
MC3: A Cloud Caching Strategy for Next
Generation Virtual Content Distribution Networks

Pietro Marchetta∗, Jaime Llorca†, Antonia M. Tulino∗†, Antonio Pescapé∗‡
∗Universitá di Napoli Federico II and ‡NM2 Srl, Italy. Email: {pietro.marchetta, pescape}@unina.it

†Bell Labs, Nokia, NJ, USA. Email: {jaime.llorca, a.tulino}@nokia.com

Abstract—With the advent of network functions virtualization
and software defined networking, cloud content distribution
network (CDN) providers can auto-scale their virtual CDN
appliances in order to meet changing demands for commercial
and user generated content services in a cost and energy efficient
manner. However, existing caching policies, constrained to work
with dedicated CDN resources and designed to maximize local
cache hit rates, do not exploit the elasticity of virtualized
cloud environments to adaptively guarantee service requirements
with minimum cost. In this paper, we design and evaluate
MC3 (MinCostCloudCache), an adaptive distributed caching
strategy whose fundamental goal is to guarantee content service
requirements while minimizing the use and associated cost of the
shared physical infrastructure. MC3 estimates the global benefit
of caching an object at a network node using only locally available
information. The caching benefit is flexible and adaptive to the
particular content service requirements, and is aware of the
behavior of neighbor network caches, creating effective cache
cooperation using only local information. Through simulation,
we show how MC3 not only reduces the experienced average
delay with respect to existing caching policies, but it also uses
significantly less storage and transport resources, leading to
increased revenues and reduced operational costs.

I. INTRODUCTION

Content distribution networks (CDNs) are highly distributed
systems consisting of globally dispersed cache servers that
allow hosting and delivering content items close to the end
users, thus providing improved user experience and reduced
transport costs. Traditional CDNs are composed of dedicated
hardware appliances that the operator dimensions according
to estimated peak demands. For a given dedicated CDN
deployment, the extent to which the benefits of network
caching can be obtained depends crucially on the efficacy of
the implemented content caching strategy. Given that today’s
CDNs are composed of a relatively small number of fixed-size
hierarchical caches, content caching strategies are typically
designed to maximize local hit rates, or the fraction of requests
served by a given cache, which has been shown to be a good
proxy for average delay in hierarchical CDNs [1]. However,
the increasing dynamics and heterogeneity of content types,
popularity, and service requirements, challenge the efficiency
of traditional CDNs, in which dedicated storage and delivery
appliances need to be pre-provisioned based on estimated
peak demands, resulting in excessive over-provisioning and/or
degraded quality of service (QoS).

With current advances in network virtualization and pro-
grammability, network operators have the opportunity to de-
sign their content distribution solutions in the form of elastic

virtual networks over a common cloud network infrastructure
[2]-[4]. In this way, operators can adaptively optimize the
combined use of storage and transport resources to meet
application requirements with minimum cost. In this attractive
scenario, existing caching solutions, designed to work with
fixed-size dedicated CDN appliances, cannot exploit the flexi-
bility of evolved virtualized cloud environments nor the prop-
erties of the different content services to adaptively guarantee
service requirements with minimum use of the shared physical
infrastructure. We therefore argue for a shift in the design of
content caching strategies for future cloud CDNs, driven by
the main goal of minimizing the overall network’s operational
cost while guaranteeing QoS requirements.

A. Contributions

In this paper, we look at content caching in the context
of next generation virtual CDNs that can host a variety of
content services and elastically scale their network resources.
Our approach – instead of just maximizing local hit rates for
typically small hierarchical fixed-size CDNs – aims at guar-
anteeing content services’ QoS requirements with minimum
overall use of the shared cloud network’s infrastructure.

The contributions of this work are fourthfold. First, we
analytically characterize the optimal cloud caching policy
for a given first-order stationary input process (Sec. II and
Sec. III). Second, based on the structure of the optimal
stationary solution, we propose MC3 (Minimum Cost Cloud
Cache), a fully distributed cloud caching algorithm targeting
optimal caching decisions based on local estimates of the
global cost benefit (Sec. IV). MC3 provides effective cache
cooperation with negligible overhead via the adaptive learning
of transport costs to access neighboring replicas and local
content popularity. Specifically, with MC3, network nodes: i)
infer neighbors’ actions from information in object arrivals;
ii) infer local content popularity from information in request
arrivals; and iii) compute the benefit of caching an object at a
particular location based on the overall cost reduction it can
provide. Third, we implement the proposed caching strategy in
a custom-built discrete event simulator adopting a well-defined
simulation methodology (Sec. V-A). Fourth, we perform a
comparison with a number of well known caching strategies
(LRU-LCE, Perfect-LFU, an Oracle), demonstrating the signif-
icant performance and efficiency gains that MC3 can provide
in virtual CDN environments (Sec. V-B). More precisely, we
show the superiority of MC3 in terms of average delivery delay

and overall operational cost with varying transport-to-storage
cost ratio, cache size, and content popularity settings.

B. Related Work

A substantial amount of research has been devoted to the
content distribution problem (CDP), where the goal, in its
most general setting, is to find the placement and routing
of content objects in an arbitrary capacitated network that
minimizes the combined transport and storage cost while satis-
fying possible delivery deadline constraints. The authors in [5]
provide a comprehensive complexity classification of the CDP.
Interestingly, while NP-Hard in general, the CDP is shown to
be polynomial-time solvable in tree networks and in arbitrary
networks that allow coding between objects of the same re-
quested content. The work in [6] addresses the CDP in realistic
AS-level topologies showing how the footprint of dedicated
CDNs must expand to accommodate increasingly tighter user
requirements. A number of works have addressed different
versions of the CDP, providing approximated solutions that
mostly rely on LP-relaxation rounding techniques (e.g., [7],
[8], [9]) or greedy algorithms (e.g., [10], [11], [12]) that exploit
special assumptions such as uniform object sizes, network
symmetry, and hierarchical topologies. The solutions to the
CDP are centralized and proactive, in the sense that content
placement decisions are made based on global estimates of
the users’ average content demands (e.g., content popularity)
over a given time period, typically in the range of hours or
even days. Network caches are then updated to best satisfy
future requests over the given time period. The performance of
centralized proactive solutions heavily depends on the system
dynamics and its corresponding prediction accuracy. In fact,
with the increasing volatility and unpredictability of next
generation content services, errors in the popularity estimates
and the overhead associated to frequent cache updates can
significantly degrade the performance of centralized proactive
solutions.

In highly dynamic and unpredictable scenarios, content
distribution solutions must resort to distributed reactive al-
gorithms that adapt to fast changes in content popularity
with minimal overhead. An extensive line of work has also
been devoted to the distributed dynamic content replacement
problem, where the objective is to adaptively refresh the
network caches as content objects travel through the network
(e.g., [13], [14], [15]). The most common cache replacement
algorithms are LRU (Least Recently Used) and LFU (Least
Frequently Used), by which the least frequently/recently used
content object is evicted upon arrival of a new object to
a network cache. Due to its simplicity, LRU is the most
widely used caching algorithm in today’s CDNs and the most
analyzed in the context of emerging paradigms such as ICN
(see [16], [17] and references therein). These studies show
the benefits of LRU-based caching to reduce dissemination
latency and network load, and the little improvements provided
by alternative caching policies proposed to date. However,
as pointed out earlier, existing caching policies have been
designed and compared against hit-rate performance metrics,

Fig. 1: The routing tree for object k, Tk ⊂ G, rooted at the
source or repository of k, sk, for a given time period. Φk(u)
denotes node u’s upstream neighbor in Tk.

ignoring the operational cost associated to the use of storage
and transport resources. Hence, motivated by the increasing
adaptability and programmability associated to the configura-
tion of next generation cloud networks, and the dynamics and
heterogeneity of next generation content services, we argue
that centralized proactive content distribution solutions must
be complemented with distributed reactive caching algorithms
that are designed to achieve global system objectives, such as
overall cloud network operational efficiency, via simple local
interactions that incur minimal overhead.

II. NETWORK MODEL

In a distributed cloud network architecture, a virtual CDN
consists of a set of virtual caches (vCache), implemented
as virtual network functions (VNFs) in an NFV framework.
The vCache nodes are interconnected by virtual links (vLink),
representing the logical connectivity. We model a virtual CDN
as a directed graph G = (V, E) with V vCaches and E vLinks.
We assume content items are partitioned into equal-size objects
k ∈ K and denote by λuk the exogenous average request rate
for object k ∈ K at node u ∈ V during a specified time period.
We denote by estu the per-object storage cost of vCache u ∈ V
and etruv the per-object transport cost of vLink (u, v) ∈ E .

Motivated by the different time-scales at which routing and
caching operate, here we do not address routing optimization
and assume that the goal is to design a caching strategy for a
given routing policy. We denote by Tk = (V, Ek) the routing
tree rooted at the source or repository of k, sk, as shown in
Figure 1. It will also be useful to define Tk(u) as the set of
nodes in the subtree of Tk rooted at u, Dk(u) as the nodes
downstream of u, Uk(u) as the nodes upstream of u, Θj

k(u) as
the j-th hop downstream neighbors of u, φjk(u) as the j-th hop
upstream neighbor of u (since most of the time we will refer
to the one hop neighbors of u, we denote Θk(u) ≡ Θ1

k(u) and
φk(u) ≡ φ1

k(u)), Hk as the height of Tk, Huk as the height of
Tk(u), and ∆uk as the depth of u in Tk, as shown in Fig. 1.
We refer to euk as the unit transport cost of link (φk(u), u).

III. OPTIMAL STATIONARY POLICY

In this section, we analytically characterize the optimal
cloud caching policy under the setting of stationary request
process and sufficiently large storage capacity. Note that the
“sufficiently large storage capacity” is a reasonable assumption
in a cloud CDN, for which virtual storage may be largely
available, but whose usage comes at a cost. While these
assumptions may not always hold in practice, the structure
of the resulting optimal policy will show extremely useful in
driving the design of the proposed general caching strategy
described in Sec. IV.

Under the assumption of a first-order stationary request
process, we focus on designing a stationary caching policy
that minimizes the average CDN cost. Letting x = {xuk}
denote a stationary caching configuration, with xuk = 1 if
object k is cached at node u, and xuk = 0 otherwise, we seek
the caching configuration x∗ that satisfies

x∗ = arg min
x
C(x), (1)

where

C(x) =
∑
u∈V

∑
k∈K

(
estu xuk + etrukλuk (1− xuk)

)
, (2)

etruk =

huk−1∑
j=0

etr
φj
k(u)k

, (φ0
k(u) ≡ u), (3)

huk =

∆uk∑
j=1

j xφj
k(u)k

j−1∏
p=0

(
1− xφp

k(u)k

)
. (4)

The average CDN cost, C(x), in (2), is computed as the sum
over all nodes and objects of two mutually exclusive terms.
The first term is the storage cost if k is cached at u, and the
second term is the transport cost incurred in fetching k from
the closest upstream copy at a rate λuk, if k is not cached at
u. The variable etruk denotes the cost of the path from u to the
closest upstream node caching k, and huk is the number of
hops from u to the closest upstream node caching k.

Note that without capacity constraints, i.e., under the as-
sumption of ”sufficiently large storage capacity”, (1) can be
solved independently for each object k ∈ K. Let Cuk denote
the total cost for the delivery of object k over the subtree
Tk(u) when u stores a copy of k:

Cuk = estu + C(0)
uk , (5)

where, for all u ∈ V and h = {0, . . . ,Hk},

C(h)
uk =

∑
v∈Θk(u)

Cvkxvk+
(
etrvkλ

(h+1)
vk +C(h+1)

vk

)
(1− xvk) (6)

is the total cost of the subtree Tk(u) when the closest upstream
node caching k is h hops from u, and

λ
(h)
vk = λvk +

∑
w∈Θk(v)

λ
(h+1)
wk (1− xwk) (7)

is the aggregate rate of requests for k at node v when the
closest upstream node caching k is h hops from v.

TABLE I: Summary of the main variables used for the analysis
of OSC, in addition to the routing tree variables in Fig. 1.

{xuk} stationary cache configuration, with xuk = 1 if object k is
cached at node u, and xuk = 0 otherwise

estu per-object storage cost of node u
etruv per-object transport cost of link (u, v)
λuk request rate of object k at node u
huk number of hops from node u to the closest upstream node

caching object k
etruk transport cost of transferring object k to node u form the

closest upstream node caching object k
λ
(h)
uk rate of requests for object k at node u when the closest

upstream node caching object k is h hops from node u
Cuk total cost for the delivery of object k over subtree Tk(u)

when node u is caching object k
C(h)uk total cost for the delivery of object k over subtree Tk(u)

when the closest upstream node caching object k is h hops
from node u

In the following, we present OSC (Optimal Stationary
Cache) - see Tab. I for the details on the adopted notation - a
dynamic programming algorithm that computes the minimum
cost for the delivery of object k over Tk, Ck, as

Ck = Cuk

∣∣∣
u=sk

, (8)

with

Cuk = estu + C
(0)
uk , (9)

where, for all u ∈ V and h = {0, . . . ,Hk},

C
(h)
uk =

∑
v∈Θk(u)

min
{
Cvk , e

tr
vkµ

(h+1)
vk + C

(h+1)
vk

}
, (10)

µ
(h)
vk = λvk +

∑
w∈Θk(v)

µ
(h+1)
wk

(
1− X

(h+1)
wk

)
, (11)

and

X
(h)
wk =

 1 if etr,hwk µ
(h)
wk + C

(h)
wk ≥ Cwk

0 otherwise
, (12)

with etr,hwk defined as

etr,huk =

h−1∑
j=0

etr
φj
k(u)k

. (13)

Note that (5)–(7) are the equivalent of (9)–(11) when
evaluated at the solution of OSC given by (12).

The optimality of OSC is based on the following theorem.
Theorem 1: Ck, as defined in (8), is the minimum cost for

the delivery of object k over Tk with average request rates
λuk,∀u ∈ V .

Proof. In order to prove Theorem 1, we first state and prove
the following Lemma.

Lemma 1: For all u ∈ V , C(h)
uk is the minimum cost over

Tk(u) for the delivery of object k, given that the closest
upstream node caching object k is h hops away from u, i.e.,
for all h = {0, . . . ,Hk}

C
(h)
uk = min

x

{
C(h)
uk

}
. (14)

Proof. To prove Lemma 1, we proceed by induction on the
tree height. Let H(j) be the set of nodes at height j in Tk.

First, we prove that the claim of Lemma 1 holds at the
bottom of the tree. In fact, for all subtrees rooted at u ∈ H(1),

min
x

{
C(h)
uk

}
=

= estu +min
x

∑
v∈Θk(u)

{
Cvkxvk+

(
etrvkλ

(h+1)
vk +C(h+1)

vk

)
(1− xvk)

}
= estu +min

x

∑
v∈Θk(u)

{
estv xvk +

(
etrvkλvk

)
(1− xvk)

}
(15)

= estu +
∑

v∈Θk(u)

min
{
estv , e

tr
vkλvk

}
(16)

= Cuk. (17)

where (15) follows from Cvk = estv , C(h)
vk = 0 and λ

(h)
vk =

λvk for all leaf nodes v ∈ Θk(u) ⊂ H(0) and for all h =
{0, . . . ,Hk}; (16) follows from the fact that each term in the
summation only depends on xvk; and finally (17) follows from
C

(h)
vk = 0, Cvk = estv , and µ

(h)
vk = λvk for all leaf nodes

v ∈ H(0).
Next, we prove that if for all v ∈ H(`), ` = 0, . . . , (j − 1),

C
(h)
vk = min

x

{
C(h)
vk

}
, (18)

then it also holds that

C
(h)
uk = min

x

{
C(h)
uk

}
, ∀u ∈ H(j). (19)

To this end, notice that using (6),

min
x

{
C(h)
uk

}
=
∑

v∈Θk(u)

min
{
min
x
{Cvk},min

x

{
etrvkλ

(h+1)
vk +C(h+1)

vk

}}
(20)

=
∑

v∈Θk(u)

min
{
Cvk,x

{
etrvkλ

(h+1)
vk +C(h+1)

vk

}}
(21)

where (20) is due to the fact that when the closest upstream
node caching k is h hops away from v, then the optimal
configuration of Tk(v) can be found by solving independently
the optimal configuration for each of the subtrees rooted at
w ∈ Θk(v); and (21) follows from the induction step in (18).

Now, we prove by reductio ad absurdum that

min
x

{
etrvkλ

(h+1)
vk + C(h+1)

vk

}
= etrvkµ

(h+1)
vk + C

(h+1)
vk . (22)

To this end, first note that the non-strict inequality always
holds:

min
x

{
etrvkλ

(h+1)
vk + C(h+1)

vk

}
≤ etrvkµ

(h+1)
vk + C

(h+1)
vk ; (23)

in fact, the right hand side of (23) is the cost of the subtree
Tk(v) when k is cached h + 1 hops away from v plus the
cost of the upstream link (u, v), computed for the caching
configuration given by (12), while the left hand side is the
minimum over all possible caching configurations of the
above function. Next, let us verify that strict inequality in
(23) leads to a contradiction. To this end, assume (23) is

strict, and let x̄ = arg minx

{
etrvkλ

(h+1)
vk + C(h+1)

vk

}
. Since,

minx

{
C(h+1)
vk

}
= C

(h+1)
vk by induction, and C

(h+1)
vk =

C(h+1)
vk

∣∣∣
X

from (8)-(12), then

C(h+1)
vk

∣∣∣
x̄
≥ C

(h+1)
vk = C(h+1)

vk

∣∣∣
X
. (24)

From (6) and (7), we now have that

etrvkλ
(h+1)
vk + C(h+1)

vk

∣∣∣
x̄

=

=etrvkλvk+
∑

w∈Θk(v)

min

{
Cwk

∣∣∣
x̄
,
((
etrvk + etrwk

)
λ

(h+2)
wk +C(h+2)

wk

)∣∣∣
x̄

}

= etrvkλvk +
∑

w∈Θ
C1
k (v)

Cwk
∣∣∣
x̄

+
∑

w∈Θ
C2
k (v)

Cwk
∣∣∣
x̄

+
∑

w∈Θ
nC1
k (v)

(
(etrvk + etrwk)λ

(h+2)
wk +C(h+2)

wk

)∣∣∣
x̄

+
∑

w∈Θ
nC2
k (v)

(
(etrvk + etrwk)λ

(h+2)
wk +C(h+2)

wk

)∣∣∣
x̄

(25)

where {ΘC1k (v),ΘC2k (v),ΘnC1
k (v),ΘnC2

k (v)} is a partition of
Θk(v) such that:

ΘC1k (v) ≡ {w ∈ Θk(v) : Xst,h+2
wk = 0 and x̄stwk = 1},

ΘC2k (v) ≡ {w ∈ Θk(v) : Xst,h+2
wk = 1 and x̄stwk = 1},

ΘnC1
k (v) ≡ {w ∈ Θk(v) : Xst,h+2

wk = 1 and x̄wk = 0},
ΘnC2
k (v) ≡ {w ∈ Θk(v) : Xst,h+2

wk = 0 and x̄wk = 0}.

Based on how the four regions are defined, using (24), the
induction step (18), and the definitions of C

(h+1)
vk , Xst,h+2

wk ,
λ

(h+1)
vk and µ(h+1)

vk as in (6)-(12), it can be shown that:

etrvkλ
(h+1)
vk +C(h+1)

vk

∣∣∣
x̄
≥ etrvkλvk +

∑
w∈Θ

C2
k (v)∪Θ

nC1
k (v)

Cwk

+
∑

w∈Θ
C1
k (v)∪Θ

nC2
k (v)

(
etrvk + etrwk)µ

(h+2)
wk + C

(h+2)
wk

)
= etrvkµ

(h+1)
vk + C

(h+1)
vk . (26)

Using (26) and (23), we show that a strict inequality in (23)
leads to a contradiction, and hence (22) is proved. Replacing
(22) in (21) and using (10), (19) follows. �

Using Lemma 1, it immediately follows that:

min
x
{Cuk(xk)} =

(
eu + min

x

{
C(0)
uk

}) ∣∣∣
u=sk

= eu + C
(0)
uk

∣∣∣
u=sk

= Cuk

∣∣∣
u=sk

= Ck

which concludes the proof of Theorem 1. �

We note that the complexity of OSC is linear with the
product of the number of nodes and the height of the tree,
O(V Hk), and thus can find the optimal configuration for the
delivery of K over G in

∑
k∈KO(V Hk) ≤ O(V 2∆), with

∆ the diameter of G. Furthermore, OSC admits a distributed
implementation, which requires O(Hk − Huk) information
exchange between each node u ∈ V at height Huk and its
upstream node φk(u).

However, the optimality of OSC is constrained to the
availability of sufficiently large storage capacity and the sta-
tionarity of the input request process. While, as stated earlier,
large storage capacity may be available in cloud CDNs, the
increasing dynamics of content service demands can degrade
the performance of OSC in practice. In the following, we
propose MC3, a fully distributed dynamic caching policy
that builds on the structure of OSC, to drive local caching
decisions that adapt to the system dynamics, while completely
eliminating the need for any explicit exchange of informa-
tion between neighbor nodes. In particular, with MC3, local
caching decisions are based on the binary criterion described
in (12), where information about the closest upstream content
copies and the caching configuration of the downstream nodes
is inferred from the dynamic arrivals of requests and objects
themselves. A detailed description of MC3 and its key mech-
anisms are provided in Sec. IV. Also, while omitted due to
space limitations, it is worth mentioning that for a hierarchical
topology with homogeneous resources at each layer, under a
first-order stationary request process, it can be shown that MC3

achieves the optimal steady-state configuration given by OSC.

IV. MC3: ALGORITHM DESIGN

In this section, we describe MC3 (Min Cost Cloud Cache),
an on-line fully distributed cloud caching algorithm that allows
nodes to make local caching decisions based on real-time
estimates of the global cost benefit. Recall that in a cloud
CDN, the goal is to guarantee QoS requirements (e.g., average
delivery delay) while minimizing the overall operational cost.
Hence, in MC3, objects only get cached if doing so contributes
to the global system benefit by: i) reducing the combined
transport-storage cost, or ii) reducing the average delay.

As illustrated by the structure of the optimal stationary
policy, OSC, a caching decision for object k at node u at time t
is essentially a trade-off between the cost incurred in writing
and keeping object k in the cache of node u, and the cost
incurred in fetching k from the closest upstream node that has
already cached k. We remark that while the cost of writing and
keeping an object at a network nodes is pure storage resource
cost, the cost of fetching an object from the closest upstream
copy captures both transport resource cost and QoS, since the
further the closest copy is, the higher is the delay in delivering
the object to the requesting user.

Based on this observation, we can evaluate at time t, the
benefit of caching object k at node u, as the difference between
the average transport cost needed to transfer object k to node

u based on the current network conditions, and the storage
cost involved in writing and keeping k at u, as:

CBuk(t) = etruk(t)f̂uk(t)− estu (27)

etruk(t) =
∑

(u,v)∈Γuk(t)

etruv (28)

In (27), (28), f̂uk(t) represents an estimate of the aggregate
rate of requests for object k at node u; etruk(t) is the transport
cost paid at time t to transfer object k to node u from its closest
upstream copy along the path Γuk(t); and estu represents the
cost needed to write and store an object over a time unit in
the cache of node u.

Note that in the case of homogeneous resources, i.e., etruv =
etr,∀(u, v) ∈ E , (27) reduces to

CBuk(t) = huk(t)f̂uk(t)etr − estu , (29)

where huk(t) is the number of hops to the closest upstream
node caching k at time t.

In general, in MC3, etruv represents a generic cost of trans-
porting an object over a link, which may include transport
equipment CAPEX and OPEX, as well as link delay. We
remark that in the case that the link delay model is load-
dependent, etruv(t) would be a function of t, indicating the
dependence on the current load.

In MC3, each vCache node maintains a data structure named
shadow cache, where information on both cached and not-
cached objects is stored. This information is used by MC3

to estimate the global benefit of caching an object and it is
updated every time a request or an object is received. Each
entry in the shadow cache contains the following information:

1) Object Identifier
2) Estimated request inter-arrival time ∆̂tuk(t) = 1/f̂uk(t)
3) Storage cost at node u, estu
Note that the algorithm is based on two main estimates: i)

the cost of fetching k from the closest copy at the time of
the next request arrival, etruvhuk(t), and ii) the request inter-
arrival time of object k, ∆̂tuk(t). In order to locally estimate
i), we propose to store an additional field inside the packets
carrying the objects through the network: field E indicates
the transport cost incurred by an object as it travels through
the network since the last time it was cached. When an object
arrives at a cache node, field E is increased to take into account
the cost of transferring the object across the last traversed
link. The obtained value is then used as etruk(t) in Eq. (27) in
order to compute the global benefit of caching the object. If
the node decides to cache the object or the object has been
already cached, field E is reset to 0. This approach allows
nodes to share the information they need to compute (29) with
negligible constant-size communication overhead. In order to
locally estimate ii), every time node u receives a new request
for object k, it updates the estimated request inter-arrival time
in the shadow cache, ∆̂tuk(t), based on a predictor. A simple
approach is to adopt a moving average computed based on
past request arrivals with a suitable window size, as used in
LFU and its variants [15].

Algorithm 1 : MC3

1: For every node u ∈ V , v = Φk(u)
2: if Request for object k at node u (time t) then
3: if Object k in the cache then
4: Forward k downstream (set E = 0)
5: Update ∆̂tuk(t) in shadow cache entry
6: Compute CBuk(t)
7: if (CBuk(t) > 0) then
8: Keep k in the cache and update its position based on

CBuk(t) (decreasing order)
9: else

10: Remove k from the cache
11: end if
12: else
13: Update ∆̂tuk(t)
14: Forward request upstream
15: end if
16: end if
17: if Object k at node u from v = Φk(u) (time t) then
18: Get E from packet
19: Update etruk(t) = E + etrvu
20: Get ∆̂tuk(t) from the shadow cache entry
21: Recompute CBuk(t)
22: if (CBuk(t) > 0) then
23: Cache k based on CBuk (decreasing order)
24: Set E = 0
25: if Cache full then
26: Remove last object (least cost benefit)
27: end if
28: else
29: Set E = etruk(t)
30: end if
31: Forward k downstream (including E)
32: end if

By relying on the shadow cache and the information carried
by the objects travelling through the network, each node is
able to identify the subset of objects with the highest cost
benefit. This result is achieved by maintaining a list of object
entries sorted in terms of decreasing cost benefit. Objects are
added and removed to this list every time their cost benefit
is recomputed. Note that only objects with a positive cost
benefit are potentially cached. This implies that depending
on the ratio between transport and storage cost as well as
the characteristics of the stream of object requests, nodes will
make use of different portions of the available virtual cache
space. Finally, we use a negative cost benefit for those objects
for which we do not have information inside the shadow cache
since we do not have enough information to compute the
request inter-arrival time. The object is potentially cached only
starting from the second received request.

In order to mitigate the impact of possible overestimates
(too short) of request inter-arrival times, a timer is used to
update the entries in the shadow cache if no request arrives
within a guard time (set as a factor of the estimated inter-
arrival time). This approach is useful to correct inaccurate
or stale metadata such as the estimated next request arrival
time. Note that underestimates of request inter-arrival times
are naturally updated when the actual request arrives.

The pseudo-code in Algorithm 1 describes the procedures

invoked by MC3 upon i) a new request arrival, and ii) a
new object arrival to a node cache. Note that MC3 ex-
hibits constant-time computational complexity and constant-
size communication overhead, as neither the number of com-
putations nor the information objects carry scale with the
number of nodes and objects in the system. Indeed, in MC3,
objects themselves carry how much cost they require as they
travel through the network. This allows the vCache nodes
to adaptively learn relevant system information, effectively
creating cache cooperation with minimal overhead.

V. EXPERIMENTAL ANALYSIS

We analyze the benefit of MC3 in the context a 2-layer
vCache hierarchy with Internet video workloads that exhibit
different content types, daily viewing patterns, and object
popularity. The main parameter settings are derived from the
work in [18], as described in the following.

A. Simulation Methodology

Adopted topology. We consider a 2-layer tree structure of
vCache nodes: three leaf vCache nodes are connected to a
root vCache connected to the library, which stores all available
content objects. User requests are first forwarded to the leaves
in the hierarchy. A request is then forwarded to the root node
or to the library only in case of a cache miss. The links
between users and leaf vCache nodes are characterized by a
delay of 20 ms, while all other links experience a delay of 50
ms. As in a number of previous works (e.g., [18], [19], [20]),
we test the vCache hierachy against synthetic yet realistic
streams of user requests for video objects.

Object types. We consider two types of video objects: TV
shows and Movies. They differ in terms of size (Movies are
typically twice as long as TV shows), and popularity trends
(TV shows become unpopular much faster than Movies). The
number of TV shows is typically much larger than the number
of Movies: in our library, we adopt a shows-to-movies ratio
of 4:1, as also suggested in [18].

Object requests. Video object requests are generated accord-
ing to a Poisson process with average rate determined by the
total number of requests to be generated during a specific
portion of the day, as described in the following. In our
experimentation, we generate 80, 000 requests every day, on
average.

Daily pattern. The temporal evolution of the video object
requests is known to show a clear time-of-the-day effect [19],
with a peak during evening prime time and a lull during the
night. To take into account this pattern, we partition the day
into four time intervals: morning [6 a.m., 12 p.m.), afternoon
[12 p.m., 6 p.m.), evening [6 p.m., 12 a.m.), and night [12
a.m., 6 a.m.). Letting R denote the total number of requests
to generate during the day, we inject 10%, 20%, 30%, and
40% of the R requests during the night, morning, afternoon,
and evening, respectively.

 0

 20000

 40000

 60000

 80000

 100000

 1 3 5 7 9 11 13 15 17 19 21

T
o
ta

l
R

e
q
u
e
s
ts

 (
#
)

Day

(a) Overall requests per day.

 0

 20000

 40000

 60000

 80000

 100000

10 11 12 13 14

R
e
q
u
e
s
ts

Day

1st Object

2nd Object

3rd Object

4th Object

5th Object

Others

(b) Requests per object.

 0.001

 0.01

 0.1

 1

 1 10 100 1000

O
b
je

c
t
P

o
p
u
la

ri
ty

 (
%

)

Ranked objects

Generated workload

Zipf(Alpha = 0.7)

(c) Object popularity after 14 days.

Fig. 2: Details on the workload used in the simulation.

Object popularity. The stream of requests is generated as a
series of independent trials drawn from a Zipf (or Zipf-like)
distribution over the set of possible objects [15]. However,
generating object requests according to a Zipf distribution does
not capture the temporal evolution of the popularity of each
object. Recently, Balachandran et al [19] observed a specific
temporal trend in case of video objects. There is a peak of
requests the first day the object becomes available, while
the number of requests decreases exponentially during the
following days. Hence, while the popularity of video objects
over the entire observation period follows a Zipf distribution,
a realistic workload must take into account this day-by-day
temporal evolution of the object popularity. To achieve this
effect, we follow the steps recently proposed by Akhtar et
al. [18]: for each object k, i) we compute the total number of
requests Rk over the entire observation period according to
the object popularity extracted from the Zipf distribution; ii)
given an observation period of N days, we randomly select
the day X in which object k becomes publicly available: the
Rk requests are then packed in the time range [X , N]; iii)
to determine the first burst and the successive exponential
decrease in the number of requests, we adopt a power series
expansion such that the final number of requests generated
over the time range [X , N] is Rk. New objects are injected
into the library at the beginning of the injection day causing
the library to grow in size day by day. In our simulation,
we inject 300 new video objects every day. Moreover, since
empirical observations show that the popularity of TV shows
decreases faster than that of Movies [19], we set the day-by-
day popularity decrease rate to vary in [0.3, 0.5] for TV shows
and in [0.05, 0.2] for Movies.

Fig. 2 shows an instance of the workload used in our
simulations. We generate an average of 80, 000 requests per
day, although we reach this value after a transitory period
of 7 days (see Fig. 2a). Fig. 2b, provides a breakdown of
the requests generated between the 10th and the 14th day.
Considering the 5 most popular objects in this time range, we
can notice that: i) the first, third, and fifth most popular objects
are already available on the 10th day, whereas the second and
forth objects become available only starting from the 11th

and 12th day, respectively; ii) the number of requests for
each of these objects decreases rapidly day after day. Despite
this dynamic evolution in the number of requests, the object
popularity computed over the first 14 days is very close to the
expected Zipf distribution with Zipf parameter alpha set to
0.7 (see Fig. 2c).

Observation period. We consider a long observation period
of 21 days, i.e., 3 weeks. At the end of this period, our library
contains 6300 video objects.

MC3 settings. We adopt a moving average approach to
estimate the object request inter-arrival and, after a first tuning
phase, we set this weight to 0.5. In our experiments, we
observe a negligible impact of slight modifications to this value
on the overall vCDN performance.

Other caching strategies. We compare MC3 with other
caching strategies: i) LRU-LCE (Least Recently Used - Leave
Copy Everywhere) – each cache node applies a least recently
used replacement policy; ii) Perfect-LFU (Perfect Least Fre-
quently Used) – each cache node applies a least frequently
used replacement policy that tracks the number of requests
for all objects in a shadow cache. This solution is known to
well approximate the optimal hit-rate in case of static object
popularity; iii) Oracle – each cache node can take omniscient
caching decisions since nodes are informed about the future
object popularity of each day. LRU and LFU represent simple
and effective caching strategies made available in commercial
products such as Apache Traffic Server, Squid, and Varnish,
solutions widely adopted in operational environments.

We remark that the cache management cost of MC3, while
slightly higher than LRU – the lightest caching policy – is
exactly the same as that of LFU or any other policy that is
ordering-based (i.e., objects are kept in a specified order in
the cache) and shadow-cache-based (i.e., policies that track
non-cached objects’ metadata).

B. Experimental Results

We now describe the performance of MC3 by varying the
transport-to-storage cost ratio, cache size, and object pop-

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 3 5 7 9 11 13 15 17 19 21

A
v
e

ra
g

e
 L

a
te

n
c
y
 [

m
s
]

Day

Perfect-LFU
LRU
MC

3

Oracle

(a) End to end latency.

-10

 0

 10

 20

 30

Perfect-LFU LRU Oracle

C
o

s
t

p
e

n
a

lt
y
 v

s
 M

C
3
 (

%
) Storage cost

Transport cost

(b) Operational cost after 21 days.

Fig. 3: Performance when the transport-to-storage cost ratio is
10,000:1.

ularity. As done in similar works [22], [21], we relied on
Omnet++ [23] to instrument our simulation.

Performance with a varying transport-to-storage cost ratio.
We evaluate the caching strategies with a transport-to-storage
cost ratio, etruv/e

st
u , of 10,000:1 and 2,000:1. Recall that etruv

is used to capture not only transport resource costs but also
QoS related penalties such as average delay. In this setting,
we instrument each node in the hierarchy to cache no more
than 50% of the objects injected every day (i.e., 150 objects),
while the popularity of each object is generated from a Zipf
distribution with Zipf parameter alpha equal to 0.7.

Fig. 3 shows the performance achieved when the ratio is
10,000:1. Fig. 3a shows the daily average latency, i.e., the
time the cache hierarchy takes to deliver a requested object to
the user. For most of the caching strategies, the performance
stabilizes after 7 days. This result is expected since the library
is empty at the beginning of the simulation and gets filled
day after day with new objects (see Fig. 2a): the equilibrium
between previously injected unpopular objects and recently
injected highly popular objects is reached only after this initial
transitory. Hence, in the following, we discuss the average
performance achieved between the 7th and 21th day. In this
setting, the performance of MC3 is very close to Oracle, the
cache strategy that takes omniscient caching decisions. On an
average day, the hierarchy instrumented with MC3 delivers
objects to the users with a latency only 1.8% higher than
using Oracle, taking 12 ms and 12.4 ms less than LRU and
Perfect-LFU, on average. This result is a direct consequence
of the higher hit rate achieved by MC3. Indeed, the average
combined hit rate achieved by MC3 is 28.3% and 33.3%
higher compared to LRU and Perfect-LFU, respectively. At the
same time, MC3 guarantees a lower operational cost. Fig. 3b
shows the total transport and storage cost penalty paid when
using the other caching strategies relative to MC3. Due to the
high transport-to-storage cost ratio, MC3 uses almost all the
available space at the cache nodes in this setting. For this
reason, we observe only a limited gain in terms of storage
cost. On the other hand, MC3 carefully selects which objects
to cache according to the cost of transferring them over the
network, thus achieving a significant gain in terms of total
transport cost. Indeed, the transport cost registered when using
LRU and Perfect-LFU is 17% and 12% higher than MC3,

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 3 5 7 9 11 13 15 17 19 21

A
v
e

ra
g

e
 L

a
te

n
c
y
 [

m
s
]

Day

Perfect-LFU
LRU
MC

3

Oracle

(a) End to end latency.

-20

 0

 20

 40

 60

 80

 100

 120

Perfect-LFU LRU Oracle

C
o

s
t

p
e

n
a

lt
y
 v

s
 M

C
3
 (

%
) Storage cost

Transport cost

(b) Operational cost after 21 days.

Fig. 4: Performance when the transport-to-storage cost ratio is
2,000:1.

respectively. Hence, for high transport-to-storage cost ratio,
MC3 achieves higher performance compared to LRU and
Perfect-LFU in terms of hit rate and latency, with a similar
storage cost, but a much lower transport cost.

Fig. 4 shows the performance achieved by the tested caching
policies in the case of a transport-to-storage cost ratio of
2,000:1. Note that MC3 is the only strategy modifying its
behavior: in this setting, the latency achieved by MC3 is
similar to that achieved by LRU, and lower than that of
Perfect-LFU. At the same time, MC3 achieves this result by
using only a fraction of the cache space available at each
node: while all other strategies fully use the entire available
storage space, MC3 uses on average only 47% of the space
in each cache node. The direct consequence is a significantly
lower total operational cost as reported in Fig. 4b: using LRU
(Perfect-LFU) leads to a total storage cost of 92% (93%)
higher, and a total transport cost 8% (3%) higher than when
using MC3. In conclusion, for less unbalanced ratio between
transport and storage cost, MC3 is able to provide similar or
higher performance than LRU and Perfect-LFU in terms of
hit rate and latency, with a much lower storage and transport
cost.

Performance with a varying cache size. Fig. 5 reports the
results achieved when varying the cache size. Each node is
configured to cache up to 25%, 50%, 75% and 100% of the
amount of objects injected every day, i.e., 75, 150, 225, and
300 objects, respectively. Fig. 5a shows the latency penalty
paid when using all other caching strategies relative to MC3:
for larger cache sizes, the latency gain of MC3 decreases.
This happens because the other caching strategies fully use
the available storage space in the cache disregarding the
associated operational cost, while MC3 keeps caching objects
according to the transport-to-storage cost ratio (2,000:1 in this
setting). Fig. 5b shows the cost penalty of operating the cache
hierarchy with these strategies compared to using MC3. The
total operational cost increases sharply with the cache size:
compared to all the other strategies, MC3 guarantees savings
that go from 28% up to 264% with the increasing cache size.
Finally, by being aware of the transport and storage relative
costs, MC3 is able to select the objects to cache in order
to guarantee a reasonable average latency while significantly
saving in the overall operational cost. Note that one may easily

-30

-20

-10

 0

 10

 20

 30

75 150 225 300

L
a

te
n

c
y
 p

e
n

a
tl
y
 v

s
 M

C
3
 (

%
)

Cache Size

Perfect-LFU
LRU

Oracle

(a) Average end to end latency.

 0

 50

 100

 150

 200

 250

 300

75 150 225 300C
o

s
t

p
e

n
a

lt
y
 v

s
 M

C
3
 (

%
)

Cache Size

Perfect-LFU
LRU

Oracle

(b) Total operational cost.

Fig. 5: Performance compared to MC3 when the transport-to-
storage cost ratio is 2,000:1 for different cache sizes.

 0

 10

 20

 30

 0.7 0.8 0.9 1

L
a

te
n

c
y
 p

e
n

a
lt
y
 v

s
 M

C
3
 (

%
)

Zipf alpha value

Perfect-LFU
LRU

Oracle

Fig. 6: Latency penalty compared to MC3 when the transport-
to-storage cost ratio is 10,000:1 for different object popularity.

improve the latency performance of MC3 by simply increasing
the transport-to-storage cost ratio to induce the MC3 nodes to
cache more objects, leading to higher hit rate, lower latency,
but at the expense of higher operational cost.

Performance with varying popularity. Finally, we also inves-
tigate whether and how the performance of MC3 changes when
varying the object popularity. Results are reported in Fig. 6.
We consider a cache size of 150 objects and a transport-to-
storage cost ratio of 10,000:1. In this setting, the MC3 nodes
are induced to fully use their available storage space. We vary
the Zipf parameter alpha in the range [0.7, 1.0]. On average,
we observe an almost constant gain over LRU and Perfect-
LFU, with a latency reduction of 12% and 18%, respectively.
Note that the latency achieved by Oracle is only very slightly
lower than the one achieved by MC3.

VI. CONCLUSIONS

Motivated by the dynamics and heterogeneity of next gener-
ation cloud-based CDNs, and the crushing burden that content
storage and transport costs pose on cloud network operators,
in this paper we took a fresh look at the dynamic content
distribution problem from an overall cost-oriented perspective.
We proposed a novel fully distributed online caching solution,
we called MC3, aiming at guaranteeing QoS requirements
with minimum overall use of the shared cloud network’s
infrastructure. We first analytically characterized the optimal
cloud caching policy for a given first-order stationary input
process, and then – inspired by the structure of the optimal
stationary solution – we developed MC3, an online caching
policy that guides local caching decisions based on real-time
estimates of the global cost benefit. We implemented MC3

in a custom-built CDN simulator and presented performance
results for different settings of the transport-to-storage cost
ratio, cache size, and object popularity. We also provided a
comparison with three well known caching strategies (LRU-
LCE, Perfect-LFU, and an Oracle), demonstrating the signif-
icant performance and efficiency gains – in terms of average
latency and overall operational cost – that MC3 can provide
in virtual CDN environments.

REFERENCES

[1] H. Che, Y. Tung, Z. Wang, “Hierarchical Web caching systems: model-
ing, design and experimental results,” IEEE J. Sel. Areas Commun., vol.
20, no. 7, pp. 1305–1314, 2002.

[2] Bell Labs Strategic White Paper, “The Programmable Cloud Network -
A Primer on SDN and NFV,” June 2013.

[3] Marcus Weldon, “The Future X Network,” CRC Press, October 2015.
[4] J. Llorca, C. Sterle, A. M. Tulino, N. Choi, A. Sforza, A. E. Amideo,

“Joint Content-Resource Allocation in Software Defined Virtual CDNs,”
IEEE ICC’15 CCSNA Workshop, London, England, 2015.

[5] J. Llorca, A.M. Tulino, “The content distribution problem and its
complexity classification,” Bell Labs technical report, 2013.

[6] S. Hasan, S. Gorinsky, C. Dovrolis, and R. Sitaraman, ”Trade-offs in
Optimizing the Cache Deployments of CDNs”, IEEE INFOCOM’14,
pp. 460-468, 2014.

[7] I.D. Baev, R. Rajaraman, C. Swamy, “Approximation algorithms for data
placement in arbitrary networks,” ACM SODA’01, 2001.

[8] I.D. Baev, R. Rajaraman, C. Swamy, “Approximation algorithms for
data placement problems,” SIAM Journal on Computing, vol. 38, pp.
1411-1429, 2008.

[9] S. Borst, V. Gupta, A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” IEEE INFOCOM’10, San Diego, 2010.

[10] P. Krishnan, D. Raz, Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. on Networking, vol. 8, no. 5, pp. 568–582, 2000.

[11] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web
server replicas,” IEEE INFOCOM’01, vol. 3, 2001.

[12] M.R. Korupolu and M. Dahlin, “Coordinated placement and replacement
for large-scale distributed caches,” IEEE Transactions on Knowledge and
Data Engineering, vol.14, pp. 1317–1329, 2002.

[13] Wang, J., “A survey of web caching schemes for the internet,” ACM
SIGCOMM CCR, v. 29, n. 5, pp. 36-46, ’99.

[14] P. Cao, S. Irani, “Cost-Aware WWW Proxy Caching Algorithms,”
Usenix symposium on internet technologies and systems, vol. 12, no.
97, pp. 193–206, 1997.

[15] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” IEEE INFO-
COM’99, vol. 1, pp. 126–134, 1999.

[16] G. Carofiglio, M. Gallo, L. Muscariello, D. Perino, “Modeling data
transfer in content-centric networking,” IEEE ITC’11, pp.111–118, 2011.

[17] E. J. Rosensweig, J. Kurose, “A Network Calculus for Cache Networks,”
IEEE INFOCOM’13, pp. 85–89, 2013.

[18] S. Akhtar, A. Beck, I. Rimac, “HiFi: A Hierarchical Filtering Algorithm
for Caching of Online Video,” Proc. of the 23rd ACM international
conference on Multimedia (MM ’15). ACM, NY, USA, 421-430.

[19] A. Balachandran, V. Sekar, A. Akella, and S. Seshan. “Analyzing the
potential benefits of CDN augmentation strategies for Internet video
workloads.” ACM SIGCOMM IMC, pp. 43-56. 2013.

[20] B. Paul and C. Mark, “Generating representative web workloads for
network and server performance evaluation,” Proc. ACM SIGMETRICS,
Madison, USA, 1998.

[21] J. Llorca, A. M. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choi,
D. C. Kilper, “Dynamic in-network caching for energy efficient content
delivery,” IEEE INFOCOM’13, Turin, Italy, 2013.

[22] K. Stamos, G. Pallis, A. Vakali, D. Katsaros, A. Sidiropoulos, and Y.
Manolopoulos. “CDNsim: A simulation tool for content distribution
networks.” ACM Transactions on Modeling and Computer Simulation
(TOMACS) 20, no. 2 (2010): 10.

[23] A. Varga, “The OMNeT++ discrete event simulation system.” ESM 2001,
vol. 9, no. S 185, p. 65. sn, 2001.

