

Design Guidelines for High Capacity Innovative Regional Turboprop Aircraft

F. Nicolosi,¹ S. Corcione,² V. Trifari,³ P. Della Vecchia,⁴ A. De Marco⁵. University of Naples Federico II, Naples, 80125, Italy

This paper deals with the Multi-Disciplinary Analysis and Optimization (MDAO) of an innovative high capacity regional turboprop aircraft. To cope with the Top-Level Aircraft Requirements (TLARs), different design solutions have been analyzed and compared in terms of weights, balance, aerodynamics, performance, emissions and Direct Operating Costs (DOC). Response surfaces and Pareto fronts have been generated for each aircraft configuration assuming different values of lifting surfaces and geometrical design parameters. Optimal solutions have been selected from Pareto fronts according to specific performance, emissions and DOC objective functions. Those have been compared to illustrate relative benefits and drawbacks.

This kind of innovative regional platform is supposed to be competitive on the short/medium range with regional jets. A regional jet similar to the Airbus A220 has been chosen as the reference regional jet aircraft to which compare all optima configuration coming from the MDAO process. Comparisons have been made in terms of block fuel, block time and DOC. The three-lifting surfaces configuration has been identified as the most promising choice for the higher gain in terms of block fuel and direct operative costs.

Nomenclature

AR_C	=	Canard Aspect Ratio	MTOW	=	Maximum Take-Off Weight
AR_{H}	=	Horizontal tail Aspect Ratio	MLW	=	Maximum Landing Weight
AR_w	=	Wing Aspect Ratio	OEW	=	aircraft Operative Empty Weight
b_C	=	Canard span	RJ	=	Regional Jet
b_H	=	Horizontal tail span	S.S.M.	=	longitudinal Static Stability Margin
BPR	=	engine By-Pass Ratio	SAR	=	Specific Air Range
b_w	=	Wing span	S_C	=	Canard area
CG	=	Center of Gravity	S_H	=	Horizontal tail area
C_{Lmax}	=	Max. Lift Coefficient at stall condition	S_V	=	Vertical tail area
D_f	=	Fuselage maximum diameter	S_w	=	Wing area
DOC	=	Direct Operative Costs	T_0	=	engine maximum static thrust
E_{cr}	=	Aircraft aerodynamic cruise efficiency	TLAR	=	Top Level Aircraft Requirements
i_C	=	Canard incidence angle	ТО	=	Take-Off
i_H	=	Horizontal tail-plane incidence angle	TOFL	=	Take-Off Field Length
L_{f}	=	Fuselage length	TP	=	Turboprop
LFL	=	Landing Field Length	TSFC	=	Thrust Specific Fuel Consumption
LND	=	Landing	W_{TO}	=	Maximum Take-Off Weight
MAC	=	Wing Mean Aerodynamic Chord	X_{LEC}	=	Canard apex long. position
M_{CR}	=	cruise Mach number	X_{LEH}	=	Horizontal tail apex long. position
MDAO	=	Multi-Disc. Analysis and Optimization	X_{LEw}	=	Wing apex long. position

¹ Associate Professor, Dept. of Industrial Engineering, fabrizio.nicolosi@unina.it, AIAA Member

² Post-Doctoral Researcher, Dept. of Industrial Engineering, salvatore.corcione@unina.it

³ PhD Student, Dept. of Industrial Engineering, vittorio.trifari@unina.it

⁴ Assistant Professor, Dept. of Industrial Engineering, pierluigi.dellavecchia@unina.it

⁵ Assistant Professor, Dept. of Industrial Engineering, agodemar@unina.it