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Abstract

Attempts to satisfy the demand for ubiquitous communications have resulted in a proliferation of hand-held short range communi-
cation devices based on the ISM (Industrial, Scientific, Medical) band technologies, most notably Bluetooth and IEEE 802.11b. How-
ever, coexistence between Bluetooth and IEEE 802.11b has become a critical issue that could severely hinder the performance achieved
by user devices. In this study we performed a detailed implementation of a Linux based network access point (NAP), in which Bluetooth
and IEEE 802.11b interfaces are colocated. Such an NAP is crucial in supporting “hot-spot”™ systems targeted to serve nomadic users
carrying either a Bluetooth or an IEEE 802.11b device. Specifically, the goal of our study is to investigate the efficacy of a software-based
interference coordination approach, through a detailed actual implementation so as to identify system issues which are difficult to
obtained by simulations.

We considered a wide range of common scheduling algorithms as the possible solutions in a Linux environment to estimate the inter-
ference effects as viewed from the network layer perspective. Upon our investigation, two wireless scheduling algorithms based on Chan-
nel State Independent Fair Queueing (CIFQ) were implemented in Linux to test their empirical performance under this NAP application.
Finally, guided by our practical findings, we proposed and implemented two new packet scheduling algorithms in Linux to provide the
best trade-offs to colocated Bluetooth and IEEE 802.11b traffics, as well as QoS support for different applications. Our results show that
dynamic priorities and cooperative transmissions between Bluetooth and IEEE 802.11b traffic can effectively protect both interfaces from
interference. We also compared our proposed scheme with two MAC layer approaches.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The unprecedented demand for ubiquitous personal
communications has boosted the great advancements of
various short range wireless communication technologies.
In particular, two of such technologies, namely Bluetooth
[12] and IEEE 802.11b [4], are particularly important due
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to their rapid proliferation in various mobile electronic
devices such as mobile phones, PDAs, notebooks, etc. This
phenomenon stems naturally from their physical layer
designs based on the license-free 2.4 GHz ISM (Industrial,
Scientific and Medical) frequency spectrum, leading to low
cost of deployment.

However, with the high popularity of both Bluetooth
and IEEE 802.11b, it would be of tremendous commercial
interest to build a general network access point (NAP)
which can interface with these two technologies at the same
time. Indeed, this dual-protocol NAP could enhance “hot-
spot” systems which are already highly popular in many
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cyber-cafes, restaurants, shopping malls, airports, conven-
tions centers, etc. Such a dual-protocol NAP can transpar-
ently serve nomadic users carrying either a Bluetooth or an
IEEE 802.11b device, and most importantly, can allow a
seamless bridging of these two groups of users.

In this scenario, transceivers of both Bluetooth and IEEE
802.11b devices will “coexist’ in close proximity. Such coex-
istence, however, if not coordinated carefully, would inevita-
bly lead to unwanted and possibly detrimental interference
between them. Specifically, this unwanted interference may
cause severe performance degradation (i.e., low effective
bandwidth) of both wireless technologies, as demonstrated
by recent research results in [17,19] and [35].

Many academic researchers and practitioners in the
commercial sectors have worked on a number of research
projects to tackle the coexistence problem [13,17,24,32].
The significance of this interference problem is further rec-
ognized with the establishment of the Coexistence Task
Group 2, which is set up by and coordinated from Blue-
tooth SIG (Special Interest Group) and IEEE 802.15 to
fight against this problem [40]. Previously proposed solu-
tions can be broadly divided into two categories: Collabo-
rative and Non-collaborative.

Collaborative mechanisms [13] require that Bluetooth
and IEEE 802.11b transceivers communicate with each
other about their traffic to avoid interference. For instance,
in MEHTA (MAC Enhanced Temporal Algorithm) pro-
posed in [25], traffic information is exchanged between
the Bluetooth and IEEE 802.11b firmware to calculate
the accurate timings at the MAC layer, avoiding interfer-
ence by proper synchronization. Technically, it is an inter-
ference avoidance scheme in the time domain. Currently
there are many commercial products using this kind of col-
laborative coexistence approach, namely the Blue§802 by
Silicon Wave and Intersil [34], TrueRadio by Mobilian
[29], Wireless Coexistence System (WCS) by Intel [14], a
Coexistence Package by Texas Instruments [37] and Ulti-
mateBlue by Silicon Wave and Intersil [33].

Non-collaborative mechanisms [19] do not involve such
communications but the transceivers sense the existence of
other type of wireless transmissions by estimating the chan-
nel conditions frequently. For example, the Adaptive Fre-
quency Hopping (AFH) approach described in [I8]
classifies frequency channels as good or bad according to
the probabilities of interference, and only the good ones
are allowed for the Bluetooth to use.

The aforementioned coexistence mechanisms all suffer
from one realistic drawback. With these schemes, modifica-
tions of the firmware and/or the hardware of the Bluetooth
and IEEE 802.11b transceivers are required. However, with
the wide spread use of these two technologies nowadays,
there are many existing Bluetooth and IEEE 802.11b trans-
ceivers that cannot use such coexistence approaches.

Using a collaborative approach, our work aims to build
a prototype of the aforementioned dual-protocol network
access point, without requiring modifications in the client
devices. We believe that in order to obtain useful insights

in the interference effects, we need to deal with the coexis-
tence problem of Bluetooth and IEEE 802.11b using an
experimental approach.

In our study, we choose the open source developed, net-
work ready, and inexpensive Linux operating system [2] as
the platform for the dual-protocol NAP prototype. Our
motivation is that a Linux based dual-protocol NAP would
be much more cost-effective for networking devices manu-
facturers. We make use of the BlueZ [11] suite as the Blue-
tooth support in Linux. BlueZ supports the Bluetooth
protocol stack from device drivers, Linux kernel interface,
to the protocol stack just below the network layer. Thus, it
is commonly referred to as the official Linux Bluetooth pro-
tocol stack. However, its inability in channel state extraction
from the Bluetooth device hardware was a major technical
difficulty encountered in this study. In our implementation,
we bring the Bluetooth link up at the IP layer with the Blue-
tooth Encapsulation Protocol (BNEP) and the PAN profile
implementation of BlueZ. When the Bluetooth link is at the
IP layer, both the master (the NAP in our study) and the cli-
ent have a network interface named bnepO.

The Linux support for IEEE 802.11b is not as centralized
as the case in Bluetooth. At the Linux kernel [9,10,15], wire-
less extensions are developed by Jean Tourrilhes [38,39]. The
extensions are implemented as a generic APIin Linux kernel,
allowing an IEEE 802.11b device driver to connect to the
user space configuration and statistics. Our implementation
benefits considerably from this existing software architecture
which has inspired us on a method of channel state extraction
from WLAN device drivers. For device drivers, there are
three types: the HostAP [27], the WLAN-NG [1] by Abso-
luteValue Systems, and the early IEEE 802.11 drivers
embedded in the Linux kernel. The last two groups are irrel-
evant in this study as we do not employ those corresponding
IEEE 802.11b devices.

The rest of the paper is organized as follows. In Section 2,
we review some packet scheduling techniques implemented
in the Linux platform. We also review the well-known Chan-
nel State Independent Fair Queueing (CIFQ), which was first
implemented in Linux in our study to conduct performance
measurement reference tests. A detailed presentation of our
proposed packet scheduling algorithms is given in Section 3.
Section 4 describes in detail our testing environment and
experiment configurations, and wireless transmission sce-
narios. Performance results are presented and discussed in
Section 5. Finally, we conclude in Section 6.

2. Overview of practical packet scheduling mechanisms
2.1. Packet scheduling in linux

Linux supports packet scheduling by its traffic control
functions [6,31], which are implemented inside the Linux

2 The Linux literature prefers to use the term “WLAN” to refer to the
IEEE 802.11b. In the subsequent sections of this paper, we will use these
terms interchangeably.
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Fig. 1. Traffic control in Linux.

kernel. In the Linux networking model, each network
transceiver is treated as an interface. For example, eth0 is
the system software reference name for the first Ethernet
networking device (i.e., hardware) in the system. The high
scalability of Linux enables it to have several such interfac-
es activated at the same time. Linux handles all the inter-
faces in a round robin manner. For each interface, Linux
provides four main services: Ingress, Demultiplexing, For-
warding, and Egress.

Fig. 1 shows how the Linux kernel provides the four ser-
vices to packets in a round robin manner. The packets
enter the host at the Ingress side and leave at the Egress
side. In particular, Linux traffic control manifests at the
Ingress and Egress operations. However, at the Ingress,
Linux provides a limited set of operations such as removal
of undesired packets or preliminary packet classification.
At the Egress, the full range of traffic control is available,
including packet scheduling® [3].

A user space utility called tc is required for Linux traffic
control. This tc program can be obtained from the TPRO-
UTEZ2 package [23], as instructed in Linux Advanced Rout-
ing and Traffic Control Project [22]. Fig. 2 shows the
relationship of tc, the Linux kernel and the user space.

Traditionally, packet scheduling is the problem of prior-
itizing packet transmissions which share the same network
interface. However, in our study, it involves packet sched-
uling on more than one interface, and thus, creating a new
dimension in packet scheduling. This is also motivated by
McHardy’s work, Intermediate Queueing Device (IMQ),
which enhances the packet scheduling ability of Linux to
handle more than one network interface [28].

The concept of IMQ is simple. It first creates a Virtual
Network Interface in the Linux system with Linux kernel

3 For historical reasons, the Linux literature refers packet schedulers or
packet scheduling algorithms as queueing disciplines. This is fully evident
by the programming structure named struct Qdisc, which contains
pointers to scheduling routines and necessary variables for a queueing
discipline. In this paper, these terms are used interchangeably.
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Fig. 2. The structure of Linux Traffic Control.

support. Next, users use the user space tool iptables
to invoke the packet mangling feature in the Linux kernel
to divert packets transmitted from the real network inter-
faces to the Virtual Network Interface. As a result, packet
scheduling on more than one network interface becomes
possible by attaching packet scheduling algorithms to the
Virtual Network Interface, which is usually named as
imgO in Linux systems. With IMQ, we can attach different
packet scheduling settings” to investigate the efficacy of the
software-based approach to performing interference avoid-
ance between Bluetooth and IEEE 802.11b.

2.2. HTB + SFQ scheduling

This configuration makes use of the nesting feature,
allowing more than one Queueing Discipline to be attached
to one network interface in a hierarchical tree structure, as
described in the Advance Linux Routing HOWTO [22]. We
used HTB (Hierarchical Token Bucket) as the first level to
divide the traffic depending on the interfaces, i.e., WLAN
and Bluetooth. Then, within each queue, an SFQ (Stochas-
tic Fairness Queueing) is attached. As indicated in Fig. 3,
the WLAN interface is at class 1:2 while the Bluetooth
interface is at class 1:3. According to the HTB property,
each class is assigned a bandwidth allocation in the “at
least” sense. In our set-up, the class 1:2 (for WLAN) is
assigned to have a bandwidth of at least 11 Mbits/sec while
the class 1:3 (for Bluetooth) is assigned to have a band-
width of at least 1 Mbits/s. This also means that the class
1:0 (aggregate of WLAN and Bluetooth) could have a
bandwidth of at least 12 Mbits/s.

On the other hand, if the traffic in a class does not make
use of all the bandwidth assigned, excess bandwidth from
that class is created. In our set-up, any excess bandwidth
from class 1:2 or class 1:3 will be shared by them, as they
are under the class 1:0. It should be noted that all those
1:n figures above are arbitrary and merely act as the Iden-
tification Number of a Queue. In the example, the Queue
1:0 is subdivided into two smaller Queues called 1:2 and
1:3, where 1:2 and 1:3 are in the same hierarchy level.

Such setting was decided in the hope that excess band-
width from classes 1:2 and 1:3 resulting from colocated
interference can still be shared among the two interfaces.
In other words, when one interface’s bandwidth drops
due to interference, its excess bandwidth will be transferred

4 FIFO is the default scheduling setting in Linux.
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to another interface as an attempt to protect the aggregate
bandwidth of the two interfaces.

2.3. PRIO + TBF scheduling

This configuration is well documented in the Linux traf-
fic control literature. It is suggested in [3] due to the widely
conceived fact that Bluetooth transmission survives more
robustly than the IEEE 802.11b transmission in a colocat-
ed environment. Moreover, WLAN raw data rates are
much higher than that of Bluetooth. Thus, we use the
PRIO (Priority Queue) queueing discipline in Linux to give
the WLAN connections a higher priority class. However, in
order not to starve the traffic with lower priority (the Blue-
tooth traffic in this case), we attach a TBF (Token Bucket
Flow) scheduling algorithm to each class, as illustrated in
Fig. 4.

2.4. SFQ scheduling

In this configuration, we simply use SFQ to schedule the
WLAN and Bluetooth traffics at the IMQ interface in a
mixed manner. We set ten seconds as the period for the sys-
tem to change its hash functions to increase the random-
ness of the algorithm.

Recently, the performance study of existing packet
scheduling algorithms in Linux for interference coordina-
tion between Bluetooth and WLAN in [41] suggested that
a hierarchical-based packet scheduling algorithm which
differentiates between Bluetooth and WLAN traffics per-
forms better. In particular, a combination of Priority
Queueing (PRIO) and Token Bucket Flow (TBF) gave
the best performance results in terms of instantaneous
bandwidth. This performance was even better by another
scheduling approach which is based on Hierarchical Token
Bucket (HTB) by [16].

higher priority TBF

PRIO

Fig. 4. The PRIO + TBF configuration.

2.5. Scheduling techniques tailored for a wireless
environment

Channel State Independent Fair Queueing (CIFQ) is a
well-known and theoretically efficient wireless scheduling
algorithm considered in our study.

CIFQ uses the Two-State Markov Chain Channel Mod-
el as the wireless channel model. This channel model is
widely used in academia [7,8,26]. Under this channel mod-
el, any wireless channel has only two states — either good or
bad. A good channel state represents the perfect channel
state in which wireless transmissions can be done with full
bandwidth. On the other hand, a bad channel state repre-
sents the non-perfect channel state, but the model simply
assumes that no packets can be transmitted in this state.
This channel model simplifies the scheduling problem sig-
nificantly and hence many techniques in wired packet
scheduling can be applied to the situations with the good
channel state.

On the scheduling mechanism, CIFQ employs the
system of Start-Time Fair Queueing [21] as the reference
system. The network traffic is considered to be a number
of flows operating at the same time, sharing the same
wireless channel. It uses the data rate of each flow of
traffic as the Channel State Information for that flow.
The reference system is used to classify flows into leading
or lagging. A leading flow is a flow which gains more
share of the network resources than the reference system
while a lagging flow is a flow which obtains less share than
the reference system. This leading or lagging property of
each flow is stored in a variable lag which counts the
number of bytes of a flow which is lagged from the refer-
ence system. As the network resources are fixed, we have:
>.lag; =0.

Two versions of implementation exist when CIFQ was
first proposed by Ng et al. [30], which were named as Sim-
ple Version and Full Version. Their main difference is that
the Simple Version does not include the feature of graceful
degradation of leading flows in the Full Version. Also, the
Full Version holds additional information of normalized
amounts of service received by the leading flows, additional
service received by the leading flows and additional service
received by the non-lagging flows. In our study, these two
versions of CIFQ are implemented in the Linux kernel to
measure their efficacy to fight against the interference
between colocated Bluetooth and WLAN. The results are
shown in Section 5, where we use CIF-Simple and CIF-
Complete to represent Simple Version and Full Version,
respectively.

3. Proposed algorithms

Based on the empirical findings discussed before, we
define the following performance metrics to evaluate
packet scheduling algorithms for coordinating colocated
Bluetooth and WLAN network traffics:
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e Steadiness: It measures the degree of downtrend/up-
trend of the data rates of both interfaces over time.
Here, by data rate, we mean the application level data
rate, which does not count the header information bits
for the network layer and below.

o Bandwidth Stability: 1t measures the degree of fluctua-
tion of instantaneous data rates experienced by both
interfaces.

e Bandwidth Utilization: It measures the
achieved by both interfaces.

data rates

In the subsequent sections, we present our proposed
packet scheduling algorithms designed with the goal of
achieving no gradual downtrend of data rates, minimizing
fluctuation of instantaneous data rates, and maximizing
data rates utilized by both interfaces.

3.1. BoTh-WiN

In view of the robust performance of the PRIO + TBF
scheduling (from [41]) and the disappointing performance
from complex CIFQ, we design an IMQ-based queucing
discipline in Linux called BoTh-WiN (BlueTooth and
WlaN Both Win). BoTh-WiN provides Bluetooth and
WLAN traffics with dynamic priorities between the two
interfaces, as shown in Fig. 5. This follows the conclusion
of [41] that a hierarchical-based packet scheduling
approach is more suitable for interference coordination.
Indeed, a proper shift in priorities between Bluetooth and
WLAN can minimize the effect of interference and provide
steady data rates. The detection of interference is based on
instantaneous rate measurement of traffic flows.

Unlike CIFQ and like PRIO, BoTh-WiN considers
Bluetooth traffic flows and WLAN traffics separately in
the scheduling process. And like most other existing queue-
ing disciplines in Linux, BoTh-WiN uses the software-
based virtual interface IMQ [28] to merge the flows from
Bluetooth and WLAN together and then schedule at the
IMQ interface, thereby performing packet scheduling on
two real networking interfaces.

As indicated in Algorithms 1 and 2, BoTh-WiN uses the
jiffies variable for time duration measurement in order
to calculate the instantaneous traffic rate at each interface.
The calculation is implemented with the two-element array
struct Dbtwn flow data flowtype[2], where
flowtype[O] and flowtype[1] refer to the Bluetooth
and WLAN interfaces, respectively. The struct
btwn_flow_data is a data type used to hold the data
for each flow of traffic. It provides the scalability to expand
the rate measurement precision up to per flow level, as in
the case of the CIFQ-based algorithms. But in the NAP
scenario considered in this paper, we believe that finding
the instantaneous bandwidth at the interface level is
enough for BoTh-WiN to have channel state consider-
ations and to be more computation-efficient than the
CIFQ-based algorithms where per flow level of rate mea-
surement is found.

Tx from
Upper
Layer

Bluetooth Interface| ‘WLAN Interface

Virtual Interfacq

.- “btwn{wm"
iTraffic) \Traffic!

out

Fig. 5. The design of BoTh-WiN.

Algorithm 1 BoTh-WiN: Status Checking

1: INPUT: skb (the packet to enqueue);
OUTPUT: Status of Enqueue Operation;
Procedure BTWN-ENQUEUE(skb)
i = select-flow((src-ip, dst-ip, src-port,
dst-port, interface) in FLOWS));
now = jiffies;
if ig FLOWS then

FLOWS = FLOWS Ui,

vt; = now;
end if
status = skb-enqueue(skb, flow[i]);
check-flow-types(); /* Video, Voice, or others
*/ [* Video and Voice flows are given a lower
virtual time vt */
12: FLOWTYPE][interface]iastaeq = n0W;
13: return status;

AW

mSYeRaw

—_ O

Algorithm 2 BoTh-WiN: Packet Sending

1: INPUT: InterferenceFlag[this interface];

2: OUTPUT: skb (packet to send); OR NULL (if not
to send);

3: Procedure BTWN-DEQUEUE()

4: if Bluetoothinterference >3 OR
WLANInterference > 3 then

5: return NULL;

6: end if

7: Read among the queues for Bluetooth,

8: JIBT] = Pick the flow with lowest vt;

9: Read among the queues for WLAN,
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10: JIWN] = Pick the flow with lowest vt;
11: if j{BT] is valid and j{WN] is invalid then

12: skb = skb-dequeue( FLOWS[j[BT]));

13: UZFLOWS[j[BT]] +=skb — len / 100,

14: else if j{BT] is invalid and ;JWN] is valid then

15: skb = skb-dequeue( FLOWS[JWN]));

16: UZFLOWS[/'[WN]] +=skb — len / 100,

17: else if j{[BT] is valid and j;JWN] is valid then

18: Consider the following THREE conditions:

19: (WLAN . rate / Bluetooth.rate >10); /* 1 */

20: (WLAN . lastdeq > Bluetooth.lastdeq); /* 2 */

21: (WLANInterference > BluetoothInterference); /
* 3k /

22: if the two or more of the above conditions are
true then

23: skb = skb-dequeue( FLOWS
[IBTI):

24: UtFLOWS[/[BT]] +=skb — len / 100,

25: else

26: skb = skb-dequeue( FLOWS[JWN]));

27: U[FLOWS[/'[WN]] +=skb — len / 100,

28: end if

29: end if

30: rate-update(BluetoothInterface);

31 rate-update(WLANInterface);

32: if Bluetooth.rate < Bluetooth.rate,,, then

33: Atomiclnc(BluetoothInterference);

34: else

35: AtomicSet(BluetoothInterference, 0);

36: end if

37: if WLAN.rate < WLAN.rate,,, then

38: AtomicInc(WLANInterference);

39: else

40: AtomicSet(WLANInterference, 0);

41: end if

On using the rate measurement technique, we face an
important difficulty in that we cannot determine which
bandwidth level of the interfaces, either for Bluetooth or
WLAN, is free from interference, or vice versa, in absolute
terms. It is because the factors of the surrounding environ-
ment like distance, wireless channel fading, the presence of
some microwave absorbing substances etc., may change the
wireless channel conditions and hence, the instantaneous
bandwidth of each interface.

However, in our results of FTP tests in Section 5.1, it is
always the case that the start of interference simply gives
the existing wireless transmission a persistent drop in band-
width instantly. In particular, the case of FIFO scheduling
creates gradual deterioration of bandwidth in both inter-
faces, even after the drop in bandwidth right at the start
of the interference. Thus, this motivates one of our design
requirement for the queueing disciplines in handling inter-
ference between the two interfaces, which is the mainte-
nance of bandwidth stability under the interference
environment over time.

The key observation is that only an instant big drop in
bandwidth does not imply interference. Thus, we propose
using the moving average (MA) concept as the key for
BoTh-WiN to detect interference by instantaneous rate
measurement. Fig. 6 illustrates this MA concept. In gener-
al, we may classify the bandwidth fluctuation of any wire-
less channel into three cases, namely steady, decreasing and
increasing. When the bandwidth is steady, it is still fluctu-
ating horizontally, as shown in Fig. 6(a). The MA curve is
a smoothed version of the fluctuating bandwidth and it
becomes more or less like a horizontal line in the case of
a steady bandwidth.

In order not to falsely detect an interference, we
design BoTh-WiN to generate an interference detection
if three consecutive samples of the instantaneous rate is
lower than the MA, indicating a persistent drop in band-
width. This situation is shown in Fig. 6(b). On the other
hand, if the instantaneous rate is increasing, as caused by
the start of a transmission or disappearance of interfer-
ence, the MA curve will follow the rise but at a slower
pace. Here, we do not have any interference, as seen
from Fig. 6(c). When an interference due to coexistence
is confirmed, BoTh-WiN performs a no dequeue for one
packet time at the IMQ interface. This in turn gives no
transmission for both Bluetooth and WLAN at the same
time, avoiding interference.

To provide balanced treatment towards Bluetooth and
WLAN, BoTh-WiN separates the Bluetooth and WLAN
traffics when performing packet scheduling. At the
dequeue function, BoTh-WiN first examines which inter-
face is having no packets to send at that instant (i.e., no
backlogged flows at that interface). Then BoTh-WiN will
concentrate on the (other) interface with backlogged flows.
It will select the flow with the smallest virtual time value
and it will advance the virtual time value vt as follows:
vt += skb->1en/100. This formula will be further
explained in Section 3.2.

Because of the large discrepancy between the data rates
of Bluetooth and WLAN, the above situation happens
quite often and BoTh-WiN will serve the WLAN side.
Yet, there still exists tricky cases in which both Bluetooth
and WLAN interfaces contain backlogged flows. In this
case, BoTh-WiN tests the following three criteria to select
which interface to get the service:

e Bandwidth Balancing: WLAN Bandwidth/Bluetooth
Bandwidth >10?

e Round Robin Balancing: The WLAN interface got ser-
vice last time?

e Interference Consideration: The WLAN Interface will be
sooner to detect an interference?

The above three criteria are specially designed in that
an affirmative answer to any one of them means that the
system needs to put more attention to the Bluetooth
interface. On the Bandwidth Balancing test, our experi-
mental results show that the bandwidth for Bluetooth
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Fig. 6. BoTh-WiN moving average cases. (a) Case 1: steady, (b) Case 2: decreasing, (c) Case 3: increasing.

without interference is about 70 kbytes/s while that for
WLAN is about 700 kbytes/s. Thus, we set the ratio
number 10 for the Bandwidth Balancing test. If this ratio
is maintained over the long term, both interfaces are sub-
jected to the same level of punishment due to interfer-
ence in terms of bandwidth reduction percentage. The
Round Robin Balancing condition is to enable BoTh-
WiN to have some TBF effect on the WLAN traffic as
in the PRIO + TBF queueing discipline setting. Finally,
the Interference Consideration is actually a comparison
of the channel states experienced by the Bluetooth and
WLAN interfaces.

Using the aforementioned interference detection
mechanism, BoTh-WiN keeps track of the number of
incidence of the instantaneous rate lower than the mov-
ing average of the rate consecutively. The higher the
number of such incidence, the sooner will the interface
detect an interference and the poorer the channel qual-
ity has the interface been experiencing. On the other
hand, BoTh-WiN, grants the interface with better chan-
nel state a higher priority. To avoid errors in making
decisions based on the three criteria, BoTh-WiN chooses
the Bluetooth interface to get service when either two
true values are obtained from the three tests above. In
this manner, dynamic priorities are assigned to Blue-
tooth and WLAN interfaces to provide balanced servic-
es between them.

Lastly, it should be noted that using rate measure-
ment to estimate the Channel State Information (CSI)
encounters a system limitation so that this rate measure-
ment cannot be done too frequently. Otherwise, too
many threads will access the system time variable jif-
fies at the same time, potentially causing ksoftirqg
system crash error. Lines 30 and 31 are for the not so

frequent sampling technique employed to avoid this
problem.

3.2. Channel adaptive WLAN (CAWN)

We also propose Channel Adaptive WLAN (CAWN) to
realize a better cooperation between two network interfaces
(i.e., Bluetooth and WLAN in this paper) without the use
of Intermediate Queueing Device (IMQ), thereby removing
the delay due to IMQ and increasing the system perfor-
mance. The cooperation is realized based on our novel soft-
ware architecture design which allows communication
between queueing disciplines in different network interfaces
inside the Linux kernel.

Besides the cooperation property achieved, CAWN
also integrates seamlessly with the wireless extensions
by Tourrilhes [38]. Fig. 7 shows the design of CAWN.
We can see that CAWN extracts the CSI of the
WLAN transmission from the WLAN device drivers
via the wireless extensions API. Using the CSI extract-
ed, CAWN determines whether interference has
occurred. If interference is detected, CAWN at the
WLAN interface will acknowledge the CAWN counter-
part at the Bluetooth interface. Both interfaces will
then choose not to dequeue any packet unless the pack-
et size is small (e.g., Voice packets). This no dequeue
operation is done once and the CAWN devices
attached to both interfaces will acknowledge each other
about interference handled and resume normal
operations. At first glance, it seems strange that the
no dequeue operation is done only once. However,
practical results show that further increase in the num-
ber of such operation simply induces unnecessary band-
width reduction in both interfaces.
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Algorithm 3 CAWN

INPUT: skb (the packet to enqueue);
OUTPUT: Status of Enqueue Operation;
Procedure CAWN-ENQUEUE(skb)
i = select-flow((src-ip, dst-ip, src-port, dst-port) in
FLOWYS),
now = jiffies;
if i¢ FLOWS then

FLOWS = FLOWS Ui

vt; = now;
end if
status = skb-enqueue(skb, flow[i]);
check-flow-types(); /* Video, Voice, or others */
/* Video and Voice flows
are given a lower virtual time vz */
12: if interface is WLAN then
13:  success = IW_SPY-Operation-Read-Channel-State();
14:  if success then

bl

o A4

—_ o

15: update-channel-state-statistics();

16:  end if

17:  if Bluetooth Interface exists then

18: if CAWN attached to the Bluetooth Interface then

19: FLAG = AtomicRead(InterferenceFlag
[this interface]);

20: BluetoothFlag = AtomicRead
(InterferenceFlag[Bluetooth]);

21: if check-interference() and !FLAG then

22: AtomicSet(InterferenceFlag]this interface], ON);

23: /* Alert Bluetooth Interface */

24: AtomicSet(InterferenceFlag[Bluetooth] ON);

25: else if FLAG and !BluetoothFlag then

26: AtomicSet(InterferenceFlag[this interface],

OFF); /* Interference Handled */

27: end if

28: end if

29:  end if

30: end if

31: return status;

Algorithm 4 CAWN_DEQUEUE

2:  INPUT: InterferenceFlag[this interface];
3:  OUTPUT: skb (packet to send); OR NULL
(if not to send);
4 Procedure CAWN-DEQUEUE()
5 FLAG = AtomicRead(InterferenceFlag[this interface])
6: j=min,, {ke€ FLOWS — |EmptyQueue(k)}
7. skb = skb-dequeue(j);
8. if FLAG then
9 if skb — len = 500 then
10: AtomicSet(Interference[this interface], OFF);
/* Interference Handled */
11: skb-queue-head(j, skb);

12: return NULL;

13: end if

14: else

15: vt; += skb — len/100;
16: end if

STATE return skb;

As shown in Algorithms 3 and 4, CAWN first extracts
the CSI at the WLAN interface using one of the TW_SPY
operations of the wireless extensions API [38], instead of
the regular routine

sch->dev->get_iw quality() as defined in
$KernelSrc/include/linux/
netdevice.h:get_iw quality().

Though both the IW_SPY operation and the
get_iw_quality () routine can serve the purpose of get-
ting struct iw_quality structures for extraction of
channel state information, the HostAP driver by [27] does
not support the get_iw_quality() routine in an atom-
ic/interrupt context. On the contrary, the IW_SPY opera-
tion is supported in the interrupt context in which the
queueing discipline runs. What is more encouraging is that
it can give as many as IW_MAX_SPY struct iw_quali-
ty’s from IW_MAX_SPY clients. Currently, IW_MAX_SPY is
defined as eight in $KernelSrc/include/linux/
wireless.h. Therefore, this method can handle as many
as eight pieces of CSI from eight WLAN clients.

On invoking the IW_SPY-Operation-Read-Chan-
nel-State () function at line 13 of Algorithm 3, it sim-
ply calls the supporting routine at the WLAN device
driver which copies the iw_quality and sockaddr
structures to the memory space starting from g->buffer.
As indicated in Fig. 8, g->buffer is the place to which a
queueing discipline g (i.e., CAWN) copies the CSI of
WLAN clients. The sockaddr structures are used to hold
the MAC addresses of the WLAN clients. Fig. 8 shows
how these structures are aligned after the successful com-
pletion of the IW_SPY operation. The corresponding pair
of iw_quality and sockaddr holds the CSI of the
WLAN client indicated by the sockaddr.

The lines from 19 to 27 in Algorithm 3 are for coopera-
tion between two queueing disciplines attached to Blue-
tooth and WLAN. Since we have the mechanism to
extract the CSI at the WLAN interface via the wireless
extensions API, the cooperation realized is WLAN driven.
For system flexibility, we cannot assume the existence of
the Bluetooth interface during the initialization of the
queueing discipline attached to the WLAN interface. Thus,
we have to check the existence of any Bluetooth interface
during run time. Furthermore, we cannot be sure whether
the queueing discipline attached to the Bluetooth interface
(which exists under the name bnepO in this case) is also
CAWN, we have to check this too. The lines 19-27 are
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Fig. 7. The CAWN design.
g>buffer o ] get the updated struct iw_quality, it will simply con-
tinue its normal operations, rather than looping there to
g sockaddr . wait for the updated struct iw_quality. Such a design
sockaddr n pieces . . .
of has taken into account not only the interrupt context in
iw_quality 0 sockaddr . . RTRT . . .
sockaddr which the queueing discipline is working, but also multiple
instances of the same queueing discipline running in the
Our Special Case B —— system simultaneously but in different phases, in the mul-
- %E 521 | n pieces ti-thread/multi-processing environment under Linux.
infquality Fig. 9 below shows this concept graphically. For the sake
I of simplicity, only three instances of the same queueing dis-

The General Case
Max. n = IW_MAX SPY

Fig. 8. Channel state extraction: IW_SPY.

to be run at the CAWN attached to the WLAN interface.
Actually, there are also similar codes for the CAWN to run
at the Bluetooth interface, but the main functionality is just
to acknowledge the CAWN attached to the WLAN inter-
face about interference handled. This is to allow both inter-
faces to resume normal operations at the same time.

The structure struct iw_quality has one important
member variable called updated. It is set by the WLAN
device driver to indicate whether the values regarding the
CSI is updated by the hardware. This is critical because of
the dynamic nature of the channel state of WLAN transmis-
sions and hence the high volatility of the memory holding
such information in the WLAN device driver. Also, such
a flag would also indicate the reliability of the values read.

On updating the channel state statistics at line 15 of
Algorithm 3, the queueing discipline will only consider
the updated values of struct iw_quality as the CSI
for further processing. If the queueing discipline fails to

cipline are shown. Although instances B and C might have
missed the chance to read the updated struct iw_qual-
ity, instance A still have the chance since it has just start-
ed the execution among all the three instances (as indicated
by the arrows).

CAWN uses the following code to perform the update
of virtual time on the selected flow in a simple manner:

vt += skb->1en/100;

vt is a ud?2 type variable taking four bytes and its initial
value is dependent on jiffies, which is updated by the
kernel timer interrupt every 10 ms and counts from zero
since the system startup. skb->1en is a value no bigger
than 1500 since 1500 bytes is the size of the Maximum
Transfer Unit (MTU) of all the Ethernet-like interface in
Linux. With the maximum value of vt being 2** — 1, and
the maximum length of the packet dequeued being
1500 bytes, we have the following:

The life time of valid vt before overflow = (2% — 1)/15/
100 > 2863311s > 30 days.

This life time is much longer than enough when com-
pared to the life time of a network traffic flow. Unless for
critical and rare applications, it is hardly required for any
traffic flow to last over 3 days.
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Fig. 9. Multiple queueing discipline instances.

4. Experimental environment

In this section, we first describe the experimental setup
of the Linux system and hardware interfaces we used in
our study. We then describe the testing traffic configura-
tions in all the experiments.

4.1. Setup

The design of the Linux traffic control architecture con-
tains ready-made classes and filters for IP traffic. In our
study, we use the environment as shown in Fig. 10. Physi-
cally, all the three machines shown in the figure form an
equilateral triangle with sides of one meter in length.
Throughout all the tests in this paper, all these three devic-
es are stationary for simplicity since our focus is on interfer-

Bluetooth Interface

WLAN ) -
Interface NAP ereless
Link

WLAN Client

Wireless
Link

BT Client

Fig. 10. The testing environment.

ence but not location-dependent errors. In the scalability
tests, we use variable number of client devices.

All the wireless links are brought up to the IP level. The
two clients each downloads a 600 MB file from the NAP
(i.e., the Linux machine) via the FTP protocol. For the
NAP (or FTP server), the outflow transmission was pre-
processed by some QoS techniques in the Linux kernel.
As mentioned above, the queueing disciplines (gdisc)
considered are: HTB, PRIO, SFQ, and TBF. All the Linux
traffic control settings done in the tests are for egress traffic
only — we only scheduled the out-bound traffics of the NAP
(e.g., the FTP download traffics of the clients). Neverthe-
less, the cases where there are uplink traffic flows are also
considered. The physical layer parameters are shown in
Table 1.

For the WLAN driver, we used the HostAP driver [27].
This driver enables an easy configuration of the AP (access
point) mode of the IEEE 802.11b interface. Indeed, in all
the tests done, the WLAN interface of the NAP is set in
AP mode, which uses the point coordination function
(PCF) as the MAC layer scheme. Moreover, the WLAN
transceivers used are the Linksys WPC11 PCMCIA cards.

For the Bluetooth interface, we used the Billionton USB
Bluetooth Adapter as the transceiver for both the NAP and

Table 1

Physical layer parameters

Parameter Setting
diameter of coverage 2m
path loss and channel model AWGN
Bluetooth system loading 100%
Bluetooth packet types DHS5
Bluetooth transmitted power I mW
IEEE 802.11b raw data rate 11 Mbps
IEEE 802.11b transmitted power 25 mW
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the client. BlueZ [11] driver is the software driver of the
devices. The Bluetooth connection is brought up to the
IP level with the PAN (Personal Area Network) profile
[12] of Bluetooth, in which Bluetooth Network Encapsula-
tion Protocol (BNEP) and Bluetooth logical link control
and adaptation protocol (L2CAP) [12] are employed. As
the NAP is the master and the client is the slave, we delib-
erately set DHS as packet type for network transmission at
the NAP because DHS5 gives the fastest data rate for the
Bluetooth as the baseband layer at 723 kbits/s, which is
about 90.375 kbytes/s.

4.2. Wireless transmission scenarios

In a broad sense, we study two transmissions scenarios.
One is using single flow at each interface to measure the
interference effects on the bandwidth of each interface.
The other is using multiple flows at each interface to carry
out a performance study of packet scheduling algorithms
for different applications under interference.

4.2.1. Single flow scenario

The single flow scenario uses simultaneous FTP down-
loads of a 600 MB file from the NAP to the clients (see
Fig. 10). All the three machines used in our experiments
are Linux PCs. The FTP server (at the NAP) used is the
WU-2.6.1-16 bundled with Redhat Linux 7.1 and the
FTP client software is the NCFTP client. We use the mod-
ified xnetload [36] program to measure the bandwidth in
bytes per second of the Bluetooth and WLAN interfaces at
the NAP (only the out-bound traffic). The sampling period
is around 700-1000 s in all tests.

We assume that the network transmissions are per-
formed in the best effort manner. Thus, the trend of the
peak bandwidth could indicate the channel condition. In
our study, we assume that the channel condition varies
according to the interference between WLAN and Blue-
tooth. It follows that a higher bandwidth obtained at an
interface indicates a better channel condition for that inter-
face and vice versa. We also study the range of fluctuation
of bandwidth, or the bandwidth stability over time.

4.2.2. Multiple flow tests

The multiple-flow scenario is done with the help of the
Distributed Internet Traffic Generator (DITG) [5]. DITG
is a powerful thread-based network traffic performance
measurement tool allowing multiple flows generation at
the same time. It allows the user to specify a wide range
of parameters including number of packets in one second,
packet size, packet size distribution, transmission duration,
transport protocol used (TCP/ UDP), etc. In particular, it
can generate G.711-based Voice-over-IP (VoIP) flow,
which is widely deployed in Internet Phone applications.
With DITG, we generate three types of network traffic
flows: Video, Voice and TCP. Table 2 shows the parame-
ters used. We also perform the tests under three levels of
Bluetooth traffic loading.

Table 2

Parameters for traffic flow generation for DITG

Flow type Transport protocol No. of Packet size
packets/s (bytes)

Video-BT UDP 10 1500

Video-WLAN UDP 45 1500

Voice UDP - 120

FTP TCP 100 1500

5. Experimental results

In this section, we present the experimental results we
obtained and our interpretations on these results. We
first describe the results for FTP tests, in which the sin-
gle-flow downlink performance is investigated. We then
describe the results for the DITG tests, in which the mul-
tiple-flow performance is examined. To investigate the
performance of the system in the presence of both uplink
and downlink traffic flows, we also performed experi-
ments in which there are multiple near-by IEEE
802.11Db interference sources. Our final set of results aims
at investigating the scalability of the NAP in that we
tested it with more than two clients. More results can
be found in [41].

5.1. FTP tests

Fig. 11 shows that BoTh-WiN could provide coexistence
between Bluetooth and WLAN with a steady bandwidth.
The Bluetooth traffic could gain back to its steady state
within three minutes after the start of the WLAN traffic.
Since then, no major fluctuation is seen from both the data
rates of Bluetooth and WLAN in the tests. Though we can-
not see any uptrend/downtrend of bandwidth, the data
rates of both WLAN and Bluetooth could stay at their
respective high levels throughout most of the time of inter-
ference. Thus, for systems which are unable to obtain the
channel state information easily, BoTh-WiN is preferable
as it is based on instantaneous traffic rate calculation.
Though the lost Bluetooth bandwidth cannot be totally
re-gained, this scheduling algorithm can stop any further
deterioration of interference effects such as excess volatility
and gradual deterioration of data rates by dynamically
assigning priorities between Bluetooth traffic and WLAN
traffic at appropriate times.

Fig. 12 shows the results of CAWN. Fig. 12(a) shows the
results when the Bluetooth interface starts transmissions
first. Though it takes longer for the Bluetooth to gain back
its steady state after the start of the WLAN interference,
the steady state for Bluetooth bandwidth under interfer-
ence is above 40 kbytes/s. At the beginning, we can see per-
sistent bandwidth drop for the Bluetooth since the CAWN
at the WLAN is working, issuing the “no dequeue for one
packet time” request quite frequently when the WLAN
starts its transmission. Yet, after reaching a steady state,
both are steady at high data rates seen under interference.
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Fig. 12. Performance of CAWN. (a) Bluetooth first, (b) WLAN first.

The bandwidth for WLAN in this case is also as high as
above 500 kbytes/s.

With reference to Fig. 12(b), we can see the performance
results of CAWN when the WLAN transmission starts
first. When we initiate the FTP download at the Bluetooth
client side 45 s after the start of the WLAN FTP download,
the Bluetooth client experiences a time period of about one
minute delay after exchanging FTP requests, acknowledge-
ments, FTP login information, etc. These exchanges can be
seen from the short term spike below 20 kbytes/s mark at
the beginning of the Bluetooth transmission. This is result-
ed from the cooperative no dequeue policy implemented by
CAWN whenever it detects a sharp, significant and fast
deterioration of WLAN channel quality obtained from
the IW_SPY operation. This hinders the Bluetooth from
gaining a high bandwidth at the very beginning. After some
time, with the Bluetooth still communicating at a very low
bandwidth (several hundred bytes/s), the WLAN channel
quality stabilizes and CAWN detects the “interference”
signal much less frequently as before.

With this observation, we may argue that the Bluetooth
interference effects on WLAN do not depend very much on
the real Bluetooth bandwidth attained. With the no dequeue
policy fading out, Bluetooth transmission shows its robust-

ness under WLAN interference by gaining back its band-
width as high as above the 40 kbytes/s mark almost
instantly at 112 s. Since then both interfaces show impres-
sive bandwidth stability at high bandwidth levels till the
end of the test. On the whole, the WLAN bandwidth does
not drop below the 500 kbytes/s mark throughout the test.

In our study, we also implemented the Channel State
Independent Fair Queueing (CIFQ) in Linux to test its
empirical ability in interference coordination. Its perfor-
mance results and analysis in the FTP tests are shown
below.

As we can see from Fig. 13(a), CIF-Simple allows the
WLAN bandwidth to reach 550 kbytes/s and stay well
above the 500 kbytes/s mark under Bluetooth interference.
At the same time, the existing Bluetooth bandwidth only
drops from 70 kbytes/s to about 50 kbytes/s. Meanwhile,
CIF-Simple fails to enable the Bluetooth bandwidth stabil-
ity over long time, which is evident by the persistent drop in
Bluetooth rate after 700 s.

Fig. 13(b) gives us the most special results in this band-
width based test. First of all, when the Bluetooth client
starts its FTP transfer 45 sec after the WLAN transmission
starts, the FTP transfer to the Bluetooth cannot start at all.
But at the same time, we found that the WLAN bandwidth
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Fig. 13. Performance of CIF-Simple. (a) Bluetooth first, (b) WLAN first.

drops to zero due to interference. Though the WLAN
bandwidth can rise back to the 660 kbytes/s level as if there
was no interference, it drops to zero again as the Bluetooth
client initiates the FTP request again by sending some
packets of several hundred bytes. Finally, the Bluetooth cli-
ent can start its FTP transfer after 3 min of the start of the
WLAN transmission and the Bluetooth bandwidth
attained is more than 20 kbytes/s. At 266 s of the figure,
both the Bluetooth and WLAN data rates drop to zero
amid interference and CIF-Simple’s inability to schedule
the two sides’ traffics with huge bandwidth difference. Later
in the test we can see that CIF-Simple merely adopts the
either or approach in between the Bluetooth and WLAN
traffics. When the Bluetooth bandwidth is as high as
70 kbytes/s from 500 to 600 s in the graph, the WLAN
bandwidth drops to zero at the same time.

CIF-Simple is considered to be pro-WLAN at the begin-
ning because the starting-first WLAN traffic has a lower
virtual time value. In addition, it is unable to allow Blue-
tooth to gain its network share because of its low band-
width and hence CIF-Simple does not think that the
Bluetooth is lagging very much at all and hence simply
ignores it. After a period of time (e.g., 3 min in this case),
CIF-Simple begins to feel the lagging of Bluetooth traffic
and hence starts to allow the Bluetooth to transmit. When
the Bluetooth interface gains its share, the WLAN interface
loses its share but it takes some time to drop its bandwidth
to zero due to its high bandwidth. CIF-Simple chooses the
flow to dequeue by finding the lowest value of lag,/r;, where
lag; depends on the length of packets sent while 7; is the rate
of the flow i. Thus, a flow with high bandwidth can gain its
network share more easily. After the WLAN bandwidth
drops to zero, it again takes some time for the lagging effect
to be felt by the CIF-Simple system and hence for the
WLAN to gain back its network share. When one interface
gains back its network share, the other must suffer loss of
network share. Also, the lack of graceful degradation fea-
ture of CIF-Simple further worsens the situation. Thus,
we notice the either or effects between the two interfaces
under CIF-Simple and this reflects perfectly the Two-State
Markov Chain Channel Model assumed in the mind of

CIFQ algorithms. Consequently, CIF-Simple cannot be a
solution to Bluetooth and WLAN coexistence.

Fig. 14 shows the results of CIF-Complete. The results
in Fig. 14(a) show that CIF-Complete could allow the
WLAN bandwidth to be as high as 660 kbytes/s under
existing Bluetooth interference but sacrifice the Bluetooth
bandwidth to drop to as low as 10 kbytes/s in 200 s.

The complex calculation involved in CIF-Complete fails
to properly handle the coexistence of Bluetooth and
WLAN. The Bluetooth bandwidth could only stay below
20 kbytes/s during most of the time of interference despite
that Bluetooth should have been given a higher priority to
dequeue due to its smaller virtual time value (it started
before the WLAN traffic). Together with the results of
PRIO and CIF-Simple, we may conclude that giving Blue-
tooth a higher priority to dequeue would potentially create
more undesired interference.

On the other hand, the WLAN traffic could be steady at
about 660 kbytes/s with such a slow Bluetooth traffic
around, which does not create significant interference
effects for the WLAN. (See Fig. 14(a).)

When the Bluetooth client starts its FTP download
under WLAN interference, unlike the case for CIF-Simple,
the Bluetooth bandwidth can reach as high as 40 kbytes/s
within 1 min and we do not see any delay of the start of
the FTP transfer. One reason for this is that the CIF-Com-
plete algorithm chooses among the two interfaces mainly
by the virtual time and this virtual time advances by the
length of the packet sent /. But CIF-Simple advances the
value of the virtual time with //r;. This causes a big differ-
ence with the huge discrepancy between the Bluetooth
and WLAN data rates. Moreover, the feature of graceful
degradation of leading flows in CIF-Complete helps the sit-
uation a bit. Fig. 14(b) shows that the Bluetooth band-
width decreases its volatility over time while the WLAN
can maintain its bandwidth stability most of the time.
Together with the results of the CIF-Simple, virtual time
advancement without involving the rate of the flow i pro-
vides a more balanced priority between Bluetooth flows
and WLAN flows in packet scheduling. That is also the
reason why the virtual time advancement technique in
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Fig. 14. Performance of CIF-Complete.

our proposed schemes, BoTh-WiN and CAWN, is simply
dependent on the length of the packet sent.

5.2. DITG tests — voice

This section presents the performance of our proposed
schemes, CIFQ algorithms and FIFO in multiple-flow
environments with simultaneous Bluetooth and WLAN
traffics at the NAP. In all the tests described in this sec-
tion, we generate three types of flows: Video, Voice and
FTP. Table 2 shows the parameters used. We also per-
form the tests under three levels of Bluetooth traffic
loading.

Fig. 15 shows the results of packet drop rate/percent-
age when we vary the number of Voice flows at the
WLAN side. The details of this flow composition is
shown in Table 3. In particular, the configuration of 1
Voice flow, 1 Video flow and 1 FTP flow is known as
the basis case in this paper.

Because of the lower drop percentage for Voice flows
and the smaller packet size of VoIP packets, VoIP traffic
is more resistant to interference due to its packet size. On
the other hand, it is worthy noting that the drop rate
with CAWN is low on both Bluetooth and WLAN traf-
fics in this case. In particular, the drop rate for WLAN
with CIF-Complete, our proposed BoTh-WiN and
CAWN is zero in this case. On the other extreme, FIFO
scheme shows a 99% + drop rate when the number of
Voice flows in WLAN varies from one to three. CIF-Sim-
ple also demonstrates a low drop rate, with the highest
drop rate of 3.48% occurring when the number of Voice
flows is three.

Nonetheless, the attractive low drop rate at the WLAN
side comes from sacrificing the Bluetooth traffic among all
queueing disciples tested, except CAWN. The famous
CIFQ algorithms suffer from having high drop rates of
above 90%, losing completely in this case. The simple
FIFO scheme could also yield a “low” drop rate of about
50%. (In our study, virtually all drop rates measured are
close to the high end.) On the contrary, our proposed
BoTh-WiN scheme yields a lower drop rate than the CIFQ
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algorithms most of the time, achieving a lowest drop rate of
as low as 20%.

The above results show that detecting the channel state
of WLAN with the wireless extensions API is a good
approach to avoiding interference under a Light Load
Bluetooth environment. (See Figs. 15(a) and (b).)

The drop percentage results under Medium Load
Bluetooth environment are shown in Figs. 15(c) and (d).
Like the case in Light Load Bluetooth environment, the
WLAN drop rates are low while those of Bluetooth are
high. Our proposed BoTh-WiN and CAWN still give low-
er Bluetooth drop rates among the queueing disciplines
tested. Also, from the Bluetooth drop rate curve of
CAWN in Medium Load Bluetooth environment, increas-
ing the number of WLAN flows can decrease the Blue-
tooth drop rate, as shown in Fig. 15(c). This is because
of the increased sampling frequency of the WLAN chan-
nel state and hence better interference detection and
avoidance can be done.

While FIFO achieves zero WLAN drop rate in the basis
case, its drop rate increases significantly to 90% when the
number of Voice flows in WLAN increases. (See Figs.
15(e) and (f).)

5.3. DITG tests — video

In this section, we present the DITG test results of
video flows under medium Bluetooth load. In terms of
average delay, Fig. 16(a) shows that the IMQ-based
BoTh-WiN cannot prevail this time. While BoTh-WiN
can be the scheduling algorithm giving the lowest aver-
age delay at the WLAN interface (from Fig. 16(b)), it
generates relatively high average delay at the Bluetooth
(highest = 22.18 s) when the number of Video flows at
the WLAN is small.

Besides the apparently abnormal results from BoTh-
WiN, FIFO is the one giving highest average delay among
the others. In particular, it increases the average delay at
the WLAN interface in a much faster pace than all others
(including BoTh-WiN) as the number of flows in the
WLAN increases.
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Fig. 15. Varying Voice flows in WLAN with various load levels of Bluetooth traffic. (a) Drop % (Light Bluetooth), (b) drop % (Light Bluetooth), (c) drop
% (Medium Bluetooth), (d) drop % (Medium Bluetooth), (e) drop % (Heavy Bluetooth), (f) drop % (Heavy Bluetooth).

Unlike the case for the Light Bluetooth environment,
the CIF algorithms give a more steady and consistent aver-
age delay this time. It is because the number of flows for
Bluetooth and that for WLAN are more comparable this
time. The number of Bluetooth flows are fixed to be four
while that for the WLAN runs from three to six.

It is common for BoTh-WiN, CAWN and CIF Simple,
all of which do not include any graceful degradation, to
suffer a dip in average bit rate when the number of Video
Flows in the WLAN is two, or when there are four flows
in the WLAN, same number of flows in Bluetooth. Howev-
er, further increase of WLAN flows also increases the aver-
age bit rate for the Bluetooth interface, whose number of
flows does not change at all. Among them, CAWN gives
the best average bit rate for the Bluetooth. Increasing the

number of flows of WLAN increases the frequencies of
CAWN to monitor the channel condition. This helps to
minimize the interference effects between Bluetooth and
WLAN. This can be confirmed from Fig. 16(d), which
shows that the WLAN average bit rate remains high when
the number of flows at the WLAN interface is at the high
end.

Fig. 16(f) shows a similar situation for the WLAN inter-
face as for the case of Light loaded Bluetooth traffic. How-
ever, from Fig. 16(e), we notice a little decrease in the drop
rate in general, except for the CAWN, whose drop rate for
Bluetooth is above 95% all the time. It could be deduced
that the queueing disciplines become more Bluetooth
favorable when the number of Bluetooth flows increases,
as compared to the Light Bluetooth traffic case. Finally,
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Table 3
Number of flows and flow types employed in the three levels of Bluetooth
loading

Light Medium Heavy
Bluetooth Video 0 Video 1 Video 2
Voice 1 Voice 2 Voice 2
FTP 1 FTP 1 FTP 2
Video 0 Video 1 Video 2
WLAN Voice 1-4 Voice 1-4 Voice 1-4
Video 0 Video 1 Video 2

FIFO drop rate is below 80% when the number of Video
flows at WLAN is two or three.

While CAWN cannot give a low drop rate for Blue-
tooth, it can decrease the drop rate at WLAN to below
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90% (though still very high) when there are three or more
Video flows at the WLAN traffic. (See Figs. 16(e) and
(e).) This performance at the WLAN is similar to that case
in Light loaded Bluetooth traffic. However, the CIF Com-
plete algorithm also suffers from high drop rate starting
from the 2-Video flows onwards, unlike that for Light
loaded Bluetooth interface.

5.4. Heavily congested interference environment — multiple
interference sources

We also performed experiments to examine the perfor-
mance of the proposed CAWN scheme under the influence
of a nearby independent IEEE 802.11b network consisting
of three client devices communicating with an AP. We
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Fig. 16. Varying Video Flows in WLAN with Medium Load of Bluetooth traffic. (a) average delay, (b) average delay, (c) average bandwidth, (d) average

bandwidth, (e) drop %, (f) drop %.
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linearly scale the loading of such a “background” IEEE
802.11b by controlling the number of active flows in the
network. At the 100% level, there are 10 FTP flows (send-
ing files of 50 Mbytes) between each client device and the
AP.

Furthermore, for the dual-protocol NAP under investi-
gation, we also added uplink traffic flows, which are contin-
uous uploading of large files of size 100 Mbytes. Thus,
these tests aim to test the robustness of the CAWN scheme
under a heavily congested interference environment.

Another objective of these experiments is to compare the
performance of the proposed CAWN scheme and two
other MAC/physical layer schemes, namely, the BIAS
algorithm [20], and the TG2 AFH (adaptive frequency
hopping) [18]. The BIAS algorithm is a Bluetooth MAC-
layer approach that works by avoiding transmissions on
“bad” channels. The TG2 AFH algorithm works by adap-
tively generating dynamic hopping sequences that consist
only of “good” channels.

Fig. 17 shows the average packet loss rates of the Blue-
tooth flows in the NAP and those of the IEEE 802.11b
flows in the NAP. We can see that as the background inter-
ference load level increases, the packet loss rates increase.
The BIAS algorithm consistently performs the best among
the three, while the TG2 AFH is the worst. A plausible
explanation is that the AFH algorithm could not easily
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identify accurately enough “good” channels. On the other
hand, the interference avoidance approach taken by the
BIAS algorithm and our proposed network-layer CAWN
scheme works better in such a congested environment.

5.5. Scalability tests

Our final set of experiments involved testing the CAWN
scheme with a variable number of client devices: 2, 4, 6, 8,
10, and 12. For each test case, half of the client devices are
Bluetooth devices while the other half are IEEE 802.11b
devices. For example, for the case of 12 client devices, 6
are Bluetooth and 6 are IEEE 802.11b. This is the largest
“fair” population because the NAP can only support 6
independent active Bluetooth devices. We also compared
the CAWN scheme with the BIAS algorithm and the
TG2 AFH scheme. The background IEEE 802.11b load
level was set to be 50%. Uplink flows were also included
in the NAP.

Fig. 18 shows the average packet loss rates of the three
schemes. We can see that the BIAS algorithm is very robust
even under a high load (i.e., more than 10 devices). On the
other hand, the TG2 AFH algorithm almost breaks down
at 8 client devices, with an average packet loss rate of high-
er than 50% for IEEE 802.11b. The performance of the
proposed CAWN scheme is still quite acceptable at such
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Fig. 17. Comparison of average packet loss rates generated by the three different coexistence mechanisms in the presence of an independent IEEE 802.11b
source with varying load levels. (a) Bluetooth average packet loss rates, (b) IEEE 802.11b average packet loss rates.
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Fig. 18. Comparison of average packet loss rates generated by the three different coexistence mechanisms under different number of client devices in the
presence of an independent IEEE 802.11b source with 50% load. (a) Bluetooth average packet loss rates, (b) IEEE 802.11b average packet loss rates.
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load level. However, CAWN scheme fails also for the case
of 12 client devices.

Summarizing the observations in the scalability tests and
in the congested interference tests, we can see that the
CAWN scheme outperforms the TG2 AFH algorithm
considerably, indicating that a software approach is indeed
an attractive solution. Although the CAWN scheme is infe-
rior to the MAC-layer approach (i.e., BIAS algorithm), we
believe that CAWN is still a practicable solution because it
does not require hardware/firmware modifications as man-
dated by the BIAS algorithm.

6. Conclusions

In this paper, the effects of packet scheduling algo-
rithms, without any help of the existing coexistence mecha-
nisms at the MAC layer, on the interference between
Bluetooth and WLAN have been carefully examined. Spe-
cifically, a Linux-based Bluetooth and WLAN Network
Access Point (NAP) has been developed to test the CIFQ
algorithms in real implementation and study their empiri-
cal effects to fight against the coexistence problem between
Bluetooth and WLAN. It shows from the surprising and
unique results of CIF-Simple that the assumption behind
CIFQ (i.e., it is performing packet scheduling among differ-
ent flows in the same wireless channel) is inapplicable to
handle the need for coordinating packet scheduling on
both the Bluetooth and WLAN interfaces.

Guided by our practical findings, we proposed and
implemented two new packet scheduling algorithms in
Linux, BoTh-WiN and CAWN, to provide the best
trade-offs to colocated Bluetooth and WLAN traffics, as
well as QoS support for different applications. The pro-
posed algorithms have the following advantages:

1. The computational complexity is low (as indicated by
the code presented in Section 3) and they do not involve
any computation-expensive operations like floating
point calculations, which are needed in the CIFQ

algorithms.
2. Though our study is based on the NAP scenario, the

implemented algorithms can also be applied to dual-pro-

tocol end-hosts with the same Linux kernel upgrade.
3. The implementations of our proposed algorithms do not

require any hardware upgrade on existing Bluetooth and
IEEE 802.11b transceivers.

Our show that packet scheduling with differentiation on
Bluetooth and WLAN traffics can give a more balanced
service share between the two interfaces. Moreover, inter-
ference coordination has to be done with the help of Chan-
nel State Information (CSI) and seamless cooperation
between the two interfaces. Comparing with the MAC/
physical layer schemes, the proposed CAWN scheme is still
an attractive solution in that it exhibits reasonably good
performance while does not require hardware/firmware
modifications. Finally, while what is lost in the physical

layer could not be re-gained at the network layer, the main
contribution of our proposed packet scheduling schemes is
to provide high bandwidth stability at high data rates and
lower drop rates for both interfaces under interference.
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