of ad hoc routing protocols at Wikipedia [Adh] has 24 entries for on-
demand routing protocols. The same page lists real world implementations for only
6 of the above 24 protocols (AODV, DSR, DYMO, LQSR, LUNAR, and TORA).
Few proposed on-demand ad hoc routing protocols have ever been implemented.
Consequently, a lot of the research with regards to testing and performance mea-
surements taking place within the MANET field is done using simulators.

One of the stated design goals for the DYMO routing protocol is that it should
be possible to do a simple, quick implementation [BRCJP04]. Even though the
DYMO protocol is simpler than, for example, AODV, the simplicity is primarily
obtained in the routing logic layer while the challenges and problems outlined in
this chapter (section 4.1.1), for example, to identify the need for route discovery
and buffer packets during route discovery, are just as valid for DYMO as they are
for AODV.

The inherent problems associated with the implementation of on-demand ad
hoc routing protocols makes it cumbersome to implement these protocols because
of the system-level programming required to address the problems. Features look-
ing feasible to implement on paper can also be a lot harder to implement in reality.
One example is link layer feedback and overhearing packet transmission as used
by DSR.

Several frameworks to help ease the complexity of implementing on-demand
routing protocols have been proposed [KNSW02, Car03, KZG03]. So have frame-
works that provide a common API for communications protocols on different plat-
forms [CM03, AGSI02]. Of these five frameworks, only the Ad-hoc Support Li-
brary (ASL) [KZG03] and PICA [CM03] are publicly available. Some of the prob-
lems encountered when implementing on-demand ad hoc routing protocols that is
described in this chapter, is well addressed by ASL and we considered using it for
our implementation of DYMO. However, ASL has not been updated for three years
and it is uncertain if it works with the Linux 2.6 series of kernels. Accordingly, we
chose not to use the library, but the implementation issues and solutions discussed
by the ASL authors and implemented in ASL are discussed several times in this

31

32 IMPLEMENTATION APPROACH

chapter. Because of lack of availability or maintenance, none of these frameworks
have found widespread use. For example, ASL has been used in one additional
implementation [Ara] aside from an AODV implementation and a DSV imple-
mentation developed by the ASL authors. Hopefully, as more on-demand ad hoc
routing protocol implementations are created and the implementation experience
documented, the time that must be invested to implement a new routing protocol
can be reduced.

The outline for the remainder of the chapter is as follows. In section 4.1, we
first give an overview of the challenges implementers face when implementing an
on-demand ad hoc routing protocol. These challenges emerge, as the on-demand
routing model does not easily fit into the standard operating system routing and
packet forwarding model. We describe the problems with the routing model of
current operating systems and identify the necessary extra events that must be rec-
ognized to ensure correct behaviour of on-demand ad hoc routing protocols.

Then, in section 4.2, we describe and discuss the different design strategies
that have previously been deployed in implementations of on-demand ad hoc rout-
ing protocols, focusing on AODV implementations. The intention is to give an
overview of the developed solutions and point out best practices and experiences
learnt.

4.1 Challenges

When we are discussing the challenges faced when implementing an on-demand ad
hoc routing protocol, it is of relevance to recap the routing architecture of current
operating systems. In particular, how the functionality is divided and why imple-
menting on-demand protocols is a challenge compared to implementing traditional
routing protocols or proactive ad hoc routing protocols.

Using terminology defined by Kawadia et al. [KZG03], the routing functional-
ity is separated between the packet forwarding function, and packet routing func-
tion. The packet forwarding function consists of the route selection algorithm
within the TCP/IP stack of the operating system kernel. When the IP-layer re-
ceives a packet, it inspects a table called the forwarding table. Based on the IP
destination address it determines if the packet should be directed to an outgoing
network interface, discarded, or delivered to a local application.

The packet routing function is the process of controlling the kernel routing ta-
ble, populating it with entries to destinations using the optimal route. The definition
of an optimal route is dependent on the routing algorithm; the number of hops to
the destination is usually the chosen metric. The program performing the routing is
typically implemented in user space as a program running in the background (the
routing daemon).

In the above we distinguish between the forwarding function and the routing
function, but as Kawadia et al. note, the terms are used interchangeably and they
are often just called the kernel routing table. For example, in Linux the routing

4.1 CHALLENGES 33

table populated by the packet routing function is called the Forwarding Information
Base (FIB) routing table. The naming in Linux of this table as the FIB table is
misleading, as this table is called the Routing Information Base (RIB) table in other
operating systems. The packet forwarding function uses this table and another
table called the routing cache [RGK+04]. From a user’s point of view, it is rarely
necessary to be able to distinguish between these two tables and a user usually only
needs to manipulate the FIB routing table, i.e., the routing table controlled by the
packet routing function. This is the table operated on by default by the route and
ip utilities used for routing table manipulation on Linux.

On Linux the route selection process is carried out the following way: when
selecting a route for a packet, the kernel first searches the routing cache for an
entry matching the destination IP address of the packet, and if found it forwards
the packet to the next hop specified in the routing cache entry. Entries that have not
been used for some time expire and will be deleted. If no entry for the destination
is found in the routing cache, the kernel makes a look-up for the destination in the
kernel routing (FIB) table using longest prefix matching [Bro03]. If an entry is
found in the table, a new entry for the destination is created and inserted into the
routing cache, i.e., the kernel routing table is used to populate the routing cache.

Working under the above described network stack architecture poses no prob-
lems for implementations of ordinary routing protocols like OSPF [Moy98] and
RIP [Mal98]. The same is true for implementations for proactive ad hoc routing
protocols. In these protocols, participating nodes broadcast complete or partial in-
formation about nodes that can be reached from the node. The received info is then
used when maintaining the kernel routing table, adding and deleting entries when
new routes to destinations are learned.

For on-demand ad hoc routing protocols the problem is as follows: if a user
space application wants to communicate with a host for which there exists no route,
an error is returned signalling that the destination host is unreachable. The failed
connection attempt is never registered anywhere except in the program trying to es-
tablish the connection. Using on-demand ad hoc routing protocols, routes may not
be known in advance, and the routing daemon must be notified about the connec-
tion attempt to be able to discover a route to the destination. Furthermore, packets
must be buffered while route discovery is ongoing.

4.1.1 Identifying the On-demand Ad Hoc Routing Challenges

Chakeres and Belding-Royer [CBR04] have examined and identified the support
currently unavailable in operating systems needed to implement AODV. Kawadia
et al. [KZG03] have a similar evaluation for general on-demand ad hoc routing
protocols and identify some of the same needed support. Besides the items also
treated by Chakeres and Belding-Royer, Kawadia et al. add some additional items
as their goal is to build a framework to help ease the implementation of a wider
range of on-demand routing protocols, e.g., protocols mixing forwarding and rout-
ing functions (DSR) that extend on the support needed by AODV.

34 IMPLEMENTATION APPROACH

The list below is based on the list given by Chakeres and Belding-Royer [CBR04].

1. When to initiate a route discovery cycle: An implementation of an on-demand
MANET routing protocol must intercept route requests from application pro-
grams to detect if a route to a currently unknown host is requested. The
problem of the current network stack architecture is that we only know we
need a route after the packet has already crossed the boundary between user
space and kernel space.

2. When and how to buffer packets during route discovery: Packets destined
for a host with an unknown destination should be buffered while the route
discovery is in progress. If a route is found, the packets should be reinserted
into the IP layer and sent to the destination. If a route is not found, the
packets should be discarded and the application program should be notified.

3. When to update the lifetime of an active route: As a part of the routing
protocol logic, routes that have not been used for a certain amount of time
are deleted. When receiving, sending, or forwarding to a known destination,
timeouts must be updated.

4. When to generate an RERR if a valid route does not exists: Under normal
operation the IP layer discards packets for which no valid route table entry
exists and return a ICMP destination host unreachable message. Instead, the
routing daemon should be notified about the event.

In the list given by Chakeres and Belding-Royer, a fifth event that must be
supported is mentioned: when should a node generate route error message after
sequence number loss? A node loses its sequence number if it reboots or the routing
daemon is restarted. It must generate a route error message if other nodes use the
node as a router after daemon restart to avoid routing loops. In the above list, we
have omitted this item. With the ability to identify packets for destinations with no
valid route and some sort of support for timed operations in the routing protocol
implementation, reception of data packets during this period can be handled in user
space. As we wish to emphasize the support missing from operating systems in
order to implement on-demand routing protocols, we find that there is no inherent
need for the operating system to identify this event.

4.2 Implementation Techniques on Linux

In this section, we give an overview of the different implementation techniques
that have been used to address the challenges outlined in section 4.1.1. Special
emphasis is given on implementation techniques for Linux. We highlight the ad-
vantages and disadvantages of each technique and discuss how the implementation
techniques and the techniques available for programmers have evolved.

The alternatives described in this section are:

4.2 IMPLEMENTATION TECHNIQUES ON LINUX 35

Kernel Modifications Modify the source code of an operating system kernel

Snooping Use packet capturing facilities

Netfilter Use the netfilter framework of the Linux TCP/IP stack

Of the listed three opportunities, netfilter is available for Linux only. For one
to make modifications to an operating system kernel requires access to the source
code and a license that allows redistribution. Source code for a host of operating
systems, including permissive licenses, is readily available from different sources,
the most noticeable being Linux and the BSD family of operating systems.1

Much of the source code for the operating system Windows CE is available, but
parts of it, including the TCP/IP stack is only available through a non-disclosure
agreement [Wes03]. However, any modified source code cannot be redistributed
without a special license from Microsoft making the approach less attractive. Fur-
ther weaknesses of the kernel modification approach are examined in section 4.2.1.

The introduction of the netfilter packet filtering framework [MBR+] (see also
section 4.2.3) in the 2.4 series of Linux kernels and its subsequent adoption has
extended the way implementations can be designed and made it easier to implement
ad hoc routing protocols on Linux. For example, the AODV-UCSB implementation
originally used the kernel modification techniques, but the authors reported that the
implementation “suffered from some intermittent problems” [CBR04] and later
switched to netfilter for a later version of the implementation.

The Linux netfilter framework can also partly be attributed to the fact that Li-
nux has become the most popular platform for on-demand ad hoc routing protocol
implementation development: Of the thirteen listed implementations on the AODV
web page [PBRDC], eight are for Linux only.2 Similar results can be found in a
MANET implementation list maintained by Kuladinithi [Kul05] that lists twice as
many AODV implementations for Linux as for Windows, the second most popular
choice.

The implementations announced for DYMO, excluding implementations for
the network simulators ns-2 [BEF+00] and OPNET [OPN], have so far been for
Linux [RR, KBb].

To meet the challenges identified in section 4.1.1, there are additional choices
influencing the functioning of an implementation, besides the previous three men-
tioned approaches. These are:

Packet Buffering When awaiting the result of a route discovery, are outstanding
packets buffered in user space or kernel space?

Kernel or User Space Is the solution implemented entirely in user space or en-
tirely in kernel space or using some hybrid approach?

1FreeBSD, OpenBSD, and NetBSD.
2Kernel AODV, AODV-UU, AODV-UIUC, AODV-UCSB, AODV for IPv6, HUT-AODV,

MAODV-UMD, and Mad-hoc.

36 IMPLEMENTATION APPROACH

Interaction with Forwarding Logic Does the implementation also interacts with
forwarding?

These considerations are neither independent of each other or the above-men-
tioned approaches. For example, packet buffering in user space is meaningless with
a kernel space only implementation. The three implementation choices are treated
in section 4.2.4 and additionally when pertinent in the following sections.

4.2.1 Kernel Modification

By modifying the networking code of an operating system kernel, it is possible
to determine the required events identified in section 4.1.1. Royer and Perkins
modified the Linux kernel to support their implementation of the AODV proto-
col [RP00]. The kernel source was modified so that a route look-up failure would
result in a notification to a user space daemon that was a part of the implementa-
tion. Other modifications made were support for updating of route timeouts in the
kernel routing table, buffering of outstanding packets, and detection of duplicate
protocol control packets. All achieved by modifying the Linux kernel networking
code.

The advantage of this approach is that modifying the kernel source code the
events are explicitly determined. Also by modifying the kernel data structures
and support code directly, there is no overhead of additional protocol accounting,
compared to a user space implementation or even a Linux kernel module. Disad-
vantages are difficult installation and maintainability: To use the implementation
requires setting up and compiling the whole Linux kernel source tree, which can
be a complex task. Regarding maintainability, patches (modifications) might only
apply cleanly against a certain version of the Linux kernel. There could even be
problems with kernels with the same version number as distributions apply their
own set of patches to the Linux kernel source. Finally, as Royer and Perkins note:

Understanding the Linux kernel and network protocol stack requires
examining a significant amount of undocumented, complex code.

The first release of the AODV-UCSB implementation used the kernel modifi-
cations approach [RP00]. Desilva and Das also made an implementation of AODV
by modifying the Linux kernel [DD00] and the in-kernel ARP implementation.
An implementation of the DSR routing protocol [JMH04] complying with the first
public draft of the specification also used the kernel modification strategy [MBJ99].
The modifications were based on FreeBSD 2.2.7 and 3.3 kernels.

4.2.2 Snooping

Using code built into the kernel of most operating systems, a user space program
can capture all incoming and outgoing packets on a network interface [SFR03] and
identify the events mentioned in section 4.1.1. The process of capturing packets is
also known as sniffing or snooping.

4.2 IMPLEMENTATION TECHNIQUES ON LINUX 37

Snooping ARP Packets Snooping Address Resolution Protocol (ARP) pack-
ets, the need for a route discovery cycle can be identified. When a node does not
know the physical address (MAC) of a host, an ARP request is used to discover
physical addresses and map IP address to these [Com00]. When a node initially
wants to communicate with another node, an ARP packet is sent to resolve the ad-
dress. This approach was used in the Mad-hoc implementation of AODV protocol,
which, however, is no longer maintained or available. The advantage of using this
approach is that the implementation can be user space only.

One imminent problem with this approach is that ARP requests are only issued
for hosts with addresses that either are a part of the subnet of one of the configured
network interfaces or if a specific host entry exists in the routing table. The IP
layer discards packets to destinations that do not match one of these entries. This
is a problem as it requires nodes to be configured with addresses within the same
subnet and prohibits nodes with unrelated IP addresses to join the network.

Additional disadvantages have already been explored by other sources [Wes03,
KZG03, CJWK02] and are restated here for completeness. First, the approach re-
quires complete management of the ARP cache to reduce risk of spurious requests
as ARP requests are generated periodically depending on the status of the entries
in the ARP cache [Bro03]. Similarly, although not likely to be a regular occur-
rence, if an entry is added manually to the ARP cache no ARP request is generated
for the destination. Second, an implementation may have limited packet buffering
functionality as it depends on the ARP implementation to queue packets and ARP
implementations may buffer only one packet while ARP resolution is ongoing. Fi-
nally, packets are only buffered while ARP resolution has not timed out. The ARP
timeout may occur within a relatively short period and before route discovery can
be completed.

Snooping Data Packets Another approach for using snooping to identify the
need for route discovery is to set up the loopback interface as the default route,
and let the reception of any packet with a destination address different from the
loopback address trigger a route discovery. Assigning the loopback address as the
default route allows for easy buffering of outstanding packets; packets awaiting
the completion of route discovery is queued in user space and inserted or dis-
carded afterwards. The Airnet and JAdhoc AODV implementations use this ap-
proach [Les, KU03].

Snooping data packets going in and out of the monitored interface, route time-
outs for active routes can be maintained and packets for hosts for which we have
no route can be determined.

As mentioned previously, the Mad-hoc implementation uses the ARP snoop-
ing approach to identify the need for route discovery and snoops incoming and
outgoing data packets to do its other housekeeping. JAdhoc and Airnet sets up the
loopback interface as the default route and interprets any packets with destination
different from the loopback address as an address for which route discovery should

38 IMPLEMENTATION APPROACH

be initiated. These implementations also snoop data packets as part of the other
routing protocol operations.

In the following when we talk about snooping, we do not mean snooping of
ARP request but only of data packets. The strength of the snooping strategy is that
is possible to make an implementation solely in user space. This has two advan-
tages. The first is that it allows for simple installation and also relatively simple
execution. For example, no communication is required between user space and ker-
nel space as with implementations that also require code to run in kernel space. The
second advantage is portability. A user space only implementation using snooping
is much easier to port to different platforms. The primary requirement is that the
packet capture mechanism used is available on the other platforms. This is the case
for the JAdhoc implementation, which is available for both Linux and Windows.
It uses the jpcap network capture library [CKG+], which encapsulates packet cap-
turing support for both Windows and POSIX operating systems. The Airnet [Les]
implementation is only available for Linux, but the platform specific part of the
code is isolated with the intent of easing porting.

The biggest weakness of the snooping approach is the overhead associated with
the approach, as packets must travel to user space to be inspected.

4.2.3 Netfilter

Netfilter is a packet filtering framework implemented as a set of hooks at well
defined places in the Linux TCP/IP networking stack. The netfilter framework
allows user defined functions to be inserted and called as packets traverse the stack.
Figure 4.1 gives an overview of the hooks defined for IPv4. Their location within
the stack is shown with boxes, and illustrates when callback functions are called as
packets traverse the stack. Functions are called on a per IP packet basis.

The upper part of the figure shows the two hooks NF IP LOCAL OUT and
NF IP LOCAL IN that are traversed by packets either just after being sent or just
before being received by a local process. At the lower part of the figure, the NF -
IP PRE ROUTING and NF IP POST ROUTING hooks are shown.

Incoming packets received on network interfaces traverse the NF IP PRE -
ROUTING hook and packets to be sent by this host traverses NF IP POST ROU-
TING just before being handed over the network interface driver. Thus, packets
going from and to other hosts can be captured at these two hooks.

Routing decisions are made for packets arriving at the network interface of the
host after traversing NF IP PRE ROUTING, to see if they are bound for this host
or destined to be forwarded. Routing decisions are made for packets sent by local
processes after traversing NF IP POST ROUTING.

Besides the above described pair of hooks, packets that are to be forwarded
will in addition traverse the NF IP FORWARD hook.

Callback functions defined are inserted in form of kernel modules. Any regis-
tered functions for a hook must return a verdict for each processed packets telling
netfilter what to do with the packet. The defined verdicts are as follows [Rus]:

4.2 IMPLEMENTATION TECHNIQUES ON LINUX 39

Local Process

Network Interfaces

Routing Decision

NF_IP_PRE_ROUTING

Routing Decision

NF_IP_LOCAL_IN

NF_IP_POST_ROUTING

NF_IP_LOCAL_OUT

NF_IP_FORWARD

Incoming Packets

Outgoing PacketsIncoming Packets

Outgoing Packets

Forwarded Packets

Figure 4.1: The netlink packet filtering framework [CBR04]. Arrows show
the direction packets travel through the network stack as they enter from a
local process or a network interface. The boxes show the possible hooks.

1. NF ACCEPT: continue traversal as normal

2. NF DROP: drop the packet

3. NF QUEUE: queue the packet with the intent of reinjecting it later. A queue
handler must be registered, otherwise this verdict is equal to NF DROP

4. NF STOLEN: take over control of packet. We may reinsert the packet at a
later point in time

5. NF REPEAT: call this hook again

In order not to corrupt the netfilter framework accounting, one must reinject
any queued packets and return a verdict when finished processing them, i.e., it is
not allowed to merely free the kernel memory allocated for packets.

Along with the netfilter framework is supplied a kernel module driver, ip queue,
and an accompanying user space library, libipq, providing packet buffering for user
space. The netfilter framework provides excellent means to help in the implemen-
tation of on-demand ad hoc routing protocols and the challenges identified in sec-
tion 4.1.1 can be met in the following way.

Registering a callback function at the NF IP LOCAL OUT hook, packets can
be captured before any routing decisions are made. If no route for the destination
exists, route discovery is initiated and the packets can be queued for later reinser-
tion in the stack when route discovery completes. Packets can be queued either in
the kernel or in user space. For further reference, we refer to these solutions as

40 IMPLEMENTATION APPROACH

the netfilter kernel space packet buffering solution and netfilter user space packet
buffering solution, respectively.

At the NF IP POST ROUTING hook, a callback function can be registered to
record all sent packets. This way route timeouts for the destination can be updated
both in the case when this host is the sender and when it forwards packets.

At the NF IP PRE ROUTING hook, a function can observe whether a route
for the destination of a packet exists when the packet traverses the hook. If not, an
RERR can be issued. If a route does exists, the route timeout of the source node
route can be updated. It is important that the check for active routes happens here,
before any routing decision are made, as the IP layer would otherwise discard any
packets with no active route making it impossible to have RERR messages issued.

4.2.4 Additional Implementation Issues

In the previous sections, the three primary methods for addressing the challenges
outlined in section 4.1.1 for on-demand ad hoc routing protocol implementations
were described. However, some issues and solutions have not been addressed yet,
such as other ways to buffer packets awaiting route acquisition, the trade-offs be-
tween user space and kernel space implementations, and finally issues of letting
packet forwarding interact with packet routing in user space.

Packet Buffering In section 4.2.3, it was mentioned that netfilter provides
packet buffering capabilities. It is, however, not a requirement to use this facil-
ity in order to meet challenges 1 and 2 mentioned in section 4.1.1 and still use
netfilter to support challenges 3 and 4.

The Ad hoc Support Library (ASL) [KZG03] uses a different approach to iden-
tify the need for route discovery and simultaneously buffer outstanding packets.
ASL creates a local tunnel device, a virtual network interface, and points the de-
fault route to this device. The effect is that every packet for destinations with no
route is sent to the device and is now available to a user space program. Whenever
a packet is received on this device, route discovery can be initiated, and the packet
can be buffered in a user space buffer. Netfilter is only used to update time stamp
values for active routes. Because of a constraint imposed by netfilter, packets that
are to be reinserted cannot be written back on the virtual network device they were
received on. Instead, they are reinserted in the stack using a raw IP socket. A raw
socket allows access to packet headers and packets written to a raw socket, thus
to bypass parts of the network stack normally travelled by packets sent on normal
sockets.

This approach is similar to netfilter user space packet buffering solution in
which the netfilter packet queue facility is used to send outstanding packets for
buffering in user space. The only visible difference is that the virtual tunnel device
and the configured default route are visible if a user inspects the network interface
configuration and routing table.

4.2 IMPLEMENTATION TECHNIQUES ON LINUX 41

User Space vs. Kernel Space Implementations An on-demand ad hoc
routing protocol can both be implemented solely in kernel space, solely in user
space, or using a hybrid approach. With regards to a kernel-only implementation,
one can use both the kernel modification or netfilter solutions. The whole motiva-
tion behind the snooping approach is to avoid the dependency on kernel level code
and this technique is thus not applicable in this case.

The packet routing required in an ad hoc routing protocol involves complex
CPU and memory intensive tasks, which are properly situated outside the kernel.
If a single error occurs in the code running in the kernel, the whole system typically
crashes. If an error occurs in a user space program, it stops working and we can
actively terminate it, if it has not itself ended execution because of the error. The
rest of the system continues execution with no errors.

There is also the issue of portability. A kernel level implementation is much
harder to port to a different platform without requiring a complete rewrite. In
user space, the implementation can rely on standard APIs while the kernel level
programming environment typically varies widely between platforms.

One advantage of an implementation running only in kernel space is perfor-
mance. No packets or control messages need to travel between user space and
kernel space.

Kernel-AODV and NIST DYMO [KBb, KBa] are two kernel only implemen-
tation of respectively the AODV and DYMO routing protocols. Both implementa-
tions use the netfilter framework.

Forwarding Design As mentioned in section 4.1, the routing functionality in
current operating systems is separated between the packet-forwarding function and
the packet-routing function. The first function directs packets to the correct inter-
face or local process based on the routing table and the second function maintains
the actual operating system routing table.

Two designs using netfilter, meeting challenges 1 and 2 of section 4.1.1 was
mentioned in section 4.2.3. Here we briefly present a third one, mixing the packet-
forwarding and packet-routing functions.

Instead of only queueing packets to destinations that have no valid route, every
packet is sent to the user space daemon. For each packet crossing the kernel/user
space boundary, a forwarding decision is made by the ad hoc routing protocol
daemon in user space. Packets are matched against a routing cache maintained
by the daemon and are either queued if a route discovery cycle must be initiated
or returned to the kernel immediately if a route exists. The daemon thus takes
the responsibility of both the packet-forwarding function and the packet-routing
function.

The advantage using this approach is that the amount of code running in the
kernel needed to support the implementation is small. The major drawback is the
inefficiency of this approach: every packet is copied from kernel space to user
space and back again. Studies show packet processing times to be ten times longer

42 IMPLEMENTATION APPROACH

when compared to the kernel design [CBR05]. In addition, routing is done twice.
Once by the daemon in user space and once again by the kernel.

The AODV-UCSB implementation [CBR04] and the AODV-UU [Nor] im-
plementation prior to version 0.9 used this approach. Since version 0.9, AODV-
UU has used the netfilter kernel space packet buffering solution described in sec-
tion 4.2.3.

5
DYMO-AU Design and

Implementation Overview

The following two chapters describe the design and implementation of the DYMO
routing protocol for Linux. The implementation is called DYMO-AU. In this
chapter, we give an outline of the design and implementation of DYMO-AU. In
the next chapter, we go into further details about the design and implementation
of DYMO-AU. When pertinent, we use message diagrams [Fow03] to illustrate
the dynamic interaction between the different parts of the implementation during
protocol operation.

In continuation of the discussion of the different implementation approaches
in section 4.2, we present the chosen implementation approach in section 5.1. In
section 5.2, we give a short overview of the structure of the implementation and
introduce the various parts and modules the implementation consists of. In sec-
tion 5.3, we introduce the Lua programming language which has been used in our
implementation. In section 5.4, we present the communication interface that allows
information exchange between user space and kernel space. Finally, in section 5.5,
we discuss errors in the DYMO specification, how our implementation deviates
from the DYMO specification, and portability of our implementation.

5.1 Design Approach

In section 4.2, we presented various implementation techniques for implementing
on-demand routing protocols on Linux. In the DYMO-AU implementation, we
have chosen to use the netfilter framework and to implement the DYMO protocol
as a user space routing daemon with an accompanying kernel module.

Because of the salient disadvantages of the kernel modification approach, we
did not consider this technique. Compared to the snooping approach, with the
netfilter approach one avoids the overhead of copying data packets to and from
user space. However, we also must abandon a user space only implementation.
Although, a Linux kernel module makes the implementation more complex, it also

43

44 DYMO-AU DESIGN AND IMPLEMENTATION OVERVIEW

adds flexibility. For example, the update of route timeouts can be implemented in
various ways, as we describe in section 6.3.

5.2 Implementation Overview

The DYMO protocol is implemented as a user space daemon written in C and in the
scripting language Lua [IdFC03, Ier03] (see section 5.3 for a short introduction),
with an accompanying Linux kernel module.

In the user space daemon, all protocol logic of DYMO is written in Lua and
all network code is written in C. The kernel module is used to detect the need
for route discovery, updating of route timeouts when sending, receiving and for-
warding packets, and queueing of packets for which route discovery is in progress.
The user space daemon communicates with the kernel module using Linux netlink
sockets [He05, Net99].

The design of DYMO-AU and its two major components, the routing daemon
and the kernel module, is illustrated in figure 5.1. As mentioned above, the user
space routing daemon consists of a module handling protocol logic and a module
handling network I/O including event dispatching. The protocol logic module can
be further divided into sub-modules, and the inner workings of these modules are
described in section 6.1.

Network I/O

User space

Kernel Space

Protocol Logic
Lua

DYMO-AU Routing Daemon

C

DYMO-AU Kernel Module

Expiry ListPacket Queue

Netfilter hooks Netlink

Figure 5.1: The components of DYMO-AU. In user space, the implementa-
tion consists of a routing daemon written in C and Lua. In kernel space, the
implementation consists of Linux kernel module that is made up of four parts.

The Linux kernel module consists of four different components. They are de-
picted layered based on their dependencies as will be explained below. The divi-
sion of the kernel module into four parts is inspired by the design of the AODV-

5.2 IMPLEMENTATION OVERVIEW 45

UU [Nor] implementation. In the following, we shortly introduce the four compo-
nents of the kernel module.

5.2.1 Packet Queue

The packet queue module at the lower left implements a queue used for buffering
packets awaiting the completion of a route discovery.

5.2.2 Expiry List

The expiry list module at the lower right is used to track usage of routes. Whenever
a route is used, the accompanying time stamp associated with the route is updated
to the current time. The life span of entries in this list can either be controlled
from user space or using a hybrid approach, adding the entry for a destination from
user space and deleting it from kernel space. We discuss the possible solutions and
associated advantages and disadvantages in section 6.3.

5.2.3 Netlink Communication

The netlink module is responsible for the communication between user space and
kernel space. The communication is implemented using Linux netlink sockets.
The DYMO protocol events are exchanged between the user space daemon and the
kernel module using a netlink socket. The communication channel is bidirectional
and the user space process is not restricted to initiate transfers. In the figure, the
module is layered on top of the packet queue and expiry list, meaning that these
are manipulated when control messages from user space are received. We give the
full details of the netlink component in section 6.2.3 and the details of the interface
between user space and kernel space in section 5.4.

5.2.4 Netfilter Hooks

The netfilter hooks module generates the events that trigger routing protocol action.
This is implemented as a function that hooks into three different places within
netfilter. Matching packets sent from a local process against the expiry list tells the
module if a route for the destination is known. If no route is known, the module tells
the user space daemon to initiate the route discovery process for the destination if it
has not done so already. Querying the packet queue provides the latter information.
When receiving packets on a network interface, we can similarly ensure that we do
not receive packets for unknown destinations or for destinations which route table
entry has timed out. In the event of receiving such unsolicited packets, a route error
event is generated and sent to the user space daemon. We elaborate on the design
of the kernel module and choices made regarding the design in section 6.2.

46 DYMO-AU DESIGN AND IMPLEMENTATION OVERVIEW

5.3 The Lua Programming Language

In this section, we briefly introduce the Lua programming language [IdFC03, Ier03]
and its implementation, and why we used it in our implementation to write the
modules that implement the protocol logic of DYMO.

Lua is a procedural scripting language designed specifically for extending ap-
plications written in other languages, primarily C and C++, but an implementation
for Java [Pro], as well as bridges to Python [Nie] and Objective-C [Bal] also exists.
Lua is dynamically typed, interpreted from bytecode, and memory is automatically
managed using garbage collection.

Lua has a fast and light-weight implementation. It is light-weight in the sense
that it has a low embedding cost, adding between 60 KB and 150 KB to the size
of the host program. Lua is fast in the realm of scripting languages as imple-
mentations for dynamically typed, interpreted languages cannot be compared to
languages with implementations producing natively compiled binaries. Indepen-
dent benchmarks show it to be faster than implementations of, for instance, Perl,
Python, PHP, Ruby, and Javascript [Sho, Byt]. Beside the standard Lua virtual ma-
chine implementation, there exists a just-in-time (JIT) compiler framework for Lua
called LuaJIT [Pal06].

Although Lua features procedural syntax, it can be described as a multi-para-
digm language. Its functions are first-class values and have proper lexical scoping.
This allows programs to be written using techniques from the world of functional
programming. Lua provides meta-mechanisms to implement additional features as
well as to modify the existing ones. The meta-mechanisms in conjunction with
first-class functions leverages the support for object-oriented programming. The
support for object-oriented programming has been used in the implementation of
DYMO-AU.

One important feature of Lua that has been used in the DYMO-AU imple-
mentation, is the ability to extend Lua with user-defined types in C. Using this
functionality, it is possible in Lua to manipulate objects defined and created in C
as well as creating objects in Lua that can be handed over to C. To ease the integra-
tion between C and Lua, the tool tolua++ [Manb] has been used to automatically
generate the glue code that allows interoperability between the parts of DYMO-AU
that are written in C and the parts written in Lua.

We chose Lua to speed up and ease the implementation process. For example,
while working with our implementation, the DYMO specification was subject to
a major change when the draft was updated from version 3 to version 4. Because
of the higher-level nature of the language, we were able to adopt the code to the
new version quite easily. The Lua implementation has support for dynamical com-
pilation and execution of source code entered as a string. This facility makes it
easy to support inspection of data structures using the standard functions of the
Lua language. To aid with debugging and testing during the development of the
DYMO-AU implementation and when performing the experimental evaluation, we
used the support for dynamical execution to allow inspecting the data structures of

5.4 USER SPACE-KERNEL SPACE INTERACTION 47

a running instance of the routing daemon. Lua is interpreted and if performance
should become a problem, it is easy to incrementally improve execution time, by
rewriting selected parts of the Lua code in C.

5.4 User Space-Kernel Space Interaction

This section gives an overview of the communication that takes place between
the routing daemon and the kernel module. We describe the messages that have
been defined and how these are transmitted between the two layers during protocol
operations.

5.4.1 Message Types

The messages that have been defined for user space and kernel space interaction is
described in the following. To give a better overview, the next action performed by
the recipient of the message is also described.

NO ROUTE This message is sent from the kernel module to the user space dae-
mon when a user space application tries to send packets to a destination for
which no route currently exists. The user space daemon then initiates route
discovery. This only happens at a node originating traffic.

The message is also sent from the user space daemon to the kernel module
after unsuccessful route discovery. The kernel module then drops the queued
packets for the particular destination.

ADD ROUTE Sent from the user space daemon after successful completion of
route discovery. Tells the kernel module to install a route to the destination
and send all buffered packets.

DEL ROUTE Sent from the user space daemon. It informs the kernel module to
delete a route for a destination, when the user space daemon detects that it
has become stale.

RERR IN Sent from the kernel module when a packet is received for a destination
with no route table entry. The user space daemon generates and transmits an
RERR message for the given destination.

PKT UPDATE INBOUND An incoming packet arrived. Tells the user space
daemon to update the route timeout for the source address of the packet.

PKT UPDATE OUTBOUND A packet was sent on an outgoing interface. The
user space daemon updates the route timeout for the destination address of
the packet.

Both update messages are sent to avoid route timeouts for active routes. Al-
though, we currently do not take advantage of it, two different messages exist to be
able to distinguish the two events in case separate actions are required.

48 DYMO-AU DESIGN AND IMPLEMENTATION OVERVIEW

5.4.2 Communication Interface in the Daemon

Seen from the Lua code in the routing daemon, the communication interface is
platform independent. A special kernel communication interface is defined and
exposed to Lua. Thus, nothing special about netlink sockets and netlink messages
are exposed in the code. The Lua routing logic module only knows that it is possi-
ble to send the above described types of messages to the kernel and the name of a
function for sending them. The goal is to allow for greater portability, i.e., to use
another message passing technique under the hood if the implementation is ported
to other operating systems.

5.4.3 Route Discovery Example

We now give two examples highlighting the interaction between kernel space and
user space. Figure 5.2 shows the interaction that takes place between the routing
daemon and the kernel module during successful routing discovery. As emphasis is
on the communication interface and the overall picture, the operations performed
in both the routing daemon and kernel module are abbreviated.

Routing
Daemon

Network
Stack

Kernel
Module

NF_QUEUE

RouteDiscovery (address)

route_exists(address)

sendmsg(RREQ)

enqueue_packet()

send_rt_msg(NO_ROUTE, address)

kdymo_hook(LOCAL_OUT)
PACKET_IN

add_route(address)

send_rt_msg(ADD_ROUTE, address)

set_verdict(address, ACCEPT)

reinject_packets()

RREP
PACKET_IN

Figure 5.2: A route discovery example. As messages between daemon and
kernel module are sent asynchronously, work is being shown as performed
simultaneously in the two layers after the NO ROUTE message has been sent.

In figure 5.2, the function registered with netfilter by the kernel module is called
when a local application tries to send a packet. This is shown with the message
labelled PACKET IN going into the Network Stack column, which then calls the

5.5 DISCUSSION 49

kernel module. The kernel module checks if a route for the destination of the packet
exists. If no route exists, a NO ROUTE message is sent to the routing daemon
telling that a packet was sent by a local application for a destination with no valid
route. The kernel module returns NF QUEUE (see section 4.2.3) and the kernel
module packet queue is then called to buffer the packet. In user space, the routing
daemon initiates route discovery and an RREQ is sent using broadcast. When the
routing daemon receives the RREP, it is processed and the route for the destination
is added. An ADD ROUTE message is sent to the kernel module to add a route for
the destination and reinject any buffered packets into the TCP/IP stack.

5.4.4 RERR Processing Example

The next example illustrates RERR processing. RERR processing is mostly done
by the daemon in user space, however when routes are being invalidated, DEL -
ROUTE messages are sent to the kernel module to also remove routes there.

RERR processing has already been detailed in section 3.3, but in order to illus-
trate the example, the processing rules are summarized here. Figure 5.3 shows how
RERR are processed when received by a node. Each of the unreachable nodes con-
tained in the RERR is now tested the following way. If a route table entry exists for
the node, it is invalidated if the following three conditions are met. It is invalidated
by setting the valid timeout to the current time which means the entry will eventu-
ally be deleted. In addition, a DEL ROUTE message is sent to the kernel module
to delete the entry for the destination from the expiry list. The three conditions are:

1. The next hop address of the entry is the same as the IP source address of the
RERR.

2. The next hop interface of the entry is the same as the one the RERR was
received on.

3. The sequence number for the unreachable node is unknown or it is less than
or equal to the sequence number of the corresponding route table entry.

The two first conditions must be met to ensure that entries we are invalidating
have the node that sent the RERR as next hop entry, i.e., the source of the RERR
is on the path to an unreachable node. The third condition ensures that only fresh
routes are invalidated to protect against propagating old information.

5.5 Discussion

In this section, we cover errors found in the DYMO specification during the imple-
mentation process. We cover features missing in the DYMO-AU implementation
in order to comply with the DYMO specification. Finally, we cover portability of
the DYMO-AU implementation.

50 DYMO-AU DESIGN AND IMPLEMENTATION OVERVIEW

Kernel
Module

send_rt_msg(DEL_ROUTE, addr)

RouteError-
Processing

RouteErrorProcessing(rerr)

Routing
Table

sendMsg()

aRERR

getRoutingBlocks()

routingBlocks

aRoute-
TableEntry

FindEntry()
aRouteTableEntry

SetValidTimeoutToCurrentTime()

Loop

Figure 5.3: RERR processing. The loop is executed for each route table entry
that must be invalidated. For each of the entries, a DEL ROUTE message is
sent to the kernel module.

5.5.1 Errors in the DYMO Specification

In the fourth revision of the DYMO specification draft [CP06b], the section on
creating or updating a route table entry from routing message (section 4.2.1 in the
specification), lacks a paragraph on route staleness when the sequence number for a
destination found in the routing message is greater than the one in the routing table
(when Node.SeqNum - Route.SeqNum is greater than 0). This paragraph can be
found in the third revision as well deduced from the fifth (the structure and phrasing
of the text in the fifth revision has been rewritten compared to earlier revisions).
As this is an obvious error in the specification, the DYMO-AU implementation
implements the behaviour from the third and fifth revision.

In section 4.3.2 (of the DYMO specification [CP06b]) on routing message pro-
cessing, the phrasing of how the hop count value for entries in the message should
be updated is ambiguous:

For each of these addresses the Node.HopCnt associated with the ad-
dress is incremented by one (1) if it exists and is not zero, then a route
is created or updated as defined in Section 4.2.1. The updating of the
HopCnt occurs after processing.

One might wonder whether the hop count should be updated before or after,
routes are created or updated. The specification says that if a node appends infor-
mation about itself when forwarding a routing message, the hop count value should
be set to one. With this in mind, we conclude that the hop count should be pro-
cessed after processing, because if the hop count is incremented before processing,
a neighbour receiving the message would record a hop count of two to the node.
One of the authors of DYMO, Ian Chakeres has confirmed this conclusion when
inquired in an e-mail.

5.5 DISCUSSION 51

A similar flaw was found in the fifth revision of the DYMO specification draft
and Ian Chakeres once again acknowledged the error. The error has been corrected
in the sixth version of the draft.

5.5.2 Limitations of the DYMO-AU implementation

In this section, we describe the limitations of the DYMO-AU implementation com-
pared to the DYMO specification [CP06b] as well as the ways it deviates. The
DYMO-AU implementation has the following limitations when compared to the
specification.

• No support for active link sensing (HELLO messages, Link layer feedback,
Neighbour discovery); only route timeouts are supported.

• No gateway support.

• Crude support for the generalized MANET packet/message format limiting
address prefixes to 24, i.e., netmask 255.255.255.0.

• Packet generation limits not supported.

• Actions after sequence number loss not supported.

• Only one interface supported (much of the code needed has already been
developed, but it has not been enabled or tested yet).

• As the specification does not define the MANETcast address, the configured
broadcast address on DYMO enabled interfaces is used.

• Only IPv4 supported.

In section 6.3.1, we mention that when the route timeout for a route table entry
is updated to the current time, the next hop entry of the route table entry is also
updated. Updating of the next hop entry is not mentioned in the specification, but
is required in our implementation to avoid the entry for the next hop node to time
out, because link sensing is not implemented.

5.5.3 Portability

Currently, the DYMO-AU implementation only supports Linux, but it has been
designed with portability in mind. For instance, as described in section 5.4.2 the
kernel communication interface is not Linux specific. The approach we have used
to ensure portability is called the intersection approach. It is discussed by Ker-
nighan and Pike in their book The Practice of Programming [KP99] along with
another approach called the union approach.

The intersection approach seeks to only use the features available on all target
systems. In practice, this is realized by hiding system dependencies behind inter-
faces. If two systems provide two different ways of accomplishing the same thing,

52 DYMO-AU DESIGN AND IMPLEMENTATION OVERVIEW

a portable interface is implemented and the system dependencies are localized in
separate files. The implementation required to adapt to a given system might vary
widely from other systems.

The union approach is to use the best features of each particular system, and
make the compilation and installation process conditional on properties of the local
environment. This is typically accomplished in C and C++ by using the preproces-
sor macros, e.g., #ifdef and #define, and make the code conditionally depend
on the properties of the system that the code is compiled on.

As discussed by Kernighan and Pike, the intersection approach is often prefer-
able as the union approach makes the source code hard to read because of the re-
quired conditional compilation preprocessor macros. This is especially true when
compile-time control flow defined with preprocessor macros is mixed with run-
time control flow (if-statements). The union approach can be acceptable if used
occasionally and can sometimes be favourable in simple cases if the unreadability
caused by using conditional compilation to alter code to adapt to a new system is
tolerable, compared with the extra work required to build a portable library.

6
DYMO-AU Design and

Implementation Details

In the previous chapter, we gave an overview of the DYMO-AU implementation.
In this chapter, we go into details about the design and implementation of DYMO-
AU.

In section 6.1 we give the full details of the parts of the implementation that
run in user space and then in section 6.2 we give the full details of the kernel space
implementation. In section 6.3, different strategies for updating route timeouts in
the routing daemon is described.

6.1 The User Space Routing Daemon

In this section, we give an overview of design and implementation of the routing
daemon and the modules comprising the daemon.

As mentioned in section 5.2, the user space daemon is implemented in C and
Lua. An overview of the different modules is given in figure 6.1.

The modules depicted in the figure are described in the following. For now we
just note that any ingoing traffic, visualized with the arrow labelled with Input, is
monitored using the select [SFR03] system call and upon detecting input, the
function registered for the associated socket is called. As a result, some protocol
processing follows and possibly a DYMO message is created and sent from the
protocol logic module, visualized with an arrow labelled Output going out from
the Protocol Logic module.

6.1.1 Timer Queue

A DYMO routing daemon must ensure that invalid route table entries are deleted
after their delete timeout has passed. This requires us to be able to execute a task
at a preset time in the future. To support this purpose, a Timer Queue module has
been implemented. To have some task executed after a certain time interval has

53

54 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

select I/O
multiplexing
main loop

Registered
sockets

Timer Queue

schedule

runTasks-
AndUpdate

cancel

DYMO Protocol Logic

Routing Table

DYMO
Message

Processing
Route

Discovery

Route Error
Processing

Routing
Message

Processing

DYMO/
Control
Packet

Dispatching

Packet
type
dispatcher

Input Output

Figure 6.1: DYMO-AU routing daemon module overview.

elapsed, one creates an object of type TimerTask. The task to be executed must
be defined in the form of a function. Timer task objects can then be scheduled with
the timer queue and in addition, be cancelled if needed. The timer queue internally
uses a priority queue ordered according to the timeout value of the timer tasks in
the queue. The timer task with the earliest timeout value, i.e., the timeout value
that comes before the timeout values of all the other tasks, is the element returned
when retrieving the head element of the queue. The time stamp for timer tasks is
expressed as an absolute value, i.e., it is obtained using gettimeofday, which
returns the time since midnight, January 1, 1970. The desired time interval is then
added to this value.

The timer queue does not itself make sure that timer tasks are executed at ap-
propriate intervals, but instead provides a function which when called, executes
any timer tasks that have timed out, i.e., whose timeout value is before the current
time. When all of these tasks have been run, the timeout value of the timer task
at the head of the queue is returned. This task is the one with the timeout value
closest to the current time while still in the future.

The intentional uses of the timer queue function is in conjunction with, for
instance, the POSIX synchronous I/O multiplexing system functions poll and
select [SFR03], which both take a timeout value as argument. In the DYMO-
AU implementation, select has been used (see section 6.1.2 for further details).
Whenever select returns it is because one of two things occurred:

1. Data is ready to be read from one of the supplied file descriptors.

2. The call to select timed out.

The two scenarios are illustrated in figure 6.2. In the first case, figure 6.2a,
when the timer queue update function is called after processing the ready descrip-

6.1 THE USER SPACE ROUTING DAEMON 55

tors, no task is ready to execute: A new timeout value (giving the new timeout
interval, labelled nextExecutingTimeval) in the figure is returned to be used for a
new call to select.

In the second case, figure 6.2b, select returns because it timed out. When the
timer queue update function is called, at least one task is guaranteed to execute as
the timeout value of this task is the one returned by the previous call to the update
function. Tasks in the queue are removed and executed as long as their timeout
value is before the current time. As in the first scenario, the queue eventually
returns the next timeout interval.

Routing
Daemon

Timer
Queue

update_queue()

nextExecutingTimeval

select(fds, timeout)

(a) select returns because
of arrival of network data. No
tasks are executed.

Routing
Daemon

Timer
Queue

aTimer-
Task

update_queue()

run()

nextExecutingTimeval

select(fds, timeout)

loop getNextTask()

(b) Execution of tasks after select re-
turns because of a timeout.

Figure 6.2: Timer queue update function examples. In both cases the next-
ExecutingTimeval value returned, is the next timeout interval of the timer
queue.

The design outlined above has been chosen as it, compared with an imple-
mentation where the timer queue runs within its own thread of execution using
POSIX threads [MS04], makes the code less complex and easier to understand.
Multithreaded programming is inherently complex and makes it difficult to locate
errors. Interoperability between select and the timer queue is described further
in the next section.

6.1.2 select I/O Multiplexing Main Loop

The routing daemon must be able to listen for data on more than one socket, e.g.,
both on a socket listening on the DYMO port and on the netlink socket used for
communicating with the kernel module. Therefore, one cannot call, for instance,
recv [SFR03] on an open socket as the call would block until a message is re-
ceived on the socket. Other open sockets would be prohibited from receiving mes-

56 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

sages without the use of threads. In addition, if calling recv, it would be difficult
to have tasks executed at a preset time in the future without the use of threads.

The select call makes it possible to listen for messages on multiple socket
descriptors and in addition, to supply a timeout value that specifies for how long
the call should block waiting for data. These possibilities are used by the routing
daemon, which was also depicted in figure 6.1. Here any registered sockets are a
part of the watched set of descriptors. The timeout value to use is obtained from
the timer queue module. To ensure correct interoperability between the timer queue
and select, the timeout value obtained from the timer queue must be converted,
as select expects the timeout as an interval. Consequently, the timeout value
obtained from the timer queue is converted by subtracting the current time from
the value.

Figure 6.3 gives a different view of the interaction between the main loop and
select, the timer module, and packet dispatching, which is described in the next
section. The select call watches input from two different sources: the DYMO
routing socket, here assigned port number 13430, and the netlink socket for ex-
changing control messages between the routing daemon and the kernel module.
The port number 13430 was chosen arbitrarily for the DYMO-AU implementation,
as no port number has yet been assigned to the DYMO protocol.

Netfilter

Netfilter
Hooks Kernel

Module

Protocol
Stack

Network

UDP
Socket

DYMO control messages

Netlink Socket

select()

select()select()Dymo Logic
Modules

Timer
Queue

User Space
Kernel Space

Packet
Dispatching

13430

Figure 6.3: Selecting from multiple sockets and providing timed
events [Wib02].

6.1.3 DYMO and Control Packet Dispatching

The DYMO and Control Packet Dispatching module, shown to the left of the main
loop module in figure 6.1, is responsible for handling DYMO messages and also
control messages from the kernel module (e.g., instructing the routing daemon to

6.1 THE USER SPACE ROUTING DAEMON 57

initiate route discovery) and take appropriate action according to the type of mes-
sage received. The code for processing DYMO messages and control messages,
respectively, is in separate source code files so when we talk about a common
module, it is because of the conceptual similarities between the two pieces of code.

As described in section 5.2, the network code of the routing daemon is written
in C and consequently when a DYMO message is received, it is first handled in the
C code. The C code reads the packet type from the message header and for each of
the different types it calls a function defined in Lua to proceed with the processing
defined for the individual packet types.

As is the case with the DYMO messages, the code that receive kernel control
messages is written in C. Depending on the type of message received, the C code
calls the appropriate Lua function.

6.1.4 DYMO Message Processing

The module responsible for processing of messages parses the content of DYMO
messages according to the generalized MANET packet and message format de-
scribed in section 3.4. A consequence of the flexibility of message layout is that
one can generally not be sure to find a specific field at a fixed offset within a mes-
sage. The content of a message must be parsed, extracted, and represented in a
form so the daemon can process and use the embedded information.

Each address and associated attributes, i.e., prefix value, hop count, gateway
bit, and sequence number, are extracted and represented in a data structure that we
refer to as a routing block. The routing block term was also used in the DYMO
specification prior to version 4 of the draft. All further processing of DYMO mes-
sages happens on this list of routing blocks. This has the added advantage that
the routing logic is independent of the actual binary representation of DYMO mes-
sages. The continued processing of messages happens in the Routing Message
Processing (section 6.1.5) and Route Error Processing (section 6.1.7) modules.

6.1.5 Routing Message Processing

This module handles routing message processing as specified by the DYMO speci-
fication. RREQ and RREP messages contain the same information but have slightly
different processing rules. Consequently, all routing messages are processed by the
same function. The function performs the same overall processing on messages,
but takes specific measures when the packet type being examined requires it.

The processing common for routing messages includes creating and updating
of route table entries as the routing blocks in the message is processed. If a route
table entry is created because of processing the current routing block, a message
is sent to the kernel module telling it to add an entry to the expiry list. A similar
message is sent if an entry requires update.

58 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

6.1.6 Route Discovery

This module handles the route discovery process. Whenever a route to a node is
needed, and it has not previously been discovered or only a stale route table entry
exists, a route discovery cycle is started. An RREQ message is created and sent on
the interface configured for DYMO operation. A timer task is then created to allow
for repeated route discovery attempts if an RREP is not received within RREQ -
WAIT TIME (see section 3.2). Information about the currently ongoing discovery
attempt is then inserted into a table with the destination address as the key and the
discovery information including the created timer task as value.

If an RREP is received for an address for which route discovery is in progress,
the scheduled route discovery timer task for this address can be retrieved from the
table of currently ongoing discovery attempts. The timer task is cancelled and a
message is sent to the kernel module to inform that a new route has been created
and to send any queued packets. Because of how routing messages are being pro-
cessed, the route has already been added during routing message processing as
described in section 6.1.5.

If no RREP is received within RREQ WAIT TIME, the created timer task exe-
cutes and a new RREQ is created and transmitted. This happens a total of RREQ -
TRIES (3) times and each time the waiting time before sending another RREQ is
doubled. If no RREP messages are ever received, a message is sent to the ker-
nel module to drop any buffered packets that have been queued while awaiting the
completions of the route discovery cycle. The details of the working of the kernel
module is given in section 6.2. A diagram showing the interaction between the
kernel module and the routing daemon when routing discovery is carried out can
be found in figure 5.2

6.1.7 Route Error Processing

This module handles routing message processing as well as the creation of RERR
messages. Figure 6.4 illustrates the RERR generation process in the routing dae-
mon. RERR messages are generated when a packet for a destination without a
valid route table entry is received. When receiving a notification about an unreach-
able node, an RERR message is created and information about the node is added to
the message. Additional unreachable nodes dependent on the same link, i.e., nodes
having the unreachable link as next hop entry, may be added to the RERR. The
RERR message is then broadcasted.

An example showing processing of RERR messages, focusing on the interac-
tion between the user space routing daemon and the kernel module was previously
given in section 5.4.4.

6.1.8 Routing Table

The DYMO specification describes a conceptual data structure, the route table en-
try, with fields used to ensure correct functioning of the DYMO routing protocol.

6.1 THE USER SPACE ROUTING DAEMON 59

RouteError-
Processing

RouteErrorGeneration(addr)

Routing
Table

GetNextHopDependencies(addr)

dependencies
new()

sendMsg()

aRERR

addAddresses(addr, dependencies)

Figure 6.4: RERR creation.

We described the route table entry in section 3.1. This data structure together with
operations to operate on a collection of entries, is implemented in the Routing Table
module.

The routing daemon maintains the routing table in user space with the intent of
making message processing as efficient as possible; we want to avoid querying the
kernel routing table for each processed routing block in the message. Furthermore,
additional information about nodes is needed, e.g., the sequence number, which it
is not possible to store in the kernel routing table.

As mentioned in section 6.1.1, it is necessary for the correct function of the
daemon that specific tasks can be executed at some point in the future. For instance,
the daemon must ensure that route table entries are eventually deleted if they have
not been used for some time. Accordingly, a timer task is created every time a new
route table entry is created and scheduled to fire when the entry becomes invalid.
As the entry has just been created this is equal to ROUTE VALID TIMEOUT
milliseconds into the future. When the task eventually is executed, the function
first checks if the entry is valid, as the valid timeout might have been updated in
the meantime as a result of packets being transmitted using this route (we elaborate
on this issue in section 6.3). What happens next depends on the state of the route
table entry:

Valid If the route table entry is valid, the timer task is rescheduled to perform the
check again, the next time it becomes invalid.

Invalid If invalid, the entry must be deleted eventually: a new timer task is sched-
uled, which will delete the entry ROUTE DELETE TIMEOUT milliseconds
later.

To sum up: the timer task that checks the validity of route table entries can both
reschedule itself or schedule a timer task that will delete the route table entry. Both
cases are illustrated in figure 6.5: If the entry is still valid, the ValidTimeoutMon-
itor requests the value of the valid timeout from the route table entry and create a

60 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

new ValidTimeoutMonitor, which is subsequently scheduled. This means that each
instance of X should be replaced by Valid in the figure. Similarly, if the route table
entry is invalid, ValidTimeoutMonitor requests the delete timeout value from the
route table entry, creates a DeleteTimeoutMonitor and schedules it. In this case, X
should be substituted with Delete in the figure.

ValidTimeout-
Monitor

Timer
Queue

run()

aRoute-
TableEntry

isValid()

create_X_TimeoutMonitor(this)

Routing
Daemon

X_TimeoutMonitor

schedule(X_TimeoutMonitor, X_Timeout)

get_X_Timeout()

X_Timeout

Figure 6.5: A timer task function checking route table entry validity. The type
of timer task depends on the result of isValid().

When a route table entry is initially created for a destination, a route is also
added to the kernel routing table and similarly when the entry is deleted, the cor-
responding entry is deleted from the kernel routing table. In the following, we
list three possible methods to alter the kernel routing table. The first method to
manipulate the kernel routing table is with the use of routing sockets [SFR03]. A
routing socket works very much like an ordinary socket; messages or commands
can be written and responses read back. Linux however, does not support standard
routing sockets, but has its own implementation called rtnetlink routing sockets or
NETLINK ROUTE routing sockets. The rtnetlink routing sockets provide a func-
tionality super set of ordinary routing sockets [He05], but no compatibility layer
between the two inferfaces exists, i.e., code using ordinary routing sockets does
not compile on Linux.

A second approach is to use ioctl operations with the SIOCADDRT and
SIOCDELRT requests. This works on Linux but is not guaranteed to work on
other systems [SFR03].

A third option is to use already available utilities for manipulating the kernel
routing table.

The two first options require the implementation to be written in C. If we should
port the DYMO-AU implementation from Linux to another POSIX operating sys-
tem, the kernel routing table manipulating code may have to be rewritten. Given
these considerations and furthermore to avoid spending too much time writing low-

6.2 THE KERNEL MODULE 61

level kernel routing table manipulation code in C, we decided to use the already
available routing table manipulation utilities and call these directly from Lua. The
current Linux implementation uses the utility ip. The disadvantage to this approach
is the added overhead; to call external commands, the Lua implementation uses the
system function [KR88], which executes the command in a forked [MS04]
process. To minimize this overhead, the daemon only deletes the kernel route table
entry when the associated route table entry in the daemon is deleted, even though
the route may be invalid.

In figure 6.6, the lifetimes of various types of route table entries are illustrated,
among them kernel route table entries, which resemble the lifetime of the daemon
entries. As a user space routing table entry can be made invalid and valid several
times after it is created, the corresponding expiry list entry can be deleted and
added several times (we describe the details of the expiry list in section 6.2.2). In
figure 6.6, the cross symbolizes deletion of an entry.

Routing
Table

aRoute-
TableEntry

aKernelRoute-
TableEntry

add()

ADD_ROUTE

DELETE_ROUTE

new()

remove()

loop >= 1

delete()

anExpiry-
ListEntry

Figure 6.6: Lifetimes of various route table entries. A kernel route table entry
has the same lifetime as a daemon entry whereas kernel expiry list entries can
be added and deleted more than once.

6.2 The Kernel Module

In this section we describe the design and implementation of the components mak-
ing up the Linux kernel module as depicted in figure 5.1.

6.2.1 Packet Queue

One of the requirements for an on-demand ad hoc routing protocol to function
is that packets awaiting the completion of route discovery must be buffered. As
mentioned in section 4.2.3, netfilter provides a packet queueing module ip queue

62 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

and an accompanying user space library libipq. The ip queue module implements
the required functionality, but the interface to the kernel module and its user space
control library has two limitations.

The first and most serious limitation, is that for the daemon to be able to ob-
tain the destination address it would require that the whole IP packet is copied to
user space. The second limitation is that libipq wraps the socket functions and
select in its own API which makes it impossible to have it work directly with
select without rewriting parts of libipq. For this reason, we decided to imple-
ment a separate packet queueing module. However, this module has been modelled
after ip queue.

The packet queue module is implemented as a netfilter queue handler. It must
register itself with netfilter supplying a callback function with the prototype shown
below.

nf_queue_handler(struct sk_buff *skb,
struct nf_info *info, void *data);

Whenever the verdict NF QUEUE is returned from the netfilter hook function,
this callback function is called with three arguments. The first two are a pointer
to a struct sk buff, which is the packet to queue, and pointer to a struct
nf info that provides auxiliary info about the packet, like which hook and in-
terface the packet was on. When route discovery has finished, the kernel module
is sent a message telling it to either send the queued packets or drop them. If a
packet is dropped, an ICMP destination unreachable message [Com00] is created
and delivered to the user space application that attempted to send the packet.

After the implementation of this module was finished it was discovered that it
is not necessary to copy the whole packet to user space with ip queue and libipq.
Only a user specified part of the beginning of the packet has to be copied, for
instance, just enough to be able to read the IP destination address from the packet.
However, in order to use ip queue and libipq, the above-mentioned incompatibility
between the libibq API and select would still have to be resolved.

6.2.2 Expiry List

As described in section 5.2.2, the expiry list module is used to keep track of routes
and their usage. It acts as the list of active routes for the kernel module, i.e., it
only returns an entry if a valid route to the destination exists at time of inquiry. As
described in section 6.1.8, the routing daemon also maintains a routing table, so
one might ask why an additional table in the kernel is necessary.

When a host receives packets that must be forwarded instead of being deliv-
ered locally, it is desirable that the packets are processed as fast as possible. That
is, when a route has been discovered by the daemon and is installed, minimal pro-
cessing is desired.

If the implementation was made such that the kernel module had to query the
user space daemon about every received packet, it would add additional latency

6.2 THE KERNEL MODULE 63

for each packet processed. This approach can roughly be compared to the one
described in section 4.2.4, in which every packet is copied to user space. As de-
scribed, experiments have shown the forwarding delay to be ten times longer when
a packet must travel through user space [CBR05]. As we maintain the packet queue
in the kernel, the amount of data transmitted through user space would be much
smaller, but it is still anticipated that the added overhead of transmitting queries to
user space would be significant.

As noted by Kawadia et al. [KZG03], freshness information about routes is
recorded by the Linux kernel and can from kernel space be looked up in the kernel
routing cache. However, as they also note, the time stamp is not readily available
from user space even though the routing cache entries can be read through files
found in the /proc file system. The /proc file system is a virtual file system that let
user processes access information on statistics, parameters, and data structures in
the kernel as well as the ability to modify kernel variables by writing to selected
files in the /proc file system hierarchy [MS04]. As it is desirable to be able to
read these values from user space, the list of currently active routes is maintained
in the kernel together with a time stamp indicating last usage. The reason we
maintain a time stamp independently, rather than obtain it from the routing cache
when requested, is that it is not desirable to depend on the lifetime of entries in the
routing cache. Entries can be deleted while we are still interested in obtaining the
time stamp. Situations where this might be the case is described in section 6.3.3.

To sum up, during normal mode of operations, the lifetime of an entry in the
expiry list is controlled by the routing daemon. As described in section 6.1.5,
expiry list entries are created when route table entries are created or updated, as a
result of a routing message being processed by the daemon. When a route table
entry becomes invalid, the daemon tells the kernel module to delete the expiry list
entry. Whenever a route is used, the accompanying time stamp associated with the
route is updated to the current time.

As an expansion of the normal mode of operations, entries might also be
deleted by the kernel module itself. We give the full details in section 6.3, specifi-
cally section 6.3.3.

6.2.3 Netlink Communication

As described previously in section 5.2.3, netlink sockets are used to transmit mes-
sages between the user space routing daemon and the Linux kernel module. In the
following, we discuss the technical details of netlink sockets and how the details
influence the implementation of the kernel module.

Netlink sockets [He05] offer a datagram oriented service and enable user space
processes to exchange information with kernel modules using the standard socket
API [SFR03]. In kernel space, a lower level API is provided. Conceptually, netlink
messages are sent and received asynchronously; packets are placed in a queue to
smooth the burst of messages. However, when messages from user space to kernel
space are sent using the sendmsg system call, the reception code in the kernel

64 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

module is invoked in the context of the sender as system calls require synchronous
processing [He05].

This means that if we wish to have message processed asynchronously in the
kernel module, the code must explicitly implement the processing in a kernel
thread. The message is then served in another context, the sendmsg system call
returns immediately, and other system calls can enter the kernel and thus, context
switch granularity is improved [He05]. If asynchronous processing is not imple-
mented, the netlink reception code should preferably return fast, as no other system
call can enter the kernel while the reception code is running.

In the DYMO-AU kernel module, no kernel threads is created to serve the
reception of netlink traffic in another context. Reception occurs in the context of
sendmsg, which is called by the routing daemon. This design has been chosen to
keep the code simple, and to avoid introducing subtle thread related bugs. However,
no assumptions about message being processed synchronously have been made. It
is possible that the implementation is changed to use a dedicated kernel thread for
reception in future versions.

6.2.4 Netfilter Hooks

The netfilter hooks component is responsible for generating the events that trigger
routing protocol action. This has been implemented as a function that is registered
three different places within the netfilter framework.

Before we explain the work of the callback function at the three hooks, we note
that in order for the implementation to function properly, it must not interfere with
DYMO packets. These must be directly accepted without being subject to further
processing in the netfilter hook function. To identify DYMO packets we consider
the IP header of each processed packet and if the protocol is UDP, it is checked if
the port number matches the port number used by DYMO-AU.

In section 4.2.3, we presented the appropriate netfilter hooks an implementation
can register callback functions at, to be able to recognize the needed events iden-
tified in section 4.1. The DYMO-AU implementation follows the direction given
in that section. That is, in our implementation we register a callback function at
the NF IP LOCAL OUT hook, the NF IP PRE ROUTING hook, and the NF IP -
POST ROUTING hook. This means that the callback function is called whenever a
message is sent from a local process, a message is received on a network interface,
or a message is sent on a network interface.

Figure 6.7 illustrates how we check if route discovery should be initiated. As
mentioned in section 5.2.4, at the NF IP LOCAL OUT hook, the function checks
the destination address of packets sent from a local process against the expiry list
and possibly tells the user space routing daemon to initiate route discovery. The
function returns NF QUEUE while route discovery is ongoing to ensure packets
for the destination are buffered. Note that the routing daemon is only told to start
route discovery if it has not done so before; this is the case if the packet queue is
empty.

6.2 THE KERNEL MODULE 65

Network
Stack

Netfilter
Hook Fnc

Expiry
List

NF_QUEUE

enqueue_packet()

kdymo_hook(LOCAL_OUT)
PACKET_IN

NetlinkPacket
Queue

get(address)

NULL

entry_exists(address)

false

Routing
Daemon

send_rt_msg(NO_ROUTE, address)

netlink_unicast(NO_ROUTE, addr)

Figure 6.7: Checking for active routes in the kernel module when a local
program sends packets. No route for address exists and the routing daemon is
informed such that route discovery can be initiated.

At the NF IP PRE ROUTING hook, we check that a route to the IP destination
exists. If no route exists, an RERR message is generated. Furthermore, at the hook,
we update the timeout for IP source address if a route for it exists. In figure 6.8,
it is illustrated how the check for a route at the NF IP PRE ROUTING hook is
performed in the kernel module. In this particular example, there is no route for the
destination, i.e., the expiry list returns NULL when queried for an entry. The kernel
module netlink component is then told to send a message to the routing daemon,
and a NO ROUTE message is then sent to user space. We have not illustrated the
update of the timeout for the IP source address.

Network
Stack

Netfilter
Hook Fnc

Expiry
List

NF_DROP

kdymo_hook(PRE_ROUTING)
PACKET_IN

Netlink

get(address)

NULL

Routing
Daemon

send_rt_msg(RERR_IN, address)

netlink_unicast(RERR_IN, address)

Figure 6.8: Checking for active routes when receiving packets on a network
interface. No route for address exists and the routing daemon is informed. The
check for an active route is similar to the check in figure 6.7.

At the NF IP POST ROUTING hook, timestamps of active routes are updated
when sending or forwarding packets. In this way, both locally generated packets
as well as forwarded packets can be considered.

66 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

6.3 Updating Route Timeouts

In the following, we present three different ways of updating route timeouts and
deleting stale routes. In all three cases, work takes place both in user space and in
kernel space. However, the common distinctive feature is how fresh the valid time-
out value of a route table entry in the routing daemon is, compared to the actual
freshness information recorded by the kernel module. The greater the number of
times the user space value is updated to reflect the value recorded by the kernel,
the greater is the amount of data that must be exchanged between the routing dae-
mon and the kernel module. For each of the methods we evaluate the benefits and
drawbacks.

6.3.1 Packet-triggered Update of Timeouts

This approach ensures that all entries in the routing table of the routing daemon are
updated with the latest registered value.

The procedure is simple. An update message is sent from the kernel module to
the user space routing daemon every time a packet is received from a node or sent
to a node with an active route. When the routing daemon receives the message, the
valid timeout of the corresponding entry is updated and so is the valid timeout of
the next hop entry.

Some time prior to the update of the valid timeout, a timer task that monitors
the valid timeout of the route table entry has been scheduled (see section 6.1 for
further details). Now we have two implementation options. The first is to take no
further action. The second is to immediately cancel the scheduled timer task that
monitors the valid timeout and subsequently schedule a new timer task based on
the updated valid timeout value.

Using the first option, the daemon takes no further action. What then occurs is
that when the task that checks the valid timeout eventually is executed, it detects
that the timeout of the entry is valid, i.e., it is after the current time, and schedules a
new timer task checking the valid timeout. The task is scheduled to execute when
the valid timeout expires. This can continue as long as data is transmitted using
the route. In figure 6.9, this case is illustrated. Note, however, that the periodical
execution of a timer task that monitors the valid timeout is not shown nor is the
update of the next hop entry.

Using the second option, the daemon does one additional operation after updat-
ing the valid timeout of the route table entry. Instead of waiting for the execution of
the timer task that monitors the valid timeout, the timer task is cancelled immedi-
ately and a new task is scheduled using the newly updated valid timeout value. This
case is illustrated in figure 6.10. Only the extra operations performed when calling
updateValidTimeout is shown; everything that happens until then is similar to the
operations shown in figure 6.9. After the valid timeout value of the entry is up-
dated, the monitoring timer task is cancelled and a new one created and scheduled.
Once again, the update of the next hop is not shown in the figure.

6.3 UPDATING ROUTE TIMEOUTS 67

Kernel
Module

aRoute-
TableEntry

Routing
Daemon

kdymo_hook()

send_rt_msg(PKT_UPDATE, address)

FindEntry(address)

updateValidTimeout()

NF_ACCEPT

Figure 6.9: Updating the route timeout in the routing daemon when process-
ing a packet in the kernel module.

aRoute-
TableEntry

Routing
Daemon

updateValidTimeout()

Timer
Queue

getTimerTask()

cancel(timerTask)

createValidTimeoutMonitor(this)

schedule(ValidTimeoutMonitor, validTimeout)

ValidTimeoutMonitor

setTimerTask(ValidTimeoutMonitor)

getValidTimeout()

validTimeout

Figure 6.10: Updating the route timeout and rescheduling the valid timeout
monitor timer task in the routing daemon when processing a packet in the
kernel module

68 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

The idea behind this additional operation is that the routing daemon will im-
pose additional load on the system if the timer task is not updated: This happens
as the select function used in the main loop returns more frequently because the
monitoring timer task is scheduled based on a prior timeout value, rather than the
most recent value received from the kernel module. I.e., the idea is that while the
route is active, the validity of the route should not be rechecked.

Both implementations have been used during testing and experimentation. The
implementation that updates the timer task and timer queue at every timeout up-
date was originally the solution implemented. However, we discovered that the
idea of a possible advantage of trading-off fewer calls to select in the main loop
in return of requiring cancelling and scheduling of a new timer task at every update
was flawed. During experimentation, we observed that CPU usage, using the im-
plementation that updates the timer task and timer queue at every timeout update,
would peak at 90 percent. Without the constant update of timer tasks, the usage
would peak at 2 percent. The reason for this extremely high CPU usage has not
been investigated thoroughly, but we suspect that it is caused by how timer tasks
are implemented. Whenever a timer task object is created, eight bytes of memory
are dynamically allocated using malloc. The small size of the allocated objects
can cause the implementation to spend a large proportion of its time in malloc
and free.1 However, we have not collected any hard evidence supporting this
hypothesis.

We now leave the discussion of the implementation details of the packet-trig-
gered update of timeouts method and continue with a discussion of the benefits
and drawbacks of the method. The major benefit of packet-triggered update of
timeouts is that one can always be sure that the timeout valid obtained by querying
the routing daemon routing table is up-to-date. This is particularly valuable during
initial testing and debugging and later while doing practical experiments. Second,
it has a simple implementation; communication is one-way, message are sent from
the kernel and received by the routing daemon. When a message is received by the
routing daemon, no further processing are required by the kernel.

The greatest drawback is the overhead associated with transferring a message
from the kernel module to the routing daemon whenever sending, receiving, or for-
warding a packet. Forwarding even implies two update messages, as route timeouts
are updated for both the sender and the destination of packet, which are imple-
mented at two different netfilter hooks (see section 6.2.4).

Because of the above-mentioned advantages, the packet-triggered update of
timeouts method is used in the current DYMO-AU implementation.

6.3.2 Timeout-triggered Update of Timeouts

This method only updates the valid timeout values for a route table entry in the
user space daemon whenever the valid timeout monitor for an entry fires.

1Doug Lea [Lea00] describes an implementation of malloc that has this very property. A mod-
ified version of this implementation is a part of glibc, the Linux C library [Glo06].

6.3 UPDATING ROUTE TIMEOUTS 69

Instead of checking the valid timeout value when executing as described in
the preceding section and in section 6.1.8, the timer task sends a message to the
kernel module asking for the current value as registered by the module. Upon
receiving an answer from the kernel, either a new valid timeout monitor or a delete
timeout monitor is scheduled. Hence, this method is similar to the one described
previously with regards to scheduling of timer task. The major difference is that
no valid timeout messages are transferred from the kernel module to the routing
daemon when receiving or sending packets. The update procedure is illustrated in
figure 6.11. After the timeout value has been received from the kernel, a new valid
timeout monitor is scheduled.

ValidTimeout-
Monitor

Timer
Queue

run()

aRoute-
TableEntry

updateValidTimeout(timeout)

Routing
Daemon

schedule(ValidTimeoutMonitor, timeout)

Kernel
Module

send_rt_msg(GET_TIMEOUT, address)

send_rt_msg(TIMEOUT_UPDATE, address, timeout)

updateQueue()

createValidTimeoutMonitor(this)

ValidTimeoutMonitor

Figure 6.11: Updating the valid timeout value for a route table entry periodi-
cally polling the kernel module.

We must consider some obstacles for this scheme to work as intended. First,
because of how network communication is handled by the daemon in which net-
work reads are processed in context of the select call in the main loop, the reply
messages from the kernel is processed asynchronously. That is, after a request is
sent from the daemon, the code returns to the main loop and select call. Not
until then can the reply message be read from the netlink socket. This is primarily
a problem if a DYMO routing message is received simultaneously with the kernel
module message and the subsequent processing of it requires an up-to-date value
of the valid timeout for a route table entry. This is, for example, the case when the
sequence number for a node found in the routing message is equal to the sequence
number found in the route table entry for the node [CP06b].

A second problem is that the netlink protocol is not reliable. Messages may
be dropped if out of memory conditions or other errors occur [Net99]. This can
happen if either the kernel module or the routing daemon is not able to keep up
with the stream of messages, i.e., the socket receive-buffer runs full. If either the

70 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

request or the reply message is discarded, the route table entry may never be deleted
as a delete timeout timer task is never created and scheduled. One way to alleviate
this problem is to request that the receiver acknowledged the messages. The netlink
socket API provides means to facilitate this.

Two additional solutions exist besides the one sketched at the start of this sec-
tion, i.e., that a timer task retrieves the current valid timeout of a route from the
kernel module with the use of netlink messages. The first solution is to use the
/proc file system to get timeout values from the kernel. As mentioned in section 6.2,
the /proc file system is a virtual file system that is used as an interface to the kernel.
The kernel module exposes the contents of the expiry list through a file in the /proc
system. By opening and reading this file from the routing daemon, it is possible
to obtain the required valid timeout parameters synchronously. Using this solution
avoids the two problems associated with netlink communication. This method was
used and described by Kawadia et al. [KZG03].

The second solution is mostly designed to cater for the possibility of dropped
messages. The idea is to create and schedule a timer task that monitors the delete
timeout for a route table entry. The timer task is created at the same time as the
route table entry. That is, two timer tasks are created simultaneously when creating
a route table entry. One task monitoring the valid timeout value and one task mon-
itoring the delete timeout value. If either a request or a reply message is dropped
and no delete timeout is scheduled, the original scheduled timer will eventually
delete the entry. This solution is still subject to problems because of the reply
being received asynchronously.

The major advantage of periodically updating timeout values in the routing
daemon is that far fewer messages have to travel from kernel space to user space.
A disadvantage is the possibly added complexity involved in ensuring that the dae-
mon is not left in an inconsistent state because of dropped control message. Ob-
taining state information from the kernel module reading a file from the /proc file
system shares the same idea and advantage, but avoids the disadvantage as its im-
plementation is simpler and no responses have to be processed asynchronously.
Generally, the timeout-triggered update of timeouts method has the drawback that
the route timeouts recorded by the daemon is not always up-to-date. The values
can, however, be obtained from the kernel module through a file in the /proc file
system.

6.3.3 On-demand Update of Timeouts

As described in section 6.2.2, the queue of expiry entries in the kernel is only used
for look-ups. The data structure does not itself test if an entry in its queue has
expired. It assumes that if an entry exists, then the route has a valid timeout. It is
the responsibility of the user space daemon to tell the kernel to delete entries in the
queue.

The on-demand update of timeouts method instead assigns responsibility of
deleting entries in the queue to the kernel module. Every time the queue of expiry

6.3 UPDATING ROUTE TIMEOUTS 71

entries looks up a node, it checks if the entry for the node has expired. If the entry
has expired, it is deleted. As the routing daemon is not responsible for deleting
expiry list entries anymore, it does generally not need to have an updated value
for valid timeouts (except in the case mentioned in the previous section). In this
case the current value can be obtained through the /proc file system as described in
section 6.3.2.

However, one problem remains. An entry that is never used subsequently to
its addition in both the routing daemon and kernel module, will never be deleted
from either places. To cover this case one could schedule a delete timeout monitor
timer task as proposed in section 6.3.2. This timer task would periodically (for
instance, every 30 or 60 seconds) check the validity of the kernel module entries
and make efforts to delete any entries with valid timeout before the current time
plus DELETE ROUTE TIMEOUT.

The difference compared to the method previously described in section 6.3.2,
is that only one timer task is required to flush stale entries. The kernel module
would delete any stale routes on demand, if a packet was attempted transmitted for
a destination with an invalid route.

To summarize: expiry list entries are deleted directly by the kernel module if
they have expired when they are trying to be retrieved. This is unlike the methods
described in sections 6.3.1 and 6.3.2 in which entries were deleted on request from
the routing daemon. To avoid spurious entries and memory leaks, entries will
periodically be checked and deleted by the routing daemon.

The advantage of only updating route timeouts on-demand, is that hardly any
messages are transmitted between the routing daemon and the kernel module that
would not have been sent otherwise, i.e., when route discovery must be initiated
or when RERR messages must be broadcasted. The disadvantage is that the route
timeouts recorded by the daemon is not up-to-date.

72 DYMO-AU DESIGN AND IMPLEMENTATION DETAILS

7
Experimental Evaluation

Compared to simulation studies, relatively few measurement experimental studies
have been performed with mobile ad hoc networks deployed on real hardware.
Evaluating applications and communication for ad hoc wireless networks typically
involves simulation. When experimental evaluations are performed, it often means
small-scale live deployments. Larger-scale evaluations have been performed, but
it is typically costly and difficult to conduct under controlled conditions. Small-
scale evaluations are easier to perform and our experiments are an example of a
small-scale evaluation. In this chapter, we present the experiments conducted to
perform practical evaluation of our DYMO-AU implementation and the DYMO ad
hoc routing protocol.

The outline for the rest of the chapter is as follows. In section 7.1, we survey
earlier practical evaluation of on-demand routing protocols and routing protocol
implementations. The examined experiments are used as a basis for our own ex-
periments. We also survey a representative set of proposed MANET software and
hardware testbeds to explore the various solutions available for practical experi-
ments with MANET implementations. We describe the chosen set of experiments
and the experimental setup in section 7.2. In the following sections, we present
the results of the experiments. In section 7.3, we present the results for route dis-
covery latency, in section 7.4, we present the results for UDP performance, and in
section 7.5, we describe measurements of the end-to-end delay or round-trip time.
In section 7.6, we present the results on TCP performance and we conclude the
presentation of the experiments in section 7.7, by describing some special TCP
experiments that aim at measuring the so-called ad hoc horizon in a set of topolo-
gies called beam star topologies. Finally, in section 7.8, we present some of the
experiences obtained while conducting the experiments. It should be noted that the
word testbed can be used to denote two different things. First, it can be used to
both denote software, hardware, or machinery used to facilitate and ease experi-
ments and second, it can be used to denote the actual physical location of where an
experiment is carried out.

73

74 EXPERIMENTAL EVALUATION

7.1 Related Work and Testbeds

Some of the first experimental evaluations of ad hoc networks were carried out
by Maltz et al. [MBJ99, MBJ00]. They conducted the experiments on a 700 m
by 300 m outdoor testbed consisting of two stationary nodes placed at each end
approximately distanced at 700 m and five mobiles nodes driving back and forth
between the two stationary nodes. The wireless hardware used for the experiments
are pre-802.11 WaveLAN radios. The implementation used was an implementation
of DSR running as a part of a modified FreeBSD kernel (see also section 4.2.1).
Part of Maltz et al.’s experiences of using the testbed was related to debugging and
testing their implementation, but they also did evaluations on radio propagation
and verification of some of the algorithms used by DSR.

With regards to performance evaluations, Maltz et al. performed simple ex-
periments with ping and measured the packet loss ratio. TCP experiments with
single-hop and two-hop topologies were conducted and the average throughput
was measured with 1 MB and 5 MB file transfers. The experiments were con-
ducted both in an indoor lab setting and on the outdoor testbed. In the two-hop
experiments, measured throughput was 25 % of the indoor lab measured through-
put. Indoors, the nodes are in the same collision domain, so there are no hidden
terminal problems whereas in the outdoors setup, the hidden terminal problem was
introduced.

Lundgren et al. conducted some large-scale experiments with up to 37 nodes in
both indoor and outdoor environments [LLN+01, NGL05]. Their primary goal is
to characterize mobility scenarios with a proposed metric for mobility, the virtual
Mobility (vM) metric, to be able to compare and distinguish between the scenar-
ios. The vM metric is calculated based on measured signal quality between nodes.
In addition to measurements of signal quality, some experiments were also made
to assess the ability of two early implementations of AODV and OLSR to estab-
lish multi-hop routes by measuring packet loss and analysing the number of hops
reached when using the ping utility. Similar to the experiments conducted by Maltz
et al., the experiments carried out by Lundgren et al. were made with pre-IEEE
802.11 WaveLAN hardware.

Lundgren et al. built the Ad hoc Protocol Evaluation (APE) testbed in order
to be able to perform the large-scale experiments in a reproducible fashion. APE
offers a platform based on the Linux operating system specially tailored for ad hoc
routing protocol evaluations with the intent to allow for greater repeatability and
reproducibility. APE uses a scenario interpreter that executes commands, includ-
ing data traffic generation, at specified points in time. It introduces choreography
scripts providing instructions to testers who walk around with mobile nodes. The
intent is to test routing protocols and various topologies in real physical setup as
compared to an emulated setup using, for instance, packet filtering. While experi-
ments are carried out, extensive logging takes place on each node. When finished,
all log files are collected and merged at a central node, and APE then provides tools
to process and extract information from the log files.

7.1 RELATED WORK AND TESTBEDS 75

Gray et al. [GKN+04] did several outdoor and indoor experiments with up to
33 nodes with 4 different implementations of MANET routing protocols, among
them AODV and compared the results to simulations. The experiments evalu-
ate four different metrics: message delivery ratio, control packet overhead, route
efficiency, and end-to-end delay. Comparing the results obtained outdoors with
the results obtained indoors, AODV showed much improvement with regards to
packet delivery rate when going indoors, while ODMRP, a multicast protocol that
uses broadcasting showed much worse packet delivery ratio. Indoor, the mobile
nodes were placed in such a way that each node could hear all transmitted packets.
GPS information recorded in the outdoor settings was used to simulate network
connectivity. Indoor, ODMRP was affected because of an increased number of
packet collisions as the IEEE 802.11 RTS/CTS clearing procedure is not used for
broadcast packets [Gas02].

Desilva and Das [DD00] implemented the AODV protocol as an extension to
the ARP protocol and measured the performance of their implementation using
UDP and TCP traffic. They tested a static setup consisting of one desktop machine
and four notebooks arranged in a chain topology. Desilva and Das measured route
discovery latency and received throughput of UDP and TCP traffic. In the route
discovery latency experiments, in an unloaded network, a neighbour could be dis-
covered in 3–4 ms and each additional hop would add roughly 4 ms to the delay. In
a network loaded with UDP traffic, route discovery latency was much higher and
discovering a node four hops away would on average take 700 ms. When using
UDP, the offered load vs. measured throughput were recorded. The experiments
were repeated with different values of offered load and with various number of
hops. For each node in the chain, the number of packets dropped by the node and
between its predecessor and successor was recorded to assess the effect of hidden
terminal problems. To measure TCP performance, a 14 MB file was transferred
with FTP from one end of the chain to the other. The node farthest away was at a
distance between one and four hops. Desilva and Das found that they had to care-
fully place the nodes in order not to experience severe packet loss and stalled TCP
sessions. In their experiments, as the hop count increased the transfer got progres-
sively slower. As the hop count increased, more and more packets were dropped
leading to retransmission and duplicated ACKs.

Kuladinithi et al. [KUFG] also used a setup with stationary nodes to compare
two implementations of the AODV routing protocol as well as an experiment with
static routes in which route table entries are added manually. A six-node testbed
was used with a chain topology varying the number of hops from one to five. Ex-
periments using both UDP and TCP were performed. In the UDP experiment,
numbers for offered load vs. received throughput, packet delivery ratio, jitter, and
packets arriving out of sequence were recorded. In the TCP experiment, throughput
was measured. In addition, a special patched version of the Linux kernel was used
to measure deviation in the retransmission timeout (RTO) value and the size of the
congestion window (CWD). The values of the RTO and the CWD over time were
used for investigating a large number of observed duplicate TCP ACKs. One in-

76 EXPERIMENTAL EVALUATION

teresting observation made was that TCP throughput was better when testing with
one of the tested AODV implementation compared to statically assigned routes.

Gupta et al. [GWW04] studied the practical performance of TCP in a multi-hop
wireless ad hoc network environment using a signal-strength aware implementation
of AODV. Experiments were primarily conducted using five stationary nodes set
up in a chain topology but using a varying number of hops. Experiments involving
one moving node was also conducted. The different metrics measured were TCP
throughput, route discovery latency, control packet overhead, and end-to-end de-
lay. Generally, they found that increasing the number of hops, or size of packets
affected performance. For TCP performance, they found that hidden node and ex-
posed node problems influenced 3-hop and 4-hop configurations. Their observed
route discovery times ranged between 51 ms and 613 ms which are considerably
higher when compared to Desilva and Das [DD00]. The End-to-end delay showed
increased round trip times with more hops as well as when increasing the packet
size.

Bae et al. [BLG00] measured unicast UDP performance in a seven- node test-
bed setup using the Ordered On-Demand Multicast Routing Protocol (ODMRP).
They used a network with stationary nodes with no mobility as well a setup with
two kinds of mobility. Using the setup with stationary nodes they compared re-
ceived throughput in experiments with statically assigned routes and experiments
in which traffic was routed with the ODMRP protocol. In the latter case, con-
trol packet throughput and overhead was also measured. Similar experiments were
performed with the mobility scenarios.

Tschudin and Osipov [TO04] investigated the usefulness of TCP based network
services running on top of IEEE 802.11 networks in which routing is controlled by
a MANET routing protocol. Usefulness is defined in terms of the ad hoc horizon,
which is the number of hops and number of participating nodes beyond which per-
formance severely degrades and the service stops being usable for an end user. The
experiments defined by Tschudin and Osipov are performed in a set of topologies
named beam star network topologies. A central node acts as a server and this server
is the origin of paths or beams that end at nodes distanced an identical number of
hops away. Two types of experiments were performed. In the first experiment, a
number of parallel FTP sessions are present. The central node starts FTP transfer
from each end-node. The various sessions then compete for the bandwidth. In the
second experiment, one FTP transfer is started and the other end-nodes request a
36K web page from the central node every 15 seconds. Tschudin and Osipov use
the ns-2 simulator for the experiments and find the above-mentioned horizon to be
2 to 3 hops and approximately 15 nodes.

7.1.1 Evaluation Testbeds

Before beginning our experimental tests and evaluations we have examined the
various testbeds that have been proposed for MANET practical experimentation
and evaluation. In what follows, we make an outline of a representative set of

7.1 RELATED WORK AND TESTBEDS 77

proposed testbeds.

Testbeds Requiring Special Hardware Several testbeds requiring use of
special hardware have been proposed [KR01, JS04]. The common goal is the desire
to reduce the transmitting range of wireless radios to allow wireless nodes to be
placed within much closer proximity and thereby eliminate the requirement of a
large area for conducting experiments.

Kaba and Raichle’s “testbed on a desktop” [KR01] uses the ability to connect
external antennas to IEEE 802.11b wireless PC cards as a way to control radio
propagation. The communication range was reduced with the external antenna
instead of extending it. The signal was attenuated and low gain antennas were con-
nected to the wireless card hereby disconnecting the internal antenna. The wireless
card was furthermore shielded as a safety measure to prevent signal leakage from
the internal antenna. Kaba and Raichle experienced various radio propagation ef-
fects while conducting experiments. People or objects moving around influenced
network topology making it difficult to control the experiments. To be able to con-
trol this effect, a more advanced wired testbed was devised, which is to be created
with the use of splitter/combiners, additional attenuators, terminators, and cables,
wiring the wireless card antennas together. As an advanced configuration, a control
computer could control the attenuation levels.

Judd and Steenkiste [JS04] employs a similar approach as the above described
devised wired testbed by Kaba and Raichle, but relies on digital emulation signal
propagation using a field-programmable gate array (FPGA) Digital Signal Pro-
cessing (DSP) engine, local oscillators, and D/A and A/D boards. Signals coming
from wireless nodes are mixed, digitized, and fed to the FPGA-based DSP engine.
In the DSP engine, the signals are processed to emulate a physical environment.
Signals are then reconstructed, mixed, and finally sent to the wireless card antenna
port of the destination(s). Their prototype furthermore uses an emulation control
computer that based on a given scenario computes attenuation values for the wire-
less nodes which is then fed into the FPGA. The emulation controller is also used to
allow remote management of the wireless nodes using a separate control network.
This way, the controller can coordinate the traffic generated by the nodes.

In its basic setup, Kaba and Raichle’s approach has the advantage that it is
possible to move nodes around. However Judd and Steenkiste goes beyond their
more advanced devised setup as they have incorporated an emulation controller in
their setup that allows them to dynamically set attenuation levels and control traffic
generation on the wireless nodes.

The ATMA framework proposed by Ramachandran et al. [RABR05] seeks to
assist with the management of nodes in a wireless testbed by deploying a multi-hop
mesh network, which is used to monitor testbed nodes. The primary motivation for
using a mesh network alongside the testbed is to allow management traffic to be
transmitted out-of-band rather than in-band, i.e., where traffic is a portion of the
overall testbed traffic. For each node in the testbed, one additional management

78 EXPERIMENTAL EVALUATION

node is required. This only makes ATMA feasible when deploying a dedicated
testbed in places with absolutely no existing infrastructure, as the hardware cost
would be prohibitive if only conducting occasional experiments. With regards to
pre-existing infrastructure, if, for instance, Ethernet is available, out-of-band traf-
fic can be transmitted on a wired interface instead. Some management tools are
provided to control the testbed nodes among them a tool to filter packets.

Software Testbeds Zhang and Li developed MobiEmu [ZL02], an environ-
ment that emulates connectivity in a wireless network by filtering packets before
they traverse the operating system network stack and thus, before reaching the
routing module. The emulator is scenario driven accepting mobility scenario files
generated with CMU’s setdest tool, which is included in the ns-2 distribution. A
preview of the events recorded in the scenario file can be visualized in a GUI front-
end before using the scenario on the testbed nodes. MobiEmu uses a trivial propa-
gation model where any nodes falling within a 250 meter radio range of each other
can communicate, and any falling outside the range cannot. MobiEmu does not
emulate the physical and MAC layer, which makes it less suitable for performance
evaluations. Its stated goal is to aid in while developing and debugging MANET
routing protocol implementations.

For its functioning, MobiEmu employs a master controller component that con-
trols the time in the network. The current time is multicasted whenever the con-
troller detects a link break or link formation. When the slave controller component
running on the testbed nodes receives the time stamp, it updates the packet filters
based on the topology rules, by either adding or removing connectivity to a node.
Master/slave management communication should be transmitted on a control chan-
nel separate from the testbed network to avoid having control traffic in-band. The
wish to separate control traffic from data traffic is similar to that of ATMA. Fur-
thermore, the master controller node can only run the slave controller component
concurrently if a separate control network is used. MobiEmu does not support
traffic generation on testbed nodes, however, with some work and with some re-
strictions, traffic generation can be incorporated using home-made utilities.

The MANET Testbed Manager (MTM) tool proposed by Lent [Len05] is simi-
lar to MobiEmu, but extends its modes of operation as it also wishes to emulate the
physical layer. One goal is to be able to use the tool for realistic performance eval-
uations. MTM supports more advanced scenario definition in which obstacles that
obstruct both physical movement and wireless communication can be included.
MTM employs ray tracing support and obstacle modelling to model radio prop-
agation. Also included is a ground reflection model that trades-off accuracy for
execution speed, but also allows comparisons with experiments conducted with ns-
2. Lent lists diffraction, scattering, and small-scale fading effects on radio wave
propagation as future work. In addition, simulations of hidden and exposed ter-
minal problems, the effects of employing nodes with different transmission power,
and the use of different power levels based on whether transmitting using unicast

7.2 EXPERIMENTS 79

or broadcast are also listed as future work. The MTM tool looks promising as it
enables the use of an emulator tool for performance measurements. At time of
writing, a running version of the proposed MTM tool has not been released.

7.1.2 Summary

In this section, we have given an overview of previously performed practical ex-
perimental evaluations. An outline of a representative set of testbeds has also been
given. To summarize, we have listed the described experiments and the associated
measured metrics in table 7.1. A dash (–) in the third column of the table means
that no special software was used or that the authors did not specify the software
used.

Experiment by Measured metrics Software used

Maltz et al. UDP: Jitter, Message delivery ra-
tio, TCP throughput

macfilter (packet
filter)

Lundgren et al. virtual Mobility, Packet loss and
multi-hop setup

APE testbed

Gray et al. Message delivery ratio, Con-
trol packet overhead, Route effi-
ciency, End-to-end delay

–

Desilva and Das Route discovery latency, UDP
and TCP throughput

–

Kuladinithi et al. UDP: throughput, message de-
livery ratio, jitter, out-of-order
packets, TCP throughput,

–

Gupta et al. Route discovery latency, Control
packet overhead, End-to-end de-
lay, TCP throughput

–

Bae et al. UDP throughput, Message and
control packet delivery ratio,
Control packet overhead

–

Tschudin and Osipov Unfairness ratio, Download time ns-2 (simulation)

Table 7.1: The experiments described in this section.

7.2 Experiments

The experiments that we perform and the chosen test topologies are decided, based
on what has been done in prior experiments and experimental evaluations as out-
lined in the previous section. Practical limitations also play a role: what scenarios

80 EXPERIMENTAL EVALUATION

are practical when the tests are to be carried out by only one person. The set of
chosen experiments are:

• Route Discovery Latency

• UDP Throughput

• End-to-End Delay

• TCP Throughput

• Unfairness Ratio and Download Time (Beam star setup)

With regards to the chosen network topology, we have primarily used a testbed
setup with no mobility in which laptops placed in a chain where each laptop is only
able to communicate with its immediate neighbours. This setup was chosen as it
had previously been used in experiments conducted by Kuladinithi et al., Desilva
and Das, and Gupta et al. Furthermore, as we had only access to a limited number
of laptops, using this setup allowed us to experiment with the maximum possible
number of hops. A chain topology with six nodes is depicted in figure 7.1.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Figure 7.1: A five-hop chain topology.

To provide an additional basis of comparison we find it interesting to inves-
tigate how the proposed experiments perform using one of the evaluation testbed
described in section 7.1. With regards to selecting on the proposed testbeds, all
testbeds that rely on special hardware can be rejected as they generally require
custom tailored hardware and are not reusable outside the specific environments.
The options remaining are the software-based testbeds. The APE testbed is primar-
ily useful for large scale testing and the use of choreography scripts also requires
a lot of manpower. The only serious available testbed is MobiEmu by Zhang and
Li [ZL02]. Thus, MobiEmu has been used in our practical experiments as well as
the final testing and debugging process of our DYMO implementation.

Most of the experiments have been performed in two different setups. In the
first setup, the laptops are placed in hallways, properly physically distanced so
only the immediate neighbours of a node are able to transmit data to the node. This
setup is called the real setup. In the second setup, the laptops are all placed in
the same room, and the packet filtering capability of MobiEmu is used to obtain
the same effect as if the laptops were placed physically separated. We call this
setup the MobiEmu setup. Using MobiEmu in this fashion, for example, when a
node broadcast a DYMO RREQ message, the packet filter ensures that only the

7.2 EXPERIMENTS 81

neighbours are able to process the packet. At all the other nodes, the packet will be
dropped before it traverses the network stack.

The reason MobiEmu has not been used exclusively for the practical evalua-
tion experiments is that it cannot be used to obtain realistic numbers. When placed
within the same room, the wireless radios of the nodes are within the same colli-
sion domain and using link sensing, it determines when the other nodes send data
and consequently, no nodes are sending unicast traffic simultaneously. We are ex-
periencing no hidden terminal and exposed node problems.

7.2.1 Experimental Set Up

We briefly describe the hardware and software used for the experiments.

Hardware The testbed consisted of six computers. Of these, five were IBM Intel
Centrino ThinkPad laptops with a 1.5 GHz Pentium M processor and 512 MB of
RAM. Each ThinkPad had an internal Intel PRO/Wireless 2100 Network Connec-
tion mini PCI adapters for IEEE 802.11b wireless connectivity. The wireless card
uses the ipw2100 driver on Linux [Ipw06]. The last laptop was a Dell Inspiron with
a Pentium III 1.2 GHz processor and 512 MB of RAM. The laptop has a built-in
wireless network adapter using the Intersil Prism II chipset and using the orinoco
driver [Tou04].

In the experiments the wireless cards on the laptops was set to channel 9 to
avoid interference with the standard access points channels 1, 6, and 11. The trans-
mit rate for the cards was configured for automatic rate selection. Unintentionally,
the Request to Send (RTS) threshold setting was left in its default off configuration
which means that 802.11 RTS/CTS clearing procedure described in the beginning
of chapter 2, was not enabled during our experiments. Only after the experiments
had been conducted was it discovered that the RTS/CTS clearing procedure had
not been enabled.

The experiments were initially performed using all six laptops. However, it
quickly became clear that the throughput achieved when using all six laptops was
considerable lower compared to experiments where only the five IBM laptops were
used. As the Dell laptop was identified as the bottleneck, it was decided to also per-
form the experiments with only the five IBM ThinkPads to explore the maximum
obtainable throughput when using the same type of hardware. In the following,
when we present our result, in each specific example, we make clear whether all
six laptops or only the five IBM ThinkPads have been used.

Software On all laptops, the Ubuntu 5.10 Linux distribution was installed (Li-
nux kernel version 2.6.12). All nodes were configured with addresses in the 192.-
168.42.X sub-network. The Dell laptop was assigned the 192.168.42.50 address
and the IBM laptops were assigned addresses in the 192.168.42.51–55 range. When
using the Dell laptop, it was either origin or target of data.

82 EXPERIMENTAL EVALUATION

The Iperf network traffic generator [TQD+05] was used to generate UDP and
TCP traffic. A network traffic generator is a device, or program used to measure
various network properties, such as amount of available bandwidth, latency, and
network jitter. Other network traffic generators considered were D-ITG [ITG] and
netperf [Jon]. D-ITG has a number of sophisticated parameters to control the
generated traffic that would make it an obvious choice, but the flexibility makes
it cumbersome to generate traffic at a specific rate.

Gupta et al. [GWW04] also used netperf. The main feature of netperf is the
ability to measure networking performance, for example, by measuring bulk data
transfer performance, i.e., how fast can one system send data to another and how
fast can the other system receive it. However, it is not possible to request a specific
bit rate using netperf. Because of the inability or difficulty of specifying a bit rate,
both D-ITG and netperf were rejected in favour of Iperf.

Test parameters The DYMO routing protocol parameters used in the test were
all as defined in the DYMO specification revision 4 [CP06b]. One limitation in the
DYMO-AU implementation that will limit the comparability of our tests with oth-
ers, is the lack of a link sensing mechanism implementation, for example, Hello
messages. This means when we have found a route and as long the route is still ac-
tive, there is no routing protocol overhead on the link layer as no routing messages
are sent periodically.

7.3 Route Discovery Latency

The definition of route discovery latency we use is defined as the elapsed time
between the kernel module discovers that no route to the destination currently ex-
ists and when the kernel module is notified about the insertion of the route to the
target destination into the routing table. This is not the same definition as used
by Gupta et al. They use the following definition: “The route discovery time
is the elapsed time between sending an RREQ and receiving the corresponding
RREP.” [GWW04]. Desilva and Das merely note: “The route discovery latency
is the time to discover routes” [DD00]. The difference between our definition and
Gupta et al.’s definition depends on how long it takes for the processing that goes
before sending the RREQ and after receiving the RREP. To be directly compara-
ble to Gupta et al.’s results we would have to measure these processing times and
subtract them from the obtained results. We have not measured these processing
times, so our result are not directly comparable to Gupta et al.’s results, however,
we expect the processing times to be within 1–10 ms range so these are negligible
compared to measured route discovery latencies.

Before beginning route discovery, any cached link layer addresses are deleted
from the ARP cache to ensure that ARP requests are being sent at every attempt.
On intermediate nodes, the value of the Linux kernel parameter gc stale time has
been set to 15 seconds. This means that after 15 seconds entries in the ARP cache

7.3 ROUTE DISCOVERY LATENCY 83

will change state to stale, which in return means that the link layer address will
have to be verified [Bro03]. The interval between each route discovery attempt
was 35–40 seconds.

7.3.1 MobiEmu Setup

In this section, we present the route discovery latencies for the MobiEmu setup.
Route discovery latencies were measured in two different configurations. In the
first, route discovery latency was measured in a setup with no traffic in the net-
work. In the second, the route discovery latency was measured in a network with
simultaneous UDP traffic.

The experiments with no load were conducted with both five and six nodes. We
present the results for both setups separately as well as present a combined result
in which the average and standard deviation have been calculated based on the
measurements from both setups for a given X-hop experiment. For example, the
result for the combined 4-hop experiment was calculated based on the union of the
samples from the 4-hop experiment in the 5-node setup and the 4-hop experiment
in the 6-node setup. For the 5-hop experiment, the combined result is identical to
the 6-node result.

For each of the route lengths, at least 285 route discovery attempts were made,
however, the 3-hop experiment with 6 laptops was only repeated 51 times and the
4-hop experiment with 5 laptops was only repeated 33 times. The results are shown
in table 7.2.

Number
of hops

Average Latency (ms) Standard Deviation

5-node 6-node Combined 5-node 6-node Combined
1 49.3 137.3 87.1 130.8 82.6 120.7
2 112.1 736.8 313.8 72.4 800.9 543.6
3 214.9 492.6 255.4 80.4 196.1 143.7
4 361.8 404.9 400.6 96.7 188.3 181.6
5 − 823.7 823.7 − 230.1 230.1

Table 7.2: Average route discovery latencies for various numbers of hops
(with no load).

The average route discovery latency numbers for the five-node setup shows that
for each additional hop, the latency increases approximately 60–150 ms per hop.
The numbers for the six-node setup are less clear-cut. For the 2-hop experiment
the average latency is 736.8 ms, which is an increase of about 600 ms compared
to the 1-hop experiment, but the average latency for the 3-hop experiment is only
492.6 ms. However, the standard deviation for the 2-hop experiment data is much
larger compared to the other experiments denoting a lot of variability in the data,
the maximum route discovery delay being 3350 ms (the highest delay for the other
experiments is 1903 ms). When combining the two data sets from the two setups,

84 EXPERIMENTAL EVALUATION

we see that the route discovery latency increases as the hop count increases, but the
2-hop result from the six node setup influences the combined result showing route
discovery latency to be smaller over 3-hops than compared to 2-hops.

Table 7.3 shows the route discovery latency numbers obtained with simultane-
ously multi-hop UDP traffic. In this setup, the first node in the chain continuously
sends UDP packets (1470 bytes) to the last node in the chain at a rate of 0.6 Mbit/s.
Because of the UDP stream, a node will always know a route to its neighbour and
consequently no numbers have been obtained for the 1-hop setup. Furthermore, as
the first node sends UDP packets to the last node in the chain, no experiments have
been performed for the 5-hop setup. For this reason we only have numbers for 2,
3, and 4 hops. The experiment was repeated between 33 and 105 times.

Number
of hops

Average Latency (ms) Standard Deviation

2 406.4 634.8
3 927.2 1548.6
4 1161.5 968.0

Table 7.3: Average route discovery latencies for various of hops (with multi-
hop UDP).

Compared with the experiments without traffic (table 7.2), the latencies are
higher, especially for the 3-hop and 4-hop experiments. The standard deviations
are also higher, denoting a lot of variability in the data.

7.3.2 Real Setup

The numbers for the real setup were obtained while testing UDP performance, but
the test conditions were similar to the ones used with the MobiEmu setup, i.e.,
the interval between route discovery attempts was 35–40 seconds to allow route
table entries to expire from the DYMO daemon routing table. The gc stale time
(see the beginning of this section) kernel parameter was set to 15 seconds to allow
ARP cache entries to expire. The measurements were obtained when a node sends
the first UDP packet, which mean the numbers were obtained with no load in the
network. The results are shown in table 7.4 (unfortunately, no results were recorded
for the 1-hop experiment with five nodes).

Taking into account the results obtained in the MobiEmu setup, the results
presented in table 7.4 are as expected, except for the similar latency for the 3-hop
and 4-hop experiments with six nodes. As the hop count increases, so does the
route discovery latency.

If we compare the numbers to the one obtained by Desilva and Das [DD00],
their measured route discovery latencies are much lower than ours are. For exam-
ple, the measured average latency to discover a node 4 hops away is 14.14 ms. The
implementation used by Desilva and Das is, however, different from ours as it uses
the kernel modification approach and modifies the in-kernel ARP implementation

7.3 ROUTE DISCOVERY LATENCY 85

Number
of hops

Average Latency (ms) Standard Deviation

5-node 6-node Combined 5-node 6-node Combined
1 − 108.4 108.4 − 92.1 92.1
2 284.5 233.1 251.3 207.7 195.6 199.3
3 294.9 667.9 486.7 60.3 356.0 317.6
4 545.4 647.2 601.7 113.4 424.3 324.8
5 − 825.8 825.8 − 761.1 761.1

Table 7.4: Average route discovery latencies for various numbers of hops
(with no load).

to provide support for AODV control packets. Gupta et al. [GWW04] report an
average route discovery latency for a 4-hop setup of 613.3 ms using a modified
version of the AODV-UU implementation [Nor]. This is almost identical to our re-
sults. The reported numbers for 2-hop and 3-hop experiments were approximately
50 ms and 300 ms, respectively. With regards to the 2-hop experiment, this is about
200 ms better than our result and regarding the 3-hop experiment it matches our
experiment conducted in the 5-node setup, but is better than both our 6-node setup
result and our combined result.

7.3.3 Comparing MobiEmu and Real Setup Results

To give a better overview of the results, the route discovery latency numbers for
the MobiEmu setup and the real setup are depicted in figure 7.2. For the 1-hop ex-
periments and especially the 5-hop experiments, the latencies are almost identical.
The numbers for the 2-hop experiments are comparable. Looking at the results for
3-hop and 4-hop experiments, the MobiEmu setup has an advantage of about 200
ms. Now, if we assume that the result for the 2-hop experiment from the MobiEmu
setup is exceptional in that, if the experiment was repeated it would yield a number
lying between the 1-hop and 3-hop numbers, we would achieve a number below the
2-hop real setup. With this assumption, we conclude that route discovery latencies
in the MobiEmu setup are better than in the real setup.

86 EXPERIMENTAL EVALUATION

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5

R
ou

te
 D

is
co

ve
ry

 L
at

en
cy

 (m
s)

Number of hops

MobiEmu
Real

Figure 7.2: Average route discovery for the combined results for both Mobi-
Emu and the real setup.

7.4 UDP Performance

As previously described in section 7.2.1, the UDP performance experiments were
conducted with both five and six nodes. In each test, the first node in the chain
sends UDP packets at a constant rate to the last node in the chain. Which node
is the last in the chain depends on the number of hops in the current experiment.
For both the five-node setup and the six-node setup, the experiment was repeated
with various data rates ranging from 0.2 Mbit/s to typically 3 Mbit/s with 0.2 Mbit
intervals and additionally including the rates 0.5, 1.5, and 2.5 Mbit/s. In some
experiments, the upper limit on the offered load was extended from 3 Mbit/s to 7
Mbit/s when received throughput exceeded 3 Mbit/s. For each of the data rates,
the experiment ran for 60 seconds. The received throughput, a weighted jitter
sample, and the number of packets received out of sequence were recorded for each
second of the run. In the following, we only present the received throughput. The
experiments were done in both the MobiEmu and the real setup. In the real setup,
the experiments were conducted both with DYMO and with manually assigned
routes in which the routing table entries are added before beginning the experiment.
We also use the term static setup for this type of experiment or refer to the routes
as being static because the routes are fixed during the experiment. In addition, we
use the word static for the labels in the figures in this chapter.

Because of space considerations, we primarily present the experiments con-
ducted with six nodes in this section. The trends observed in the five-node setup
are similar to the six-node setup, but the numbers for received throughput for the
five-node setup at identical hop counts, are higher. This can be seen comparing
the two figures of figure 7.3, which shows the obtained received throughput for the
real world five-node setup and six-node setup, respectively. In the 5-node setup, the

7.4 UDP PERFORMANCE 87

maximum received throughput of the 1-hop experiment peaks just below 6 Mbit/s
while the corresponding 6-node experiment, the received throughput is a little more
than 3 Mbit/s at its highest.

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

R
ec

ei
ve

d
Th

ro
ug

hp
ut

 (M
bi

t/s
)

Offered Load (Mbit/s)

1-hop
2-hop
3-hop
4-hop

(a) Setup with five nodes.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6

R
ec

ei
ve

d
Th

ro
ug

hp
ut

 (M
bi

t/s
)

Offered Load (Mbit/s)

1-hop
2-hop
3-hop
4-hop
5-hop

(b) Setup with six nodes.

Figure 7.3: Offered load vs. Received throughput for the multi-hop UDP ex-
periment with five and six nodes.

Looking at figure 7.3b we see that the received throughput for the 1-hop exper-
iment drops quickly at around 2 Mbit/s offered load. The received throughput then
stabilizes at around 0.5 Mbit/s received throughput until 3.5 Mbit/s offered load
when the received throughput suddenly rises to 3 Mbit/s where it stays. It should
be noted that the results for the offered loads higher than 3 Mbit/s are obtained at
a different time in a separate experiment than the result for 3 Mbit/s and below.
We do not have an explanation for this sudden drop in throughput from around 2
Mbit/s offered load. Compared to the 1-hop results in the 5-node setup depicted in
figure 7.3a, we would expect the received throughput in the 6-node setup to con-
tinue to rise until stabilizing at around 3 Mbit/s or perhaps to stabilize just below
2 Mbit/s offered load where the drop occurs. Instead we observe the drop. Our

88 EXPERIMENTAL EVALUATION

guess is that some external entity changed the radio propagation conditions. At
some point, we observed that entering the office the sending laptop was placed in
resulted in reduced throughput. However, we do not know if a similar incident
takes effect in this specific experiment.

The results for received throughput from the above described experiments are
shown in figure 7.4 and figure 7.5. The result from the 2, 3, 4, and 5-hop experi-
ments are each shown in its own figure. The figures show the results for DYMO in
the MobiEmu setup and real setup as well as the result for the manually assigned
routes in the real setup.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

R
ec

ei
ve

d
T

hr
ou

gh
pu

t (
M

bi
t/s

)

Offered Load (Mbit/s)

MobiEmu 2-hop
Real 2-hop

Static 2-hop

(a)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 0 0.5 1 1.5 2 2.5 3

R
ec

ei
ve

d
Th

ro
ug

hp
ut

 (M
bi

t/s
)

Offered Load (Mbit/s)

MobiEmu 3-hop
Real 3-hop

Static 3-hop

(b)

Figure 7.4: Offered load vs. received throughput for the 2-hop and the 3-hop
experiments.

Looking at figure 7.4 and figure 7.5 we can see that especially for the 2-hop
and 3-hop experiments, depicted in figure 7.4a and 7.4b, the throughput received
for manually assigned routes is inferior compared to the results obtained when
using DYMO. The poor results obtained with static routes are puzzling and we do
not have a sensible explanation for the outcome. Time constraints unfortunately

7.5 END-TO-END DELAY 89

meant that we were not able to repeat the experiments. If we were to repeat the
experiments, we expect to see almost the same throughput when using manually
assigned routes and when using DYMO, as there is no reasonable explanation why
the static setup should perform worse than when using DYMO.

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 0 0.5 1 1.5 2 2.5 3

R
ec

ei
ve

d
Th

ro
ug

hp
ut

 (M
bi

t/s
)

Offered Load (Mbit/s)

MobiEmu 4-hop
Real 4-hop

Static 4-hop

(a)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 0 0.5 1 1.5 2 2.5 3

R
ec

ei
ve

d
Th

ro
ug

hp
ut

 (M
bi

t/s
)

Offered Load (Mbit/s)

MobiEmu 5 hop
Real 5 hop

Static 5-hop

(b)

Figure 7.5: Offered load vs. received throughput for the 4-hop and the 5-hop
experiments.

When comparing the results obtained for DYMO using the MobiEmu setup
and the real setup we see, as expected, that for the MobiEmu setup the maximum
received throughput are much better than for the real setup. As explained in sec-
tion 7.2, in the MobiEmu setup, the nodes are within the same collision domain
and does not suffer from the effects of the hidden terminal problem.

7.5 End-to-End Delay

We conducted an experiment to measure the round-trip time (RTT) in the multi-
hop ad hoc network. This experiment was carried out for different packet sizes

90 EXPERIMENTAL EVALUATION

and different hop counts on the chain topology. RTT was measured using the ping
utility with the adaptive option, which adjusts the interpacket interval according to
the RTT, so there should never be more than one unanswered ping request in the
network at a time.

The packet size used with the ping command was respectively the default value
(56 bytes) and 1016 bytes. This amounts to a total of 64 ICMP data bytes or 1024
ICMP data bytes as the length of the ICMP header is 8 bytes. A total of 1024
packets were transmitted.

Table 7.5 shows the observed RTT values in milliseconds. The results show the
expected trends: the RTT increases with packet size, and with the number of hops
traversed.

Number
of hops

Ping Size
(bytes)

Min Max Average Std. dev.

64 1.62 85.4 2.0 2.6
1

1024 4.99 88.8 5.2 2.6
64 3.26 438.0 5.0 13.6

2
1024 9.74 471.0 20.8 25.2
64 5.16 1574.0 50.1 82.6

3
1024 13.70 760.0 28.2 36.5
64 6.53 2145.0 12.0 75.8

4
1024 17.00 1275.0 28.1 45.9
64 8.24 2561.0 27.8 97.5

5
1024 20.20 1565.0 40.8 61.6

Table 7.5: Measured round-trip times (ms).

To better illustrate the differences in RTT when varying the packet size, we
also show the results in figure 7.6. If we first disregard the two 1-hop results and
second the 3-hop result with packet size of 64 bytes, which is substantially different
compared to the other numbers, the difference in RTT between a packet size of 64
bytes and a packet size of 1024 size is between 13 ms and 16 ms. The differences
found by Gupta et al. [GWW04] in the 2, 3, and 4-hop experiments are between 7
ms and 15 ms and thus comparable to our numbers.

To get an estimate of the round-trip time in a network with load, we performed
the same experiment while simultaneously downloading a file, using FTP, from
the same node we were pinging. The experiments were only conducted with the
default packet size and unfortunately, we are missing the results from the 2-hop
and 5-hop experiments. Furthermore, as we do not have the full log of the ping
output the results presented in table 7.6 are based on a different number of ping
packets. The number of packets is shown in the table.

Compared with the end-to-end delay numbers in an unloaded network, delays
for the 3-hop and 4-hop experiments are much higher and shows more variability
in the data denoted by the higher values of the standard deviation.

7.5 END-TO-END DELAY 91

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5

R
ou

nd
-T

rip
 T

im
e

(m
s)

Number of hops

64 bytes data
1024 bytes data

Figure 7.6: Measured round-trip times (ms) for 64 bytes and 1024 bytes ping
packets.

Number
of hops

Number
of packets

Min Max Average Std. dev.

1 217 6.3 432.0 176.5 49.6
3 79 106.0 1351.0 630.1 287.6
4 58 58.1 871.0 404.4 214.0

Table 7.6: Measured round-trip times with a simultaneous FTP session (ms).

92 EXPERIMENTAL EVALUATION

7.6 TCP Performance

In this section, we present the results obtained when testing TCP performance. As
described in the previous sections, the nodes were set up in a chain. Both the setup
with five nodes and the setup with six nodes were used. The experiments have
primarily been conducted in the real setup; we unfortunately only have numbers
from two experiments from the MobiEmu setup.

Two types of applications were used to measure TCP performance. In the first
experiment, the Iperf tool described in section 7.2.1 was used. In the second exper-
iment, FTP software was used. Both types of applications will test the maximum
achievable throughput. In addition, the same experiments were conducted with
the routes to the laptops being manually assigned instead of set up by the DYMO
implementation.

We first present the results obtained using the Iperf network traffic generator
in the real setup. In figure 7.7 the obtained results for both routes set up by the
DYMO implementation as well as manually assigned routes are shown. Results
are shown for both the five-node and the six-node setup.

 0

 1

 2

 3

 4

 5

 1 2 3 4 5

R
ec

ei
ve

d
Th

ro
ug

hp
ut

 (M
bi

t/s
)

Number of hops

Static 5-node
DYMO 5-node
Static 6-node

DYMO 6-node

Figure 7.7: TCP Throughput

As mentioned in section 7.2.1 and 7.4, the received throughput in the five-node
setup exceeded the throughput received when using all six nodes. As can be seen
in figure 7.7, this is also apparent in this experiment. However, at four hops the
difference between the results has almost disappeared. The evident disadvantage
of using the Dell laptop at longer routes vanished as the contention on the physical
layer becomes the major bottleneck.

The obtained results match the results reported by Gupta et al. [GWW04] and
Kuladinithi et al. [KUFG] in that larger hop count results in smaller throughput.
However, the TCP throughput number Gupta et al. reported for the 4-hop experi-
ment, 1.24 Mbit/s, is quite a bit better than our 0.3 Mbit/s. Kuladinithi et al. also

7.6 TCP PERFORMANCE 93

received higher throughput obtaining approximately 0.75 Mbit/s for a 4-hop exper-
iment. The general observation is that our measured throughput drops more rapidly
when the number of hops increase when compared to the results reported by Gupta
et al. and Kuladinithi et al.

As mentioned previously in section 7.1, Kuladinithi et al. found that the re-
ceived throughput using manually assigned routes was slightly lower than when
using an AODV implementation to set up routes. Their investigation showed that
this was caused by an increased number of duplicate TCP ACKs being generated,
which again was caused by smaller values of the TCP retransmission timer com-
pared to when using AODV implementation. More CPU time was used when run-
ning AODV and this affected the TCP retransmission timer that again had an in-
fluence on the received throughput. Compared to the experiments of Kuladinithi
et al., given our numbers, we cannot say anything about the relation between static
routes and DYMO assigned routes.

For the MobiEmu setup, we only have numbers for a 5-hop experiment per-
formed with the 6-node setup and the numbers for a 4-hop experiment from the
5-node setup. The results are shown in table 7.7 together with the number obtained
from the similar real setup experiments.

Number
of hops

Transfer rate (Mbit/s)

MobiEmu Real
4 1.300 0.300
5 1.053 0.302

Table 7.7: TCP throughput in the MobiEmu setup.

As we experienced with the UDP experiments, the received throughput achiev-
ed in the MobiEmu setup is superior to that of the real setup. For the 4-hop and
5-hop experiments, the received throughput in the real setup is 23 % and 28 % of
received throughput in the MobiEmu setup. The difference in throughput obtained
in a lab setup (MobiEmu) and a real setup, is comparable to results reported by
Maltz et al. [MBJ99] who in a two-hop TCP scenario measured a difference of 25
% in received throughput between an outdoor setup and an indoor lab setup.

7.6.1 FTP Performance

In this experiment, only the five-node setup was used. Node 2 (see figure 7.1)
acts as a server and the last node in the chain initiates a single FTP file transfer.
The experiment was repeated with different end-nodes, thus varying the number
of hops between one and four. The size of the file to transfer was 13 MB. To be
able to trace the transfer progress the tool tcpdump [SFR03] was used to capture
TCP packets. The experiments were conducted with both DYMO and manually
assigned routes.

94 EXPERIMENTAL EVALUATION

Figure 7.8 shows the progress at the destination node for the 1-hop and 2-hop
experiments for DYMO routes and static routes, respectively. Figure 7.9 shows the
similar results for the 3-hop and 4-hop experiments.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180 200

D
at

a
R

ec
ei

ve
d

(M
B

yt
es

)

Time (sec)

DYMO 1-hop
Static 1-hop

DYMO 2-hop
Static 2-hop

Figure 7.8: FTP Progress with time for 1-hop and 2-hop with DYMO and
static routes, respectively. The received bandwidth is 1923, 940, 531, and 635
Kbit/s.

As we experienced in the previous section, we cannot conclude anything with
regards to DYMO vs. manually assigned routes. In the 1-hop experiment, it takes
twice as long when using the manually assigned routes compared to when DYMO
is used. However, the progress for the manual case is uneven, leading to believe that
the transfer was in some way obstructed on the physical layer. With two hops, the
DYMO routed experiment begins with the fastest throughput, but is then outpaced
by the experiment with static routes that finishes approximately 15 seconds before.

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250

D
at

a
R

ec
ei

ve
d

(M
B

yt
es

)

Time (sec)

DYMO 3-hop
Static 3-hop

DYMO 4-hop
Static 4-hop

Figure 7.9: FTP Progress with time for 3-hop and 4-hop with DYMO and
static routes, respectively. The received bandwidth is 542, 531, 393, and 455
Kbit/s.

7.7 AD HOC HORIZON 95

In the 3-hop experiment, the DYMO experiment starts best, but after 50 sec-
onds the progress made in the manual experiment makes both transfers end at about
the same time. In the 4-hop experiment, the manual experiment ends 35–40 sec-
onds before the DYMO experiment because of better progress made at the begin-
ning of the transfer, but after about 150 seconds, the progress rate is about the same
in both experiments.

7.7 Ad Hoc Horizon

As mentioned in section 7.1, Tschudin and Osipov have investigated the usefulness
of TCP based network services running on top of IEEE 802.11 networks in which
routing is controlled by a MANET routing protocol. The metrics that are used to
measure usefulness are the no-progress ratio and the unfairness index. The no-
progress ratio is the relation between time intervals larger than three seconds in
which TCP does not make progress and the total duration of the TCP session.
The unfairness u among TCP sessions is defined as, where f is Jain’s fairness
index [JCH84],

f =
(
∑n

i=1 xi)2

n
∑n

i=1 x2
i

, u = 1− f

and xi is the received throughput of FTP session i. In our calculations, we have
used the size of the received files at end of experiments as a measure of the received
throughput. The fairness index is bounded between 0 and 1; if the bandwidth is
equally partitioned between the sessions, the index is 1. If k of the n sessions
receive equal bandwidth, and the others get none, the index is k/n. The fairness
index f is complemented to get an unfairness index u.

The experiments are performed in a set of topologies named beam star network
topologies. A central node acts as a server and this server is the origin of paths or
beams that end at nodes distanced an identical number of hops away. Three exam-
ples of beam start topologies are depicted in figure 7.10. To be able to distinguish
between the members of the beam star family we say an AxB beam star topology
has A beams and B number of hops from the central node to an end-node.

We have performed some experiments to evaluate the ad hoc horizon for a
small subset of the topologies tested by Tschudin and Osipov. The limiting factor
is the number of laptops available. For the experiments requiring seven nodes one
additional laptop was used: a Toshiba Satellite Pro laptop with a 1 GHz Pentium
III Mobile processor, 640 MB of RAM, and a D-Link DWL-660 PCMCIA 802.11b
wireless adapter. The tested topologies are primarily one-hop topologies. In ad-
dition, the topologies 2x3 and 2x2 have been tested. It was planned to also test
3x2, unfortunately, we missed this test during the experiments. The 2x1, 2x2, and
2x3 experiments were conducted in the real setup and the rest, the (3-6)x1 were
performed using the MobiEmu setup because of the difficulties of setting up these
beam star topologies indoors.

96 EXPERIMENTAL EVALUATION

0 541 2 3 6

0
5

4

1

2

3

6

0
5

4

1

2

3
6

Figure 7.10: The beam star network topologies, 2x3, 3x2, and 6x1.

7.7.1 Measuring TCP Unfairness

Compared to the setup of Tschudin and Osipov in which the central node initiate
the FTP session, in our setup, the end-nodes begin the FTP transfer. Each transfer
starts randomly within 5 seconds when the experiment begins. We do not have
any numbers for the no-progress ratio, but informal observations during the tests
did not reveal any noticeable stalls during the FTP transfer sessions. The results
obtained for the TCP unfairness are illustrated in figure 7.11.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4 5 6

TC
P

 u
nf

ai
rn

es
s

Number of beams

Xx1
2x2
2x3

Figure 7.11: TCP unfairness. The 2x1, 2x2, and 2x3 experiments have been
conducted in the real setup. The (3-6)x1 experiments have been conducted in
the MobiEmu setup.

To distinguish which experiments have been performed in the real setup and
which are performed in the MobiEmu setup, in the figure, the TCP unfairness

7.7 AD HOC HORIZON 97

number for the 2x1 experiment is not connected to rest of the one hop experiments,
which have been linked together with a line.

In the figure, we see that although the 2x1 experiment has also been conducted
in the real setup, the unfairness number is much lower than that of the 2x2 and
2x3 experiments. The number compares with the other one hop experiments that
were conducted in the MobiEmu setup. We have the following explanation for
this: When both FTP sessions have been initiated and are up and running, it is the
central node, the FTP server that transmits data to the two end-nodes. The data
transmission to the two nodes is therefore not simultaneously, but is coordinated
by the FTP server. Only the TCP ACK replies sent by the end-nodes are uncoordi-
nated and can collide at the central node (the hidden terminal problem). With the
assumption that the FTP data packets outnumber the TCP ACKs, this increases the
reliability of both links. Furthermore, the packets of the FTP sessions only travel
one hop, compared to the multiple hops of the 2x2 and 2x3 experiments.

Tschudin and Osipov ran simulation with an AODV implementation both with
and without link layer feedback. Tschudin and Osipov found that the no-progress
ratio for the 2x3 experiment was unexpectedly high even with link layer feedback
enabled. Analysing the two sessions they discovered the sessions would take turns
in starving each other. At one point, one of the sessions had a no-progress period
of 40 seconds. Despite the rather large no-progress ratio of the experiment, the
unfairness number was relatively low. Our observed unfairness for the 2x3 ex-
periment compares well with the one reported by Tschudin and Osipov for their
simulations with no link layer feedback enabled. Generally, our results confirm the
observations made by Tschudin and Osipov namely that TCP performance stated
in the terms of TCP unfairness starts degrading after two hops. With regards to
the number of beams, Tschudin and Osipov only report TCP unfairness up to four
beams with numbers matching ours. If the obtained numbers for the experiments
conducted in the MobiEmu setup are realistic, at least for the one hop experiments
adding additional beams, the TCP unfairness is to a large degree unaffected.

Given that most of the 1-hop topology experiments have been conducted in the
MobiEmu setup, it is interesting to estimate how the results compare to hypothet-
ical results obtained in the real setup. Using the 6x1 experiment as an example,
in the real setup, of the six end-nodes, an arbitrary end-node will be able to hear
all but one of the other end-nodes. In the MobiEmu setup, an end-node can hear
all the other end-nodes. As this is not a major difference, we conclude that the
results are comparable even given our experience with the TCP experiments and
the difference between the two setups described in section 7.2.

7.7.2 Measuring HTTP Download Times

For the HTTP experiments, only one route discovery cycle was performed, i.e.,
overall three RREQ were transmitted. The second RREQ is transmitted one sec-
ond after the first RREQ and the third RREQ is transmitted three seconds after
the first RREQ. After the third RREQ has been transmitted, the node waits four

98 EXPERIMENTAL EVALUATION

seconds before ending the route discovery cycle. Thus, if no RREP has been re-
ceived during this period, a total of seven seconds will have elapsed before the
route discovery cycle ends.

For the HTTP experiments with the three real topologies 2x1, 2x2, and 2x3, a
large part of the session ended without the requesting node ever finding a route to
the server node. The success ratios in percent were 57.58 %, 66.67 %, and 64.29 %,
respectively. To be able to present a number for these cases we have calculated the
average of the successful HTTP session and added 7 seconds, which is the delay
before unsuccessful route discovery session times out, as explained above. This
implicitly means we assume a success ratio of 100 % for the next route discovery
attempt, which of course is not realistic. So if more than one route discovery cycle
had been used, the download times might have been even higher.

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

H
TT

P
 D

ow
nl

oa
d

tim
e

(s
ec

)

Number of beams

Xx1
2x2
2x3

Figure 7.12: Download times for HTTP sessions competing with a single FTP
session in some of the beam star scenarios.

Once again to distinguish the experiments, the HTTP download time for the
2x1 experiment is not connected to rest of the one hop experiments that have been
linked together with a line.

Compared to the experiments measuring the TCP unfairness there is a large dif-
ference how the two 2x1 experiments compare. In the TCP unfairness experiments,
the 2x1 experiment compare very well to the (3-6)x1 experiments, i.e., the unfair-
ness is lower than for the (3-6)x1 experiments, even though the first is conducted
in the real setup and the second ones are conducted in the MobiEmu setup. This is
not the case for the HTTP download time experiments where the obtained time for
the 2x1 experiment is over 7 times higher than that for the (3-6)x1 experiments.

The difference between the two types of experiments is that when measuring
TCP unfairness, both transfers are started within a five second interval. In the
HTTP download experiment, when end-node 1 requests the web page, the FTP
session to end-node 2 is already established and running. Node 1 then has to com-

7.8 EXPERIENCES LEARNED 99

pete with the already running session. Additionally, as previously mentioned, in
the FTP experiment the central node acts as a coordinator of the FTP data pack-
ets, which means that only TCP ACK packets sent by end-nodes are uncoordinated
and are likely to collide at the central node. Thus, neither of the two nodes has
any advantage compared to the other. In the HTTP download experiment, even
though end-node 1 can sense when the central node occupies the link, it cannot
hear the other end-node and packets can collide at the central node rendering the
node unable to establish the HTTP session.

Comparing to the results of Tschudin and Osipov, for the small number of
experiments our results confirm that multi-hop topologies influence performance,
in this case download times.

7.8 Experiences Learned

Placing the laptops in an indoor setting to form five-hop chain topology proved
to be a major challenge. We experienced that even when laptops were placed in
opposite ends of long hallways, if there were no major obstacles they could still
successfully deliver packets to each other. On the other side, placing a laptop
a few meters into an office in the hallway or around corners could hamper the
transmission to a laptop not distanced far away. So it was difficult to position
laptops to build a chain topology; laptops had to be to carefully placed around
corners and in offices. One should expect to make several attempts before having
a reproducible and reliable setup. Similar experiences where reported by Kiess et
al. [KZTM05] and Desilva and Das [DD00]

Further to the difficulties of setting up laptops in a chain, we also experienced
what Lundgren et al. call communication gray zones [LNT02]. In a communica-
tion gray zone, a node experiences significant loss of unicast packets while having
little or no problem when receiving broadcast traffic. Lundgren et al. experienced
that nodes reported to be neighbours based on the exchange of Hello messages
(which are sent using broadcast) would fail to receive unicast data packets. One of
the major causes of communication gray zones is difference in transmission rates.
In IEEE 802.11b, broadcasting is done at a basic rate to ensure backwards compat-
ibility with IEEE 802.11 while data transmissions normally are sent at higher rates.
In IEEE 802.11b this up to 11 Mbit/s. The slower transmission rate for broadcast
traffic makes packets transmitted this way reach further.

The conclusion of the investigations of Lundgren et al. was that the communi-
cation gray zones “leads to invalid routing table entries for protocols that establish
their neighbor set using Hello beacons” [LNT02]. Our implementation does not
use Hello message, however, we experienced problems similar to Lundgren et al.
During our experiments with setting up the chain topology, we found that some-
times it was difficult to establish 2-hop routes if the two laptops distanced furthest
apart were too close to each other. With the communication gray zone problem in
mind, the following course of events were assumed and later validated by inspect-

100 EXPERIMENTAL EVALUATION

ing the routing daemon log file of the various nodes. The example is illustrated in
figure 7.13.

S
D

I

RREQ

Broadcast
range

RREP

Unicast
range

Figure 7.13: Communication gray zone problem when discovering routes.

When the node S initiates route discovery to find a route to node D, it broad-
casts an RREQ. The RREQ is received by both D and the intermediate node I.
When I receives the RREQ it appends its own address to the RREQ and resends
the RREQ. When D receives the RREQ it processes the packet and creates an
RREP to answer S as it is the target of the RREQ. The RREP message sent to
answer the RREQ from S is never received by S as it is not within the unicast
transmission range of D. When D immediately after receives the RREQ from I, it
discards the packet, as it has already processed an RREQ with the same sequence
number. Consequently, no route is ever established between S and D.

Besides the difference in transmission rate, Lundgren et al. also mention the
difference in packet size as a contributing factor to the communication gray zones
problem. In their setup, they observed problems with ordinary data packets as
opposed to Hello messages. Data packets are usually much larger than Hello mes-
sages, which have a length of 20 bytes and the probability of reception is decreased
as the packet is more likely to be damaged in transit. This observation was con-
firmed by Belding-Royer and Chakeres [CBR02] who did experiments to deter-
mine the influence of packet size on the packet delivery rate and found that small
packets are more likely to be received than large packets.

In our example, the packets either broadcasted or unicasted were identical in
size, so the size factor was not contributing to the communication gray zone effects
we experienced.

8
Conclusions and Future Work

In this chapter, we summarize and conclude this thesis and give directions for future
work.

8.1 Summary

The DYMO routing protocol is a newly proposed on-demand MANET routing
protocol. It is currently defined in an Internet-Draft in its sixth version and is thus,
work in progress.

We introduced MANETs, the envisioned application areas, and the challenges
imposed on MANET routing protocols. Routing in a MANET must be efficient
in a broad set of imaginable scenarios and the two categories of MANET routing
protocols were introduced; on-demand/reactive protocols and table-driven/proac-
tive protocols. We presented the DYMO routing protocol in detail and traced its
basic set of operations primarily to AODV, but also to DSR. In addition, two
proposed modified versions of the AODV protocol; AODVjr and AODV-PA, were
mentioned to have had impact on the DYMO protocol draft.

8.1.1 Implementation

Our literature survey has identified the challenges of implementing on-demand
MANET routing protocols caused by the routing architecture in current operating
systems. Because the challenges covered a broad problem domain, we identified
the ones pertinent for the further discussion. For example, one of the challenges
was to determine when to initiate route discovery. Further to the identification of
the implementation challenges we presented the following implementation tech-
niques to meet the challenges: the kernel modification approach, the snooping ap-
proach, and the netfilter approach. The emphasis was on solutions for Linux.

Based on the presented implementation approaches we developed an imple-
mentation of the DYMO routing protocol. We then described the design of the
implementation as well as the structure of the code. The implementation is based

101

102 CONCLUSIONS AND FUTURE WORK

on the netfilter approach in which user-defined code can be inserted into the Linux
network stack and alter the flow of packets. The implementation consists of a user
space daemon and an accompanying Linux kernel module and the implementation
is written in C and in the scripting language Lua. The kernel module implements
the netfilter functionality, active route management, and communication with the
user space daemon. We were interested in reducing the traffic exchanged between
the Linux kernel and our routing daemon while still partly keeping route timeouts
updated in the routing daemon and presented three methods to accomplish this
task. We were interested in a portable implementation and have isolated operating
system specific code.

Netfilter The use of the netfilter framework made it possible to develop an effi-
cient implementation of the DYMO protocol. Data packets are not required to be
copied from kernel space to user space and back which is necessary when using
the snooping approach. In addition, the use of netfilter and a Linux kernel module
makes it possible to avoid communication between user space and kernel space
when a route has been established and consequently eliminate routing overhead.

Compared to the snooping approach, the use of netfilter complicates the pro-
cess of porting our DYMO implementation to other operating systems because of
the required kernel module. Programming at the kernel level is always more dif-
ficult than at the user level. Furthermore, the kernel of other operating systems
may not provide the same functionality as netfilter which can make it necessary to
modify the user space routing daemon.

Lua The use of the Lua dynamic language made the implementation progress
process faster and easier. Lua provides a layer of abstraction above the one pro-
vided by the low-level C programming language which allowed us to implement
the DYMO protocol in fewer lines of code and in a garbage collected environment
with no need for the tedious and error-prone memory management required by C.
The use of Lua made the implementation less dependent on the binary representa-
tion of DYMO control messages which allowed us to update the implementation to
use a revised DYMO message layout without a total rewrite of the protocol logic
layer.

In many of our implementation design choices, we focused on performance.
Making the choice of writing parts of the implementation in Lua, we traded-off
performance for flexibility. While the DYMO protocol specification is still work in
progress, in this case we favour flexibility over performance. However, we made
sure the individual parts of the implementation can be rewritten in C, which adds
memory management complexity. For example, in C, we cannot simply delete an
object passed from Lua, as there can still exist references to the object in Lua. Thus,
while we regard the choice of Lua for the implementation as a success, the added
flexibility and the emphasis on language interchangeability added complexity to
the implementation.

8.1 SUMMARY 103

8.1.2 Experimental Evaluation

Experimental evaluation made in the literature suggested a set of practical exper-
iments to conduct. Because this thesis is a one-person-project, a simple chain
topology was chosen in nearly every case. Most experiments were conducted in a
setup in which laptop computers where placed properly distanced in hallways, as
well as in a setup using the evaluation testbed software MobiEmu. We performed
practical experiments to investigate:

1. Route Discovery Latency. In the real setup, the route discovery latency was
found to between around 50 ms for discovering a node 1 hop away and a little
more than 800 ms for a node 5 hops away. We compared the obtained num-
bers with results from similar experiments with AODV implementations and
found them to compare well to an experiment using an implementation re-
sembling our own. The MobiEmu setup experiment generally showed lower
latencies, but differences were less noticeable compared to the UDP and TCP
throughput experiments.

2. UDP Throughput. We tested UDP throughput in the real setup, the MobiEmu
setup, and in a setup with manually assigned routing table routes. We tested
received throughput vs. offered load. Generally offered load ranging from
0.2 Mbit/s to 3 Mbit/s was tested. In all three setups, the received throughput
would stabilize at a fixed level even with an increased offered load. We
found the received throughput in the MobiEmu setup to be three to four
times higher than that of the real and manual setup.

3. End-to-End Delay. We found the end-to-end delay to increase with the num-
ber of hops and with packet sizes as expected. We compared the results
to similar experiments and found that the difference in end-to-end delay in
experiments with various packet sizes was similar to our obtained results.

4. TCP Throughput and FTP Performance. As expected and in accordance with
previous results, in both experiments a larger hop count resulted in smaller
throughput. In the TCP throughput experiment, the throughput we received
for the 3-hop and 4-hop experiment were considerably lower when com-
pared to similar results. Both type of experiments were also conducted with
manually assigned routes. Because of inconclusive results, no conclusion
regarding the advantage of DYMO assigned routes or manually assigned
routes were made. Two of the TCP throughput experiments were conducted
in the MobiEmu setup. We found the received throughput of the correspond-
ing experiments in the real setup to be around 25 % of that of the MobiEmu
setup.

5. Unfairness Ratio and Download Time (beam star setup). Experiments in
the set of beam star topologies had previously only been conducted using

104 CONCLUSIONS AND FUTURE WORK

simulation. We conducted practical experiments and our obtained results
were found to be similar to the simulation results.

We became increasingly experienced while conducting practical experiments
but we only had access to laptop computers for a limited period. This means that
we did not have the opportunity to repeat some of the experiments that were incom-
plete or gave curious results, typically by deviating notably from results obtained
from comparable experiments.

8.2 Conclusions

In the following, we list the findings we have made because of our work.

8.2.1 Implementation

As a part of this thesis project, we explored the integrated use of a scripting lan-
guage in a C-based implementation and explored route table timeout strategies.
Our implementation has to a large degree been designed based on the experience
documented by others. By exploring implementation possibilities and describing
our design, we extend the possible ways with which a MANET on-demand routing
protocol can be implemented as we allow others to benefit from our experiences.
This in return provide for a more efficient implementation process and implemen-
tations that are more efficient.

As a part of the implementation process, we have made a review of the DYMO
Internet-Draft in order to implement it. As described in section 5.5.1, we found a
couple of errors and ambiguities.

With regards to the preparation of MANET Internet-Drafts, specifically the
DYMO Internet-Draft we have some remarks based on our experience in imple-
menting the DYMO specification. We find that it would be useful if the protocol
author produces a document containing annotations to go along with a main draft
document. Most specifications are terse by nature and it can sometimes be a chal-
lenge to interpret what a statement such as “the result of subtracting Route.SeqNum
from Node.SeqNum is less than or equal to zero” means in terms of the protocol
design decision. First, one has to rephrase it: “the sequence number of the DYMO
message is newer than (or identical to) the sequence number found at the node”.
Second, one must understand why this must be the case for the specific incident.
This is often easy, but not in all cases. We do not believe it would desirable to in-
clude annotations into the main draft document. From our point of view (someone
who implemented the DYMO protocol), one of the strengths of the DYMO specifi-
cation is that it is short and written with protocol implementers in mind. However,
as stated above, there is a trade-off between conciseness and the effort that must be
investigated to understand the specification in the first place.

8.3 FUTURE WORK AND RESEARCH 105

8.2.2 Experimental Evaluation

We conducted one of the first experimental evaluations of the DYMO protocol. The
results enable others to use our work as a baseline for comparison when performing
their own evaluation. The experiments provided practical evidence that throughput
in a MANET routed with DYMO is similar to throughput in a MANET routed with
AODV.

We compared results obtained in a emulated setup with corresponding real
world setup. The findings allow one to give an estimate on expected real world
throughput based on emulated results. This can be useful when real practical ex-
periments are impossible or infeasible because of some constraints or simply when
it is desirable to give an estimate of real world performance during the implemen-
tation process.

We performed the first practical experiments to estimate the ad hoc horizon
which is intended to capture the limit on the number of hops and number of nodes
when TCP based network services stop being useful in a MANET. Experiments
involving the ad hoc horizon are important because they try to take into account the
usage patterns of everyday use like web browsing with a concurrent long-standing
download session. Our small-scale experiments confirmed the limits previously
reported using simulation and furthermore show that experiments evaluating the
practically applicability of MANETs are important.

8.3 Future Work and Research

In this section, we give an outline of future work and research. First, we outline
future work with regards to the developed DYMO implementation. Among others,
we describe the work required to update the implementation to comply with the
sixth version of the Internet-Draft. Second, we outline future work with regards to
the experimental evaluation.

8.3.1 Implementation

In this section, we describe future work with regards to our DYMO implementa-
tion. We first describe which of the existing parts of the implementation that have
to be changed in order to update it to conform to the sixth version of the Internet-
Draft. We then describe some issues regarding performance of the implementation
and how to possibly improve it. Finally, we discuss portability and what is required
to port our DYMO implementation to Mac OS X.

Updating the Implementation to the DYMO Draft Version Six Our im-
plementation of the DYMO specification complies partly with the fourth version
of the draft. The limitations of our implementation compared to the fourth version
of the DYMO draft were listed in section 5.5.2. All the listed limitations will also

106 CONCLUSIONS AND FUTURE WORK

have to be implemented in order to comply with the sixth version of the DYMO
draft.

One of the listed limitations was the lack of support for the MANET Neigh-
borhood Discovery Protocol (NHDP) [CDD06b]. The support for NHDP is not
mandatory, but we predict support to be important in order for the DYMO-AU
implementation to be interoperable with current and future DYMO implementa-
tions. We also mention it here, as the implementation task is considerable: the
NHDP Internet-Draft is complex, introduces a set of new concepts not found in the
DYMO specification, and is longer than the DYMO Internet-Draft.

Aside from the task of supporting NHDP, the primary change between version
four and version six of the DYMO draft is that the sixth version has been updated
to use a newer version of the generalized MANET packet and message format,
specifically version two [CDDA06]. This version of the packet format sees a couple
of major updates compared to the packet format used in the fourth version of the
DYMO draft, which was version zero. This means that the parts of code dealing
with reading and writing of packet in this format must be updated.

The second major change that must be made to the implementation is the im-
plementation of timeouts. In the fourth version of the draft, two kinds of route table
entry timeouts are specified. The Valid Timeout specifies when a route table entry
becomes invalid and the Delete Timeout specifies when it should be deleted. In the
sixth version, the number of timeouts has been extended to five. They are

• Minimum Delete Timeout

• Maximum Delete Timeout

• New Information Timeout

• Recently Used Timeout

• Delete Information Timeout

We do not go into details of the semantics of the various timeouts, but just note
that the parts of the implementation dealing with timeouts will have to be rewritten.

Performance No parts of our implementation have at this time been tested with
respect to performance. For example, in section 6.1.1 we mentioned that the timer
queue had been implemented using a priority queue. As the practical experiments
we conducted involved a maximum of seven nodes, it is likely that a linear search
in an array is faster. However, following the common software advice of not opti-
mizing prematurely, we have not yet made any modifications to the working code.
Profiling the program will tell if any changes will have any noticeable effects on
performance.

In section 6.3, we presented three possible methods for updating the timeout
value in the routing daemon. The version that is currently implemented has the

8.3 FUTURE WORK AND RESEARCH 107

drawback that a message must be transferred from the kernel module to the routing
daemon whenever the node sends, receives, or forwards a packet.

Because of their advantages, it is clear that the two approaches that have not yet
been implemented warrant further investigations. We find the on-demand update
of timeouts proposal interesting because few messages cross the kernel/user space
boundary.

With regards to the implementation of the two other proposals we developed an
initial implementation of the on-demand approach described in section 6.3.3, albeit
without the delete timeout garbage collection timer task safety measure. Initial
experiments using 2-3 nodes showed it to function properly, however, we did not
perform any large-scale experiments to ensure conformance to the specification
and neither have we conducted any performance analysis.

Portability In section 5.5.3, we claimed that the DYMO-AU implementation
has been designed with portability in mind. As previously mentioned, the current
implementation only supports Linux. We now give a short outline of the practical
challenge of porting the implementation to another operating system, using Mac
OS X as an example.

Code using network sockets are to a large extent directly portable across any
POSIX compliant operating system. However, the various options that can be set
on open sockets with the setsockopt [SFR03] call differ between various sys-
tems. For example, it is necessary to know the source address and receiving inter-
face when processing a DYMO message. On BSD derived systems, the socket op-
tions IP RECVDSTADDR and IP RECVIF are available,1 while the IP PKTINFO
option is available on Linux and cover both cases. To allow for future version of the
daemon running on BSD derived systems, both methods have been implemented.

Because we have considered BSD derived systems during the implementation
process, the routing daemon is to a large degree already directly portable to Mac
OS X. The major challenge is the kernel module. On Mac OS X, a Network Kernel
Extension (NKE) [App05] is roughly the equivalent of a Linux Kernel Module.
It is necessary to write an NKE that implements the same functionality provided
by the Linux kernel module. Mac OS X has support for three kinds of network
filters, called Socket, IP, and Interface filters, respectively that can manipulate the
network traffic at various levels of the network protocol stack. A communication
interface similar to netlink sockets for interaction between kernel extensions and
users space applications is available. We still have to investigate how easily the
design of the Linux kernel module can be translated to a Mac OS X NKE and the
various network filters.

1FreeBSD, NetBSD, and OpenBSD are examples of BSD derived systems. Mac OS X contains
code from a BSD derived system.

108 CONCLUSIONS AND FUTURE WORK

8.3.2 Practical Evaluation

In section 7.2.1, we mentioned that the RTS/CTS clearing procedure was disabled
during our experiments. It could be interesting to repeat the conducted experiments
with the RTS/CTS clearing procedure enabled and compare the results with the
ones described in this thesis in order to examine the effect of the hidden terminal
problem.

Our DYMO implementation does not implement any form of neighbour discov-
ery. Consequently, when a route has been established there is no routing protocol
overhead on the link layer, i.e., no control messages are transmitted while a route
is still active. In could be interesting to repeat the conducted experiments with an
implementation supporting some sort of neighbour discovery, for example, NHDP,
in order to compare to the results described in this thesis.

Finally, in our evaluation, some of the experiments have not been conducted
for all the envisioned number of hops and scenarios. We think, it is of value to
repeat the chosen set of experiments to get a better basis of comparison.

Interoperability We have several times mentioned that independently devel-
oped implementation of a routing protocol defined in an IETF Internet-Draft must
be shown to be interoperable before the draft can be promoted to an RFC. Two
other implementations of the DYMO protocol are available. DYMOUM [RR] con-
forms to the fifth version of the draft [CP06c], however, it does not use the speci-
fied generalized MANET packet format, but the old packet format specified in the
DYMO draft prior to version four. Similar, the NIST DYMO implementation has
not been updated since the release of the second DYMO draft. This makes it so far
impossible to carry out an interoperability evaluation, and this is why no interoper-
ability evaluation has been conducted as part of this thesis. However, as described,
interoperability between implementations is important and interoperability experi-
ments should be conducted at some point.

A
Setting Linux Kernel Parameters

In order for the DYMO-AU implementation to work flawlessly on Linux, a cou-
ple of kernel parameters must be modified. As explained in section 6.2.2, kernel
parameters can be modified by writing to files in the /proc files system. The most
important variable is /proc/sys/net/ipv4/ip forward, which must be set to 1 to allow
the local host to forward IP packets and operate as a router.

Second, as the DYMO routing daemon is responsible for routing on interfaces
enabled for DYMO operation, no ICMP redirect messages should be sent or ac-
cepted by the local host. Thus, sending or acceptance of redirect messages are
disabled.

Finally, to have newly installed routes take effect immediately, the forward-
ing cache (see section 4.1) used by the Linux kernel forwarding function must be
flushed. However, there is a delay between a new route has been installed in the
kernel routing table and the forwarding cache is flushed. On the Ubuntu 5.10 Li-
nux distribution with the default settings, the minimum delay is 2 seconds and the
maximum delay is 10 seconds. These values have been set to 0.

109

110 SETTING LINUX KERNEL PARAMETERS

B
Contents of the CD-ROM

This report is accompanied by a CD-ROM including the source code of the DYMO-
AU implementation of the DYMO routing protocol. Instruction on how to build the
implementation can be found in the source code directory. This report can also be
found on the CD-ROM. The CD-ROM is organized in the following directories:

dymo-au/src/ contains the part of the implementation written in C

dymo-au/src/lua/ contains the part of the implementation written in Lua

dymo-au/src/linux/ contains the Linux specific code. The Linux kernel
module code is located in this directory

dymo-au/lua-5.0.3/ contains the Lua distribution. To ease the build pro-
cess it is included together with the DYMO-AU source code and can option-
ally be built and used together with DYMO-AU.

dymo-au/tolua++-1.0.92/ contains the source for the tool used to gener-
ate Lua-C glue code. To ease the build process it is included together with
the DYMO-AU and Lua source code and can optionally be built and used
together with DYMO-AU and the provided Lua distribution.

report/ contains this report.

articles/ contains unpublished articles referenced in this report.

111

112 CONTENTS OF THE CD-ROM

References

[Adh] Ad hoc routing protocol list. http://en.wikipedia.
org/wiki/Ad hoc routing protocol list. Last accessed
November 2006.

[AGSI02] Jeremie Allard, Paul Gonin, Minoo Singh, and Golden G. Richard III.
A user level framework for ad hoc routing. In LCN ’02: Proceedings
of the 27th Annual IEEE Conference on Local Computer Networks,
page 13, Washington, DC, USA, November 2002. IEEE.

[App05] Network kernel extension programming guide. http:
//developer.apple.com/documentation/Darwin/
Conceptual/NKEConceptual/, August 2005.

[Ara] ARAN main page. http://prisms.cs.umass.edu/arand/.
Last accessed December 2006.

[Bal] Pixel Ballistics. LuaObjCBridge. http://www.
pixelballistics.com/Software/LuaObjCBridge/
Contents.html. Last accessed September 2006.

[BEF+00] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heide-
mann, Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varad-
han, Ya Xu, and Haobo Yu. Advances in network simulation. Com-
puter, 33(5):59–67, 2000.

[BLG00] Sang Ho Bae, Sung-Ju Lee, and Mario Gerla. Unicast performance
analysis of the ODMRP in a mobile ad hoc network testbed. In Pro-
ceedings of the Ninth International Conference on Computer Commu-
nications and Networks, pages 148–153, Las Vegas, NV, USA, Octo-
ber 2000. IEEE.

[Bra96] Scott O. Bradner. The internet standards process – revision 3. RFC
2026, IETF, October 1996. rfc2026.txt.

[BRCJP04] Elizabeth Belding-Royer, Ian Chakeres, David Johnson, and Charlie
Perkins. DyMO – dynamic MANET on-demand routing protocol. In
Rebecca Bunch, editor, Proceedings of the Sixty-First Internet Engi-
neering Task Force, Washington, DC, USA, November 2004. IETF.

[Bro03] Martin A. Brown. Guide to IP layer network administration with li-
nux. http://linux-ip.net/, April 2003.

113

http://en.wikipedia.org/wiki/Ad_hoc_routing_protocol_list
http://en.wikipedia.org/wiki/Ad_hoc_routing_protocol_list
http://developer.apple.com/documentation/Darwin/Conceptual/NKEConceptual/
http://developer.apple.com/documentation/Darwin/Conceptual/NKEConceptual/
http://developer.apple.com/documentation/Darwin/Conceptual/NKEConceptual/
http://prisms.cs.umass.edu/arand/
http://www.pixelballistics.com/Software/LuaObjCBridge/Contents.html
http://www.pixelballistics.com/Software/LuaObjCBridge/Contents.html
http://www.pixelballistics.com/Software/LuaObjCBridge/Contents.html
http://linux-ip.net/

114 REFERENCES

[Byt] Bytecode compiler benchmark. http://unigine.com/
products/unigine v0.32/compiler benchmark. Last
accessed September 2006.

[Car03] Christopher Cardé. An interaction model for decoupled
implementation and evaluation of mobile ad-hoc rout-
ing protocols. http://www.carde.com/static/
documents/research/decoupled-ad-hoc-routing/
decoupled-ad-hoc-routing-s03-carde.pdf, 2003.

[CBR02] Ian D. Chakeres and Elizabeth M. Belding-Royer. The utility of hello
messages for determining link connectivity. In Proceedings of the 5th
International Symposium of Wireless Personal Multimedia Communi-
cations (WPMC) 2002, volume 2, pages 504–508, Honolulu, Hawaii,
October 2002.

[CBR04] Ian D. Chakeres and Elizabeth M. Belding-Royer. AODV routing
protocol implementation design. In ICDCSW ’04: Proceedings of
the 24th International Conference on Distributed Computing Systems
Workshops - W7: EC (ICDCSW’04), pages 698–703, Washington,
DC, USA, 2004. IEEE.

[CBR05] Ian D. Chakeres and Elizabeth M. Belding-Royer. AODV implemen-
tation design and performance evaluation. International Journal of
Wireless and Mobile Computing (IJWMC), 2/3, 2005.

[CDD06a] Thomas Clausen, Christopher Dearlove, and Justin Dean. General-
ized MANET packet/message format. Internet-Draft Version 0, IETF,
February 2006. draft-ietf-manet-packetbb-00.txt, (Work in Progress).

[CDD06b] Thomas Clausen, Christopher Dearlove, and Justin Dean. The
MANET neighborhood discovery protocol (nhdp). Internet-Draft
Version 0, IETF, June 2006. draft-ietf-manet-nhdp-00.txt, (Work in
Progress).

[CDDA06] Thomas Clausen, Christopher Dearlove, Justin Dean, and Cedric Ad-
jih. Generalized MANET packet/message format. Internet-Draft Ver-
sion 2, IETF, July 2006. draft-ietf-manet-packetbb-02.txt, (Work in
Progress).

[CJ03] Thomas Clausen and Philippe Jacquet. Optimized link state routing
protocol (OLSR). RFC 3626, IETF, October 2003. rfc3626.txt.

[CJ06] Thomas Clausen and Philippe Jacquet. The Optimized Link State
Routing Protocol version 2. Internet-Draft Version 2, IETF, June
2006. draft-ietf-manet-olsrv2-02.txt, (Work in Progress).

http://unigine.com/products/unigine_v0.32/compiler_benchmark
http://unigine.com/products/unigine_v0.32/compiler_benchmark
http://www.carde.com/static/documents/research/decoupled-ad-hoc-routing/decoupled-ad-hoc-routing-s03-carde.pdf
http://www.carde.com/static/documents/research/decoupled-ad-hoc-routing/decoupled-ad-hoc-routing-s03-carde.pdf
http://www.carde.com/static/documents/research/decoupled-ad-hoc-routing/decoupled-ad-hoc-routing-s03-carde.pdf

REFERENCES 115

[CJWK02] Kwan-Wu Chin, John Judge, Aidan Williams, and Roger Kermode.
Implementation experience with MANET routing protocols. ACM
SIGCOMM Computer Communication Review, 32(5):49–59, Novem-
ber 2002.

[CKB02] Ian D. Chakeres and Luke Klein-Berndt. AODVjr, AODV simpli-
fied. ACM SIGMOBILE Mobile Computing Communications Review,
6(3):100–101, July 2002.

[CKG+] Patrick Charles, Dave Knoester, John Guthrie, Justin Haddad, and
Steve Bitteker. Network packet capture facility for java. http:
//jpcap.sourceforge.net/.

[CM03] Carlos Miguel Tavares Calafate and Pietro Manzoni. A multi-platform
programming interface for protocol development. In Eleventh Eu-
romicro Conference on Parallel, Distributed and Network-Based Pro-
cessing (Euro-PDP’03), page 243, February 2003.

[Com00] Douglas E. Comer. Internetworking with TCP/IP: Principles, Proto-
cols, and Architecture. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, fourth edition, 2000.

[CP06a] Ian D. Chakeres and Charles E. Perkins. Dynamic MANET on-
demand (DYMO) routing protocol. Internet-Draft Version 6, IETF,
October 2006. draft-ietf-manet-dymo-06.txt, (Work in Progress).

[CP06b] Ian D. Chakeres and Charles E. Perkins. Dynamic MANET on-
demand (DYMO) routing protocol. Internet-Draft Version 4, IETF,
March 2006. draft-ietf-manet-dymo-04.txt, (Work in Progress).

[CP06c] Ian D. Chakeres and Charles E. Perkins. Dynamic MANET on-
demand (DYMO) routing protocol. Internet-Draft Version 5, IETF,
June 2006. draft-ietf-manet-dymo-05.txt, (Work in Progress).

[DD00] Saman Desilva and Samir R. Das. Experimental evaluation of a wire-
less ad hoc network. In Proceedings of the 9th Int. Conf. on Computer
Communications and Networks (IC3N), pages 528–534, Las Vegas,
NV, USA, October 2000.

[Fow03] Martin Fowler. UML Distilled: A Brief Guide to the Standard Ob-
ject Modeling Language. Addison Wesley Professional, third edition,
2003.

[Gas02] Matthew S. Gast. 802.11 Wireless Networks: The Definitive Guide.
O’Reilly, first edition, 2002.

[GBRP03] Sumit Gwalani, Elizabeth M. Belding-Royer, and Charles E. Perkins.
AODV-PA: AODV with path accumulation. In IEEE International

http://jpcap.sourceforge.net/
http://jpcap.sourceforge.net/

116 REFERENCES

Conference on Communications (ICC’ 03), volume 1, pages 527–531,
Anchorage, Alaska, May 2003. IEEE.

[GKN+04] Robert S. Gray, David Kotz, Calvin Newport, Nikita Dubrovsky,
Aaron Fiske, Jason Liu, Christopher Masone, Susan McGrath, and
Yougu Yuan. Outdoor experimental comparison of four ad hoc routing
algorithms. In MSWiM ’04: Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wireless and mo-
bile systems, pages 220–229, New York, NY, USA, 2004. ACM Press.

[Glo06] Wolfram Gloger. Wolfram gloger’s malloc homepage. http://
www.malloc.de/en/, June 2006.

[GWW04] Abhinav Gupta, Ian Wormsbecker, and Carey Williamson. Experi-
mental evaluation of TCP performance in multi-hop wireless ad hoc
networks. In Proceedings of the The IEEE Computer Society’s 12th
Annual International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunications Systems (MASCOTS’04),
pages 3–11, Washington, DC, USA, October 2004. IEEE.

[He05] Kevin He. Why and how to use netlink socket. Linux Journal,
2005(130):11, 2005.

[IdFC03] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar
Celes. Lua 5.0 Reference Manual. Tecgraf, PUC-Rio, 2003.

[Ier03] Roberto Ierusalimschy. Programming in Lua. Roberto Ierusalimschy,
Rio de Janeiro, first edition, 2003.

[Ipw06] Intel R© pro/wireless 2100 driver for linux. http://ipw2100.
sourceforge.net/, September 2006.

[ITG] D-ITG, distributed internet traffic generator. www.grid.unina.
it/software/ITG.

[JCH84] Rajandra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A quan-
titative measure of fairness and discrimination for resource allocation
in shared computer systems. Technical Report TR-301, DEC, Septem-
ber 1984.

[JMH04] David B. Johnson, David A. Maltz, and Yih-Chun Hu. The dynamic
source routing protocol for mobile ad hoc networks (DSR). Internet-
Draft Version 10, IETF, July 2004. draft-ietf-manet-dsr-10, (Work in
Progress).

[Jon] Rick Jones. Netperf homepage. http://www.netperf.org/
netperf/NetperfPage.html. Last accessed November 2006.

http://www.malloc.de/en/
http://www.malloc.de/en/
http://ipw2100.sourceforge.net/
http://ipw2100.sourceforge.net/
www.grid.unina.it/software/ITG
www.grid.unina.it/software/ITG
http://www.netperf.org/netperf/NetperfPage.html
http://www.netperf.org/netperf/NetperfPage.html

REFERENCES 117

[JS04] Glenn Judd and Peter Steenkiste. Repeatable and realistic wireless
experimentation through physical emulation. SIGCOMM Computer
Communication Review, 34(1):63–68, 2004.

[KAA06] A. Karygiannis, E. Antonakakis, and A. Apostolopoulos. Host-based
network monitoring tools for MANETs. In PE-WASUN ’06: Proceed-
ings of the 3rd ACM international workshop on Performance evalua-
tion of wireless ad hoc, sensor and ubiquitous networks, pages 153–
157, New York, NY, USA, 2006. ACM Press.

[KBa] Luke Klein-Berndt. Kernel AODV. http://w3.antd.nist.
gov/wctg/aodv kernel.

[KBb] Luke Klein-Berndt. NIST dymo. http://www-x.antd.nist.
gov/twiki/bin/view/ANTDProjects/NistDymo. Last ac-
cessed September 2006.

[KNG+04] David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu Yuan,
and Chip Elliott. Experimental evaluation of wireless simulation as-
sumptions. In MSWiM ’04: Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wireless and mo-
bile systems, pages 78–82, New York, NY, USA, 2004. ACM Press.

[KNSW02] Frank Kargl, Jürgen Nagler, Stefan Schlott, and Michael Weber.
Ein framework für MANET routing protokolle. In Proceedings
of WMAN’02, Ulm, Germany, March 2002. In German. An en-
glish version can be found at: http://medien.informatik.
uni-ulm.de/∼frank/research/manetframework.pdf.

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming.
Addison Wesley, 1999.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, second edition, 1988.

[KR01] James T. Kaba and Douglas R. Raichle. Testbed on a desktop: Strate-
gies and techniques to support multi-hop MANET routing protocol
development. In MobiHoc ’01: Proceedings of the 2nd ACM interna-
tional symposium on Mobile ad hoc networking & computing, pages
164–172, New York, NY, USA, October 2001. ACM Press.

[KU03] Koojana Kuladinithi and A. Udugama. JAdhoc system design manual.
Technical report, ComNets, IKOM, University of Bremen, July 2003.

[KUFG] Koojana Kuladinithi, Asanga Udugama, Nikolaus A. Fikouras, and
Carmelita Görg. Experimental performance evaluation of AODV im-
plementations in static environments. http://www.comnets.
uni-bremen.de/∼koo/AODV-Perf-ComNets.pdf.

http://w3.antd.nist.gov/wctg/aodv_kernel
http://w3.antd.nist.gov/wctg/aodv_kernel
http://www-x.antd.nist.gov/twiki/bin/view/ANTDProjects/NistDymo
http://www-x.antd.nist.gov/twiki/bin/view/ANTDProjects/NistDymo
http://medien.informatik.uni-ulm.de/~frank/research/manetframework.pdf
http://medien.informatik.uni-ulm.de/~frank/research/manetframework.pdf
http://www.comnets.uni-bremen.de/~koo/AODV-Perf-ComNets.pdf
http://www.comnets.uni-bremen.de/~koo/AODV-Perf-ComNets.pdf

118 REFERENCES

[Kul05] Koojana Kuladinithi. MANET implementations. http://www.
comnets.uni-bremen.de/∼koo/manet-impl.html, Jan-
uary 2005.

[KZG03] Vikas Kawadia, Yongguang Zhang, and Binita Gupta. System services
for ad-hoc routing: Architecture, implementation and experiences. In
Proceedings of the 1st International Conference on Mobile Systems,
Applications, and Services (MobiSys), pages 99–112, San Francisco,
CA, USA, May 2003.

[KZTM05] Wolfgang Kieß, Stephan Zalewski, Andreas Tarp, and Martin Mauve.
Thoughts on mobile ad-hoc network testbeds. In Proceedings of IEEE
ICPS Workshop on Multi-hop Ad hoc Networks: from theory to reality,
pages 93–100, July 2005.

[Lea00] Doug Lea. A memory allocator. http://g.oswego.edu/dl/
html/malloc.html, April 2000.

[Len05] Ricardo Lent. A testbed validation tool for MANET implementations.
In 13th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, pages 381–
388. IEEE, September 2005.

[Les] Antony Lesuisse. Airnet, wireless network. http:
//web.archive.org/web/20050308200036/http:
//airnet.org/. Original site is now unavailable. The link is a
cached archive. Last accessed September 2006.

[LLN+01] Henrik Lundgren, David Lundberg, Johan Nielsen, Erik Nordström,
and Christian Tschudin. A large-scale testbed for reproducible ad
hoc protocol evaluations. Technical Report 2001-029, IT Department,
Uppsala University, November 2001.

[LNT02] Henrik Lundgren, Erik Nordström, and Christian Tschudin. Coping
with communication gray zones in IEEE 802.11b based ad hoc net-
works. In WOWMOM ’02: Proceedings of the 5th ACM international
workshop on Wireless mobile multimedia, pages 49–55, New York,
NY, USA, 2002. ACM Press.

[Mal98] Gary Malkin. RIP version 2. RFC 2453, IETF, November 1998.
rfc2453.txt.

[MANa] Mobile ad-hoc networks (manet) charter. http://www.ietf.
org/html.charters/manet-charter.html. Last accessed
November 2006.

[Manb] Ariel Manzur. tolua++. http://www.codenix.com/∼tolua.
Last accessed September 2006.

http://www.comnets.uni-bremen.de/~koo/manet-impl.html
http://www.comnets.uni-bremen.de/~koo/manet-impl.html
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://web.archive.org/web/20050308200036/http://airnet.org/
http://web.archive.org/web/20050308200036/http://airnet.org/
http://web.archive.org/web/20050308200036/http://airnet.org/
http://www.ietf.org/html.charters/manet-charter.html
http://www.ietf.org/html.charters/manet-charter.html
http://www.codenix.com/~tolua

REFERENCES 119

[MBJ99] David A. Maltz, Josh Broch, and David B. Johnson. Experiences
designing and building a multi-hop wireless ad hoc network test-
bed. Technical Report CMU-CS-99-116, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, Pennsylvania, March
1999.

[MBJ00] David A. Maltz, Josh Broch, and David B. Johnson. Quantitative
lessons from a full-scale multi-hop wireless ad hoc network testbed. In
Proceedings of the IEEE Wireless Communications and Networking
Conference, volume 3, pages 992–997, Chicago, IL, USA, September
2000. IEEE.

[MBR+] James Morris, Marc Boucher, Rusty Russell, Harald Welte, Jozsef
Kadlecsik, Martin Josefsson, Patrick McHardy, and Yasuyuki Koza-
kai. Netfilter - firewalling, NAT, and packet mangling for linux.
http://netfilter.org. Last accessed September 2006.

[Moy98] John Moy. OSPF version 2. RFC 2328, IETF, April 1998. rfc2328.txt.

[MS04] Neil Matthew and Richard Stones. Beginning Linux Programming.
Wiley, third edition, 2004.

[Net99] Netlink(7), April 1999. Linux Programmer’s Manual.

[NGL05] Erik Nordström, Per Gunningberg, and Henrik Lundgren. A test-
bed and methodology for experimental evaluation of wireless mobile
ad hoc networks. In Proceedings of the First International Confer-
ence on Testbeds and Research Infrastructures for the DEvelopment
of NeTworks and COMmunities (TRIDENTCOM’05), pages 100–109,
Washington, DC, USA, 2005. IEEE.

[Nie] Gustavo Niemeyer. Lunatic-Python. http://labix.org/
lunatic-python. Last accessed September 2006.

[Nor] Erik Nordström. AODV-UU. http://core.it.uu.se/core/
index.php/AODV-UU. Last accessed December 2006.

[OPN] OPNET. http://www.opnet.com. Last accessed September
2006.

[OTL04] Richard G. Ogier, Fred L. Templin, and Mark G. Lewis. Topology
dissemination based on reverse-path forwarding (TBRPF). RFC 3684,
IETF, February 2004. rfc3684.txt.

[Pal06] Mike Pall. The LuaJIT project. http://luajit.luaforge.
net/index.html, 2006.

http://netfilter.org
http://labix.org/lunatic-python
http://labix.org/lunatic-python
http://core.it.uu.se/core/index.php/AODV-UU
http://core.it.uu.se/core/index.php/AODV-UU
http://www.opnet.com
http://luajit.luaforge.net/index.html
http://luajit.luaforge.net/index.html

120 REFERENCES

[PB94] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile computers. In
SIGCOMM ’94: Proceedings of the conference on Communications
architectures, protocols and applications, pages 234–244, New York,
NY, USA, 1994. ACM Press.

[PBRD03] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das.
Ad hoc on-demand distance vector (AODV) routing. RFC 3561, IETF,
July 2003. rfc356.txt.

[PBRDC] Charles Perkins, Elizabeth Belding-Royer, Samir Das, and Ian Chak-
eres. AODV homepage. http://moment.cs.ucsb.edu/
AODV/aodv.html#DYMO.

[Pro] Kepler Project. LuaJava, a script tool for java. http://www.
keplerproject.org/luajava/. Last accessed September
2006.

[RABR05] Krishna N. Ramachandran, Kevin C. Almeroth, and Elizabeth M.
Belding-Royer. A framework for the management of large-scale wire-
less network testbeds. In Proceedings of the 1st workshop on Wireless
Networks Measurements (WinMee), April 2005.

[RGK+04] Miguel Rio, Mathieu Goutelle, Tom Kelly, Richard Hughes-Jones,
Jean-Philippe Martin-Flatin, and Yee-Ting Li. A map of the network-
ing code in linux kernel 2.4.20. Technical Report DataTAG-2004-1,
FP5/IST DataTAG Project, Research & Technological Development
for a TransAtlantic Grid, March 2004.

[RP00] Elizabeth M. Royer and Charles E. Perkins. An implementation study
of the AODV routing protocol. In Proceedings of the IEEE Wireless
Communications and Networking Conference, volume 3, pages 1003–
1008, Chicago, IL, USA, September 2000. IEEE.

[RR] Fransico J. Ros and Pedro M. Ruiz. DYMOUM. http://
masimum.dif.um.es/?Software:DYMOUM. Last accessed
December 2006.

[Rus] Rusty Russell. Linux netfilter hacking howto: Information for
programmers. http://netfilter.org/documentation/
HOWTO/netfilter-hacking-HOWTO.html. Last accessed
September 2006.

[SFR03] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. The Sockets
Networking API, volume 1 of UNIX Network Programming. Addison
Wesley Professional, third edition, 2003.

http://moment.cs.ucsb.edu/AODV/aodv.html#DYMO
http://moment.cs.ucsb.edu/AODV/aodv.html#DYMO
http://www.keplerproject.org/luajava/
http://www.keplerproject.org/luajava/
http://masimum.dif.um.es/?Software:DYMOUM
http://masimum.dif.um.es/?Software:DYMOUM
http://netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html
http://netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html

REFERENCES 121

[Sho] The computer language shootout benchmarks. http:
//shootout.alioth.debian.org. Last accessed September
2006.

[TO04] Christian Tschudin and Evgeny Osipov. Estimating the ad hoc horizon
for TCP over IEEE 802.11 networks. In Proceedings of the 3rd Annual
Mediterranean Ad Hoc Networking Work- shop, Med-Hoc-Net, pages
255–262, Bodrum, Turkey, June 2004.

[Tou04] Jean Tourrilhes. The devices, the drivers. http://www.hpl.
hp.com/personal/Jean Tourrilhes/Linux/Linux.
Wireless.drivers.802.11b.html, August 2004.

[TQD+05] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs.
Iperf – the TCP/UDP bandwith measurement tool. http://dast.
nlanr.net/Projects/Iperf/, May 2005.

[Wes03] David West. An implementation and evaluation of the ad-hoc on-
demand distance vector routing protocol for windows CE. Master’s
thesis, University of Dublin, September 2003.

[Wib02] Björn Wiberg. Porting AODV-UU implementation to ns-2 and en-
abling trace-based simulation. Master’s thesis, Uppsala University,
December 2002.

[ZL02] Yongguang Zhang and Wei Li. An integrated environment for test-
ing mobile ad-hoc networks. In MobiHoc ’02: Proceedings of the
3rd ACM international symposium on Mobile ad hoc networking &
computing, pages 104–111, New York, NY, USA, 2002. ACM Press.

http://shootout.alioth.debian.org
http://shootout.alioth.debian.org
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.802.11b.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.802.11b.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.802.11b.html
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/

	Abstract
	Danish Summary
	Acknowledgements
	Contents
	Introduction
	Mobile Ad Hoc Networks
	The DYMO Routing Protocol
	Evaluation of MANET Routing Protocols
	Evaluation of MANET Routing Protocols using Network Simulators
	Experimental Evaluation of the DYMO Routing Protocol

	Aim of Thesis
	Methods
	Thesis Outline

	Mobile Ad Hoc Networks and Routing Protocols
	Application of MANETs
	Conventional Wired Network Routing Protocols
	Distance Vector Routing
	Link State Routing

	MANET Routing protocols
	On-Demand Routing Protocols
	Table-Driven Routing Protocols
	MANET Routing Protocol Challenges

	The AODV Routing Protocol
	Route Discovery
	Route Maintenance

	The DSR Protocol
	Basic Route Discovery
	Route Maintenance
	Route Discovery Optimizations
	Route Maintenance Optimizations

	The OLSR Protocol
	Neighbour Discovery

	The DYMO Routing Protocol
	Protocol Overview
	Route Discovery
	Route Maintenance
	Generalized Packet and Message Format
	The Message Header
	The Message Body

	Implementation Approach
	Challenges
	Identifying the On-demand Ad Hoc Routing Challenges

	Implementation Techniques on Linux
	Kernel Modification
	Snooping
	Netfilter
	Additional Implementation Issues

	DYMO-AU Design and Implementation Overview
	Design Approach
	Implementation Overview
	Packet Queue
	Expiry List
	Netlink Communication
	Netfilter Hooks

	The Lua Programming Language
	User Space-Kernel Space Interaction
	Message Types
	Communication Interface in the Daemon
	Route Discovery Example
	RERR Processing Example

	Discussion
	Errors in the DYMO Specification
	Limitations of the DYMO-AU implementation
	Portability

	DYMO-AU Design and Implementation Details
	The User Space Routing Daemon
	Timer Queue
	select I/O Multiplexing Main Loop
	DYMO and Control Packet Dispatching
	DYMO Message Processing
	Routing Message Processing
	Route Discovery
	Route Error Processing
	Routing Table

	The Kernel Module
	Packet Queue
	Expiry List
	Netlink Communication
	Netfilter Hooks

	Updating Route Timeouts
	Packet-triggered Update of Timeouts
	Timeout-triggered Update of Timeouts
	On-demand Update of Timeouts

	Experimental Evaluation
	Related Work and Testbeds
	Evaluation Testbeds
	Summary

	Experiments
	Experimental Set Up

	Route Discovery Latency
	MobiEmu Setup
	Real Setup
	Comparing MobiEmu and Real Setup Results

	UDP Performance
	End-to-End Delay
	TCP Performance
	FTP Performance

	Ad Hoc Horizon
	Measuring TCP Unfairness
	Measuring HTTP Download Times

	Experiences Learned

	Conclusions and Future Work
	Summary
	Implementation
	Experimental Evaluation

	Conclusions
	Implementation
	Experimental Evaluation

	Future Work and Research
	Implementation
	Practical Evaluation

	Setting Linux Kernel Parameters
	Contents of the CD-ROM
	References

