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Mean-variance relationship (MVR), nowadays agreed in power law form, is an important function. It is
currently used by trafc matrix estimation as a basic statistical assumption. Because all the existing
papers obtain MVR only through empirical ways, they cannot provide theoretical support to power law
MVR or the denition of its power exponent. Furthermore, because of the lack of theoretical model, all
trafc matrix estimation methods based on MVR have not been theoretically supported yet. By observ-
ing both our laboratory and campus network for more than one year, we nd that such an empirical
MVR is not sufcient to describe actual network trafc. In this paper, we derive a theoretical MVR from
ON/OFF model. Then we prove that current empirical power law MVR is generally reasonable by the fact
that it is an approximate form of theoretical MVR under specic precondition, which can theoretically
support those trafc matrix estimation algorithms of using MVR. Through verifying our MVR by actual
observation and public DECPKT traces, we verify that our theoretical MVR is valid and more capable of
describing actual network trafc than power law MVR.

trafc matrix, mean-variance relationship, self-similar

1 Introduction
In this paper, we are concerned with theoretical
MVR of IP network traffic. MVR is an impor-
tant function which is currently used as a ba-
sic statistical assumption of traffic matrix (TM)
estimation[1,2]. TM estimation is a hot research
area because of its importance in traffic engineer-
ing, reliability analysis, anomalies detection and so
on.

A lot of methods of this area hold the same idea

that TM is obtained by statistical inference based
on indirect measurement (link count measurement
for example). These TM estimation methods could
be simply described as follows: let Y denote the
vector of known incoming and outgoing link counts,
X denote the vector of unknown OD counts which
are elements of TM. TM estimation is to obtain
X on the basis of Y . A linear relation Y = AX
is widely agreed, but it is highly undetermined be-
cause the amount of unknown OD counts are gener-
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ally much more than that of known link counts, i.e.
X cannot be directly resolved. Under this circum-
stance, MVR is adopted as their statistical assump-
tion to infer X, because this function expresses the
relation between the first order moment and the
second order moment of one traffic rate process,
and it can make measurable second order moment
data available for estimation. According to MVR,
EM[3] and other statistical inference methods are
applied to achieve final estimation algorithms.

Because MVR is used as a basis of TM estima-
tion, a proper relationship is crucial to the accuracy
of those TM estimation methods. However, this re-
lationship is still under discussion and considered
difficult to obtain[2]. To the best of our knowledge,
many papers have discussed its form and param-
eters, while they have all obtained MVR through
observing actual network traffic alone and reached
the agreement that the relationship is in power law
form, i.e. σ2 ∝ λc. However, in this form the value
of c varies in different network environments mak-
ing MVR still controversial.

From this perspective, our work is motivated by
two points. (i) We consider that power law rela-
tionship is reasonable but not sufficient to describe
actual network traffic. We have observed network
traffic in our laboratory network and campus net-
work for more than one year. We find that though
the power law MVR is generally satisfied, there are
always some typical traffic traces that cannot be
described by it. Therefore, we consider that there
should be a more capable MVR. (ii) Although there
is no relation between current empirical MVR and
the self-similar nature of network traffic, we con-
sider that a proper MVR should be found from
some self-similar traffic model. At the very be-
ginning, Vardi[4] assumed MVR as σ2 = λ. This
relationship is theoretically derived from Poisson
model which is then considered as the nature of
network traffic. When self-similar model is ac-
cepted instead of Poisson model, σ2 = λ is no
longer supported, and till now no new theoretical
MVR has been found. Therefore, our work is to
find a theoretical MVR derived from self-similar
network traffic model.

In this paper, we choose ON/OFF model[5,6] to

derive a theoretical MVR. This model is one of
the well-known physical explanations of self-similar
nature of network traffic. And this approach en-
sures our relationship to be consistent with self-
similarity. Our relationship is more capable than
empirical power law MVR to describe actual net-
work traffic and sufficient to support those TM es-
timation methods of using MVR as their statisti-
cal assumption. Our contributions include: (i) We
propose an MVR theoretically derived from ON/
OFF model. (ii) We explain that the empirical
power law MVR is an approximate form of the
theoretical MVR and the exponent should be 2H,
where H is Hurst parameter. (iii) We verify the re-
lationship by public DECPKT traces[7] and actual
traffic in laboratory and campus network.

2 Related work

2.1 Power law MVR

MVR is now empirically thought to be in power
law form, i.e. σ2 = ϕλc, where ϕ and c are con-
stants and the value of c is still under discussion[2].
Vardi[4] assumed MVR as σ2 = λ, which is the
property of Poisson model. However, Poisson
model is proved to be invalid[8], and as a result, this
simple function also fails in theory. Therefore, a
lot of papers have tried to find a new MVR to sup-
port their methods. Cao et al.[3] follow the power
law MVR and choose 2 as approximate integer of
c. Subsequent researches validated the relation-
ship as well. They all agreed with the power law
form, but they could not reach an agreement on
the value of c. Medina et al.[2] evaluated this rela-
tionship on 39 POP-pair network, and found that
c varies in the range of [0.5, 4]. Gunnar et al.[9]

observed network traffic on both European and
North American core-networks. Their discovery
shows that the values of c are 1.5 and 1.6 respec-
tively. Juva et al.[10] proposed a method based on
link count covariances, with 1.5 chosen as the best
value of c through mathematical optimization.

All the above works agree that MVR is in power
law form. However, they failed to provide any the-
oretical support. And in all these works, the value
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of c is still considered because there is no exact def-
inition nor explanation on c yet. In contrast, our
paper is quite different in that we provide MVR
theoretically, validate its power law form, and de-
duce an exact definition of c.

2.2 Self-similarity and ON/OFF model

Leland et al.[11] did the pioneering work which
caused the failure of Poisson model. As a result,
previous work derived from Poisson model required
verification over again. Although MVR is no longer
σ2 = λ as derived by the Poisson model, we con-
sider that obtaining MVR from network traffic
model is a reasonable approach and there should
be a theoretical MVR.

As a plausible physical explanation for network
traffic’s self-similar nature, ON/OFF model is one
of the generally accepted models nowadays. Will-
inger et al.[6] proposed the definition of ON/OFF
model, which provided a good foundation for fur-
ther discussion. Our work is based on this model
so that our conclusion could be consistent with the
self-similarity of network traffic that satisfies ON/
OFF model.

3 Theoretical MVR derivation

3.1 ON/OFF model definition

Because our derivation is based on ON/OFF model
which has been detailed discussed by Willinger et
al.[6], we briefly introduce its definition in this sub-
section.

Suppose that there are M i.i.d. ON/OFF
sources. To specify the distributions of both ON-
and OFF-periods, let f1(x), F1(x), F1c(x), µ1, σ2

1

denote the probability density function, cumulative
distribution function, complementary distribution,
mean length and variance of an ON-period, and
let f2(x), F2(x), F2c(x), µ2, σ2

2 correspond to an
OFF-period. Assume x → ∞, either

F1c(x)∼$1x
−α1L1(x) with 1 < α1 < 2

or σ2
1 < ∞, and either

F2c(x)∼$2x
−α2L2(x) with 1 < α2 < 2

or σ2
2 < ∞, where $j > 0 is a constant and Lj > 0 is

a slowly varying function at infinity. Additionally,

when 1 < αj < 2, set aj = $j(Γ(2 − αj))/(αj − 1).
When σ2

j < ∞, set αj = 2, Lj ≡ 1 and aj = σ2
j .

For large T and M , in interval [0, T t], the aggre-
gate cumulative traffic process behaves statistically
like

TM
µ1

µ1 + µ2
t + T H

√
L(T )MσlimBH(t), (1)

where H = (3 − αmin)/2 is a shape parameter,
L(T ) is a slowly varying function, and BH(t) is
fractional Brownian motion with zero mean and
t2H variance. σlim has two possible definitions, de-
pending on whether

Λ = lim
t→∞

tα2−α1
L1(t)
L2(t)

(2)

is finite, 0, or infinite. If 0 < Λ < ∞, set
αmin = α1 = α2, L = L2 and

σ2
lim =

2(µ2
2a1Λ+ µ2

1a2)
(µ1 + µ2)3Γ(4 − αmin)

. (3)

If, otherwise, Λ = 0 or Λ = ∞, set L = Lmin and

σ2
lim =

2µ2
maxamin

(µ1 + µ2)3Γ(4 − αmin)
, (4)

where min = 1,max = 2 if Λ = ∞, and min =
2,max = 1 if Λ = 0.

3.2 Exact MVR derivation
The network traffic process is exactly defined
by (1). In this equation, BH(t) is a fractional
Brownian motion which has E(BH(t)) = 0 and
D(BH(t)) = t2H . Therefore, we have preliminary
mean and variance of the process:

E = E

(
TM

µ1

µ1 + µ2
t + T H

√
L(T )MσlimBH(t)

)

= E

(
TM

µ1

µ1 + µ2
t

)
= TM

µ1

µ1 + µ2
t,

σ2 = D

(
TM

µ1

µ1 + µ2
t + T H

√
L(T )MσlimBH(t)

)

= D(T H
√

L(T )MσlimBH(t))
= (Tt)2HL(T )Mσ2

lim.

Then, the definitions of L(T ) and σ2
lim should be

determined. Because L1(t) and L2(t) are slowly
varying functions, we consider limt→∞

L1(t)
L2(t)

as con-
stant. Thus the relation between α1 and α2 de-
termines the definition of σ2

lim. There are three
possible cases: α1 > α2, α1 = α2, and α1 < α2.
They are discussed as follows.
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(i) α1 > α2. Then we have α2 − α1 < 0. Thus,
we have

Λ = lim
t→∞

tα2−α1 lim
t→∞

L1(t)
L2(t)

= 0 lim
t→∞

L1(t)
L2(t)

= 0.

Therefore, based on definition of ON/OFF
model, we have H = (3 − α2)/2, L(T ) = L2, and
σ2

lim follows from (4). By substituting L(T ) and
σ2

lim, we have

σ2 = (Tt)2H$2L2M
µ2

1

(µ1 + µ2)3

· 2Γ(2 − α2)
Γ(4 − α2)(α2 − 1)

= (Tt)2H$2L2M
µ2

1

(µ1 + µ2)3

· 2
(3 − α2)(2 − α2)(α2 − 1)

. (5)

In (5), $2L2 is determined by the distribution
of OFF-period length. Nowadays, many papers
agree that the packet interval follows a heavy-
tailed distribution[12], but actual distribution func-
tion is still controversial. According to the def-
inition of ON/OFF, the heavy-tailed distribution
of ON- or OFF-period length should be power-law
distribution as well, because when 1 < αj < 2,
Fjc(x)∼$jx−αjLj(x) should be satisfied. There
are several familiar heavy-tailed distributions[13]:
Pareto, Lognormal, inversed Weibull, etc. Only
Pareto distribution satisfies this restriction. Thus,
we choose Pareto as simplest heavy-tailed distribu-
tion.

According to the definition of Pareto distribu-
tion, the complementary distribution function of
OFF-period length satisfies F2c(x) = m2

α2x−α2 ∼
$2x−α2L2(x), where m2 is the minimum possible
value of x. Then we have $2L2 = m2

α2 . Ac-
cording to the property of Pareto distribution, the
mean of OFF-period length µ2 = m2

α2
α2−1

, i.e.
m2 = µ2

α2−1
α2

. Then the relation between $2L2 and
µ2 is

$2L2 =
(

µ2
α2 − 1

α2

)α2

= (µ2)α2

(
α2 − 1

α2

)α2

. (6)

With (5) and (6), for a given interval [0, T t], we
can get refined mean and variance of traffic process:

E = TtM
µ1

µ1 + µ2
,

σ2 = (Tt)2HM
µα2

2 µ2
1

(µ1 + µ2)3
f(α2), (7)

where

f(α) =
2

(3 − α)(2 − α)(α − 1)

(
α − 1

α

)α

.

Because we are usually interested in the average
rate of traffic process, for a given interval [0, T t], we
can get the mean and variance of network traffic’s
average rate directly from (7),

Er = E/(Tt) = M
µ1

µ1 + µ2
,

σ2
r = σ2/(Tt)2 = (Tt)2H−2M

µα2
2 µ2

1

(µ1 + µ2)3
f(α2). (8)

In (8), T , t, and M are constants. Because
α1 and α2 are shape parameters that describe the
heavy-tailed nature of ON- and OFF-period in a
long time range, we consider them constant as well.
Therefore, there are two variables µ1 and µ2 in (8).
To express the relation between µ1 and µ2, define

η =
µ1

µ1 + µ2
. (9)

Getting rid of µ2 by (9) in (8), we have new ex-
pressions of Er and σ2

r :

Er = Mη,

σ2
r = MBα2(η)(Tt/µ1)1−α2f(α2), (10)

where
Bα(η) = (1 − η)αη3−α. (11)

(ii) α1 = α2. In this case, we have tα2−α1 = 1;
thus Λ is constant. Then based on ON/OFF defi-
nition, we have

σ2
r = M((1 − η)2η + (1− η)αη3−α)(Tt/µ1)1−αf(α),

where α = α1 = α2. Thus

σ2
r = MB′

α(η)(Tt/µ1)1−αf(α), (12)

where

B′
α(η) = (1 − η)2η + (1 − η)αη3−α. (13)

(iii) α1 < α2. In this case, α2 − α1 > 0; thus Λ
is infinite. According to the definition of ON/OFF
model, we have

σ2
r = M(1 − η)2η(Tt/µ1)1−α1 .

Thus

σ2
r = MB′′

α1
(η)(Tt/µ1)1−α1f(α1), (14)

where
B′′

α(η) = (1 − η)2η. (15)
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According to the discussion on the three cases
above, it is easy to find that the mean of traffic
average rate is defined as (10), and the variance is
strictly decided by Bα(η) which has different ex-
pressions under different relations between α1 and
α2.

When ON/OFF model was proposed in 1995,
MVR was not mentioned. Thus ON/OFF model
only focuses on explaining the self-similar nature
of network traffic. Therefore, in ref. [6] the rela-
tion between α1 and α2 is not restricted, since this
relation does not affect the self-similar property of
the model. In other words, as for MVR, ON/OFF
model is not strict enough. Obviously, this relation
is the key to MVR. A proper relation between α1

and α2 should be chosen by experimental methods.
In this paper, we choose α1 > α2 by the follow-

ing reasons. First, Willinger et al.[6] have made
typical experiments, based on which they conclude
that α1 > α2 is satisfied in LAN traffic; and in
WAN traffic α2 is generally very close to 1, even
smaller than 1 sometimes, and α1 is generally close
to 2. These experiments indicate that the relation
α1 > α2 is satisfied in both LAN and WAN traf-
fics. Second, we observe actual network traffic to
verify this relation as well. We choose t0=50 ms as
a threshold to divide packet intervals into ON- and
OFF-periods, and detect their tails by qq-plot[14].
Figure 1 is one typical experiment result, in which
we use least squares line to evaluate both tails, and
get α1 = 1.91, α2 = 1.14, i.e. α1 > α2. Finally,
in section 5, we provide more discussion to explain
that α1 " α2 is unsuitable for actual network traf-
fic.

Therefore, according to (10), exact MVR of net-
work traffic average rate in interval [0, T t] is

σ2
r = MBα2

(
Er

M

)
(Tt/µ1)1−α2f(α2), (16)

where
Bα(η) = (1 − η)αη3−α.

3.3 Properties of exact MVR
µ1 and η are two variables in exact MVR. In
this subsection, we discuss the properties of exact
MVR (i)with constant µ1, (ii)with constant η, and
(iii)with varying µ1 and η by the same trend. From

Figure 1 qq-plots for ON- and OFF-periods.

the properties of exact MVR under these three
preconditions, we derive sufficient theoretical func-
tions and explanations to describe actual network
traffic. Furthermore, we explain the rationality of
empirical power law MVR and provide exact defi-
nition of the exponent c as well.

(i) µ1 is constant. When µ1 is constant, MVR in
interval [0, T t] can be expressed as

σ2
r = ΦBα2

(
Er

M

)
, (17)

where Φ = M(Tt/µ1)1−α2f(α2) is constant.
It is obvious that the property of MVR un-

der this condition is only determined by function
Bα(η). Thus, we first discuss the property of Bα(η)
here.

Bα(η) in log-log scale with different parameter
α are drawn together in Figure 2. The logarith-
mic form of Bα(η) is log(Bα(η)) = (3−α) log(η) +
α log(1 − η). Then the derivative of log(Bα(η)) is

∂ log(Bα(η))
∂ log η

= (3 − α) − α
η

1 − η
. (18)

It is easy to know that when η = 1 − α/3, (18)
is equal to 0, i.e. when η = 1 − α/3, Bα(η) gets
its maximum value. When 1 − α/3 < η < 1, the
derivative of log(Bα(η) is negative, and it is obvi-
ous that limη→1 log Bα(η) = −∞. In (18), when
0 < η & 1 − α/3, α η

1−η
is much smaller than

3 − α. Therefore, Bα(η) behaves approximately
like a power law function

Bα(η) ≈ η3−α. (19)
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Figure 2 Bα(η) with different α in log-log scale.

Because there is a coefficient 1
M

in (17), we dis-
cuss the property of Bα(pη) where p is a constant
coefficient. We draw function Bα(pη) in log-log
scale with different p together in Figure 3 which
implies that the graph of function Bα(pη) is only
moved by p with slight distortion. Therefore, the
shape of σ2

r(Er) should be the same as Bα(η).

Figure 3 Bα(pη) with different p in log-log scale.

According to (19), it is easy to find that when
Er

M
= η & 1 − α/3, exact MVR can be simplified

into

σ2
r = ΦBα2

(
Er

M

)
≈ Φ

(
Er

M

)3−α2

= ϕE3−α2
r = ϕE2H

r ,

where ϕ = M1−2H(Tt/µ1)1−α2f(α2) is constant.
Thus, when µ1 is constant and Er

M
= η & 1−α/3,

we have approximate power law MVR of network

traffic average rate in interval [0, T t]:

σ2
r ≈ ϕEc

r , (20)

where c = 2H. If H is close to 1, we can get the
simplest form

σ2
r ≈ ϕE2

r . (21)

(20) proves that empirical power law MVR is a
reasonable MVR which is an approximate form of
our exact MVR.

(ii) η is constant. According to (10), when η
is constant, Er is obviously constant. Thus the
derivative of MVR in log-log scale will be infinity
in theory, i.e. σ2

r is irrelative with Er.
(iii) µ1 and η vary by the same trend. This case

means that µ1 and η vary both bigger or smaller.
According to (10), σ2

r(µ1) is a monotonic increasing
function. Assume that Er

M
& 1 − α/3 is satisfied,

as (19) described, η approximately contributes 2H
to the derivative of MVR in log-log scale, based on
which the varying µ1 adds positive increment to
this derivative. Therefore, when Er

M
& 1−α/3, the

derivative of MVR is greater than 2H.

3.4 Comprehension on µ1 and η

In this subsection, we provide explanation on µ1

and η, which makes our discussion on MVR eas-
ier to comprehend. Consider a scenario in which
there is only one program. There should be an ON-
period when this program runs automatically since
the intervals between packets are usually small.
In ON-period, the interval is mainly determined
by application logic, communication protocol, and
network environment, i.e. if these factors are sta-
ble, the distribution of ON-period length is stable.
In contrast, when the program is blocked or ter-
minated, an OFF-period should appear. In OFF-
period, the interval is mainly determined by human
actions[15] which may vary much. For example,
people generally access many Websites by day and
go to sleep by night, i.e. people trig HTTP traffic
more frequently by day than by night. Therefore,
we consider that µ1 is mainly determined by ac-
tual application and communication environment
which are generally stable. Plus, η is considered to
reflect the busyness of actual application, since it
is the ratio of µ1 to µ1 + µ2.
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4 Verication

4.1 Environments and methods

We choose our laboratory network and campus net-
work as environments for observing network traffic.
As the first environment, our laboratory network
is a typical LAN, in which the traffic is generally
at low volume and fluctuates acutely. As the sec-
ond environment, the campus network transports
the whole university’s traffic. We consider it a typ-
ical fast network. In campus network, the traf-
fics are aggregated by a huge number of sources;
thus it is usually at high volume and does not fluc-
tuate very acutely. Besides, the campus network
owns an entry to interconnect with China Educa-
tion and Research Network (CERNET, a 38-PoP
backbone). We consider the traffic of this entry as
typical backbone traffic.

In order to verify our MVR, two methods are
adopted to observe the traffic: (i) through SNMP
and (ii) through dumping packets directly. For the
former, we observe the incoming and outgoing rates
of all the interfaces of typical network devices. The
interval is 30 s, i.e. tT=30 s. By this method,
we keep observing actual network traffic for more
than one year. The measurement data are used
for checking Hurst parameter and verifying MVR.
For the latter mechanism, we directly dump pack-
ets by TCPDUMP whose data are mainly used for
verifying ON/OFF model.

4.2 MVR for specific applications

Besides making observation simpler, we consider
that the traffics generated by different applications
should have different statistical characteristics, and
µ1 is stable for the same application. Therefore, we
first verify MVR by the traffics generated by HTTP
and P2P which are two typical applications.

As shown in Figure 4, we dump pure HTTP
packets from the link interconnecting laboratory
network with campus network, and test its Hurst
parameter H by wavelet method[16]. We can find
that the MVR of HTTP traffic satisfies power law
MVR very well, and c is very close to 2H.

Second, we use the same method to process Bit-
Torent traffic. We can find that the higher the vol-
ume of traffic is, the more lightly it fluctuates (Fig-

ure 5). When the traffic is at low volume, power
law MVR is satisfied, but when the traffic is at high
volume, power law MVR is not suitable any more.
The failure of power law MVR is obviously reflected
by Figure 6 which is drawn by a part of the traffic
when the application transports data busily.

Figure 4 HTTP traffic with 30 s interval. (a) Time series; (b)

Hurst estimation; (c) MVR in log-log scale.

The above observations show that our theoreti-
cal MVR can describe actual HTTP and P2P traf-
fics well. First, when power law MVR is satisfied,
the exponent is close to 2H (see (20)). Second, the
empirical power law MVR is not suitable all the
time. When power law MVR fails, the MVR of
P2P traffic matches conclusion (17) very well. Fi-
nally, MVRs of HTTP and P2P traffics satisfy (17)
well which is derived from exact MVR by constant
µ1. This supports our explanation on µ1 that for
the traffic generated by the same application, µ1 is
stable.
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Figure 5 BitTorent traffic with 30 s interval. (a) Time series;

(b) Hurst estimation; (c) MVR in log-log scale.

4.3 MVRs for different interfaces

As for TM estimation, the traffics of different in-
terfaces are statistically inferred together; thus we
verify the MVR of the traffics of different interfaces
belonging to the same device in this subsection. We
choose three devices that represent different typical
network traffic cases from the two environments.

The first device is a core switch of campus net-
work. This device has highly aggregated traffics
generated by the whole campus. All MVRs of the
incoming traffics of this switch are shown together
in Figure 7. The second device is the core switch
of our laboratory network. It usually has high-
volume traffic, while its sources are far less than
those of the first device. Its MVRs of incoming
and outgoing traffics are shown in Figure 8. The
third device is a marginal switch of our laboratory
network, with only several hosts connected. The
traffic passing through it is usually generated by a
small quantity of sources. Its MVRs of incoming
and outgoing traffics are shown in Figure 9.

Figure 6 BitTorent traffic (busy) with 30 s interval. (a) Time

series; (b) Hurst estimation; (c) MVR in log-log scale.

Then we verify our relationship using these de-
vices. First of all, we can find that actual MVR is
generally relative to the traffic volume. As shown
in Figures 7 and 8, approximate power law MVR
is correct as a whole for high-volume traffic, and a
line with a slope of 2H is those traffics’ best trend
line, which verifies that (20) is correct. Oppositely,
as shown in Figure 9, when the traffics are at low
volume, the slope is generally more than 2H, even
close to infinity sometimes. It shows that approx-
imate power law MVR is no longer suitable. This
phenomenon could be explained by cases (ii) and
(iii) in subsection 3.3. We explain that when the
traffic is at low volume, the ratio of different ap-
plication traffics is easy to change, i.e. µ1 is no
longer stable. Second, the approximate power law
MVR satisfies the traffic of campus network better
than that of laboratory network, even when the
traffic is at low volume in campus network. We
consider that because there are much more sources
generating traffic in campus network than those in
lab-oratory network, the radio of different applica-
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Figure 7 MVR for core switch of campus network.
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Figure 8 MVR for core switch of laboratory network.
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Figure 9 MVR for marginal switch of laboratory network.

tion traffics is stable, i.e. µ1 is stable, while
for LAN traffic aggregated by a small amount of

sources, the ratio of different application traffics is
easy to change, i.e. µ1 is unstable.

Therefore, power law MVR is generally reason-
able for the traffics which are aggregated by many
sources or at proper volume, i.e. empirical power
law MVR relies on stable ratio of different applica-
tion traffics and proper business. This shows that
it is not occasional that all previous observations
support power law MVR. Our theoretical MVR can
describe more cases of actual network traffic than
empirical power law MVR.

4.4 Relationship for CERNET entry

CERNET is 38-PoP backbone network for educa-
tion and research in China. We especially observe
the CERNET entry of our campus network to ver-
ify our MVR for backbone traffic. The incoming
and outgoing traffics of CERNET entry are shown
in Figure 10. The estimated Hurst parameters of
both traffics are 1.021 and 1.019, which implies
that the traffics are all highly self-similar. Then
we can find that the MVRs of both traffics follow

14

12

10

8

6

4

2

0
0 500 1000 1500 2000

Incoming Outgoing

Time series index

×107

C
E

R
N

E
T

 E
nt

ry
 t

ra
ff
ic

ra
te

 (
B

ps
)

18

17

16

15

14

13

12

11

10

9

8
4 5 6 7 8 9

Incoming
Outgoing

Slope is 2

log(Er)(Bps)

lo
g(
σ r

)(
B

ps
2 )

2

(a)

(b)

Figure 10 CERNET entry traffics with 30 s interval. (a) Time

series; (b) MVR in log-log scale.
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Figure 11 MVRs for DEC-PKT traces with 10 s interval. (a) dec-pkt-1; (b) dec-pkt-2; (c) dec-pkt-3; (d) dec-pkt-4.

power law form, and the slopes of their trend lines
are close to 2, i.e. 2H. For back bone traffic, the
ratio of different application traffics is very stable,
since the traffic is generated by a huge number of
sources. Thus the assumption that µ1 is constant
is reasonable, i.e. (17) and (20) can describe back-
bone traffic very well.

4.5 MVR for DEC-PKT traces

DEC-PKT traces involve four traces which are
used by Paxon et al.[8] to verify the self-similar na-
ture of network traffic. The details of these traces
are shown in Table 1. Each trace contains an
hour’s worth of all wide-area traffic between Digital
Equipment Corporation and the rest of the world.
In this subsection, we verify MVR by dominant
TCP flows in these traces. The Hurst value of these
flows are between 0.75 and 0.92. As shown in Fig-
ure 11, the power law MVR is generally satisfied,
and the exponent is between 1.5 and 1.8 i.e. c is
close to 2H. This shows that for classic traces, (17)
and (20) are satisfied very well.
Table 1 DECPKT traces info

Trace Start time Packets

dec-pkt-1 22:00, March 8, 1995 3.3 million

dec-pkt-2 02:00, March 9, 1995 3.9 million

dec-pkt-3 10:00, March 9, 1995 4.3 million

dec-pkt-4 14:00, March 9, 1995 5.7 million

5 Discussion on α1"α2

In this section, we show that when α1 " α2, MVR
should be irrelative with actual value of H, which
implies that the condition of α1 " α2 is inconse-
quent with actual observation.

Figure 12 B′
α(η).

As shown in Figure 12, when η & 1 − 3/α, the
derivative of B′

α(η) in log-log scale is close to 1,
which is not consistent with actual observation.
Thereby the assumption of α1 = α2 is unreason-
able. In the same way, as shown in Figure 13, when
η & 1−3/α, the derivative of B′′

α(η) in log-log scale
is always close to 1, which is not consistent with
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actual observation either. Therefore, assumption
α1 < α2 is unreasonable.

Figure 13 B′′
α(η).

6 Conclusion
In this paper, we derive an exact mean-variance
relationship (MVR) of IP network traffic from
ON/OFF model, which is a theoretical approach.
Therefore, our relationship is consistent with self-
similar nature of network traffic that satisfies ON/
OFF model. Then under specific precondition, we
derive the power law MVR from our exact MVR,
which proves that the empirical power law MVR is

an approximate form of our relationship, and the
exponent c should be set at 2H. These conclu-
sions imply that our relationship can theoretically
support those proposed TM estimation methods
that use power law MVR as their basic statistical
assumption. We verify our conclusion by public
DECPKT traces and actual network traffic in lab-
oratory network and campus network. And based
on actual observation for more than one year, we
verify that the power law MVR is generally suitable
for the traffic at proper volume or aggregated by a
large amount of sources, while our relationship can
describe more cases of actual network traffic very
well than empirical MVR.

In the further work, we still study several prob-
lems. (i) We plan to further study more traffic
samples generated by different typical applications
to validate our MVR. (ii) The existence of MVR is
now widely accepted; thus it should be considered
as an important character of network traffic. All
proposed traffic models and traffic generation algo-
rithms should be checked whether they can derive
proper MVR expression. (iii) New TM estimation
methods should be proposed based on our theoret-
ical MVR.
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