Inferring the buffering delay of remote
BitTorrent peers under LEDBAT vs TCP

C. Chirichella®3, D. Rossi!, C. Testa!, T. Friedman?, A. Pescape’3
1 Telecom ParisTech, first.last@enst.fr
2 UPMC Sorbonne Universite, t imur . friedmanQupmc. fr
3 Univ. Federico II, Napoli, first.last@unina.it

Abstract—Nowadays, due to excessive queuing, Internet delays
grow sometimes as large as the propagation delay from moon to
earth — for which the bufferbloat term was recently coined. Some
points to active queue management (AQM) as its solution, others
propose end-to-end congestion control techniques — like BitTor-
rent that recently replaced TCP with the LEDBAT transport
protocol.

In this demo, we implement a methodology to monitor the
upstream queuing delay experienced by remote hosts, both those
using LEDBAT, through LEDBAT’s native one-way delay mea-
surements, and those using TCP, through the timestamp option.
By actively taking part into torrent downloads as leechers, our
software is able to infer (and visualize) the amount of access
delay suffered by the remote peers.

I. MOTIVATIONS

As recently pointed out in [1], “Internet delays now are as
common as they are maddening”. The root cause for these
delays can be identified with the excess buffering inside a
network, which is nicknamed ‘“bufferbloat”. Though this is
nothing new [2], the situation got worse in the latest years due
to mainly two facts: (i) TCP loss-based design, that forces the
bottleneck buffer to fill before the sender reduces his rate and
(ii) relatively large memories in front of low-capacity ADSL
and Cable uplink that translate into significant queuing delay
(up to few seconds [4]).

While [1] points out local active queue management
(AQM) techniques (e.g., affecting the scheduling and discard
of packets in the buffer differently from a traditional FIFO
discipline) as the ultimate solution to reduce queuing delay,
it forgets however another important orthogonal direction:
namely, the engineering of end-to-end flow and congestion
control techniques alternative to TCP. Congestion control may
have different goals, such as controlling the streaming rate
over TCP connections as done by YouTube or Netflix, or
aggressively protecting user QoE as done by Skype over UDP,
or to provide bulk transfers service such as Picasa background
upload option, Dropbox synchronization or Microsoft Back-
ground Intelligent Transfer Service (BITS).

The latest addition to the congestion control field is repre-
sented by BitTorrent “Low Extra Delay Background Trans-
port” (LEDBAT), that focuses on bounding the maximum
bufferbloat induced in the network, while permitting an ef-
ficient utilization of link resources at the same time. Shortly,
LEDBAT is a delay-driven congestion control protocol, where
the growth and shrink of the congestion window depends on

the distance of the estimated queuing delay from a maximum
target queuing delay. This target queuing delay is by default
100ms, and is thus well lower than the maximum queuing
delay caused by TCP bufferbloat. The protocol, which is
defined as an IETF draft [7] (focused on the algorithmic
aspects) and as a BEP [5] (focused on the UDP framing),
has recently become BitTorrent default congestion control
protocol, replacing thus TCP. According to a post by Brahm
Cohen, and to our own measurements, about half of the
BitTorrent traffic is now carried over LEDBAT.

Overall, while the direction taken by LEDBAT is helpful in
reducing the bufferbloat problem, it is unclear whether a partial
LEDBAT deployment can suffices to releave the bufferbloat:
i.e., as only half of BitTorrent traffic goes over LEDBAT,
the remaining half still goes over TCP, which can lead to
bufferbloat anyway. Besides, not all user traffic is carried over
BitTorrent, so that other data-intensive application using TCP
can still force bufferbloat to happen.

II. DEMO AIM

Our demo software infers the queuing delays of remote
LEDBAT and TCP hosts. As Fig. 1 depicts, the software is
based on passive analysis of BitTorrent traffic running at a
local monitor peer m. The local peer participates into torrents
as a regular leecher, and exchanges with remote peers r; data
over either LEDBAT (when available) or TCP (legacy clients).
In a nutshell, we reconstruct, at the local receiver, the state
of the buffer as the remote sender would do (more detail in
Sec. III). Users can interact with the demo by controlling
one of the peers c participating into the torrent, e.g., by
injecting TCP traffic to a controlled server s: this crafted
traffic competes with the BitTorrent traffic, actively creating a
bufferbloat that m can gauge.

Controlled

server g
Monitoring 1
peer m

r2
Controlled oo
peer ¢
Remote peers V"
Fig. 1. Demo synopsis.



The demo visualizes then bufferbloat delay statistics, both
per-peer and in aggregate form. We point out that upstream
access delay is an important metric for all delay sensitive
applications: this includes not only gaming and VoIP (that are
severely affected by delay and jitter), but also Web browsing
(as upstream access delay influences the duration of DNS
resolution, TCP three-way handshake, HTTP GET, etc.).

We point out that while previous work on LEDBAT exists, it
mostly adopt a simulative approach and are thus out of scope.
Experimental work on BitTorrent and LEDBAT such as [3],
[6], [8] has instead so far addressed different problems. More
precisely, [3] proposes algorithms to improve OWD estimate
against clock skew and drifts, while in [6] we performed
testbed experiments on early versions of the LEDBAT protocol
[6], and in [8] we focus on the impact of LEDBAT vs TCP
on the swarm completion time.

This work is the first to study LEDBAT from a novel,
exciting, bufferbloat perspective. We point out that while [8]
focuses on the primary quality of experience metrics for the
BitTorrent application (i.e., download time), in the method-
ology shown in this demo is able to we gauge an important
quality of service metric (i.e., access delay) addressing thus a
complementary aspect to [8] — i.e., the impact of BitTorrent
on the quality of other, delay-sensitive, applications.

III. METHODOLOGY

The methodology we propose is based, as the LEDBAT pro-
tocol itself, on One Way Delay (OWD) measurement. OWD
is composed by propagation, transmission, processing and
queuing delays. Neglecting the processing delay, propagation
and transmission delays are constant components, while the
only variable component is the gueuing delay. Intuitively, a
packet which finds the queue empty (i.e., null queuing delay)
will accurately estimate the constant portion of the OWD
(i.e., the sum of propagation and transmission delays). This
measure yields a minimum of the delay, that will be stored
as a reference (or “base delay” in LEDBAT terminology).
Queuing delay can then be estimated as the difference between
the current delay samples and the base delay.

We now sketch (a simplified view of) the methodology
to measure the queuing delay in the LEDBAT case, where
the OWD is directly available in the packet header. In the
TCP case, not shown for lack of space, queuing delay can be
estimated by exploiting the timestamp option.

As Fig. 2 shows (employing the terminology of the LED-
BAT draft [7]), delay measurements are performed collabora-
tively by the transceivers. In particular, the sender timestamps
all sent packets with its local clock, using a specific header
field. On reception of any new packet, the receiver calculates
the OWD as the difference between its own local clock and the
timestamp carried by the LEDBAT header, and sends it back
to the sender (using another field of the LEDBAT header). In
this way, any acknowledgement packet carries the estimated
OWD suffered by the last received data packet in the opposite
direction.

In practice, by merely monitoring a stream of LEDBAT
packets, it is possible to infer the amount of queuing delay of

LEDBAT header

CIIIIR

timestamp
tM . ack.delay
L T T T ———
‘‘‘‘‘‘‘‘‘‘ )
‘trx,i-l
[
i' X, 1
‘R M R
tri- tixia tix,i
tM
X, |€
£
H . tx,i+1
i1 e
g \\ X,i tx,i
R
R_(FM _ iR i(EM iR ti
Yo =t tho)- min(ey - th ) >

Fig. 2. The monitor M can infer the queue size of the remote peer R.

both the local and the remote host. To infers the queue size
of a remote host R, a monitor co-located (or close to a probe
host) M simply need to perform the same state update as if
he was the intended destination of the sniffed packet,

o it first updates the base delay 3% as the minimum over
all OWD samples received from that peer, i.e., gl =
min(3,tM . —tE )

X, tx,i
o it then evaluate the queuing delay ¢ incurred by the
i-th packet sent from R by subtracting the base delay
Br from the timestamp difference carried in the (i + 1)-
th packet in the opposite direction, i.e., ¢¥ = (tM

rr,g

tR ) — BF (notice that the OWD difference cancels the

tx,i
clock offset between M and R; additionally, clock drift
could be corrected as in [3]).

With a similar technique, we can compute delays in case
of TCP peers as well. Individual samples are then collected,
aggregated and visualized by the demo software.

At the same time, while the demo is able to show the status
of remote peer bufferbloats on live torrents, we are aware that a
larger set of experiments is necessary in order to build a picture
representative of an Internet-wide situation. As such, we have
not only validated our methodology in a local testbed (against
different ground truths) but are also currently running a wide
measurement campaign involving several torrents (which is
however well beyond the aim of this demo).

REFERENCES

[1] V. Cerf, V. Jacobson, N. Weaver, and J. Gettys. Bufferbloat: what’s wrong
with the internet? Commun. ACM, 55(2):40-47, Feb. 2012.

[2] S. Cheshire. It’s the latency, stupid! http://rescomp.stanford.edu/
~cheshire/rants/Latency.html, May 1996.

[3] B. Cohen and A. Norberg. Correcting for clock drift in uTP and LEDBAT.

In Invited talk at 9th USENIX International Workshop on Peer-to-Peer

Systems (IPTPS 2010), San Jose, CA, Apr. 2010.

C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminat-

ing the edge network. In ACM IMC, pages 246-259, 2010.

[S] A. Norberg. BitTorrent Enhancement Proposals on uTorrent transport
protocol. http://www.bittorrent.org/beps/bep_0029.html, 2009.

[6] D. Rossi, C. Testa, and S. Valenti. Yes, we LEDBAT: Playing with

the new BitTorrent congestion control algorithm. In Passive and Active

Measurement (PAM 2010), Zurich, Switzerland, Apr. 2010.

S. Shalunov. Low Extra Delay Background Transport (LEDBAT). IETF

Draft, Mar. 2010.

C. Testa, D. Rossi, A. Rao, and A. Legout. Experimental assessment

of bittorrent completion time in heterogeneou s tcp/utp swarms. In

Traffic Measurement and Analysis (TMA) Workshop at Passive and Act

ive Measurement (PAM), Wien, AU, March 12-14 2012.

[4

—

[7

—

[8

[l



