
A Map-Based Platform for Smart Mobility Services

Pietro Marchetta, Eduard Natale, Antonio Pescapé, Alessandro Salvi, Stefania Santini
University of Napoli Federico II (Italy)

Email: {pietro.marchetta,pescape,alessandro.salvi,stsantin}@unina.it, ed.natale@studenti.unina.it

Abstract—Nowadays smart mobility, a new vision of urban
mobility, is a reality. To implement smart mobility scenarios a
deep integration among citizens, private and public transporta-
tion systems and ICT is required. With the S2-Move project we
propose an architecture able to collect, update, and process real-
time and heterogeneous information from various sources (tablets,
smart-phones, probe vehicles) and actors of the urban scenario
(public/private vehicles, pedestrians, infrastructures) in order to
provide innovative mobility services. In this paper, we present
a core component of the S2-Move project: the map-based web
platform designed and implemented for providing smart mobility
services. We present use cases and detail the design and the
implementation of the platform. Finally, we evaluate the accuracy
and efficiency of the Map Matching and Traffic Monitoring
algorithms we implemented in our platform by using realistic
urban traffic data generated through simulations in SUMO.

I. INTRODUCTION

The quality of life in the urban environment depends on the
interaction between the actors of the city, i.e. citizens, vehicles
and transportation systems. In order to improve the mobility
quality, the way the urban actors communicate each other so
as to create an efficient network where each actor is a node
that routes the information, is still an open issue.

This paper describes the map-based platform of the S2-
Move project1, designed to collect the information from the
urban environment, generate new knowledge and share it with
the citizens through an interactive map providing a set of
mobility services. The S2-Move project has been previously
presented in [12], [13]. More precisely, in [12] we describe
the main technological aspects involved in the design and in
the implementation of the S2-Move architecture. Then, in [13]
we discuss the main issues related to trustiness and security
of the S2-Move architecture. Rather than describing research
activities, the main objective of this paper is to show the
practical integration of well known technologies, in order to
provide real mobility services in a real mobility scenario.
Hence, the novelty and the innovation of this work are in the
final services that the S2-Move platform is able to provide, and
not in the technologies themselves adopted to implement these
services. Currently pay-by-phone parking systems [16], fleet
tracking and management systems [11], [7], [8], and crowd-
sourced road traffic evaluation systems [15] do not integrate
heterogeneous mobility services but focus on just one partic-
ular issue of the urban mobility scenario, i.e. the management
of parkings, vehicles, and road traffic. The aim of the S2-Move
platform is developing and integrating Smart Mobility services
in order to let them to cooperate with each other and help

1The S2-Move project is a 36-months long social innovation project started
on June 2012 and co-funded by MIUR (Italian Ministry of Education,
University and Research).

the authorities to manage urban mobility problems. The S2-
Move platform is able to provide map-based smart parking
services, public and private transportation fleets management,
road traffic conditions estimation, and warnings management.
The motivation of a map-based approach is strictly related to
the advantages of the geographic representation of the data,
allowing easy manipulation and analysis beyond conventional
GIS systems, and allowing the user to contribute to the dataset
using intuitive interfaces [2].

The paper is organized as follows: Sec. II briefly presents
use cases and users of the S2-Move map-based platform.
Sec. III shows the main aspects of the platform design with
specific reference to some Smart Mobility services while Sec.
IV details its implementation. Sec. V presents experimental
results on the accuracy and efficiency of the Map Matching
and Traffic Monitoring algorithms using realistic urban traffic
data generated through simulations in SUMO.

II. USE CASES AND USERS

The web-based platform accepts input from a generic user
(e.g. smartphone, vehicle) through HTTP requests and replies
according to the particular service the user is asking for.
The general use case of the platform requires a user to first
authenticate himself in order to benefit from a Smart Mobility
service, e.g. enabling the visualization of the road traffic status.
The platform, in turn, verifies the user authentication and
retrieves the necessary information to satisfy the user’s request.
There are four categories of users, according to the possible
interaction they can have with the platform. A guest is a
limited user that can passively benefit of a subset of Smart
Mobility services (e.g. view parking lots locations) through
the Web GUI (Graphical User Interface). A logged user is
registered to the platform and can contribute through the GUI,
e.g. make reports about mobility inefficiencies. The smart user
can also contribute through a particular device, namely On-
Board Unit (OBU), that is installed on his vehicle and collects,
pre-processes, and sends mobility information to the platform.
The administrator has access to the back end of the platform
supporting advanced operations, like assigning roles to the
users and interacting with a urban control panel. Figure 1
shows one of the services the platform is able to provide
through the Web GUI: the Fleet Management. Each item in
the panel on the right is a Smart Mobility service, for which
there is a set of options a user can select/configure in order to
filter data to show. For example, it is possible to show only
vehicles which fuel consumption, speed or pollutants emission
level is above a certain threshold.

III. PLATFORM DESIGN

The S2-Move platform has three architectural layers,
namely Presentation Layer, Core Layer, and Data Layer

Figure 1. The Fleet Management service through the Web GUI.

CORE LAYER
INTERNAL LOGICS

SP

TM

FM

WM

PRESENTATION
LAYER

DATA LAYER

API

DESKTOP/MOBILE GUI

URBAN DATA
COLLECTOR

MAP
MANAGER

SP

TM

FM

WM

USER
MANAGER

GEOSERVER

DATABASE OPEN DATA
EXTERNAL

DATA SOURCE
SUPPORT

FUNCTIONS

Figure 2. The software architecture allows the user to access the Smart
Parking (SP), Traffic Monitoring (TM), Fleet Management (FM), and Warning
Management (WM) services.

(Figure 2), implementing the map-based structure introduced
in the previous section. The Data Layer communicates with a
database in order to store and retrieve the data according to
the requests received from the Core Layer. The Core Layer
integrates the system logic, i.e. the modules that formally
define the Smart Mobility services. Each module performs a
particular job (e.g. traffic estimation on urban roads) interact-
ing with the database. The Presentation Layer satisfies user
requests. Each request is routed to the specific Core Layer
module. Finally, all the data retrieved through the Presentation
Layer can be displayed on a geographic map. The platform
is able to collect information from Web Contributors and
Device Contributors. The Urban Data Collector acquires and
processes the data sent from device contributors (i.e. vehicles
equipped with an OBU), and stores such information through
the Data Layer. Figure 3 describes the collection process from
a logged user that decides to use a vehicle equipped with the
OBU, i.e. he becomes a smart user without loosing the HTTP
session and starts to send vehicle’s information. The collected
information can be used to show the position of the vehicle
on the map or to provide Smart Mobility services (e.g. traffic
monitoring).

The Map Manager is responsible of transforming geospa-
tial information into an image that can be immediately and
intuitively understood by humans. The module interacts with
a geospatial server implementing mapping protocols, caching
systems, and handling several data output formats according
to the the client request – from classical image formats (like

user

opt

User
Manager

Login(user,password)

Urban Data
Collector

Database

checkCredentials

success: userId

loggedIn: userId

send(vehicleData)
session: vehicle_id=OBUid & user=user_id

verifyOBUid

result

insertObu(OBUid)
[result = miss]

success

Figure 3. The logged user becomes a smart user.

Jpeg) to text-based exchange formats (like GeoJson). In the
former case, the server renders an image according to the
geospatial information provided by the Data Layer and the
client simply downloads and displays the image. In the latter,
the server creates a set of features that sends to the client into
a text file. In this case, the client itself handles every feature
separately and generates an image. In both cases the goal is to
produce a map layer with the geospatial information provided
by the platform. The most important difference is that in the
second case the client is free to handle every single feature
composing the layer. Figure 4 shows the interaction between
the Map Manager and the geospatial server. The geospatial
server, GeoServer, supports WFS (Web Feature Service) and
WMS (Web Mapping Service) protocols. The WMS protocol
is generally adopted to retrieve the data source as a flat image,
while the WFS protocol is used to retrieve the information in
text-based formats. The first approach exploits web caching,
an advantage of this technique very useful when dealing with
huge amount of data to process. Conversely, the advantage
of WFS is the possibility to interact on the client side with
every feature that compose the layer, which is impossible in
the first case. With WFS the data is downloaded in text format
and rendered client-side, which can cause performance issues
related to the size of the data. The S2-Move platform adopts
WMS for traffic layers, because the only need is showing traffic
information as colored lines, and WFS for the other services,
allowing the user to interact with the data.

The Smart Mobility Services represent the core of the
business logic. Each one interacts with the Data Layer in
order to retrieve or store partial- or full-processed data. Traffic
Monitoring, Smart Parking, Warning Management and Fleet
Management are the basic services the platform currently
provides. When the user is logged into the platform, it is
enabled to send information to contribute to the smart mobility
services. Each service is thought to be represented as a
layer on a geographic map. The Warning Manager collects
and shows user reports about public services (inefficiency,
damages, unpleasant conditions, etc.). Each report can be
classified according to the particular emergency level. Every
logged user can make, confirm, and comment reports, and
keep trace of reports’ history. A marker identifies the exact
location of the report on the map. Markers can be of different
colors according to the urgency level of the report. The Traffic
Manager evaluates the traffic conditions on the roads. It needs
Device Contributors to send information (speed and position)

Figure 4. Map Manager simplifies the client-GeoServer interaction.

to the platform. The Traffic Manager processes the speed
and position information and generates aggregated geospatial
information ready to be graphically represented. The graphical
representation of the traffic is obtained by coloring every lane
according to the traffic level. To give an idea of traffic level,
the green, yellow, and red colors are used to describe low,
medium, and high traffic levels. The Fleet Manager shows the
information about fleets moving in the urban roads network.
Basic information are instantaneous speed, fuel consumption,
pollution level, and vehicle fleet category (e.g. bus, taxi). The
service needs Device Contributors to send information to the
platform. A different marker identifies each vehicle according
to the particular fleet it belongs to. It is possible to filter out
vehicles according to several parameters. The Smart Parking
service allows to reserve a parking. A guest user can simply
view the position of the parking lots, while a logged user
can ask for the best parking (according to the distance from
the user’s position and the price), reserve a parking, see the
history of the reservations, and modify previous reservations.
The graphical user interface in Figure 5 shows all the services
provided by the platform. The moving fleets of vehicles can
be filtered according to several options on the right panel.
Warnings can be confirmed and commented. Each service is
defined as composition of many internal logics, i.e. functional
modules belonging to the Core Layer executing basic opera-
tions. The platform guarantees compatibility among different
technologies adopting a universal interface through a powerful
API. The API lets devices, sensors, and users having access
to the smart mobility services provided. Each service can be
extended with a higher number of functionalities, thanks to the
modular architecture. Each module can be reused in order
to build a new service or a new functionality: for example,
it is possible to provide a car pooling service exploiting the
Urban Data Collector to acquire vehicles information and the
Map Manager to show their position (Sec. IV-A). In order to
have a certain degree of maintainability, each service can
be in a certain operational state: under construction or in
execution. The software is designed to be deployed in a cloud
environment, separating the database layer from the business

Figure 5. Users can show fleets of vehicles, make filtering operations,
send, comment, and confirm reports, view and reserve parkings, view traffic
conditions.

logic. Finally, security requirements have been analyzed in
a previous work in vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications [14].

IV. PLATFORM IMPLEMENTATION

This section describes the implementation of each com-
ponent of the architectural layers previously introduced. The
software framework adopted to develop the architecture is
Play! [1], written in Java and Scala. The framework im-
plements the conventional aspects of the platform, allowing
the developer to focus just on unconventional aspects and
the business logic of the platform. The framework allows to
forward every request to the appropriate action of the Core
Layer through the router component. The action, in turn, may
request persistently stored information to the Data Layer and
send HTTP responses to the user. Components are mainly
written in Java and Scala, the database uses the PostgreSQL
DBMS (DataBase Management System) with PostGIS spatial
extension, allowing to efficiently execute spatial operations like
geographical distances evaluations, reference systems conver-
sion, map matching, and so on. The mapping procedure takes
advantage of GeoServer, an open source server which pro-
cesses and publishes geospatial data using standard geospatial
protocols (like WFS and WMS) and exchange formats (e.g.
GeoJson, GML, rasters, and compressed images). In order
to access the data-source, the platform uses a Java Persis-
tence API (JPA) for the management of relational data. The
JPA implementation adopted is Hibernate Object Relational
Mapping (ORM) which supports lazy initialization, several
fetching strategies, and optimistic database locking. From a
security point of view, the Play! framework supports HTTPS
and, in case, it is possible to generate a self-signed certificate,
guaranteeing no eavesdropping in the communication between
the client and the server.

The Presentation Layer provides the interface adopted by
the users to interact with the platform and take advantage of
the Smart Mobility services. The Presentation Layer serves
requests from users through a GUI or API. In the former
case, the interface is accessible through a Web Browser where
each service is represented as a layer on a geographic map,
while in the latter users retrieve the same information in raw
format (e.g. Json or XML). The response obtained through
the API can then be handled from any device that is able to

issue HTTP requests and read HTTP responses in order to
design custom applications. Advanced options, like services
parameters modification, services deactivation, users subscrip-
tion management, are reserved to administrators. The HTTP
requests are encapsulated in GET an POST messages.

The Graphical User Interface (GUI) allows user authenti-
cation, provides the interactive geographic map to visualize the
geo-referenced mobility services, allows data filtering, allows
to perform client-side aggregations of the data and users’
management.The OpenLayers open source JavaScript library
allows to render on the map the geo-referenced data obtained
from the server in form of points, lines or polygons. For
example, a parking lot may be identified by a marker, the
traffic level by two lines of different colors, one per lane,
according to the average speed. Each layer is placed on a
base layer provided by a tile server, allowing zooming and
panning operations (slippy map). OpenLayers interacts with
geospatial servers (like GeoServer) through WMS and WFS
protocols. Actually, in order to guarantee information hiding
and to allow third party applications to easily communicate
with the platform, the API hides the classical WFS and WMS
formalism, exposing just a subset of important characteristics.
The client-side implementation, in addition, introduces the user
strategies which allow to (i) periodically refresh the layer (so
the service) and (ii) manage user events (e.g. on click, on
zoom).

The API allows to create third party applications that can
issue to the server the same requests a user can perform
through the GUI. The API system is generated exploiting the
route files in the Play! framework. In particular, the route
file contains a set of rows where each row is composed of
three elements. For example, in order to send the mobility
information to the platform for a vehicle equipped with an
OBU, there’s the following syntax:

POST /acquire controllers.Acquire.index()

where POST is the HTTP method, /acquire is the
URI (Uniform Resource Identifier) pattern, and the rest is the
specific action of the Controller. A first form of control can
be made directly in the routes file, which supports regular
expressions to validate any dynamic part of the URI. Third
party applications can use the API to integrate smart mobility
services. For example, tour operators, which develop their
own application, can call the API to allow parking reservation
near touristic amenities, a mobile navigation system can adopt
traffic information to estimate the time to reach the destination
or to provide alternative paths.

A. Core Layer

This section describes the business logic modules of the
platform, describing how geospatial data is collected, stored,
and represented. The Map Manager is responsible of the data
geographic mapping operations. The module sends and retrieve
geospatial information interacting with GeoServer, an open
source server that can share and process geospatial informa-
tion, exposing an API in the Presentation Layer. The two main
protocols adopted by the Map Manager to communicate with
GeoServer are WMS and WFS. In addition, the GeoServer
caching system makes the platform more efficient in serving
user requests. Figure 4 describes the communication between

the Map Manager and GeoServer. The API hides useless details
for which it is possible to (i) use default values and (ii) avoid
undesired access to certain features (e.g. delete layers). The
Map Manager (i) receives the user query through a Restful
interface, (ii) translates the request into one of the GeoServer
compatible formats (WMS or WFS), (iii) forwards the request
to GeoServer and (iv) forwards the GeoServer’s answer back
to the user. The Map Manager interface adopts the following
structure:

/mapmanager/:srs/:x1/:y1/:x2/:y2/:srv.:frmt

where srs is the coordinates systems (e.g.
EPSG:900913 or EPSG:4326), the variables x1, y1,
x2 ed y2 specify the map bounding box, srv specifies one of
the Smart Mobility services, and frmt specifies the format:
an image (.jpg, .png) or a text file (.json, .xml).

The Urban Data Collector (UDC) is a controller module
that collects and store the information acquired from vehicles.
Each vehicle is equipped with an OBU. The OBU is con-
nected to a smart device (i.e. smartphone, tablet) which rules
the authentication of the user that is driving the vehicle in
that particular moment, allowing a many-to-many relationship
between users and vehicles. The vehicle authenticates through
the Login procedure, and sends to the platform the information
collected from the vehicle itself and the external environment.

The User Manager is responsible for registration, authenti-
cation, and accounting operations (e.g. password changing, ac-
tivation emails). The user authentication is performed through
the Login procedure. The procedure is composed of two basic
operations: the former is requesting the login page, the latter
is submitting the login information. The first one is optional,
since the API allows to directly authenticate the user when
there’s no need to load a login form (e.g. authentication
through third party applications). The authentication procedure
can also be performed using Social Networks accounts through
the OAuth protocol. The platform keeps track of the session
through HTTP cookies. In this way, it is possible to control
whether the user is equipped with an On-Board Unit (OBU).
The OBU is a smart device installed on a vehicle that is
able to collect information from the vehicle itself or the
urban environment. The device is able to communicate with
the platform in order to send the collected data, like speed,
geographic coordinates, pollution levels, fuel consumption, etc.

The S2-Move platform provides the following Smart Mo-
bility services: Fleet Management, Warning Management,
Traffic Monitoring, and Smart Parking. This section focuses on
the Core Layer logics related to the Smart Mobility Services.
Traffic Monitoring uses the information periodically sent by
vehicles and stored into the database to estimate road traffic
conditions. The overall procedure is asynchronous, in fact once
the procedure starts, the algorithm is executed regardless the
interaction between the user and the platform. The idea is to
have threads, managed by the Akka framework [19] supported
by Play!, which periodically wakes up and processes the data.
Akka is a distributed and scalable architecture which can
execute concurrent operations and is extremely fault tolerant.
Akka introduces an evolution of the Java thread concept, called
actor, which automatically manage concurrency and mutual
exclusion. The actors can asynchronously communicate each
other through the mailbox. When an actor receives an update

message, it immediately starts to process the data. The Map
Matching module reads the information sent by vehicles and
finds the actual road segment the vehicle is moving on. The
Traffic Manager reconstructs the full path of a vehicle on every
road. Afterwards, the manager identifies the vehicle’s lane by
comparing the position of two subsequent points. Algorithm 1
describes the traffic estimation procedure supported by the
Map Matching algorithm (Section IV-B) which discovers the
road’s name and identifier, given the vehicle’s position.

Algorithm 1: TrafficEstimator
input : vehiclesList on the current road
output: speedA, speedB, according to the road’s lane

speedA, speedB, countA, countB ← 0;

foreach vehicle ∈ vehiclesList do
samples ← OrderByTimestamp(vehicle.samples);
for i← 0 to SizeOf(samples)-1 do

current ← samples [i];
next ← samples [i + 1];
if Orientation(current, next) == 1 then

speedA ← speedA + current.speed;
countA ← countA +1;

else
speedB ← speedB + current.speed;
countB ← countB +1;

end
end

end
speedA ← speedA /countA; speedB ← speedB /countB;

B. Data Layer

The Data Layer offers a lower level interface to interact
with the database and related functions. The database is
managed through PostgreSQL DBMS with PostGIS geospatial
extension. In order to comply with efficiency requirements,
the Data Layer implements low-level algorithms like Map
Matching. Besides all the tables needed by the Core Layer,
the database contains a dump of the OpenStreetMap [9] roads
tables imported through the Imposm tool.

The Map Mathing module maps the position of the vehicle
to the road segment it is moving on. The platform may use
this information to provide several services. One of them,
in particular, is the Traffic Monitor which evaluates road
traffic conditions. Generally, positioning errors affect the GPS
information, due to the instrument accuracy and obstacles (e.g.
low coverage, multi-path effect [6]) that, in the urban envi-
ronment, may appear in case of tall buildings [5]. In literature
there exist many different Map Matching implementations. The
point-to-point is the simplest algorithm, which associates the
geographical location to the closest node or link [4], [10], [20],
while the point-to-curve algorithm associates the point to the
closest edge [4], [20], [18]. The point-to-point algorithms are
less precise than point-to-curve ones, especially when errors
affect the GPS measurement. White et al. road intersections
make Map Matching procedures more difficult [20]. The Map
Matching algorithm implemented considers only urban paths,
leading to worst performances compared to highways because
of lower speed values of vehicles and sudden changes in
the travel direction. Algorithm 2 describes the Map Matching
procedure which assigns a point to a specific road section.
The OpenStreetMap database provides the road segments. The
algorithm is a point-to-curve implementation which firstly
builds a bounding box surrounding the actual point, then

Figure 6. Map Matching corrects the positioning error.

considers only the roads which intersects this bounding box,
and finally all the closest road segments (according to a
certain threshold) are considered: the first is most likely to
be the actual road section. The st_expand function builds
a bounding box surrounding the point in order to intersect
neighbor roads. The algorithm then considers the roads within
the intersection and, through the PostGIS operator <#>, cal-
culates the distance between the point and the bounding box
of each road segment. This distance estimation, at this point,
is not precise, but it’s fast. In order to make the matching
operation more reliable, the point-to-curve algorithm is then
called through the st_distance PostGIS function.

Algorithm 2: MapMatching
input : Geometric Point P , Bounding Box size S,

Road Sections sections, Maximum Distance D
output: Road Identifier RoadId

bbox ← st_expand(P , S);
closestBbox,closestSections ← set();
foreach section ∈ sections do

if intersects(section, bbox) then
closestBbox.add(section);

end
end
foreach section ∈ closestBbox do

if distance(P , section) ≤ D then
closestSections.add(section);

end
end
RoadId← sortByDistance(closestSections)[0];

The procedure described by the Algorithm 2 has been
developed as a SQL function, making it more efficient from
a computational point of view. Figure 6 shows the vehicle
positions before and after the application of the Map Matching
algorithm.

V. SIMULATION AND RESULTS

In this section, we present the results on the accuracy
and efficiency of the Map Matching and Traffic Monitoring
algorithms: we exploited realistic urban traffic data gener-
ated through simulations in the SUMO (Simulator of Urban
MObility) environment [3]. A good Map Matching algorithm
is responsible for good traffic estimation. Traffic Monitoring
efficiency can be evaluated on time and accuracy parameters.
In SUMO, we generated a fleet of vehicles moving in the
urban environment using random trips. The current simulation
assumes there are no obstacles that can interfere with the
normal traffic flow. SUMO takes as input the road network and
produces an xml file which describes the vehicles character-
istics at different timestamps, i.e. speed, position (latitude and
longitude), road identifier (according to the OpenStreetMap
data source). The final step adds some noise to the data in order

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Distance between the sample and the road (m)

Number of
samples

 wrong matching

 correct matching

x 10
4

Figure 7. Map Matching accuracy: more than 78% of the speed samples are
mapped to the correct road.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Monitored Vehicles (%)

Monitored
Roads

Figure 8. Traffic monitoring coverage: monitoring 50% of the vehicles
provides enough information to traffic status estimation for 60% of the roads.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative error

Monitored

roads Monitored vehicles (1%)

Monitored vehicles (5%)

Monitored vehicles (10%)

Monitored vehicles (50%)

Monitored vehicles (100%)

Figure 9. Traffic monitoring accuracy: CDF of the relative error.

to consider any possible GPS positioning errors, using an ad-
hoc Java tool sending noisy data to the Urban Data Collector.
The GPS position error can be approximated by a bi-variate
Gaussian distribution with no correlation between the two
variables [17] with a variance of 1.12 for the latitude (north-
south variance) and 0.82 for the longitude2 (east-west variance)
according to positioning errors experimentally measured for
smartphones and GPS devices [21], [5], [17]. Figure 7 shows
the Map Matching accuracy: a correct matching is always over
78%, and the wrong matching decreases w.r.t. the distance
between the sample and the actual road. Moreover, Figure 8
describes the relationship between the percentage of monitored
vehicles and monitored roads. Then, according to both the
monitored vehicles and the monitored road, we compute the
relative error, as depicted in Figure 9: for about 80% of the
monitored roads, we observed a relative error lower than 20%.

2Opportunely normalized considering the Java Random class specifics.

VI. CONCLUSIONS

In this paper we have presented the S2-Move map-based
platform, its use cases, design and implementation. We also
provided some results to show the accuracy and efficiency of
the Map Matching and Traffic monitoring algorithms imple-
mented. Thanks to S2-Move map-based platform we can pro-
vide smart mobility services to final users aiming at improving
the urban mobility and city life.

VII. ACKNOWLEDGMENTS

This work is partially funded by PLATINO (PON01 01007), SMART HEALTH
(PON04a2 C), SIRIO (PON01 02425,) and S2-MOVE (PON04a3 00058) projects
funded by MIUR.

REFERENCES

[1] The play! framework. https://www.playframework.com/.
[2] Batty et al. Map mashups, web 2.0 and the gis revolution. Annals of

GIS, 16(1):1–13, 2010.
[3] Behrisch et al. Sumo-simulation of urban mobility-an overview. In

SIMUL 2011, The Third International Conference on Advances in
System Simulation, pages 55–60, 2011.

[4] Bernstein et al. An introduction to map matching for personal navigation
assistants. 1996.

[5] Blum et al. Smartphone sensor reliability for augmented reality appli-
cations. In Mobile and Ubiquitous Systems: Computing, Networking,
and Services, pages 127–138. Springer, 2013.

[6] Braasch et al. Multipath effects. In Global positioning system: theory
and applications. Citeseer, 1996.

[7] M. di Bernardo et al. Distributed consensus strategy for platooning of
vehicles in the presence of time-varying heterogeneous communication
delays. IEEE, 2014.

[8] M. di Bernardo et al. Design, analysis and experimental validation of
a distributed protocol for platooning in the presence of time-varying
heterogeneous delays. IEEE, 2015.

[9] Haklay et al. Openstreetmap: User-generated street maps. Pervasive
Computing, IEEE, 7(4):12–18, 2008.

[10] J. Kim. Node based map matching algorithm for car navigation system.
In International Symposium on Automotive Technology, 1996.

[11] Köhler et al. Platforms for the internet of things–an analysis of existing
solutions. 5th Bosch Conference on Systems and Software Engineering.

[12] Marchetta et al. S2-move: Smart and social move. In Global
Information Infrastructure and Networking Symposium (GIIS), 2012,
pages 1–6. IEEE, 2012.

[13] Marchetta et al. Social and smart mobility for future cities: the s 2-move
project. In 50th Annual Congress. AICA, 2013.

[14] Marchetta et al. Trusted information and security in smart mobility
scenarios: The case of s2-move project. In Algorithms and Architectures
for Parallel Processing, pages 185–192. Springer, 2013.

[15] S. E. Matthews. How google tracks traffic.
www.ncta.com/platform/broadband-internet/how-google-tracks-traffic/.

[16] Nawaz et al. Parksense: A smartphone based sensing system for
on-street parking. In Proceedings of the 19th annual international
conference on Mobile computing & networking. ACM, 2013.

[17] Singh et al. Stochastic analysis and behavior modeling of errors
associated with global positioning sensor. In Proceedings of Conference
on Advances In Robotics, pages 1–6. ACM, 2013.

[18] Taylor et al. Gps positioning using map-matching algorithms, drive
restriction information and road network connectivity. In NavSat 2001
Conference, Nice, France, 2001.

[19] M. Thurau. Akka framework. University of Lübeck, 2012.
[20] White et al. Some map matching algorithms for personal navigation

assistants. Transportation Research Part C: Emerging Technologies,
8(1):91–108, 2000.

[21] P. A. Zandbergen. Accuracy of iphone locations: A comparison of
assisted gps, wifi and cellular positioning. Transactions in GIS, 2009.

