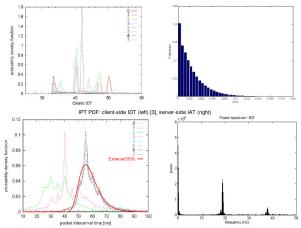


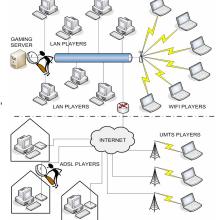
Searching for Invariants in Network Games Traffic


Alessio Botta, Alberto Dainotti, Antonio Pescape' and Giorgio Ventre Dipartimento di Informatica e Sistemistica, University of Napoli "Federico II" - Italy {a.botta, alberto, pescape, giorgio}@unina.it, http://www.grid.unina.it/Traffic

1- Introduction and Motivations

- An important category of emerging Internet applications
 - The percentage of Internet traffic related to network games is constantly growing [1].
 - · Their traffic characteristics and QoS requirements, substantially differ from those of traditional Internet applications.
- · We show an ongoing work on the search for invariant characteristics of network games traffic
 - · We perform a characterization of the traffic generated by Counter Strike, under different network scenarios, and compare the results.
- The traffic is observed at packet level
 - Payload Size (PS) and Inter-Packet-Time (IPT).

2- A first confirmation with available data

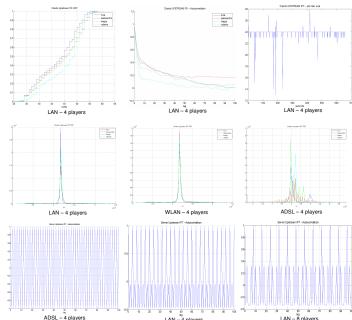

- Two distinct gaming sessions happened at different times and networks (WAN vs LAN), and observed respectively from the points of view of both server and clients
 - A trace from a WAN scenario, captured at a Counter-Strike server [2].
 - · A characterization of a LAN party performed by J. Faerber [3].
- · We compare results in [3] with our characterization of the WAN trace
 - Clients IDT mean value (41.7 ms \equiv ca. 24 pkts/s) reported in [3] is consistent with the mean of the server IAT from all the 22 clients $(0.002s \equiv 528 \text{ pkts/s} = 22 \text{ players} \times 24 \text{ pkts/s}).$
 - The peak at about 19 Hz (ca. each 53 ms) of server incoming packet rate freq. spectrum, is consistent with client-side IDT PDFs (mean ~55 ms) reported in [3].

ide IDT PDF (left) [3] Fo

3- Setting up the testbed

- To further investigate the foreseen invariants other data are needed
- · To this aim a heterogeneous testbed has been set up
- · We placed the game server in our LAN. Then, we made tests with clients on
- LAN
- Wi-Fi
- HOME ADSL
- UMTS
- · The testbed can be used to study the traffic of other applications

Acknowledgement


This work has been partially supported by CONTENT EU NoE, OneLab, and NETQOS EU projects

4- Characterization and invariants

The results of the characterization we present are those of the LAN scenario

- · All clients have the same behaviors, both in terms of IPT and PS
- · Both server and clients generate small packets
 - PS clients: [25,61] bytes, mostly concentrated at 50
- · PS server: [0,460] bytes, gamma-like, higher variance
- · Clients PS show some degree of correlation at least until lag 50
- Server PS correlation has an oscillating decay with period T = 4 lags
- Clients IPT are gaussian-like centered at ~42 ms (pkt rate mean ~24 pkt/s)
- Server IPT autocorrelation shows a strong periodicity $T = \frac{N}{K} lags$ with N = # players and K integer number. This can be due
 - 1) as found by Faerber [3], the server sends updates with a fixed time period (namely T' ~ 55 ms)
 - 2) packets sent to the different clients are sent either very close to each other (i.e. IPT ~ 100 us) or with an IPT equal to a fraction of T (we have observed T'/2 and T'/4).

player	mean [Bytes]	std [Bytes]	iqr [Bytes]	max [Bytes]	min [Bytes]	median [Bytes]	entropy [bi
luca	42.49	7.99	14.00	61.00	25.00	44.00	4.62
alessandro	43.81	8.41	15.00	61.00	25.00	46.00	4.73
biagio	43.69	8.11	14.00	61.00	25.00	46.00	4.66
roberto	45.66	7.58	12.00	60.00	25.00	49.00	4.49
server	77.48	32.79	32.00	461.00	27.00	72.00	6.67
				- Upstrea:			
player	mean [us]						entropy [bit]
player	mean [μs] 41910.96	std [µs]	iqr [μs]	max [μs] 465432.00	min [μs] 16730.00	median [μs] 41687.00	entropy [bit
		std [µs]		max [μs]	min [μs]	median [μs]	entropy [bit 2.39 4.04
luca	41910.96	std [μs] 7134.15	iqr [μs] 171.00	max [μs] 465432.00	min [μs] 16730.00	median [μs] 41687.00	2.39
luca alessandro	41910.96 42876.46	std [μs] 7134.15 16783.57	iqr [μs] 171.00 443.00	max [μs] 465432.00 1522475.00	min [μs] 16730.00 3668.00	median [μs] 41687.00 41716.00	2.39 4.04

- · PS has shown to be totally invariant with respect to the network
- Strong invariants for IPT
 - Clients IPT become more spread when the packets traverse a WAN
 - · Looking at seconds time scale (pkt rate) the behavior is the same in all considered scenarios (LAN, Wi-Fi, ADSL)
 - · Server IPT autocorrelation shows a periodic behavior (same behavior as in the LAN)

5- Conclusions and Issues for Research

- · The search for invariants allows us to identify the behaviors related to the application by isolating them from the network environment.
- · Traffic of Counter Strike is highly predictable. Allowing, e.g., ISPs to identify it, and to provide specific QoS and billing accordingly.
- · We have identified some properties that are dependent of the numbers of players. This allows to estimate such number by looking at the traffic.
- · We are also performing this analysis for other networking games
- · In general, our testbed will allow to apply our methodology to different kinds of applications.

References

[1] S. McCreary, k. Claffy, "Trends in Wide Area IP Traffic Patterns: A View from Ames Internet Exchange," 13th ITC Specialist Seminar on Measurement and Modeling of IP Traffic, Sep 2000 [2] W. Feng, cs.mshmro.com CounterStrike Server Traffic Trace", www.ogiworks.org/files/tcpdump.11Apr0855.04,

[3] J. Faerber, "Network game traffic modelling", ACM workshop on Network and System Support for games, Apr