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Abstract— Performance predictions from wireless networking
laboratory experiments rarely seem to match what is seen once
technologies are deployed. We believe that one of the major
factors hampering researchers’ ability to make more reliable
forecasts is the inability to generate realistic workloads. To
redress this problem, we take a fundamentally new approach to
measuring the realism of wireless traffic models. In this approach,
the realism of a model is defined directly in terms of how
accurately it reproduces the performance characteristics of actual
network usage. This cuts through the Gordian knot of deciding
which statistical features of traffic traces are significant. We
demonstrate that common experimental traffic models, such as
uniform constant bit-rate traffic (CBR), drastically misrepresent
performance metrics at all levels of the protocol stack. We
also define and explore the space of synthetic traffic models,
thereby advancing the understanding of how different modeling
techniques affect the accuracy of performance predictions. Our
research takes initial steps that will ultimately lead to compre-
hensive, multi-level models of realistic wireless workloads.

I. INTRODUCTION

The evaluation of wireless technology requires the genera-
tion of workloads to test the viability and performance of the
new protocol or technique being studied. We believe that lack
of realism in traffic workload generation is one of the major
limiting factors that prevents simulations and experimental
network deployments from accurately predicting the real-
world performance of wireless technologies. Today, very little
is understood about the impact of different workloads on net-
work performance. Uniform constant bit-rate traffic (CBR) is
commonly used to evaluate protocols, but there is no evidence
that behavior under such workloads is an accurate predictor
of performance under real usage patterns. The inability to
experimentally forecast real-world performance is a severe
handicap to the wireless networking community. It hinders
the ability to effectively develop better solutions to the many
difficult problems that face emerging wireless technologies.

This paper presents a fundamentally new approach to cre-
ating realistic models of workload in networks. Rather than
subjectively choosing statistical measures that may or may
not actually influence network performance, we define the
realism of models directly in terms of their ability to accurately
reproduce important metrics. We define a traffic model to
be sufficiently realistic with respect to a given performance
metric, if the model produces metric values that are similar to
those observed using the original trace to generate traffic.

The ultimate goal of this research is to take an observed
trace of wireless traffic and reduce it to its essential charac-
teristics, allowing researchers to generate arbitrary amounts of

“similar” network traffic that exhibits the same performance
properties as the original trace. This resulting synthetic model
would also allow parameters to be altered for experimental
purposes; changing, for example, the number of active nodes,
the total number of flows, or the average data rate. This paper
takes important first steps in understanding which aspects of
the application-level traffic are essential, in the sense that
they determine network performance, and which features are
incidental, and may be altered without ill effect.

Much research has studied usage patterns in both wired and
wireless networks. A common feature of attempts to model
traffic patterns has been that the choice of statistical character-
istics to focus on is ultimately a matter of informed intuition.
Unfortunately, the interaction of users and applications with
the network seems to violate intuition more often than not,
and simple models of behavior almost invariably fail [1]–
[3]. Recently, in the context of mobility, it has been shown
that usage models can have a drastic impact on important
performance metrics [3]–[7]. In this work we explore the
effect of traffic models, rather than mobility, upon network
performance. There is a large and diverse body of work
on traffic analysis, modeling, and generation [1], [8]–[12].
Almost all of the traffic generation work has focused on wide-
area Internet backbone traffic. The two most prominent traffic
generation frameworks are Harpoon and D-ITG. Harpoon [9]
uses a traffic trace for self-training, and can subsequently
generate synthetic traffic with certain statistical properties
based on the original trace. D-ITG [10], [11] generates flows
using a simple predefined (but configurable) independent sam-
pling model for packet sizes and inter-packet intervals. While
both Harpoon and D-ITG provide excellent Internet traffic
generation platforms, our results indicate that the properties
modeled in these systems are not adequate for reproducing
realistic performance in the wireless setting.

II. METHODOLOGY

Our general approach to understanding the realism of traffic
models can be described as differential analysis with respect
to performance metrics. The traces themselves serve as the
control “model” of behavior, being the only known example of
realistic workload. We study the impact of deviating from the
trace behavior in various ways. Simulations are run using both
the original trace traffic and corresponding traffic generated by
synthetic models. For the comparison, we preserve as many
features from the traces as each synthetic model will allow. For
example, if a model alters the sizes of packets and inter-packet
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Figure 1: The number of active nodes and flows over time.

intervals, we ensure that the average packet size and average
interval remain the same, so that the experimental comparison
is fair. If the performance metrics of the synthetic model
are significantly different from those of the original trace,
then the model fails to capture the essential characteristics
of traffic behavior. If the performance metrics are similar, we
can conclude that the synthetic model abstracts away only non-
essential traffic characteristics.

A. Trace Data & Simulations

For our analysis, we use a 24-hour trace recorded in an
infrastructured 802.11g wireless network with 18 access points
deployed at the 60th Internet Engineering Task Force meeting
(IETF60), held in San Diego during August of 2004. The
traffic trace was captured using tcpdump at a single router,
through which all wireless traffic for the meeting was routed,
including traffic between wireless nodes. The snap length of
the capture was 100 bytes, allowing all IP, UDP and TCP
headers to be analyzed. We limit our analysis to the 24-
hour sub-trace recorded on Wednesday, August 4th. This trace
contains a broad variety of behaviors and entails a very large
volume of traffic: 2.1 million flows, 58 million packets, and
52 billion bytes. Figure 1 shows the wide variations in the
number of active flows and nodes over the course of the trace.
This heterogeneity of behavior gives us greater confidence that
success or failure of traffic models is not tied to any specific
network condition or behavior, but is broadly applicable.

The first task is to extract application-level behavior from
the trace header data. First, we split the trace into individual
data flows. A flow is a series of packets sharing the fol-
lowing attributes: IP and transport protocols (raw IP, ICMP,
TCP, UDP); source and destination IP addresses and TCP/UDP
port numbers. Next, the quantity of application-initiated data
contained in each packet is calculated. For non-TCP packets,
this quantity is simply the size of the transport-layer payload,
but for TCP the calculation is more complicated: only new data
transfers, explicitly initiated by the application, are counted.
Data retransmitted by TCP is disregarded, and empty ACKs
are ignored. SYN and FIN flags in packets (even empty ones)
are counted as a byte each, since they are explicitly signaled
by the application. After processing, we have a collection of
flows, each with a sequence of timestamps and the amount of
application-initiated data sent at that time.

We use the Qualnet wireless network simulator to perform
our experiments. We simulate a stationary multi-hop 802.11g
network using the Ad hoc On-demand Distance Vector (AODV)
routing protocol [13], with nodes placed randomly in a square

field with sides of 150 meters. In addition to the active
nodes corresponding to trace IPs, half as many “infrastructure”
nodes are added to each simulation: these nodes initiate no
data, and simply serve as additional network relays. Our
simulations resemble 802.11 multi-hop mesh networks of the
kind that are increasingly studied and deployed for the delivery
of broadband access in residential, corporate or conference
settings.

One possible point of objection to our methodology is that
we use infrastructured trace data to drive multi-hop network
simulations. Other potential objections stem from disregarding
the interaction of different aspects of the original network: TCP
feedback, physical environment, node mobility, and handover
behavior. While it is true that these aspects all influence traffic
patterns and performance, being able to approximate traffic
behavior accurately in isolation is still far better than not being
able to approximate it at all, which is the current situation.
Before we can hope to understand the interaction between
workload and other aspects of network behavior, we must
study traffic patterns alone and learn to model them without
additional complicating factors. Finally, we study a multi-hop
wireless network because it is more sensitive to workload, and
thus serves as a more delicate tool to measure the impact of
traffic models.

The 24-hour trace is split into 144 10-minute segments, each
of which serves as the basis for a set of simulations using
different traffic models. We present the various traffic models
in Section II-B. To preserve the fairness of the performance
comparison, we keep as many features as possible constant
across different traffic models. The traffic generated by each
synthetic model preserves as many characteristics from the
original trace as possible, within the constraints of the model.
Moreover, for each 10-minute segment, the following features
are preserved across all models: the numbers of wireless nodes,
the number of flows, the number of application-initiated data
units sent, the total bytes of application data sent, and the
average flow duration (and therefore the average data rate).

B. Traffic Models & Performance Metrics

Traffic generation models determine three orthogonal levels
of traffic behavior:

1) Flow End-Point Topology: which nodes communicate
with each other, and how frequently; i.e. how flow end-
points are mapped onto nodes in the network.

2) Flow Behavior: high-level parameters for each flow;
including start time, end time, packets sent, bytes sent.

3) Packet Behavior: sizes of individual packets, and the
interval between their transmission.

Examples of different behaviors at each level are illustrated in
Figure 2. For instance, Figures 2A and 2B show the difference
between the layout of flow communication in an actual trace
scenario as compared with the layout when the same flows are
distributed randomly between end-points.

We consider the following two traffic models because they
are the ones most commonly used to generate workload in
wireless experiments:
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Figure 2: Examples illustrating the different traffic models for the three levels of behavior. Figures 2A and 2B show example flow topologies.
The width of each line is proportional to the logarithm of the number of flows between the nodes it connects (zero is the Internet gateway).
Uniform and trace flow behavior examples are plotted in Figures 2C and 2D. The time axis indicates when flows start and end; the width of
each flow line is proportional to the logarithm of its data rate. Figure 2E compares CBR packet behavior with the trace of an actual flow. In
the uniform model, the cumulative data sent increases smoothly over time, whereas in the actual packet trace, the transmissions are variable
both in size and in inter-packet interval, leading to a “lumpy” cumulative data plot.

• RandomUniformCBR: flows are CBR, and all have equal
duration, packet count, and bit-rate. The end-points and
start times are chosen randomly.

• UniformCBR: the same as RandomUniformCBR, but the
end-points of each flow are taken from the trace.

These two models serve as reference points for our exploration
of the traffic models. Their inclusion also allows us reason
about the accuracy of current evaluations.

We explore the space of synthetic models starting from both
the top (end-point topology) and the bottom (packet behavior).
The following models alter only packet behavior:

• CBR: constant bit-rate; within each flow, packets are all
the same size and all inter-packet intervals are equal.

• SampleTime: a per-flow histogram of inter-packet in-
tervals is used to randomly generate synthetic packet
behavior; packet sizes from the trace are used.

• SampleSize: the same as SampleTime, but sampling
packet sizes instead of inter-packet intervals.

• SampleTimeSize: both inter-packet intervals and packet
sizes are sampled from histograms independently.

Note that variable bit-rate (VBR) traffic models, sometimes
used for audio, video or voice traffic, are simply special cases
of one of the last three models.1

We also consider the following traffic models that alter only
the flow end-point topology:

• ShuffleEndPoints: permutes the flow end-points; this is
equivalent to permuting the locations of nodes.

• RandomEndPoint: choose random end-points for each
flow, each node having equal probability.

• SampleEndPoint: flow end-points are sampled from in-
dependent histograms of source and destination nodes.

• SampleEndPointsJoint: flow end-points are sampled
from a joint histogram of source-destination pairs.

In order to evaluate the realism of these traffic models,
we have selected four commonly used performance metrics
at different layers of the protocol stack:

1VBR models are typically used with a single fixed distribution of intervals and sizes
for all flows. Greater fidelity is expected here since each flow is modeled with the exact
distribution of its trace behavior. In further research, we have found that using VBR with
a single distribution across all flows distorts performance nearly as much CBR does.

1) Application: end-to-end delay and received throughput.
2) Network: AODV control overhead (RREQ/RREP/RERR).
3) Link (MAC): packet retransmission rate.

III. RESULTS

Our experimental results are summarized in Figure 3. Box-
and-whisker plots are a common way of concisely summa-
rizing distributions of values. The values summarized in this
case are the error ratios of the four metrics in each of the 144
simulation scenarios simulated. The error ratio for a scenario
is the metric value observed using the alternate traffic model
divided by the value observed using trace traffic. The error
ratios are plotted on a log-scale (shown under each set of
plots); this makes underestimation by some factor symmetric
with overestimation by the same factor. A traffic model that
realistically represents a performance metric should have a
narrow box, centered around the middle line, indicating error
ratios generally close to unity. If the box is too wide, the values
are highly unreliable; if the box is not centered, the metric in
question is being consistently misrepresented.

To begin our analysis, we examine the most common
model used to generate experimental workloads: RandomU-
niformCBR. In this model, all aspects of flow behavior are
homogeneous—all flows have the same number of packets,
duration, and data rate. Each flow is a steady stream of
identical packets. The end-points of streams are randomly
selected, and the start time of each stream is chosen randomly.
This traffic model drastically skews every single performance
metric we present, as well as others not shown. More than
half of the time, received throughput is overestimated by
more than seven times; 70% of the time, it is overestimated
by more than a factor of two. This case demonstrates the
need for this research: this common traffic model is not
effectual for predicting general network performance under
real usage conditions. The UniformCBR model provides a
significant improvement in representation accuracy, but still
skews all metrics considerably. The improvement, however,
demonstrates that simply understanding which nodes talk to
each other and with what frequency can significantly improve
the accuracy of performance predictions.
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Figure 3: Box-and-whisker plots of log-ratio error values for all metrics and traffic models. The lower axis indicates the log-ratio, while the
upper axis shows raw ratio values. Each box contains the central majority of log-ratio values: the left and right bounds are at the 25th and
75th percentiles. The dark middle line indicates the median value, while the diamond marks the mean. The whiskers (dotted lines) extend to
the furthest non-outlier values, while the points beyond that are outliers. The notch in the middle of each bar indicates a 95% confidence
interval for the true underlying median value; if two notches do not overlap, they are very unlikely to have the same median.

Next, we consider models that only deviate from the trace
by altering packet behavior: CBR, SampleTime, SampleSize,
and SampleTimeSize. These models should be fairly accurate,
since they are using real flow behavior (duration, packet count,
data rate), and end-point topology, synthesizing only the sizes
and intervals of individual packets within each flow. Despite
the limited domain of synthesis, CBR traffic does not fare
well: it underestimates average delay by 30% more than half
of the time, and by 40% on average. CBR appears to fare
better for network and link-layer metrics, until one notes
that the other models all achieve near-perfect accuracy for
these metrics. The star traffic model of this category is the
SampleTimeSize model: it has mean and median error values
near unity for every metric, and consistently has a small box
width. Interestingly, sampling only time or size does not yield
better results—it is better to sample both, independently. The
conclusions to be drawn from these models are: 1) CBR, even
with completely realistic higher level behavior, is a poor model
for generic wireless network traffic; 2) neither packet sizes, not
inter-packet intervals need to be modeled with time-series—it
is adequate to simply sample each repeatedly, from a single
distribution, so long as that distribution is realistic.

The metrics that alter only end-point topology are Shuf-
fleEndPoints, RandomEndPoint, SampleEndPoint, and Sam-
pleEndPointsJoint. The ShuffleEndPoints model serves as a
control for this group of models because the flow topology
generated is isomorphic to that of the original trace, with
only the physical locations of nodes permuted. It should—
and does—have median error values close to unity. Moreover,
the size and shape of the error distribution for this model
dictates how well other models should represent metrics: if
a synthetic model accurately captures the essential topological
characteristics, it should have an error distribution similar to

the ShuffleEndPoints model. None of the other models fares
particularly well here: they each fail at one level or another.
Unlike the case of packet behavior, we cannot simply sample
the empirical topology pattern and achieve realistic behavior.
More advanced topology models must be developed to capture
the intricate patterns of connecting nodes in real networks.

IV. CONCLUSIONS

This paper represents the first steps toward understanding
the complexities of how traffic workload affects performance
metrics in wireless networks. There are three immediate,
concrete conclusions we can draw:

1) Packet behavior does not require complex, time-series
models to accurately reproduce performance under real
workloads. If the higher levels of traffic are properly
modeled, a simple independent sampling approach will
work for both packet sizes and inter-packet intervals.

2) Flow end-point topology, or which nodes talk to each
other and how frequently, does require complex mod-
eling, at least beyond the simple sampling approaches
attempted here.

3) Common traffic models such as RandomUniformCBR
are inadequate for modeling real workload. Performance
assessments made using such models are potentially off
by as much as an order of magnitude.

A far more important contribution of this work, however,
is the general framework and methodology it provides for
exploring the realism of traffic models. Our approach promises
to yield rich results, culminating in comprehensive, multi-level
traffic models that can reliably generate wireless workload
that accurately represents real-world usage. We are currently
extending sampling-based packet models to the levels of flow
behavior and end-point topology. This extension requires the



development of new data-mining techniques that allow discov-
ery of behavioral similarities across flows. These techniques
promise to provide highly general techniques for distilling
the essential characteristics of network traffic. With realistic,
multi-level traffic models models, the networking community
will be able to make confident performance predictions from
experimental evaluations.
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