
1

Passive bufferbloat measurement exploiting
transport layer information

C. Chirichella1, D. Rossi1, C. Testa1, T. Friedman2 and A. Pescape3

1Telecom ParisTech – first.last@enst.fr
2 UPMC Sorbonne Universites – timur.friedman@upmc.fr

3 Univ. Federico II – pescape@unina.it

Abstract—“Bufferbloat” is the growth in buffer size that has
led Internet delays to occasionally exceed the light propagation
delay from the Earth to the Moon. Manufacturers have built
in large buffers to prevent losses on Wi-Fi, cable and ADSL
links. But the combination of some links’ limited bandwidth
with TCP’s tendency to saturate that bandwidth results in
excessive queuing delays. In response, new congestion control
protocols such as BitTorrent’s uTP/LEDBAT aim at explicitly
limiting the delay that they add at the bottleneck link. This work
proposes a methodology to monitor the upstream queuing delay
experienced by remote hosts, both those using LEDBAT, through
LEDBAT’s native one-way delay measurements, and those using
TCP, through the Timestamp Option. We report preliminary
findings on bufferbloat-related queuing delays on an Internet
measurement campaign involving a few thousand hosts.

I. INTRODUCTION

As a recent CACM article points out, “Internet delays now
are as common as they are maddening” [12]. The combination
of bufferbloat, or excessive buffer sizes, with TCP’s congestion
control mechanism, which forces a bottleneck buffer to fill
and generate a loss before the sender reduces its rate, is the
root cause for these delays. The problem is well known in
the scientific community [13], but has worsened lately with
the ever-larger buffers that manufacturers place in equipment
that sits in front of low-capacity cable and ADSL uplinks.
Bufferbloat-related queuing delays can potentially reach a few
seconds [26].

The designers of BitTorrent, aware that their application’s
multiple TCP streams had a tendency to saturate upstream
links to the detriment of other applications (such as VoIP
or games) created uTP, a protocol with a congestion con-
trol mechanism that backs off in response to delays. The
mechanism is now evolving under the auspices of the IETF
in the form of the Low Extra Delay Background Transport
(LEDBAT) protocol [29], which aims to deflate bufferbloat
delays through efficient but low priority data streams. LED-
BAT could be used for any sort of bulk data transfer, which is
now commonplace as users upload video (YouTube, DailyMo-
tion, etc.), pictures (Picasa, Flickr, etc.), music (GoogleMusic,
etc.), and other forms of data (Dropbox, Facebook, etc.) to
the Cloud. LEDBAT assumes that the bottleneck is on the
upstream portion of an ADSL or cable access link, so that
congestion is self-induced by a user’s own traffic competing
with itself. To maintain user QoE and avoid harming VoIP,
gaming, Web, or other ongoing transfers, LEDBAT employs

a delay-based congestion control algorithm. When LEDBAT
has exclusive use of the bottleneck resources, however, it fully
exploits the available capacity.

Like TCP, LEDBAT maintains a congestion window. But
whereas mainstream TCP variants use loss-based congestion
control (growing with ACKs and shrinking with losses), LED-
BAT estimates the queuing delay on the bottleneck link and
tunes the window size in an effort to achieve a target level
of delay. The dynamic of TCP’s AIMD window management
systematically forces the buffer to fill until a loss occurs and
the window size is halved. Recent studies [17] show that most
home gateways have a fixed buffer size, irrespective of the
uplink capacity. With cable and ADSL modem buffers ranging
from, on average, 120 KB to a maximum of 365 KB [17], and
common uplink rates of 1 Mbps, worst case TCP queuing
delays range from 1 second on average to a maximum of
3 seconds. LEDBAT, by contrast, protects VoIP and other
interactive traffic by targeting a delay cap of 100 ms [5]. By
choosing a non-zero target, LEDBAT also ensures that capacity
is fully exploited.

Although TCP’s loss-based congestion control, coupled with
large buffers, can clearly cause significant bufferbloat delays, it
is unclear how often this happens in practice, and how badly it
hurts user performance. Gettys describes [20] how the problem
would disappear when he went about trying to investigate its
root cause. Active approaches, such as Netalyzer [26], are
likely to overestimate delay magnitude: by purposely filling
the pipe, Netalyzer learns the maximum bufferbloat delay, but
not its typical range.

Our main contribution is the design and validation of a
methodology for inferring the queuing delays encountered by
remote LEDBAT and TCP hosts. It is based on passive analysis
of the timestamp information carried by either application-
layer messages (LEDBAT) or transport-layer segments (TCP).
This approach adhere to the literature’s vision that suggests
ISP characterization should be done at scale, continuously,
and from end users [9]. Our methodology complements their
measurements of achievable rates with estimations of the
delays that end-users actually encounter.

We validate our methodology in a local testbed, against
different variants of ground truth: kernel level, application
logs, and traffic probes. Despite our main focus in this paper is
to propose and validate the methodology, we also briefly report
on experiments in the wild Internet (where we use BitTorrent
as a case study, since it supports both the LEDBAT and TCP

protocols and is also amenable to large scale ISP performance
characterization [9]), though we refer the reader to [14] for a
more detailed quantitative analysis. In principle, the BitTorrent
results should be representative of the bufferbloat delays
that end-hosts will experience from other upload-intensive
applications, like the one cited above.

II. RELATED WORK

Several branches of work relate to ours. Some work points

out the existence of the bufferbloat problem [13], [20], [26].
This includes early work from the 90s [13] and more recent
work [20]. Netalyzer [26] offers Web-based software able to
analyze several features of users’ home connections, including
bufferbloat size. Our work differs from Netalyzer in that it
does not require end-user cooperation. Our methodology is
able to evaluate the user’s buffer queue without interfering.
Other work offers a solution to the bufferbloat problem [10],
[18], [29], [30]. Solutions can be broadly divided into two
categories, namely active queue management (AQM) tech-
niques and end-to-end congestion control (E2E). AQM tech-
niques [18] selectively schedule/mark/drop packets to both
reduce queue size and induce reactions from E2E control
algorithms. Despite initial interest, adoption of AQM has
been slow so far, with limited deployment in user access
gateways [12]. E2E solutions [10], [29], [30] generally employ
a delay based controller; TCP Vegas [10] is the most famous
example, to which NICE [30] and LEDBAT [29] are very
much indebted. However, while TCP Vegas aims to be more
efficient than TCP NewReno, both NICE and LEDBAT aim
to have lower priority than TCP. The main difference between
NICE and LEDBAT is that NICE reacts to round-trip time
(RTT), and LEDBAT to one-way delay (OWD) difference.
Further work takes an experimental look at LEDBAT [15],
[28] (while yet other work adopts a simulation approach). This
work addresses different questions from ours, such as testbed-
based evaluation of early versions of the protocol [28], or
algorithms to improve OWD estimates in light of clock skew
and drift [15]. We are the first to use LEDBAT (and TCP)
to remotely gauge bufferbloat delays, and thus also the first
to experimentally validate such an approach. Finally, there is
work that examines BitTorrent through experimentation [9],
[21], [22], [27]. Early measurement work on BitTorrent dates
back to [22], focused on the properties of an entire swarm over
a long period of time. Closer work to ours, instead exploits it
for end-host measurements [9], [21], [27]. In more detail, [21]
focuses on capacity estimation, while [27] on peer availability.
More recently, [9] proposed to use BitTorrent as a service
for crowd-sourcing ISP characterization from the edge of the
network via a BitTorrent plugin called Dasu. The plugin is
successful in obtaining information from a large number of
peers and vantage points (i.e., 500K peers in 3K networks), but
it mainly focuses on achievable data rates for BitTorrent peers.
We, in contrast, propose a methodology for enriching the
information available about end-hosts. Namely, while previous
work focused on bandwidth, we argue that in light of the
bufferbloat problem, the delays actually experienced by users
should receive greater attention – hence the methodology

we propose. Finally, we point out that in very recent times,
work started to appear that explicitly focuses on bufferbloat

measurement, trough either passive [7], [8], [14], [19] or active
measurement [11], [16], [25]. While for reason of space we
cannot fully contrast these work, we refer the interested reader
to [8] and [11] for such an analysis, having a passive and active
measurement focus respectively.

III. METHODOLOGY

We estimate queuing delay by collecting one-way delay
(OWD) samples, establishing the minimum as a baseline delay,
and then measuring the degree to which a sample differs from
the baseline. This is a classic approach used in congestion
control to drive congestion window dynamics. Early work
on this subject date back in late 80’s, as the Jain’s CARD
approach [24], for pro-actively adapts the congestion window
using the network understanding as it approaches congestion.
Our innovation is to demonstrate how a passive observer of
LEDBAT or TCP traffic can use this approach to estimate the
uplink delays experienced by a remote host. We make our
source code available at [1].

To establish differences from a baseline, one only requires
notional OWD values, as opposed to actual values of the sort
that one could measure with synchronized clocks. A packet
that encounters empty queues will incur just the fixed com-
ponents of OWD: propagation, transmission, and processing.
In the absence of factors such as clock drift (which can be
controlled for, e.g. [15]), clock resets, or routing changes,
the only variable component is queuing delay. Figs. 1(a) and
1(b) illustrate the view of a passive observer of, respectively,
LEDBAT and TCP packets flowing between a nearby host A
and a remote host B. Three packets, i−1, i, and i+1 are shown.
Based upon information directly available in LEDBAT packet
headers and in the Timestamp Option of TCP packets, once
it has seen packet i+1 (the moment is marked by a star), the
observer is able to estimate the queuing delay experienced by
packet i. These delays may result from all upstream traffic
from B, including flows other than the one being observed
(possibly other than A).

A. LEDBAT.

In the absence of a finalized LEDBAT standard, our protocol
parser is based on BitTorrent’s currently implemented BEP-29
definition [2]. This specifies a header field, named “timestamp”
in Fig. 1(a), that the sender timestamps based on its local
clock. On reception of a new packet, the receiver calculates
the OWD as the difference between its own local clock
and the sender timestamp, and sends this value back to the
sender in another LEDBAT header field, named “ack.delay” in
Fig. 1(a). In this way, each acknowledgement packet conveys
the estimated OWD incurred by the most recently received
data packet, and this information is used to grow/shrink the
congestion window [29].

An observer close to A sniffs the packets and performs the
same state updates as does the LEDBAT congestion control
protocol running on A. Notice that there is no need for the

 

















 

 





(a)



















 





(b)

Fig. 1. A passive observer can infer packet i’s queuing delay coming from B. LEDBAT case in the left plot, eqn. (2); TCP case in the right plot, eqn. (4).

passive observer to estimate the clock of the probe host A: all
the needed information are carried in the LEDBAT header.

At each packet reception, the observer updates the base
delay βBA as the minimum over all OWD B → A samples:

βBA = min(βBA, t
A
rx,i − tBtx,i), (1)

qBi = (tArx,i − tBtx,i)− βBA (2)

Then, the queuing delay qBi incurred by packet i can be
inferred by subtracting βBA from the timestamp difference
carried in packet i+1. Whereas the base delay is a notional
value, dependent upon the unknown offset between the clocks
at B and A (or the observer), the queuing delay is independent
of the offset. Note that the observer could also use these
techniques to estimate A’s queuing delays, provided that it
is upstream of A’s bottleneck queue.

B. TCP.

Collecting OWD samples from observation of a TCP flow
is more complicated than for LEDBAT for several reasons. To
begin with, TCP congestion control is driven by inference of
losses, not delays, so timestamps are absent from the default
TCP header. To obtain timing information, the end hosts must
have negotiated use of the Timestamps Option, introduced
by RFC 1323 [23]. This means the observer must either be
one of the hosts, work in cooperation with one of the hosts,
or opportunistically measure only those flows that have this
option enabled.

Then, timestamp units may differ from flow to flow, as
RFC1323 only requires that the “values must be at least
approximately proportional to real time.” A factor φ is needed
to convert timestamp values into real clock times. The factor
is related to the kernel’s ticking frequency and defaults to 4
for (recent) Linux releases and to 10 for Windows OS. As
an observer does not in general know the OS of the remote
host, we use already-developed OS fingerprinting techniques
based on IP TTL values [6]. Another issue is that the TCP
header, even with the Timestamp Option enabled, does not
carry OWD samples directly, as the LEDBAT header does.

Rather, it carries a timestamp from the TCP sender, and,
when the packet is an ACK, an echo of the timestamp of the
packet being ACKed. The purpose is to facilitate calculation
of round trip time (RTT) rather than OWD. Though both of
these timestamps mark packet sending times, with no explicit
indication of packet receipt times, an observer can nonetheless
estimate OWD. Referring to Fig. 1(b), if we assume that packet
i+1 is issued as an ACK very shortly after A receives data
packet i from B then we can use tAtx,i+1 instead of tArx,i for
the purpose of calculating OWD samples received on B → A:

βBA = min(βBA, t
A
tx,i+1 − tBtx,i), (3)

qBi = φ
[

(tAtx,i+1 − tBtx,i)− βBA

]

(4)

This assumption is justified in most cases, as packet processing
time is, as a general rule, much smaller than propagation time.
Even were processing time to inflate OWD calculations by a
fixed amount, this would not pose a problem for estimating
differences from baseline OWD. However, there are two
circumstances in which tAtx,i+1 potentially diverges from tArx,i:
(i) delayed ACKs and (ii) holes in the sequence number space.

When (i) delayed ACKs are in use, RFC 1323 specifies
that the receiver echo the timestamp of the earliest unac-
knowledged data packet. The timestamp difference between
the ACK and this earlier packet would overestimate OWD.
We avoid this by correlating the ACK segment with the last

data segment the ACK refers to, exploiting sequence and ACK
number. When there are (ii) holes in sequence number space,
the ACK for the out-of-order packet echoes the most recent
packet that advanced the window – which is not necessarily the
most recently received packet. Since the solution is in this case
more tricky than in the previous one, and since out-of-order are
infrequent, we merely discard OWD samples of out-of-order
packets.

IV. VALIDATION

We validate our methodology in a small testbed, of which
we make the gathered packet level traces and logs available at
[1]. Space constraints limit us to describe the most challenging

 
 

  
 
 

 

 0

 2000

 4000

 6000

(L
E

D
B

A
T

,
B

ac
k

lo
g

g
ed

)

Inferred
Expected (kernel)
Expected (UDPing)

 0

 2000

 4000

 6000

(T
C

P
,

C
h

ir
p

)

 0

 2000

 4000

 6000

 0 20 40 60 80 100

Q
u

eu
in

g
 d

el
ay

 [
m

s]

(T
C

P
,

B
ac

k
lo

g
g

ed
)

time [s]

 0
 50

 100
 150

(a)

 0

 2000

 4000

 6000

A
:(

L
E

D
B

A
T

,B
ac

k
lo

g
g

ed
)

C
:(

T
C

P
,C

h
ir

p
s)Inferred

Expected (kernel)
Expected (UDPing)

 0

 2000

 4000

 6000

A
:(

T
C

P
,H

ea
rt

b
ea

t)

C
:(

T
C

P
,C

h
ir

p
)

 0

 2000

 4000

 6000

 0 20 40 60 80 100

Q
u

eu
in

g
 d

el
ay

 [
m

s]

A
:(

T
C

P
,B

ac
k

lo
g

g
ed

)

C
:(

T
C

P
,B

ac
k

lo
g

g
ed

)

time [s]
(b)

Fig. 2. Left plot: queueing delay at B, with an ongoing transfer B→A: from top to bottom (LEDBAT,Backlogged), (TCP,Chirp) and (TCP,Backlogged)
cases. Right plot: queueing delay with an additional “‘hidden” transfer B→C.

scenario, in which an observer close to (or co-located with)
A estimates B’s upstream queuing delay (complete results
in [1]). We compare estimated delay against a measured
delay ground truth, under several traffic models, with and
without “hidden” traffic. The testbed comprises two Linux
machines, each running a 2.6.38 kernel. The Hierarchical
Token Bucket (HTB) of tc emulates access link bottlenecks,
limiting both machines’ uplinks to 1 Mbps. Traffic is captured
by the tcpdump sniffer. We use the default CUBIC version
of TCP, and the uTorrent 3.0native application-level Linux
implementation of LEDBAT over a UDP framing that is
provided by BitTorrent.1 To generate LEDBAT traffic between
the hosts, we set up a private tracker and let A and B join
as the unique leecher and seed respectively. We compare the
delay estimates generated by our passive methodology with
two ground truths. First, we log the queuing delay in the
Linux kernel, modifying the sch_print kernel module of
the netem network emulator. Second, we send UDP2 echo
request/reply probes with UDPing [4] to get an estimation
of the RTT between A and B. Since only acknowledge-
ments are traveling back from A to B, the queuing occurs
only at B, allowing us to gather yet another estimate of
qBi = RTTi −minj!iRTTj.

A. Without hidden traffic

In this scenario, the seed B sends traffic to A and no
other traffic is sent from B to other hosts. Hence, an ob-
server O close to A observes all the traffic sent by both A
and B. Packets are sent B → A using transport protocol

1We do not use libUTP [3], which in our experience is an older implemen-
tation still affected by some bugs. Notably, libUTP sometimes resorts to the
use of 350 byte packets, which leads to unstable behavior, and has been ruled
out from later uTorrent versions [28].

2We prefer to use UDP, since it is well known that ICMP traffic is handled
differently w.r.t. TCP and UDP by some devices/OSs.

P ∈ {TCP,LEDBAT}. The application generates packets for
the transport protocol according to traffic model T ∈ {Back-
logged,Chirp}. In Backlogged traffic, applications always have
data to send. In Chirp traffic, data generation follows an
ON/OFF behavior, with a deterministic start time for ON
periods (every 30 seconds) and an exponentially growing
number of packets to send during the ON periods. While
the Backlogged traffic model (as implemented by, e.g., Net-
alyzer [26]) forces bufferbloat queuing to reach its maximum,
we want our methodology to be able to closely follow any
scale of buffer inflation, leading us to use the Chirp traffic
model.

Fig. 2(a) shows the temporal evolution of the queuing delay
estimate and ground truths. The top plot reports the case
(P, T) = (LEDBAT,Backlogged), from which we see that,
as expected, queuing delay at B reaches the 100 ms target
specified in the LEDBAT draft. The middle plot reports the
(TCP,Chirp) case, in which we see that, depending on the
amount of data that the application gives to the transport layer,
the queuing delay can possibly grow very large (up to about
5 seconds in our setup). Finally, the bottom plot reports the
(TCP,Backlogged) case, in which the queuing delay grows up
to the maximum value and then flattens as the TCP sender
is continuously sending data. In all cases, we see that our
methodology is very reliable w.r.t. both the kernel log and
the UDPing ground truths: differences between the inferred
vs. expected queuing delay are on the order of 1 packet of
queuing delay for LEDBAT, a few packets for TCP.

B. With hidden traffic

In a typical scenario, however, the observer O will be able
to observe only part of the traffic generated by the host of
interest B (say, the traffic B → A), but will miss another part
(say, B → C). Nevertheless, our methodology should allow
the observer to get an unbiased view of B’s queue occupancy,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

Inferred mean queuing delay [ms]

TCP
LEDBAT

 0
 200
 400
 600
 800

 1000
 1200

 80 100 120 140 160 180 200M
ea

n
 T

C
P

 q
u

eu
in

g
 d

el
ay

Mean LEDBAT queuing delay

y=x
y=2x

EU peers
US peers

Fig. 3. Internet bufferbloat queuing delays: CDF of mean per-peer delay
(top), and scatter plot of LEDBAT vs. TCP delays at the same peer (bottom).

at least provided that a sufficient number of samples reach A.
In this case, we have two degrees of freedom for describing
our setup, as we not only need to define the B → A exchange
in terms of the protocol and traffic-model pair (PBA, TBA),
but also need to characterize the B → C exchange in terms
of (PBC , TBC). Here, we use an additional Heartbeat traffic
model, behaving similarly to an ICMP echo request/reply or
UDPing, and sending periodic data packets. The rationale
behind the Heartbeat model is as follows. Since LEDBAT is
a low priority protocol, when B is sending TCP traffic to C,
any backlogged LEDBAT transmission toward A will sense a
growing delay and reduce its sending rate, possibly down to a
minimum of one packet per RTT. In this case, the number
of samples available to the observer will be the minimum
possible under LEDBAT. To perform a fair comparison under
TCP, we therefore need to tune the TCP sending rate in a
similar manner.

The top plot of Fig. 2(b) reports the case where B is
sending backlogged LEDBAT traffic to A and is sending TCP
Chirp traffic to C. Several observations can be made from
the plot. First, notice that the time at which the observer can
infer the queuing delay qB is different from the ground truth
reference time tG: the kernel logs dequeue operations, while
in the case of UDPing we correlate the RTT information with
the time the first packet of the pair was sent. In the case of
LEDBAT, the packet needs to reach the observer prior to qB

being inferred. While the observer knows that the queuing
delay sample is received at about tG + qB , we prefer not
to correct the time to better stress differences in the plot.
Second, notice that the number of valid samples at A is
lower than in the previous case. This is a consequence of
two facts: (i) the LEDBAT sending rate reduces to about 1
sample per RTT under Chirp; (ii) some of the packets trigger
a retransmission timeout in LEDBAT, and we may receive
duplicate samples that, as explained earlier, we conservatively
filter out. Third, and most important, even if only very few
packets make it to the receiver A (which is already an implicit
signal of congestion on the path from B to A), A is still able to
extract valuable timing information from these samples, which
at least lets it evaluate the magnitude of the bufferbloat delays.

Comparing the top plots of Fig. 2(a) to Fig. 2(b), from just
a handful of packets A infers that queuing delay at B jumps
from about 100 milliseconds to possibly 6 seconds. The middle
plot of Fig. 2(b) reports a similar case, where this time queuing
delay inference is performed over TCP Heartbeat traffic B→A,
while B is sending TCP Chirp to C. Again, A is able to
correctly infer that a significantly large queue qB is building
up although he has no knowledge of the traffic B→C. Finally,
the bottom plot of Fig. 2(b) reports the case where both B→A
and B→C are TCP backlogged transmissions. In this case,
though the traffic is equally split between A and C, A is able
to perfectly infer the queuing delay at B. We conclude that
our methodology is able to reliably infer the queuing delay
at B from the inspection of LEDBAT or TCP traffic with the
Timestamp Option enabled. The error in the inferred measure
is negligible in cases where a sizable amount of traffic makes
it to the observer, but is still robust and reliable even when
the observer is able to sniff only very few samples.

V. INTERNET EXPERIMENTS

Finally, we report on preliminary experiments to gauge
the degree of actual bufferbloat queuing in the uncontrolled
Internet. We point out that, while these results do not aim
at providing an exhaustive coverage of the bufferbloat in the
Internet, they nevertheless already bring valuable insights of
the current standpoint. For further experimental results, we
refer the reader to [14], where we collect complementary
data, such as reverse DNS queries (this would provide us
with clues as to peers’ access network types) and lightweight
OS fingerprinting, to provide a root cause analysis of the
bufferbloat. We make the packet level traces available at [1].

We use BitTorrent, as it allows us to probe a large number
of hosts worldwide. Our BitTorrent clients exchanged with
20,799 peers, 8,688 of which transferred data using LEDBAT
and 12,111 of which were using TCP. Experiments were
performed over a 4-month period during 2012, principally
using the uTorrent 3.0 and Transmission clients in their default
configurations. We run these clients from vantage points in
Italy, France, and Austria, from which we obtained about
20 GB of raw traces. The clients joined 12 legal torrents from
Mininova, spanning different categories (2 eBooks, 2 games,
1 software, 2 documentaries, 1 podcast and 3 videos), file sizes
(from 56 MB for the smallest eBook to 1.48 GB for the largest
video, totalling 6.4 GB of data overall), and number of seeds

(from 30 for an eBook to 9,635 for a video).

In these Internet experiments, we did not have access to
the remote hosts. This means that we were deprived of the
sources of ground truth that we used for validation purposes:
we could not look at the kernel logs (requiring root access to
the host), and we could not obtain UDPing logs (requiring
host collaboration). We took two alternative approaches to
obtaining reliable results: conservative filtering out exchanges
for which we have little data, and carefully comparing
queuing delay under LEDBAT and TCP for the same hosts.

Filtering approach. We filtered our results by focusing only on
the subset of peers with which one of our clients exchanged at

least 100 packets, i.e., 50 queuing delay samples per peer. This
left us with 2,052 LEDBAT peers and 987 TCP peers, which
is still a significant, and we hope representative, portion of the
entire population. The top plot of Fig. 3 shows the distribution
of mean queuing delay for each type of peer.

Interestingly, we see a sharp increase of the LEDBAT CDF
between 100 ms and 200 ms. This suggests that LEDBAT
is at least partially effective in limiting bufferbloat queuing
delays for long transfers. Some LEDBAT transfers however
report queuing delays exceeding 1,000 ms. This is likely due
to hidden TCP traffic directed to unobservable peers, as we
had seen during validation (see Fig. 2(b)). The lesson that we
take from this observation is that LEDBAT by itself would
not be sufficient to eliminate bufferbloat delays, unless it were
adopted globally.

An interesting feature of the TCP curve is that a significant
portion of peers experience low queuing delay. Our best
explanation is that these are hosts that have enabled bandwidth
shaping precisely to avoid bufferbloat delays. We note that the
benefit they gain from reduced delay comes at the expense of
reduced bandwidth usage, and hence longer swarm completion
times. The very lowest delays, we believe, reflect phenomena
other than queuing in the modem, such as interrupt coalescing,
uncertainty due to timestamp precision, token bucket burst size
of the application layer shaper, etc.

Comparative approach. We run experiments back-to-back
using the same client with LEDBAT alternately enabled or
disabled – in the latter case forcing peers to use TCP. Since
we cannot guarantee which peer the client will connect with,
we looked for cases in which the same peer participated in
both LEDBAT and TCP transfers.

We found only 11 peers (7 in Europe and 4 in the US) that
did so. The bottom plot of Fig. 3 shows their mean queuing
delay under LEDBAT and TCP as a scatter plot, along with
two reference lines: for a TCP delay either equal to or double
the LEDBAT delay. Interestingly, we found that for 8 of the
11 peers, queueing delay is double or worse under TCP, with
significant congestion in some cases (e.g., mean delay above
800 ms).

VI. DISCUSSION

We have presented a methodology to gauge upstream buf-
ferbloat queuing delays at remote peers by observing timing
information conveyed in LEDBAT or TCP headers. Validation
on a controlled testbed confirms the methodology to be reliable
even with very few observations. Preliminary experiments in
the uncontrolled Internet confirm that (i) LEDBAT use is
already fairly widespread among BitTorrent clients, (ii) par-
tial LEDBAT adoption is insufficient to eliminate bufferbloat
delays in the presence of TCP peers, and (iii) LEDBAT can
at least reduce average delays.

Our ongoing work focus on development of alternative,
more general, techniques for passive bufferbloat measurement
that do not rely on TimeStamp information on packet head-
ers [8], or active techniques for large scale Internet measure-
ment [11].

ACKNOWLEDGEMENT

This work has been carried out at LINCS http://www.lincs.
fr, and funded by the FP7 projects mPlane (GA no. 318627).

REFERENCES

[1] http://www.enst.fr/~drossi/dataset/bufferbloat-methodology.
[2] http://bittorrent.org/beps/bep_0029.html.
[3] http://github.com/bittorrent/libutp.
[4] http://perform.wpi.edu/tools/tools.
[5] ITU Recommendation G.114, One Way Transmission Time.
[6] Dynamic probabilistic packet marking for efficient IP traceback. Com-

puter Networks, 51(3):866 – 882, 2007.
[7] M. Allman. Comments on bufferbloat. SIGCOMM Comput. Commun.

Rev., 43(1), Jan. 2012.
[8] A. Araldo and D. Rossi. Bufferbloat: passive inference and root cause

analysis. Technical report, Telecom ParisTech, 2013.
[9] Z. Bischof, J. Otto, M. Sánchez, J. Rula, D. Choffnes, and F. Bustamante.

Crowdsourcing ISP characterization to the network edge. In ACM
SIGCOMM W-MUST’11, 2011.

[10] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: new tech-
niques for congestion detection and avoidance. ACM SIGCOMM CCR,
24(4):24–35, 1994.

[11] P. Casoria, D. Rossi, J. Auge, M.-O. Buob, T. Friedman, and A. Pescape.
Distributed active measurement of internet queueing delays. Technical
report, Telecom ParisTech, 2013.

[12] V. Cerf, V. Jacobson, N. Weaver, and J. Gettys. Bufferbloat: what’s
wrong with the internet? Communications of the ACM, 55(2):40–47,
2012.

[13] S. Cheshire. It’s the latency, stupid! http://rescomp.stanford.edu/
~cheshire/rants/Latency.html, 1996.

[14] C. Chirichella and D. Rossi. To the moon and back: are internet
bufferbloat delays really that large. In IEEE INFOCOM Workshop on
Traffic Measurement and Analysis (TMA’13), 2013.

[15] B. Cohen and A. Norberg. Correcting for clock drift in uTP and
LEDBAT. In 9th USENIX International Workshop on Peer-to-Peer
Systems (IPTPS’10), 2010.

[16] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver,
and V. Paxson. Fathom: a browser-based network measurement platform.
2012.

[17] L. DiCioccio, R. Teixeira, M. Mayl, and C. Kreibich. Probe and Pray:
Using UPnP for Home Network Measurements. In PAM, 2012.

[18] S. Floyd and V. Jacobson. Random early detection gateways for conges-
tion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413,
1993.

[19] S. Gangam, J. Chandrashekar, I. Cunha, and J. Kurose. Estimating TCP
latency approximately with passive measurements. 2013.

[20] J. Gettys and K. Nichols. Bufferbloat: Dark buffers in the internet.
Communications of the ACM, 55(1):57–65, 2012.

[21] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Leveraging
BitTorrent for End Host Measurements. In PAM. 2007.

[22] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and
L. Garces-Erice. Dissecting BitTorrent: Five Months in a Torrent
Lifetime. In PAM. 2004.

[23] V. Jacobson et al. TCP Extensions for High Performance. IETF RFC
1323, 1992.

[24] R. Jain. A delay-based approach for congestion avoidance in inter-
connected heterogeneous computer networks. ACM SIGCOMM CCR,
19(5):56–71, 1989.

[25] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G
networks. 2012.

[26] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illu-
minating the edge network. In ACM Internet Measurement Conference
(ACM IMC’10), 2010.

[27] G. Neglia, G. Reina, H. Zhang, D. Towsley, A. Venkataramani, and
J. Danaher. Availability in BitTorrent systems. In IEEE INFOCOM,
2007.

[28] D. Rossi, C. Testa, and S. Valenti. Yes, we LEDBAT: Playing with the
new BitTorrent congestion control algorithm. In PAM, 2010.

[29] S. Shalunov et al. Low Extra Delay Background Transport (LEDBAT).
IETF draft, 2010.

[30] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism
for background transfers. In USENIX OSDI, 2002.

