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Abstract—Automated and coordinated vehicles’ driving (pla-
tooning) is gaining more and more attention today and it
represents a challenging scenario heavily relying on wireless
Inter-Vehicular Communication (IVC). In this paper, we propose
a novel controller for vehicle platooning based on consensus.
Opposed to current approaches where the logical control topology
is fixed a priori and the control law designed consequently,
we design a system whose control topology can be reconfig-
ured depending on the actual network status. Moreover, the
controller does not require the vehicles to be radar equipped
and automatically compensates outdated information caused by
network delays. We define the control law and analyze it in both
analytical and simulative way, showing its robustness in different
network scenarios. We consider three different wireless network
settings: uncorrelated Bernoullian losses, correlated losses using
a Gilbert-Elliott channel, and a realistic traffic scenario with
interferences caused by other vehicles. Finally, we compare our
strategy with another state of the art controller. The results show
the ability of the proposed approach to maintain a stable string
of vehicles even in the presence of strong interference, delays,
and fading conditions, providing higher comfort and safety for
platoon drivers.

I. INTRODUCTION

The idea of automated and coordinated vehicles’ driving
goes back to the PATH project in California during the eighties’
[1]. The main goals of the PATH project were freeing the driver
from some driving chores, improving safety, and increasing
road usage by reducing the vehicles’ inter-distance. Since such
goals were not achievable using standard sensor-based Adaptive
Cruise Control (ACC), the community started to work on a
different type of cruise control, named Cooperative Adaptive
Cruise Control (CACC). What differentiates a CACC from a
standard ACC is the use of wireless communications to share
information such as speed and acceleration among vehicles,
enabling the possibility to reduce inter-vehicle distance without
compromising safety.

A group of coordinated vehicles is called a platoon. Building
and managing a platoon requires multiple technologies. Es-
sential to guarantee vehicles’ coordination are: i) a control
algorithm that regulates the relative distance with respect
to the vehicle ahead and coordinate all vehicles to stabilize
the platoon; and ii) a communication network to exchange
information between vehicles. The control algorithm can use
data received from multiple vehicles in the platoon, defining
the control topology. As an example, the CACC designed in [2]

considers data from the front vehicle only, while the one in [3]
exploits data from the leader as well. What current approaches
assume is a static control topology, which means that the design
of the controller is based on a fixed communication pattern.
When such communication pattern changes due to, for example,
network impairments, the CACC is not able to safely control
the platoon anymore.

In this paper, we overcome this problem by developing
a flexible control system that can be reconfigured based on
the actual communication capabilities. The contribution of
this work is threefold. First, we develop a novel control
algorithm based on a distributed consensus, with the goal
of coordinating all vehicles to reach an equal inter-vehicle gap
[4]. Our approach is specifically designed to take into account
communication logical topology, as well as impairments as
delay and losses. We provide the details of the control
design, the control-loop dynamics, and the analysis of the
stability of the proposed algorithm. Second, we implement the
communication strategy to support the algorithm in Veins [5],
and we carry out experiments with eight and sixteen cars in a
realistic 10 km, 4 lanes stretch of highway exploring different
network-related impairments by including different packet loss
models and by considering other cars equipped with Inter-
Vehicular Communication (IVC) capabilities interfering with
the platoon. The communication delay, instead, is intrinsically
modeled in Veins with a realistic communications device
(IEEE 802.11p card) implementation. Third, we perform a
comparison with a well known CACC algorithm [3] and show
that our proposal is superior in terms of settling time (thus faster
convergence) and damping of disturbances (thus providing
higher comfort for platoon drivers). This paper extends the
state of the art proposing, and proving the viability of, a
control approach for vehicles platooning based on a consensus
algorithm specifically designed to cope with IVC heterogeneous
and time varying delays.

II. SCENARIO, MOTIVATION, AND RELATED WORK

We assume a standard Dedicated Short Range Commu-
nications / Wireless Access in the Vehicular Environment
(DSRC/WAVE) [6], [7] access network with beaconing mes-
sages, and proper integration of different components of
a cooperative driving system (emergency braking [8], anti-
collision techniques, etc.) that are not discussed in this work.



The paper focuses on the algorithm and protocol necessary to
form and stabilize a platoon, looking forward a robust technique
that is tolerant to errors and impairments. The scenario and
dynamic model are those described in [3].

Usually, in CACC strategies the controller parameters are
tuned to attenuate the propagation of motion signals toward the
tail of the platoon, i.e. to guarantee the so called string stable
behavior once the platoon is engaged. Predecessor-following
architectures based on pairwise interactions were shown to
be highly sensitive to external disturbances and number of
vehicles resulting into instabilities [9]. At the same time it is
known that a speed dependent spacing policy, based on the
headway time, leads to a string stable platoon for choices of
the headway time consistent with the platooning application
[10]. Control methods for ensuring platoon string stability
exist under the assumption of the use of IVC without delays,
i.e. the analytical stability analysis is carried out under the
hypothesis of ideal communications [11]. This is not a realistic
assumption, and communication delays are known to create
hardly manageable string instability [12]. Recent research
activities are addressed to design CACC strategies able to
mitigate the effects of communication delays (see for example
[13] and references therein). Since effects and limitations due
to communication features are not explicitly accounted for
during the control design, they are numerically investigated
through sensitivity analysis, usually performed in presence
of fixed, unique, and constant communication delay [12],
[14]. Several approaches to evaluate the performance and
stability of CACC strategies with respect to communication
characteristics (as delay, packet losses, reliability, traffic and
mobility dynamics) are based on proper simulation tools like
[5]. As an example of this research direction, in [15] the
performance of a CACC control algorithm (and its robustness
with respect to periodic disturbances on the leader dynamics)
are discussed in the presence of packet loss, network failures
and beaconing frequencies. The simulation framework is built
with a CACC controller prototype (designed in [16]), a traffic
simulator (SUMO), and a network simulator (OMNeT++). The
communication behavior (based on IEEE 802.11p) is modeled
using OMNeT++. Although platoon vehicles are in general
modeled like a string, different control topologies may arise
depending on the communication pattern among vehicles, and
how the information is used by the control algorithm. If we
consider generic control topologies, the problem of stabilizing
a platoon naturally integrates in the more general framework
of multi-agent systems control [17]. Further examples of this
very recent research direction can be also found in [18], where
a leaderless strategy is proposed for three autonomous vehicles
ideally moving in a circle and sharing information across an all-
to-all configuration via IVC affected by a very simple constant
and common delay. Platooning as a weighted and constrained
consensus control problem is also discussed in [4], with the
goal of understanding the influence of the control topology
on the platooning dynamics by using a discrete-time Markov
chain based approach, but without considering the effect of
time-varying delays on the ensemble stability. Previous works

in this field indeed consider IEEE 802.11-based radios as the
technology to be employed in platooning systems [2], [19].
Phenomena like shadowing and fading, plus a highly concurrent
channel access, can result in packet losses [20], [21] and thus
highly variable and time dependent delays, possibly leading to
instabilities in the control system. According to the literature
and IVC standards, the frequency at which each vehicle has to
broadcast its data must be no lower than 10 Hz [2], a value that
imposes tight communication constraints, stress the channel
load (the road and the safety communication channel are shared
by all vehicles), but finds its justification in the dynamics
of the vehicles, and thus can be considered a hard physical
requirement.

Within this scenario, this paper tackles and solves the platoon
control as a high order consensus problem accounting for time
varying communication delays and vehicles dynamics. Detailed
simulations in Veins, including realistic details such as vehicles’
masses and inertia, actuation lags, packet losses and interfering
traffic, show the performance of the proposed approach and its
advantages. The idea is to find a proper decentralized control
algorithm so that the emerging platoon topology, depending on
the communication links, is asymptotically stable without the
need of pre-establishing (with respect to the controller design)
the topology. The main goal of the proposed approach is to
guarantee the platoon stability in presence of heterogeneous
and time-varying communication delays. This feature can be
very important also in case of emergencies, when the control
of vehicles must be returned to drivers, giving more time to
perform this delicate action as the platoon remains stable for
longer times even when the communication topology changes.
The analysis of this possibility is however not carried out in
this work. The control algorithm significantly enhances the
theoretical analysis in [22] since it embeds velocity-dependent
spacing policy and standstill requirements [16]. Furthermore,
it overcomes the limitations of the stability analysis in [22] in
which, for each vehicle, a unique aggregate delay (resulting
from the fusion of different delays from different sources) was
assumed.

III. PLATOONING CONTROL

A. Mathematical Preliminaries and Nomenclature

The inter-vehicle communication structure can be modeled
by a graph where every vehicle is a node. Hence, a platoon of
N vehicles is represented as a directed graph (digraph) G =
(V, E ,A) of order N characterized by the set of nodes V =
{1, . . . , N} and the set of edges E ⊆ V × V . The topology of
the graph is associated to an adjacency matrix with nonnegative
elements A = [aij ]N×N . In what follows we assume aij = 1
in the presence of a communication link from node j to node
i, otherwise aij = 0. Moreover, aii = 0 (i.e., self-edges (i, i)
are not allowed unless otherwise indicated). The presence of
edge (i, j) ∈ E means that vehicle i can obtain information
from vehicle j, but not necessarily vice versa.

In the rest of the paper we consider N vehicles together with
a leader vehicle taken as an additional agent labelled with the
index zero, i.e., node 0. We use an augmented directed graph



G to model the platoon topology based on the communication
pattern desired by the consensus algorithm, i.e., the existence
of edge (i, j) means that i uses the information received by
j and not only that i is within the communication range of j.
We assume node 0 is globally reachable in G if there is a path
in G from every node i in G to node 0 [23].

Before proceeding to design our consensus controller, we
recall here some useful results on the stability of delayed
systems.

Let C([−r, 0],Rn) be a Banach space of continuous
functions defined on an interval [−r, 0] and taking values in
Rn with a norm ||ϕ||c = maxθ∈[−r,0] ||ϕ(θ)||, || · || being the
Euclidean norm. Given a system of the form:

ẋ = f(xt), t > 0,
x(θ) = ϕ(θ), θ ∈ [−r, 0],

(1)

where xt(θ) = x(t+ θ),∀θ ∈ [−r, 0] and f(0) = 0, it holds:

Theorem 1. (Lyapunov-Razumikhin) [24]. Given system
Eq. (1), suppose that the function f : C([−r, 0],Rn) → Rn
maps bounded sets of C([−r, 0],Rn) into bounded sets of Rn.
Let ψ1, ψ2, and ψ3 be continuous, nonnegative, nondecreasing
functions with ψ1(s) > 0, ψ2(s) > 0, ψ3(s) > 0 for s > 0 and
ψ1(0) = ψ2(0) = 0. If there is a continuous function V (t, x)
(Lyapunov-Razumikhin function) such that:

ψ1(||x||) ≤ V (t, x) ≤ ψ2(||x||), t ∈ R, x ∈ Rn, (2)

and there exists a continuous non decreasing function ψ4(s)
with ψ4(s) > s, s > 0 such that :

V̇ (t, x) ≤ −ψ3(||x||)

when V (t+ θ, x(t+ θ)) < ψ4(V (t, x(t))), θ ∈ [−r, 0],
(3)

then the solution x = 0 is uniformly asymptotically stable.

B. Consensus based Control Design

The goal of the platoon control is to regulate speed and
relative distance of each vehicle with respect to its predecessor
and a leading vehicle respectively [11], [25]. Hence, a platoon
is composed of a string of N vehicles plus the additional
leading vehicle acting as a reference for the ensemble. In our
analysis each vehicle is equipped with on-board sensors to
measure its absolute position, speed and acceleration, while an
IEEE 802.11p radio enables vehicle to share information among
neighbors and to receive leading vehicle reference signals.

The generic i-th vehicle dynamics can be described as the
following inertial agent (i = 1, . . . , N ):

ṙi(t) = vi(t)
v̇i(t) = 1

Mi
ui(t),

(4)

where ri [m] and vi [m/s] are the i-th vehicle absolute position
(with respect to a given reference framework) and speed; Mi

[kg] is the i-th vehicle mass and the propelling force ui denotes
the control input to be appropriately chosen to achieve the
control goal. Similarly, the leader vehicle dynamics are

ṙ0(t) = v0;
v̇0 = 0.

(5)

being r0 and v0 the leader state variables. Given Eqs. (4)
and (5), the problem of maintaining a desired inter-vehicle
spacing policy and a common speed can be rewritten as the
following high-order consensus problem:

ri(t)→ 1
∆i

{
N∑
j=0

aij · (rj(t) + dij)

}
vi(t)→ v0.

(6)

where dij is the desired distance between vehicles i and
j; aij (for i = 1, . . . , N and j = 0, . . . , N ) models the
platoon topology emerging from the presence/absence of a
communication link between vehicles i and j; ∆i =

∑N
j=0 aij

is the degree of vehicle/agent i, i.e., the number of vehicles
establishing a communication link with vehicle i. Note that
according to [26] the desired spacing dij can be expressed as
dij = hijv0 + dstij , where hij is the constant time headway
(i.e., the time necessary to vehicle i−th to travel the distance to
its predecessor), and dstij is the distance between the vehicles
i−th and j−th at standstill. Furthermore we remark that aij are
the nonnegative elements of the adjacency matrix associated
to the platoon topology directed graph G. In what follows we
also assume that a0j = 0 (∀j = 0, . . . , N ), since the leader
does not consider data from any other vehicle.

The platoon high-order consensus problem in Eq. (6) is
solved here by the following decentralized control action
embedding the spacing policy information as well as all the
time-varying communication delays:

ui =−b [vi (t)− v0]+

− 1
∆i

N∑
j=0

kijaij

[
ri (t)− rj (t− τij (t))− τij (t) v0 − hijv0 − dstij

]
,

(7)
where kij and b are control gains to be opportunely tuned to
regulate the mutual behavior among neighbor vehicles; τij(t)
and τi0(t) are the unavoidable time-varying communication
delays affecting the i-th agent when information is transmitted
from its neighbor j and from the leader respectively (in
general τij(t) 6= τji(t)). The delay τij(t) is bounded as
τij(t) ≤ τ [27], [28]; τij(t) is known when the information is
fed into the control algorithm, since each message is stamped
with GPS-based time, whose precision is better than 100 ns.
The information relative to the predecessor is integrated with
the same measures taken by on-board sensors (like radar, lidar,
camera), thus improving the overall precision of measures. The
effects of information loss will be analyzed in Sec. IV-C.

C. Closed-loop Dynamics
In this section we analytically prove the closed-loop stability

of the platoon under the action of the consensus-based control.
The proof of stability is based on the recast of the closed-loop
dynamics as a set of functional differential equations for which
it is possible to find a quadratic Lyapunov-Razumikhin function
[24] and, hence, asymptotic stability is proven in the presence
of heterogeneous time-varying communication delays.

To this goal, we define position and speed errors with respect
to the reference signals r0(t), v0 (i = 1, . . . , N) as:

r̄i = (ri(t)− r0(t)− hi0v0 − dsti0);
v̄i = (vi(t)− v0).

(8)



Re-writing the coupling control action ui in terms of the
state errors r̄i and v̄i and expressing headway constants
hij and standstill distances dstij with respect to the leading
vehicle, namely hij = hi0 − hj0 and dstij = dsti0 − dstj0, after
some algebraic manipulation the closed-loop dynamics can be
rewritten as (i = 1, . . . , N):

˙̄ri = v̄i,

Mi ˙̄vi = − 1
∆i

(ki0ai0 +
N∑
j=1

kijaij)r̄i − bv̄i (t) +

+ 1
∆i

N∑
j=1

kijaij [r̄j (t− τij (t))] .

(9)

To describe the platoon dynamics in presence of the time-
varying delays associated to the different links in a more
compact form we define the position and speed error vectors
as r̄ = [r̄1, . . . , r̄i . . . , r̄N ]

>, v̄ = [v̄1, . . . , v̄i . . . , v̄N ]
>, and

the error state vector as x̄ (t) =
[
r̄> (t) v̄> (t)

]>
. Moreover

delays τij in Eq. (9) can be recast as τp(t) ∈ {τij(t) : i, j =
1, 2, ..., N, i 6= j)} for p = 1, 2, ...,m with m ≤ N(N − 1)
(0 ≤ τp(t) ≤ τ ). Note that m is equal to its maximum, N(N−
1), if the platoon topology is represented by a directed complete
graph and all time delays are different.

According to the above definitions, the closed loop platoon
dynamics can be represented as the following set of functional
differential equations:

˙̄x (t) = A0x̄ (t) +
m∑
p=1

Apx̄ (t− τp (t)) , (10)

where m is the total number of different time delays and

A0 =

[
0N×N IN×N
−MK̃ −MB̃

]
and Ap =

[
0N×N 0N×N
MK̃p 0N×N

]
(11)

being

M = diag

{
1

M1
, . . . ,

1

MN

}
∈ RN×N ; (12)

B̃ = diag{b, . . . , b} ∈ RN×N ; (13)

K̃ = diag
{
k̃11, . . . , k̃NN

}
∈ RN×N , with k̃ii =

1

∆i

N∑
j=0

kijaij ;

(14)
and K̃p = [k̄pij ] ∈ RN×N (p = 1, . . . ,m) the matrix defined
according to the formalism adopted in [29] as:

k̄pij =


aijkij

∆i
, j 6= i, τp(·) = τij(·),

0, j 6= i, τp(·) 6= τij(·).
0, j = i.

(15)

D. Stability Analysis

From the Leibniz-Newton formula it is known that [30]:

x̄ (t− τp(t)) = x̄ (t)−
∫ 0

−τp(t)

˙̄x (t+ s) ds. (16)

Hence, substituting Eq. (10) in Eq. (16) we have:

x̄ (t− τp(t)) = x̄ (t)−
m∑
q=0

Aq

∫ 0

−τp(t)
x̄ (t+ s− τq (t+ s)) ds, (17)

where matrices A0, A1, . . . , Am are defined in Eq. (11) and
τ0 (t+ s) ≡ 0. Using the above transformation, the time-
delayed model (Eq. (10)) can be transformed into:

˙̄x (t) = A0x̄ (t) +
m∑
p=1

Apx̄ (t) +

−
m∑
p=1

m∑
q=0

ApAq
∫ 0
−τp(t) x̄ (t+ s− τq (t+ s)) ds.

(18)

From the definition in Eq. (11) it follows that ApAq = 0 when
p = 1, . . .m and q = 1, . . . ,m. Hence the system defined in
Eq. (10) can be rewritten as:

˙̄x (t) = F x̄ (t)−
m∑
p=1

Cp

∫ 0

−τp(t)
x̄ (t+ s) ds (19)

where
Cp = ApA0 =

[
0N×N 0N×N
0N×N MK̃p

]
, (20)

and
F = A0 +

m∑
p=1

Ap =

[
0N×N IN×N
−MK̂ −MB̃

]
, (21)

with
K̂ = −

m∑
p=1

K̃p + K̃. (22)

Furthermore the following Lemmas hold:

Lemma 1. Supposing ki = ki0ai0
∆i

≥ 0 (i = 1, . . . , N), the
matrix K̂ in Eq. (22) is positive stable if and only if node 0 is
globally reachable in G.

According to Lemma 1 the following matrix

K̂M = MK̂ (23)

is also positive stable since M > 0 (Eq. (12)).

Lemma 2. Let F be the matrix defined in Eq. (21). F is
Hurwitz stable if and only if K̂M (Eq. (23)) in Lemma 1 is
positive stable and

b > max
i

{
|Im(µi)|√
Re(µi)

Mi

}
(24)

being µi the i-th eigenvalue of K̂M (i = 1, . . . , N).

Lemmas 1 and 2 can be proved extending the proof in [22] to
the case of closed-loop matrices depending from m ≤ N(N−1)
time-varying delays. Platoon stability can be now proved as
follows.

Theorem 2. Consider the system defined in Eq. (10) and take
the control parameters in Eq. (7) as kij > 0 and b such that

b > b? = max
i

{
|Im(µi)|√
Re(µi)

Mi

}
(25)

where K̂M is defined in Eq. (23). Then, there exists a constant
τ? > 0 such that, when 0 ≤ τp(t) ≤ τ < τ? (p = 1, . . . ,m),

lim
t→∞

x(t) = 0, (26)

if and only if node 0 is globally reachable in G.



Proof. (Sufficiency). Since node 0 is globally reachable in G,
from Lemma 1 it follows that the matrix K̂M is positive stable.
Setting b as in Eq. (25), the hypothesis of Lemma 2 is satisfied,
hence the matrix F defined in Eq. (21) is Hurwitz stable and
from Lyapunov theorem there exists a positive definite matrix
P ∈ R2N×2N such that

PF + F>P = −Q; Q = Q> > 0. (27)

Consider the following Lyapunov-Razumikhin candidate func-
tion (i.e., satisfying condition of Lyapunov-Razumikin Theo-
rem 1)

V (x) = x>Px. (28)

From Eq. (19), taking the derivative of V along Eq. (10) gives

V̇ (x) = x>(PF + F>P )x−
m∑
p=1

2x>PCp

0∫
−τp(t)

x(t+ s)ds. (29)

Now for any positive definite matrix Ξ it is possible to show that
2a>c ≤ a>Ξa+ c>Ξ−1c according to [23]. Therefore, setting
a> = −x>PCp, c = x(t+ s), Ξ = P−1, and integrating both
sides of the inequality, we can write

V̇ (x) ≤ x>(PF + F>P )x+
m∑
p=1

[τp(t)x>PCpP−1C>P Px+

+
0∫

−τp(t)

x>(t+ s)Px(t+ s)ds].
(30)

According to the hypotheses of the Lyapunov-Razumikin
Theorem [24], choose now the following continuous non
decreasing function ψ4(s) = qs (for some constant q > 1)
and the continuous, non negative, non decreasing function
ψ3(s) = (λmin(Q) − τλmax(H))s2; being λmin(Q) the
minimum eigenvalue of Q; λmax(H) the maximum eigenvalue

of the matrix H defined as H =
m∑
p=1

PCpP
−1C>P P + qP ;

τ < τ? =
λmin(Q)

λmax(H)
. (31)

After some simple algebraic manipulations, when

V (x(t+ θ)) < ψ4(V (x)) = qV (x(t)), −τ ≤ θ ≤ 0, (32)

Eq. (30) becomes

V̇ (x) ≤ −(λmin(Q)− τλmax(H))||x||2 = −ψ3(||x||). (33)

In so doing, the sufficient condition is proven.
(Necessity). Eq. (10) is asymptotically stable for any time delay
τp(t) < τ?, p = 1, ...,m. Letting τp(t) ≡ 0 (p = 1, ...,m)
in Eq. (10), it follows from Eq. (19) that system ẋ = Fx
with F defined in Eq. (21) is asymptotically stable. As all the
eigenvalues of F have negative real parts, Lemma 2 implies that
K̂M is positive stable. Now applying Lemma 1 the theorem is
proven.

Control gains are set inside the consensus region to analyti-
cally guarantee disturbance attenuation for all frequencies of
interest (i.e., string stability with respect to disturbances acting
on the leader motion). As common practice, this has been
analytically achieved for our control algorithm by enclosing all
the time-varying delays within a unique upper bound and then

Table I
NETWORK SIMULATION PARAMETERS.

Parameter Value

Bernoullian channel
PER p 0.3, 0.5 and 0.6

Gilbert-Elliott channel
PER p (GOOD) 0.2
PER p (BAD) 0.7

state duration ∼ exp(0.5 s−1) (E[X] = 2 s)

Realistic channel
Path loss model Free space (α = 2.0)
Fading model Nakagami-m (m = 3)
PHY/MAC model IEEE 802.11p/1609.4 single channel (CCH)
Frequency 5.89 GHz
Bitrate 6 Mbit s−1 (QPSK R = 1/2)
Access category AC VI
MSDU size 200 B (byte)
Transmit power 20 dBm
Beacon frequency 10 Hz

Table II
TRAFFIC SIMULATION PARAMETERS FOR THE REALISTIC SCENARIO.

Freeway length 10 km
Lanes 4 (two-way)
Cars percentage (length 4 m) 50 %
Trucks percentage (length 20 m) 20 %
Vans percentage (length 5 m) 30 %
Inter-vehicle time ∼ exp(0.7276 s−1) (E[X] = 1.374 s [31]
Cars’ speed ∼ U(100 km h−1, 160 km h−1)

Trucks’ speed 80 km h−1

Vans’ speed 100 km h−1

Platoon size 8 and 16 cars
Platooning car max acceleration 2.3 m s−2

Platooning car mass 1460 kg
Platooning car length li 4 m
Headway time hij 0.8 s
Control gains kij k10 = 460, ki0 = 80 (i 6= 0, i 6= 1)

ki,i−1 = 860, kij = 0 otherwise
Control gains bi bi = 1800
Distance at standstill dst 15 m

Freeway fill-up time 500 s
Network warm-up time 10 s
Data recording time 50 s

deriving in the Laplace domain the complementary sensitivity
functions, exploiting a first-order Padé approximation for the
delay. In so doing kij and bi guarantee both consensus and
string stability (values are reported in Tab. II).

IV. EXPERIMENTAL ANALYSIS

A. Network and Traffic Scenario

We use the PLEXE simulator described in [32], based
on Veins [5], where the traditional CACC proposed in [3]
is already available, and the actuation lag (i.e., the delay
between the control decision and its actual realization in the
vehicle due to inertial and mechanical limits) is correctly
modeled. It permits the investigation of platooning systems
by coupling realistic vehicle dynamics with realistic wireless
network simulation. Eq. (7) is implemented in the simulator
as platoon control system, properly distributed in each vehicle.
The simulation code is available to the community through the
Veins site.

Regarding the channel models, we first consider two simple
setups to explore basic convergence and stability properties of



Figure 1. Screenshot of the realistic scenario. Human-driven vehicles in white, blue, and yellow, and platooning cars in red on the left-most lane.
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Figure 2. Basic convergence analysis with v0 = 100 km h−1, N + 1 = 8 vehicles. Platoon creation and maintenance: (a) time history of the position errors
computed as ri(t)− r0(t)− hi0v0 − dsti0; (b) time history of the vehicles speed error with respect to the leader computed as vi(t)− v0; (c) time history of
the control effort in ms−2.

driving direction

Figure 3. Vehicular topology in the simulation scenario.

the system. In particular, we first use a Bernoullian channel,
i.e., with independent random losses and different Packet
Error Rates (PERs), and then we employ a Gilbert-Elliott
channel driven by a two-state Markov chain. Each state
represents the current channel status, which can be either in
good or in bad conditions. The channel conditions determine
the PER to be used, enabling the possibility to simulate
burst errors. State durations are drawn from an exponential
distribution. The third network scenario we take into account
is the most realistic: we consider a 10 km freeway where
human-driven vehicles travel on the road generating wireless
interferences. As channel model, we employ a free-space
path loss coupled with Nakagami-m fading. We use a fully
fledged IEEE 802.11p/1609.4 model configured with typical
parameters, and consider a beacon frequency of 10 Hz, both
for automated and human-driven vehicles. Concerning the
road traffic simulation we consider different kind of vehicles
traveling in both directions. The simulation includes cars, vans,
and trucks with different percentages and speeds, which are
injected with an exponentially distributed inter-vehicle time. At
simulation time 500 s the platoon is injected in the middle of
the freeway and communications are enabled. After a warm-up
time of 10 s we start to record motion data about vehicles in
the platoon. Tabs. I and II summarize all relevant parameters
for both network and traffic simulation.

To show the stability and robustness of the proposed control
strategy an experimental analysis has been performed involving
different driving leader maneuvers, in particular: (i) Consensus:
starting from different initial conditions, the platoon has to
reach and than maintain the reference behavior as imposed
by the leader according to the desired spacing policy; (ii)
Leader tracking: followers have to correctly track the time-
varying leader speed, v0; (iii) Sinusoidal: a periodic disturbance

is acting on the leader motion. Note that fluctuations have
to be attenuated toward the tail of the platoon. The chosen
control topology is the one considered in [33] and coherent
with [3], where the leader communicates with all the vehicles
in broadcast, and every vehicle shares information with its
follower (see Fig. 3). Fig. 1 shows a screenshot of the
simulation. We remark that the algorithm convergence is
not restricted to the case of classical predecessor-following
architecture based on pairwise interactions [2], but it ensures
platoon stability for all those topologies that satisfy hypotheses
of Theorem 2. Results are illustrated referring to growing
complexity in network load and traffic scenario. Moreover, a
brief comparison with a classical CACC [3] control technique
has been carried out.

B. Basic Convergence Analysis

In this section we refer to the case study of a platoon
composed of 7 vehicles plus a leader. No packets are ever lost
in this first scenario. Control parameters are tuned inside the
consensus region according to Theorem 2 to achieve acceptable
transient performance and to guarantee string stability. The
selected control parameters are reported in Tab. II. Figs. 2a
and 2b show the results for the consensus scenario. The results
confirm the ability of the proposed approach of creating and
maintaining the platoon. All vehicles – starting from distances
different from the one required by the spacing policy – reach
the consensus and converge toward the desired positions and the
leader speed, despite the presence of network delays during the
information exchange. Furthermore, according to the theoretical
derivation, the control effort reduces to zero once the control
goal is achieved, as depicted in Fig. 2c. The consensus is
theoretically guaranteed for a constant leader speed, but the
controller stability leaves ample control margins to ensure that
the platoon is able to track the leader. We test the ability of the
proposed strategy of tracking the leader when it accelerates
from 0 km h−1 to 90 km h−1 (with a constant acceleration of
0.5 m s−2). Results in Fig. 4 show that the approach is able to
achieve tracking by bringing all vehicles to the required speed
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Figure 4. Leader tracking maneuver: time history of the vehicles speed.
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Figure 5. Braking maneuver: time history of bumper to bumper distances
computed as ri−1(t)− ri(t)− li−1.

and mutual positions (not shown).
To confirm the tracking performance of our algorithm, we

test the controller in a braking scenario. Results in Fig. 5 show
how the platoon reacts in the case of a braking maneuver
performed by the leader from 100 km h−1 to a full stop. The
platoon maintains the secure inter-vehicular distance, avoids
collisions, and converges to stand-still distances at rest.

We dedicate further experiments to investigate if and how
speed and acceleration fluctuations are attenuated downstream
the string of vehicles of the platoon (string stability) when
a periodic disturbance is acting on leader’s speed. Results in
Fig. 6, referring to a sinusoidal disturbance

δ(t) = A cos(
6

100
πt), A = 2.7 m s−1, (34)

confirm the string stable behavior of the platoon. The position
error of vehicles with respect to its predecessor shows that the
sinusoidal disturbance is attenuated downstream the string of
vehicles.

As final test, we check the convergence for a platoon of 16
vehicles. The platoon still reaches the consensus conditions
(Figs. 7a and 7b) and shows a string stable behavior (Fig. 7c).
Moreover in this scenario we have re-tuned the controller to
ensure a constant and very small (5 m) bumper to bumper
distance and not a constant time headway.

C. Simulations using Packet Losses

In this scenario we analyze the performance of the proposed
control approach in a more realistic scenario that considers
Bernoulli and Gilbert-Elliott packet losses parameterized as in
Tab. I. Concerning the Bernoullian channel (graphical results
are not shown for the sake of brevity), we verified that the
consensus is well guaranteed in the case of a PER up to 60 %.
Performance start to slightly deteriorate around 60 % PER, but
the platoon motion is still preserved and both position and
velocity errors still converge to zero. Consensus is lost for
packet loss probabilities above 70 %. Regarding the Gilbert-
Elliott channel (see parameters in Tab. I), Figs. 8a and 8b
show position and speed errors as function of time, proving
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Figure 6. Robustness with respect to the sinusoidal disturbance (Eq. (34)) acting
on the leader speed: time history of bumper to bumper distances computed as
ri−1(t)− ri(t)− li−1.

that consensus can be reached in this setup as well. All these
results show very high resilience to packet loss, which may
appear surprising. The explanation lies in the high sampling
rate of 10 Hz beaconing compared to the system dynamics
given by Eqs. (4) to (6), which, given the vehicles masses,
are much slower. Thus even the loss of a large fraction of
messages has just the effect of a mild under sampling of
the system compared to the default one, which is however
much higher than the minimum required. Finally, we highlight
the relationship between packet loss and τij(t). Recall that
τij(t) are measured based on GPS timestamps in the messages,
hence when a message is lost, the algorithms uses the last
available information, thus τij(t) actually “jumps,” increasing
of a beacon interval, just to return to a smaller value when the
next valid message is received. Thus the resilience to message
loss, also implies the robustness to the variable τij(t) studied
in the theoretical part.

D. Simulations in High Density Traffic Scenario

In the realistic freeway scenario described in Sec. IV-A, we
simulate the consensus, the leader tracking, and the sinusoidal
disturbance, but for the sake of brevity we report the results
of the tracking and the sinusoidal ones only. Fig. 9 shows
the speed profiles as function of time for the vehicles in the
platoon for the leader tracking scenario. The leader accelerates
from 80 km h−1 to 130 km h−1 with a constant acceleration of
1.5 m s−2. Despite the interferences caused by other vehicles,
all cars in the platoon correctly track the leader’s maneuver, and
the differences with Fig. 4 are minor. In the second scenario,
the leader accelerates and decelerates in a sinusoidal fashion
around the average speed of 110 km h−1 with a frequency
of 0.2 Hz. In Fig. 10 we plot the bumper-to-bumper distance
for all the cars in the platoon. As in Fig. 6, the controller
successfully maintains string-stability by attenuating the error
along the platoon. Indeed, the oscillation is barely noticeable
already at vehicle number 3. Nevertheless, there are minor
imperfections caused by packet losses. For example, between
simulation times 602 s and 606 s, it can be noticed that vehicle
7 looses its reference position. The error is however in the
order of 20 cm, thus the system can still be considered safe
and robust.

E. A Brief Comparison with a traditional controller

We compare here the performance of our approach with the
CACC controller illustrated in [3, Chapter 7] as implemented
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Figure 7. Platoon of N + 1 = 16 vehicles. (a) Platoon creation and maintenance: time history of the position errors computed as ri(t)− r0(t)− hi0v0 − dsti0;
(b) time history of the vehicles’ speed error with respect to the leader computed as vi(t) − v0. (c) Robustness with respect to the sinusoidal disturbance
(Eq. (34)) acting on the leader speed: time history of bumper to bumper distance computed as ri−1(t)− ri(t)− li−1.
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Figure 8. Consensus in presence of packet losses. Gilbert-Elliott transmission
channel: (a) position errors computed as ri(t) − r0(t) − hi0v0 − dsti0; (b)
speed errors computed as vi(t)− v0.
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Figure 9. Leader tracking maneuver in the realistic network scenario: time
history of vehicles’ speed.

by Eqs. (7)–(12) in [32], considered one of the most performing
controllers able to stabilize a platoon with an inter-vehicle
distance independent from the platoon speed. In this section,
for sake of clarity, we refer to this CACC algorithm as rajc
and compare it with our Consensus-based Control (cbc).

First of all, our proposal allows changing the values assumed
by the headway time constant without requiring a specific
tuning of the control parameters. Hence, different headway
time values hij can be used both at different speeds, but also
within the same platoon for different cars allowing, for instance,
increased safety in presence of heterogeneous vehicles without
compromising the ensemble behavior. Control flexibility is
increased [34], but also convergence time is faster. Results in
Fig. 11 show how the convergence time (i.e., the time τ5%

and τ1% necessary to reach the desired platoon configuration
with an error smaller than 5% or 1%, respectively) varies as
a function of hij for cbc and rajc in a platoon forming at
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Figure 10. Sinusoidal disturbance on leader motion in the realistic network
scenario: bumper to bumper distances computed as ri−1(t)− ri(t)− li−1.
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Figure 11. Platoon convergence time τ vs. headway-time hij for Consensus
based Control (cbc) and the traditional rajc [3, Chapter 7] CACC.

100 km h−1. Convergence times are measured starting from the
instant the leader announces the platoon formation. The other
cars join the platoon every 2 s, and immediately start following
the control algorithm. The convergence time of cbc is about
20% faster and decreases with hij .

Convergence is very important, but noise rejection and
fluctuations damping are just as important, both for safety
and for driving comfort. We evaluate this property imparting
a sinusoidal speed “noise” of different frequencies to the
leader, and measuring the ratio ‖ai(t)‖∞‖a0(t)‖∞ , of all the following
vehicles accelerations compared to the leader. The leader speed
oscillation amplitude is ± 1.4 km h−1. A good platoon control
system should increase the damping as the frequency of this
oscillation increases, because as the frequency increases they
are more and more perceived as vibrations, and hence are
annoying, while the inter-vehicle distance does not change
much, so stabilizing the speed of the followers does not hamper
safety. Results in Fig. 12 confirm that cbc damping increases
with frequency and for high frequencies is already very good
also for the first vehicle, while as the frequency decreases
then the damping converges to 1 (no damping), as these low
frequency fluctuations may correspond to real changes of the
leader speed and not to noise. rajc damping is instead marginally
smaller than 1 even for frequencies as high as 1 Hz that for a
car speed are really violent vibrations and nothing else.
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V. CONCLUSIONS

In this paper we have proposed a novel consensus-based
control approach for vehicle platoons that natively include in
the design the communications’ delays and the topology of
the agents network that implements the consensus algorithm,
which thus becomes a design decision. We have analytically
proven the stability and convergence of the platooning algo-
rithm in presence of time-variable heterogeneous delays. The
resulting protocol has been implemented in Veins on top of
a standard DSRC/WAVE communication infrastructure and
it has been evaluated in several realistic scenarios. Finally
it has been compared with a classic CACC approach well
known in literature. Future work will be devoted to extending
the analysis to dynamically changing topologies, which can
improve the feasibility of the complex driving maneuvers
(overtaking, merging/splitting platoons, etc.) that are needed to
implement fully autonomous cooperative driving. Furthermore,
the theoretical analysis will be extended to understand the limits
of consensus-based platoons control in dynamic conditions, as
well as in the extremely compact platoons that can reduce fuel
consumption thanks to reduced air drag.
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