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Abstract: In this paper we present a multi-scale method for the detection of small targets embedded in noisy background. The multi-
scale representation is built using a weighted undecimated discrete wavelet transform. The method, in essence, is based on the maximisation
of information available at each resolution level of the representation. We show that such objective can be achieved by maximising
Renyi’s information. This approach allows us to determine an adaptive threshold useful for discriminating, at each scale, between wavelet
coefficients representing targets and those representing background noise. Eventually, avoiding inverse transformation, scale-dependent
estimates are combined according to a majority vote strategy. The proposed technique is experimented on a standard data set of
mammographic images.
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1. INTRODUCTION

The problem of detecting targets through their automatic
spatial localisation in a noisy background is of interest to
several realms such as medical imaging, multispectral sensing,
pattern recognition and information theory [1]. Generic
targets exhibit a great variability of shape and appearance,
scale and orientation, lighting and imaging conditions and
natural background clutter. To address generic target detec-
tion, any method should in principle be powerful enough
to cope with all such controversial features. Yet, it would
be necessary to circumscribe the generality of these features
by exploiting knowledge of the underlying nature of the
world in which targets are generated and observed [2]. In
practice, current research in this area is mainly dealing with
algorithms relying on various restrictions on the applications.

In this work, we study the detection of small targets
embedded within an inhomogeneous, textured background,
and we assume that no other contextual knowledge is either
taken into account or available. To be more precise, by
detection we mean the spatial localisation of the targets,
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not being concerned with their exact shape reconstruction.
To make progress, if we are not interested in gauging the
structure of the background, the latter can be handled as
an obscuring signal or ‘noise’. Under this assumption, the
target detection can be reformulated as a problem of
signal/noise discrimination. This is generally known as de-
noising problem: given an image, a finite energy function,
I P L2(R2), the detection process can be expressed as an
estimation problem of the ‘true’ but unknown signal It (the
target), hidden by a background ‘noise’ Ib, from the observed
data I:

I(x,y) = It(x,y) + Ib(x,y) (1)

where (x,y) is a point of the image domain.
Advanced statistical methods have been developed for

this problem, from basically two different perspectives [1].
A first class of methods assumes prior knowledge to be
available, and bayesian estimates are computed for the
unknown signal. Such estimates are optimal under the ‘true’
model, but unfortunately, such a model is seldom if not at
all available in practice. Then, non-parametric estimation
methods often provide an appealing alternative.

Clearly, if we do not take into account any prior know-
ledge, the amount of information at hand is merely a
function of the signal-to-noise ratio. On the other hand, in
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many applications one should cope with images where sig-
nal-to-noise ratio is rather poor. A good example is the
detection of microcalcifications in X-ray mammography.

Mammograms are among the most difficult of radiological
images to interpret, and microcalcification visual assessment,
which is very important for the early diagnosis of breast
cancer, turns to be an actual challenging task. A microcalci-
fication is a tiny calcium deposit that has accumulated in
the breast tissue, and it appears in the mammogram as a
small bright spot embedded within a non-stationary back-
ground. To shed light on the dimensions of the problem,
the calcifications may vary in size from smaller than 0.1-
mm to 5-mm in diameter. Figure 1 shows an example of
mammogram with a selected Region Of Interest (ROI),
including hardly visible microcalcifications, while Fig. 2
presents a magnified view of the same ROI. For dealing
with such a challenging example, it is necessary to assume
that objects of interest reveal some evident features at some
specific scale, while being invisible at other scales.

Fig. 1. An example of mammographic image where a Region Of
Interest (ROI) has been selected that contains hardly visible
microcalcifications.

Fig. 2. A magnified view of the ROI selected in the mammogram
of Fig. 1.

Wavelet theory is one important approach to scale analy-
sis, due to the fact that the basis functions are well suited
to the analysis of local scale phenomena; further, wavelets
can also be used to model non-stationary processes. Fairly
good results have been achieved in de-noising problems
[3,4]. De-noising methods work as follows: first, they perform
the wavelet transform of the observed data; secondly, they
apply simple thresholding non-linearities to empirical wave-
let coefficients; finally, signal estimates are computed by
taking the inverse wavelet transform of the thresholded
coefficients. However, many of the procedures derived to-
date have been based upon the assumption of normal noise,
and are therefore sensitive to noise distributions whose tails
are heavier than the Gaussian distribution, as it is the case
for images like mammograms. In addition, a reconstruction
step is required, constraining the choice of the wavelet basis.

The rationale behind our research is that an ideal detector
would gauge the image at multiple resolutions in order to
pick out the objects of interest, and then thoroughly com-
bine such resolution-dependent estimates according to some
fusion procedure. Here, the multi-scale representation is
obtained using a variation of the Undecimated Discrete
Wavelet Transform (UDWT), which we call a weighted
UDWT. In this set-up, we propose a method based on the
maximisation of the information available at each resolution
level of the weighted UDWT. Most importantly, we show
that information maximisation can be achieved by maximis-
ing Renyi’s information [5], and that this process eventually
reduces to a simple thresholding procedure. The proposed
method constitutes of the following steps: first, it builds a
weighted UDWT of the digital image; then, wavelet coef-
ficients are thresholded on the basis of scale dependent
Renyi’s information; finally, avoiding reconstruction, the
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method combines results of scale-based estimation according
to a majority vote strategy.

In the field of mammographic analysis, several target
detection methods have been presented [6–8]. To overcome
the limitations of these earlier methods, a number of publi-
cations have recently tried to exploit prior knowledge within
the processing phase [9–11]. Highnam’s model [9,10] uses
image formation knowledge, like a scatter component, for
mammographic enhancement and interesting tissue represen-
tation, like curvilinear structures of non-fat tissue. More
significant is Karssemeijer’s work [11], which incorporates
prior knowledge via the random field model in a Bayesian
framework; though effective, the method is very complex
and computationally expensive, as noted by the author him-
self.

Multi-scale methods have also been adopted, either based
on Laplacian pyramids [12] or, lately, on the wavelet trans-
form [13–16]. Among these, Strickland’s method [15] is
appealing as regards both the approach and quality of experi-
mental results achieved. It is worth noting that our work
shares some common practical aspects with Strickland and
Han [15], for instance, target detection is directly
accomplished within the transformed domain, relying on
the thresholding of wavelet coefficients, and also no prior
knowledge is explicitly assumed. Therefore, results reported
by Strickland and Han [15] are a suitable reference to
compare with. In contrast, the overall rationale is quite
different; most importantly, no general estimation problem
is addressed by them: simply, the threshold is empirically
chosen as a fixed percentile of the coefficient histogram,
thus limiting the approach.

This paper is arranged as follows. Section 2 discusses the
small target detection problem in terms of non-linear signal
estimation in a multi-scale representation, and motivates
the use of the wavelet transform obtained via a weighted
undecimated scheme. Section 3 shows how, in such a set-
up, the use of an information-theoretic approach turns into
a simple but effective thresholding algorithm; in addition,
the combination of information gathered at the different
decomposition levels is introduced. Section 4 presents results
achieved on mammographic images. To this aim, a public
data set [11] has been used. The latter is specifically tailored
for microcalcification analysis, and it allows performance
characterisation using a Free Receiver Operating Character-
istic (FROC) curve [11,15] as a figure of merit. Discussion
is provided in Section 5, together with some concluding
remarks.

2. THEORETICAL BACKGROUND

The reformulation of the small target detection problem as
a non-linear signal estimation provides a framework to cap-
ture as much of the ‘signal’ as possible (the targets), while
leaving out as much of the ‘noise’ as possible (background
tissue plus actual noise). To this end, refer again to Eq. (1).
If we recast the problem of estimating the true signal It

from the observed data I, a preliminary step is to find a
suitable representation. The idea is to model the underlying

signal and the background signal by expanding them using
a suitable basis {cs}: namely, It(x,y) = SsWs,tcs(x,y) and
Ib(x,y) = SsWs,bcs(x,y). Then, using Eq. (1) and by linearity,
the observed data can be expanded in the same fashion:

I(x,y) = SsWscs(x,y), (2)

the coefficients given by

Ws = Ws,t + Ws,b. (3)

In our case, the choice of basis functions is constrained by
the fact we must deal with small targets of varying size and
shape characterised by poor signal-to-noise ratio. A natural
strategy is to think that the objects of interest convey
information at some specific scale, while being invisible at
other scales.

The analysis of images at multiple scales has proven
insightful for image encoding, compression and feature
extraction [17]. Gaussian and Laplacian pyramids have been
used since the early 1970s to perform such multiresolution
analyses of images [18], and have lately been reformulated
in terms of scale-space methods employing diffusion processes
and equations to evolve images at different scales [17,19,20].
On the other hand, the work on pyramids has led in recent
times to the idea of wavelets and wavelet expansions (for
a comprehensive review, see Mallat [21]).

Wavelets are basis functions generated from one single,
zero mean function c, named ‘mother wavelet’, by dilations
and translations. In two dimensions, a wavelet transform is
computed with several wavelets {ck}1#k#K that often have
different spatial orientations, indexed by k. We denote

ck,s(x,y) =
1
s

ckSx
s
,
y
sD and ck,s(x,y) = ck,s(−x,−y). The continu-

ous wavelet transform of an image I at a scale s, in the
direction k, is defined by the inner product

Wk,sI(u,v) = kI(x,y),ck,s(x − u,y − v)l (4)

=
1
s

ee I(x,y)cSx − u
s

,
y − u

s Ddxdy,

where the integral spans the domain of the image. This is
equivalent to saying that Wk,sI(u,v) is obtained by performing
the convolution I*ck,s(x,y). Since c has by definition a zero
average, the convolution measures the variation of I in a
neighbourhood of (u,v), whose size is proportional to scale
s. Intuitively, this transformation can be seen as a mathemat-
ical microscope whose position and magnification are (u,v)
and 1/s, respectively, and whose optics is given by the
choice of the specific wavelet c. It is worth noting that, by
a suitable choice of c, the basis functions {ck,s} can provide
an orthogonal basis. By means of such representation, it has
been shown [21] that the image can be expanded as

I(x,y) = O
s

1
sFO

K

k=1

Wk,sI * ck,s(x,y)G. (5)

Clearly, Eq. (5) specifies the formula of Eq. (2) by using
two-dimensional wavelet bases.

When dealing with digital images, we need to address
an appropriate discrete wavelet transform. The continuous
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transform of Eq. (4) is usually discretised as follows. A
discrete scaling s = sl

0 based on a dilation step s0 . 1 is
introduced; meanwhile, the translational parameters are
chosen to depend both upon s and on translational steps
u0 and v0, that is, u = iu0sl

0, v = jv0sl
0, where (i,j,l) P Z3, and

where l P [0,L] indexes the decomposition levels. The family
of basis functions can thus be written as,

1
sl
0
cSx − iu0sl

0

sl
0

,
y − jv0sl

0

sl
0

D,

which substituted in Eq. (4) gives rise to the discrete wavelet
transform Wk,sl0

I(iu0,sl
0, jv0sl

0). In the following, for notational
simplicity we denote wl

k(i,j) = Wk,sl
0
I(iu0sl

0,jv0sl
0) as the coef-

ficients of the discrete wavelet transform. Depending upon
the type of sampling, that is on the s0, u0 and v0 values,
the transform can be more or less redundant. In the case
of critical sampling (occurring for s0 = 2 and u0, v0 = 1), the
wavelet family can be chosen as an orthonormal basis. A
fast algorithm to compute an orthonormal transform, which
is widely used for image processing applications, has been
given by Mallat [22].

The problem this algorithm encounters is that it might
not be convenient for pattern recognition purposes: first,
it is not shift-invariant; secondly, image sub-bands result
uncorrelated at the different scales. To overcome such draw-
backs an UDWT can be used [23]. Such a scheme is
characterised by octaves obtained by alternating a low-pass
filter tapped by a band-pass filter (as in Mallat’s algorithm),
but inserting zeros between the elements of the filters in
place of decimation. This approach seems to be much more
effective for detection aims, counter-balancing a reasonable
loss of computational efficiency. We extend it as follows.

By applying a UDWT to the discrete form of image I,
namely {I(i,j)ui P {0,1,. . . ,M−1}, j P {0,1,. . .,N−1}}, four
coefficient planes {wl

k(i,j)} of size M × N are obtained at each
scale or decomposition level. The plane indexed by k = 0
(low frequency sub-band) represents the smoothed image,
and it does not convey useful directional information. For
k = 1,2,3, the detail sub-bands are given, containing diagonal,
horizontal and vertical directional information, respectively.
Since we are not interested in image reconstruction via
inverse transform, and provided that useful information
mostly resides in detail sub-bands, a representation plane
{wl(i,j)ui P {0,1,. . .,M−1}, j P {0,1,. . .,N−1}} is built at each
level l, where each wavelet coefficient is the weighted
linear combination

wl(i,j) = O3

k=1

akuwl
k(i,j)u, (6)

and 0 # ak # 1. We define the collection of the L represen-
tation planes as the weighted UDWT.

Notice that, in this way, a more compact representation
is obtained, as opposed to that achieved by the usual undeci-
mated decomposition; namely, at each decomposition level
there is only one coefficient plane whose domain is the same
of the original image. In addition, we gain the possibility, by
tuning the ak weights, of adapting the representation to
different kinds of images/applications. Since the transform-

ation is applied on the discrete form of I, where I is
modelled according to Eq. (1), each coefficient of the
weighted representation plane can be written as

wl(i,j) = wl(i,j)t + wl(i,j)b. (7)

Summing up, we have precisely defined Eq. (3) in the
framework of a computational procedure.

A key assumption we make here, and which we will use
in the next section, is that for certain values of l, wl(i,j)b = 0.
In other words, at certain scales the corresponding obser-
vation coefficients wl(i,j) represent the target signal rather
than background and noise. This is reasonable in view of
the spectral and structural differences between the signals It

and Ib across scales. It is worth noting that such an assump-
tion shares some common aspects with multi-scale detection
of image structures, as proposed in the scale-space literature.
Actually, scale-space and wavelets are not unrelated, but as
clearly stated by Lindeberg and ter Haar Romeny [24], the
scale-space representation can be considered as a special
case of continuous wavelet representation, where the scale-
space axioms imply that the wavelet function must be
selected as a derivative of the Gaussian kernel. In this
respect, a first motivation to choose the wavelet represen-
tation as opposed to scale-space representation is to avoid
constraining the method to an a priori chosen mathematical
microscope, e.g. derivatives of Gaussians. A second motiv-
ation lies in providing a sufficiently simple, but effective,
detection scheme. In the scale-space literature it has been
recognised that linear processing with Gaussian kernels is
not sufficient to handle the detection problem, and some
nonlinear steps must be introduced in terms of differential
geometric descriptors [20]. Interestingly, properties of wavelet
basis endow the wavelet representation with a remarkable
aptitude for estimating the signal with a smoothing that is
locally adapted to the signal regularity. In fact, given an
image modelled as in Eq. (1), it is well known that signal
estimation can be achieved by applying a simple nonlinear
thresholding filter to the wavelet transformed image [25]. It
must be noted, however, that wavelet thresholding has been
actually employed for true de-noising [3,4] rather than for
pattern localisation purposes in the guise we are proposing.
Further, although wavelets do provide an unconditional basis
for a large class of signals, and do offer a simple framework
for non-linear filtering, many of the procedures derived to
date have been based upon limiting assumptions on noise
and distributions. In the following section, we describe an
information-theoretic approach to derive, in the context of
the problem here examined, a thresholding filter under less
restrictive assumptions.

3. COEFFICIENT THRESHOLDING VIA
RENYI’S INFORMATION

The basic idea is the following. Consider the wavelet coef-
ficients at the level l for simplicity, as a sequence of inde-
pendent and identically distributed random variables charac-
terised by a probability distribution function (pdf)
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pl(x) = Pr{wl(i,j) = x}. Clearly, taking into account Eq. (7),
pl(x) can be considered as a mixture of two different distri-
butions tl(x) and bl(x), representing at level l the distri-
butions of wavelet coefficients relative to objects and back-
ground, respectively. The idea of discriminating targets from
background can be restated in this framework as the process
of maximising the distance between distributions tl and bl

in terms of some suitable parameter.
To this end, it is necessary to transform the coefficients

{wl(i,j)} into distributions. First, each coefficient value is
quantised according to the following linear quantisation:

w̃l(i,j) = trunc FK
wl(i,j) − wl

min

wl
max − wl

min
G, (8)

where K = 2k is the number of quantisation levels, k being
the number of bits chosen for quantization. In the sequel,
we will fix k = 8. The quantised coefficients w̃l(i,j) are thus
in a suitable form to estimate probability distributions via
histograms.

We denote by nl(x) the discrete histogram of the N
coefficients w̃l(i,j). The histogram is normalised as n̂l(x) =
nl(x)/N, so that Sxn̂l(x) = 1. In general, for N sufficiently
large and the histogram sufficiently regular, n̂l(x) can be
taken as an estimate of the probability pl(x) = Pr{w̃l(i,j) = x},
namely an estimate of the pdf of the quantised wavelet
coefficients w̃l(i,j). As discussed by different authors in the
wavelet literature [21,26], this hypothesis holds for the histo-
grams of wavelet coefficients of most ‘natural’ images. Not-
withstanding, to assess how likely is such assumption for
the case of mammographic images, we have experimentally
determined on our data set (cf. Section 4), that the sample
pdf n̂l(x) is closely approximated by generalised Gaussian
distribution, namely ale−ublxurl, where al, bl, rl characterise the
pdf at level l. When the parameter rl is computed with the
chi-squared test, we obtain rl = 0.7 [27], in agreement with
results reported in Antonini et al [26]. For clarity’s sake, in
the remainder of this section we will simply refer to the
distribution pl(x), but bearing in mind that we are indeed
handling an empirical distribution.

At this point, we state the pdfs tl(x) and bl(x) to be
defined on supports Vl

t and Vl
b, respectively. Both supports

depend upon the parameter tl, namely Vl
t(tl) = {x:xl

min # x
# tl} and Vl

b(tl) = {x:tl , x # xl
max}, where xl

min = min{w̃(i,j)}
and xl

max = max{w̃(i,j)}. Thus, we assume that tl(x) → 0 on
Vl

b(tl) and that bl(x) → 0 on Vl
t(tl).

As stated from the start, to detect the objects of interest,
one should determine tl such that the distance between the
two distributions is maximised. We say that such a distance
represents the level l information, and we define it as the

L2 distance E
V

l

(tl(x) − bl(x))2dx over the support

Vl = Vl
t(tl) < Vl

b(tl). Clearly, since

E
V

l

(tl(x) − bl(x))2 dx (9)

= E
V

l
t

tl(x)2 dx + E
V

l
b

bl(x)2 dx − 2 E
V

l

tl(x) bl(x)dx,

the functional at the left-hand side of Eq. (9) is maximised

iff E
V

l

tl(x)bl(x)dx is minimum. In fact, for

E
V

l

tl(x)bl(x)dx = 0 the two distributions can be considered

‘orthogonal’, in the sense that we exactly distinguish the
spots from the background.

The left-hand side term of Eq. (9) denotes ‘information’.

In contrast, the term E
V

l

tl(x)bl(x)dx on the right-hand side

of the same equation can be conceived as a sort of ‘entropy’,
which destroys information while increasing. Define

H = ln E
V

l

tl(x)bl(x)dx (10)

the entropy we want to minimise for maximising infor-
mation. From Definition (10), by making use of the Cauchy–
Schwartz inequality

SE
V

l

tl(x)bl(x)dxD2

# E
V

l

tl(x)2dx E
V

l

bl(x)2 dx

and taking logarithms, entropy H can be upper bounded as

2H # ln E
V

l
t

tl(x)2 dx + ln E
V

l
b

bl(x)2 dx. (11)

Let IVa
(r) =

1
1 − r

ln SE
Va

a(x)rdxD be the rth order Renyi’s

information of the distribution a(x) over the support Va

[5]. Then, from inequality (11), it follows that,

H ,
1
2

ln E
V

l
t

tl(x)2dx +
1
2

ln E
V

l
b

bl(x)2dx, i.e.

H , −(IV
l
t
(2) + IV

l
b
(2)). (12)

Thus, we have shown that the minimisation of entropy H
can be achieved by maximising the second order Renyi’s
information of tl(x) and bl(x) with respect to tl. Formally:

tl = Arg max lim
r→2

H 1
1−r

(13)

lnSE
V

l
t

tl(x)r dxD +
1

1 − r
ln SE

V
l
b

bl(x)r dxDJ.

To summarise, this result shows that a difficult problem
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such as the minimisation of the functional E
V

l

tl(x)bl(x)dx,

which would in principle require the modelling of a mixture
of distributions with unknown parameters, can be turned
into an effective procedure based on the maximisation of
Renyi’s information at the resolution level l. The parameter
tl that is obtained can then be used as a threshold for
estimating the target at scale l.

A brief comment is due on how the performance of
the threshold computed through Eq. (13) compares with
thresholding proposed by classical de-noising methods. It is
possible to show [27] that, by using Eq. (13), we obtain an
estimator whose performance is comparable to that proposed
by Donoho and Johnstone [28]. Most importantly, in our
case the estimation error depends only upon the ‘character-
istic length’ of the target distribution at a given scale l,
whilst in classical thresholding it depends upon the number
of samples/pixels in the image. In other words, the error is
related to a lower bound on detection capabilities that
depends upon the nature of targets to be detected and
beyond the choice of a specific wavelet basis. In fact, in
the case of images displaying small targets embedded within
inhomogeneous background, most detection errors could be
the result of the problem that in specific regions, such targets
could be sparse and smaller than background structures. This
is indeed the case of mammograms, where microcalcifications
may be shadowed by the high frequency texture of parenchy-
mal tissue structures.

In this set-up, the detection of microcalcifications is achi-
eved in two steps. First, at each resolution l, a labelling is
performed by constructing a saliency map in the form of a
binary map Ml, where each connected set of non-zero
locations constitutes an hypothesis target detected in the
image. This is obtained by employing tl as a threshold,
whereby each site of the weighted representation plane is
labelled Ml(i,j) = 1 if w̃l(i,j) . tl and Ml(i,j) = 0, otherwise.

Secondly, the different saliency maps are combined
according to a majority vote rule. The aim of this step is
to provide the final detection map M(i,j). Majority voting
choice is motivated as follows.

From a general point of view, it is possible to describe
in a bayesian framework the problem of classifying the
information gathered at the different scales of a multi-
resolution representation. Assume that at each point (i,j) of
the image domain, a vector of measurements is given, say
x = x1(i,j),. . .,xL(i,j). According to bayesian theory, classi-
fication is in our case equivalent to label each point as
either t (target) or b (background), provided that the a
posteriori probability of that interpretation is maximum, i.e.
P(M(i,j) = lux) = maxl=t,b P(M(i,j) = lux). The computation
of the a posteriori probability functions would depend upon
the knowledge of high order statistics described in terms of
joint probability density functions P(xuM(i,j) = l), which
would be difficult to infer. However, it is possible to simplify
the above rule and express it in terms of decision support
computations performed by L classifiers, one for each resol-
ution level. Each classifier only exploits the information

conveyed by vector x. Kittler et al [29] have shown that it
may be true for some applications that these measurements
are conditionally statistically independent. In our context,
we can assume each labelled representation plane Ml(i,j) as
a ‘hard‘ estimate of the a posteriori probability function for
the resolution level l. When the available observational
discriminatory information is highly ambiguous, for example
due to a high level of noise, it may be appropriate to assume
that the a posteriori probabilities will not deviate dramatically
from the prior probabilities [29]. In this case, the compu-
tation of maximum a posteriori probability simplifies to the
well-known majority vote rule.

4. APPLICATION TO MAMMOGRAPHIC
IMAGES

4.1. Data Set

For evaluation purposes, experiments have been performed
on the Nijmegen data set. The latter was chosen because
it represents, to-date, a widely used public data set for
specifically evaluating microcalcification detection perform-
ance without the need to account for other kinds of breast
abnormalities. It is the same one used by Karssemeijer [11]
and other recent papers (for a comprehensive review see
[30,31]). The 40 images of this data set have been made
available by the Department of Radiology of the University
Hospital, Nijmegen, and can be obtained via anonymous
ftp1. All images are in raw format, of size 2048 × 2048
pixels, 12 bits per pixel of grey level information. The
images were digitised from film using an Eikonix 1412 12-
bit CCD camera. A sampling aperture of 0.05 mm in diam-
eter was used, with a 0.1 mm sampling distance. The images
were corrected for inhomogeneity of the light source
(Gordon plannar 1417). A fixed calibration of the CCD
camera was adopted. The optical density of 0.18 corresponds
to the maximum output level (4095). The position and size
of the microcalcification clusters were marked by two expert
radiologists, based on all patient data available (different
views, magnifications). These annotations were put into
ground truths and stored in separate files. Performance can
then be evaluated in terms of FROC curves based on
true/false cluster detection, as explained in the sequel
(Section 4.3).

4.2. Experimental Set-up

First, the setting of the method was considered. At this
stage we expressed the effectiveness of different solutions in
terms of the number of individual calcification particles truly
detected for each image against the number of false detec-
tions; 10 images of the data set were used. An individual
microcalcification is considered as truly detected in the
processed image, if it is also present in the accompanying
truth image. Two major aspects have been taken into

1 figment.csee.usf.edu in directory pub/mammograms/nijmegen-images
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account: (1) the number of decomposition levels of the
weighted UDWT; and (2) the selection of the wavelet basis
to employ for decomposition. The choice of the number of
decomposition levels is clearly a trade-off between the size
of the targets to detect and the presence of noise. This
parameter is related to the kind of images handled, rather
than to the basis adopted. In the case of mammographic
images, it is quite simple to establish, by visually inspecting
the information present within the directional sub-bands at
different scales, that an acceptable number of decomposition
levels is L = 6. Running the detection module, the conserva-
tive value L = 4 was chosen; in fact, for higher values of L,
we registered a fall of performance, which is likely to occur
due to biasing of the majority voting process. Further, as
expected, this behaviour was common to all bases.

As regards the second point – selection of the decompo-
sition basis – standard wavelet bases have been employed:
Burt-Adelson, Battle-Le Marie, B-spline I, B-spline II, Dau-
bechies 4, Daubechies 6, Daubechies 8, Daubechies 10 [26].
In this phase we used Eq. (6), adopting uniform weights
(i.e., a1 = a2 = a3) to build the representation planes {wl(i,j)}
of the weighted UDWT. This can be justified by experimen-
tally noting that when the different bases are compared
with one another on the same image, their behaviour is
reasonably independent with respect to weighting variations.
The best performance has been achieved on an biorthogonal
B-spline basis [26]. Summarising the results, the method, by
using such a basis along four decomposition levels, truly
detects individual particles, and most importantly, limits the
detection of individual false calcifications to an average
maximum of about 10 per image.

Fig. 3. FROC curve: cluster detection performance by varying the parameter a1.

4.3. Performance Evaluation

The detection of individual particles of microcalcification is
to be considered clinically significant if they appear in
clusters, and there is a wide agreement that one of the most
salient properties for discriminating benign from malignant
clusters is the number of calcification particles in close
proximity. Here, we adopted the standard cluster definition
[11]: a cluster is observed if more than three microcalcifi-
cations are localised inside a circular region of radius 0.5 cm,
marked around each detected microcalcification. In general,
detection performance can be evaluated by counting the
true positive clusters and false positive clusters per mammo-
gram. The cluster is true positive if marked as such in the
accompanying truth image; false positive, otherwise. To be
precise, according to the literature [11,15], the following
figures of merit have been adopted: the true positive fraction
TPF = (#true positive clusters detected)/(#true positive clus-
ters to be detected), and the false rating FPC = (#false
positive clusters detected)/(#images).

Using the experimental set-up described in the previous
section, the performance of the method was assessed by
computing an FROC curve. This curve can be obtained by
plotting the TPF and FPC ratios along the variation of a
suitable parameter, which should be chosen as a critical
control parameter of the method.

Here, the parameters of interest are the ak values. In fact,
when using the weighted UDWT, a variation of the ak implies
a different balance of the information conveyed by the three
directional sub-bands (refer to Eq. (6)). A first reasonable
assumption is that the strongest singularities (like background
texture ones) are most likely to appear within the diagonal
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detail band (k = 1), rather than within horizontal and vertical
detail sub-bands (k = 2,3). A second assumption is that hori-
zontal and vertical detail sub-bands should be equally weighted
(i.e. a2 = a3), reflecting the horizontal/vertical symmetry of
each calcification. Summing up, by imposing that
a1 + a2 + a3 = 1, under the assumption a2 = a3, it is possible
to observe the TPF/FPC behaviour versus the a1 variation in

Fig. 4. Level dependent microcalcification detection on the ROI of Fig. 2. (a)–(d) show the saliency maps at decomposition levels 1, 2, 3
and 4, respectively. Each map includes the candidate individual targets proposed at that level. Detection is performed by B-spline II wavelet
basis and fixing a1 = 0.56.

the [0, 1] range. The FROC curve obtained over the 40
images of the dataset, by using optimal settings, is plotted in
Fig. 3. The parameter a1 is not apparent from the graph; yet
the curve provides the information on the various trade-offs
between TPF and FPC that may be obtained by selecting the
parameter. We achieved, as a best result, 66% of TPF at the
FPC rate of 0.7 with a1 = 0.56.
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Comparing with Strickland and Han [15], 55% of TPF
at the FPC rate of 0.7 is reported on the same data set.
Thus, the proposed method gives an improvement of about
10% over Strickland’s. This result is partly due to the
optimal weighting among the wavelet sub-bands, although
a major role is played by the use of the adaptive threshold
tl. As noted (cf. Section 1), in Strickland and Han [15] the
threshold is empirically chosen as a fixed percentile of the
coefficient histogram. Such a simple method, however, may
cause drawbacks depending on the kind of distribution

Fig. 5. (a) Final detection map obtained by applying majority voting
on saliency maps shown in Fig. 4, (b) ground truth of the same ROI.

addressed. In general, when non-adaptive thresholding is
employed, one usually relies on the bimodality of the empiri-
cal distribution. However, as previously discussed the wavelet
coefficient pdf is shaped as a generalised Gaussian. In conse-
quence, the bimodal assumption must be abandoned in this
specific case, and a more sophisticated thresholding pro-
cedure is to be considered. For the sake of completeness,
we recall that Karssemeijer [11] detects about 82% at a 0.7
FPC rate, which is still better than the result achieved here.
However, this was to be expected, because in Karssemeijer
[11], differently from our approach and that of Strickland
and Han [15], prior knowledge is introduced to explicitly
exploit specific features of mammogram structures.

Eventually, to summarise the method at a glance, we
apply the detection process to the ROI image of Fig. 2.
Figures 4(a)–(d), show the saliency maps at decomposition
levels 1, 2, 3 and 4, respectively; each map includes the
candidate individual targets proposed at that level.
Figure 5(a) presents the individual microcalcifications
detected after outcomes obtained at levels 1, 2, 3 and 4
have been evaluated via majority voting; this final result
may be compared with Fig. 5(b), which shows the ground
truth of the ROI. To conclude, Fig. 6 displays the same
individual calcifications, prompted on the original mammo-
gram of Fig. 1, in the form of boxes, namely rectangles of
minimum area surrounding each target.

5. DISCUSSION AND CONCLUSION

We have proposed a multi-scale method for the detection
of small targets in noisy background. The multi-scale rep-
resentation is designed using a weighted UDWT. In essence,
the method is based on the maximisation of information
available at each resolution level of such a representation,
and we have shown that this goal can be achieved by
maximising Renyi’s information. Using Renyi’s information,
an adaptive threshold is determined, which is employed
for discriminating between wavelet coefficients representing
targets and those representing background noise. Eventually,
resolution dependent estimates are combined according to a
majority vote rule, while avoiding reconstruction.

Some remarks on major points introduced in this work
may be useful here. The weighted UDWT we propose
provides a more compact representation as opposed to that
achieved by ordinary undecimated decomposition; mean-
while, we gain the possibility, by tuning the ak weights, of
adapting the representation to different kinds of images and
applications. The introduction of such weighted represen-
tation is admissible, since we are not concerned with the
reconstruction problem, the latter being avoided by the
method.

We discuss the problem of target detection within an
information-theoretic framework, which endows a general
solution; on the other hand, what gives this approach a
practical interest is that it allows us to set up a procedure
to determine an adaptive threshold suitable for the non-
linear filtering of targets hidden by background noise.

Information collected at the different scales is combined
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Fig. 6. The ROI calcifications, as detected in Fig. 5, displayed on
the original mammogram of Fig. 1. Each target is marked by a
surrounding box.

to obtain the final detection. To this end, a simple but
effective combination scheme has been exploited. The
scheme proposed shares some common aspects, in terms of
nonlinear filtering coupled with a linear multi-scale represen-
tation, with other approaches like blob detection in scale-
space [20]. Those methods achieve structure detection
through nonlinear combination of Gaussian derivatives
obtained at multiple scales, with the objective of evaluating
features such as spatial extent, contrast and structure lifetime
in scale-space. In our approach, thresholding naturally incor-
porates spatial extent and contrast, while lifetime is
accounted for by the majority vote rule. Meanwhile, we do
not have to restrict our representation space to Gaussian
kernels.

The method has been applied to the difficult problem
of microcalcification detection in mammographic images,
obtaining interesting results. Experiments have been perfor-
med on a standard, Web-available, mammogram data set,

namely the Nijmegen data set, which is considered a stan-
dard data set in this research realm.

To conclude, we have not limited our work to research
experiments, but turned to a real clinical setting. Actually,
much of the work described here has been carried out in
the framework of a joint research project together with
the Medical Physics Department at Sant’Orsola University
Hospital, Bologna, Italy, and with Integris Biomedical
Research Labs, Italy. In this project, a system for computer
aided diagnosis has been designed with the goal of providing
radiologists a toolbox of methods for the enhancement of
mammograms and the early diagnosis of breast cancer [27].
A first prototype of the system has been written in the C++
language under the Windows NT Operating System, and
developed in the framework of an innovative object-oriented
radiological information system [32]. The detection method
presented here has been conceived as a module of such a
system, to serve either the visualisation of the clusters of
microcalcifications to the radiologist in the course of a
diagnostic session, or clinical follow-up of the patient.

Clinical testing of the system is in progress at Sant’Orsola
Hospital. Images used in the testing are digitising mammo-
grams at 300 dpi, at a resolution of 12 bit/pixel, successively
windowed to 8 bit/pixel, obtained using a VIDAR VXR-12
scanner. Due to the lower resolution, such images are more
challenging than those included in the Nijmegen data set.
However, preliminary results collected adopting the same
experimental settings previously described show a decrease
in detection performance of less than 10% with respect to
results reported here, giving evidence of a promising clinical
relevance of the detection module.
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