@ The Journal of Supercomputing, 35, 5-26, 2006
— (© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

High Performance Internet Traffic Generators

STEFANO AVALLONE stavallo@unina.it
DONATO EMMA doemma@unina.it
ANTONIO PESCAPE pescape @unina.it
GIORGIO VENTRE giorgio@unina.it

University of Napoli “Federico II”, Italy

Abstract. In the networking field, traffic generator platforms are of a paramount importance. This paper deals
with the description of a distributed software platform for synthetic traffic generation over IPv4/v6 networks, called
D-ITG (Distributed Internet Traffic Generator). We point our attention on the original architectural choices and
evaluate the performance achieved by the platform. D-ITG supports several protocols and many traffic patterns.
We tested our generation platform over different scenarios and compared it to many of the currently available,
and most widely adopted, traffic generators. We found that D-ITG offers enhanced functionalities and improved
performance.

Keywords: high performance internet traffic generation, distributed and parallel architectures, performance
evaluation

1. Introduction

Over the last twenty years, considerable effort has been made to understand and characterize
the behavior of the Internet. The extreme complexity of large topologies and their traffic
characteristics make the development of analytical models difficult. Under such conditions,
simulation is the most promising technique for understanding network behavior. Simulation
modeling of computer networks is an effective technique for evaluating the performance of
networks as well as transport and application-level protocols. Traffic generation is one of
the key challenges in modeling and simulating the Internet. For a small simulation with a
single congested link, simulations are often run with a small number of competing traffic
sources. However, for a larger simulation with a more realistic traffic mix, a basic problem
is how to introduce different traffic sources into the simulation. For this reason, most of the
international researchers move toward simulation environments like ns [3] or others. At the
same time, simulating how wide area networks behave is complicated by the heterogeneity
of these networks and their fast evolution. The interaction between the traffic from the
diverse suite of protocols that operate over the Internet and the hierarchical nature of the
topologies are a few of the factors contributing to the complexity of such large networks
[14]. We refer to [5] for a detailed description of the many difficulties involved in simulating
the Internet in a realistic manner.

Taking into account this kind of analysis, this work presents a contribution to one of
the most critical aspects of network architecture analysis: synthetic generation of realistic
high traffic loads over real networks. The motivations at the base of our choice are the

6 AVALLONE ET AL.

following. Significant progress has been made in the last few years in tools for realistic
traffic generation, for both simulations and analysis. An approach of “real simulation”
permits to overcome some typical constraints: (i) generally we simulate protocols but we
ignore how they are actually implemented in terminals and nodes; (ii) we need to consider
computational aspects for applications, nodes, and systems; (iii) macro-scale evaluations
highly depend on phenomena dynamics; (iv) in a simulation environment like ns there is a
synchronous coordination among the simulated events.

This paper is organized in six sections. After this introduction, Section 2 summarizes
the main characteristics of D-ITG. Details on the model, the architectural choices and the
functional modalities of D-ITG are presented in Section 3. Section 4 shows a complete
D-ITG performance analysis and a comparison with several traffic generators over a multi
platform scenario. A scalability analysis of the generation platform is depicted in Section 5.
Section 6 ends the paper with some conclusion remarks.

2. Distributed Internet Traffic Generator (D-ITG)

A generator of controllable, scalable, synthetic but realistic IP traffic is needed in several
circumstances. For instance, we cite here the analysis of new applications and network
mechanisms over the Internet and the testing of Quality of Service (QoS) architectures. D-
ITG [6] has been developed for this purpose. From our point of view, we define “realistic”
the traffic that is “statistically similar” to the traffic generated over a real network from real
protocols/applications.

Traffic generators usually produce low traffic loads in a controlled test-bed environment
where a few sources are present. D-ITG aims to simulate complex networks by generating
traffic flows on a packet-by-packet basis. Basically, a traffic flow is specified through two
random processes: packet Inter Departure Time (IDT)—the time between the transmission
of two consecutive packets—and Packet Size (PS)—the amount of data being transferred by
the packets (Figure 1). Both processes are modeled as i.i.d. series of random variables (con-
stant, uniform, exponential, pareto, normal, cauchy, etc). By using specific combinations
of IDT and PS, per protocol traffic models can be created.

It is also possible to specify a seed to initialize both IDT and PS random variables. Such
a feature allows for reproducing experiments, as exactly the same traffic pattern can be
repeated by specifying the same seed value.

Besides to let the user choose the probability distribution and the related parameters,
D-ITG can also set them automatically. Indeed, D-ITG incorporates some of the models
proposed in the literature for various application protocols. This means that the user can
simulate the generation of a supported protocol traffic without having to know the required

Packet Size Inter Departure Time
4—’

Figure 1. Inter departure time and packet size.

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 7

distributions and parameters. For the Telnet protocol, for instance, we refer to the studies of
Paxson and Floyd [12, 13], which are based on the analysis of the Internet Traffic Archive
(ITA) tracks. To reproduce VoIP traffic, instead, we make reference to an analysis carried out
by Cisco Systems [4], which determines the required bandwidth depending on the encoding
algorithm (G.711,G.729, G.723.1,. ..), the number of samples per packet, the usage of VAD
(Voice Activity Detection) and RTP (Real Time Protocol) Header Compression.

D-ITG enables to evaluate a set of QoS performance metrics such as throughput, packet
loss, delay (One Way Delay and Round Trip Time) and jitter. In our opinion, D-ITG is a
key component for the experiments in a testing or planning phase for IP based networks.
More precisely, in the context of QoS IP networks it is useful to have software architectures
able to evaluate the performance of IP traffic control mechanisms supporting QoS. As for
this last point D-ITG provides the setting of the TOS (Type of Service) and the TTL (Time
to live) fields. Statistics related to the generated traffic flow can be collected by analyzing
the information stored by both the sender and the receiver. An appropriate utility enables
to determine the average values of throughput, delay, jitter and packet loss not only on the
whole duration of the experiment, but also on windows of the desired duration.

D-ITG supports the generation of both IPv4 and IPv6 traffic. Also, all the communication
channels established among the D-ITG components can be based on IPv4 as well as IPv6.
IPv6 support has been added so as to preserve the correct operation on machines without
IPv6 capabilities and to avoid increasing the complexity of the command line syntax (e.g.
by adding new options).

To demonstrate the applicability, the performance and the usefulness of D-ITG, this paper
details its behavior in an experimental test-bed. Also, we present a comparative analysis with
the following traffic generators: Mtools [2], Rude/Crude [7], Mgen [8], Iperf [9] and UDP
generator [10]. The comparative studies in this paper are conducted with CBR (Constant Bit
Rate) UDP traffic, even though D-ITG is able to generate stochastic traffic patterns. In this
paper we focus on the innovative solutions we introduced in the field of traffic generators
and we analyze the related achieved performance. The motivations at the base of our work
are presented in [16] where a complete description and analysis of related work is presented.
In [15] considerations and details on different distributed D-ITG implementations (based on
MPI) are presented and finally, the use of D-ITG for a comprehensive performance analysis
of heterogeneous wireless networks is described in [17] and [18].

3. D-ITG software architecture

D-ITG platform defines a distributed multi-component architecture for high performance
Internet traffic generation in heterogeneous environments. The main components of D-ITG
are: (i) Internet Traffic Generator Sender (ITGSend), (ii) Internet Traffic Generator Receiver
(ITGRecv), (iii) Internet Traffic Generator Log Server (ITGLog), (iv) Internet Traffic Gener-
ator API ITGApi); (v) Internet Traffic Generator Decoder (ITGDec). Every component, in
particular ITGSend and ITGRecv, presents an internal distributed implementation. Several
kinds of distributed architectures have been implemented (i.e. an MPI version is available
[15]). Figure 2 shows a graphical overview on the relationship among the five main bricks
of D-ITG platform.

8 AVALLONE ET AL.

(]

T ITGLog
L]
T
| ITGSend T ITGRecy
e
s [tz Chainnel
T Log Channel
| snaling Channé
T [TGManager Signaling Channel

Figure 2. D-ITG software architecture.

The normal operation of our platform requires the exchange of messages among its con-
stituent components. Figure 2 illustrates the different communication channels established
for this purpose. As will be clarified later on, different signaling channels and a log channel
may be needed, besides the data channel. The following subsections detail the components
of the D-ITG platform and their interrelation.

3.1. Traffic Specification Protocol (TSP)

In order to set up an efficient architecture for traffic generation we defined a protocol for
the configuration of experiments called Traffic Specification Protocol (TSP). TSP rules the
exchange of messages between ITGSend and ITGRecv that are needed to control traffic gen-
eration. More precisely, TSP is a protocol we introduced in order to: (i) create a connection
between a sender and a receiver; (ii) authenticate a receiver; (iii) exchange information on
a generation process; (iv) close a sender-receiver connection; (v) detect generation events.

Figure 3 illustrates the TSP state diagram of both the receiver and the sender represent-
ing the possible transitions. More specifically, Figure 4 shows how ITGSend and ITGRecv

- T T —
o o0 O
M A / \ | A]
() () & /& SN
\ Doy [\ A "' / K o \'.
i Yo / _,< \ Connedt| o
\ d | 9--55-4-‘:;-9? . { ', Err_mag1 .IQ(_T:;-;_
mmrnow\{ 7~ \ B : A S S "\ Tty
‘..\TT/II II..I'\ e I‘I' it nck_Conncat) .’I
i A -
\ e) Y i
“\gandFiow | ack_fiow >’ S N . {iT \.l . \."/
S [mowrsason), ,ﬁw e ioet \ wina) \“‘\"“‘ ““:,'
i \:‘i/ Eaan 'mbwr ==
(a) Receiver Side TSP (b} Sender Side TSP

Figure 3. State diagrams of TSP at (a) Receiver Side and (b) Sender Side.

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 9

oo oo
: —] 1 e]
H 5 ;
|] 7 | [s
H % Jas— j
-t 7 H AT Ve YA ’[]
|-|‘ Arteeicmon Mesasss aypsiEA ' ind .
- |r St P Pt | |
H Amecmon Mesage ayEfsA 'H fothng
P H i)
Fom S H i
= |r S Fiow Placuset © Sarcl iomi 1) ' J—— j S P Pt e |
| Fow Pgusel Acrowedgmant at_lowi!) P Pt gt S F ot o o
| m j e Y e s prisse e | n—mj o Tnssst O b 41
I farvie siaw Ay
Disoowey Reaperes . ech_daorvery P,
B Fiow Eng - dose_fowi1} [—I Fow s oz
- H Flom Erdl ach_siows 1} ki i

r — SR
i e '|:| == i,

I o

===

Desspanfre s

{(a) Generation of a single flow (b) Generation of multiple flows

Figure 4. TSP implementation.

interact according to TSP protocol in case of the successful generation of a single flow
(Figure 4(a)) and of multiple flows (Figure 4(b)). In the single flow case, the sender must
first establish a TCP connection with the receiver. We denote such connection by “TSP (sig-
naling) channel”. Then, the receiver must be authenticated by means of a challenge-response
protocol [1]. The use of this authentication method allows the sender to make sure that the
receiving host really wants to receive traffic, avoiding that the generator might be used to
launch attacks such as Denial of Service (Figure 5). In case of successful authentication,
sender and receiver can exchange information on the generation experiment. Then, packets
are sent on a different communication channel. During the generation process, the receiver

F:-r' ke - T: —_ . } z |I

=]

E—;EEM,_ = '.'./ !

Figure 5. A wrong use: Denial of service attack by using D-ITG.

10 AVALLONE ET AL.

Table 1. TSP messages description

Type Name Description
1 Connection Request The sender requests a connection
2 Connection acknowledgment The receiver accepts the connection request
3 Flow generation request The sender requests the permission to generate a flow
4 Flow ending The sender informs the receiver about the end of a
flow generation
5 Flow generation acknowledgment The receiver grants the permission to generate a flow
6 Flow ending acknowledgment The receiver acknowledges the end of a flow generation
7 Connection close acknowledgment The receiver acknowledges the closing of a connection
8 Discovery request The sender tests the receiver activity
9 Discorvery reply The receiver replies to a sender discovery request
10 Crypto An encrypted information is sent for authentication
purposes
11 Connection close request The sender requests the closing of a connection
12 Log configuration The sender sends to the receiver infromation on the log
server configuration
13 Log configuration acknowledgment The receiver acknowledges the log configuration message
14 Error 1 Unable to accept the flow generation request because the
specified port is unavailable
15 Error 2 Receiver authentication failed

probes the status of the sender every 60 seconds. TSP channel is also used by the sender
to inform the receiver about the end of a flow generation. When the receiver acknowledges
the flow closing, the sender releases the TSP connection and exits. In case of the generation
of multiple flows the sequence of steps performed by the sender and the receiver is very
similar to that of the single flow case. The main difference is that the Flow Setup and Flow
Closing phases are repeated for every flow to be generated.

The TSP protocol requires the sender and the receiver to exchange different messages.
Table 1 reports the purpose of each such messages. TSP messages are encoded in packets
sent over the TSP channel. Figure 6 shows the format of a generic TSP packet. The type
of message is specified by the type field. TSP packets contain the mandatory type field and
certain other fields. Table 2 reports the meaning of some fields depending on the type of
packet they are part of.

The TSP channel enables ITGRecv to be automatically informed by ITGSend (not by
the user) about the transport protocol and the destination port of the flow to be generated
(message #3). Hence, there is no need for ITGRecv to have an a priori knowledge of such
information. In practice, this means that ITGRecv can operate as a daemon, which is always
listening for new connections. Also, this architectural choice aims to improve the platform
usability.

3.2. The sender

ITGSend is the sender of the D-ITG traffic generation platform. ITGSend can operate in
three different modes:

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 11

Table 2. Description of TSP packet fields

Type 3 12
Data port Description Port where the receiver will listen Port where the log server listens for
for traffic log information
Type 3 12
Protocol Description Protocol type (UDP, TCP or Transport Protocol used to communicate
ICMP) with the log server
Type 3,4,5,6
Flow id Description Identifier of the generated flow
Type 3 12
Dest IP Description Receiver IP address Log server IP address
Type 3
Application Layer Description Simulated application layer
Protocol protocol
Type 10
Crypto Description Encrypted information needed for
authentication
Type 10
File name Description Log file name
Type 3
UP Protocol Description Application level protocol to be
simulated
a 8 IIO 24 x5
Type Dest Port Protocol
Flow Id
Dest IP
Crypto (128 byte)
File Name (32 byte)
UP Protocol

Figure 6. TSP packet format.

e single flow mode: In case a single flow must be generated, ITGSend itself manages the
configuration of the experiment through the TSP protocol and transmits the packets of

that flow (Figure 7(a));

e multiple flows mode: In case multiple simultaneous flows must be generated, ITGSend
operates as a multi-threaded application. Figure 7(b) shows the case where all the flows

share the same destination host;

o daemon mode: ITGSend can be launched and stay idle waiting for instructions. Thus, the
generation process can be remotely controlled (Section 3.5). In this mode, each flow is
generated by a separate thread as in the multiple flows mode.

12 AVALLONE ET AL.

Data Channel
Thread Control
Signaling Channel TSP

:': ITGSend | | ITGRecy

[<cThmad>> |
MGRecy |
—— I

(a) Single flow mode

e Datta Channel
e T'hread Control
Signaling Channel TSP

ITGSend ‘ l -

I I ITGReev
|
|] [
A
L 1 [n| f it) 8 |
<<Thread=> i| <<Threab> ‘ |'(|)| | <<Threab ‘ <<Thread=> ”
T | LI T
oS | ot T e | S TSR
S S T Y ommm—
| =<Thread> 1] <<Threads> ||
| mGsend W | ITGRecy |
I !

(b) Multiple flow mode

Figure 7. Traffic generation in (a) single flow mode and (b) multiple flow mode.

In single flow mode, the parameters of the flow (IDT and PS processes, destination IP ad-
dress and port, duration, etc.) may be specified as command line arguments. In multiple flows
mode, instead, a script file is required (with each line specifying a flow). In daemon mode,
ITGSend listens for instructions on a fixed TCP port. We provide a C++ API (Application
Programming Interface) to exchange messages with ITGSend launched in daemon mode.

Figure 8 shows how ITGSend operates when used in multiple flow mode. In this case
ITGSend acts as a multi-threaded application. For each flow to generate, the main ITGSend
process generates a new flowParser thread. Such thread first parses the input line that de-
scribes the flow to be generated. Next, it checks if there exists a signalManager thread
connected to the destination via a TSP channel. If such a thread does not exist a new signal-
Manager thread is created. This thread is responsible for the TSP protocol implementation
and for the creation of the flowSender thread, which handles the traffic flow generation.
There is only one signalManager for each distinct traffic destination. In this way ITGSend
enables the sharing of a single TSP channel in case of multiple flows generation towards
a single destination, so as to reduce the overhead due to the experiment control and setup
activities. The synchronization among all the threads that cooperate in the generation of

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 13

Figure 8. 1TGSend activity diagram for a multi flows generation experiment.

each flow is made using the inter process communication (IPC) over Unix-like platforms,
or the event communication over Windows platforms. For example, as Figure 8 shows, the
creation of a new flowSender thread starts when signalManager receives a NEW FLOW
START TPC message or an equivalent windows events. In the same way signalManager
uses an IPC message, or an equivalent windows event, in order to communicate the result
of the flowSender creation and closing.

As far as IPv6 generation, ITGSend implicitly infers the IP version from the address of
the destination host. If such address is an IPv6 address, then IPv6 sockets are established
for signaling and traffic generation. Of course, if the kernel does not support IPv6, the
generation experiment will fail.

To collect statistics about the generation experiment, it is necessary for ITGSend to store
some information in the payload of each packet it sends. Such information includes the
identifier of the flow the packet belongs to, a sequence number and the time the packet was
sent. Also, ITGSend may create a log file (either locally or on a remote log server), which can
be processed at a later stage by ITGDec to provide information about the generated traffic.

The real traffic generation is heavily influenced by the CPU scheduling. Indeed, several
processes (both user and kernel level) can be running on the same PC and this has a bad
impact on the quality of the generated flow. Since the real-time support of the operating
systems where ITGSend can be used is not very efficient (due to their scheduling mechanism
and the inevitable timer granularity), it was necessary to use a strategy. A variable records the
time elapsed since the last packet was sent; when the inter-departure time must be awaited,
this variable is updated. If its value is less than inter-departure time the remaining time
is awaited, otherwise the inter-departure time is subtracted from the value of this variable

14 AVALLONE ET AL.

and no time is awaited. This strategy guarantees the required bit rate, even in presence of
a non real-time operating system. Also the choice of a multi-threaded implementation of
ITGSend is tied to the need of limiting the interference among the generations of different
simultaneous flows.

3.3. The receiver

ITGRecyv is the receiver component of the D-ITG traffic generation platform. It always
operates as a concurrent daemon (Figure 10), listening for new TSP connections on a
specified TCP port (9000).

Figure 9 shows how ITGRecv operates to receive a new traffic flow. When a TSP con-
nection request arrives, ITGRecv generates a new signalManager thread that is responsible
for the TSP protocol implementation. Each single flow is received by a separate thread: for
each TSP New Flow message it receives, signalManager creates a new flowReceiver thread.
Such thread: (i) creates the receiving socket; (ii) receives the packets sent by ITGSend;
(iii) generates a log file that describes the received flow at packet level. Like ITGSend, the
coordination among all the threads involved in the receiving process is made using the inter
process communication (IPC) over Unix-like platforms, or the event communication over
Windows platforms. In Figure 9 the main IPC messages (windows events) used in the new
flow setup process are shown.

As far as IPv6 generation, we have to distinguish between Linux and Windows OSs. Under
Linux Operating System, ITGRecv first tries to establish an IPv6 socket for signaling. If the
kernel is IPv6-enabled, such operation is successful and ITGRecv will be able to reply to
both IPv4 and IPv6 connection requests. If not, an IPv4 socket is established and ITGRecv
will only reply to IPv4 connection requests. Thus, there is no need to specify the IP version,
since it will be auto-detected. Also, a single ITGRecv instance is able to receive both IPv4
and IPv6 traffic. The type of socket established to actually receive the traffic is determined
by the type of destination address sent by the sender via the TSP protocol. Under Windows

Figure 9. 1TGRecv activity diagram.

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 15

H Data Channel
L e Thiread Control
ITGRecv
H = == = Signaling Channel — TSF
<<thread=> <<thread>>
mGSend | ° | signalManager signalManager """ """~ ITGSend

| |

<<threads>>

<=<thread==>

flowReceiver flowRecsiver

Figure 10. 1TGRecv daemon model.

Operating System, instead, the same procedure cannot be used. Indeed, if an IPv6 socket
is established, it will not reply to IPv4 connection requests. Therefore, it is necessary to
specify whether ITGRecv has to receive IPv6 traffic. In case ITGRecv has to receive both
IPv4 and IPv6 traffic, it is necessary to run two different instances of ITGRecv.

The log file generated by ITGRecv can be stored either locally or on a remote log server.
Then, it can be processed at a later stage by ITGDec to provide information about the
received traffic.

3.4. The log server

ITGSend and ITGRecv can either log information about the generated flows in a local
log file or send such information to a remote log server. ITGLog is the log server of the
D-ITG platform, which receives and stores the information received from multiple senders
and receivers. A sender (receiver) intending to delegate the logging activity to ITGLog has
first to setup a signaling channel toward the log server. The communication is ruled by a
signaling protocol that allows each sender (receiver) to register on, and to leave, the log
server. The information to be logged is then sent using a log channel, which may be either
a reliable channel (TCP) or an unreliable channel (UDP).
ITGLog proves to be useful in different scenarios. We propose a couple of examples:

e Real-time controller (Figure 11(a)): a log server may be useful in those cases where the
sender is requested to adapt its transmission rate to the capacity of the channel toward
the receiver. For instance, we refer to the delivery of real-time multimedia contents. The
receiver may send information to a log server. Such information are not stored, but passed
to a real-time controller which analyzes it “on-the-fly” to adjust the sender’s rate.

e Devices with limited storage resource (Figure 11(b)): if a device with limited storage
resource, such as a PDA (Personal Digital Assistant), is used to send or receive a traffic
flow, a log server can be used to collect the log information that can not be stored on such
a device.

16 AVALLONE ET AL.

TORel fiGsemd MGl
— g Dt
e 5 pptilaticd o

e -
(a) Wide area experimentation

TGSl TTiLe

—— Log Data

— it o

-

{b) Wireless scenario

Figure 11. Using ITGLog in (a) wide area experimentations and in (b) wireless scenario.

3.5. The remote controlling

As described before, ITGSend can be launched in daemon mode and stay idle waiting for
instructions. We provide ITGApi, a C++ API, to remotely control ITGSend. Such API
includes a function that enables to send a message to ITGSend. Through this message, it
is possible to issue the generation of a traffic flow. The syntax of this message is the same
as that used to request a flow generation from the command line. ITGApi also provides a

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 17

Figure 12. Controlling the whole traffic over the network.

non-blocking function that catches messages sent by ITGSend. Indeed, ITGSend replies
with a message to indicate both the start and the end of the flow generation. It is possible
to remotely control more than one sender, as depicted in Figure 12. In this way, an ad-hoc
component, called ITGManager in the figure, can control the whole traffic crossing the
network using ITGApi.

This feature can be used, for instance, to test centralized routing algorithms in a real
environment. Indeed, we can assume the presence of a “network controller” which receives
flow requests and determines the path that the corresponding flow must follow in order to
satisfy flow requirements and optimize network resource usage. We are assuming that the
network architecture allows to explicitly route flows (e.g. MPLS). After the path has been
established, it is possible to issue the generation of the traffic flow. By collecting statistics
about average delay, jitter and packet loss related to several flows, it is possible to compare
the performance of different traffic engineering algorithms.

3.6. The decoder

Statistics related to the generated traffic flows can be collected by analyzing the information
that both ITGSend and ITGRecv store in their own log file. For each packet, the following
information are stored: (1) flow identifier; (2) sequence number; (3) source address and
port; (4) destination address and port; (5) transmission time; (6) receiving time; (7) packet
size. It is worth mentioning that log files are binary files, in order to reduce their size and
speed up I/O operations with respect to text files.

ITGDec is the utility of the D-ITG platform that processes log files and displays the
average values of delay, jitter, throughput and packet loss for each flow. ITGDec can also

18 AVALLONE ET AL.

determine the average values of such measures over time intervals of the desired duration.
The measured delay value needs further clarification. We distinguish between the one-
way-delay mode and the round-trip-time mode. In the former case, ITGSend logs when
the packets are sent, and thus can not know the receiving time of packets. So it fills the
corresponding field inside the log file with the transmission time. Hence, the resulting
delay (and, consequently, jitter) is null for each packet. The delay value resulting from the
processing of the log file of ITGRecv instead represents the one-way-delay. In the latter
case, the analysis of the log file stored by ITGSend returns the round-trip-time, while the
analysis of the log file stored by ITGRecv returns the one-way-delay.

4. Performance evaluation and comparative analysis

To study the maximum data rate D-ITG can achieve, we performed an extensive experimen-
tal analysis. In order to trace a first reference study and—at the same time—a precise data
rate evaluation we need simple and controllable test-beds. Hence, we used two back-to-back
connected PCs, whose characteristics are reported in Table 3.

We have also studied, using the same workstations, the D-ITG performance over a local
machine in order to (i) study the interference between sender and receiver processes (in a
real environment multiple senders and receivers can be running over the same machine) and
(ii) isolate the dependencies from network dynamics. We found that D-ITG is able to reach
high data rates on both transmission and reception sides. In the next subsections we first
detail the experimental results obtained in a scenario composed by two workstations with
Linux OS (the scenario in which D-ITG reaches the best performance). Next, we summarize
the results obtained in:

e distributed scenarios

— two workstations with Windows OS
— two workstations, one with Linux OS and the other with Windows OS

Table 3. Experimental parameters

Hardware details Intel Pentium 4 2.6 Ghz—CPU cahce 512
RAM: 1024 MB
Hard Disk: Maxtor 6Y080LO (Fast ATA/Enhanced IDE Compatible Ultra
ATA/133 Data Transfer Speed 2MB Cache Buffer Quiet Drive
Technology 100% FDB (fluid dynamic bearing) motors)
Network Details 2 PCs with Gigabit Ethernet back-toback connection
Ethernet Controller: 3Com Gigabit LOM (3¢940)
3Com Corporation 3c905C-TX/TX-M
Software Details Linux: Linux Mandrake 9.1 with kernel 2.4.21-013mdk and Linux RedHat
9 with kernel 2.4.22
Windows: Windows XP Professional 2002, Service Pack 1
Experiment Duration T =60s
Traffic Details CBR, Constant Bit Rate
Protocol: UDP
C = packet per second (pps or pkt/s)
¢ = packet size (byte)

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 19

e local scenarios

— one workstation with Linux OS
— one workstation with Windows OS

Finally, we summarize an analysis which compares D-ITG to other widely used traffic
generators. We refer for more detailed results to [20].

4.1. Distributed experimentation over linux platform

We studied the performance of D-ITG at both sender and receiver side. This analysis requires
the traffic generator to store information at both sides. The logging process at sender side
may influences the maximum achieved transmission data rate. Clearly, the generated data
rate influences the data rate measured at receiver side. Hence, we present both the results
in the case of storing at sender and receiver side and the results in the case of storing only
at receiver side. We denote by C the packet rate (packet/s), ¢ the packet size (byte) and ¢
the flow duration (s).

4.1.1. Log information stored at both sender and receiver side. Figure 13 depicts the
performance achieved by D-ITG in terms of generated and received data rate. In case
of C = 75000 pkt/s, ¢ = 1024 byte, t = 60 s D-ITG reaches a generated data rate
equal to 612 Mbit/s resulting in a loss rate equal to 0.5% (the loss rate being defined as:
1- %)). All the generated packets have been received by ITGRecv. Increasing
the requested data rate results in a greater error. Thus, we have found an upper bound to the
maximum achievable sending data rate that is less than the theoretical one (equal to 1000
Mbit/s with the used network interfaces). This scenario allows us to identify the maximum
sending rate supported by ITGSend in case it logs. Moreover, it is possible to assert that
ITGRecv is capable to receive all the packets that ITGSend generates, and then it is not
possible to identify the maximum receiving data rate that characterizes ITGRecv. Finally, it
is possible to presume that ITGSend can reach an higher data rate when the logging process
does not interfere with the generation process.

Max Data Rate [Mbps]

o
a3
b

—Bipected
Sender

// | |- -Receer

73000 75000 77000 78000
Packet Rate [pktis]

Max Data Rate [Mbps]
o oy
& =
g
| *
A
A

Figure 13. Generated and received data rate over Linux devices (distributed and log at both sender and receiver
side).

20 AVALLONE ET AL.

Received Data Rate [Mbps] Loss Rate [%]

4_,:*:‘ | % ;

i —— eckd 15 -

5 - = B =T
L

Receiverd Data Rate
[Mbps]
[=4]
B
N

73000 7500 77000 79000
Packe tRats phin]

73000 Ts000 77000 79000

Packet Ra® bhirg
(a) Data rate (b) Loss rate

Figure 14. Distributed analysis at receiver side over Linux platform: (a) data rate (b) loss rate.

4.1.2. Log information stored at receiver side. Figure 14(a) shows the performance in
terms of the received data rate achieved by D-ITG when the receiver only logs. In Fig-
ure 14(b) the loss rate as a function of packet rate is reported. We have found an upper
bound to the maximum achievable received data rate that, also in this case, is less than the
theoretical one. In case of C = 77000 pkt/s, c = 1024 byte, t = 60 s D-ITG reaches a
received data rate equal to 627 M bit/s with a loss rate equal to 0.5%. This upper bound may
be either the maximum achievable data rate at receiver side or the maximum sustainable
data rate at sender side. As shown in the previous subsection, logging both at sender and
receivers sides, the maximum achievable data rate at sender side is equal to 612 M bit/s
that is less than the 627 M bit/s measured in this scenarios. So we can say that, using the
workstations described in Table 3 with Linux OS, ITGSend can generate at least 627 M bit/s.
As far as the maximum achievable received data rate considering this scenario we can only
say that it is greater than or equal to 627 Mbit/s. Considering two senders that send packets
to a single receiver as a scenario that may be used to evaluate the maximum achievable data
rate at receiver side is a pitfall: in this case ITGRecv generates two threads that must share
the available resources. As we will show in Section 5.2 this interference is very little but in
any case reduces the overall performance at receiver side.

4.2. Summary of other scenarios

Table 4 shows the result of the analysis in all the considered distributed scenarios. For each
row the first column describes the tested scenario. The second column contains the data
rate measured at sender side when ITGSend logs or the data rate measured at receiver side
when ITGSend does not log. The third column contains the measured data rate at receiver
side. The symbol > indicates that the measured data rate can not be assumed as an exact
limit of the data rate supported by D-ITG but only as a lower bound on it.

As mentioned above, we have observed the best performance using Linux on both sender
and receiver sides. Under Windows OS D-ITG behave worse than under Linux OS. As
the last two rows of Table 4 show, using Linux as one end point of the generation process
and Windows as the other end point, we have been able to determine the maximum data
rate achieved by D-ITG under Windows OS. In particular, ITGSend reaches a maximum
sending data rate equal to 242 Mbit/s, when ITGRecv reaches a maximum receiving data
rate equal to 483 Mbit/s. This result shows that the bottleneck in the generation process

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 21

Table 4. D-ITG performance in distributed scenarios

Scenarios Sender side data rate Receiver side data rate
Two workstations with Linux OS—Both sender 612 Mbit/s >612 Mbit/s
and receiver log
Two workstations with Linux OS—The receiver >627 Mbit/s >627 Mbit/s
only logs
Two workstations with Windows OS—Both 161 Mbit/s >161 Mbit/s
sender and receiver log
Two workstations with Windows OS—The >242 Mbit/s >242 Mbit/s
receiver only logs
One workstation with Linux OS and the other >627 Mbit/s (Linux) 483 Mbit/s (Windows)
with Windows OS—The receiver only logs
One workstation with Linux OS and the other 242 Mbit/s (Windows) >627 Mbit/s (Linux)

with Windows OS—The receiver only logs

Table 5. D-ITG performance in local scenarios

Scenarios Sender side data rate Receiver side data rate
Linux OS—Both sender and receiver log 511 Mbit/s >511 Mbit/s
Linux OS—The receiver only logs >611 Mbit/s >611 Mbit/s
Window OS—Both sender and receiver log 102 Mbit/s >102 Mbit/s
Windows OS—The receiver only logs >241 Mbit/s >241 Mbit/s

under Windows OS is ITGSend. Since this is an expected result, we can reasonably assume
that such a result may be also valid under Linux OS. Therefore, we can argue that 627 Mbit/s
is the value of the maximum data rate that ITGSend can achieve under Linux OS.

Table 5 shows the result of the analysis in all the considered local scenarios (both sender
and receiver on the same machine). Also in this case we have found that D-ITG reaches
better performance under Linux OS. In the case the receiver only logs, the measured data
rates are not far from those achieved in the distributed scenarios: a rate decrease of 26 Mbit/s
for Linux and 1 Mbit for Windows. In case both sender and receiver log the rate decrease
is greater: 101 Mbit/s for Linux and 59 Mbit/s for Linux. Such results confirm that sender
and receiver running on the same machine interfere with each other.

4.3. Comparative analysis

In the previous two subsections we have presented the performance achieved by D-ITG
in different and heterogeneous (in terms of OSs) scenarios. In all the working conditions
D-ITG has reached a high data rate on both transmission and reception sides. However,
these data rates are always inferior to the theoretical maximum. In order to assess the
performance achieved by D-ITG we have developed a comparative analysis among D-ITG
and other widely used network traffic generators (see [16] for an exhaustive description
of the available Internet network traffic generators). The scenarios we have considered are
the same used for the performance analysis of D-ITG. In all the tested conditions we have

22 AVALLONE ET AL.

Received data rate (Mbps)
650 —630—627

400 < - “eee R s ceseneeeeee BB

£ D M, R M Ipese U
)‘Pt’crea TG topys ”"'Pfc,-", GEn Pere DPQQ,-,Q N
or

Figure 15. Distributed received data rate over Linux platform (log at receiver side)).

found that D-ITG reaches the maximum data rate on both sides of the generation process.
Figure 15 shows the measured data rate at receiver side in case of two Linux workstations
when ITGRecv only logs. In all the remaining scenarios we have found similar results.

5. Scalability analysis

We think that the built-in “scalability propriety” is of paramount importance in a network-
ing tool. Thus, we present a D-ITG scalability analysis at both sender and receiver side.
More precisely, we measured the sender and receiver performance while the number of
the threads/flows was varying. We did not take into account ITGLog scalability analysis
because the Log server undergoes a very low workload (with respect to ITGSend and IT-
GRecv components). The scalability analysis has been carried out on both Windows and
Linux platforms. In order to study the performance of the sender and the receiver we stored
information at both sender and receiver side.

5.1. Scalability analysis at sender side

Linux platform. In order to work with the maximum data rate we used the parameters that
permit to reach the D-ITG best performance (C = 75000 pkt/s, c = 1024 byte, and therefore
Maximum Data Rate equal to 612 Mbit/s with an error rate equal to 0.5%). In the case of
n flows/threads, in order to maintain the same maximum value of data rate we configured
each flow with a packet rate equal to ﬂﬂ pkt/s. Figure 16(a) shows that the data rate is
almost constant and equal to the maximum data rate when the number of flows is varying.
We can conclude that the D-ITG Linux sender presents an optimal behavior in terms of
scalability.

Windows platform. In this case we set up our experimentation in the same way of the
Linux platform. In order to work with the maximum data rate we used the parameters that
permit to reach the D-ITG best performance over Windows platform (C = 20000 pkt/s,
¢ = 1024 byte, and therefore Maximum Data Rate equal to 163 Mbit/s with an error rate

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 23

Scalability Analysis at Sender side over Scalability Analysis at Sender over Window s
Linux platform platform
700 180
kT ;-
§ 600 T 160 -\
= 2 140
= 500 £ AN
E o 120 \
400 2 100
o
g 00 g BO \
5 60
E 200 3 o X
100 K§ 20 \.\._ -
T—-—-..__.____.
0 e B S il - - : : :
T2RB8FB 8RB 888 12 3 5 10 20 30 40
Active Threads Active Threads

(a) Data rate (b) Loss rate

Figure 16. Scalability analysis at sender side: (a) Linux platform and (b) Windows platform.

equal to 1.5%). In the case of n flows/threads in order to maintain the same maximum value
of data rate we configured each flow with a packet rate equal to 20nﬂ pkt/s. Figure 16(b)
shows that over Windows platform there is a considerable degradation of the performance
with respect to D-ITG implementation over Linux platform. Comparing Figure 16(a) to
Figure 16(b) it is simple to understand that the D-ITG Windows Sender is less scalable than
D-ITG Linux Sender.

5.2. Scalability analysis at receiver side

Linux platform. In this case we used the same number of threads used in the D-ITG Linux
Sender analysis. Figure 17(a) shows that up to five flows the receiver capabilities are the
same as that achieved with one flow. In the worst case, when the number of flows (n) is
equal to 200 we measured a data rate equal to 278 Mbit/s.

Windows platform. In this case, in order to analyze the scalability of the receiver we used
the Linux ITGSend. This choice was motivated by the following reasons: (i) D-ITG Linux
Sender presents higher performance than D-ITG Windows Sender; (ii) the D-ITG Windows

Scalability Analysis at Receiver side Scalability Analysis at Receiver side over

over Linux platform Window s Platform

e 600 N @
] m 600
€ 500 14

- _/_\ 500
£T 400 e E % 400

-]
gg 300 'g é' 300 -
§ 200 s 200 -
& 100 - g oo

0 N - N 0
TNMWOoOoOoO0Q0O0C QO
” Active Threads
Active Threads
(a) Data rate (b} Loss rate

Figure 17. Scalability analysis at receiver side: (a) Linux platform and (b) Windows platform.

24 AVALLONE ET AL.

Table 6. Execution time of code test

Component Time

ITGSend (Linux) SWEx=0.13s
ITGRecv (Linux) SLEx=0.13s

ITGSend (Windows) RWEx=041s
ITGRecv (Windows) RLEx=0.23s

Sender is less scalable than D-ITG Linux Sender. In the case of a single flow/thread we
measured a received data rate equal to 480 Mbit/s. In the case of two flows/threads we
observed a reduction equal to 10% (Figure 17(b)). Observing Figure 17(a) and (b) we can
conclude that the D-ITG Windows Receiver is less scalable than D-ITG Linux Receiver,
but—in the case of Windows platform—the receiver shows more acceptable scalability
proprieties with respect to the sender.

5.3. Discussion on achieved performance over different platforms

In order to determine the time when the packet is sent or received (to be included in
the log file) and the time interval elapsed since the transmission of the last packet sent,
the D-ITG Linux implementation uses the gettimeofday() function, whereas the Windows
implementation uses getSystemTime() and QueryPerformanceCounter() functions. In this
subsection, we want to investigate the efficiency of these different functions when they are
used in the D-ITG platform. Indeed, the different behavior (and the consequent achieved
performance) of these crucial functions may be one of the factors causing the different
performance between the Linux and the Windows implementation. To study the influence
of these functions, we carried out the following test. We ran the pieces of code invoking the
above mentioned functions 100.000 times and obtained the results shown in Table 6. As we
can see, the execution time under Windows is longer than that under Linux. If we try to link
these results with the performance achieved under Windows and Linux OSs (see Table 4)

.3 : SWEx ~_ MaximumSustainableRateLinux — ~_ s
we find that: (i) at sender side we have 5722 ~ 3.2 and 572 m e 2 e o & 3.8, (i)

: . RWEx ~_ MaximumSustainableRateLinux — ~_ :
at receiver side we have e 1.7 and TS Windors, 1.3. These ratios are

similar but not equal. So, we are far from stating that the different performance achieved
under the two platforms is strictly linked to the different execution time of the functions used
to retrieve the current time. Other causes must be considered such for example the system
overhead on performing threading, or the different message buffering for communication.
However, by taking into account that the time functions are called for each sent/received
packet (e.g. 77000 times per second in the example shown) the overhead of these functions
is one of the factors that influence the achieved performance. Further deep investigation is
needed to full understand the different achieved performance.

6. Conclusions

In this paper we presented a traffic generation platform that we called D-ITG. In order to
present the high performance of D-ITG, an experimental analysis has been conducted over

HIGH PERFORMANCE INTERNET TRAFFIC GENERATORS 25

Linux and Windows platform. D-ITG showed the best performance over both platforms
and it was able to generate at high transfer rate with high values of packet size. More
precisely, we conducted several experiments to compare the data rate achieved by D-ITG
to that achieved by other traffic generators in different scenario. The performance obtained
in the case of storing at receiver side only and storing at both sender and receiver side
has been evaluated both when sender and receiver are on the same machine and when
they are on different machines. The results obtained shows that D-ITG achieves the data
rate value closest to that expected, both under Windows and Linux. Also, we presented a
scalability analysis (in terms of achieved throughput and number of concurrent flows) of our
generation platform, which showed good results, especially for the Linux implementation
of the sender. D-ITG presents a (internal and external) distributed architecture and thanks to
this architecture it is able to reach high performance. Here we use the term “performance”
in a wide sense, to refer to a collection of indicators: (i) generated bit rate; (ii) received bit
rate; (iii) scalability; (iv) usability; (v) supported stochastic traffic patterns; (vi) supported
protocols; (vii) novel entities (Log Server and Manager); (viii) supported platforms (a
multi platform tool running on Linux, Windows, and Linux Familiar). D-ITG is currently
downloadable and freely available at www.grid.unina.it/software/ITG and, to the
best of our knowledge, in terms of software architecture, operative mode and achieved
results, no other similar platforms are available.

Acknowledgments

This work has been carried out partially under the financial support of the “Ministero
dell’Istruzione, dell’Universitd e della Ricerca (MIUR)” in the framework of the FIRB
Project “Middleware for advanced services over large-scale, wired-wireless distributed sys-
tems (WEB-MINDS)”, and of the European Union under the E-Next Project FP6-506869.
We would like to thank Alessio Botta and Salvatore Guadagno for their valuable support
and anonymous reviewers for their suggestions.

References

1. C. Adams. The Simple Public-Key GSS-API Mechanism (SPKM), RFC 2025, October 1996.

2. S. Avallone, M. D’Arienzo, M. Esposito, A. Pescapé, S. P. Romano, and G. Ventre. Mtools. IEEE Network,
Software Tools for Networking 2002, 16(5):3. ISSN 089080445.

3. L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu,
and H. Yu. Advances in network simulation. IEEE Computer, 33(5):59-67, 2000.

4. Cisco Systems. “Traffic Analysis for Voice over IP” white paper, http://www.cisco.com/en/US/tech/
tk652/tk701/technologies_white_paper09186a00800d6b74.shtml.

5. S. Floyd and V. Paxson, “Difficulties in simulating the Internet.” IEEE/ACM Trans. on Networking, 9(4):392—

403, February 2001.

. http://www.grid.unina.it/software/ITG

. http://www.atm.tut.fi/rude

. http://mgen.pf.itd.nrl.navy.mil

. http://dast.nlanr.net/Projects/Iperf/

. http://www.citi.umich.edu/projects/qbone/generator.html

[=ENoR I)

26

11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

AVALLONE ET AL.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley, 1989.

V. Paxson. Empirically-derived analytic models of wide-area TCP connections. IEEE/ACM Trans. on Net-
working, 2(4):316-336, 1994.

V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling. IEEE/ACM Trans. on Networking,
3(3):226-244, 1995.

V. Paxson and S. Floyd. Why we don’t know how to simulate the Internet, In Proceedings of the 1997 Winter
Simulation Conference, SCS, December 1997.

A. Pescapé, S. Avallone, D. Emma, and G. Ventre. Performance evaluation of an open distributed platform for
realistic traffic generation, Performance Evaluation: An International Journal (Elsevier Journal), 60:359-392,
2005.

S. Avallone, A. Pescapé, and G. Ventre. Analysis and experimentation of Internet Traffic Generator, In
Proceedings of New2an’04, Next Generation Teletraffic and Wired/Wireless Advanced Networking, pp. 70—
75—ISBN 952-15-1132-X.

S. Avallone, A. Pescapé, and G. Ventre. Distributed Internet traffic generator (D-ITG): Analysis and experi-
mentation over heterogeneous networks. Poster at ICNP 2003.

G. Iannello, A. Pescapé, G. Ventre, and L. Vollero. Experimental analysis of heterogeneous wireless networks.
In Proceedings of WWIC 2004, Wired/Wireless Internet Communications 2004. LNCS Vol. 2957, 2004,
pp. 153-164, ISBN: 3-540-20954-9.

C. Petzold. Programming Windows. 5th edition, Microsoft Press, published 11/11/1998, ISBN 1-57231-995-
X.

S. Avallone, D. Emma, A. Pescapé and G. Ventre. “A Distributed Multiplatform Architecture for Traffic Gen-
eration.” In Proceedings of International Symposium on Performance Evaluation of Computer and Telecom-
munication Systems (SPECTS), San Jose, California (USA), July 2004.

