
BET: A Hybrid Bandwidth Estimation Tool∗

Alessio Botta, Salvatore D’Antonio, Antonio Pescapé, and Giorgio Ventre†

Abstract

In this paper we propose a tool that aims to integrate
and improve existing tools for the available bandwidth es-
timation. We discuss our proposal analyzing each compo-
nent of our architecture. Results from experimental analy-
sis of our architecture and several comparative analysis
with other existing and spread used tools are shown. Fi-
nally, overall conclusions are discussed and indications for
future improvements are given.

1. Introduction

In the field of network monitoring, inferring the unused
capacity or Available Bandwidth (AB) is of great importance
for various network applications, for both Network Opera-
tors and End-Users (i.e. plan network upgrades, check the
efficiency of applications, network aware applications, peer-
to-peer file distribution and applications, server selection,
SLA and QoS verification, traffic profiling, End to End ad-
mission control, congestion control and TCP, routing, Over-
lay Networks, multicast routing, Traffic Engineering, and fi-
nally intrusion detection and in general anomaly detection).
Obtaining useful estimates of the available bandwidth from
routers is often not possible due to various technical and
privacy issues or due to an insufficient level of measure-
ment resolution or accuracy. Thus, it becomes necessary to
infer the required information from the network edge via
an active or passive probing scheme, without requiring ac-
cess to network elements or administrative resources. Our
approach aims to estimate available bandwidth along a net-
work path without access to any component along the path
and without stressing existing traffic with a large volume of

∗ This work has been partially supported by the Italian Ministry for Education,
University and Research (MIUR) in the framework of the WEB-MINDS FIRB
Project, by Regione Campania in the framework of “Centro di Competenza Re-
gionale ICT”, and finally by the E-NEXT IST European project.

† A. Botta and S. D’Antonio are with the Consorzio In-
teruniversitario Nazionale per l’Informatica, Naples (Italy),
{abotta,sdantonio}@napoli.consorzio-cini.it. A. Pescapé and G. Ven-
tre are with the Dipartimento di Informatica e Sistemistica, University
of Napoli “Federico II”, Naples (Italy), {pescape,giorgio}@unina.it.

testing traffic. In a first stage, we can summarize the fol-
lowing metrics for a bandwidth (BW) estimator: (i) Total
Probing Traffic; (ii) Attainable accuracy; (iii) Total estima-
tion time. During our studies a number of tests over a broad
range of bandwidth estimation tools, scenarios and exper-
imental conditions was performed. These tests have been
conducted with the aim to develop a set of practices, proce-
dures and tools for the comparative analysis of active band-
width estimation techniques and tools. After this study we
found a lack of complete and robust bandwidth estimators
according to the previous metrics. Stepping from studied
tools we proposed an hybrid platform based on the effec-
tive combination of PTD (Packet Train Dispersion), SLoEC
(Self Loading of Exponential Chirp), and SLoPS (Self Load-
ing of Periodic Streams) methodologies able to compute the
capacity and available bandwidth of network paths. In our
measurement tool we use one-way techniques and we ef-
fectively combine several methodologies sending packets
and waiting for replies from target nodes using UDP (in
the case of data channel) and TCP (for the control chan-
nel) protocols. We called our hybrid platform BET (Band-
width Estimation Tool). It is a receiver based application
and presents an architecture composed of several functional
blocks working in cascade mode. The communication be-
tween sender and receiver is carried out thanks to a novel
protocol named BEP (Bandwidth Estimation Protocol).

The rest of the paper is organized as follow. In Section
2 we present a brief overview of related work. Section 3
presents BET architectural details. In Section 4 our expe-
rience in the performance analysis is described whereas in
Section 5 a summary of results is presented. Finally, in Sec-
tion 6 we present the ongoing work.

2. Related Work

As for related work we present an overview of mainly
used applications for available bandwidth estimation.

Pathload [1] implements the SLoPS methodology. It re-
quires access to both ends of the path, but does not require
superuser privileges because it only sends UDP packets.
Pathload reports a range rather than a single estimate. The
center of this range is the average available bandwidth dur-
ing the measurements, while the range itself estimates the

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



variation of available bandwidth during the measurements.
Pathchirp [2] uses the self inducted congestion paradigm.
It sends exponential flight pattern of probes (called chirps)
for causing the self induced congestion on the network.
By rapidly increasing the probing rate within each chirp,
Pathchirp obtains a rich set of information from which
to dynamically estimate the available bandwidth. In [3]
netest is introduced. It provides information to achieve bet-
ter throughput while fairly sharing the available bandwidth,
thus reducing misuse of the network. IGI [4] uses avail-
able bandwidth estimation techniques similar to SLoPS, but
using different packet stream patterns and focusing on re-
ducing measurement latency. A tool that is able to locate
the tight link (links with available bandwidth less than of
all the links preceding them) on end-to-end network paths
is Spatio-Temporal Available Bandwidth estimator (STAB)
[5]. It uses special chirp-probing trains, featuring an expo-
nential flight pattern of packets, which have the advantage
of employing few packets while giving an accurate estimate
of available bandwidth.

3. BET Architecture and Modules

After analyzing existing tools we found a lack of com-
plete and robust bandwidth estimators. We propose a tool,
named BET, that compared with previously cited tools rep-
resents an effective combination of several techniques aim-
ing to exploit the positive aspects of each of them. Also, it
presents more accurate timestamping techniques.

In Figure 1 the main modules constituting the BET ar-
chitecture are summarized. As shown in Figure 1 BET is
constituted by four modules. The first one controls and co-
ordinates the operations of the remaining that are responsi-
ble of the measurement process.

Figure 1. BET Modules

As previously said, BET is a platform based on a hy-
brid methodologies. More precisely, BET integrates the fol-
lowing the different measurement techniques: (i) the ‘packet
train dispersion’ [6] used for the capacity estimation; (ii) an
efficient combination of the ‘Self Loading of Exponential
Chirp’ (SLoEC) [2] and ‘Self Loading of Periodic Stream’
(SLoPS) [7] used for the available bandwidth estimation.

In particular, the dispersion of packet train provides the
Asymptotic Dispersion Rate (ADR) that has a gaussian dis-
persion around its average value. This value represents an

estimation of the real value of path capacity when there is
no cross traffic. When cross traffic is present this value is
less than capacity and more than available bandwidth. The
ADR value found in this phase is used as an input parame-
ter to the SLoEC module that, by using this parameter as
an upper bound, makes a first estimation of the available
bandwidth. To determine the duration of SLoEC phase, a
set of experiments over different scenarios was done. Af-
ter a large number of tests in the tuning phase, a duration
of 20s has been chosen. In this way we achieved an aver-
age accuracy equal to 15%. This value is sufficient for our
purpose because the availbale bandwidth estimated in this
phase is used just as the initial value for the SLoPS phase.
Indeed, starting from an initial value close to the real value
the SLoPS module converges to the bandwidth estimation
obtaining much more accuracy in a much shorter time pe-
riod. Also, this architectural choice implies a much lower
probing traffic injected in the network.

3.1. Dynamic bandwidth control

During the SLoPS phase several fleets of packet are sent
from sender to receiver. Each fleet is composed of 12 flows
of packets. In SLoPS implementations presented in litera-
ture, when each fleet arrives at destination the trend of re-
ceived packets is calculated. This operation is carried out in
order to evaluate the rate of the next fleet to send. There are
two commonly used tests for the calculation of the trend:
the Pairwise Comparison Test (PCT) and the Pairwise Dif-
ference Test (PDT) that are based on two different charac-
teristics of trends. In our application a sort of dynamic band-
width control is implemented. Hence, during each fleet, if
the trend of four consecutive flows is equally estimated for
both PCT and PDT tests, the fleet is interrupted. Based on
the arrived flows trend, the new probing bit rate is calculated
and the next fleet is sent. This dynamic bandwidth control
has two main (highly coupled) advantages: (i) The probing
traffic injected in the network is lower than a static choice;
(ii) The time taken for measurement purpose is shorter than
a static choice. To the best of our knowledge other SLoPS
implementations do not support this kind of dynamic band-
width control and they have always to send all flows in a
fleet. Our approach allows for the reduction of useless traf-
fic and guarantees an optimization in the time consumption.

3.2. The Signaling Protocol

Figure 2 shows the operations of the different modules
composing BET. In Figure 2 the coordination task done by
the control module is also present (drawn with discontinu-
ous line). This module presents a client/server architecture
and it controls and coordinates the operations involved in
the measurement process. It uses a TCP channel. This is for

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



ensuring the control plane reliability. Due to space limita-
tion we do not dig into the details of the adopted architec-
tural choices and their implications. We just point the at-
tention on how BET aims to improve the overall accuracy
through a better evaluation of received packet timestamps
(Section 3.3) and packets sent with more accurate timing
(Section 3.4).

3.3. Packets arrival time estimation

3.3.1. Taking the time at user level In nearly all appli-
cations for IP metrics measurement the packets arrival time
is taken at user level, by means of function gettimeofday().
Such a time is affected by the gettimeofday() function la-
tency and for this reason it does not represent the packet
arrival time at the Network Interface Card (NIC). By get-
ting the time in such a way the accuracy in the available
bandwidth estimation is jeopardized. Indeed, the function
latency is not constant. It can vary among different func-
tion instances and therefore it introduces a random error in
the measured arrival time.

Also, in the field of measurement applications, another
issue to be addressed when using gettimeofday() is related
to its average latency when it is used as a threshold for the
detection of the context switch phenomenon. In measure-
ment applications the context switch causes an other kind
of error: the packets arrived at the NIC cannot be immedi-
ately passed to a suspended application but they have to be
stored in the drivers’ buffer. When the process is resumed
it retrieves all arrived packets from the buffer and, think-
ing that they are just arrived from the sender, it gets arrival
time by calling gettimeofday() function. In this way, starting
from the second packet in the buffer, the arrival time repre-
sents just the gettimeofday() function latency. Furthermore,
there is no indication of the real reception time. For this rea-
son, in nearly all studied applications an algorithm for con-
text switch detection is implemented.

3.3.2. Taking the time at kernel level To skip all the is-
sues related to the use of the gettimeofday(), BET calcu-
lates the arrival times in a different way at a different level.
We use IOCTL() function at kernel level. In BET, at ker-
nel level, time stamps of arrived packets are taken by using
the NIC driver. It informs the kernel about the time stamp
of the last arrived packet. The IOCTL() function is used in
order to read the driver information about the last arrived
packet time (Figure 3(a)). For obtaining such an informa-
tion, the IOCTL() is called with ’SIOCGSTAMP’ command,
with such a command the time stamp of last received packet
is passed from the driver to the application in the argument
field. Finally, the measure of the time by using this tech-
nique is more accurate because it does not suffer of get-
timeofday() latency and it permits to obtain a more efficient

Figure 2. Data plane (continuous line) and
control plane (discontinuous line)

(a) Ioctl()

SEND PACKET

CALCULATE NEXT
SENDING TIME

FINISHED
PACKETS TO

SEND?

END

Yes

No

SET AN ALARM FOR
NEXT SENDING TIME

(b) Send-
packet()

Figure 3. Time Management Functions

threshold value for the detection of context switch phenom-
enon.

3.4. The packets sending process

To achieve better accuracy in the measurement process,
it is important to send packets with as much as possi-
ble achievable accuracy. BET uses a technique for pack-
ets sending based on the signal handling. In this way it has
a precision (in the time evaluation) at kernel level. There-
fore, in order to send packets with the right time spacing,
BET uses a packet sending function called Sendpacket().

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



The Sendpacket() represents the handler of the ’UALARM’
signal. When the alarm occurs the Sendpacket() is called
and the packet is sent. After the transmission of the packet
the Sendpacket() sets also the alarm for the transmission of
the next packet. In Figure 3(b) a block diagram of the Send-
packet() behavior is shown. By using the Sendpacket() func-
tion we have created a recursive method for packets send-
ing with high accuracy in the time spacing. Finally, in ad-
dition to the kernel time accuracy, the utilization of Send-
packet() for the packet sending, improves BET with of other
two main advantages: (i) In the packet sending phase BET
has an active socket used for the signaling process; (ii) Dur-
ing packets sending by using the Sendpacket() function, if a
‘context switch’ occurs, the function is not suspended (due
to the association to a signal). In this way the packet send-
ing process does not suffer of the delay caused by context
switch operations.

4. Experimental Analysis

This analysis has been conducted by using BET and com-
paring it to other three spread used available bandwidth
tools: Pathload, Netest, and Pathchirp. These tools were
tested with different cross traffic (CT) profiles at different
bit rates. Indeed, thanks to the use of a powerful traffic gen-
erator - D-ITG (Distributed Internet Traffic Generator) [8] -
we are in charge of using a large number of random vari-
ables to profile inter departure time (IDT) and size (PS)
of cross traffic packets. In Figure 4 the controlled test-bed
used in our tests is shown. The link under test is located
between the routers Psinoe and Telsiope. It is an Ether-
net link with nominal capacity equal to 100Mbps. In order
to have a first precise evaluation of the tools performance,
we used as a proof-of-concept a controlled and fully config-
urable open test-bed. In this way we were in charge of con-
trol as much variables as possible as well as to configure to
our own several network topologies. Also, in this first stage,
we preferred to use a controlled test-bed to have a fully con-
trol on the network devices and network traffic (both ac-
tive and cross traffic). Before to step into experimental de-
tails, it is worth mentioning that we repeated each test sev-
eral times. The values reported in the following graphics
and tables represent a mean value across three test repeti-
tions. Thanks to the use of controlled test-beds we had a
confidence interval greater than or equal to 95%.

Figure 4. Our test-bed

In Figure 5 the results of one test are depicted. In such a
case we generated CT with constant IDT and constant PS.
The CT bit rate was equal to 60Mbps, therefore the ex-
pected available bandwidth was equal to 40Mbps. In Figure
5 the estimated available bandwidth (5(a)), the relative er-
ror (RE) of available bandwidth measure 1 (5(b)), and the
total measurement time (5(c)) are presented. In Figure 5
we can see that the best performance in terms of accuracy
were obtained by BET. It shows a relative error less than 2%
achieved with a masurement time of 24s.

(a) Available Bandwidth (b) Measurement time

(c) Relative error

Figure 5. UDP constant cross traffic (60Mbps)

Due to space limitations we can not provide graphical re-
sults for all conducted tests. For this reason, in Table 1 other
interesting results are summarized. Furthermore, other con-
sidered scenarios will be analyzed by referring to the case
depicted in Figure 5 as the ‘reference case’.

Digging into details of Table 1, in the case of constant
profile cross traffic (constant PS and constant IDT) with
bit rate equal to 30Mbit, we obtained the same results of
the reference case. Indeed, also in this test BET achieved
the best performance in terms of accuracy. Instead, when
the cross traffic rate was equal to 90Mbit, Pathchirp
achieved the best performance in terms of accuracy. In all
the tests with constant profile cross traffic, Netest showed
the worst behavior in terms of both total measurement time
(TMT) and accuracy. For this reason Netest has not been
used for successive tests. Furthermore, when cross traffic
was generated with Pareto PS and exponential IDT the best
performance in terms of both measurement time and accu-
racy was obtained by Pathchirp. In the case of Poisson
PS and exponential IDT, Pathchirp showed the best per-

1 RE = EV −MV
EV

where RE is the relative error, EV is the expected
value, and MV is the measured value.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



formance in terms of accuracy while the worst in terms of
measurement time. Finally, in the case of cross traffic with
exponential PS and Poisson IDT, BET achieved the best per-
formance in terms of accuracy while the worst in terms of
measurement time.

CT PS IDT Parameter BET Path Path NetEst
(Mbps) Load Chirp

90 Constant Constant
AB (Mbps) 5.72 4.87 10.42 5.86
RE (%) 42.85 51.25 4.20 41.42
TMT (s) 50.6 43.97 10 2.25

60 Constant Constant
AB (Mbps) 39.23 42.03 55.43 33.10
RE (%) 1.93 5.08 38.58 17.25
TMT (s) 24 6.01 60 72.26

30 Constant Constant
AB (Mbps) 69.2 71.42 90.12 73.94
RE (%) 1.14 2.03 28.74 5.62
TMT (s) 22.7 6.20 10 74.79

32 Pareto Exponential
AB (Mbps) 52.22 38.15 57.83
RE (%) 23.21 43.90 14.95
TMT (s) 47.3 35.8 10

50 Poisson Exponential
AB (Mbps) 42.23 36.39 56.46
RE (%) 15.54 27.22 12.92
TMT (s) 23.32 7.35 30

50 Exponential Poisson
AB (Mbps) 38.78 35.88 61.91
RE (%) 22.44 28.25 23.82
TMT (s) 20.2 9.92 10

Table 1. Experimental results and compara-
tive analysis under different traffic profiles

5. Conclusion

Based on our practical experience there is not a tool
better than others for the available bandwidth estimation.
We believe that this research topic represents a fertile field
where there is still room for many innovative approaches,
also considering the case of wireless links. We tested sev-
eral tools and we compared the performance of our pro-
posed platform. We learned that many of the current propos-
als are dependent from the network status and cross traffic.
Thanks to a deep experimental analysis performed by using
a large number of tests over a controlled test-bed, this our
seminal work do not give us the possibility to choose the
best tool for all network conditions. At opposite side, we
are in charge of understand the behavior of the spread used
tools in the case of several traffic patterns (constant, expo-
nential, poisson, pareto, ...) and we prove that our proposal
represents a good compromise among considered variables
in a fitness function that considers accuracy, total estima-
tion time, and total probing traffic. Indeed, as for these vari-
ables we tested many network conditions and we summa-
rize our goals presenting experimental results by using D-
ITG as cross traffic generator. Thanks to the use of this plat-
form we were in charge of clearly define the sent and re-
ceived cross traffic.

6. Between Current and Future Work

The achieved results have shown that, in many cases, our
application performs better than other ones. But, in gen-

t

B
W

Flow   1

Flow  2

Flow  3

AB

Figure 6. SAWT technique

eral, does not exist ’the best tool for the available bandwidth
measure’. After this deep analysis we think that a great ef-
fort has been done but other contributions are needed. Cur-
rently, we are working on a modification to the SLoPS algo-
rithm in order to improve the performance of the measure-
ment process. Due to the adopted cascade model the mea-
surement time is, in some cases, larger than the Pathload
one. For this reason an envisaged improvement is the reduc-
tion of the chirping phase duration by adopting a dynamic
approach. More precisely, according to a cross traffic esti-
mation chirping phase duration could be chosen in an auto-
mated fashion. By taking into account the results of our ex-
perimental analysis and after a deep analysis of the SLoPS
algorithm, we are planning to lightly change the available
bandwidth scanning technique used in the SLoPS module
of BET. In our next implementation we will use a differ-
ent technique that we called SAWT. SAWT consists of send-
ing (within the same fleet) flows with increasing bit rate. In
this way a more efficient scan of available bandwidth is per-
formed as shown in Figure 6.

References

[1] M. Jain, C. Dovrolis, “Pathload: a Measurement Tool for
Available Bandwidth Estimation”, Proc. of Passive and Ac-
tive Measurement Workshop, 2002.

[2] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, L. Cottrell.
“PathChirp: Efficient Available Bandwidth Estimation for
Network Paths”, Proc. of PAM, 2003.

[3] G. Jin, B. Tierney, “Netest: A Tool to Measure the Maximum
Burst Size, Available Bandwidth and Achievable Through-
put”, Proc. of The 8th IFIP/IEEE International Symposium
on Integrated Network Management March 24-28, 2003.

[4] N. Hu and P. Steenkiste, “Evaluation and Characterization
of Available Bandwidth Probing Techniques”, IEEE JSAC,
Journal on Selected Areas in Communications, Vol. 21, No.
6, August 2003.

[5] V. J. Ribeiro, R. H. Riedi, and R. G. Baraniuk, “Locating
Available Bandwidth Bottlenecks”, IEEE Internet Comput-
ing, September 2004, pp. 34-41.

[6] R. L. Carter and M. E. Crovella “Measuring bottleneck link
speed in packet-switched networks”, Performance Evalua-
tion Journal, October 1996.

[7] M. Jain, C. Dovrolis, “End-to-End Available Bandwidth:
Measurement Methodology, Dynamics and Relation with
TCP Throughput” Proc. of ACM SIGCOMM, 2002.

[8] http://www.grid.unina.it/software/ITG

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 


