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Abstract

Network researchers have dedicated a notable part of their efforts to the area of modeling traffic and to the
implementation of efficient traffic generators. We feel that there is a strong demand for traffic generators capable
to reproduce realistic traffic patterns according to theoretical models and at the same time with high performance.
This work presents an open distributed platform for traffic generation that we called distributed internet traffic
generator (D-ITG), capable of producing traffic (network, transport and application layer) at packet level and of
accurately replicating appropriate stochastic processes for both inter departure time (IDT) and packet size (PS)
random variables. We implemented two different versions of our distributed generator. In the first one, a log server
is in charge of recording the information transmitted by senders and receivers and these communications are based
either on TCP or UDP. In the other one, senders and receivers make use of the MPI library. In this work a complete
performance comparison among the centralized version and the two distributed versions of D-ITG is presented.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

As computer networking has become more ubiquitous, researchers are increasingly focused on optimiz-
ing computer networks performance and improving network utilization in terms of throughput and offered
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delay, jitter and packet loss. This process cannot leave the study of traffic patterns and properties out of
consideration. In the last 20 years researchers have been looking for the definition of stochastic processes
that could be used as accurate and simple models for traffic generation in packet switched networks and in
particular in IP networks. In order to be as realistic as possible, traffic models should accurately represent
relevant statistical properties of the original traffic[45]. Modeling the Internet traffic is an important and
essential task and we think that traffic theory should be increasingly used to guide the design of the future
multi-service and integrated Internet. It is unlikely that we will be able to understand the traffic character-
istics, predict network performance (Quality of Service, Service Level Agreement definition, . . .), or design
dimensioning tools without analytical and rigorous models. The successful evolution of the Internet is
tightly coupled to the ability of designing simple and accurate models with the property of reproducibility.
Traffic theory suggests us the application of mathematical modeling to explain the relationship between
traffic performance and network capacity, traffic demand and experimented performance.

Network management has so far been dominated by passive monitoring. Emerging networking tech-
nologies however force the development of active testing and performance analysis tools. In the case of
studies related to the Internet, the experiments should not only reflect the wide scale of real scenarios, but
also the rich variety of traffic sources, in terms of both protocol typologies and data generation patterns.
As a consequence, traffic models can be applied to the generation of synthetic, yet realistic traffic to be
injected into a network.

For this purpose, we developed a tool, namedDistributed Internet Traffic Generator(D-ITG) that
generates network traffic according to the models proposed for different protocols. We implemented
several protocols belonging to network, transport, and application layers. The user can simply choose a
protocol and is not requested to know its model. In addition, the user can generate a specific traffic pattern
– at transport layer – by using several random distributions to model theinter departure time(IDT) and
packet size(PS) processes.

Besides incorporating theoretical models into our generator, we also focused on improving the perfor-
mance achieved by the sender (in terms of generated data rate) and the receiver (in terms of received data
rate). This goal led us to the implementation of two kinds of distributed generator. In the first distributed
version, a log server is used by senders and receivers to store the information needed to compute statis-
tics about the experiments made. Both communications sender-log server and receiver-log server can be
carried out using either UDP or TCP. In the second distributed version, senders and receivers have been
implemented using themessage passing interface(MPI) library [14]. Since the logging operations are
demanded to the log server, senders and receivers do not waste time in storing data. By eliminating the
interference of logging operations on generation and reception activities, the performance of both senders
and receivers was improved.

The distributed implementations of D-ITG turn out to be advantageous in a heterogeneous mobile
scenario made of devices (e.g. PDAs or Palmtops) having a very small storage capacity. Indeed, a mobile
device sends or receives packets while the logging activity is delegated to a remote log server having
more resources. Due to the nodes’ limited resources (RAM, storage capacity, video dimension, etc.) in
wireless ad hoc networks, scalability is crucial for network operations.

Finally, another property of the distributed version of our traffic generator is the possibility to use a
unique log server in a wide complex network scenario where a large number of processes (senders and
receiver) are present.

To our knowledge, no similar works are available and we believe that D-ITG shows interesting properties
when compared to other traffic generators.
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The rest of the paper is organized as follows. Section2 presents a short overview on widely used
theoretical traffic models. In Section3 we present a complete analysis on closely related works. Sec-
tion 4 shows D-ITG main topics and describes all the components of the D-ITG platform: ITG-
CV (centralized version) component, ITG-LS (distributed version with Log Server on a TCP or
UDP channel) component and, finally, ITG-MPI (MPI version of D-ITG) component. In Section5
a thorough analysis of our experimentations is illustrated. Section6 illustrates some examples of
simulations of the Internet traffic using our D-ITG. In this section a tool validation analysis is pre-
sented. Section7 provides some conclusion remarks and presents some interesting issues for future
research.

2. Theoretical traffic models

Traffic in Internet results from the uncoordinated actions and operations of a very large population
both of users and network devices: it should be therefore described in statistical terms. It is important
to be able to describe this traffic easily in a manner which is useful for network engineering and ad-
ministrator. With respect to the traffic composition, in[22] it is reported a survey on analyses of IP
traffic observed at a busy Internet exchange.[22] reveals that the large majority of traffic continues to
be generated in TCP connections. TCP counts for about 85% of packets and from 90 to 95% of bytes.
Of the remaining traffic most uses UDP – 15% of packets, 5% of bytes – with other protocols like
ICMP accounting for the rest. A small but increasing proportion of traffic uses generic route encapsu-
lation (GRE) to create tunnels and this masks the underlying transport protocol. For these reasons in
our D-ITG we implemented both UDP and TCP generators with the possibility to use several combina-
tions of IDT and PS probability distributions: D-ITG makes use of a random number generator library
which makes available a lot of random variable distributions, through which we can model both IDT
and PS.

Following the description in[36] a rough breakdown of TCP traffic (in bytes) according to applications
is the following [22]: Web (HTTP) 66%, news (NNTP) 11%, file transfer (FTP) 4%, mail (SMTP)
3%, Napster 3%, etc. A similar breakdown of UDP traffic gives the proportions: Real Audio 21%,
DNS 20%, games 18%, unidentified 26%. The relative traffic proportions of TCP and UDP transport
protocols has varied little over at least the last years and tend to be the same throughout the Internet.
It is important to note that nowadays these percentages are changing since in the last two years we
have witnessed an explosion in peer-to-peer traffic. New streaming applications are certainly gaining
in popularity but the extra UDP traffic is offset by increases in regular data transfers using TCP. The
applications driving these document transfers is evolving, however, with the notable impact over recent
years first of the Web and then of peer to peer applications like Napster, Gnutella, Kazaa, WinMX, and
Morpheus.

We now introduce some of the models proposed for several application layer protocols, in order to
provide an overview on theoretical work at the base of the literature in this field. We start by considering
telnet and mentioning the studies conducted by Paxson and Floyd[33,31], which are based on the analysis
of the Internet Traffic Archive (ITA) tracks. Such studies show that the arrival process of connection
requests can be modeled as an homogeneous Poisson process with a fixed rate, while the distribution
of the packet inter-arrivals cannot be considered exponential. An interesting conclusion of other related
works is the determination of the empirical cumulative distribution function of the packet size, shown in
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Fig. 1. Telnet packet size distribution.

Fig. 1 [20]. We want to remark that, according to this graphic, 60% of packets has a payload of only one
byte.

As for News Network Transfer Protocol(NNTP), the proposed models regard the arrival process
of connection requests and the total amount of transferred bytes[33,31]. Within a time interval of
60 s, the arrival process can be modeled as a Weibull random variable, while the amount of trans-
ferred bytes, which depends on the success of the connection, can be treated using a log 2-normal
distribution.

ConcerningSimple Mail Transfer Protocol(SMTP), Paxson and Floyd observed that, in the determi-
nation of the amount of bytes sent, we have to consider a fixed overhead (300 bytes) for all successfully
established connections[33,31]. Thus, this overhead is subtracted from the total number of bytes observed
and the obtained quantity is modeled again as a log 2-normal random variable.

A great effort has been directed toward the modeling of FTP traffic, since this constitutes a large fraction
of WAN traffic. Before delving into the details of the existing models, we point out that an ftp session
is made of a sequence of connections, each of which relies on a TCP connection, as indicated inFig. 2.
Typically, ftp connections occur in bursts (a burst is a sequence of connections whose inter-connection
times are no longer than 4 s). The arrival process of connections is hard to be modeled since it is influenced
by many network-dependent factors, such as bandwidth, congestion level and flow control algorithm[9].
Instead, as for the total amount of bytes transferred during a whole session, a good approximation is
that of a log 2-normal random variable. Moreover, the amount of bytes exchanged during a burst can be
modeled as a Pareto distribution.
World Wide Webtraffic has been obviously the subject of many research studies[1,5,4]. Crovella and

Bestavros[5,4] stressed the self-similar nature of this traffic, which came out of their experiments. Such
experiments were carried out by using a modified version of MOSAIC, one of the most used earliest
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Fig. 2. Example of FTP session.

browsers, which allowed to track statistics like the number of established sessions, the number of file
requested, the amount of bytes transferred and so on. Other authors, Arlitt and Williamson, determined the
distribution of transferred documents’ size[1], paying attention to images (gif, jpeg, bitmap), Postscript,
HTML, audio (wav, aiff, aifc) and video (MPEG, QuickTime) files. The results of these analyses indicate
that the size of transferred files can be modeled as a Pareto distribution.

Another typology of traffic that is subject to a deep investigation is theVoice over IP(VoIP). This is
because VoIP traffic will be more and more an important part of Internet traffic. We refer to a careful
analysis carried out by Cisco[6], which determines the total bandwidth required in different cases,
depending on the encoding algorithm (G.711, G.729, G.723.1,. . .), the number of samples per packet,
the usage ofvoice activity detection(VAD) and real time protocol(RTP) Header Compression. This
analysis provides us with useful information, such as payload size and the number of packets per second.
The duration of a call is usually considered exponential.

Lastly, we discuss the case of the video, with reference to MPEG encoding. Garret and Willinger
[15] first observed the self-similar nature of variable bit rate MPEG traffic, analyzing an action movie
(Star Wars) which lasts 2 h. An important result of this test is that the number of bytes per frame can be
described using heavy-tailed distributions. In fact, they obtained the curve represented by the consumed
bandwidth (shown inFig. 3) and then calculated its empirical cumulative distribution function. This is
well approximated by a mixture of a Gamma and a Pareto random variable. Other works[18,37]aim to
exploit the fact that there exist three kinds of MPEG frames (I, P and B) and thus they model separately
each one of them.

Fig. 3. Time series of entire 2 h VBR video.
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3. Related work

This section provides an overview on some of the most widely used traffic generators. TG Traffic
Generators[41] runs on Linux, FreeBSD and Solaris SunOS. TG is capable to generate constant, uniform,
exponential, on/off UDP or TCP traffic. TG does not offer a rich variety of traffic sources. NetSpec[25]
is a traffic generator/emulator that allows the user to define multiple traffic flows from/to multiple PCs.
It is capable to emulate TCP, UDP, WWW, FTP, MPEG, VBR and CBR Traffic. Netspec runs on Linux,
FreeBSD, Solaris and IRIX. Netperf[24] provides tests for both unidirectional throughput and end-to-
end latency. The environments currently measurable by Netperf include TCP and UDP via BSD Sockets,
DLPI, Unix Domain Sockets and Fore ATM API. MGEN[21] is both a command line and GUI traffic
generator. It runs on Linux, FreeBSD, NetBSD, Solaris, SGI and DEC. MGEN provides programs for
sourcing/sinking real-time multicast/unicast UDP/IP traffic flows. The MGEN tools transmit and receive
time-stamped, sequence numbered packets. The analysis of the log files can be performed to assess
network (or network components) ability to support the given traffic load in terms of packet loss, delay,
jitter, etc. Rude/Crude[38] is a command line traffic generator and measurement tool for UDP. RUDE
stands for Real-time UDP Data Emitter and CRUDE for Collector for RUDE. Currently these programs
can generate and measure only UDP traffic. The operation and configuration might look similar to MGEN.
RUDE/CRUDE tools were designed and coded because of the accuracy limitations of MGEN. Rude/crude
runs on Linux, Solaris and FreeBSD. UDPgen[43] is a command line UDP traffic generator integrated into
the Linux kernel. It aims at maximizing the packet throughput especially for Gigabit Ethernet. To do this,
the traffic generator runs completely in the Linux kernel. This allows sending at much higher rates than
with an user space program. The toolset also includes a tool which counts UDP packets at the receiver
and calculates the packet inter-arrival times. Linux traffic generator[35] (LTG) can generate multiple
independent UDP flows with given traffic profiles (i.e. CBR or VBR), with millisecond resolution. LTG
works on a common PC with Linux operating system. It is possible to evaluate a set of performance
metrics related to throughput, loss and delay. LTG allows generating multiple independent flows of UDP
traffic. LTG evaluates the average throughput and enables to log the “instantaneous” throughput. This
generator is not publicly available. Traffic Generator (TG)[23] generates and receives one-way packet
traffic streams transmitted from the UNIX user level process between traffic source and traffic sink nodes
in a network. TG is controlled by a specification language that allows access to different operating modes,
protocols, addressing functions, and experimentation with traffic parameters. The specification language
allows traffic of several packet lengths and inter-arrival time distributions to be generated. The current
implementation supports TCP and UDP transport protocols, with unicast and multicast addressing (UDP
only). Traffic [42] generates high volumes of traffic on a network and does not measure throughput or
response times. It has a friendly GUI and it runs on Microsoft Win32, FreeBSD and Linux. A limited set
of traffic random variables is available. PacGen[28] is an Ethernet IP TCP/UDP packet generating tool
for Linux. It generates experimental ARP packets too. This tool enables custom packets with configurable
Ethernet, IP, TCP, and UDP layers as well as custom payloads. NTGen[27] (Network Traffic Generator)
is a Linux kernel module (supports Linux kernel version 2.4.* and later) that generates network packets. It
supports common network protocol packets (ethernet, IP, TCP, UDP, ARP,. . .) and it uses a well-defined
meta language (Bison & Lex) for configuring packet generation streams. A user-space application allows
the user to configure plans (e.g. streams) of packets generation for the kernel module. Iperf[16] is a tool to
measure maximum TCP bandwidth, allowing the tuning of various parameters and UDP characteristics.
Iperf reports bandwidth, delay, jitter and, datagram loss. UDPGenerator[44] is a simple UDP traffic
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generator. It is a simple unicast traffic generator and per second bandwidth and packet loss data are
collected. Mtools[32] is able to send UDP packets to a specific host and measure the transmission time
(OWD and RTT) of each packet.

After having used some of the presented traffic generators for our network testing and measurement op-
erations, we experimented the lack of the necessary characteristics in a single traffic generator. Therefore,
we decided to implement a traffic generator of our own.

4. Distributed Internet Traffic Generator (D-ITG)

The purpose of our distributed internet traffic generator is to build up a suite that can be easily used to
generate repeatable sets of experiments by using a reliable and realistic mixture of traffic typologies. D-
ITG enables to generate many traffic scenarios that could be originated by a typical network test-case made
of a large number of users and network devices, as well as by different network topologies. Our generator
can simulate (and not emulate) traffic. In our vision, for traffic simulation we mean the reproduction of
a “traffic profile” according to theoretical stochastic models. Instead, for traffic emulation we mean the
reproduction of a specific protocol (i.e. reproduction of http messages without using a browser). In other
words D-ITG generates real flows on the base of theoretical statistical models presented in the scientific
literature. D-ITG primary design goals are:

• reproducibility of network experiments: exactly the same experiment can be repeated several times by
choosing the same seed value for the packet inter-departure and packet size random processes;

• investigation of scaling effects: scalability problems can be investigated by using different network
loads or different network configurations;

• improvement of generation performance with respect to other traffic generators;
• measurement of QoS parameters (delay, jitter, packet loss and throughput).

The generation of realistic traffic patterns can help in understanding protocols and applications of interest
in today’s Internet. Through the use of our tool, a network administrator can evaluate the performance of
a network, locate possible problems, and trace guidelines for network planning and real implementation.
The outcome of our work was a software tool available to network researchers and designers who need
a scientific way to prototype new applications and protocols in a real testbed with realistic traffic. D-ITG
defines a platform for traffic flows generation with high generation performance and it is currently down-
loadable and freely available athttp://www.grid.unina.it/software/ITG. The D-ITG platform consists of:

• ITG-CV, centralized version of internet traffic generator;
• ITG-LS, internet traffic generator with log server: UDP and TCP implementation;
• ITG-MPI, MPI version of internet traffic generator.

ITG-LS is able to de-localize logging processes in order to minimize the interference on the receiver and
sender processes. ITG-MPI is able to de-localize logging process with the added value of distributing
generation tasks on a cluster.Table 1 reports all terms and acronyms used in this paper whereas
Fig. 4 graphically shows an overview of the D-ITG platform. In the next subsections we present each
component of the D-ITG platform.

http://www.grid.unina.it/software/ITG
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Table 1

Symbol Description

D-ITG Distributed internet traffic generator: distributed platform for traffic generation
ITG-CV Internet traffic generator: centralized module of D-ITG
ITG-LS Internet traffic generator with log server: distributed module of D-ITG with log server based either on TCP

or UDP channel
ITG-MPI MPI version of the internet traffic generator: MPI version of D-ITG
ITGSend Internet traffic generator sender: D-ITG sender
ITGRecv Internet traffic generator receiver: D-ITG receiver
ITGLog Internet traffic generator log server: D-ITG log server
OWDM One way delay meter
RTTM Rount trip time meter
c Packet size (byte)
C Packet per second (pkt/s)
D Buffer size (packets)

4.1. ITG-CV

ITG-CV sender (ITGSend) and ITG-CV receiver (ITGRecv) use a signaling channel to exchange
information on the generation process. Multiple simultaneous flows are handled by different threads,
each of which sends packets using a separate data channel. ITGRecv is informed through the signaling
channel about the port where to listen for packets and the ending time of the transmission. Each flow
to be generated is basically described by the packet inter-departure process and the packet size process.
Both processes are modeled as independent and identically distributed (i.i.d.) series of random variables.
The user can choose a distribution for these random variables among the many implemented (constant,
uniform, normal, cauchy, Pareto, and exponential). Thanks to Robert Davies’ random number generator
library[7], it is possible to add new random distributions, so as to simulate different kinds of traffic sources.
The choice of these distributions is automatically made by ITG-CV in case the user desires to simulate the
traffic generated by a specific protocol (generated packets can be filled with a dummy payload). ITG-CV
has been planned for the generation of network traffic (ICMP), transport layer traffic (TCP and UDP),
several “application layer” traffic (HTTP, FTP, TELNET, SMTP, DNS, VoIP, Video, NNTP,. . .). One of
the features of our ITG-CV is the possibility of specifying the seed value for the packets inter-departure
and payload size random processes: in this way, it is possible to repeat exactly a particular realization of
these random processes. This feature provides for the reproducibility of network experiments. To collect

Fig. 4. D-ITG platform architecture.
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statistics about the generation process and the network behavior it is necessary to store some information
in the sent packets. The payload (both UDP and TCP) of sent packets contains the number of the flow the
packet belongs to, a sequence number and the time it was sent. This information is stored in a log file,
that is processed at a later stage in order to provide, for example, the average delay (either one-way-delay
or round-trip-time), the loss rate experimented by packets, and their jitter. The logging process interferes
with the other activities of the sender and the receiver, limiting the maximum achievable generation rate.
In order to reduce this interference, ITG-CV components use a buffer to temporarily store the logging
information related to a set of packets. When the buffer is full, its content is stored on the hard disk.
The log file is a binary file that can be decoded using our decoder utility. The final output is a text file
compliant with the format used by MGEN.

The traffic generation process is also heavily influenced by the CPU scheduling: several processes
(both user and kernel level) can be running on the same PC and this has a bad impact on the quality of the
generated flow. Since the real-time support of the operating systems where ITG-CV can be used is not
very efficient (due to their scheduling mechanisms and the inevitable timer granularity), it was necessary
to use a strategy. A variable records the time elapsed since the last packet was sent; when the inter-
departure time must be awaited, this variable is updated. If its value is less than inter-departure time the
remaining time is awaited, otherwise the inter-departure time is subtracted from the value of this variable
and no time is awaited. This strategy guarantees the required bit rate, even in presence of a non real-time
operating system. Logging of sent packets, one of the features of our ITG-CV, shows that generated traffic
strictly adheres to user’s requirements. Another property of our generator is the possibility of setting a
high priority for the generation process (this feature is available in RUDE/CRUDE generator too). If
supported by the operating system, this feature enables to achieve even better performance.

We have conducted experiments in order to compare the performance of ITG-CV to those of other
traffic generators.Fig. 5depicts a detailed comparative analysis. These results are related to the generation
of 75,000 UDP pkt/s with packet size equal to 1024 bytes and experiment duration equal to 60 s. The
experimental testbed is made of two Linux PCs with a Gigabit back-to-back connection. Hardware details
are: Intel Pentium IV 2.6 GHz, CPU Cache 512; Controller Ethernet: 3Com Gigabit LOM (3c940); Hard
Disk: Maxtor 6Y080L0 (Fast ATA/Enhanced IDE Compatible, Ultra ATA/133 Data Transfer Speed, 2MB
Cache Buffer, Quiet Drive Technology, 100% FDB—fluid dynamic bearing-motors). Among the studied

Fig. 5. Data rate analysis.
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traffic generators, in this analysis we have taken into account the following traffic generators: Mtools,
Rude/Crude, Mgen, Iperf, and finally UDPgenerator. As far as experimental results, ITG-CV shows the
best performance. It is important to underline that Iperf works in a different way with respect to ITG-CV.
Indeed Iperf does not produce a log file: it provides only an estimation of received and transmitted date
rate at the end of the experiment. For a detailed analysis, a comprehensive list of traffic generators can
be found athttp://www.grid.unina.it/software/ITG/link.html.

Due to data rate comparative analysis, the previous results are carried out using a constant distribution
for IDT and PS. In the next section we show some simple example of stochastic synthetic traffic generation.
Fig. 5illustrates that even the non-distributed version of D-ITG performs better than the other generators
in the sense that it is the closest to the expected value. In the sequel we will show that further improvements
are gained by using our distributed versions. In this paper we focus only on performance analysis of the
distributed implementations. More details and a performance evaluation of the centralized version of our
generator can be found in[30].

4.2. ITG-LS

The generation of traffic flows that are modeled with two random processes (inter-departure time and
payload size) calls for very strict constraints on the sender/receiver activity. The transmission time is
imposed by the statistical characterization of the inter-departure time. To adhere to the required inter-
departure model the sender must have the necessary resource to send the packet. Other processes running
on the sender machine, or some activity of the sender such as the log management, can influence the
generation process limiting the maximum sustainable sending rate. For example, writing the log file causes
a high amount of interference, since it requires the use of system calls to store the flow information on a
slow device (the hard disk). The distributed components of the D-ITG platform delocalize this auxiliary
activity on another machine. One of the ideas that drive the D-ITG platform architecture is the reduction
of the file system access rate on the machine that sends or receives packets. ITG-LS exploits the possibility
of managing remote information using a fast network more quickly than information stored on an local
hard disk device[12]. In the last few years, to improve the implementation of activities which require the
use of the file system, different approaches, based on the use of the memory of remote machines connected
through a fast network, have been proposed[13,2]. The new element of the ITG-LS, with respect to the
ITG-CV, is the ITGLog (seeFig. 6). ITGLog is a “log server”, running on a different host, which receives
and stores the log information from multiple senders and receivers. The logging activities is handled using
a signaling protocol. This protocol allows each sender/receiver to register on, and to leave, the log server.

Fig. 6. Architecture of D-ITG with log server.

http://www.grid.unina.it/software/ITG/link.html
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Fig. 7. ITGSend maximum data rate analysis. (a) Maximum data rate for the D-ITG sender; (b) loss rate in the generation
process.

The log information can be sent using either a reliable channel (TCP) or an unreliable channel (UDP). The
maximum sustainable sending rate of the ITG-LS implementation of the D-ITG platform is substantially
greater than that achieved with ITG-CV.Fig. 7(a) and (b)summarize some of the experimental results
that are shown in more detail in Section5. Fig. 11andTable 2report a description of the testbed. Note
that the testbed used to perform the comparative analysis of the three components of the D-ITG platform
is different from the one depicted in Section4.1. This is reason for the different performance achieved
by ITG-CV. Fig. 7(a)shows the bit rate supported by ITGSend for the different component of the D-ITG
platform. Fig. 7(b) shows the corresponding loss rate (logged-bit-rate/expected-bit-rate). Assuming a
loss rate equal to 0, both UDP and TCP implementations of ITG-LS have a sustainable bit rate that is
approximately 9% greater than that of ITG-CV. The two implementations of ITG-LS differ if we relax
the requirement on the loss rate. If we assume an acceptable loss rate up to 5%, the UDP version of
ITG-LS can achieve a maximum bit rate greater than that achieved with the TCP version. However, the
TCP implementation of ITG-LS can be used in some scenarios, such as that shown inFig. 8, where the
use of an unreliable channel for the log packet transfer can lead to some information loss.

4.3. ITG-MPI

The traffic that affects links shared by hosts having different applications running at the same time
(such as that of the backbone of the Internet) is the result of the combination of different – statistically
independent – flows. It might be possible to simulate it using multiple senders, each of which is associated
to one of the component flows. If the different senders run on a single machine, for example if the senders
are threads of ITG-CV or ITG-LS, their mutual interference can limit the quality of the generation
process. In such scenario only aggregated flows characterized by a low sending rate can be simulated.
ITG-MPI addresses this problem using a cluster of workstations to delocalize the generation process of
an aggregated traffic flow. Moreover, with ITG-MPI, so as with ITG-LS, it is possible to delocalize the
logging process using an appropriate log server. To support the distributed generation, ITG-MPI uses
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Fig. 8. Network scenario for ITG-LS TCP implementation.

the message passing interface. MPI is a well established standard for message passing communication
that has been accepted in the current practice of parallel computing for scientific applications. MPI has
emerged as the de facto standard for writing portable parallel programs and it includes wide support
for collective communication. The MPI interface offers several mechanisms that can be used to exploit
specific features possibly provided by the underlying hardware/software transport. Processes in MPI
communicate with each other by sending and receiving messages, whether the communication is taking
place within the context of an inter-communicator or intra-communicator. Data transfer from one process
to another requires operations to be performed by both processes. Thus, for every MPI send, there must be a

Fig. 9. MPI D-ITG architecture.
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Fig. 10. ITGSend maximum data rate analysis. (a) Maximum data rate for the D-ITG receiver; (b) loss rate in the receiving
process.

corresponding MPI receive performed by the process for which the message is bound. Several works have
been performed both on performance[19,10]and on the optimization of point-to-point and/or collective
communications in MPI[39,17]. There exist different implementations of the MPI library for different
computer architectures[3]. ITG-MPI is based on the LAM[40] implementation of the message passing
interface.

In order to generaten flows, ITG-MPI creates and delocalizesn processes on a cluster of workstations
(seeFig. 9). This cluster acts as the sender of the generation experiment. If the log of the sender activity
is required, to generate n traffic flows ITG-MPI createsn + 1 processes, the first of which acts as log
server. The log information is sent from the senders/receivers processes to the log process using the
MPI communication primitives. To optimize this communication, and to limit its interference on the
sending/receiving processes, ITG-MPI uses two buffers to store the log information. In such a way, using
the asynchronous communication primitives of MPI, ITG-MPI overlaps the log information exchange
with the generation process. The overhead due to the use of the MPI communication primitives in sending
the logging information can lead to a reduction of the maximum sustainable sending and receiving rate
with respect to the TCP/UDP implementation[26]. Experimental results, summarized inFig. 7(a) and
(b) for the sender and inFig. 10(a) and (b)for the receiver, show that the reduction is negligible and an
ITG-MPI sender or receiver is comparable to an UDP ITG-LS sender or receiver.

5. Analysis and performance evaluation

The main goal of the analysis presented in this section is the determination of an upper bound for the
generation rate achieved by D-ITG. We compare the performance of the three different implementations
of D-ITG. We focus on the comparison between ITG-LS and ITG-MPI in order to evaluate the possible
overhead induced by the use of the MPI library to remotely store information. This evaluation is carried
out because we are working on a scenario where processes are able to move on a “Traffic Generator
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Cluster” in a native way. The evaluation of the performance of the three implementations of D-ITG
presented in sections from 5.2 to 5.3 refers to a constant UDP traffic (constant packet size and constant
packets inter-departure time) and consists of three steps:

(1) givenc, determining the value ofD that corresponds to the maximum packet rate achieved while
varyingC;

(2) givenD equal to the above value andC, determining the value ofc such that there are no losses;
(3) given c andD according to 1 and 2, determining the maximum bit rate such that the losses are

negligible while varyingC.

This process has been carried out separately for D-ITG sender and receiver. We considered different
configurations (sender and receiver on the same machine or different machines) on various hardware
architectures. The results obtained on different architectures are, apart from a scaling factor, congruent.
For this reason, we present in the sequel the measures related to a specific implementation. In particular
we present the average values on 20 different trials (trials duration is 60 s). As previously anticipated,
this study has been conducted in a different testbed than the one used for the data rate analysis reported
in Fig. 5.

5.1. Testbed architecture

The testbed used to carry out the measurements is depicted inFig. 11. It is a cluster made of four
identical PCs having the characteristics shown inTable 2. All PCs have the Linux Red Hat 8.0—kernel
2.4.18.14 Operating System.

5.2. Analysis of the performance of the sender

5.2.1. Optimal size of the log buffer: D
Fig. 25illustrates the packet rate achieved by the sender of the three implementations of D-ITG as a

function of the size of the log bufferD and the required packet rateC. It is possible to note for all the
implementations that the maximum achieved packet rate grows as the value ofD grows. The gain obtained
while D grows decreases and becomes negligible for values greater than 30 for the local implementation
and 40 for the other implementations. This means that it is possible to identify an upper bound to the

Fig. 11. Testbed architecture.
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Table 2
Hardware characteristics

Processor
Number of CPUs: 2
Model name: Pentium II
CPU MHz: 450
CPU cache: 512KB

PCI bus
SCSI storage controller: Adaptec AHA-2940U2/U2W/7890/7891 Subsystem: Adaptec 2940U2W SCSI Controller
Ethernet controller: Intel Corp. 82557/8/9 [Ethernet Pro 100] (rev 04)
Ethernet controller: Intel Corp. 82542 Gigabit Ethernet (rev 02) (verde1 and verde2)

Hard disk
Vendor: SEAGATE
Model: ST39102LW
Type: Direct-access

Declared performance:
Average read: 5.4 ms
Average write: 6.2 ms
Average latency: 2.99 ms

Synchronous data transfer rate:
Maximum instantaneous: 40 Mbs (SE mode)
Maximum instantaneous: 80 Mbs (LVD mode)

Asynchronous data transfer rate:
Maximum instantaneous: 10.0 Mbs (2 bytes wide)

Multi-segmented cache: 1024KB standard; 4096KB optional

Fig. 12. Resulting plots of TCP generation with IDT = Pareto and PS = constant (window size of 1 s).
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Fig. 13. Output results of TCP generation with IDT = Pareto and PS = constant.

Fig. 14. Ethereal snapshot.

generation capability of the D-ITG senders. The performance improvement can be intuitively explained
by considering that the interference of the log operations on the generation of packets decreases asD

increases, since the log operations are performed less frequently. It is also intuitive that the gain decreases
asD grows, since further increases onD have a negligible impact on the performance of the sender. In
order to determine the optimal value ofD, we can refer toFig. 26that illustrates the percentage error
of generation (packets that the sender is not able to generate) as a function ofD and the required packet
rate. In the case of local implementation, we observe a negligible error rate forD = 30 and required
packet rate close to 28,000 pkt/s. The error rate is about 5% for a packet rate close to 30,000 pkt/s. We
can therefore consider an optimalD value of 30, which is related to a maximum achieved packet rate of
28,000 pkt/s. In the case of the other implementations, it is easy to draw an optimalD value of 40, in
correspondence of a maximum achieved packet rate of 30,000 pkt/s.

Fig. 15. Mcalc output.
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Fig. 16. Poisson packet size trend (D-ITG output).

5.2.2. Optimal packet size: c
Fig. 27depicts the error rate (logged-bit-rate/expected-bit-rate) as a function of the packet size for the

three implementations of D-ITG. From this figure, we can deduce that the optimal packet size is 1024
bytes for all the implementations. For larger values, the gain in terms of data rate is limited while the
error rate blows up (about 30% forc = 1536 bytes). In this last case we test the behavior with packets
length greater than themaximum transfer unit.

5.2.3. Maximum achieved bit rate: C
Figs. 28 and 29report the bit rate and the error rate as functions of the packet rateC for all the

implementations of D-ITG, givenc andD equal to the optimal values determined in the previous sections.
It is possible to deduce that the maximum achieved bit rate is about:

Fig. 17. TCP traffic using uniformly distributed PS.
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Fig. 18. TCP mcalc snapshot.

• 218,500 kbps forC = 28,000 in the case of local implementation;
• 230,000 kbps forC = 28,000 in the case of the implementation with remote log server (both for UDP

and TCP implementation);
• 230,000 kbps forC = 28,000 in the case of the MPI implementation.

The implementation with remote log server allows a gain in terms of maximum achieved bit rate equal
to 11,500 kbps (about 5%) with respect to the local implementation. We can also note that the MPI
implementation achieves the same maximum bit rate of the implementation with a remote log server.

5.3. Analysis of the performance of the receiver

5.3.1. Optimal size of the log buffer: D
As for the performance analysis of the sender,Figs. 30 and 31illustrate the results of the measures

performed to determine the optimal size ofD. The resulting trend is very similar to that obtained for the
sender: the performance achieved by the receiver improves and the gain decreases asD grows. Concerning
the evaluation of the optimal size ofD, from Figs. 30 and 31it is possible to draw an optimal value of
22,000 pkt/s withD = 30 for all the implementations.

Fig. 19. UDP video traffic (D-ITG output).
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Fig. 20. Two hours of telnet traffic.

Fig. 21. TCPLib.

5.3.2. Optimal packet size: c
Fig. 32 depicts the error rate (logged-bit-rate/expected-bit-rate) as a function of the packet size for

the receiver of all the implementations of D-ITG. For values of the packet size up to 1024 bytes,
the receiver data rate is equal to the expected one. For values of the packet size above 1024 bytes,
we can note a considerable packet loss (about 20% in correspondence ofc = 2048). These con-

Fig. 22. Mcalc telnet output.
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Fig. 23. D-ITG telnet PS.

siderations are true for all the implementations. Therefore, the optimal packet size is again 1024
bytes.

5.3.3. Maximum achieved bit rate: C
Figs. 33 and 34enable to determine the maximum data rate achieved by the D-ITG receiver without

loosing packets. The maximum data rate supported by ITG-CV is about 163,500 kbps. ITG-LS (both UDP
and TCP) and ITG-MPI present a similar behavior: the maximum supported data rate grow up to about

Fig. 24. Mcalc VoIP output. (a) Mcalc VoIP output (Codec G.711 with one voice sample per packet and without VAD); (b)
mcalc VoIP output (Codec G.711 with one voice sample per packet and with VAD); (c) mcalc VoIP output (Codec G.711 with
two voice samples per packet and without VAD); (d) mcalc VoIP output (Codec G.729 with two voice samples per packet and
without VAD); (e) mcalc VoIP output (Codec G.729 with three voice samples per packet and without VAD); (f) mcalc VoIP
output (Codec G.723.1 with one voice sample per packet and without VAD).
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Fig. 25. Sender buffer size analysis—data rate (c = 512; t = 60 s): this figure depicts the packet rate achieved by the different
implementations of ITGSend as a function of the required packet rateC, for different values of the log buffer sizeD. The
achieved maximum packet rate grows asD increases. For every implementation, it is possible to determine an upper bound for
the maximum packet rate. ITG-CV achieves the smallest upper bound (about 28,000 pkt/s whenD is at least 30) while the other
three implementations perform better (about 30,000 pkt/s whenD is at least 40).

180,000 kbps. For the receiver, the implementation with remote log, so as the MPI implementation, allows
a gain in terms of maximum achieved bit rate equal to 16,500 kbps (about 10%) with respect to the local
implementation. This gain is greater than that achieved for the sender both in absolute and relative terms.

6. Simulating internet traffic: analysis and experimentation

This section reports some practical examples of D-ITG with comments on the related results. In
particular we show:

• TCP traffic generation:
• IDT = Pareto distributed, PS = constant.
• IDT = constant, PS = Poisson distributed.
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Fig. 26. Sender buffer analysis (c = 512;t = 60 s): this figure shows the percentage of packets the sender is not able to generate
as a function ofC, for different values ofD. ITG-LS and ITG-MPI exhibit a similar behavior (a percentage error smaller than
2% forC < 30,000 andD = 40) and perform better than ITG-CV. In particular, it is possible to note that ITG-MPI and the UDP
version of ITG-LS perform slightly better than the TCP version of ITG-LS (a percentage error almost null forC = 30,000 and
D = 40 against the percentage error of 1.5% achieved by the TCP version of ITG-Log).

• IDT = constant, PS = uniformly distributed.
• UDP traffic generation

• Variable bit rate(VBR) video traffic: IDT = constant, PS = normally distributed.
• Telnet traffic generation
• Voice over IP(VoIP) traffic generation.

The former part shows TCP and UDP traffic generation whereas the latter one shows the application layer
traffic generation. The first example reports the generation of TCP traffic. The payload size of all packets
is constant and equal to 16 bytes. The flow lasts 60 s and the packet generation process is a Pareto process,
characterized byshapeequal to 3 andscaleequal to 10. We want to calculate now the expected average
bit rate, in order to verify the accuracy of our D-ITG. First, we note thatmcalcandezutilities simply
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Fig. 27. Sender packet size analysis (C = 26,000 for ITG,C = 28,000 for ITG-LS and ITG-MPI;t = 60 s): this figure illustrates
the percentage error as a function ofc; for all the implementations of D-ITG, the generation error is null forc < 1024. For values
above this threshold, we can observe a considerable packet loss.

consider the payload size of packets (and not their full size) in determining the average bit rate, and we
will do so as well. The expected value of a Pareto random variable with the previously defined parameters
is 15: this means that the average time interval between the departure of two consecutive packets is 15 ms.
As indicated the payload size is equal to 16 bytes (=128 bits). Therefore the average bit rate is equal
to the ratio of 128 bits to 15 ms, which yields 8533 Kbps. The resulting plots and mcalc output derived
from the log file of sender are shown inFigs. 12 and 13and confirm our expectations. Notice that bit rate
plots (Fig. 12) need the specification of a window size that is the time interval on which the bit rate must
be computed. Moreover, notice that all the parameters from mcalc output are related to the generated
traffic, even though they are addressed as “received” (this is due to the fact that MGEN does not store sent
packets and therefore analyzes only receiver’s log files). In the second example we show a TCP traffic
generation with a constant IDT (which results in 100 packets per second) and a PS that follows a Poisson
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Fig. 28. Sender max data rate analysis (c = 1024;D = 40): this figure depicts the generated data rate as a function ofC, while
D andc are equal to their optimal values. For all the implementations of D-ITG, it is possible to determine an upper bound to
the generation rate. The smallest upper bound is achieved by ITG-CV and is about 218,500 Kbps. The other implementations
perform similarly, having a maximum data rate equal to about 230,000 Kbps (that is, 5% greater).

process with an average value of 48 bytes.Fig. 14reports the snapshot of a traffic analyzer (Ethereal).
This figure allows checking that D-ITG correctly creates TCP packets. The expected data rate is equal
to 38 Kbps (48 bytes× 100 packets× 8). This value is confirmed by the results shown inFig. 15, which
reports the statistics of the D-ITG generation obtained using mcalc. Furthermore, stemming from the
theory, the deviation is equal to 48. Using the real generated values we have a deviation equal to 48.7
bytes and an average value equal to 47,761 bytes with a relative error respect to theoretical value equal
to 1.4%.Fig. 16 reports the size of the first 100 packets. In the third example we show a TCP traffic
generation with a constant IDT (which results in 100 packets per second) and a uniformly distributed
PS between 200 and 400 bytes. The expected average bit rate is 240 Kbps whereas the value achieved
by D-ITG is 240.279 Kbps.Fig. 17 reports D-ITG output whereas in theFig. 18 the mcalc output is
sketched. In the fourth example we illustrate the accuracy of D-ITG. Indeed we show how D-ITG is able
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Fig. 29. Sender max data rate analysis (c = 1024; D = 40): this figure shows the percentage generation error for the
three implementations of D-ITG. We can observe that only ITG-MPI and the UDP version of ITG-LS achieve a gener-
ation error smaller than 5% when the expected packet rate is 300,000 pkt/s (which corresponds to an actual data rate of
245,760 kbps).

to reproduce theoretical traffic model following the expected results. In particular using the results of
Fig. 19we can perform a comparison between a real traffic trace (Fig. 3) and D-ITG simulated traffic. The
compared traffic trace is a real VBR (Variable Bit Rate) video having the following characteristics: 2 h
long, 24 frames per second, frame dimensions normally distributed withm = 27,791 bytes ands = 6254
bytes[15]. D-ITG generates UDP traffic with one frame per packet, 12 min of traffic generation, IDT
equal to 24 packets per second and PS normally distribution withm = 27,791 bytes ands = 6254 bytes.
Comparing the trend in the two figures, we have the opportunity of checking the accuracy of D-ITG. In
the next example we show how D-ITG is able to generate application level traffic. In particular we show
the generation of Telnet traffic and VoIP traffic. The Telnet traffic model considers a Pareto distributed
IDT with shape b = 0.90 and scale a 1, whereas PS follows the TCPLib. InFig. 20a 2 h Telnet traffic trace
is sketched and inFig. 1the cumulative probability function of Telnet packet size is shown. Furthermore,
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Fig. 30. Receiver buffer size analysis (c = 512;t = 60 s): this figure represents the number of packets received by the different
implementations of ITGRecv as a function ofC, while increasingD. The maximum packet rate increases asD grows. For all
the implementations, it is possible to calculate an upper bound. This value is similar for all the component of D-ITG and is equal
to 22,000 pkt/s.

Fig. 21depicts the TCPlib trend. This figure reports the comparison among TCPLib distribution and two
exponential trend lines: looking at this representation, we can show that the Telnet PS does not follow
an exponential distribution. In particular there is a substantial difference especially for the first bytes. As
far as D-ITG Telnet traffic generation, we consider a 10 s generation interval. In order to verify the PS
distribution we analyze log files using the mcalc utility (Fig. 22): the data rate is equal to 1.181 Kbps (i.e.
147.6 byte per second). In order to calculate the average value of packet dimension we calculate the ratio
between the data rate and the packet rate (147.6 bytes per second divided per 74.248 packets per second):
the result is 1.98 bytes per packet. In the theoretical model the bytes-per-packet average value is equal
to 1 byte in the 62.8% of the total packets whereas it is equal to 2 bytes in the 12.1% of the same total:
using D-ITG we can conclude that the theoretical value is respected. Finally, inFig. 23the D-ITG Telnet
PS is reported.
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Fig. 31. Receiver buffer analysis (c = 512;t = 60 s): this figure illustrates the percentage of lost packets as a function ofC for
different values ofD. The different implementations of D-ITG exhibit a similar behavior forC < 22,000.

Finally, in the last example we show how D-ITG is able to generate different sessions of VoIP traffic.
These sessions are different in terms of codecs and for using the voice activity detection (VAD) in
conjunction with header compression. Indeed, in the generation phase D-ITG is able to specify the
used codec, number of samples per packet, VAD option and finally real time protocol (RTP) header
compression. In order to calculate the number of bytes for the payload we use the relation Payload=
Codec-Rate× Frame-Time× VAD, where [Codec-Rate] = Kbps and [Frame-Time] = second, while
VAD is a pure number. In our real implementation we use an average reduction of the payload equal to
35%. The following figures represent several examples where different combinations of input values are
present. The generation interval is equal to 10 s in all trials.Fig. 24(a)reports the mcalc output related
to a VoIP traffic generation with Codec G.711 with one voice sample per packet and without VAD. In
this case in the theoretical model we have 100 packets per second and the payload equal to 80 bytes.
Taking into the account 8 bytes of RTP header the expected data rate is 88× 100× 8 = 70.4 Kbps that
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Fig. 32. Receiver packet size analysis (C = 20,000;t = 60 s): this figure shows the percentage error (percentage of packets not
received) as a function ofc. For all the implementations of D-ITG, the percentage error is null forc < 1024. For values above
this threshold, we can observe a considerable packet loss.

is the same value of our traffic generation.Fig. 24(b)reports the mcalc output related to a VoIP traffic
generation Codec G.711 with one voice sample per packet and with VAD. In this case, while in the
theoretical model we have 100 packets per second and the payload equal to 80 bytes, using the VAD we
observed a reduction equal to 35%. Taking again into the account 8 bytes of RTP header, the expected
data rate is (80× 0.65)× 100× 8 = 48 Kbps that is the same value of our traffic generation. InFig.
24(c) the mcalc output related to a simulation with Codec G.711, two voice samples per packet and
without VAD is reported. In this case, the theoretical model envisions 50 packets per second and the
payload equal to 80 bytes. With 8 bytes of RTP header and the two voice samples per packet, the expected
data rate is (80× 2 + 8) × 50× 8 = 67.2 Kbps that is the same value of our traffic generation. InFig.
24(d) the mcalc output related to a simulation with Codec G.729, two voice samples per packet and
without VAD is reported. In this case in the theoretical model we have 50 packets per second and the
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Fig. 33. Receiver max data rate analysis (c = 1024;D = 40): this figure depicts the received data rate as a function ofC, while
D andc are equal to their optimal values. For all the implementations of D-ITG, it is possible to determine an upper bound to the
received rate. The smallest value is achieved by ITG-CV and is about 165,000 Kbps. The two versions of ITG-LS and ITG-MPI
exhibit a similar behavior and their upper bound is about 180,000 Kbps. The gain achieved with respect to ITG-CV is about
10%.

payload equal to 10 bytes. Considering 8 bytes of RTP header and the two voice samples per packet,
the expected data rate in this case is (10× 2 + 8) × 50× 8 = 11.2 Kbps that is the same value of our
traffic generation. InFig. 24(e)the mcalc output related to a simulation with Codec G.729, three voice
samples per packet and without VAD is reported. In this case in the theoretical model we have 33 packets
per second and the payload equal to 10 bytes. With 8 bytes of RTP header and the three voice samples
per packet, the expected data rate is (10× 3 + 8) × 50× 8 = 10.032 Kbps that is still the same value
of our traffic generation. InFig. 24(f) the mcalc output related to a VoIP traffic generation with Codec
G.723.1 with one voice sample per packet and without VAD is reported. In this case in the theoretical
model we have 26 packets per second and the payload equal to 30 bytes. Taking into account 8 bytes of
RTP header the expected data rate is (30+ 8) × 26× 8 = 7.9 Kbps that is the same value of our traffic
generation.
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Fig. 34. Receiver max data rate analysis (c = 1024;D = 40): this figure shows the percentage of lost packets for the three
implementations of D-ITG. The two versions of ITG-LS and ITG-MPI exhibit a null error rate forC < 22,000. ITG-LS presents
a loss rate of 7% forC = 22,000. ForC above this value, the error rate grows, but it is still below 8% forC = 24,000 for the
two versions of ITG-LS.

7. Conclusion and future work

In this work we presented a general framework for traffic generation and performance characterization
of our distributed platform named distributed internet traffic generator. It is able to reproduce real “Internet
Traffic” according to theoretical models and with high performance with respect to existing and widely
used traffic generators. Our work steps from the assumption that currently the Internet traffic generation is
an important research task. Indeed, both the tutorials presented at SIGCOMM 2003[11] and MMNS 2003
[8] have shown that Internet traffic patterns and models are particularly interesting for networking research
community. D-ITG has been planned for generating network traffic (ICMP), transport layer traffic (TCP
and UDP) and “application layer” traffic (HTTP, FTP, TELNET, SMTP, DNS, VoIP, Video, NNTP,. . .).
In this paper we presented only some example of UDP and TCP generation and, as far as the application
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level traffic, Telnet and VoIP traffic generation. D-ITG implements traffic generation according to several
statistical distributions (exponential, uniform, constant, Pareto, cauchy, normal,. . .) both for IDT and
PS random variables. It enables to simulate various network conditions under different traffic loads and
network configurations. D-ITG is based on theoretical traffic models and represents a way for analyzing
network performance through the measurement of the typical network parameters (delay, throughput,
jitter, and packet loss). The basic idea of creating a new traffic generator arose from the lacks of existing
ones (MGEN, Rude/Crude, etc.), emerged when we used them to analyze the different behavior of the
network when some strategies that provide QoS were employed.

In this work a number of tests were conducted on our real testbed to evaluate important factors such as
max data rate, optimal packet size and optimal buffer size. Furthermore this work shows that even the non-
distributed version of D-ITG performs better than the other generators. We presented three components
of our D-ITG platform: a centralized version, two distributed version with log server (using UDP and
TCP channel) and finally an MPI version. We showed how the distributed versions perform better than
the centralized version. In addition, we need a distributed version in two kinds of contexts. In the former,
the network scenario contains several PDAs. In this case a remote log server (both for sender and receiver
phase) is useful because the storage capacity of PDAs is limited. In the latter, in a complex wide network
scenario it is useful to have a single log server to coordinate the actions of several sender and receiver
processes.

Currently a real network is heterogeneous in terms of access networks, operating systems and end users
devices. As far as this last point, we have arranged a realistic scenario where the traffic generation/reception
is possible from/to PDAs or Advanced Mobile Phone. Indeed, the introduction of a remote log server
is justified not only by the will of increasing performance (by reducing the interference of the logging
operations on the generation and reception activities), but also by the lack of available resources on devices
such as advanced mobile phones and PDAs. In such heterogeneous scenario, if the sender is requested to
locally log information, the amount of traffic that may be generated is severely limited. In order to carry out
a complete characterization of heterogeneous integrated and mobile networks D-ITG has been ported on
several different operating systems: Linux, Windows, and embedded operating systems. With respect to
this last platform in our testbed we used PDAs running Linux FAMILIAR—kernel 2.4.18 version, and the
original source code, with little modifications, has been ported on this destination platform using a cross-
compiler version of gcc. Using this implementation is possible to carry out a complete characterization
of real heterogeneous mobile networks[29,34].
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