ORIGINAL PAPER

An improved high-lift aerodynamic prediction method for transport aircraft

Pierluigi Della Vecchia¹ · Fabrizio Nicolosi¹ · Manuela Ruocco¹ · Luca Stingo¹ · Agostino De Marco¹

Received: 15 January 2018 / Revised: 8 November 2018 / Accepted: 21 November 2018 © Deutsches Zentrum für Luft- und Raumfahrt e.V. 2018

Abstract

The aim of this work is the development of a methodology to predict lift characteristics for transport aircraft in the whole flight envelope, useful in the preliminary aircraft design stage. The purpose is an attempt to improve the classical methodologies for wing load distribution and lift prediction, applicable to both clean and flapped configuration. This has been obtained considering the airfoils' aerodynamic characteristics until stall and post-stall conditions during the process, and modifying 2D characteristics in the case of high-lift devices to take into account 3D effects introduced by the devices themselves. The method is a modification of standard vortex-lattice procedures which are capable of predicting wing aerodynamic characteristics. As regards the clean configuration, the enhanced method works by integrating airfoil characteristics, whereas as far as the high-lift devices' effect is concerned, the improved method works by substituting clean airfoil aerodynamic characteristics for the flapped aerodynamics ones, and introducing a correction to evaluate the 3D effects induced by the high-lift devices' geometrical discontinuities. The methodology is explained separately for these two configurations. The results of the developed method have been compared with CFD and experimental data showing good agreement, making available a fast and reliable method useful in preliminary aircraft design phase.

Keywords Aircraft design · High-lift aerodynamics · Transport aircraft · Span lift coefficient distribution · Extended liftingline theory

List of symbols

List of symbols		$C_{\rm r}$	Wing root chord
2D	Two-dimensional	C_{t}	Wing tip chord
3D	Three-dimensional	DAF	Design of aircraft and flight technologies
AGILE	Aircraft third-Generation MDO for Innova-		research group
	tive Collaboration of Heterogeneous Teams of	F	Downwash influence function
	Experts	h	Altitude
AR	Wing aspect ratio	HiLiftPW	High-lift prediction workshop
b	Wing span	JPAD	Java program tool chain for aircraft design
CFD	Computational fluid dynamics	M	Mach number
C_l	Two-dimensional lift coefficient	N	One-half of total number vortex points
C_l^{clean}	Two-dimensional lift coefficient in clean	MDO	Multidisciplinary design optimization
r.	configuration	S	Wing area
$C_l^{\rm hl}$	Two-dimensional lift coefficient in high-lift	V	Free-stream velocity
	configuration (high-lift devices deployed)	$X_{\rm LE}$	Wing sections leading-edge coordinates along
$C_{l_{MAX}}$	Two-dimensional maximum lift coefficient		<i>x</i> -axis
C_L	Three-dimensional lift coefficient	У	Wing station along span (y-axis)
$C_{L_{\text{MAX}}}$	Three-dimensional maximum lift coefficient	α	Geometric angle of attack
MAA		α_{0l}	Angle of attack which produces a 2D zero-lift
Pierluigi Della Vecchia			condition
pierluigi.dellavecchia@unina.it		$\alpha_{\rm e}$	Effective angle of attack
1		$\alpha_{\rm s}$	Angle of attack at stall condition

 $\alpha_{\rm w}$

Wing angle of attack

Department of Industrial Engineering (DII), University of Naples Federico II, Naples, Italy