Analysis and experimentation of an open distributed platform for synthetic
traffic generation

Donato Emma, Antonio Pescape’ and Giorgio Ventre
Dipartimento di Informatica e Sistemistica, University of Napoli “Federico 11" (Italy)
demma@napoli.consorzio-cini.it, {pescape,giorgio}@unina.it

Abstract

This work presents an open distributed platform for
traffic generation that we called Distributed Internet
Traffic Generator (D-ITG), capable of producing traffic
(network, transport and application layer) and of
accurately replicating appropriate stochastic processes
for both IDT (Inter Departure Time) and PS (Packet Size)
random variables. We implemented two different versions
of our distributed generator. In the first one, a log server
is in charge of recording the information transmitted by
senders and receivers and these communications are
based either on TCP or UDP. In the other one, senders
and receivers make use of the MPI library. A complete
performance analysis among centralized version and the
two versions of D-ITG is presented. To our knowledge, no
similar works are available.

1. Introduction

Network management has so far been dominated by
passive monitoring. Emerging networking technologies
however force the development of active testing and
performance analysis tools. In the case of studies related
to the Internet, the experiments should not only reflect the
wide scale of real scenarios, but also the rich variety of
traffic sources, in terms of both protocol typologies and
data generation patterns. As a consequence, traffic models
can be applied to the generation of synthetic, yet realistic
traffic to be injected into networks. In order to be as
realistic as possible, traffic models should accurately
represent relevant statistical properties of real data flow
[1]. For this purpose, we developed a tool, named D-ITG
(Distributed Internet Traffic Generator) [44] that
generates network traffic according to the models
proposed for different protocols. We implemented traffic
generations for several protocols belonging to layers from
4 to 7 of the TCP/IP stack. The user can simply choose a
protocol and is not requested to know its model. In
addition, the user can generate a specific traffic pattern by
using several random distributions to model the IDT
(Inter Departure Time) and PS (Packet Size) processes.
Besides incorporating theoretical models into our
generator, we also focused on improving the performance
achieved by the sender (in terms of generated data rate)
and the receiver (in terms of received data rate). This goal
led us to the implementation of two kinds of distributed

generators. In the first distributed version, a log-server is
used by senders and receivers to maintain the information
needed to compute statistics about the experiment made.
Data between sender and log-server and data between
receiver and log-server can be carried out using either
UDP or TCP. In the second distributed version, senders
and receivers have been implemented using the MPI
(Message Passing Interface) library. We move our
research towards a distributed architecture able to de-
localize logging processes in order to minimize the
interference at receiver and sender side and to de-localize
logging process with the added value of distributing
generation tasks on a cluster of network nodes. Since the
logging operations are demanded to the log-server,
senders and receivers do not waste time in storing data.
By eliminating the interference of logging operations on
generation and reception activities, the performance of
both senders and receivers proved to be improved. The
distributed implementations of D-ITG turn out to be
advantageous in a heterogeneous mobile scenario made of
devices (e.g. PDAs or PocketPCs) having a very small
storage capacity. Indeed, a mobile device sends or
receives packets while the logging activity is delegated to
a log server having more resources. Due to the nodes’
limited resources (RAM, storage capacity, video
dimension, etc.) in wireless ad hoc networks, scalability is
crucial for network operations. In particular a distributed
approach to network communication using collaborative
mechanisms permits to reach performance comparable to
that of a wired scenario. Another interesting feature of the
distributed version of our traffic generator is the
possibility to use a unique log server in a wide complex
network scenario where a large number of processes
(senders and receiver) are present.

The rest of the paper is organized as follows. Section 2
shows D-ITG main topics and describes all the
components of the D-ITG platform: ITG-CV (centralized
version) component, ITG-LS (distributed version with
Log Server on a TCP or UDP channel) component and,
finally, ITG-MPI (MPI version of ITG) component. In
Section 3 a thorough analysis of our experimentations is
illustrated (referenced figures are shown in the Appendix).
Section 4 provides some conclusion remarks and presents
some interesting issues for research.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04) nn

COMPUTER
0-7695-2118-5/04 $20.00 © 2004 IEEE SOCIETY

2. Distributed Internet Traffic Generator (D-
ITG)

After having used some of the existing traffic
generators (TG Traffic Generators [2], NetSpec [3],
Netperf [4], Packet Shell [5], MGEN [6], Rude/Crude [7],
UDPgen [8], Linux Traffic Generator [9], Traffic
Generator (TG) [10], Traffic [11], PacGen [12], NTGen
[13]) for our network testing and measurement operations,
we experimented the lack of the necessary characteristics
in a single traffic generator. A complete analysis of related
works is presented in [15]. The purpose of our
Distributed Internet Traffic Generator is to build up a
suite that can be easily used to generate repeatable sets of
experiments by using a reliable and realistic mixture of
traffic typologies. D-ITG enables to generate many traffic
scenarios that could be originated by a typical network
test-case made of a large number of users and network
devices, as well as by different network topologies. Our
generator can simulate (and not emulate) traffic. In our
vision, for traffic simulation we mean the reproduction of
a ‘“traffic profile” according to theoretical stochastic
models. Instead, for traffic emulation we mean the
reproduction of a specific protocol (i.e. reproduction of
http messages without using a browser). In other words D-
ITG generates real flows on the base of theoretical
statistical model presented in the scientific literature. D-
ITG primary design goals are:

e reproducibility of network experiments: exactly the
same experiment can be repeated several times by
choosing the same seed value for the packet inter-
departure and packet size random processes

® investigation of scaling effects: scalability problems
can be investigated by using different network loads
or different network configurations

e improvement of generation performance with respect
to other traffic generators

* measurement of QoS parameters (delay, jitter, packet
loss and throughput)

The generation of realistic traffic patterns can help in
understanding protocols and applications of interest in
today’s Internet. Through the use of our tool, a network
administrator can evaluate the performance of a network,
locate possible problems and trace guidelines for network
planning and real implementation. The outcome of our
work was a software tool available to network researchers
and designers who need a scientific way to prototype new
applications and protocols in a real testbed with realistic
traffic. D-ITG defines a platform for traffic flows
generation with high generation performance. The D-ITG
platform consists of:

— ITG-CV : Centralized Version of Internet Traffic

Generator
— ITG-LS : Internet Traffic Generator with Log Server :

UDP and TCP implementation

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)
0-7695-2118-5/04 $20.00 © 2004 IEEE

— ITG-MPI : MPI (Message Passing Interface) version
of Internet Traffic Generator
ITG-LS is able to de-localize logging processes in
order to minimize the interference on the receiver and
sender processes. ITG-MPI is able to de-localize logging
process with the added value of distributing generation
tasks on a cluster.

2.1. ITG-CV

ITG-CV sender (ITGSend) and ITG-CV receiver
(UTGRecv) use a signaling channel to exchange
information on the generation process. Multiple
simultaneous flows are handled by different threads, each
of which sends packets using a separate data channel.
ITGRecyv is informed through the signaling channel about
the port where to listen for packets and the ending time of
the transmission. Each flow to be generated is basically
described by the packet inter-departure process and the
packet size process. Both processes are modeled as
independent and identically distributed (i.i.d.) series of
random variables. The user can choose a distribution for
these random variables among the many implemented
(constant, uniform, normal, cauchy, pareto and
exponential). Thanks to Robert Davies’ random number
generator library [14], it is very simple to add new random
distributions, so as to simulate different kinds of traffic
sources. The choice of these distributions is automatically
made by ITG-CV in case the user desires to simulate the
traffic generated by a specific protocol (generated packets
can be filled with a dummy payload). ITG-CV has been
planned for the generation of network traffic (ICMP),
transport layer traffic (TCP and UDP), several “layer 5-7”
traffic (HTTP, FTP, TELNET, SMTP, DNS, VolP,
Video, NNTP, ...). One of the features of our ITG-CV is
the possibility of specifying the seed value for the packets
inter-departure and payload size random processes; in this
way, it is possible to repeat exactly a particular realization
of these random processes. This feature provides for the
reproducibility of network experiments. To collect
statistics about the generation process and the network
behavior it is necessary to store some information in the
sent packets. The payload (both UDP and TCP) of sent
packets contains the number of the flow the packet
belongs to, a sequence number and the time it was sent.
This information is stored in a log file, that is processed at
a later stage in order to provide, for example, the average
delay (either one-way-delay or round-trip-time) and the
loss rate experimented by packets. The logging process
interferes with the other activities of the sender and the
receiver, limiting the maximum achievable generation
rate. In order to reduce this interference, ITG-CV
components use a buffer to temporarily store the logging
information related to a set of packets. When the buffer is
full, its content is stored on the hard disk. The log file is a
binary file that can be decoded using our decoder utility.

nn

COMPUTER
SOCIETY

The traffic generation process 1is also heavily
influenced by the CPU scheduling: several processes
(both user and kernel level) can be running on the same
PC and this has a bad impact on the quality of the
generated flow. Since the real-time support of the
operating systems where ITG-CV can be used is not very
efficient (due to their scheduling mechanism and the
inevitable timer granularity), it was necessary to use a
strategy. A variable records the time elapsed since the last
packet was sent; when the inter-departure time must be
awaited, this variable is updated. If its value is less than
inter-departure time the remaining time is awaited,
otherwise the inter-departure time is subtracted from the
value of this variable and no time is awaited. This strategy
guarantees the required bit rate, even in presence of a non
real-time operating system. Logging of sent packets, one
of the features of our ITG-CV, shows that generated
traffic strictly adheres to user’s requirements. Another
propriety of our generator is the possibility of setting a
high priority for the generation process (this feature is
available in RUDE/CRUDE generator too). If supported
by the operating system, this feature enables to achieve
even better performance. We have conducted an
experiment in order to compare the performance of ITG-
CV to those of other traffic generators. Figure 1 illustrates
the generation data rate achieved by various generators
(ITG-CV, RUDE, TG 2002 and MGEN) and the expected
value when the packet size is fixed (1024 bytes) and the
packet rate ranges from 10000 to 30000 pkt/s. Figure 1
shows that even the non-distributed version of D-ITG
performs better than the other generators in the sense that
it is the closest to the ideal curve. In the sequel we will
show that further improvements are gained by using our
distributed versions. In this paper we focus on
performance analysis of the distributed implementations.
More details and a performance evaluation of the
centralized version of our generator can be found in [15].

2.2. ITG-LS

The generation of traffic flows that are modeled with
two random processes (inter-departure time and payload
size) calls for very strict constraints on the sender/receiver
activity. The transmission time is imposed by the
statistical characterization of the inter-departure time. To
adhere to the required inter-departure model the sender
must have the necessary resource to send the packet.

Other processes running on the sender machine, or
some activity of the sender such as the log management,
can influence the generation process limiting the
maximum sustainable sending rate. For example, writing
the log file causes a high amount of interference, since it
requires the use of system calls to store the flow
information on a slow device (the hard disk). The
distributed components of the D-ITG platform delocalize
this auxiliary activity on another machine. One of the

ideas that drive the D-ITG platform architecture is the
reduction of the file system access rate on the machine
that sends or receives packets. ITG-LS exploits the
possibility of managing remote information using a fast
network more quickly than information stored on an local
hard disk device [16,17]. In the last few years, to improve
the implementation of activities which require the use of
the file system, different approaches, based on the use of
the memory of remote machines connected through a fast
network, have been proposed [18,19].

260
240 a
220 1
@ 200 —— RUDE
o
2 180 --fa
E . [— TG 2002
& 160 — MGEN
14 140
8 T Bpedted
& 120
100
80 /
60
10000 16000 20000 30000

phtrate [pkts]

Figure 1. Data Rate Analysis

The new element of ITG-LS, with respect to ITG-CV,
is ITGLog (see Figure 2). ITGLog is a “log server”,
running on a different host, which receives and stores the
log information from multiple senders and receivers. The
logging activities is handled using a simple signaling
protocol. This protocol allows each sender/receiver to
register on, and to leave, the log server. The log
information can be sent using either a reliable channel
(TCP) or an unreliable channel (UDP).

Data Flow

ITGSend

eleq Boq

ITGLog

Figure 2. Architecture of D-ITG with Log Server

The maximum sustainable sending rate of the ITG-LS
implementation of the D-ITG platform is substantially
greater than that achieved with ITG-CV. Experimental
results that are shown in more detail in section 5.
Assuming a loss rate equal to 0, both UDP and TCP
implementations of ITG-LS have a sustainable bit rate that
is approximately 9% greater than that of ITG-CV. The
two implementations of ITG-LS differ if we relax the
requirement on the loss rate. If we assume an acceptable
loss rate up to 5%, the UDP version of ITG-LS can
achieve a maximum bit rate greater than that achieved

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

COMPUTER
0-7695-2118-5/04 $20.00 © 2004 IEEE SOCIETY

with the TCP version. However, the TCP implementation
of ITG-LS can be used in some scenarios, such as that
shown in figure 3, where the use of an unreliable channel
for the log packet transfer can lead to some information
loss.

ITGSend
ITGRecy

Log Data

Comm. Tower

Figure 3. Network Scenario for ITG-LS TCP
implementation

2.3. ITG-MPI

The traffic that affects links shared by hosts having
different applications running at the same time (such as
that of the backbone of the Internet) is the result of the
combination of different, statistically independent, flows.
It may be possible to simulate it using multiple senders,
each of which is associated to one of the component
flows. If the different senders run on a single machine, for
example if the senders are threads of ITG-CV or ITG-LS,
their mutual interference can limit the quality of the
generation process. In such scenario only aggregated
flows characterized by a low sending rate can be
simulated. ITG-MPI addresses this problem using a
cluster of workstations to delocalize the generation
process of an aggregated traffic flow. Moreover, with
ITG-MPI, so as with ITG-LS, it is possible to delocalize
the logging process using an appropriate log server. To
support the distributed generation, ITG-MPI uses the
Message Passing Interface (MPI) [20, 21]. MPI is a well
established standard for message passing communication
that has been accepted in the current practice of parallel
computing for scientific applications. MPI has emerged as
the de facto standard for writing portable parallel
programs and it includes wide support for collective
communication. The MPI interface offers several
mechanisms that can be used to exploit specific features
possibly provided by the underlying hardware/software
transport. Processes in MPI communicate with each other
by sending and receiving messages, whether the
communication is taking place within the context of an
inter-communicator or intra-communicator. Data transfer
from one process to another requires operations to be
performed by both processes. Thus, for every MPI send,
there must be a corresponding MPI receive performed by
the process for which the message is bound. Several
works have been performed both on performance [22, 23,
24, 25] and on the optimization of point-to-point and/or

collective communications in MPI [26, 27, 28, 29].
Another interesting research field is the use of MPI in
network communication [30, 31]. There exist different
implementations of the MPI library for different computer
architectures [32, 33]. ITG-MPI is based on the LAM [34]
implementation of the Message Passing Interface. In order
to generate n flows, ITG-MPI creates and delocalizes n
processes on a cluster of workstations (see figure 4). This
cluster acts as the sender of the generation experiment. If
the log for the sender activity is required (the log for the
receiver is always on), to generate n traffic flows ITG-
MPI creates n+1 process, the first of which acts as log
server. The log information is sent from the
senders/receivers processes to the log process using the
MPI communication primitives. To optimize this
communication, and to limit its interference on the
sending/receiving processes, ITG-MPI uses two buffers to
store the log information. In such a way, using the
asynchronous communication primitives of MPI, ITG-
MPI overlaps the log information exchange with the
generation process. The overhead due to the use of the
MPI communication primitives in sending the logging
information can lead to a reduction of the maximum
sustainable sending and receiving rate with respect to the
TCP/UDP implementation [35, 36]. Experimental results
show that the reduction is negligible and an ITG-MPI
sender or receiver is comparable to an UDP ITG-LS
sender or receiver.

ICMP Sender
Bl

DNS Sender

Teinet Sender

Data Flow

Aggregale
S Traffic:
ITGRacy Generator (B8 |

Fip Sent..ler ‘ 1
|

£33
Log Sever

Figure 4. MPI D-ITG architecture

3. Analysis and Performance Evaluation

The main goal of the analysis presented in this section
is the determination of an upper bound for the generation
rate achieved by D-ITG. We compare the performance of
the three different implementations of D-ITG. We focus
on the comparison between ITG-LS and ITG-MPI in
order to evaluate the possible overhead induced by the use
of the MPI library to remotely log information. This
evaluation is carried out because we are working on a
scenario where processes are able to move on a “Traffic
Generator Cluster” in a native way. The evaluation of the
performance of the three implementations of D-ITG

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04) nn

COMPUTER
0-7695-2118-5/04 $20.00 © 2004 IEEE SOCIETY

presented in sections from 5.2 to 5.3 refers to a constant
UDP traffic (constant packet size and constant packet
rate) and consists of three steps:
1. given c, determining the value of D that corresponds to
the maximum packet rate achieved while varying C
2. given D equal to the above value and C, determining
the value of ¢ such that there are no losses
3. given ¢ e D according to 1 and 2, determining the
maximum bit rate such that the losses are negligible while
varying C

This process has been carried out separately for D-ITG
sender and receiver. We considered different
configurations (sender and receiver on the same machine
or different machines) on various hardware architectures.
The results obtained on different architectures are, apart
from a scaling factor, congruent. For this reason, we
present in the sequel the measures related to a specific
implementation. In particular we present the average
values on 50 different trials (trails duration is equal to 60

S).

Verde4 Verde3

Sender —> Receiver
Verde1 Verde2

100 Mbps

1 Gbps

Figure 5. Testbed Architecture

3.1 Testbed architecture

The testbed used to carry out the measurements is
depicted in Figure 5. It is a cluster made of four PCs
having the Linux Red Hat 8.0 — kernel 2.4.18.14 operating
system. The figures indicated in this section are present in
the appendix that is downloadable at
http://www.grid.unina.it/software/ITG/D-
ITGpubblications/UoN-FTDCS04appendix.pdf.

3.2. Analysis of the performance of the Sender
Optimal size of the log buffer: D

Figure 6 illustrates the packet rate achieved by the
sender of the three implementations of D-ITG as a
function of the size of the log buffer D and the required
packet rate C. It is possible to note for all the
implementations that the maximum achieved packet rate
grows as the value of D grows. The gain obtained while D
grows decreases and becomes negligible for values greater
than 30 for the local implementation and 40 for the other
implementations. This means that it is possible to identify
an upper bound to the generation capability of the D-ITG
senders. The performance improvement can be intuitively

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)
0-7695-2118-5/04 $20.00 © 2004 IEEE

explained by considering that the interference of the log
operations on the generation of packets decreases as D
increases, since the log operations are performed less
frequently. It is also intuitive that the gain decreases as D
grows, since further increases on D have a negligible
impact on the performance of the sender. In order to
determine the optimal value of D, we can refer to Figure 7
that illustrates the percentage error of generation (packets
that the sender is not able to generate) as a function of D
and the required packet rate. In the case of local
implementation, we observe a negligible error rate for
D=30 and required packet rate close to 28000 pkt/s. The
error rate is about 5% for a packet rate close to 30000
pkt/s. We can therefore consider an optimal D value of 30,
which is related to a maximum achieved packet rate of
28000 pkt/s. In the case of the other implementations, it is
easy to draw an optimal D value of 40, in correspondence
of a maximum achieved packet rate of 30000 pkt/s.
Optimal packet size: c

Figure 8 depicts the error rate
(logged_bit_rate/expected_bit_rate) as a function of the
packet size for the three implementations of D-ITG. From
this figure, we can deduce that the optimal packet size is
1024 bytes for all the implementations. For larger values,
the gain in terms of data rate is limited while the error rate
blows up (about 30% for ¢=1536 bytes). In this last case
we test the behavior with packets length > 1500 bytes
(Maximum Transfer Unit).

Maximum achieved bit rate: C

Figures 9 and 10 shown the bit rate and the error rate
as functions of the packet rate C for all the
implementations of D-ITG, given ¢ and D equal to the
optimal values determined in the previous sections. It is
possible to deduce that the maximum achieved bit rate is
about:

e 218500 kbps for C= 28000 in the case of the local
implementation

e 230000 kbps for C= 28000 in the case of the
implementation with remote log server (both for
UDP and TCP implementation)

e 230000 kbps for C= 28000 in the case of the MPI
implementation

The implementation with remote log allows a gain in
terms of maximum achieved bit rate equal to 11500 kbps
(about 5%) with respect to the local implementation. We
can also note that the MPI implementation achieves the
same maximum bit rate of the implementation with a
remote log server.

3.3 Analysis of the performance of the Receiver
Optimal size of the log buffer: D

As for the performance analysis of the Sender, Figures
11 and 12 illustrates the results of the measures indicated

COMPUTER
SOCIETY

by 1 in Section 5. The resulting trend is very similar to
that obtained for the sender: the performance achieved by
the receiver improves and the gain decreases as D grows.
Concerning the evaluation of the optimal size of D, from
Figures 11 and 12 it is possible to draw an optimal value
of 22000 pkt/s with D=30 for all the implementations.
Optimal packet size: ¢

Figure 13 depicts the error rate
(logged_bit_rate/expected_bit_rate) as a function of the
packet size for the receiver of all the implementations of
D-ITG. For values of the packet size up to 1024 bytes, the
receiver data rate is equal to that expected. For values of
the packet size above 1024 bytes, we can note a
considerable packet loss (about 20% in correspondence of
¢=2048). These considerations apply for all the
implementations. Therefore, the optimal packet size is
again 1024 bytes.

Maximum achieved bit rate: C

Figures 14 and 15 enable to determine the maximum
data rate achieved by the D-ITG receiver without losing
packets. The maximum data rate supported by ITG-CV is
about 163500 kbps. ITG-LS (both udp and tcp) and ITG-
MPI implementations of D-ITG present a similar
behavior: the maximum supported data rate grow to about
180000 kbps. For the receiver, the implementation with
remote log, so as the MPI implementation, allows a gain
in term of maximum achieved bit rate equal to 16500 kbps
(about 10%) with respect to the local implementation.
This gain is greater than that achieved for the sender both
in absolute and relative term.

4 Conclusion and Future Work

This work steps from the assumption that currently the
Internet traffic generation is an important research task.
Indeed, both the tutorials presented at SIGCOMM 2003
[37] and MMNS 2003 [38] have shown that Internet
traffic patterns and models are particularly interesting for
networking research community. In this work we
presented a general framework for traffic generation and
performance characterization of our distributed platform
named Distributed Internet Traffic Generator (D-ITG). A
number of tests were conducted on our real testbed to
evaluate important factors such as max data rate, optimal
packet size and optimal buffer size. Furthermore this work
shows that even the non-distributed version of D-ITG
performs better than the other generators. We presented
three components of our D-ITG platform: a centralized
version, two distributed version with log server (using
UDP and TCP channel) and finally an MPI version. We
showed how the distributed versions perform better than
the centralized version. In addition, we need a distributed
version in two kinds of contexts. In the former, the
network scenario contains several PDAs. In this case a
remote log server (both for sender and receiver phase) is

useful because the storage capacity of PDAs is limited. In
the latter, in a complex wide network scenario it is useful
to have a single log server to coordinate the actions of
several processes (senders and receivers). Currently a real
network is heterogeneous in terms of access networks,
operating systems and end users devices. As far as this last
point, we have arranged a realistic scenario where the
traffic generation/reception is possible from/to PDAs or
Advanced Mobile Phone. Indeed, the introduction of a
remote log server is justified not only by the will of
increasing performance (by reducing the interference of
the logging operations on the generation and reception
activities), but also by the lack of available resources on
devices such as advanced mobile phones and PDAs. In
such heterogeneous scenario, if the sender device is
requested to locally log information, the amount of traffic
that may be generated is severely limited. In order to carry
out a complete characterization of heterogeneous
integrated and mobile networks D-ITG has been ported on
several different operating systems: Linux, Windows, and
embedded operating systems. With respect to this last
platform in our testbed we used PDAs running Linux
FAMILIAR - kernel 2.4.18 version, and the original
source code, with little modifications, has been ported on
this destination platform using a cross-compiler version of
gce. Using this implementation is possible to carry out a
complete characterization of a real heterogeneous mobile
network. Indeed, D-ITG enables performance evaluation
of heterogeneous devices (Laptop, PC desktop, IPAH, ...)
over heterogeneous networks (Wired LAN, WLAN,
GPRS, ...). A complete characterization of heterogeneous
networks is reported in [39, 40]. Finally we will
implement another distributed version of our generator
using PVM (Parallel Virtual Machine) [41] in order to
carry out a comparative study between MPI version and
PVM implementation. Finally, currently our testbed
allows experiments on a small-scale. We will test the
system behavior on a realistic network of a much wider-
scale. Thanks to our distributed platform, by using MPI
mechanisms and testing Open Mosix [42, 43] environment
on a real much wider cluster we will reach a big amount of
traffic trunks. D-ITG is currently downloadable and freely
available at www.grid.unina.it/software/ITG.

Acknowledgement

This work has been carried out partially under the financial
support of the “Ministero dell'Istruzione, dell'Universita e della
Ricerca (MIUR)” in the framework of the FIRB Project
"Middleware for advanced services over large-scale, wired-
wireless distributed systems (WEB-MINDS)".

References
[1] M. Zukerman, T. D. Neame and R. G. Addie, “Internet
Traffic Modeling and Future Technology Implications”,
Infocom 2003

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04) nn

COMPUTER
0-7695-2118-5/04 $20.00 © 2004 IEEE SOCIETY

[2] http://www.caip.rutgers.edu/~arni/linux/tg1.html

[3] http://www.ittc.ku.edu/netspec/

[4] http://www.netperf.org/

[5] http://playground.sun.com/psh/

[6] http://manimac.itd.nrl.navy.mil/MGEN/

[7] http://www.atm.tut.fi/rude

[8] http://www.fokus.fhg.de/usr/sebastian.zander/private/udpgen
[9] D. Papaleo, S. Salsano, "The Linux Traffic Generator",
INFOCOM Department Report 003-004-1999 - University of
Rome “La Sapienza”

[10] Paul E. McKenney, Dan Y. Lee, Barbara A. Denny,
"Traffic Generator Software" - Release Notes, SRI International
and USC/ISI Postel Center for Experimental - January 8, 2002
[11] http://rsandila.ezfish.net/traffic.html

[12] http://pacgen.sourceforge.net/

[13] http://tochna.technion.ac.il/project/NTGen/html/ntgen.htm
[14] Davies, R., Newran02A — a random number generator
library on http://webnz.com/robert/nr02doc.htm

[15] A. Pescape, S. Avallone, G. Ventre “Analysis and
experimentation of Internet Traffic Generator”, NewZ2an’04,
Next Generation Teletraffic and Wired/Wireless Advanced
Networking, pp. 70-75 — ISBN 952-15-1132-X

[16] M. Dahlin, R. Wang, T. E. Anderson, D. A. Patterson.
Cooperative caching: Using remote client memory to improve
file system performance. In Operating Systems Design and
Implementation, pages 267 280, 1994.

[17] G. Ma, A. Reddy. An evaluation of storage systems based
on network-attached disks. ICPP’99, pages 278 286, 1999.

[18] M. Flouris, E. P. Markatos. The Network RamDisk: Using
remote memory on heterogeneous (NOWs). Cluster Computing,
2(4):281 293, 1999.

[19] Francisco Brasileiro and Walfredo Cirne and Erick Passos
and Tatiana Stanchi. Using Remote Memory to Stabilise Data
Efficiently on an EXT?2 Linux File System. In 20Th SBRC.

[20] MPI Forum, “MPI: A Message-Passing Interface
Standard”, International Journal of Supercomputer Applications,
Vol.3, No.4, pp 165-414, Aug. 1994.

[21] The MPI Forum, The MPI-2: Extensions to the Message
Passing Interface. http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html, July, 1997.

[22] M. Lauria and A. Chien, “"MPIFM: High performance MPI
on workstation clusters”, Journal of Parallel and Distributed
Computing, vol. 40(1), January 1997, pp. 4--18.

[23] H. Franke, C.E. Wu, M. Riviere, P. Pattnik, and M. Snir,
“*MPI Programming Environment for IBM SP1/SP2", Procs. of
the International Symposium on Computer Architecture, 1995.
[24] Dickens, P. and G. Thiruvathukal, "Performance Prediction
for MPI Programs Executing on Workstation Clusters", In the
conference of Parallel and Distributed Programming Techniques
and Applications 1998, July 13-16, 1998, Las Vegas, NV.

[25] P.H. Carns, W.B. Ligon III, S. P. McMillan and R.B. Ross,
“An Evaluation of Message Passing Implementations on
Beowulf Workstations”, Proceedings of the 1999 IEEE
Aerospace Conference, March, 1999.

[26] Mohak Shroff and Robert A. van de Geijn, “CollMark:
MPI Collective Communication Benchmark™, International
Conference on Supercomputing 2000, December 1999.

[27] Nicholas T. Karonis, Bronis R. de Supinski, Ian Foster,
William Gropp, Ewing Lusk and John Bresnahan, “Exploiting
Hierarchy in Parallel Computer Networks to Optimize
Collective Operation Performance”

[28] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A High
PErformance, Portable Implementation of the MPI Message
Passing Interface Standard”, Tech. Rep. Argonne National
Laboratories,
(http://www.mcs.anl.gov/mpi/mpicharticle/paper.html)

[29] Amit Karwande, Xin Yuan, and David K. Lowenthal, "CC-
MPI: A Compiled Communication Capable MPI Prototype for
Ethernet Switched Clusters," ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages
95-106, San Diego, California, June 11-13, 2003.

[30] Venkat, R., Dickens, P., and W. Gropp, "Efficient
Communication Across the Internet in Wide-Area MPI", To
appear: 2001 Conference on Parallel and Distributed
Programming Techniques and Applications, 2001

[31] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske
Plaat, Raoul A. F. Bhoedjang, "MagPle: MPI's Collective
Communication Operations for Clustered Wide Area Systems",
Proceedings of the Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Atlanta, GA,
USA, May 4-6, 1999.

[32] E. Lusk. MPI in 2002: has it been ten years already?. In the
Proceedings of IEEE International Conference on Cluster
Computing, 2002.

[33] Zhixin Ba, Haichang Zhou, Huai Zhang, Zhenxiao Yang.
Performance evaluation of some MPI implementations on
workstation clusters. In the Proceedings of the Fourth
International Conference/Exhibition on High Performance
Computing in the Asia-Pacific Region, 2000.

[34] J. Squyres and A. Lumsdaine and W. George and J.
Hagedorn and J. Devaney. The Interoperable Message Passing
Interface (IMPI) Extensions to LAM/MPI. MPI Developer's
Conference, Ithica, NY, 2000

[35] Rajkumar Vinkat and Philip M. Dickens and William
Gropp. Efficient Communication Across the Internet in Wide-
Area MPIL. In the Proceedings of Parallel and Distributed
Processing Techniques and Applications, 2001

[36] Saurab Nog and David Kotz. A Performance Comparison
of TCP/IP and MPI on FDDI, Fast Ethernet, and Ethernet.
Technical Report TR95-273, 1996.

[37] John Doyle and Walter Willinger, “10 Years of Self-
Similar Traffic Research: A Circuitous Route Towards a
Theoretical Foundation for the Internet”, Tutorial 2 at
SIGCOMM 2003 Conference

[38] Petre Dini, “Internet Multimedia Traffic Patterns”, Tutorial
3 at MMNS 2003 Conference

[39] A. Pescape, S. Avallone, G. Ventre “Distributed Internet
Traffic Generator (D-ITG): analysis and experimentation over
heterogeneous networks”, poster at ICNP 2003 (http://
icnp03.cc.gatech.edu/)

[40] A. Pescape, G. lannello, G. Ventre, L. Vollero,
“Experimental analysis of heterogeneous wireless networks”,
WWIC 2004, Wired/Wireless Internet Communications 2004,
LNCS Vol. 2957 - pp. 153 - 164, ISBN: 3-540-20954-9

[41] R. Manchek, “Design and Implementation of PVM version
3.0”, TR University of Tennessee, Knoxville, 1994.

[42] OpenMosix homepage, http://www.openmosix.org

[43] A. Barak, O. La'adan: “The MOSIX Multicomputer
Operating System for High Performance Cluster Computing”,
Journal of Future Generation Computer Systems, Vol. 13,
March 1998

[44] www.grid.unina.it/software/ITG

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04) nn

COMPUTER
0-7695-2118-5/04 $20.00 © 2004 IEEE SOCIETY

