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Abstract. The research on network traffic classification has recently
become very active. The research community, moved by increasing
difficulties in the automated identification of network traffic, started
to investigate classification approaches alternative to port-based and
payload-based techniques. Despite the large quantity of works published
in the past few years on this topic, very few implementations targeting al-
ternative approaches have been made available to the community. More-
over, most approaches proposed in literature suffer of problems related
to the ability of evaluating and comparing them. In this paper we present
a novel community-oriented software for traffic classification called TIE,
which aims at becoming a common tool for the fair evaluation and com-
parison of different techniques and at fostering the sharing of common
implementations and data. Moreover, TIE supports the combination of
more classification plugins in order to build multi-classifier systems, and
its architecture is designed to allow online traffic classification.

1 Introduction

The problem of traffic classification (i.e. associating traffic flows to the appli-
cations that generated them) has attracted increasing research efforts in recent
years. This happened because, lately, the traditional approach of relying on
transport-level protocol ports has become largely unreliable [1], pushing the
search for alternative techniques. At first, research and industry focused on ap-
proaches based on payload inspection. However, such techniques present several
drawbacks in realistic scenarios, e.g.: (i) their large computational cost makes
difficult to use them on high-bandwidth links; (ii) requiring full access to packet
payload poses concerns related to user privacy; (iii) they are typically unable to
cope with traffic encryption and protocol obfuscation techniques. For these rea-
sons, the research community started proposing classification approaches that
consider other properties of traffic, typically adopting statistical and machine-
learning approaches [2] [3] [4]. Despite the large quantity of works published in
the past few years on traffic classification, aside from port-based classifiers ([5])
and those based on payload inspection ([6] [7] [8]), there are few implementations
made available to the community that target alternative approaches. NetAI [9]
is a tool able to extract a set of features both from live traffic and traffic traces.
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However it does not directly perform traffic classification, but relies on exter-
nal tools to use the extracted features for such purpose. To the best of our
knowledge the only available traffic classifier implementing a machine-learning
technique presented in literature is Tstat 2.0 [10] (released at the end of October
2008). Besides supporting classification through payload inspection, Tstat 2.0 is
able to identify Skype traffic by using the techniques described in [11]. However
such techniques have been specifically designed for a single application and can
not be extended to classify overall link traffic. The lack of available implemen-
tations of novel approaches is in contrast with two facts: (i) scientific papers
seem to confirm that it is possible to classify traffic by using properties different
from payload content; (ii) there are strong motivations for traffic classification in
general, and important reasons to perform it without relying on packet content.
It has been observed that the novel approaches proposed in literature suffer of
problems related to the ability of evaluating and comparing them [12]. A first
reason for this difficulty is indeed the lack of implementations allowing third
parties to test the techniques proposed with different traffic traces and under
different situations. However, there are also difficulties related to, e.g., differences
in the objects to be classified (flows, TCP connections, etc.), or in the considered
classes (specific applications, application categories, etc.), as well as regarding
the metrics used to evaluate classification performance.

To overcome these limitations, in this work we introduce a novel software tool
for traffic classification called Traffic Identification Engine (TIE). TIE has been
designed as a community-oriented tool, inspired by the above observations, to
provide researchers and practitioners a platform to easily develop (and make
available) implementations of traffic classification techniques and to allow fair
comparisons among them. In the following sections, when presenting TIE’s com-
ponents and functionalities, we detail some of the design choices focused on:
multi-classification, comparison of approaches, and online traffic classification.

2 Operating Modes

Before describing the architecture and the functionalities we introduce the three
operating modes of TIE. Their operation will be further detailed in the next
sections.

– Offline Mode: information regarding the classification of a session is gener-
ated only when the session ends or at the end of TIE execution. This operat-
ing mode is typically used by researchers evaluating classification techniques,
when there are no timing constraints regarding classification output and the
user needs information related to the entire session lifetime.

– Realtime Mode: information regarding the classification of a session is
generated as soon as it is available. This operating mode implements on-
line classification. The typical application is policy enforcement of classified
traffic (QoS, Admission Control, Billing, Firewalling, etc.). Strict timing and
memory constraints are assumed.
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– Cyclic Mode: information regarding the classification is generated at reg-
ular intervals (e.g. each 5 minutes) and stored into separate output files.
Each output file contains only data from the sessions that generated traffic
during the corresponding interval. An example usage is to build live traffic
reporting graphs and web pages.

All working modes can be applied to both live traffic and traffic traces. Obvi-
ously, realtime mode is the one imposing most constraints to the design of TIE’s
components. We highlight that TIE was designed since the beginning targeting
online classification, and this affected several aspects, described through the next
section, of its architecture.

3 Architecture Overview and Functionalities

TIE is written in C language and runs on Unix operating systems, currently
supporting Linux and FreeBSD platforms. The software is made of a single ex-
ecutable and a set of plugins dynamically loaded at run time. A collection of
utilities is distributed with the sources and are part of the TIE framework. TIE
is made of several components, each of them responsible for a specific task.
Figure 1 shows the main blocks composing TIE.

Fig. 1. TIE: main components involved in classification

3.1 Packet Collection and Filtering

As regards packet capture, TIE is based on the Libpcap library [13], which is an
open source C library offering an interface for capturing link-layer frames over
a wide range of system architectures. Moreover, Libpcap allows to read packets
from files in tcpdumpformat (a de facto standard [13]) rather than from network
interfaces, without modifications to the application’s code. This allows to easily
write a single application able to work both in realtime and offline conditions.

By supporting the BPF syntax [14], Libpcap allows programmers to write
applications that transparently support a rich set of constructs to build detailed
packet filtering expressions for most network protocols. Besides supporting the
powerful BPF filters, which are called inside the capture driver, we implemented
in TIE additional filtering functionalities working in user-space. Examples are:
skipping the first mpackets, selecting traffic within a specified time range, and
checking for headers integrity (TCP checksum, valid fields etc.).
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3.2 Sessions

TIE decomposes network traffic into sessions, which are the objects to be classi-
fied. In literature approaches that classify different kinds of traffic objects have
been presented: flows, TCP connections, hosts, etc. To make TIE support mul-
tiple approaches and techniques, we have defined the general concept of session,
and specified different definitions of it (selected using command line switches):

– flow: Defined by the tuple {SRCIP , SRCport, DESTIP , DESTport,

transport-level protocol} and an inactivity timeout, with a default value of
60 seconds.

– biflow: Defined by the tuple {SRCIP , SRCport, DESTIP , DESTport,
transport-level protocol}, where source and destination can be swapped, and
the inactivity timeout is referred to packets in any direction.

– host: A host session contains all packets it generates or receives. A timeout
can be optionally set.

When the transport protocol is TCP, biflows typically approximate TCP con-
nections. However no checks on connection handshake or termination are made,
nor packet retransmissions are considered. This very simple heuristic has been
adopted on purpose, because it is computationally light and therefore appropri-
ate for online classification. This definition simply requires a lookup on a hash
table for each packet. However, some approaches may require stricter rules to
recognize TCP connections, able to identify the start and end of the connections
with more accuracy (e.g. relying on features extracted from the first few packets
,as TCP options, or packet sizes [15] [16]). Moreover, explicitly detecting the
expiration of a TCP connection avoids its segmentation in several biflows when
there are long periods of silence (e.g. Telnet, SSH). For these reasons, we im-
plemented heuristics to follow the state of TCP connections by looking at TCP
flags that can be optionally activated:

– If the first packet of a TCP biflow does not contain a SYN flag then it is
skipped. This is especially useful to filter out connections initiated before
traffic capture was started.

– The creation of a new biflow is forced if a TCP packet containing only a
SYN flag is received (i.e. if a TCP biflow with the same tuple was active
then it is forced to expire and a new biflow is started).

– A biflow is forced to expire if a FIN flag has been detected in both directions.
– The inactivity timeout is disabled on TCP biflows (they expire only if FIN

flags are detected).

These heuristics have been chosen in order to trade-off between computational
complexity and accuracy. Some applications, however, may require a more faith-
ful reconstruction of TCP connections. For example payload inspection tech-
niques used for security purposes, may require the correct reassembly of TCP
streams in order to not be vulnerable to evasion techniques [17]. For these tasks,
a user-space TCP state machine may be integrated into TIE, however this would
significantly increase computational complexity.
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Some session types (i.e. biflow and host) contain traffic flowing in two opposite
directions, which we call upstream and downstream. These are defined by looking
at the direction of the first packet (upstream direction). Information regarding
the two directions must be kept separate, for example to allow extraction of
features (e.g. IPT, packet count, etc.) related to a single direction. Therefore,
within each session with bidirectional traffic, counters and state information
are kept for each direction. In order to keep track of sessions status according
to the above definitions we use a chained hash table data structure, in which
information regarding each session can be dynamically stored. Each session type
is identified by a key of a fixed number of bits. For example, both keys of the
flow and biflow session types contain two IP addresses, two port numbers, and
the protocol type.

For each session it is necessary to keep track of some information and to
update them whenever a new packet belonging to the same session is processed
(e.g. status, counters, features). Also, it is necessary to archive an expired session
and to allocate a new structure for a new session. We therefore associate to each
item stored in the hash table a linked list of sessions structures. That is, each
element of the hash table, which represents a session key, contains a pointer
to a linked list of session structures, with the head associated to the currently
active session. In order to properly work with high volumes of traffic, TIE is also
equipped with a Garbage Collector component that is responsible of keeping
clean the session table. At regular intervals it scans the table looking for expired
sessions. If necessary it dumps expired sessions data (including classification
results) to the output files and it then frees the memory associated to those
sessions.

3.3 Feature Extraction

In order to classify sessions, TIE has to collect the features needed by the spe-
cific classification plugins activated. The Feature Extractor is the component
in charge of collecting classification features and it is triggered by the Session
Builder for every incoming packet. To avoid unnecessary computations and mem-
ory occupation, most features can be collected on-demand by specifying com-
mand line options. This is particularly relevant when we want to perform online
classification. The calculation of features is indeed a critical element affecting
the computational load of a classifier. In [15] the computational complexity and
memory overhead of some features in the context of online classification are in-
deed evaluated. We started implementing basic features used by most classifiers,
considering techniques of different categories: port-based, flow-based, payload
inspection. We plan to enlarge the list of supported features by considering both
new kinds of features and sets published in literature [18]. Classification features
extracted from each session are kept in the same session structure stored in the
hash table previously described. In general, each session structure contains: (i)
basic information (e.g. the session key, a session identifier, partial or final clas-
sification results, status flags, etc.); (ii) timing information (e.g. timestamps of
the last seen packet for each direction); (iii) counters (e.g. number of bytes and
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packets for each direction, number of packets without payload, etc.); (iv) op-
tional classification features (e.g. payload size and inter-packet time vectors, a
payload stream from the first few packets, etc.).

3.4 Classification

TIE provides a multi-decisional engine made of a Decision Combiner (DC in
the following) and one or more Classification Plugins (or shortly classifiers) im-
plementing different classification techniques. Each classifier is a standalone dy-
namically loadable software module. At runtime, a Plugin Manager is responsible
of searching and loading classification plugins according to a configuration file
called enabled plugins.

typedef struct classifier {

int (*disable) ();

int (*enable) ();

int (*load_signatures) (char *);

int (*train) (char *);

class_output *(*classify_session) (void *session);

int (*dump_statistics) (FILE *);

bool (*is_session_classifiable) (void *session);

int (*session_sign) (void *session, void *packet);

char *name;

char *version;

u_int32_t *flags;

} classifier;

Fig. 2. TIE: interface of classification plugins

Classification plugins have a standard interface, shown in Figure 2. To help
plugin developers, a dummy plugin with detailed internal documentation is dis-
tributed with TIE. Moreover the other classification plugins distributed with
TIE can serve as sample reference code. After loading a plugin, the Plugin Man-
ager calls the corresponding enable() function, which is in charge of verifying
if all the features needed are available (some features are enabled by command
line options). If some features are missing, then the plugin is disabled by calling
the disable() function. After enabling a plugin, the load signatures() function is
called in order to load classification fingerprints. The DC is responsible for the
classification of sessions and it implements the strategy used for the combination
of multiple classifiers. Whenever a new packet associated to an unclassified ses-
sion arrives, after updating session status information and extracting features,
TIE calls the DC. For each session, the DC must make four choices: if a clas-
sification attempt is to be made, when (and if) each classifier must be invoked
(possibly multiple times), when the final classification decision is taken, how
to combine the classification outputs from the classification plugins into the fi-
nal decision. To take these decisions and to coordinate the activity of multiple
classifiers, the DC operates on a set of session flags and invokes, for each classi-
fication plugin, two functions in the classifier structure: is session classifiable()
and classify session(). The is session classifiable() function asks a classifier
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typedef struct class_output {

u_int16_t id; /* Application id */

u_int8_t subid; /* Application sub id */

u_int8_t confidence; /* Confidence value */

u_int32_t flags;

} class_output;

Fig. 3. The class output structure stores the output of a classification attempt

if enough information is available for it to attempt a classification of the cur-
rent session. The classify session() function performs the actual classification
attempt, returning the result in a class output structure, shown in Figure 3.

To highlight the central role of the DC and how it is possible, with few
functions and structures, to design flexible decision strategies, in the following
we illustrate some sample situations regarding the four main decision mentioned
above.

– When to attempt classification. The DC could decide to not evaluate
the current session depending on information from the classification plugins
or on a priori basis. The latter may happen, for example, when the target of
classification is a restricted set of traffic categories. In the first case, instead,
the DC typically asks each of the active classification plugins if it is able to
attempt classification on the current session. Depending on the replies from
the classifiers the DC can decide to make a classification attempt.

– When each classifier must be invoked. Depending on the classifiers that
are available, the DC could decide to invoke only some of them, and only at
some time, for a certain session. For example, there could be classification
techniques that are applicable only to TCP biflows or some classifiers may be
invoked only when certain information is present. This is the case of payload-
based classifiers. In general, we can design combination strategies with more
complicate algorithms, in which the invocation of a specific classifier depends
on several conditions and on the output of other classifiers. For example, if a
session is recognized as carrying encrypted traffic by a classification plugin,
then the DC may start a classifier specifically designed for encrypted traffic.

– When the final classification decision is taken. The DC must decide
when TIE has to assign a class to a session. Simple strategies are, e.g., when
at least one classifier has returned a result, or when all of them have returned
a classification result, etc. In more complicate approaches, this choice can
vary depending on the features of the session (e.g. TCP, UDP, number of
packets, etc.) and the output of the classifiers. Moreover, if working in online
mode, a limit on the time elapsed or the number of packets seen since the
start of the session is typically set.

– How to combine the classification outputs from the classification

plugins into the final decision. The DC receives a class output structure
(Figure 3) from each of the classification plugins invoked. These must then be
fused into a single final decision. The class output structure contains also a
confidence value returned by each of the classifiers, which can be helpful when
combining conflicting results from different classifiers, and it determines the
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final confidence value returned by the DC. Effectively combining conflicting
results from different classifiers is a crucial task. The problem of combining
classifiers actually represents a research area in the machine-learning field per
se. Simple static approaches are based on majority and/or priority criteria,
whereas more complex strategies can be adopted to take into account the
nature of the classifiers and their per-class metrics like accuracy [19].

We distribute TIE with a basic combination strategy as a first sample implemen-
tation. For each session, the decision is taken only if all the classifiers that are
enabled are ready to classify it. To take its decision the combiner assigns priorities
to classifiers according to the order of their appearance in the enabled plugins

file. If all the plugins agree on the result, or some of them classify the session
as Unknown, the combination is straightforward and the final confidence value
is computed as the sum of each confidence value divided by the number of en-
abled plugins. Instead, if one or more plugins disagree, the class is decided by
the plugin with highest priority. To take into account the conflicting results of
the classifiers, the confidence value is evaluated as before, and then divided by 2.
All the code implementing the decision combiner is in separate source files that
can be easily modified and extended to write a new combination strategy. Af-
ter future addition of further classification plugins, we plan to add combination
strategies that are more sophisticated.

Finally, it is possible to run TIE with the purpose to train one or more clas-
sification plugins implementing machine-learning techniques with data extracted
from a traffic trace. To do this, we first need pre-classified data (ground truth).
These can be obtained by running TIE on the same traffic trace using a ground-
truth classification plugin. The same output file generated by TIE is then used
as pre-classified data and given as input to TIE configured to perform a training
phase.

3.5 Data Definitions and Output Format

One of the design goals of TIE, was to allow comparison of multiple approaches.
For this purpose a unified representation of classification output is needed. More
precisely we defined IDs for application classes (applications) and propose such
IDs as reference. Moreover, several approaches presented in literature classify
sessions into classes that are groups of applications offering similar services. We
therefore added definitions of group classes and assigned each application to a
group. This allows to compare a classification technique that classifies traffic into
application classes with another classifying traffic into group classes. Moreover,
it allows to perform a higher-level comparison between two classifiers that both
use application classes, by looking at differences only in terms of groups. To
build an application database inside TIE, we started by analyzing those used
by the CoralReef suite [5], and by the L7-filter project [7], because they repre-
sent the most complete sets that are publicly available and because such tools
represent the state of the art in the field of traffic analysis and classification
tools. By comparing such two application databases, we then decided to create
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#AppID SubID GroupID Label SubLabel Description

0, 0, 0, "UNKNOWN", "UNKNOWN", "Unknown application"

#

1, 0, 1, "HTTP", "HTTP", "World Wide Web"

1, 1, 1, "HTTP", "DAP", "Download Accelerator Plus"

1, 2, 1, "HTTP", "FRESHDOWNLOAD", "Fresh Download"

1, 7, 1, "HTTP", "QUICKTIME", "Quicktime HTTP"

[...]

10, 0, 3, "FTP", "FTP", "File Transfer Protocol"

10, 1, 3, "FTP", "FTP_DATA", "FTP data stream"

10, 2, 3, "FTP", "FTP_CONTROL", "FTP control"

[...]

4, 0, 1, "HTTPS", "HTTPS", "Secure Web"

5, 0, 9, "DNS", "DNS", "Domain Name Service"

Fig. 4. TIE: definitions of application classes from the file tie apps.txt

a more complete one by including information from both sources and trying to
preserve most of the definitions in there. To each application class, TIE asso-
ciates the following information: (i) an identifier, (ii) a human readable label,
(iii) a group identifier. To properly define the application groups we started
from the categories proposed by [20] and then we extended them by looking
at those proposed by CoralReef [5] and L7-filter [7]. Moreover, to introduce a
further level of granularity, for each application class we allow the definition of
sub-application identifiers in order to discriminate among sessions of the same
application generating traffic with different properties (e.g. signaling vs. data,
or Skype voice vs. Skype chat, etc.). Figure 4 shows portions of the tie apps.txt
file. Each line defines one application identified by the pair (AppID, SubID).
The main output file generated by TIE contains information about the sessions
processed and their classification. The output file is composed by a header and
a body. The header contains details about the whole traffic results, the plugins
activated, and the options chosen. The body is a column-separated table whose
fields contain the following session related information: a unique identifier, the
5-tuple, the start/end timestamps, the packets/bytes count for both upstream
and downstream directions, a (AppID, SubID) pair and a confidence value as
resulting from classification process. The output format is unique but counters
and timestamps semantics depend on (i) the operating mode and (ii) the session
type. In offline mode those fields refer to the entire session. In realtime mode
they refer only to the period between the start of the session and the time at
which the classification of the session has been made. This is done to reduce com-
putations to the minimum after a session has been classified. Finally, in cyclic
mode an output file with a different name is generated for each time interval,
and the above-mentioned fields refer only to the current interval.

4 Conclusion

In this paper we introduced a community-oriented software tool for traffic clas-
sification called TIE, supporting the fair evaluation and comparison of differ-
ent techniques and fostering the sharing of common implementations and data.
Moreover, TIE is thought as a multi-classifier system and to perform online traf-
fic classification. TIE will allow the experimental study of a number of hot topics
in traffic classification, such as:
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– multi-classification: We are working on the combination of multiple classifi-
cation techniques with pluggable fusion strategies.

– sharable data: We are implementing algorithms to produce pre-labeled and
anonymized traffic traces, which will allow the sharing of reference data for
comparison and evaluation purposes.

– privacy: We are working on the design of lightweight approaches to payload
inspection that are privacy-friendly and more suitable for online classification.

– ground truth: We are working on developing more accurate approaches for the
creation of ground-truth reference data through the combination of multiple
and novel techniques.

– performance analysis: Disposing of multiple implementations of classification
techniques on the same platform allows to fairly compare different techniques
on the field. TIE will support the measurement of operating variable such as
classification time, computational load, as well as memory footprint.
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