
IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 2, FEBRUARY 2007 191

Entropy-Based Reduction of Traffic Data
Antonio Pescapè, Member, IEEE

Abstract— This letter proposes an Entropy-based methodology
to reduce large network traffic data sets obtained by measure-
ments over real networks. The proposed off-line approach, based
on the Marginal Utility concept, reveals interesting results when
applied to real data captured over real networks: to show its
applicability, results obtained with traffic traces from a popular
network game, Counter-Strike, are presented.

Index Terms— Communication system traffic, network opera-
tions and management, performance analysis.

I. INTRODUCTION

THE collection of traffic traces from real networks poses
tremendous challenges due to the high speeds of current

networks. In one hour, the collection of 60 byte packet headers
on an OC-48 link can easily generate 600 GB of data [1].
After the collection stage, data need to be analyzed to obtain
several information (e.g. packet size statistical properties, port
distribution, ...). As the amount of data becomes larger, the
time to analyze them increases. Finally, working with large
data sets several problems can occur (e.g. out of memory errors
under the software environment used for data processing and
statistical analysis). To cope with this kind of issues, we need
methods to reduce the original data set with an acceptable loss
of statistical properties.

This letter proposes an Entropy-based methodology to re-
duce data sets of network traffic. The proposed approach has
been applied to the traffic traces of Counter-Strike [2], a
popular on-line game. In [3] it is reported that 3 − 4% of
all packets in a backbone could be associated with only 6
popular games, and, in USA alone, they are currently worth a
significant fraction of the 7 billion computer games industry
[4]. Also, in [5] it is reported that, by the year 2010, multi-
player network games will be likely responsible for over
25% of LAN traffic. The dominance of Counter-Strike (with
more than 20.000 active servers) goes back as far as year
2000, when measurements indicated that the application was
generating a large percentage of all observed UDP traffic.

II. DEFINITIONS AND OBJECTIVES:
AN ANALYTICAL BASIS

The proposed approach is based on the distance be-
tween two statistical distributions. The concepts of Entropy,
Kullback-Leibler distance, and Marginal Utility are used. The
Entropy of a discrete random variable is defined as

H(X) = −
∑

xi∈A

P (xi) · log P (xi) (1)

where A is the population space, i.e. the space composed of all
possible outcomes xi of the random variable X . The quantity
− log(P (xi)) is defined as the information content, measured
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in bits if log is taken to base 2, revealed from the outcome xi

of an experiment [6]. The Kullback-Leibler Entropy is defined
as

K(f, g) =
∑

xi∈A

f(xi) · log
f(xi)

g(xi)
(2)

where f(x) and g(x) are two probability densities to be com-
pared. This measure is more often referred as the “Kullback-
Leibler distance” since it presents some distance characteris-
tics.

The Kullback-Leibler distance was exploited in [7] to mea-
sure the Marginal Utility of adding new results to an aggregate
data set of network topology measurements. Intuitively, the
Marginal Utility of the experiment Sm with m > 1, can be
estimated considering the reduction in uncertainty provided by
this experiment. The reduction in uncertainty for each outcome
xi, after the experiment Sm, is

− log(P (xm−1
i )) + log(P (xm

i )) = log(
P (xm

i )

P (xm−1
i )

) (3)

where P (xj
i ) is the probability associated with outcome xi af-

ter the conclusion of experiments S1, S2, ..., Sj . The Marginal
Utility is then defined as the mean reduction in uncertainty
caused by the addition of the results of a new experiment
to the aggregate set. This quantity can be therefore measured
using the Kullback-Leibler distance. In [7] two alternatives for
calculating the Marginal Utility are presented: an on-line and
an off-line approach. The on-line Marginal Utility of Sm is
defined as

U(Sm) =
∑

xi∈A

P (xm
i ) log(

P (xm
i )

P (xm−1
i )

) (4)

meaning that we determine the Marginal Utility of the exper-
iment Sm before performing any additional experiment Sk,
k > m. Clearly, the utility of supplemental experimentation
decreases as the additional experiments do not bring out
new insights, meaning that, the probability distribution of
the outcomes of an experiment converges. In the context of
network traffic analysis, the on-line Marginal Utility can not
be used: because of the nonstationarity of network traffic, we
cannot a priori choose the instant t at which the considered
data set is statistically representative of the entire process.
A different formulation of Marginal Utility - the off-line
approach - appraises each experiment on an ex post basis,
by measuring off-line the usefulness of each experiment after
all of them have been conducted. The off-line Marginal Utility
of the experiment Sm, with m ≤ z, is defined as

Uz(Sm) =
∑

xi∈A

P (xz
i ) log(

P (xz
i )

P (xm
i )

) (5)

The main difference between on-line and off-line Marginal
Utility is that the latter considers the Marginal Utility from
the perspective of the complete set of experiments.
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This letter proposes a slightly modified version of the off-
line Marginal Utility for the purpose of reducing network
traffic data sets.

III. USING Marginal Utility TO REDUCE DATA SETS

In this work, the Kullback-Leibler distance is used with
the aim to understand how the addition of a block of new
traffic samples to an existing set improves our knowledge
of its marginal distribution. This metric will quantitatively
express the information gained adding the new block to the
existing set of traffic samples. In [7], a group of z identical
(i.e. aimed at discovering a common property) successive
experiments S1, S2, ..., Sz is considered. The Kullback-Leibler
distance is then applied to the results of such experiments.
In the framework proposed in this letter we will consider,
as experiment outcomes, blocks of length N of data samples
extracted from the same network traffic trace. Let M be the
size of entire data set to be reduced, we divide it into z non-
overlapping blocks of size N = �M/z�, where the N samples
of block j represent the results of experiment Sj . Then, we
compute the following expression for m = 1, . . . , z

Uz(Sm) =
∑

xi∈A

P (xz
i ) · Y m

i (6)

where:

Y m
i =

⎧⎨
⎩

− log(P (xz
i )), if P (xm

i ) = 0 (7)

log(
P (xz

i )

P (xm
i )

), otherwise

If P (xm
i ) �= 0 ∀i, (6) becomes (5). Compared to network

topology measurements [7], in the case of network traffic, this
adjustment is necessary when a possible outcome xj

i , with
j < z, never occurs in the first j experiments (the first j
blocks - of length N - extracted from the entire data set, have
not yet “discovered” such outcome). In this case the quantity
of information gained considering this new outcome is just
given by its information content and the reduced data set is
composed by the first j blocks when, for j < z, Uz(Sj)
becomes arbitrary smaller than the Entropy of the entire data
set [8].

IV. EXPERIMENTAL RESULTS

We analyzed a traffic trace of a Counter-Strike server of
one of the most popular on-line gaming communities in the
Northwest region of USA, mshmro.com. Note that while the
trace collection was limited to 20.000.000 packets (about 8
hours), traffic to and from the server exhibits similar behavior
even for the rest of the day [9]. To show the applicability of
the proposed reduction techniques, Inter-Arrival Times (IAT)
and Inter-Departure Times (IDT) as well as Packet Size In
(PSI) and Packet Size Out (PSO) data traces are considered.
The point of view is that of the server, and the PSI and
the PSO (measured in bytes) represent the length of UDP
payload, while the IAT and the IDT refer to inter-packet times
(measured in seconds) between packets. In order to perform
the data set reduction, for each considered variable, we have
split the entire data set into 100 non-overlapping intervals,
where each of them represents a new experiment. As for the
reduction stopping point, we consider the Marginal Utility to
be negligible when it is about 200 − 300 times smaller than
the Entropy of the entire data set. Table I contains a summary
on the reduction results.
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(a) IAT Marginal utility
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(b) IAT Quantile-Quantile plot
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Fig. 1. Reducing IAT and PSI Time Series.

a) IAT: Fig. 1(a) shows that the off-line Marginal Utility
of the IAT series, plotted as a function of the number of
samples, drops down very fast. The Entropy of the entire
IAT series is equal to 7.83 bits, and stopping at a Marginal
Utility of 0.021, the reduced set is composed of just the first
two experiments. In Fig. 1(b) the QQ-plot between the entire
data set and the reduced one is shown (the approximation is
quite good for over the 99.9% of the distribution). Also, the
mean and standard deviation values reported for the entire and
reduced data sets respectively are very close (Table I).

b) PSI: In Fig. 1(c) the off-line Marginal Utility as a
function of the number of samples is shown. Note that in this
case the Marginal Utility falls down more slowly than the IAT
series. Despite this, we are able to reduce the original data set
up to 91%, as shown in the second row of Table I. The QQ-
plot (Fig. 1(d)) between the entire data set and the reduced
one shows a good approximation of the entire data set until
90 bytes, which is the 99.8th percentile of the entire data set.

c) IDT: In this case the Marginal Utility tends to zero
more slowly than in the IAT case (Fig. 2(a)). As we can
observe from the third row of Table I, the reduction is equal
to 59%. Also in this case (see Fig. 2(b)), the approximation is
quite good for over the 99.9% of the distribution, and mean
and standard deviation are well approximated.

d) PSO: In Fig. 2(c) the off-line Marginal Utility against
the number of samples is sketched. A summary of the con-
ducted analysis is shown in Table I. The QQ-plot (Fig. 2(d))
indicates a good approximation up to about 500 bytes, which
accounts for 99.2% of the original data set. Therefore, by con-
sidering the size of the largest reduced data set, between IAT
and PSI, we can approximate the incoming flow of traffic with
about 1 million of samples, obtaining a net reduction of about
90%. Also, as for the outgoing traffic, it is well approximated
by an IDT/PSO series of about 4.000.000 samples.

A. Wavelet Analysis of Reduced Data Sets

The reduction criterion presented in this letter is based
on the analysis of the marginal distributions of traffic data
samples. Another aspect of network traffic is related to the
temporal structures and dependencies (eg. long range depen-
dence and scaling behavior properties of network traffic).
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TABLE I

Counter-Strike DATA SET REDUCTION.

Size [sample] Mean StDev Entropy [bit] Reduced Size [sample] Mean StDev Reduction Marginal Utility [bit]
IAT 10809129 0.0023614 s 0.0023564 s 7.83 216183 0.0023491 s 0.0022617 s 98% 0.021
PSI 10809129 39.559 bytes 9.6741 bytes 4.93 972822 40.331 bytes 8.9248 bytes 91% 0.024
IDT 9190871 0.0027772 s 0.0062425 s 9.11 3768258 0.0028466 s 0.0064410 s 59% 0.045
PSO 9190871 127.68 bytes 100.42 bytes 7.89 459544 127.03 bytes 98.53 bytes 95% 0.036
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(c) PSO Marginal utility
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Fig. 2. Reducing IDT and PSO Time Series.
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Fig. 3. Logscale Diagram comparison of reduced and original data sets.

In this Section, we briefly present a time-frequency analysis
of the reduced data sets based on the Wavelet Transform,
revealing behaviors similar to the entire ones. The estimation
technique exposed in [10] is based on the Discrete Wavelet
Transform of a random process X of size N . A dyadic
decomposition is applied, so that the number of considered
scales is J ≈ log2(N). The so-called Logscale Diagram (LD)
shows the trend followed by (the logarithm of) the energy of
the wavelet coefficients at each scale, allowing to estimate the
scaling behavior of the process X and the Hurst parameter.

From the Counter-Strike IAT data set, we calculated the
packet rate time series, with a period of 1 ms. The relative LD
is shown in Fig. 3. Let Sj , S1

j be the logarithms of the energy
of the wavelet coefficients at scale j of respectively the entire
and reduced data sets. We found Sj =σj

S1
j for j = 1, ...17,

where the =σj
operator reports if the energy estimates are

consistent by taking into account their confidence intervals.
This can be seen in the graph, where, at each scale, the
confidence intervals of the two diagrams always intersect. We
found the same result for the bitrate (obtained from IAT and
PSI series), and also for the outgoing traffic (IDT/PSO). Thus,
for the considered data sets, the reduction did not heavily
affect the traffic temporal structures.

V. CONCLUDING REMARKS

In this letter we proposed an off-line Entropy-based ap-
proach for reducing data sets, applied to Counter-Strike traffic
traces. Basically, while sampling techniques work fine for on-
line approaches aiming at producing network traffic statistics
(and in which it is most important to have quick and concise
reports even if with approximated values), our approach turns
useful when large data sets are used to completely characterize
(and model) network traffic without losing sensible informa-
tion. Therefore, the presented approach is complementary to
sampling approaches, whose main requisite is that the data
set must be strict-sense [11] or wide-sense [12] stationary. In
these hypothesis, sampling techniques can accurately capture
second order statistics like the Hurst parameter, while they
could fail to capture the mean [12]. Also, under particular
conditions, they can reconstruct the wavelet spectrum of the
original data set, at least at low frequencies [11]. According
to these considerations, the proposed off-line technique to
reduce traffic trace data sets presents the advantage of correctly
capturing mean, standard deviation, and marginal distributions,
without compromising time properties (even if the original
data set is nonstationary). Further analysis is needed to better
understand the behavior of other relevant statistical and tem-
poral properties (e.g. tails behavior, autocorrelation, bivariate
distributions, ...) after the reduction.
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