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Abstract

Starcraft is a popular Real Time Strategy game that uses a
Peer-to-Peer network communication model. In this paper
we analyze its traffic and we provide a statistical character-
ization at packet-level obtained by varying the number of
players. We examine the time dynamics between individual
packets within a game session as well as the packet sizes.
Also, we provide analytical models approximating the em-
pirical distributions found, we study properties of the tails
and of the auto-correlation function, and we investigate the
presence of self-similarity. The results obtained show how
traffic generated by such game has different characteristics
from the traffic prevailing on the Internet in past years.

1. Introduction

Multi-player network games represent one of the most
popular examples of real-time, interactive commercial In-
ternet applications and traffic generated by them is rapidly
increasing, becoming a significant contributor to overall In-
ternet traffic. Traffic generated by network games is of in-
terest not only because of its market potential but also be-
cause its characteristics are poorly understood, making it
difficult to assess the impact of such traffic on large net-
works. Hence, a complete statistical descriptions useful to
carry out a simple traffic model could be needed. In par-
ticular, we would like to find statistical characteristics of
how a gaming host generates network traffic that can be
parametrized for analytical models and simulation.

In [1] it is reported that nearly 4% of all packets in a
backbone could be associated with only 6 popular games
and in USA alone, they are currently worth a significant
fraction of the 7 billion dollars computer games industry
[2]. In [1] it is also reported that the multi-player net-
work computer games, most of them based on a Peer-to-
Peer paradigm, are predicted to make up over 25% of LAN
traffic by the year 2010. U.S. computer and video game
software sales grew 8% percent in 2003 to 7 billion dol-
lars, a more than doubling of industry software sales since
1996. In 2003, more than 239 million computer and video
games were sold, or almost two games for every household

in America [16].

The amount of Internet traffic generated by computer
games is expected to increase fast, especially because new
players are entering the Internet with game consoles that
support Internet connections. Indeed, the game console
industry has also recognized the rapid growth of multi-
player games and with the launches of Microsoft’s Xbox,
Dreamcast (from Sega Corp.), and Sony’s Playstation II on-
line game networks, and with the emergence of massively
multi-player on-line games, it is clear that a further large
increase in gaming traffic is imminent.

Obviously, Internet Service Providers are interested in
being able to provide a quality and efficient service to the
gaming community. But to make provisioning of network
resources it is necessary to understand traffic properties. As
we will see also in this work, interactive games traffic has
different characteristics to the TCP-based traffic prevailing
on the Internet in the last years and that has received most
of the attention in the network research community.

In particular, network game traffic tends to employ
small, highly periodic UDP packets. High periodicity
is due to game’s dynamics, which require frequent state
updates from each peer. While UDP is often used as
a transport protocol because of minor protocol overhead
and because there is no time and usefulness in resending
lost packets. Also, the extremely low latency demand of
such applications makes message aggregation impractical,
which leads to small packets.

We chose a representative game from a popular genre,
Real Time Strategy games, that is Starcraft, which is based
on a synchronous Peer-to-Peer paradigm. In this architec-
ture, every computer calculates the position and actions of
every player in the game. Computers do not send messages
over the network like “I hit you for 10 points” that are as-
sociated to asynchronous events. Instead, they periodically
send keyboard and mouse input. In our traffic analysis we
consider modeling at a micro scale. In other words we
examine traffic at the packet-level, estimating distributions
and statistical properties of packet lengths and inter-packet
times.

The remainder of this paper is organized as follows.
Section 2 contains an analysis of the related work. In Sec-
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tion 3 we describe the statistical methodology used in mod-
eling, whereas in Section 4 we describe the network sce-
nario and the traffic traces we used. In Section 5 we present
and discuss the results of our study. In Section 6 we com-
pare our results with other previous works. Section 7 ends
the paper with some conclusion remarks.

2. Related Work

Multi-player network games, and network traffic gener-
ated by them, have been subject to interest by the academic
community only in recent years, while industry works have
been more focused on the management aspects of game
development or on latency and maximum bandwidth is-
sues only ([3], [4], [5]). In the academic world, the first
works related to traffic modeling of network games were
presented by Gautier and Diot [6] and Borella [19]. Gautier
and Diot [6] designed MiMaze, a distributed game for the
Internet using a multicast communication system and con-
ducted experiments to collect data on the network traffic
generated. Borella [19] has provided an in-depth analysis
of traffic traces from the popular multi-player first-person
shooter game Quake. Empirical distributions of packet
size and packet inter-arrivals have been found and analyt-
ical distributions approximating them have been obtained
through statistical fitting. In [8] Feng et al. describe results
of the analysis of a 500 million packet trace of a popu-
lar on-line, multi-player, game server. They found that the
behavior of the traffic generated by the server was highly
predictable, something that was attributed to the fact that
the designs of the games involved target the saturation of
narrowest last-mile links. They also found that observed
on-line games provide significant challenges to current net-
work infrastructure because of the presence of large, highly
periodic bursts of small packets. In [9] Feng and Chang
study and model the player session time distribution over
a one-week trace of a popular on-line game server. In [7]
Farber evaluates Counter Strike game from a 36 hour LAN
party measurement and presents traffic models for client
and server in terms of packet size and inter-arrival times. In
[26] the network traffic patterns of Counter Strike and Star-
craft were examined and documented. Analysis focused on
bandwidth usage, packet size and inter-arrival times. Our
study is based on the traffic traces that were collected and
used in this work. In [27] a study on the characteristics of
traffic generated by Starcraft, focusing on how the distribu-
tions of payload sizes and inter-arrival times, is presented.
We give details on analogies and differences, in terms of
both methodology and results, between our work and the
last two cited papers in Section 6. In [10] a synthetic traf-
fic model for Half Life is shown. A ns2 model simula-
tion model for packet length, packet inter-arrival time, and
data rates is also presented. In [11] four different classes

of games were defined: action games, simulators, real-time
strategy games, and turn based strategy games. Traffic gen-
erated by the representatives of these four different classes
was measured and analyzed in terms of packet size distri-
bution and packet inter-arrival time distribution. One of
the main results of this study was that the amount of traffic
generated by different games could vary heavily. The au-
thors observed small packets of a few distinct sizes rather
than continuous packet size distributions. In most cases,
they modeled inter-arrival times by multimodal distribu-
tions consisting of extreme, normal or exponential distri-
butions. In [12], in order to characterize traffic generation
patterns, network traces generated by four network game
applications were analyzed. In [13] a simple ns2 simulation
model for Server and Client Xboxes was developed. Traffic
characteristics observed were packet length, packet inter-
arrival times, packets per second, and data rates. In [15]
a per-player traffic modeling methodology is presented. In
[14] an analysis of traffic generated by the popular Internet-
based on-line game engine, Unreal Engine, is presented.
Network parameters such as packet length, inter arrival
time and aggregate data rate are observed for analyzing as-
pects of self-similarity.

We have not found in literature a detailed packet level
traffic model of file-sharing applications, the most common
Peer-to-Peer applications. All works focused most of their
attention on flow level characterization. Authors of [31]
found that eDonkey flows can be divided in mice and ele-
phant and those TCP connections have a rather small bit
rate and there is no evidence for long range dependence.
Authors of [30] found similar results; they also found that
Peer-to-Peer traffic of file-sharing applications (in partic-
ular eDonkey traffic) increases the presence of the “mice
and elephant” phenomenon in the Internet traffic charac-
teristics. They also found that there are no heavy tails in
distributions of flow size and flow inter-arrival times. Au-
thors of [32] present a characterization of Peer-to-Peer traf-
fic in the Internet and develop several heuristics that allow
them to recognize Peer-to-Peer traffic at nonstandard ports.
They perform an analysis of block size and packet format
for each distributed file-sharing application.

3. Background and Statistical Methodology

A statistical analysis of the measured samples in real
traffic traces has been provided by setting up a methodol-
ogy that integrates well-known established techniques sep-
arately found in different works, as distribution estima-
tion, statistical fitting, study of the tails and of the auto-
correlation function.

We represented the empirical distributions of the studied
variables not only by estimating the corresponding Cumu-
lative Distribution Functions (CDF), but also by estimating

Proceedings of the 2005 Second International Workshop on Hot Topics in Peer-to-Peer Systems (HOT-P2P'05) 
0-7695-2417-6/05 $20.00 © 2005 IEEE 



Probability Density Functions (PDF). The latter ones have
been obtained as density histograms.

For each of the distributions we performed a statistical
fitting to find an analytical distribution approximating the
empirical one. Indeed, we are interested in obtaining an-
alytical models because they offer several advantages, as
conciseness and ease of tractability. We proceeded as fol-
lows. Given a class of known statistical models (Exponen-
tial, Normal, Weibull, ...) we used the Maximum Likeli-
hood Parameter Estimation (MLE) to determine, for each
of them, the shape and location parameters that maximize
the likelihood function of the sample data. After that, to
choose the best fitting analytical distribution among them,
we used the λ 2 discrepancy measure [20] which is based on
the X2 statistic. Goodness-of-fit statistics indicate whether
lack of fit is statistically significant but do not directly mea-
sure the magnitude of the departure. The size of such de-
partures, which is called discrepancy, is often of interest,
for example when model fits of several different data sets
must be compared. The X2 statistic partitions the sample
set into contiguous fixed-size bins, and compares the rela-
tive frequency of the samples from the empirical set falling
into each bin with the expected number of observations for
the analytical distribution. Let N be the number of samples
in empirical distribution Y , which is partitioned into n bins.
We have

X2 =
n

∑
i=1

(Yi −N · pi)2

N · pi
(1)

Where Yi represents the number of samples from Y that fall
in the i-th bin and pi is the expected number of observations
from the theoretical distribution Z falling into the same bin.
If we then define Ei = N · pi , Di = Yi −Ei and the quantity
K = ∑n

i=1 Di/Ei we have

λ 2 =
(X2 −K −dF)

(N −1)
(2)

where dF represents the number of degrees of freedom in
computing X2 and K, which for our purposes is given by
dF = n−1−Est. Est is the number of parameters used to
estimate the analytical distribution Z.

One of the advantages of the λ 2 estimator is that, incor-
porating both the sample size N and the number of bins n,
it is independent from such values and can be used to com-
pare different sample sets. The variance associated with
the estimate of λ 2 is given by:

v̂(λ 2) =
[2dF +4Nλ 2 +4Nλ 4 +4T ]

N2 (3)

where: T = ∑N
i=1

[D3
i −2DiEi+ 5

2 D2
i + 3

2Yi]
E2

i
. There are rare situa-

tions in which the probability associated with a bin is zero,
for example when the analytical distributions that is con-
sidered is a deterministic distribution. In such situations

the above formulas cannot be computed. Borella [19] sug-
gests to modify them calculating Di as Di = Ei −Yi,∀i :
Yi �= 0. Then we compute X2 not as shown before but as:
X2 = ∑n

i=1 D2
i /Yi,∀i : Yi �= 0 and K = ∑n

i=1 Di/Yi,∀i : Yi �= 0.
Borella does not suggest a corresponding formula to calcu-
late the variance of the λ 2 estimate. Such variance is useful
in comparing the discrepancy measures obtained for differ-
ent analytical distributions, because when dealing with es-
timated quantities the error of estimation could be so large
that a comparison using the “<” operator would be mis-
leading. When the variances are available instead we use
â <σ b̂ ⇔ â+σa < b̂−σb [18].

Once the best fitting distribution has been chosen, we
can provide visual displays of the quality of the fit by plot-
ting the empirical an analytical PDFs and CDFs on the
same graph, and comparing the distributions with quantile-
quantile (Q-Q) plots. In practice we often find deviations
in the fit. The power of the Q-Q plot is that we can eas-
ily determine where those deviations occur (i.e., in the
main body, the upper tail, etc.). The Q-Q plot has been
used extensively in networking literature for this purpose
[22][21][19]. On the plot, corresponding quantiles of each
distribution are graphed against one another; for example,
the median is graphed against the median, the upper quar-
tile is graphed against the upper quartile, and so forth. If the
points follow the line with intercept 0 and slope 1, drawn on
the plot, then the distributions are identical. When the Q-Q
plot or the shape of CDF (PDF) indicates a deviation, we
may prefer to model the data set with a split distribution.
In this case, we model part of the data set with one distri-
bution and the rest of it with another. Obviously, we can
split a distribution as many times as necessary, but more
than four splits results in a cumbersome analytical model.

Often a distribution’s behavior in its upper tail can be
crucially important. For example, Paxson [18] found that
in FTP traffic the upper 2% tail is so heavy that rare bursts
will often completely dominate FTP traffic. The λ 2 dis-
crepancy measure does not give any special weight to the
agreement between tails of two distributions, so we adopted
a quantitative [18] analysis of how well a model captures
distribution’s tails behavior. Suppose we have an empiri-
cal model Y and an analytical model Z that we have found
to be best fitting model. For our convention, we consider
as extreme tail of the empirical distribution elements that
in CDFs fall in ranges: [90%,100%] for upper tail. Let b
be the number of instances of empirical distribution that
lie in the range of values derived from the given tail of
the empirical distribution and let a be the number of in-
stances of analytical distribution that lie in the same range
derived from the same tail of empirical distribution. De-
fine: ξ = log2 a/b. Positive values of ξ indicate that the
model overestimates (symbol +) the tail, negative values
that it underestimates (symbol −) the tail. A value of ξ = 0
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(or < 0.01) indicates that model perfectly estimates tail be-
havior and it is indicated with “ok”. An acceptable value is
for 0 < ξ < 1 and, following the notation adopted in [18], is
indicated with “+”. A bad value is for 1 < ξ < log2 5 and is
indicated with “++”. A very bad value is for ξ ≥ log2 5 and
is indicated with “+++”. This quantitative evaluation will
be presented in form X/Y where X will be the number of
elements discarded from tails in analysis (indeed there can
be some outliers not important for modeling) and Y one of
symbols mentioned above.

Also, the presence of power-law behavior in the upper
tail of a distribution has important implications. A random
variable X follows a heavy-tailed distribution, with tail in-
dex α , if P[X > x] ∼ cx−α ,asx → ∞,0 < α < 2. Where
c is a positive constant, and where ∼ means that the ra-
tio of the two sides tends to 1 as x → ∞. This distribution
has infinite variance. It is possible to estimate the α pa-
rameter by plotting the Log-Log Complementary CDF plot
[24] (CCDF). We consider a distribution X and its CDF
(x,F(x)); then we plot ln(1 − F(x)) versus ln(x) for all
x. If the upper tail on the plot has a linear behavior, an
estimate for α can be obtained selecting a minimal value
x0 of x above which the plot appears to be linear and es-
timating the slope for values greater than x0. A problem
of such method is that one must determine some point x0

in the tail at which power-law behavior begins. The “scal-
ing method” proposed in [23] helps to identify the portion
of a dataset’s tail that exhibits power-law behavior. This
method is based on a particular property of heavy tailed
distribution: the tail index is unchanged when heavy-tailed
random variables are summed or aggregated. By aggregat-
ing a data set of N observations Xi, i = 1, . . . ,N we refer
to the process of summing non-overlapping blocks of ob-

servations of size m: X (m)
i = ∑im

j=(i−1)m+1 Xj. By observing

some distributional properties of X (m) : X (m)
i , i = 1, . . . ,

[
N
m

]
we can make inferences about where in the tail power-law
behavior begins. Based on these determinations we have
the basis to estimate the tail index α . In Figure 1 an exam-
ple of the scaling property in the tail of the distribution for
a Pareto distribution is depicted. Tails of successive data
sets are approximately parallel, with slope approximately
−α .

For each studied variable we also evaluated the corre-
lation between subsequent samples, that is, we estimated
the auto-correlation function at lag 1, r(1), also indicated
with ACF(1). r(1) is a particularly significant value of r(l),
because if a random variable is correlated, often the corre-
lation is greatest at a lag of 1. Also we reported the auto-
correlation plots from lag 1 to 100 to infer possible proper-
ties of Long Range Dependence. In recent years there has
been a lot of interest by the research community in investi-
gating behaviors of traffic statistics on different time scales.

Figure 1. Scaling behavior in a synthetic data set
(source [23])

In particular, the presence of self-similarity in network traf-
fic and its bad impact on network nodes have been shown in
several works [33][34][35]. Also, many techniques to eval-
uate the presence of self-similarity, by estimating the Hurst
parameter, in a stochastic process have been developed. In
this work we used the wavelet transform estimation [36],
which is considered one of the most reliable techniques
[25], applied to inter-packet times and packet rate.

4. Network Scenario and Traffic Traces

We analyze the traffic generated by Starcraft, a Real
Time Strategy game based on a Peer-to-Peer communica-
tion structure among players (Figure 2(a)). In such game,

(a) (b)

Figure 2. Peer-to-Peer topology for online games
(a). Modeled variables (b).

players construct buildings and fighting units and issue
commands that cause the units to move, engage enemy
units and similar tasks. Every game is played on one of
many possible maps, either provided with the game or cus-
tom built by users. There are three races from which a
player can choose, and each of them has a balanced set of
advantages over the others. There are a number of ways in
which players can be competitively grouped. In a free-for-

Proceedings of the 2005 Second International Workshop on Hot Topics in Peer-to-Peer Systems (HOT-P2P'05) 
0-7695-2417-6/05 $20.00 © 2005 IEEE 



all games, all players compete to have the last remaining
army on the map. Players can also team up against each
other and/or against automated “computer” players. Star-
craft supports up to 8 players and uses the following com-
munication model [27]. At the start of a game session, a
listen server (a playing machine as well as a game host-
ing machine) is used to set up the current session. In this
phase, there can be also TCP packets between the server
and the participants. Once the session has been set up, ev-
ery participating computer sends packet to all the others,
irrespectively of the initial server used to set up the session.
Due to low latency necessity, UDP is used as the transport
protocol in this case. Unfortunately, UDP does not provide
any built-in congestion control, presenting the risk of con-
gestion collapse as the fraction of unresponsive UDP traffic
increases.

As for the empirical data, in our analysis we use the traf-
fic traces available at [17] and used for the traffic analy-
sis made in [26]. The tests have been performed by using
Starcraft: Brood War version 1.7. A local player has been
logged on the battle.net server [28] by using the USEAST
gateway. Thank to it, he has created the game sessions.
Each game type has been made by top players vs. bottom
players. The same map, called Big Game Hunters (found
in the maps/broodwar/webmaps directory) has been used
for each trial. Tests were structured by having two player
teams of equivalent sizes: 2 vs. 2, 3 vs. 3 and 4 vs. 4.
The point of observation is that of a single peer, as de-
picted in Figure 2(b). The local player played the same
race in each game and employed the same building strat-
egy throughout. Our approach is to model source traffic
at packet level and not at flow level, therefore we exam-
ined IP packets inter-arrival times (IAT) and inter-departure
times (IDT) as well as packet sizes of inbound (PSI) and
outbound packets (PSO). As packet size we considered the
byte length of the transport-level payload, because we want
to model traffic as it is generated by the application. As for
the time resolution adopted in measurements, in the ana-
lyzed traces [17] we have, both for IAT and IDT, a res-
olution of 1 millisecond. This means, for example, that
an inter-arrival (inter-departure) time of 0 ms represents
a situation where the inter-arrivals (inter-departures) time
are: IAT (IDT ) < 10ms. We discarded packets with inter-
arrival or inter-departure times > 1 second or packets with
transport protocols different from UDP or TCP. We have
chosen to discard these packets in order to remove traffic
patterns resulting from player pauses or waiting time be-
tween matches or turns. As shown in Table 1 they represent
a negligible portion of the total number. The hypothesis
at the base of our work are the following: (i) We suppose
our modeling independent from hardware resources of each
player. This means that we do not study how differences in
available processing resources and/or other resources may

affect the traffic generated by each user [27]; (ii) We sup-
pose that resource contention does not introduce variations
in the packet inter-arrival or inter-departure times distribu-
tions and in the packet size in or out distributions. We as-
sume that resource contention is low and therefore has no
significant impact on the characteristics of collected data
[27]; (iii) We suppose that all random variables studied are
i.i.d.

5. Results and discussion

We applied the statistical methodology presented in Sec-
tion 3 to each of the four analyzed random variables (IAT,
IDT, PSI, and PSO) and for three different gaming scenar-
ios (4 players, 6 players, 8 players). Because of space con-
straints, in this paper we report detailed tables and figures
showing results only for the 6-players scenario, which is
the one with the largest collected trace. In Table 2 the re-
sults of analytical modeling are shown. The columns in
the table are to be read as follows: (i) random variable; (ii)
best analytical model chosen for the variable with an offset
to subtract (note that for IDT, PSI, and PSO we have used
split distributions); (iii) parameters of the chosen distribu-
tion; (iv) discrepancy; (v) quantitative analysis of the upper
tail; (vi) estimate of the α parameter; (vii) auto-correlation
function at lag 1. Figures 3 and 4 show comparisons be-
tween the empirical and the analytical CDF and PDF re-
spectively; Figure 5 presents heavy tail analysis.

5.1. Packet Size

To obtain analytical distributions approximating the em-
pirical ones we chose, both for PSI and PSO, to split the
distributions into few parts to capture the behavior of a
main peak and other lower peaks, which were fitted with
deterministic distributions. PSI and PSO have indeed al-
most identical distributions, with more than 70% of the
samples presenting a packet payload 23 bytes long and with
a maximum not negligible packet size of 33 bytes. Such a
behavior is expected from a Peer-to-Peer game in which
each player sends out multiple copies of its update pack-
ets to each other peer. The updates need to be small, to
keep latency low, and frequent, so to give the illusion of
real-time interaction. We note though, that with such small
packets protocol overhead is high. Indeed if we count the
IP header, which is at least 20 bytes long, plus 8 bytes of
UDP header the sum is greater than the average payload
size. For this reason, often this kind of games have sup-
port to run over IPX networks to be exploited in dedicated
environments as Internet cafes hosting multi-player games
sessions. We found identical results with different num-
bers of players, that is, for the 4 and 8 players scenarios.
We can conclude that Starcraft produces very small pack-

Proceedings of the 2005 Second International Workshop on Hot Topics in Peer-to-Peer Systems (HOT-P2P'05) 
0-7695-2417-6/05 $20.00 © 2005 IEEE 



Number of
Players

Number of
Packets

Log Time UDP Pack-
ets

TCP Pack-
ets

Discarded
Packets

4 281157 4h:20m:22s,422ms 281157 0 22
6 415107 4h:51m:20s,830ms 415107 0 12
8 60976 0h:27m:10s,964ms 60976 0 2

Table 1. Collected traffic traces

Var Model Parameters λ 2 Tail α ACF(1)
IAT exponential µ = 0.043633 0.37068 0/−− 5.6572 −0.14095

IDT determ p = 66.2% a = 0 0.337632 0/− 6.2967 −0.185757
uniform p = 27.8% a = 0.05

b = 0.17
determ p = 6% a = 0.21

PSI determ p = 3.2% a = 16 0.0808382 0.0360888
determ p = 10.8% a = 17
determ p = 72.4% a = 23
determ p = 6.2% a = 27
determ p = 7.4% a = 33

PSO determ p = 6.2% a = 16 0.1497652 0.503225
determ p = 10.9% a = 17
determ p = 74.2% a = 23
determ p = 8.7% a = 27

Table 2. Starcraft: Summary of Results for 6 Players scenario

ets, with small variance, and that the payload distribution is
independent of the number of players. The fact that the dis-
tribution of packet size is similar for inbound and outbound
packets and that we encountered approximately the same
number of packets for both directions are a consequence of
the symmetrical communication structure of a Peer-to-Peer
game. As for correlation analysis, Table 2 indicates for PSI
a low value of ACF(1), while for PSO we find a consider-
able auto-correlation between subsequent packets. This is
explainable with the fact that a player sends the same up-
date information in the form of back-to-back packets, of the
same length, destined to different peers. In [11] an ACF(1)
analysis has been made for 4 popular client-server games.
It is interesting to note that the results reported in such work
are quite different, with values close to 1 both for client and
server packet sizes.

5.2. Inter-packet times

Figures 3(a) and 3(b) show comparisons between empir-
ical and analytical CDFs for IAT and IDT. We can see how
the analytical shapes capture the behavior of the empirical
ones, confirming the goodness of the fit. For IAT we can
see a more regular behavior that allows to choose a sim-
ple analytical model. Indeed IAT are well approximated by
an Exponential distribution, as reported in Table 2. Con-
trariwise, for IDT we can see a very irregular behavior of
CDF. We obtained considerably smaller values of discrep-
ancy measure by splitting the distribution into three parts
and separately fitting them to different analytical distribu-
tions (see Table 2).

Unlike what happens for payload sizes, we observe a

visible difference between inter-packet time distributions
of inbound and outbound packets. Even though both in IAT
and IDT distributions 99% of the values are smaller than
200ms, IDTs are more concentrated in zero (which we re-
mind it corresponds to values < 10ms) counting for almost
70% of packets, while about 40% of IATs are < 10ms and
the corresponding CDF curve reaches 99% at 200ms more
smoothly than for IDTs. We can explain such behavior with
the Peer-to-Peer structure of the game: if we suppose that
at an instant every player sends an update packet, from the
point of view of the observed player we see a series of out-
bound back-to-back packets towards the other peers while
in the inbound direction each update packet comes from a
different peer and arrives through a different path (that is,
with a different one-way delay). Also updates can be sent at
different times by each peer. Both reasons explain a major
variability in packet inter-arrival times.

As expected, smaller IATs and IDTs become more dom-
inant as the number of players increase. In Figures 6 we
show the CDFs of IDT and IAT for the 4 and 8 players
scenarios. We have that values of IDT < 10ms grow from
59.3% in the case of 4 players up to 77.8% in the case of 8
players. A similar increase can be observed for inter-arrival
times.

As for tail analysis, Table 2 indicates, for IAT and IDT
respectively, a bad underestimation and a slight underesti-
mation of tail. As for heavy tail estimation, refer to Fig-
ures 5(a) and 5(b) for IAT and to Figures 5(c) and 5(d) for
IDT. As for IAT, the Log Log Complementary CDF shows
a fast decay in final part (but it is difficult to estimate the
slope because of the irregular shape of the CCDF), with
an estimated slope far from −2. This is confirmed by the
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Figure 3. Comparison between analytical and em-
pirical CDFs

Scaling Method, that is not applicable because we have few
points in the upper tail. Therefore the IAT distribution does
not exhibit a heavy tail. As for IDT, the results are sim-
ilar and the conclusion is the same. As regards correla-
tion analysis, Table 2 indicates for IAT and IDT a negative
ACF(1) near −0.15. We have obtained close results for
the 4 and 8 players scenarios. As regards auto-correlation
plots of inter-packet times, we found different values from
those regarding client-server games reported in [11], where
ACF(1) ranges from 0.3 to 0.8. Finally, in Figure 7 the
auto-correlation plots from lag 1 to lag 100 for all modeled
variables are shown. We note that for IAT and IDT the auto-
correlation decays very slowly without reaching zero. This
behaviour indicates a not summable auto-correlation func-
tion and thus the presence of Long Range Dependence. On
the contrary the auto-correlation functions of packet sizes
rapidly decrease to zero.

In Figure 8, the wavelet spectrum, with the estimation of
the Hurst parameter, of IAT, IDT, and their corresponding
packet rates are shown. It is clear that inter-packet time and
packet rate are directly connected. Indeed, we evaluated the
presence of self-similarity in both, and we found that the
estimated Hurst parameters for the examined sequences of
inter-packet times were close to the ones estimated for their
respective packet rates. Moreover, we found non significa-
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tive estimates of the Hurst parameter, slightly above 0.5,
for inbound traffic, whereas both outbound packet rate and
IDT present an estimated Hurst parameter above 0.7. This
confirms a burstier nature of outbound traffic, which is also
preserved over different time scales.

From the results related to the four studied variables, ob-
served in different scenarios, we can conclude that Starcraft
generates very small UDP packets with strong periodicity.
Also, the uplink traffic produced by a single player has an
higher bursty nature when compared to the downlink. Such
properties can have a significant negative impact on routers
found in current networks, which are not designed for this
type of traffic, being more tuned against bulk data trans-
fers using large TCP segments. Router designers indeed of-
ten make packet size assumptions, expecting average sizes
around 400 bytes. As stated in [8] the explosion of multi-
player online games could result in a significant shift in
packet size which could make the route lookup function in
routers the bottleneck versus the link speed, leading to pos-
sible packet-loss and increased packet-delay in routers not
designed to efficiently handle small packets.
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Figure 5. Tail Analysis for IAT (a-b) and IDT (c-d)

6. Comparison with other Starcraft models

Because there are two previous works in which some
characteristics of network traffic generated by Starcraft
have been studied, in this Section we briefly highlight the
differences with the present work. In [27] a study based on
collected data in a LAN environment from a commercial
Australian Internet cafè is presented. The communication
protocol among players was IPX, not UDP/IP. Several sce-
narios with a different number of players were analyzed
and the distributions of packet sizes and of time distance
between subsequent packets have been studied, reporting
the corresponding empirical CDFs. Measurements were
made with a resolution of 10ms and packets were not di-
vided into inbound and outbound, but the traffic generated
by a single player was studied as a whole.

In [26] the WAN traffic traces that we analyzed in our
study were used for the first time. Also in this work it
was made no distinction between inbound and outbound
packets. In the same work the traffic generated by a client-
server game was studied to be compared to the one pro-
duced by Starcraft, which instead is based on a Peer-to-Peer
paradigm. Traffic was studied in terms of bandwidth and,
about packet analysis, inter-packet times and full Ethernet
frame sizes have been analyzed showing the correspond-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IDT(s)

C
D

F
s

CDF − 4 Players − IDT UDP 

(a) IDT 4-players scenario

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IDT(s)

C
D

F
s

CDF − 8 Players − IDT UDP 

(b) IDT 8-players scenario

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAT(s)

C
D

F
s

CDF − 4 Players − IAT UDP 

(c) IAT 4-players scenario

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAT(s)

C
D

F
s

CDF − 8 Players − IAT UDP 
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Figure 6. CDF of IDT and IAT for different numbers
of players

ing CDFs and comparing the results obtained for scenarios
with a different number of players. Both works are basi-
cally in accordance with our findings when they state that
packet sizes are small and that inter-packet times become
smaller when the number of players increase, but [26] an-
alyzes a very different scenario: a local area network run-
ning IPX, while in [26] packet sizes reported by the authors
are not consistent with the traces. Indeed we found consid-
erably smaller packet sizes then them.

As regards our modeling approach, by splitting the traf-
fic generated by a single player into inbound and outbound
we separately characterized in detail traffic in both link di-
rections, highlighting differences and similarities, and also
allowed us to make considerations linked to the Peer-to-
Peer communication structure used by the game. We re-
ported the empirical distributions also in terms of PDFs,
not only CDFs, and found analytical models approximat-
ing them through the λ 2 discrepancy measure. We studied
the tail behavior of the IAT and IDT distributions and ex-
plicitly evaluated the goodness of fit for the tails. Finally
we reported the auto-correlation function at lag 1 and the
auto-correlation plots for all variables, and, by investigat-
ing the presence of self-similarity in inter-packet times and
packet rates, we studied traffic characteristics at different
time scales.
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Figure 7. Autocorrelation plots

7. Conclusions

We performed a statistical analysis of the traffic gen-
erated by a popular Real Time Strategy game, Starcraft,
based on a Peer-to-Peer communication architecture. The
analysis has been performed at “packet-level”, that is,
studying distributions of UDP payload size and time dis-
tance between subsequent packets, dividing traffic gener-
ated by a single player into inbound and outbound traffic.
We found that Starcraft generates very small packets with
high periodicity and that outbound traffic is more bursty
than inbound. This has an impact on the routing infras-
tructure, which is tuned for a different kind of traffic, more
bulky and with large TCP segments. Analysis also showed
that packet size distribution does not change when the num-
ber of players increases, while inter-packet times tend to
become smaller. We studied the autocorrelation function of
packet-level variables, finding that inter-packet times tend
to be correlated on a long range, and we investigated the
presence of self-similarity in the traffic. We also devel-
oped analytical models of the observed traffic that could be
easily applied in traffic simulation and emulation. Indeed
a future work will probably be to include such models in
D-ITG [29], a traffic generator developed at our university
department. Of course the models reported in this work
cannot be considered definitive before analyzing other traf-
fic traces. Finally, the results of our work can be used to
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Figure 8. Wavelet estimation of the Hurst parame-
ter

design networks that support traffic generated by Peer-to-
Peer multi-player network games more efficiently. As re-
gards future works, we plan to apply the same statistical
methodology to study network traffic as it is generated by
other Peer-to-Peer games and applications. Indeed, we are
currently working on the analysis of the traffic generated by
“Age of Mythology”, another network game with a Peer-to-
Peer communication model, and preliminary results seem
to confirm some of the results shown in this work.
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