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Abstract—eHealth services category has a diversified set of
traffic patterns and demands in terms of QoS assurances. Existing
QoS solutions were designed to support only aggregated classes of
service and cannot differentiate traffic based on an application’s
behavioral pattern. In order to improve the performance of
eHealth applications for home and mobile users there is a need to
develop new traffic identification techniques, which would work
at the edge of the network. This paper addresses the above prob-
lem by proposing machine learning-based approach for eHealth
traffic identification. We investigate different techniques which
combine the results from multiple machine learning classifiers
and show which combination of techniques is best suited for
identifying diverse eHealth traffic. Our approach is validated in
a mobile e-health application context and the results prove that
multi-classification techniques can be used in practice to provide
application-based service differentiation.

I. INTRODUCTION

Current telecommunication networks offer sufficient capac-
ity and connection speeds to enable innovative eHealth ser-
vices to both home and mobile users. eHealth and mHealth ap-
plications are gaining on popularity and network mechanisms
must provide appropriate Quality of Service (QoS) assurances
to support such applications. This task is challenging due to the
fact that eHealth application category is very diverse and spans
from simple consulting services to life-critical telemedicine
applications.

The solution to the problem of providing appropriate QoS
for a specific group of applications can be designed in two
completely different ways. One approach is to relay only on
network level mechanisms to detect applications and secure
sufficient network resources for service delivery. In this case
the application is not aware that the generated packets are
treated in a special way inside the network. This approach
requires installation of specialized traffic analysis software on
edge nodes.

The second approach is based on designing application
layer mechanisms, which would explicitly set the transmission
priority of a given application. This approach is much harder to
be implemented in reality due to the sheer number of currently
available applications and software development standards.
Such an approach raises also a concern in respect to the
priority assignment process. It is obvious that each developer
will opt for the highest priority in order to achieve the best
possible performance for a given network application. Based

on the reasoning presented above we decided to follow the
first approach in our research work.

In current networks the traffic generated by eHealth ap-
plications is treated in the same way as in case of other
applications, which are usually not that critical and far less
demanding in terms of QoS. In order to implement application-
based service differentiation there is a need to develop efficient
traffic classification methods as well as appropriate scheduling
and resource reservation techniques. In the literature we can
find papers, which investigate priority assignment and schedul-
ing techniques for eHealth applications [1]. However, such
mechanisms cannot distinguish medical applications and it
is assumed that eHealth traffic can be easily detected. Such
an approach may lead to incorrect classification of traffic
and decreased QoS for medical applications. Therefore, in
this paper we focus our efforts on designing advanced traffic
detection and identification techniques for eHealth applications
differentiation. We also study identification of single applica-
tions, which support multiple service channels and generate
diversified traffic patterns consisting of signaling packets as
well as voice, video and data flows. So far this problem have
not been properly addressed in the literature.

II. RELATED WORK

Traffic classification is an important part of Internet traf-
fic engineering and has applications in several fields such
as network monitoring, application identification, anomaly
detection, accounting, advertising and service differentiation.
Traffic classification mechanisms associate traffic flows with
specific application types. There are also traffic identification
mechanisms, which detect traffic generated by a specific
application. Both mechanisms are closely related because
classification cannot be performed without proper identifica-
tion of applications. Traffic detection and classification have
gained on importance in recent years due to increased interest
in service differentiation and growing incentives to disguise
certain applications [2].

The most basic traffic classification methods use the port
numbers information included in the packet header. This
classification method is simple and fast but can be very
inaccurate, because current applications can hide traffic behind
well known ports (e.g. using TCP port 80) or use dynami-
cally allocated ports. More advanced methods analyze packet



payload looking for certain bit patterns. Such methods can be
implemented in software or hardware and are often denoted as
Deep Packet Inspection (DPI) [3], [4]. The main drawback of
such methods is high computational complexity and inability
to work with encrypted traffic.

The basic classification methods described above often serve
as a reference (ground-truth) for assessing the performance of
more advanced methods from the pattern recognition field.
Most of such methods are based on Machine Learning (ML)
classifiers, which make decisions based on the observation of
traffic flow features [5]. ML-based techniques consider both
supervised and unsupervised learning approaches. The first
group of methods requires a training phase and after that
assigns applications to user-defined classes. In unsupervised
learning different traffic flows are grouped together to form
clusters that share common features. The accuracy of ML-
based techniques depends on the type of machine learning
algorithm (decision tree, neural network, Bayesian analysis,
etc.) as well as the set of features used for classification. High
accuracy of these methods can be achieved through proper
selection of training data and experimentation with the features
set.

Another group of traffic classification methods look at
statistical analysis [6] or at connection patterns of network
flows. Such techniques are very interesting, because they
operate only on the flow level and require less detailed input
than packet level techniques. They can be used to identify
specific applications (e.g. peer-to-peer traffic in [7]) through
connection patterns. One of the main problems with such
methods is non real-time operation, due to large amounts of
data flows analysis. This drawback limits the applicability of
such techniques for the purpose of eHealth traffic identifica-
tion.

III. EHEALTH TRAFFIC IDENTIFICATION

Current networks enable all kinds of different eHealth
services with new applications appearing on the market almost
every day. Each of these applications have different QoS
requirements when it comes to bandwidth, delay and relia-
bility. Medical teleconsultation services require small packet
delays and high bandwidth (speech and HD video streaming).
Transmission of medical images (MRI, X-ray, USG) is delay
tolerant but is especially susceptible to packet loss, since
distorted and modified images may lead to a wrong diagnosis.
On the other hand medical sensory data is not delay tolerant
and even minimal packet loss is unacceptable (e.g. in case
of heart rate monitoring sensors). Each of the above applica-
tions generates traffic flows, which have completely different
parameters and characteristic.

Before an appropriate eHealth traffic identification tech-
nique can be designed there is a need to analyze the charac-
teristics and traffic patterns of different eHealth applications.
Based on this analysis we have defined a set of requirements,
which should be fulfilled by the traffic classification mecha-
nism:

• Real time operation – eHealth traffic is related to time-
critical applications, where delays should be kept to
minimum. this feature enforces real-time operation of
traffic classification algorithms.

• Low number of necessary packets – a decision regarding
classification needs to be made on the shortest possible
part of the flow (early detection).

• High precision – correct identification must be performed
with high probability and low false-positives ratio.

• Ability to identify single applications with multiple ser-
vice channels – this is a characteristic feature of many
eHealth applications.

• Small processing overhead – a lightweight solution is
required, but higher overhead is acceptable in the offline
phase.

• Ability to classify currently unknown application types –
since new eHealth applications are constantly emerging,
the classification method should also have the ability to
recognize previously unknown applications.

• Ability to work with encrypted traffic – eHealth applica-
tions require a secure channel and apply encryption while
transmitting private data.

The above set of requirements disqualifies certain traffic
classification techniques. Port based methods are fast but not
accurate enough to distinguish particular applications (many
applications use random ports). DPI methods cannot be used,
due to encrypted traffic analysis and privacy concerns. Ma-
chine learning based approaches seems to be the most promis-
ing way for eHealth traffic identification. These methods take
into consideration only statistical properties of a flow, such as
average packet size, packet inter-arrival time, etc. ML methods
apply complex classification techniques, which make decisions
based on multi-criteria reasoning without looking deep into
the packet content. In this way the privacy of users data is
intact. Additionally ML-based techniques can operate close to
real-time [8] and can achieve high accuracy comparable to DPI
methods [5]. They can also classify new applications thanks to
the learning capabilities of unsupervised techniques enhanced
with a training phase allowing for proper labeling.

Based on the study presented in [9] it can be observed that
the accuracy of different ML classifiers varies depending on
the type of analyzed traffic. Since different techniques perform
better on some traffic classes it is potentially beneficial to
combine standalone classifiers in a multi-classification system
[8]. Such a system uses intelligent combining techniques,
which learn from historical behaviors of individual classifiers.
It can achieve higher accuracy than any single classifier and is
more robust to changes in the mix of classified applications.
In general the process of combining classifiers increases the
computational complexity of the classification mechanism. On
the other hand it can reduce the amount of traffic required for
accurate classification (e.g. using two packets per flow instead
of four) resulting in faster classification. The above features
makes such mechanisms particularly suitable for identification
and classification of eHealth traffic.



IV. METHODOLOGY AND TOOLS USED

The first step in the traffic classification research is to obtain
the traffic traces being the subject of classification. For this
purpose traffic generated by a real-world eHealth application
was examined. Due to the large number of possible eHealth
applications in this study, we focused only on the mobile
eHealth use case. The prototype eHealth application (see
Fig. 1) was developed for the Android OS and implemented
three modes of communication - medical files transfer, sensor
data transmission and video teleconferencing. In the first case
typical MRI images of approx. 1 MB were used as the source
of data. Sensor application generated data streams of approx.
120 Kbps, which correspond to data rates of real medical
sensors reported in [10]. Video-conferencing used the H.264
and Speex codecs with peek data rates of 500 Kbps similar
to the parameters of a real telemedicine application used in
[11]. These three modes of operation are good representatives
of real mobile telemedicine applications and reflect the traffic
diversity of different eHealth services. Each mode was imple-
mented as follows:

• Video-conferencing feature was based on the open source
Linphone Android client enhanced with features allowing
for additional communication between the users. SIP
proxy/registrar server by Tivi was used to enable the
signaling functionality.

• The transmission of sensor data was implemented using
UDP datagrams. Each sensor sample was packed into
a separate packet. The communication between mobile
devices relied on an intermediate proxy used for user
registration. The sensors were emulated using text files
with appropriate medical data from [12].

• File transfer was implemented using TCP sockets. The
communication also made use of the intermediate proxy
server. The files were selected as medical images from
the PhysioNet database [13].

eHealth traffic classification requires also background traffic
traces which reflect the structure of regular network traffic.
Moreover, the traffic traces have to be coupled with the
ground truth information which enables validation of classifier
performance. This implies that not all publicly available traces
(e.g. NLANR, etc. [14]) are suitable for traffic classification,
since in many cases they are anonymized. The ground-truth is
usually obtained with the payload inspection methods, e.g. the
so called l7 filter [15]. These methods, however, are not able to
provide good results in the presence of anonymization, since
anonymized packet content does not match the predefined
application patterns.

For our investigations we have used our own background
traffic traces generated in a real network environment. These
traces reflect the results of recent studies on the Internet traffic
structure [16]. The amount of eHealth traffic was intentionally
kept low in comparison to other traffic sources, which is in
line with the most probable real-world scenario. The trace had
2 million packets, which corresponds to 2GB capacity and 45
thousand sessions identified as bidirectional flows (biflows).

Fig. 1. Prototype eHealth application running on the Android platform

Fig. 2. Traffic trace breakdown into application classes.

During the experimentation phase the l7 filter was used to
provide the ground truth. All biflows identified by the filter as
unknown and those with low occurrence were removed from
the original trace. Moreover some sessions were identified
by the filter as belonging to applications which were not
present in the original trace and thus were also removed. As a
general remark we tend to observe that the amount of traffic
identified as P2P traffic is overrated, which suggests that also
the methods widely considered as a reference do not give
100% accuracy.

We have defined 4 classes, which describe the new types of
e-Health traffic that we have added to the background traffic
trace: EH SENSORY for sensory data traffic, EH IMAGE
for sending medical images, EH CONF for medical telecon-
ferencing, as well as EH REGISTER identifying registration



TABLE I
PERFORMANCE OF ML CLASSIFIERS FOR A COMPLETE FEATURE SET

ALL EH SENSORY EH IMAGE EH CONF EH REGISTER

Classifier TP FP Prec. TP FP Prec. TP FP Prec. TP FP Prec. TP FP Prec.

NB 0.443 0.036 0.704 0.857 0 1 1 0 1 0.929 0 1 0.966 0.051 0.532

BNET 0.93 0.009 0.952 1 0.001 0.71 1 0.001 0.8 0.929 0.002 0.65 0.994 0 1

J48 0.966 0.009 0.962 1 0 1 1 0.001 0.727 0.286 0 0.8 0.989 0 1

RT 0.964 0.006 0.965 1 0 1 0.875 0 1 0.5 0.001 0.778 1 0 0.994

SKM 0.589 0.036 0.801 0 0 0 1 0.007 0.364 0 0 0 1 0.007 0.93

Jrip 0.953 0.017 0.947 0 0.001 0 0.875 0 1 0.357 0 1 0.994 0.001 0.983

IBk 0.97 0.008 0.969 1 0 1 1 0 0.889 0.571 0 0.889 0.994 0 1

RF 0.976 0.007 0.974 1 0 1 0.875 0 1 0.286 0 1 1 0 1

MLP 0.929 0.024 0.917 0 0 0 0 0 0 0 0 0 1 0 1

information for eHealth applications. Most of the newly in-
troduced applications were not recognized by the payload
inspection method. For their corresponding biflows the ground
truth was assigned manually. The structure of the entire trace
used for experimentation is presented in Fig. 2.

For the evaluation of ML classifiers performance we have
observed the True Positives (TP), False Positives (FP) and
Precision metrics. TP identifies the percentage of members of
the class of interest (class X) correctly classified as belonging
to class X. FP specifies the percentage of members of other
classes incorrectly classified as belonging to class X, whereas
Precision is the percentage of instances that truly have class
X among all those classified as X.

In our research on e-Health traffic classification we have
used TIE (Traffic Identification Engine) [17] as the core
traffic identification framework. The functionality of ML-
based classifiers was incorporated with TIE through its ability
to interact with a well known ML software - WEKA [18]. The
information extracted from traffic traces with TIE was passed
to WEKA for classification and its results were fed back to
TIE, for further processing and investigation of combining
techniques.

V. EXPERIMENTAL EVALUATION

The experimental setup used in our research work is pre-
sented in Fig. 3. It also illustrates main eHealth applications
tested in our experiments. The software was implemented on
Samsung Nexus S smartphones. The monitoring station was
directly connected to the access point and was intercepting
traffic using packet capture software (Wireshark). Next the
recorded traffic traces were analyzed to identify packet flows
generated by the eHealth application.

In the experimentation phase the initial traffic trace was
divided into 3 sets: training set (20%), first “test set” (40%)
for initial classification, which is then a basis for the combiner
setup, and the second test set (40%) on which final classifica-
tion process was performed.

A. ML-based Applications Classification

For the performance evaluation of individual classifiers, the
selected ML-based classifiers were identified based on the

Fig. 3. Illustration of the experimental setup together with prototype
applications.

state-of-the-art study. The selection was aimed to reflect di-
versified classification approaches. The majority of techniques
are representatives of supervised learning due to their better
performance in the investigated case - Bayes Network (BNET),
Naive Bayes (NB), J48 decision tree, Random Tree (RT),
Random Forrest (RF), Multilayer Perceptron (MLP) based
on neural networks, Jrip rule-based algorithm and K nearest
Neighbors (IBk). The results present also the performance
of an exemplary unsupervised classifier - Simple K Means
(SKM). The initial study was performed based on the obser-
vation of 24 features describing the payload sizes and inter-
packet times for the first 10 packets of each flow as well as
the number of packets in the flow and layer 4 protocol type
(TCP or UDP). The features reflect the minimum, maximum,
average and standard deviation of the flow descriptors.

Table I presents the performance results for the selected
classifiers. Our particular emphasis was on the successful
identification of eHealth traffic, however we also wanted to
ensure the best possible accuracy for the classification of other
applications. Therefore in our comparative study we present
detailed results for both - the eHealth application classes and
weighted average over all 13 investigated classes. The results
reveal that none of the single classifiers is able to provide top
accuracy levels for each of our applications of interest. Simple
K Means and MLP classifiers performed very poorly for
eHealth classes, with the TP close to 0 in most cases, therefore
they are not considered in further evaluation. Additionally
Simple K Means methods correctly classified only 39,3%
of all instances and left 33,3% of instances unclassified due



TABLE II
FEATURE SELECTION FOR EACH CLASSIFIER

Classifier Features No. of features

NB 1,3,4,9,11,12,19 7

BNET 2,11,12,13 4

J48 1,5,6,11,13,14, 15,21,22,24 10

RT 1,3,4,11,12,13 6

Jrip 1,6,9,11,12,13,14 7

IBk 1,4,9,11,12,13,15, 17 8

RF 1,4,6,11,12,13,14,17,20,22 10

1 l4 proto 11 up min plsize 19 up min ipt

2 up pkts 12 dw min plsize 20 dw min ipt

3 dw pkts 13 up max plsize 21 up max ipt

4 up pl pkts 14 dw max plsize 22 dw max ipt

5 dw pl pkts 15 up stdev plsize 24 dw stdev ipt

6 up pl bytes 17 up avg ipt

9 up avg plsize 18 dw avg ipt

to inability to match resulting clusters to application classes
being a challenge for all unsupervised techniques. The tree-
based classifiers give in general good results, however still
for each of the eHealth application classes different classifier
obtains the best performance. Therefore in this case methods
exploiting combinations of different techniques should better
meet the needs of eHealth traffic.

B. Feature Selection

The results presented in Table I were obtained on the
observation of the full feature set. In practical setups, however,
the observation of 24 features is not feasible and would have
negative impact on the capabilities of real-time classification.
Therefore we propose to limit the number of features used
during classification in a way that would provide close to
optimal feature set for each classifier. For this purpose the
Wrapper Subset Evaluation method [19] was used together
with the Best First algorithm, due to its optimization criteria,
which is oriented towards maximizing the accuracy of the
selected classifier. Thus different set of features is identified for
each of the classifiers, as indicated in Table II. Interestingly,
some of the features have not been selected for any of the
classifiers - e.g. flow duration in time, downlink average
payload size or standard deviation of uplink inter packet times.

For the final experiments the classifiers were trained based
on the evaluation of the selected features only. This allows to
limit the average number of exploited features, which varies
from 4 to 10. The results obtained while exploiting only the
selected features are presented in Table III. In general they
are comparable to the ones obtained with full feature set, or
even improved in case of Naive Bayes, however the related
complexity is highly reduced. It can be observed that eHealth
applications for sending sensory data and medical images are
easily recognized by many classifiers with the TP up to 100%
and FP close to 0. Precision values are slightly worse for
the sensory data, with the minimal value of 58%. Very good
results on the levels exceeding 95% for TPs are observed for

the registration services of eHealth applications. However the
performance of eHealth teleconferencing traffic identification
is very poor comparing to the other classes. This holds true for
the results of almost all classifiers, only NB is able to reach
acceptable performance. Although it could be expected that
this class is incorrectly classified as SKYPE or RTP class, its
mostly mistaken with BITTORRENT class. This is probably
a side effect of the broad P2P definitions in the l7 filter (as
indicated in previous section), which leads to the overrated
P2P occurrence.

C. Multi-Classification

In the final experimentations the system was tested in
a multi-classification set-up exploiting different combining
techniques. There were 13 combiners [8] investigated in total,
as indicated in Table IV. The results show that the best perfor-
mance was obtained with the sub-types of Bayes combination
rules, in particular the Maximum combiner based on the maxi-
mum rule approximation and Sum combiner based on the sum
rule approximation. In this case we have again investigated the
performance of eHealth traffic classification and the overall
accuracy as the evaluation criteria. It is important to notice that
the Average combiner (also sub-type of Bayes rule) achieved
the best performance with regard to eHealth applications,
however its overall accuracy was very poor. This is probably
related to the structure of the investigated trace and the nature
of the combiner - while the occurrences of eHealth classes are
not frequent, maximizing their performance may not always
lead to the growth of total performance. Moreover, in the
opposite situation, most combiners aim to achieve possibly
the best overall performance, which implies that they would
give priority to frequent classes, since their impact on the
overall performance is high. The results obtained while using
the combiner allowed to increase classification performance
- the TP close to 100% was achieved for e-Health sensory
data, images and registration data. The accuracy for e-Health
conferencing class remained relatively low, however overall it
was increased to approx. 58% while the performance for other
e-Health applications and for all classes remained very high,
reaching 92,3% of the overall accuracy, or even up to 96,8%
for the Sum combiner.

VI. CONCLUSIONS

Current networking infrastructures can support innovative
eHealth applications for many users no matter whether they
are at home or on the move. These applications require high
QoS assurances due to the life-critical nature of the services.
Unfortunately current systems cannot guarantee such QoS
levels because they are unable to natively identify and tag
eHealth applications. Without differentiation on the application
level QoS mechanisms cannot provide appropriate scheduling
and cannot reserve the required network resources.

In this paper we address this problem by proposing a multi-
classification approach for eHealth applications detection and
identification. In our solution we use several machine learning
techniques to identify different types of traffic generated by a



TABLE III
PERFORMANCE OF ML CLASSIFIERS FOR A SELECTED FEATURE SET

ALL EH SENSORY EH IMAGE EH CONF EH REGISTER

Classifier TP FP Prec. TP FP Prec. TP FP Prec. TP FP Prec. TP FP Prec.

NB 0.879 0.024 0.881 0.857 0 1 0.875 0 1 0.857 0.001 0.75 0.966 0.011 0.844

BNET 0.937 0.014 0.938 1 0 1 1 0.001 0.667 0.214 0.003 0.273 0.989 0.001 0.983

J48 0.968 0.009 0.966 1 0.002 0.583 0.875 0 1 0.214 0 1 0.989 0 1

RT 0.964 0.008 0.963 1 0 1 0.875 0 1 0.286 0.002 0.444 0.989 0.001 0.983

Jrip 0.953 0.011 0.955 1 0.001 0.636 0.875 0 0.875 0.286 0 1 0.98 0 0.988

IBk 0.969 0.007 0.97 1 0 1 1 0 1 0.429 0 1 0.99 0 1

RF 0.972 0.007 0.971 1 0.001 0.778 0.875 0 1 0.286 0 1 0.99 0 1

TABLE IV
PERFORMANCE OF DIFFERENT COMBINING TECHNIQUES

ALL SEN. IMA. CONF REG.

Classifier Accuracy (TP) TP TP TP TP

Bayes 0.92 1 0.75 0.083 0.943

Product 0.919 1 0.75 0.083 0.943

Sum 0.967 1 1 0.5 0.989

Max 0.923 1 1 0.583 0.989

Min 0.736 1 0.75 0.083 0.94

Average 0.373 1 1 0.583 0.99

Majority Vote 0.897 1 1 0 0.98

Weight MV 0.899 1 1 0.25 0.99

Borda Count 0.9 1 1 0.083 0.98

Weight BC 0.901 1 1 0.333 0.989

Dempster-Shafer 0.953 1 1 0.167 0.989

BKS 0.938 1 0.75 0.25 0.977

Wernecke 0.934 1 0.75 0.083 0.977

mobile e-Health application. The results from each classifier
are combined together to improve the overall identification
accuracy. Our experimental results show, which ML classifiers
and which set of features are optimal in a given case. We
also investigate different combining techniques and show that
the best methods for identifying eHealth applications have
very high classification accuracy. Provided results and analysis
prove that the proposed approach can be used as a practical
solution to the problem of eHealth applications identification.
It is important to highlight that the proposed solution is
universal and can be also applied to identify other groups of
applications not related with eHealth.

Regarding future work we plan to test our solution on
other medical applications from different vendors. We will
also optimize our approach for encrypted traffic and real-
time operation. Future research will focus also on finding the
appropriate trade-off between time, complexity and efficiency
of a multi-classification system in practical conditions.
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