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Abstract— Automated detection of anomalies in network traffic
is an important and challenging task. In this work we propose an
automated system to detect volume-based anomalies in network
traffic caused by Denial of Service (DoS) attacks. The system
has a two-stage architecture that combines more traditional ap-
proaches (Adaptive Threshold and Cumulative Sum) with a novel
one based on the Continuous Wavelet Transform. Thanks to the
proposed architecture, we obtain good results in terms of trade-
off between correct detections and false alarms, estimation of
anomaly duration, and ability to distinguish between subsequent
anomalies. We test our system using a set of publicly available
traffic traces to which we superimpose anomalies related to real
DoS attacks tools. Extensive test results show how the proposed
system accurately detects a wide range of anomalies and how the
performance indicators are affected by anomalies characteristics
(i.e. amplitude and duration).

I. INTRODUCTION

Efficient operation and management of current large net-
works depend also on the correct analysis of network anoma-
lies like outages, flash crowds, misconfigurations, and attacks.
Accurate detection and classification of anomalies in IP net-
works is still an open issue due to the intrinsic complex nature
of network traffic. Also, isolating anomalous events within
traffic is an inherently difficult task. Several anomaly detection
systems (ADS) based on very different approaches and tech-
niques have been proposed in literature. Typical performance
aspects involve the range of different anomalies that can be
detected and the trade-off between the percentages of correct
detections (hits) and of false alarms. As regards works in litera-
ture, a number of statistical techniques have been employed for
anomaly detection: exponential smoothing and Holt-Winters
forecasting [1], adaptive thresholding, cumulative sum [2] [3],
maximum entropy estimation [4], and principal component
analysis [5]. Some of these works analyze the volume of
aggregate traffic on a link, others identify different flows
carried on several links of an ISP, finally others look at the time
series of specific kinds of packets inside aggregate traffic (e.g.
SYN packets) restricting their focus to few kinds of attacks.
In [6], the use of spectral analysis is proposed to identify
legitimate TCP flows, which should exhibit strong periodicity.
This is proposed as a complementary approach to existing
DoS detection and defense mechanisms that identify attacks.
Finally, several works based on the wavelet transform have
been proposed in the last years. Time- and scale-localization
abilities of the wavelets, indeed, make them ideally suited to
detect irregular traffic patterns in traffic traces. In [7] Barford
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et al. apply wavelet analysis and synthesis techniques to
evaluate the traffic signal filtered only at certain scales, and
a thresholding technique is used to detect changes caused by
flashcrowds, outages, attacks etc. In [8] the authors show that
network problems affecting dominant Round Trip Times can
be detected from the analysis of the energy function of the
wavelet coefficients at the corresponding scales. In [10] the
authors exploit a property of some network misconfigurations
that is reflected by the energy function calculated at a specific
set of scales; while, in [9], spikes in the coefficient energy
function are connected to DoS attacks.

In this work we propose an approach to anomaly detection,
based on the wavelet transform, which we tested against
several types of DoS attacks. Such approach presents several
differences with past works. First, we make use of the Contin-
uous Wavelet Transform (CWT), exploiting its interpretation
as the cross-correlation function between the input signal and
wavelets and its redundancy in terms of available scales and
coefficients. All the cited works, instead, are based on the
use of the Discrete Wavelet Transform (DWT), which is more
oriented to the decomposition of the signal over a finite set
of scales, each one with a reduced number of coefficients,
in order to make the original signal reconstructable from
them. This is typically done in a way that avoids redundancy.
Second, our detection approach takes explicitly into account
- beside hits and false alarms - accuracy of the estimation of
the time interval during which the anomalous event happens
and the resolution (in terms of ability to distinguish between
subsequent anomalies). In the context of security incidents,
these aspects can be crucially important, for example to trace
back the source of an attack, or during forensics analysis,
etc. Third, we propose a cascade architecture made of two
different systems - the first one based on classical ADS
techniques for time series, the second one based on the
analysis of wavelet coefficients - which allows more flexibility
and performance improvements as regards the hits/false alarms
trade-off. Finally, as fourth point, we present an experimental
analysis of the performance of the system under an extensive
set of attack - traffic trace combinations (≈ 15000).

The rest of the paper is organized as follows. In Section
II we provide some background analytical information that
justifies the techniques adopted. In Section III details on the
system architecture and algorithms implemented are given. In
Sections IV and V respectively, we describe the traffic traces
and anomalies that have been used for the experimental tests,
and we show and discuss the results obtained in terms of
performance. Finally, in Section VI we draw conclusions and
foresee future works.
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II. AN ANALYTICAL BASIS

The Continuous Wavelet Transform (CWT) is defined as:

fCWT (a, b) =

∫ +∞

−∞
f(t)ψ∗

ab(t)dt = 〈f(t)|ψab(t)〉 , (1)

where:
ψab(t) =

1√
a
ψ

(
t− b

a

)
, (2)

f(.) is the signal under analysis, ψ(.) is a function of finite
energy whose integral over R is 0, called mother wavelet, and
a and b are the scaling and translation factors respectively.
Each (a, b) pair furnishes a wavelet coefficient, which can
also be seen as the cross-correlation at lag b between f(t)
and the mother wavelet function dilated to scaling factor a.
An important difference between the CWT and the DWT is
that the former calculates such correlation for each lag at
every possible scale, whereas the DWT calculates a number
of coefficients that decreases with the scaling factor.

The scale of the coefficients global maximum, is where
the input signal is most similar to the mother wavelet. This
function is chosen to be oscillating but with a fast decay from
the center to its sides, in order to have good scale (frequency)
and time localization properties. This makes the CWT a good
tool for analyzing transient signals as network traffic time
series. When the CWT is implemented as a numeric algorithm,
b can assume a number of values equal to the number of
samples N of the input signal and the scaling factor a is
expressed by a = 2(−j+m/M) where j is the octave, m
is the voice index (0 < m < M ), and M is the number
of voices per octave. The number of octaves is given by
J = [log2N ] − 1 where the operator [·] returns the nearest
integer of its argument.

In the context of the study of wavelets and image process-
ing, it has been proved that the local maxima of a wavelet
transform can detect the location of irregular structures in the
input signal [11]. Let us consider a smoothing function θ(t),
that is the impulsive response of a low-pass filter, such that
θ(t) = O(1/(1 + t2)) and whose integral is not zero (e.g. the
gaussian function). Given θa(t) = (1/a)θ(t/a), let f(t) be a
real square-summable (over R) function. The edges of f(t) at
scale a can be defined as the points of rapid local changes of
f(t) filtered by θa(t).

Given two mother wavelets defined as:

ψ1(t) =
dθ(t)

dt
and ψ2(t) =

d2θ(t)

dt2
, (3)

the corresponding CWTs are:

f1
CWT (a, t) = f ∗ψ1

a(t) and f2
CWT (a, t) = f ∗ψ2

a(t) , (4)

where:
ψ1

a(t) =
1

a
ψ1(t/a) = a

dθa(t)

dt
(5)

ψ2
a(t) =

1

a
ψ2(t/a) = a2 d

2θa(t)

dt2
. (6)

Substituting in 4, we obtain:

f1
CWT (a, t) = f ∗

(
a
dθa

dt

)
(t) = a

d

dt
(f ∗ θa) (t) (7)
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Fig. 1. Anomaly Detection System: Proposed Architecture.

f2
CWT (a, t) = f ∗

(
a2 d

2θa

dt2

)
(t) = a2 d

2

dt2
(f ∗ θa) (t) (8)

Thus, f1
CWT (a, t) and f2

CWT (a, t) are proportional to the first-
order and second-order f(t) derivative respectively, filtered by
θa(t). Such properties are obviously maintained by deriva-
tives of greater order. It follows that, for a fixed scale a,
the local extrema of f1

CWT (a, t) along t correspond to the
zero-crossings of f2

CWT (a, t) and to the inflection points of
f ∗θa(t). Thus, using the derivative of a smoothing function as
a mother wavelet (e.g. derivatives of the gaussian function), the
zero-crossings or the local extrema of the wavelet transform
applied to a signal indicate the locations of its sharp variation
points and singularities. The CWT coefficient redundancy,
allows to identify these points at every scale with the same
time-resolution of the input signal.

III. ARCHITECTURE

In Fig. 1 a block diagram representing the two-stage ar-
chitecture of the proposed ADS is shown. The ADS takes
as input a time series of samples representing the packet
rate and outputs an ON-OFF signal reporting the presence
of an anomaly for each sample. The first stage, which we
called Rough Detection, can be implemented using statistical
anomaly detection techniques previously presented in literature
and it is just responsible to detect any suspicious change in
the traffic trend and to report an alarm to the second stage. Its
output is equal to 0 or 1 for each input sample. Here we impose
a high sensitivity aiming at catching as much anomalies as
possible, whereas the second stage, which we called Fine
Detection, is designed to reduce the number of false alarms.
For each detected anomaly, this stage also estimates the time
interval during which it is present.

A. Rough Detection

As for the Rough Detection module, we adopted the two
techniques proposed in [2] to detect SYN flooding attacks (an
adaptive threshold algorithm and the CUSUM algorithm) and
we applied them to generic traffic traces. A similar implemen-
tation of the CUSUM algorithm has also been proposed in [3]
to detect different DoS attacks.

The adaptive threshold (AT) algorithm generates an alarm
when the value of a sample is greater than a threshold that
adaptively changes with the traffic trend. Let xn be the number
of packets during the n-th time interval and let µ̄n−1 be the
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mean rate estimated from measurements prior to n, an alarm
at time n is signaled if:

n∑
i=n−k+1

1[xi≥(α+1)µ̄n−1] ≥ k (9)

where α determines the threshold sensitivity, and 1[x≥y] is
equal to 1 if x ≥ y, to 0 otherwise. The average value µ̄n is
calculated using the Exponentially Weighted Moving Average
(EWMA) on the previous estimates:

µ̄n = βµ̄n−1 + (1 − β)xn (10)

where β is the EWMA factor. The configurable parameters
of the algorithm are: α, β, and k.

The CUSUM algorithm is based on the change-point detec-
tion theory, and uses the log-likelihood ratio:

Sn =
n∑

i=1

si (11)

where si = ln pθ1 (yi)

pθ0 (yi)
and {yi} are random variables. The

θ0 and θ1 hypotheses represent the statistical distributions
prior and after a change respectively. The log-likelihood ratio
guarantees a negative drift before a change and a positive drift
after the change. Therefore, let mn = min1≤j≤n Sj , an alarm
is signaled when gn = Sn − mn ≥ h, where h represents
the threshold. After some calculations [2], an expression of
gn based on the mean and variance of θ0 and θ1 can be
derived. However {yi} are assumed as independent Gaussian
variables. Because this is generally not true for network traffic,
algorithms to remove trends and time correlations should be
applied to the input signal. A common and simpler approach
is to subtract to the considered time series its EWMA. We
therefore apply the CUSUM algorithm to x̃n = xn − µ̄n−1
where xn is the number of packets in the n-th time interval
and µ̄n is an estimate of the mean rate at time n (calculated
using the same EWMA as in the adaptive threshold algorithm).
Taking into account that the mean value of x̃n prior to a change
is 0, and approximating the mean traffic rate after the change
with αµ̄n, gn can be expressed as

gn =
[
gn−1 +

αµ̄n−1

σ2
+

(
xn − µ̄n−1 − αµ̄n−1

2

)]+

(12)

The algorithm configurable parameters are: α, β, and h.

B. Fine Detection

The CWT computing block (Fig. 1) computes the continuous
wavelet transform of the whole input signal. We used the
Wavelab [12] set of routines under the Matlab environment.
The block output is a matrix W of M rows and N columns,
where N is the number of samples of the input trace. Each row
reports the wavelet coefficient at a different scale. The number
of available scales M is given by the number of octaves,
J = [log2N ] − 1 times the number of voices per octave.
The CWT function implemented under Wavelab allowed us
to work with 12 voices per octave. This matrix is fed as an
input to the Detection-F block, which receives as inputs also a
threshold level (that will be explained in the following) and the
Rough Detection Signal. For each alert reported in the Rough
Detection Signal, the Detection-F block operates as follows:

• in the column of W that corresponds to the instant of the
alert, the maximum value is found. The row index j1 of

Fig. 2. Threshold Calculation Block.

this value represents a first estimate of the scale at which
the anomaly is present.

• looking at all the coefficients at the scale j1, the zero-
crossings (starting from the left and right of the maximum
value) are determined. Their distance represents a first
estimation of the anomaly interval.

• a sub-matrix of W , obtained by considering only the
columns related to this interval, is used for a new search.
In all the elements of this sub-matrix, a new maximum
coefficient is found. The index j2 of its row represents
the final estimated scale.

• an anomaly is found if the maximum coefficient results
greater than the threshold level. Otherwise the rough
detection alarm is ignored and no other operations need
to be performed.

• the final estimation of the anomaly interval is made by
looking at the coefficients at the scale j2. Again, the
interval boundaries are identified by searching for the
zero-crossings at the left and right of the maximum value.

Basically, starting from the alert of the rough detection
stage, we look for the scale at which the coefficients reach
the maximum variation. The use of the CWT guarantees that
we have a coefficient for each input sample at every scale
- differently from the DWT, where typically the number of
coefficients decreases as the scale grows. This way, if an
anomaly is recognized, we can identify with good precision
the zero-crossing points of the wavelet coefficients at the scale
where the anomaly is present.

The choice of the threshold level for the wavelet coefficients
(Threshold Calculation block) is based on the mean and
standard deviation of the traffic trace, computed in the Signal
Analysis block, and on the Library of Anomalies, which is a
collection of signals representing some traffic anomalies (see
Section IV-B). Inside the Threshold Calculation block (Fig.
2), in the sub-block named Library Scaling, all the anomaly
signals are scaled to a maximum peak value of pmax. This
value is given by the standard deviation of the input trace
multiplied by a factor, for which we have chosen three possible
values corresponding to different ranges of the mean / standard
deviation ratio of the input trace. This is because we want to
make the threshold calculation adaptive with respect to the
trace characteristics. After that all the anomalies have been
scaled, for each anomaly k in the library the CWT of the
scaled anomaly signal k is computed, and the maximum mk

among all the coefficients is found. Finally, the threshold is
obtained as min(mk), that is the smallest of the maximum
coefficients of each anomaly.
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IV. TRAFFIC TRACES AND ANOMALIES

To study and develop our ADS, we made several experi-
ments under a broad range of situations. Our approach was
to generate traffic signals superimposing anomaly profiles to
real traffic traces in which no anomalies were present. This
choice is partly due to the scarce availability of traffic traces
containing classified anomalies along with all the necessary
details. For example, the lack of information on the exact
beginning and end of each anomaly would not allow us to
evaluate the temporal precision of the detection system. On the
other hand, being able to generate different traces containing
anomalies allowed us to dispose of much more test cases than
those that were practically possible to obtain by capturing real
traffic traces with real anomalies. In the following subsections
we give some details on the used data.

A. Traces

We considered real traffic traces that were known not to
contain any anomalies, obtaining a large and heterogeneous
set of traces. In Table I the data sets we used are summarized.
The first three groups of traces in Table I were derived from the
DARPA/MIT Lincoln Laboratory off-line intrusion detection
evaluation data set [13], which has been widely used for testing
intrusion detection systems and has been referred in many
papers (e.g. [14] [15]). We used only traces from the weeks in
which no attacks were present. The dataset marked in Table
I as UCLA refers to packet traces collected during August
2001 at the border router of Computer Science Department,
University of California Los Angeles [16]. They have been
collected in the context of the D-WARD project [17]. Finally,
the UNINA data set refers to traffic traces we captured by
passively monitoring ingoing traffic at the WAN access router
at University of Napoli “Federico II”. We make the time series
representing the sampled packet rate publicly available at [18].
Table I contains details about the data sets, as the number
of traces for each group and the sampling period Ts used to
calculate the packet rate time series. Also, indicative values of
mean and standard deviation (std) for the traces of the same
set are shown. All traces are composed of 3600 samples.

B. Anomalies

Anomalies in network traffic can be of different nature
and can be originated by different kinds of events. It is
possible to distinguish among network performance problems
and failures (temporary or permanent problems on nodes or
links), non malicious but unordinary events (e.g. flashcrowds),
and malicious events (e.g. DoS attacks). These events tend to
determine an abrupt change in the time series representing the
traffic rate. In this work, several kinds of anomaly profiles
related to DoS attacks have been synthetically generated. We
assigned labels to each anomaly we used (see Table II). Some
anomaly profiles were obtained by generating traffic with real
DDoS attack tools, TFN2K [19] and Stacheldraht [20]. We
launched such tools with several different options and we
captured the traffic that was generated by them. The anomaly
profiles obtained were stored and labeled depending on the

TABLE I

TRAFFIC TRACES.

Data Set Year Ts # Traces Mean Std

Darpa 1 1999 2s 5 80 pkt 90 pkt
Darpa 2 1999 5s 5 20 pkt 40 pkt
Darpa 3 1999 5s 5 12 pkt 30 pkt
UCLA 2001 2s 4 20 pkt 15 pkt
UNINA 2004 2s 3 8 10E3 pkt 1.3 10E3 pkt

adopted attacking technique. Another group of anomalies have
been obtained by synthetically generating the corresponding
time series with Matlab, according to known profiles that
have been considered in [21]. We considered ‘Constant Rate’,
‘Increasing Rate’, and ‘Decreasing Rate’ anomalies.

V. EXPERIMENTAL RESULTS

The experimental results shown have been obtained by per-
forming a large set of automated tests. The results have been
summarized and the following performance metrics have been
calculated: (i) the Hit Rate, HR = number of test hits

number tests × 100;
(ii) the False Alarms Ratio, FAR = number of false alarms

total number of alarms ×
100; (iii) the estimation errors in the identification of the
beginning and the end of the anomaly; (iv) the number of
fragments when a single anomaly is recognized as several
ones. Our scripts generated traces containing anomalies with
various combinations of parameters and ran the ADS on each
of them. In order to test the ADS under more complicated
situations (i.e. obfuscating the anomalies in the traces), when
a trace and an anomaly profile are selected, the amplitude
and the duration of the signal representing the anomaly are
modified. Then the signal is superimposed to the traffic trace
at a randomly selected point - at 1/4, 1/2, or 3/4 of the trace
- and the detection system is executed. For a specific trace,
the amplitude of an anomaly was scaled in order to make its
maximum peak proportional to the root mean square of the
original traffic trace. The choice of the proportionality factor
varies from 0.5 to 2.00 with a step of 0.25. Anomaly durations
range from 50 to 300 samples with a step of 50. Sampling
and interpolation of the anomaly profiles were performed for
expansion and shortening respectively. Thus we performed a
number of tests given by the product (traces× anomalies×
intensities× durations). With 22 traces and 16 anomalies,
we performed about 15000 tests, each time we tested a system
configuration (i.e. with CUSUM, with AT, etc.).

A. Choice of the Mother Wavelet
In our tests we computed the CWT using the Morlet mother

wavelet, which has the following expression:

ψ(t) =
1√
2π
e−jw0te−t2/2. (13)

The Morlet mother wavelet is one of the most used in
signal processing because of its good properties as symmetry
and a narrow and rapidly decreasing central lobe. Usually
w0 = 5 is chosen, to have the second lobe half of the
first one. Such properties translate into good time and scale
localization capabilities. We found a strong similarity with
even-order gaussian derivatives, which have a strong analytical
basis for their use in the field of singularity detection (see
Section II). We verified such similarities also by calculating

©1-4244-0357-X/06/$20.00     2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.



TABLE II

TESTED ANOMALIES.

Tools Matlab TFN2K Stacheldraht

Anomalies Constant rate, Increasing rate,
Decreasing rate

ICMP Ping flood, TCP SYN flood, UDP
flood, Mix flood, Targa3 flood

TCP ACK flood, TCP ACK NUL flood, TCP random header
attach, Mstream (TCP DUP ACK), DOS flood, mass ICMP
bombing, IP header attack, SYN flood, UDP food

the cross-correlation function between the coefficients of the
wavelet transform of tested anomalies using even-order gaus-
sian derivatives and Morlet mother wavelets. We found a cross-
correlation value of 0.96 between coefficients obtained with
the 24-th order gaussian derivative and the Morlet mother
wavelet with w0 = 5. Experimental tests with even-order
derivatives of the gaussian function of smaller orders - e.g. the
Mexican Hat mother wavelet which is the 2-nd order derivative
- showed a remarkable loss of accuracy in finding the start and
the end of each anomaly. As regards odd-order derivatives, we
did not take them into account because singularity detection
using odd-order derivatives of a smoothing function is based on
the identification of local maxima (see Section II). A search for
local maxima is more difficult to implement into an algorithm
rather than a search for zero-crossing points, which is the case
for even-order derivatives.

B. Hit Rate (HR) and False Alarm Ratio (FAR)

In Table III we show the system performance, in terms of
HR and FAR, when the rough detection block is imple-
mented with AT and CUSUM algorithms. We report results
obtained separately for each of the 5 trace data sets, and in
the last row, we show global results obtained working with all
the traces. The columns labeled FD(AT ) and FD(CUSUM)
report performance indicators derived from the output of the
fine detection stage when the rough detection stage are AT
and CUSUM respectively. Instead, the performance results
related just to the output of the rough detection stages are re-
ported in columns labeled with RD(AT ) and RD(CUSUM).
This is to show how we tuned the rough detection stage with
a very high sensitivity in order to catch as much anomalies as
possible at the expense of a high FAR. Indeed, passing from
the rough detection output to the fine detection output, while
HR remains almost the same, FAR decreases dramatically.
This happens for all the sets of traces, and for both AT and
CUSUM, and it represents one of the most important features
of the proposed ADS.

In order to sketch a comparison between the proposed two-
stage ADS and AT or CUSUM used as standalone algorithms,
in the columns labeled as AT-sa and CUSUM-sa we show how
they perform in terms of HR when tuned with approximately
the same FAR of the proposed ADS. We see that, in the
case of AT, the introduction of the second stage, improves
HR of about 10% for 3 out of 5 trace sets, as for AT, while
for CUSUM the improvements range from about 12%, for the
fifth trace set, to almost 50%, for the first one.

In Fig. 3 we show how HR and FAR are influenced by
the relative amplitude (left figures) and the duration (right)
of the anomalies. Top and bottom figures refer to the sys-
tem with AT and CUSUM rough detection respectively. We
evaluated performance separately for each anomaly profile. It

can be observed that the increasing rate and decreasing rate
anomalies (red and green lines respectively) are more difficult
to be detected, compared to the other anomalies. However, it
is interesting to note that the curves related to all the anomaly
profiles follow approximately the same trends. The relative
amplitude has more influence on HR and FAR than the
anomaly duration. But, when the anomaly amplitude is tuned
for peak values greater than the RMS of the trace (relative
amplitude ≥ 1) HR does not increase anymore. A similar
behavior happens for FAR in the AT case, while as for the
CUSUM implementation FAR tends to slowly decrease even
after the relative amplitude is higher than 1. As regards the
anomaly duration, while FAR always decreases when the
anomaly lasts longer, HR inverts this trend after a certain
duration. This behavior is accentuated in the CUSUM case.
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Fig. 3. HR and FAR as functions of attacks’ relative amplitude and duration.

C. Accuracy in the detection of the anomaly time interval

The diagrams in Fig. 4 show the percentage of correct
estimates of the start and the end time of the anomalies, when
the width of the confidence interval (expressed in number of
samples) increases. We consider the estimate to be correct
when the start/end time falls into the confidence interval. For
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Fig. 4. ADS accuracy.

a confidence interval of 30 samples, 70% of the start and end
times are correctly identified. In general, we note a slightly
better performance in the estimation of the start time compared
to the end time. We also evaluated when the system did not
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TABLE III

HR/FAR TRADE-OFF RESULTS.
Dataset RD(AT) FD(AT) RD(CUSUM) FD(CUSUM) AT-sa CUSUM-sa

HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR
Darpa 1 95.9 72.8 89.5 34.9 84.0 68.6 82.4 1.56 79.0 35.3 35.1 6.7
Darpa 2 93.7 68.2 84.9 38.0 85.7 83.6 84.8 38.9 74.1 36.4 49.4 32.6
Darpa 3 92.1 81.1 83.8 50.1 88.3 77.9 84.7 28.1 71.6 51.0 62.7 25.0
UCLA 90.9 17.7 86.0 14.0 91.5 89.6 86.2 39.8 85.7 15.8 56.3 44.4
UNINA 99.6 69.7 98.0 7.4 99.6 77.3 98.0 12.1 86.4 7.0 78.6 13.1

All 94.2 70.9 87.7 34.1 83.7 86.2 86.3 27.2 79.4 33.1 49.2 33.9

correctly estimate the anomaly duration because the anomaly
was recognized as several different anomalous events. This
occurred rarely: for only 4.62% of the detections with the AT
rough detection block, and 1.62% with CUSUM.

D. Resolution

With the term resolution we mean the minimum distance
at which two anomalous events can be placed for the system
to detect them as distinct anomalies. We made several tests
by superimposing two anomalies to the same trace. We varied
their distance, duration, and amplitude. The system seems to
perform very well, detecting two separate anomalies even at
small distances. In Fig. 5 we show two examples. In the left
diagrams, we used a trace from the DARPA 2 set, to which
we superimposed an UDP flood and an IP header attack at
the distance of 5 samples. The rough detection block here is
implemented using the AT algorithm. In the right diagrams a
constant rate anomaly and a stacheldracht TCP ACK flood at
the distance of 1 sample have been correctly detected (with a
CUSUM rough detection) when they were superimposed to a
trace from the DARPA 1 set. In both cases it can be seen how
the system correctly identifies two distinct anomalies, whereas
the rough detection stage fails to make this distinction: in the
first test, the AT block reports several alerts all at the same
distance, while in the second test the CUSUM block reports
a series of alerts from the start of the first attack to the end
of the second one (plus a false alert nearby). These results,
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Fig. 5. ADS resolution: two examples.

along with those related to fragmentation and accuracy in the
previous sub-section, show that the proposed ADS is reliable
also in the identification of anomalies intervals. Such feature
is even not considered by most of the other ADSs, which just
report an alarm for each input sample that is recognized as
anomalous (e.g. see the fragmented alerts from the AT rough
detection stage in left Fig. 5).

VI. CONCLUSION AND ISSUES FOR FUTURE RESEARCH

This paper proposed a cascade architecture based on the
Continuous Wavelet Transform to detect volume-based net-
work anomalies caused by DoS attacks. We showed how the
proposed schema is able to improve the trade-off existing
between HR and FAR and at the same time to provide

insights on anomaly duration (defining starting and ending
time intervals) and on the identification of subsequent close
anomalies. Our current work is focused on testing other
algorithms in the rough detection stage as well as to test
the system behavior with other anomaly classes. Finally, we
are currently working on a new block performing anomaly
classification. The whole chain will be also adopted to build
an ADS working in a real time (or on line) fashion, taking into
account the performance impact due to the use of the CWT
algorithm instead of the DWT.
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