
Concatenation Page 1 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Programming in Standard ML [http://www.cs.cmu.edu/People/rwh/introsml/] Page 1

Programming in Standard ML

Robert Harper

School of Computer Science

Carnegie Mellon University

Spring, 1998

Copyright ©1997, 1998 Robert Harper. All rights reserved.

These notes are intended as a brief introduction to Standard ML (1997 dialect) for the experienced
programmer. They began as lecture notes for 15-212: Fundamental Principles of Computer Science
II , the second semester of the introductory sequence in the undergraduate computer science
curriculum at Carnegie Mellon University. They have subsequently been used in several other
courses at Carnegie Mellon, and at a number of universities around the world. These notes are
intended to supersede my Introduction to Standard ML, which has been widely circulated over the
last ten years.

The Definition of Standard ML (Revised) by Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen (MIT Press, 1997) constitutes the official definition of the language. It is supplemented
by the Standard ML Basis Library, which defines a common basis of types that are shared by all
implementations of Standard ML. The two most popular introductory programming textbooks based
on Standard ML are: Lawrence Paulson, ML for the Working Programmer (Second Edition), MIT
Press, 1997, and Jeffrey Ullman, Elements of ML Programming, Prentice-Hall, 1994.

There are several implementations of Standard ML available for a variety of hardware and software
platforms. Standard ML of New Jersey is a comprehensive research implementation, and is the most
widely used. Harlequin's MLWorks is a commercial implementation that provides a substantial set of
program development and analysis tools. Other implementations include two other research
implementations, MLKit and Moscow ML, and another commercial implementation, Poly ML, from
Abstract Hardware Ltd. Concurrent ML is an extension of Standard ML with primitives for
concurrent programming; it is available as part of the Standard ML of New Jersey compiler. (For
users at Carnegie Mellon, see the CMU local guide for information about using Standard ML.)

These notes are a work in progress. I am making regular updates, so please check back for
changes. The most recent revision was made on Tuesday, May 05, 1998 12:32 PM. Corrections,
comments and suggestions are welcome.

For users who are not able to browse this web site, I have prepared a complete draft (in Postscript

Concatenation Page 2 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

format) for downloading. This copy is updated infrequently; please refer to the web pages for the
latest revisions.

 [Table of Contents] [Overview of Standard ML] [Core Language] [Module Language]
[Programming Techniques] [Sample Programs] [Basis Library]

Concatenation Page 3 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Table of Contents [http://www.cs.cmu.edu/People/rwh/introsml/tableof.htm] Page 2

Table of Contents
[Home] [Next]

Last edit: Monday, April 27, 1998 03:12 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Programming in Standard ML
� Table of Contents
� Overview of Standard ML
� Core Language

� Types, Values, and Effects
� Variables and Declarations
� Functions
� Products and Patterns
� Clausal Function Definitions
� Recursive Functions
	 Type Inference

 Lists
� Datatype Declarations
� Functionals
 Exceptions
� References
� Input & Output
� Lazy Data Structures
� Concurrency

� Module Language
� Signatures and Structures
� Views and Data Abstraction
� Hierarchies and Parameterization

� Programming Techniques
� Induction and Recursion
� Structural Induction
� Proof-Directed Debugging
� Infinite Sequences
� Representation Invariants and Data Abstraction
� Persistent and Ephemeral Data Structures
� Options, Exceptions, and Failure Continuations
� Memoization and Laziness
� Modularity and Reuse

 Sample Programs
! samplecode/recind.sml
" samplecode/structur.sml
samplecode/perseph.sml

Concatenation Page 4 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

$ samplecode/optexccont.sml
% samplecode/regexp.sml
& samplecode/repinv.sml
' samplecode/memo.sml
(samplecode/seq.sml
) samplecode/streams.sml

* Basis Library

[Home] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 5 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Overview of Standard ML [http://www.cs.cmu.edu/People/rwh/introsml/overview.htm]Page 38

Overview of Standard ML
[Back] [Home] [Next]

Last edit: Thursday, June 25, 1998 11:36 AM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Standard ML is a type-safe programming language that embodies many innovative ideas in
programming language design. It is a statically-typed language, with a user-extensible type system.
It supports polymorphic type inference, which all but eliminates the burden of specifying types of
variables and greatly facilitates code re-use. It provides efficient automatic storage management for
data structures and functions. It encourages functional (effect-free) programming where appropriate,
but allows imperative (effect-ful) programming where necessary (e.g., for handling I/O or
implementing mutable data structures). It facilitates programming with recursive data structures
(such as trees and lists) by encouraging the definition of functions by pattern matching. It features an
extensible exception mechanism for handling error conditions and effecting non-local transfers of
control. It provides a richly expressive and flexible module system for structuring large programs,
including mechanism for enforcing abstraction, imposing hierarchical structure, and building generic
modules. It is portable across platforms and implementations because it has a precise definition
given by a formal operational semantics that defines both the static and dynamic semantics of the
language. It provides a portable standard basis library that defines a rich collection of commonly-
used types and routines.

These features are supported by all implementations of Standard ML, but many go beyond the
standard to provide experimental language features, more extensive libraries, and handy program
development tools. Details can be found with the documentation for your compiler, but here's a brief
overview of what you might expect. Most implementations provide an interactive system supporting
on-line entry and execution of ML programs and providing access to tools for compiling, linking, and
analyzing the behavior of programs. A few compilers are "batch only", relying on the ambient
operating system to manage the construction of large programs from compiled parts. Nearly every
compiler is capable of generating native machine code, even in the interactive system, but some
optionally generate byte codes for a portable abstract machine. Most implementations support
separate compilation and incremental recompilation based on automatically-generated or manually-
constructed component dependency specifications. Some implementations provide interactive tools
for tracing and stepping programs; many provide tools for time and space profiling. Most
implementations supplement the standard basis library with a rich collection of handy components
such as dictionaries, hash tables, or interfaces to the ambient operating system. Some
implementations support experimental language extensions, notably mechanisms for concurrent
programming (using message-passing or locking), richer forms of modularity constructs, and support
for "lazy" data structures.

To develop a feel for the language and how it is used, let us consider a small, but non-trivial, program
to implement a regular expression package for checking whether a given string matches a given
regular expression. We'll structure the implementation into two modules, an implementation of

Concatenation Page 6 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

regular expressions themselves and an implementation of a matching algorithm for them. The
structure of the system is neatly expressed using signatures that describe the components of these two
modules.

signature REGEXP = sig

 datatype regexp =
 Zero | One | Char of char |
 Plus of regexp * regexp | Times of regexp * regexp |
 Star of regexp

 exception SyntaxError of string
 val parse : string -> regexp

 val format : regexp -> string

end

signature MATCHER = sig

 structure RegExp : REGEXP

 val match : RegExp.regexp -> string -> bool

end

The signature REGEXP describes a module that implements regular expressions. It consists of a
description of the abstract syntax of regular expressions, together with operations for parsing and
unparsing (formatting) them. The definition of the abstract syntax takes the form of a datatype
declaration that is reminiscent of a context-free grammar, but which abstracts from matters of lexical
presentation (such as precedences of operators, parenthesization, conventions for naming the
operators, etc.) The abstract syntax consists of 6 clauses, corresponding to the regular expressions 0,

1, a, r1 + r2, r1 r2, and r* . The functions parse and format specify the parser and unparser for
regular expressions. The parser takes a string as argument and yields a regular expression; if the
string is ill-formed, the parser raises the exception SyntaxError with an associated string describing
the source of the error. The unparser takes a regular expression and yields a string that parses to that
regular expression. In general there are many strings that parse to the same regular expressions; the
unparser generally tries to choose one that is easiest to read.

The signature MATCHER describes a module that implements a matching algorithm for regular
expressions. The matcher is a function match that takes a regular expression and yields a function
that takes a string and determines whether or not that string matches that regular expression.
Obviously the matcher is dependent on the implementation of regular expressions. This is expressed
by a structure specification that specifies a hierarchical dependence of an implementation of a
matcher on an implementation of regular expressions --- any implementation of the MATCHER
signature must include an implementation of regular expressions as a constituent module. This
ensures that the matcher is self-contained, and does not rely on implicit conventions for determining
which implementation of regular expressions it employs.

Now let's look at the high-level structure of an implementation of a regular expression matcher. It

Concatenation Page 7 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

consists of two major components: an implementation of regular expressions, and an implementation
of the matcher. Implementations of signatures are called structures in ML; the implementation of the
regular expression matcher consists of two structures. Since the implementation of the matcher
depends on an implementation of regular expressions, but is independent of any particular
implementation of regular expressions, we use a parameterized module, or functor, to implement it.
Here's the high-level structure we're considering:

structure RegExp :> REGEXP = ...

functor Matcher (structure RegExp : REGEXP) :> MATCHER =
...

structure Matcher :> MATCHER = Matcher (structure RegExp =
RegExp)

The structure identifier RegExp is bound to an implementation of the REGEXP signature.
Conformance with the signature is ensured by the ascription of the signature REGEXP to the binding
of RegExp using the ":>" notation. Not only does this check that the implementation (elided here)
conforms with the requirements of the signature REGEXP, but it also ensures that subsequent code
cannot rely on any properties of the implementation other than those explicitly specified in the
signature. This helps to ensure that modules are kept separate, facilitating subsequent changes to the
code.

The functor identifier Matcher is bound to a structure that takes an implementation of REGEXP as
parameter. We may think of Matcher as a kind of function mapping structures to structures. The
result signature of the functor specifies that the implementation must conform to the requirements of
the signature MATCHER, and ensures that only what is specified in that signature is visible of any
instance of this functor (obtained by applying it to an implementation of REGEXP). A specific
matcher is provided by applying the functor Matcher to the stucture RegExp to obtain an
implementation of MATCHER.

Once the system is built, we may use it by referring to its components using paths, or long
identifiers. The function Matcher.match has type Matcher.RegExp.regexp -> string
-> bool , reflecting the fact that it takes a regular expression as implemented within the package
itself and yields a matching function on strings. We may build a regular expression by applying the
parser, Matcher.RegExp.parse , to a string representing a regular expression, then passing this
to Matcher.match . Here's an example:

val regexp = Matcher.RegExp.parse "((a + %).(b + %))*"
val matches = Matcher.match regexp

matches "aabba"
matches "abac"

We use the convention that "@" stands for the empty regular expression and "%" stands for the regular
expression accepting only the null string. Concatentation is indicated by a ". ", alternation by "+",
and iteration by "* ".

The use of long identifiers can get tedious at times. There are two typical methods for alleviating the

Concatenation Page 8 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

burden. One is to introduce a synonym for a long package name. Here's an example:

structure M = Matcher
structure R = M.RegExp

val regexp = R.parse "((a + %).(b + %))*"
val matches = M.match regexp

matches "aabba"
matches "abac"

Another is to "open" the structure, incorporing its bindings into the current environment:

open Matcher Matcher.RegExp

val regexp = parse "((a + %).(b + %))*"
val matches = match regexp

matches "aabba"
matches "abac"

It is advisable to be sparing in the use of open because it is often hard to anticipate exactly which
bindings are incorporated into the environment by its use.

Now let's look at the internals of these structures. Here's an overview of the implementation of
regular expressions:

structure RegExp :> REGEXP = struct

 datatype regexp =
 Zero | One | Char of char |
 Plus of regexp * regexp | Times of regexp * regexp |
 Star of regexp

 ... implementation of the tokenizer ...

 fun tokenize s = tokenize_exp (String.explode s)

 ... implementation of the parser components ...

 fun parse s =
 let
 val (r, s') = parse_exp (tokenize (String.explode
s))
 in
 case s'
 of nil => r
 | _ => raise SyntaxError "Unexpected input.\n"
 end
 handle LexicalError => raise SyntaxError "Illegal
input.\n"

Concatenation Page 9 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 ... implementation of the formatter ...

 fun format r =
 String.implode (format_exp r)

end

The implementation is bracketed by the keywords struct and end . The type regexp is
implemented precisely as specified by a datatype declaration. The parser works by "exploding"
the string into a list of characters (making it easier to process them character-by-character),
transforming the character list into a list of "tokens" (abstract symbols representing lexical atoms),
and finally parsing the resulting list of tokens. If there is remaining input after the parse, or if the
tokenizer encountered an illegal token, an appropriate syntax error is signalled. The formatter works
by calling an associated function that yields a list of characters, then "imploding" that list into a
string.

It is interesting to consider in more detail the structure of the parser since it exemplifies well the use
of pattern matching to define functions. Let's start with the tokenizer, which we present here in toto:

datatype token =
 AtSign | Percent | Literal of char | PlusSign | TimesSign
|
 Asterisk | LParen | RParen

exception LexicalError

fun tokenize nil = nil
 | tokenize (#"+" :: cs) = (PlusSign :: tokenize cs)
 | tokenize (#"." :: cs) = (TimesSign :: tokenize cs)
 | tokenize (#"*" :: cs) = (Asterisk :: tokenize cs)
 | tokenize (#"(" :: cs) = (LParen :: tokenize cs)
 | tokenize (#")" :: cs) = (RParen :: tokenize cs)
 | tokenize (#"@" :: cs) = (AtSign :: tokenize cs)
 | tokenize (#"%" :: cs) = (Percent :: tokenize cs)
 | tokenize (#"\\" :: c :: cs) = Literal c :: tokenize cs
 | tokenize (#"\\" :: nil) = raise LexicalError
 | tokenize (#" " :: cs) = tokenize cs
 | tokenize (c :: cs) = Literal c :: tokenize cs

We use a datatype declaration to introduce the type of tokens corresponding to the symbols of the
input language. The function tokenize has type char list -> token list ; it transforms a
list of characters into a list of tokens. It is defined by a series of clauses that dispatch on the first
character of the list of characters given as input, yielding a list of tokens. The correspondence
between characters and tokens is relatively straightforward, the only non-trivial case being to admit
the use of a backslash to "quote" a reserved symbol as a character of input. (More sophisticated
languages have more sophisticated token structures; for example, words (consecutive sequences of
letters) are often regarded as a single token of input.) Notice that it is quite natural to "look ahead" in
the input stream in the case of the backslash character, using a pattern that dispatches on the first two
characters (if there are such) of the input, and proceeding accordingly. (It is a lexical error to have a
backslash at the end of the input.)

Concatenation Page 10 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Now here's an overview of the parser. It is a simple recursive-descent parser implementing the
standard precedence conventions for regular expressions (iteration binds most tightly, then
concatentation, then alternation). The parser is defined by four mutually-recursive functions,
parse_exp , parse_term , parse_factor , and parse_atom . These implement a recursive
descent parser that dispatches on the head of the token list to determine how to proceed. The code is
essentially a direct transcription of the obvious LL(1) grammar for regular expressions capturing the
binding conventions described earlier.

fun parse_exp ts =
 let
 val (r, ts') = parse_term ts
 in
 case ts'
 of (PlusSign :: ts'') =>
 let
 val (r', ts''') = parse_exp ts''
 in
 (Plus (r, r'), ts''')
 end
 | _ => (r, ts')
 end

and parse_term ts = ... (elided) ...

and parse_factor ts =
 let
 val (r, ts') = parse_atom ts
 in
 case ts'
 of (Asterisk :: ts'') => (Star r, ts'')
 | _ => (r, ts')
 end

and parse_atom nil = raise SyntaxError ("Atom expected\n")
 | parse_atom (AtSign :: ts) = (Zero, ts)
 | parse_atom (Percent :: ts) = (One, ts)
 | parse_atom ((Literal c) :: ts) = (Char c, ts)
 | parse_atom (LParen :: ts) =
 let
 val (r, ts') = parse_exp ts
 in
 case ts'
 of (RParen :: ts'') => (r, ts'')
 | _ => raise SyntaxError ("Right-parenthesis
expected\n")
 end

Once again it is quite simple to implement "lookahead" using patterns that inspect the token list for
specified tokens. This parser makes no attempt to recover from syntax errors, but one could imagine
doing so, using standard techniques.

Concatenation Page 11 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

This completes the implementation of regular expressions. Now for the matcher. The main idea is
to implement the matcher by a recursive analysis of the given regular expression. The main difficulty
is to account for concatenation --- to match a string against the regular expression r1 r2 we must
match some initial segment against r1, then match the corresponding final segment against r2. This
suggests that we generalize the matcher to one that checks whether some initial segment of a string
matches a given regular expression, then passes the remaining final segment to a continuation, a
function that determines what to do after the initial segment has been successfully matched. This
facilitates implementation of concatentation, but how do we ensure that at the outermost call the
entire string has been matched? We achieve this by using an initial continuation that checks whether
the final segment is empty. Here's the code, written as a functor parametric in the regular expression
structure:

functor Matcher (structure RegExp : REGEXP) :> MATCHER =
struct

 structure RegExp = RegExp

 open RegExp

 fun match_is Zero _ k = false
 | match_is One cs k = k cs
 | match_is (Char c) (d::cs) k = if c=d then k cs else
false
 | match_is (Times (r1, r2)) cs k =
 match_is r1 cs (fn cs' => match_is r2 cs' k)
 | match_is (Plus (r1, r2)) cs k =
 match_is r1 cs k orelse match_is r2 cs k
 | match_is (Star r) cs k =
 k cs orelse match_is r cs (fn cs' => match_is (Star
r) cs' k)

 fun match r s =
 match_is r (String.explode s) (fn nil => true |
false)

end

Note that we must incorporate the parameter structure into the result structure, in accordance with the
requirements of the signature. The function match explodes the string into a list of characters (to
facilitiate sequential processing of the input), then calls match_is with an initial continuation that
ensures that the remaining input is empty to determine the result. The type of match_is is

RegExp.regexp -> char list -> (char list -> bool) -> bool .

That is, match_is takes in succession a regular expression, a list of characters, and a continuation
of type char list -> bool ; it yields as result a value of type bool . This is a fairly
complicated type, but notice that nowhere did we have to write this type in the code! The type
inference mechanism of ML took care of determining what that type must be based on an analysis of
the code itself.

Concatenation Page 12 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Since match_is takes a function as argument, it is said to be a higher-order function. The
simplicity of the matcher is due in large measure to the ease with which we can manipulate functions
in ML. Notice that we create a new, unnamed functions, to pass as a continuation in the case of
concatenation --- it is the function that matches the second part of the regular expression to the
characters remaining after matching an initial segment against the first part. We use a similar
technique to implement matching against an iterated regular expression --- we attempt to match the
null string, but if this fails, we match against the regular expression being iterated followed by the
iteration once again. This neatly captures the "zero or more times" interpretation of iteration of a
regular expression.

(Important aside: the code given above contains a subtle error. Can you find it? If not, see the
chapter on proof-directed debugging for further discussion!)

This completes our brief overview of Standard ML. The remainder of these notes are structured into
three parts. The first part is a detailed introduction to the core language, the language in which we
write programs in ML. The second part is concerned with the module language, the means by which
we structure large programs in ML. The third is about programming techniques, ideas for building
reliable and robust programs. I hope you enjoy it!

Sample Code for this Chapter

[Back] [Home] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 13 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Core Language [http://www.cs.cmu.edu/People/rwh/introsml/core.htm] Page 39

Core Language
[Back] [Home] [Next]

Last edit: Friday, April 24, 1998 11:20 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

All Standard ML is divided into two parts. The first part, the core language, comprises the
fundamental programming constructs of the language --- the primitive types and operations, the
means of defining and using functions, mechanisms for definining new types, etc. These mechanisms
are the subject of this part of the notes. The second part, the module language, comprises the
mechanisms for structuring programs into separate units and is described in the next part of these
notes.

[Types, Values, and Effects] [Variables and Declarations] [Functions] [Products and Patterns]
[Clausal Function Definitions] [Recursive Functions] [Type Inference] [Lists]

[Datatype Declarations] [Functionals] [Exceptions] [References] [Input & Output]
[Lazy Data Structures] [Concurrency]

[Back] [Home] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 14 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Types, Values, and Effects [http://www.cs.cmu.edu/People/rwh/introsml/core/typvaleff.htm]Page 4

Types, Values, and Effects
[Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:56 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Computation in familiar programming languages such as C is based on the imperative model of
computation described in terms of an abstract machine. The meaning of a C program is a state
transition function that transforms the initial state of the abstract machine into a final state. The
transitions consist of modifications to the memory of the abstract machine (including the registers),
and having an effect on the external world (through I/O devices). The constructs of C have the flavor
of commands: do something, then do something else for a while, then do something else.

Computation in ML is of an entirely different nature. In ML we compute by calculation of
expressions, rather than execution of instructions. (Later in the course we will see that these two
viewpoints may be reconciled, but for the time being it is best to keep a clear distinction in mind.)
The calculation model is a direct generalization of your experience from high school algebra in which
you are given a polynomial in a variable x and are asked to calculate its value at a given a value of x.
We proceed by "plugging in" the given value for x, and then using the ordinary rules of arithmetic to
determine the value of the polynomial. The ML model of computation is essentially just a
generalization of this idea, but rather than restrict ourselves to arithmetic operations on the reals, we
admit a richer variety of values and a richer variety of primitive operations on them. Much later we
will generalize this model a bit further to admit effects on memory and the external world, leading to
a reconciliation with the imperative model of computation with which you are familiar.

The unit of evaluation in ML is the expression. Every expression in Standard ML

1. … has a type.
2. … may or may not have a value.
3. … may or may not engender an effect.

Roughly speaking, the type of an expression in ML is a description of the sort of value it yields,
should it yield a value at all. For example, if an expression has type int , then its values are going to
be integers, and similarly, an expression of type real has real numbers (in practice, floating point
numbers) as values. Every expression is required to have a type; otherwise, it is rejected as ill-typed
(with a suitable explanatory message). A well-typed expression is evaluated (by a process of
calculation) to determine its value, if indeed it has one. An expression can fail to have a value in
several ways, one of which is to incur a run-time error (such as arithmetic overflow), and another of
which is to compute infinitely without yielding a value. The soundness of the ML type system ensures
that if the expression has a value, then the "shape" of that value is determined by the type of the
expression. Thus, a well-typed expression of type int cannot evaluate to a string or a floating point
number; it must be an integer. As we will see (much) later it is also possible for evaluation to
engender an effect on the computing environment, for example by writing to the window system or

Concatenation Page 15 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

requesting input from a file. For the time being we will ignore effects.

What is a type? There are many possible answers, depending on what you wish to emphasize. Here
we will emphasize the role of types as determining the set of well-formed programs. Generally
speaking, a type consists of

1. a type name standing for that type,
2. a collection of values of that type, and
3. a collection of operations on values of that type.

In other words, a type consists of a name for the type, some ways to create values of that type, and
some ways for computing with values of that type.

To start off with, let's consider the type of integers. Its name is, appropriately enough, int . Values of
type int are the integer numerals 0, 1, ~1, 2, ~2, and so on. Notice that unary negation in SML is
written using a tilde (~), rather than a minus sign (-). Operations on integers include addition and
subtraction, + and - , and the operations div and mod for dividing and calculating remainders. (See
the Standard ML Basis Library chapter on integers for a complete description.)

Values are one form of atomic expression; others will be introduced later. Compound expressions
include atomic expressions, and also include expressions built by applying an operator to other
compound expressions. The formation of expressions is governed by a set of typing rules that define
the types of atomic expressions and determine the types of compound expressions in terms of the
types of their constituent expressions.

The typing rules are generally quite intuitive since they are consistent with our experience in
mathematics and in other languages. In their full generality the rules are somewhat involved, but we
will sneak up on them by first considering only a small fragment of SML, building up additional
machinery as we go along.

Here are some simple arithmetic expressions, written using infix notation for the operations (meaning
that the operator comes between the arguments, as is customary in mathematics):

3
3 + 4
4 div 3
4 mod 3

Each of these expressions is well-formed; in fact, they each have type int . Writing exp : typ to
indicate that the expression exp has the type typ, we have

3 : int
3 + 4 : int
4 div 3 : int
4 mod 3 : int

Why? In the case of the value 3, this is an axiom: integer numerals have integer type, by definition.
What about the expression 3+4? Well, the addition operation takes two arguments (written on either
side of the plus sign), each of which must be an integer. Since both arguments are of type int , it

Concatenation Page 16 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

follows that the entire expression is of type int . For more complex cases we proceed analogously,
deducing that (3+4) div (2+3) : int , for example, by observing that (3+4) : int and (2+3) :
int .

This kind of reasoning may be summarized by a typing derivation consisting of a nested sequence of
typing assertions, each justified either by an axiom, or a typing rule for an operation. For example,
(3+4) div 5 : int because

1. (3+4) : int
1.1 3 : int
1.2 4 : int

2. 5 : int

Implicit in this derivation is the rule for formation of div expressions: it has type int if both of its
arguments have type int . Steps (1) and (2) justify the assertion (3+4) div 5 : int by
demonstrating that the arguments each have type int . Recursively, we must justify that (3+4) :
int , which follows from the subsidiary steps to step (1). Here we rely on the rule that the addition of
two expressions has type int if both of its arguments do.

Evaluation of expressions is governed by a similar set of rules, called evaluation rules, that determine
how the value of a compound expression is determined as a function of the values of its constituent
expressions. Implicit in this description is the call-by-value principle, which states that the arguments
to an operation are evaluated before the operation is applied. (While this may seem intuitively
obvious, it's worth mentioning that not all languages adhere to this principle.)

We write exp => val to indicate that the expression exp has value val. Informally, it is easy to see that

5 => 5
2+3 => 5
(2+3) div (1+4) => 1

These assertions can be justified by evaluation derivations, which are similar in form to typing
derivations. For example, we may justify the assertion (3+2) div 5 => 1 by the derivation

1. (3+2) => 5
1.1 3 => 3
1.2 2 => 2

2. 5 => 5

Some things are left implicit in this derivation. First, it is an axiom that every value (in this case, a
numeral) evaluates to itself; values are fully-evaluated expressions. Second, the rules of addition are
used to determine that adding 3 and 2 yields 5.

What other types are there? Here are few more base types, summarized briefly by their values and
operations:

Type name: real
Values: 3.14 , ~2.17 , 0.1E6 , ...

Concatenation Page 17 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Operations: +,- , * ,/ , =, <, ...

Type name: char
Values: #"a" , #"b" , ...
Operations: ord , char , =, <, ...

Type name: string
Values: "abc" , "1234" , ...
Operations: ̂ , size , =, <, ...

Type name: bool
Values: true , false
Operations: if exp then exp1 else exp2

There are many, many others (in fact, infinitely many others!), but these are enough to get us started.
(See the Basis Library for a complete description of the primitive types of SML, including the ones
given above.) Notice that some of the arithmetic operations for real numbers are "spelled" the same
way as for integers. For example, we may write 3.1+2.7 to perform a floating point addition of
two floating point numbers. On the other hand division, which is properly defined for reals, is
written as 3.1/2.7 to distinguish it from the integer division operation div .

With these types in hand, we now have enough rope to hang ourselves by forming ill-typed
expressions. For example, the following expressions are ill-typed:

size 45
#"1" + 1
#"2" ^ "1"
3.14 + 2

The last expression may seem surprising, at first. The primitive arithmetic operations are overloaded
in the sense that they apply either to integers or to reals, but not both at once. To gain some intuition,
recall that at the hardware level there are two distinct arithmetic units, the integer (or fixed point) unit
and the floating point unit. Each has its own separate hardware for addition, and we may not mix the
two in a single instruction. Of course the compiler might be expected to sort this out for you, but
then there are difficulties with round-off and overflow since different compilers might choose
different combinations of conversions and operations. SML leaves this to the programmer to avoid
ambiguity and problems with portability between implementations.

The conditional expression if exp then exp1 else exp2 is used to discriminate on a Boolean

value. It has type typ if exp has type bool and both exp1 and exp2 have type typ. Notice that both

"arms" of the conditional must have the same type! It is evaluated by first evaluating exp, then
proceeding to evaluate either exp1 or exp2, according to whether the value of exp is true or false .

For example,

if 1<2 then "less" else "greater"

evaluates to "less" since the value of the expression 1<2 is true.

Concatenation Page 18 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Notice that the expression

if 1<2 then 0 else 1 div 0

evaluates to 0, even though 1 div 0 incurs a run-time error. While it may, at first glance, appear
that this is a violation of the call-by-value principle mentioned above, the explanation is that the
conditional is not a primitive function, but rather a derived form that is explained in terms of other
constructs of the language.

A common "mistake" is to write an expression like this

if exp = true then exp1 else exp2

If you think about it for a moment, this expression is just a longer way of writing

if exp then exp1 else exp2

Similarly,

if exp = false then exp1 else exp2

can be abbreviated to

if not exp then exp1 else exp2

or, better yet, just

if exp then exp2 else exp1

Neither of these examples is really a mistake, but it is rarely clearer to test a Boolean value for
equality with true or false than to simply perform a conditional test on the value itself.

Sample Code for this Chapter

[Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 19 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Variables and Declarations [http://www.cs.cmu.edu/People/rwh/introsml/core/decls.htm]Page 5

Variables and Declarations
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Just as in any other programming language, values may be assigned to variables that may be used in
an expression to stand for that value. However, in sharp contrast to more familiar languages,
variables in SML do not vary (!). Values are bound to variables using value bindings; once a variable
is bound to a value, it is bound for life. There is no possibility of changing the binding of a variable
after it has been bound. In this respect variables in SML are more akin to variables in mathematics
than to variables in languages such as C. Similarly, types may be bound to type variables using type
bindings; the type variable so defined stands for the type bound to it and can never stand for any other
type.

A binding (either value or type) introduces a "new" variable, distinct from all other variables of that
class, for use within its range of significance, or scope. Scoping in SML is lexical, meaning that the
range of significance of a variable is determined by the program text, not by the order of evaluation of
its constituent expressions. (Languages with dynamic scope adopt the opposite convention.) For the
time being variables will have global scope, meaning that the range of significance of the variable is
the "rest" of the program --- the part that lexically follows the binding. We will introduce
mechanisms for delimiting the scopes of variables shortly.

Any type may be give a name using a type binding. At this stage we have so few types that it is hard
to justify binding type names to identifiers, but we'll do it anyway because we'll need it later. Here are
some examples of type bindings:

type float = real

type count = int and average = real

The first type binding introduces the type variable float , which subsequently is synonymous with
real . The second introduces two type variables, count and average , which stand for int and
real , respectively. In general a type binding introduces one or more new type variables
simultaneously in the sense that the definitions of the type variables may not involve any of the type
variables being defined. Thus a binding such as

type float = real and average = float

nonsensical (if taken in isolation) since the type variables float and average are introduced
simultaneously, and hence cannot refer to one another. The syntax for type bindings is type var1 =
typ1 and ... and varn = typn, where each vari is a type variable and each typi is a type expression.

Concatenation Page 20 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Similarly, value variables are bound to values using value bindings. Here are some examples:

val m : int = 3+2

val pi : real = 3.14 and e : real = 2.17

The first binding introduces the variable m, specifying its type to be int and its value to be 5. The
second introduces two variables, pi and e, simultaneously, both having type real , and with pi
having value 3.14 and e having value 2.17 . Notice that a value binding specifies both the type
and the value of a variable. The syntax of value bindings is val var1 : typ1 = exp1 and ... and
varn : typn = expn, where each vari is a variable, each typi is a type expression, and each expi is an
expression.

As you have no doubt surmised, value bindings are type-checked by comparing the type of the right-
hand side with the specified type to ensure that they coincide. If a mismatch occurs, the value binding
is rejected as ill-formed. Well-typed bindings are evaluated according to the bind-by-value rule: the
right-hand side of the binding is evaluated, and the resulting value (if any) is bound to the given
variable.

The purpose of a binding is to make a variable available for use within its scope. In the case of a
type binding we may use the type variable introduced by that binding in type expressions occurring
within its scope. For example, in the presence of the type bindings above, we may write

val pi : float = 3.14

since the type variable float is bound to the type real , the type of the expression 3.14 .
Similarly, we may make use of the variable introduced by a value binding in value expressions
occurring within its scope. Continuing from the preceding binding, we may use the expression

sin pi

to stand for 0.0 (approximately), and we may bind this value to a variable by writing

val x : float = sin pi

As these examples illustrate, type checking and evaluation are context dependent in the presence of
type and value bindings since we must refer to these bindings to determine the types and values of
expressions. For example, to determine that the above binding for x is well-formed, we must consult
the binding for pi to determine that it has type float , consult the binding for float to determine
that it is synonymous with real , which is necessary for the binding of x to have type float .

The rough-and-ready rule for both type-checking and evaluation is that a bound variable is implicitly
replaced by its binding prior to type checking and evaluation. This is sometimes called the
substitution principle for bindings. For example, to evaluate the expression cos x in the scope of
the above declarations, we first replace both occurrences of x by its value (approximately 0.0), then
compute as before, yielding (approximately) 1.0 . Later on we will have to refine this simple
principle to take account of more sophisticated language features, but it is useful nonetheless to keep
this simple idea in mind.

Concatenation Page 21 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Bindings may be combined to form declarations. A binding is an atomic declaration, even though it
may introduce many variables simultaneously. Two declarations may be combined by sequential
composition by simply writing them one after the other, optionally separated by a semicolon. Thus we
may write the declaration

val m : int = 3+2
val n : int = m*m

which binds m to 5 and n to 25 . Subsequently, we may evaluate m+n to obtain the value 30 . In
general a sequential composition of declarations has the form dec1 ... decn, where n is at least 2. The
scopes of these declarations are nested within one another: the scope of dec1 includes dec2 ... decn,
the scope of dec2 includes dec3 ... decn, and so on.

One thing to keep in mind is that binding is not assignment. The binding of a variable never changes;
once bound to a value, it is always bound to that value (within the scope of the binding). However,
we may shadow a binding by introducing a second binding for a variable within the scope of the first
binding. Continuing the above example, we may write

val n : real = 2.17

to introduce a new variable n with both a different type and a different value than the earlier binding.
The new binding shadows the old one, which may then be discarded since it is no longer accessible.
(Later on, we will see that in the presence of higher-order functions shadowed bindings are not
always discarded, but are preserved as private data in a closure. One might say that old bindings
never die, they just fade away.)

The scope of a variable may be delimited by using let expressions and local declarations. A let
expression has the form let dec in exp end , where dec is any declaration and exp is any
expression. The scope of the declaration dec is limited to the expression exp. The bindings
introduced by dec are (in effect) discarded upon completion of evaluation of exp. Similarly, we may
limit the scope of one declaration to another declaration by writing local dec in dec' end . The
scope of the bindings in dec is limited to the declaration dec’. After processing dec’, the bindings in
dec may be discarded.

The value of a let expression is determined by evaluating the declaration part, then evaluating the
expression relative to the bindings introduced by the declaration, yielding this value as the overall
value of the let expression. An example will help clarify the idea:

let
 val m:int = 3
 val n:int = m*m
in
 m*n
end

This expression has type int and value 27 , as you can readily verify by first calculating the bindings
for m and n, then computing the value of m*n relative to these bindings. The bindings for m and n are
local to the expression m*n, and are not accessible from outside the expression.

Concatenation Page 22 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

If the declaration part of a let expression shadows earlier bindings, the ambient bindings are
restored upon completion of evaluation of the let expression. Thus the following expression
evaluates to 54 :

val m:int = 2
val r:int =
 let
 val m:int=3
 val n:int=m*m
 in
 m*n
 end * m

The binding of m is temporarily overridden during the evaluation of the let expression, then restored
upon completion of this evaluation.

To complete this chapter, let’s consider in more detail the context-sensitivity of type checking and
evaluation in the presence of variable bindings. The key ideas are:

1. Type checking must take account of the declared type of a variable.
2. Evaluation must take account of the declared value of a variable.

This is achieved by maintaining environments for type checking and evaluation. The type
environment records the types of variables; the value environment records their values. For example,
after processing the compound declaration

val m : int = 0
val x : real = sqrt(2)
val c : char = #"a",

the type environment contains the information

val m : int
val x : real
val c : char

and the value environment contains the information

val m = 0
val x = 2.14…
val c = #"a" .

In a sense the value declarations have been divided in "half", separating the type from the value
information.

Thus we see that value bindings have significance for both type checking and evaluation. In contrast
type bindings have significance only for type checking, and hence contribute only to the type
environment. A type binding such as

Concatenation Page 23 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

type float = real

is recorded in its entirety in the type environment, an no change is made to the value environment.
Subsequently, whenever we encounter the type variable float in a type expression, it is replaced by
real in accordance with the type binding above.

Earlier we introduced two relations, the typing relation, exp : typ, and the evaluation relation, exp =>
val. These two-place relations were sufficient for variable-free expressions, but in the presence of
declarations these relations must be extended to account for the type and value environments. This is
achieved by expanding the typing relation into a three-place relation typenv |- exp : typ, where
typenv is a type environment, exp is an expression and typ is a type. (The turnstile symbol, "|-", is a
punctuation mark separating the type environment from the expression and its type.) The type of a
variable is determined by consulting the type environment; in particular, we have the following
typing axiom:

... val x : int ... |- x : int

Similarly, the evaluation relation is enriched to take account of the value environment. We write
valenv |- exp => val to indicate that exp evaluates to val in the value environment valenv. Variables
are governed by the following axiom:

... val x = val ... |- x => val

There is an obvious similarity between the two relations.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 24 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Functions [http://www.cs.cmu.edu/People/rwh/introsml/core/functions.htm] Page 6

Functions
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

So far Standard ML is just a glorified calculator supporting operations of various primitive types and
allowing intermediate results to be bound to identifiers. What makes it possible to do more than just
calculate the values of expressions is the possibility to abstract the data from the pattern of the
computation so that the same computation may be easily repeated for various data values. For
example, if we calculate the expression 2*(3+4) , the data might be the values 2, 3, and 4, and the
pattern of calculation might be written in skeletal form as () * (() + ()) with "holes"
where the data used to be. We say "might be" because it's not at all clear, given the original
expression, what is the data and what is the pattern. For example, we might regard 2 as the data and
() * (3+4) as the pattern, or even regard * and + as the data and 2 () (3 () 4) as the
pattern! What is important here is that the original expression can be recovered by filling the holes
with the missing data items and, moreover, different expressions can be obtained by filling the same
hole with different data items. Thus, an expression with a "hole" in it is may be thought of as a
function that, when applied to an argument value determines its result by filling the hole with the
argument.

This view of functions is similar to our experience from high school algebra. In elementary algebra
we manipulate polynomials such as x^2 + 2x + 1 as a kind of expression denoting a real number, but
with the variable x representing an unknown quantity. We may also think of a polynomial as a
function of the real numbers: given a real number x, a polynomial determines another real number y
computed by some combination of arithmetic operations. In fact, we sometimes write equations such
as y = x^2 + 2x + 1 or y(x) = x^2 + 2x + 1 to denote the function determined by the polynomial. In
the univariate case we can get away with just writing the polynomial for the function, but in the
multivariate case we must be more careful since we may regard the polynomial x^2 + 2xy + y^2 as a
function of x, a function of y, or a function of both x and y. In these cases we write f(x) = x^2 + 2xy
+ y^2 when x varies and y is held fixed, and g(y) = x^2 + 2xy + y^2 when y varies for fixed x, and h
(x,y) = x^2 + 2xy + y^2, when both vary jointly.

It is usually left implicit that the variables x and y range over the real numbers, and that f, g, and h are
functions mapping real numbers to real numbers. To be fully explicit, we sometimes write something
like

f : R -> R : x in R |--> x^2 + 2x + 1

to indicate that f is a function on the reals mapping an element x of R to the element x^2 + 2x + 1 of
R. This notation has the virtue of separating the binding of the function to a name (f) from the
description of its behavior (x in R |--> x^2 + 2x + 1). This makes clear that functions are a kind of

Concatenation Page 25 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

"value" in mathematics (namely, a set of ordered pairs satisfying the usual uniqueness and existence
conditions), and that the variable f is bound to that value by the declaration. This viewpoint is
especially important once we consider operators, such as the differential operator, that map functions
to functions. For example, if f is a differentiable function on the real line, the function Df is its first
derivative, also a function on the real line.

The treatment of functions in Standard ML is very similar to our mathematical experience, except
that we stress the algorithmic aspects of functions (how they determine values from arguments), as
well as the extensional aspects (what they compute). Just as in mathematics a function in Standard
ML is a kind of value, namely a value of function type. A function type has the form typ-> typ’,
where typ is the domain type (the type of arguments to the function), and typ’ is the range type (the
type of results). We compute with a function by applying it to an argument value of its domain type
and calculating the result value of its range type. Function values are lambda expressions of the form
fn var : typ => exp; the variable var is called the parameter, and the expression exp is called its
body. It has type typ-> typ’, where exp has type typ’ under the assumption that var has type typ. The
result of applying such a function to an argument value val is determined by temporarily adding the
binding val var = val to the environment, and evaluating exp to a value val’. The temporary
binding is then removed, and the result value, val, is returned as the value of the application.

For example, sqrt is a (built-in) function of type real->real that may be applied to a real
number to obtain its square root; for example, the expression sqrt 2.0 evaluates to 1.414... .
Observe that function application is written by juxtaposition: we simply write the argument next to
the function. We can, if we wish, parenthesize the argument, writing sqrt 2.0 for the sake of
clarity; this is especially useful for expressions like sqrt (sqrt 2.0) . The function sqrt is
special in that it is a built-in, or primitive, operation of the language. We may also define functions as
templates using a notation similar to that introduced above. For example, the fourth root function on
the reals may be written in Standard ML using lambda notation as follows:

fn x : real => sqrt (sqrt x)

Notice that we don't (at this stage) give this function a name, rather we simply define its behavior by
a template specifying how it calculates its result from its argument. This template defines a function
of type real->real since it maps real numbers to real numbers. It may be applied to an argument
by writing, for example,

(fn x : real => sqrt (sqrt x)) (4.0)

to calculate the fourth root of 4.0 . The calculation proceeds by binding the variable x to the
argument 4.0 , then evaluating the expression sqrt (sqrt x) in the presence of this binding.
When evaluation completes, we drop the binding of x from the environment, since it is no longer
needed. (There is a subtle issue about the temporary binding of x that we will return to later.)

We may give a function a name using the declaration forms introduced in the previous chapter. For
example, we may bind the fourth root function to the identifer fourthroot as follows:

val fourthroot : real -> real = (fn x : real => sqrt (sqrt
x))

We may then write fourthroot 4.0 to compute the fourth root of 4.0 . This notation quickly

Concatenation Page 26 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

becomes tiresome to write down, so Standard ML provides a special form of function binding that
alleviates the burden. In practice we write

fun fourthroot (x:real):real = sqrt (sqrt x)

rather than the more verbose val declaration above. But it has (almost) precisely the same meaning:
the fun binding binds a lambda expression to an identifier.

These examples raise a few additional points about functions in Standard ML. First of all, the
general form of an application expression is exp exp’, where exp is an expression that evaluates to a
function, and exp’ is an expression that evaluates to its argument. Standard ML is a call-by-value
language: the argument to a function is evaluated before the function is applied. (You may
reasonably wonder what is the alternative. In a so-called call-by-name language the argument is
passed in unevaluated form to the function, and is only evaluated if the function requires it to be.
This behavior is expressible in Standard ML by other means, which we shall return to later.) Thus,
when to evaluate an expression such as fourthroot 2.0 , we proceed as follows:

1. Evaluate fourthroot to the function value fn x : real => sqrt (sqrt x) .
2. Evaluate the argument 2.0 to its value 2.0
3. Bind x to the value 2.0 .
4. Evaluate sqrt (sqrt x) by a subsidiary calculation to 1.189... .

a. Evaluate sqrt to a function value (in this case the primitive square root function).
b. Evaluate the argument expression (sqrt x) to its value, 1.414... (by a subsidiary
calculation).
 i. Evaluate sqrt to a function value (in this case the primitive square root function).
 ii. Evaluate x to its value, 2.0 .
 iii. Compute the square root of 2.0 , yielding 1.414... .
c. Compute the square root of 1.414... , yielding 1.189... .

5. Drop the binding for the variable x .

Second of all, notice that we evaluate both the function and argument positions of an application
expression --- both the function and argument are arbitrary expressions yielding values of the
appropriate type. The value of the function position must be a value of function type, either a
primitive function or a lambda, and the value of the argument position must be a value of the domain
type of the function. In this case the result value (if any) will be of the range type of the function.
The point here is that functions are first-class values, meaning that they may be obtained as the value
of an arbitrary expression; we are not limited to applying only named functions, but rather may
compute "new" functions on the fly and apply these to arguments. This is a source of considerable
expressive power, as we shall see later in these notes.

So far, we've only considered functions on the real numbers, but we may also define functions of
other types. For example,

fun pal (s:string):string = s ^ (rev s)
fun double (n:int):int = n + n
fun square (n:int):int = n * n
fun halve (n:int):int = n div 2
fun is_even (n:int):bool = (n mod 2 = 0)

Concatenation Page 27 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Thus pal "ot" evaluates to the string "otto" , and is_even 4 evaluates to true .

There are a few subtleties that we must be aware of when thinking about functions. The first is: the
name of the parameter is not important. Consequently, it may be systematically renamed without
changing the meaning of the function, provided that we don't rename it in such a way as to clash with
some other name that is currently in scope. An example will illustrate the point:

fun f(x:real):real = x+x
fun g(y:real):real = y+y

These two functions are completely equivalent; they differ only in the name of the parameter (in one
case, x , in the other, y). The second subtlety is the static scope principle: a use of a variable refers to
the nearest enclosing binding of that variable in the text of the program. Just as one value binding
can shadow another, so can parameters of functions shadow value bindings (or other parameters).
Here's an example:

val x:real = 2.0
fun h(x:real):real = x+x
fun i(y:real):real = x+y

The first function, h, introduces a parameter x that shadows the outer value binding; the value
binding has no effect on the meaning of the function h. The second function, i , makes use of the
variable x introduced by the val binding; from within the body of i this is the nearest enclosing
binding occurrence of x in the program. (The parameter x of the function h does not enclose the
definition of the function i .) The use of x within the function i introduces some constraints on the
possible renamings of the parameter of i . Specifically, we may certainly rename y to z without
changing the meaning of the function i , but we may not rename y to x without changing the meaning
completely. That is, the function j has the same meaning as the function i , but the function k has a
different meaning:

fun j(z:real):real = x+z
fun k(x:real):real = x+x

While these may seem like minor technical issues, it is essential that you master these ideas now to
avoid confusion later on!

We close this section with a brief summary of function types:

Type name: typ->typ’
Values: primitives, fn var : typ => exp
Operations: application exp exp’

Once we develop some additional machinery we will return to the function type to discuss recursive
functions.

Sample Code for this Chapter

Concatenation Page 28 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 29 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Products and Patterns [http://www.cs.cmu.edu/People/rwh/introsml/core/products.htm]Page 7

Products and Patterns
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:56 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

A characteristic feature of ML is the the ease with which we may handle aggregate data structures
such as tuples, arrays, lists, and trees. The simplest form of aggregate is the tuple, value of product
type. Product types have the form

typ1*...*typn,

where n is at least 2. Values of this type are n-tuples of the form

(val1, ..., valn) ,

where vali is a value of type typi (for each 1<=i<=n).

Thus the following are well-formed bindings:

val pair : int * int = (2, 3)
val triple : int * real * string = (2, 2.0, "2")
val pair_of_pairs : (int * int) * (real * real) =
((2,3),(2.0,3.0))
val quadruple : int * int * real * real = (2,3,2.0,3.0)

The nesting of parentheses matters! A pair of pairs is not the same as a quadruple, so the last two
bindings are of distinct values with distinct types.

More generally, a tuple expression has the form

(exp1, ..., expn) ,

where each expi is an expression (not necessarily a value). Evaluation of tuple expressions proceeds

from left to right, yielding the tuple value (val1, ..., valn) , where each expi evaluates to vali (for each

1<=i<=n). Thus the binding

val pair : int * int = (1+1, 5-2)

binds the value (2, 3) to the variable pair .

Concatenation Page 30 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Tuples may be decomposed into their constituent parts using pattern matching. This is expressed
using a generalized form of value binding in which the left-hand side is not merely a variable, but a
pattern involving zero or more variables. The general form of a value binding is

val pat = exp,

where pat is a pattern and exp is any expression.

What sorts of patterns are there? We've already seen the basic form of pattern, namely a variable
pattern, written var: typ. Another form of pattern is the tuple pattern, which has the form
(pat1, ..., patn) , where each pati is a pattern. (We will introduce other forms of pattern later in these

notes.)

Just as every expression must have a type, so must every pattern. The type of a pattern is determined
by a rule governing each form of pattern. The variable pattern var: typ is of type typ, and the tuple
pattern (pat1, ..., patn) is of type typ1*...*typn, where pati is a pattern of type typi for each i. Thus

the pattern (n:int,r:real,s:string) is of type int*real*string , as might be expected.

A value binding of the form val pat = exp is well-typed iff pat and exp have the same type;
otherwise the binding is ill-typed and is rejected by the compiler. Thus the following bindings are
well-typed (given the bindings above):

val (m:int, n:int) = pair
val (m:int, r:real, s:string) = triple
val ((m:int,n:int), (r:real, s:real)) = pair_of_pairs
val (m:int, n:int, r:real, s:real) = quadruple

In contrast, the following are ill-typed:

val (m:int,n:int,r:real,s:real) = pair_of_pairs
val (m:int, r:real) = pair
val (m:int, r:real) = triple

Value bindings are evaluated using the bind-by-value principle discussed earlier, except that the
binding process is now more complex than before. First, we evaluate the right-hand side of the
binding to a value (if indeed it has one). Then, we proceed according to the rules of pattern matching
to determine the bindings for the individual variables in the pattern. This process is quite intuitive.
For example, the binding

val (m:int,r:real,s:string) = triple

binds m to 2, r to 2.0 , and s to "2.0" .

Formally, we go through a process of reduction to atomic value bindings, where an atomic binding is
one whose pattern is a variable pattern. The binding

val (pat1, ..., patn) = (val1, ..., valn)

Concatenation Page 31 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

reduces to the sequence of bindings

val pat1 = val1
...
val patn = valn

This decomposition is repeated until all bindings are atomic, at which point the process terminates
having arrived at the value environment determined by the original binding. Notice that we rely on
the fact that values of n-tuple type are n-tuples! This is a crucial property of the type system of ML,
which determines the shapes of well-typed values based on their types.

For example, the evaluation of the binding

val ((m:int,n:int), (r:real, s:real)) = pair_of_pairs

proceeds by first evaluating the expression pair_of_pairs to ((2,3),(2.0,3.0)) , then
decomposing the pattern ((m:int,n:int), (r:real, s:real)) in two major stages, as
follows:

1. Reduce the binding

val ((m:int,n:int), (r:real, s:real)) = ((2,3),(2.0,3.0))

to the sequence of bindings

val (m:int, n:int) = (2,3)
val (r:real, s:real) = (2.0,3.0) .

2. Reduce the latter bindings to the sequence of atomic bindings

val m:int = 2
val n:int = 3
val r:real = 2.0
val s:real = 3.0

At this point we have determined the bindings for the individual variables in the pattern.

The null tuple is a tuple with zero elements. It is written () , which is consistent with the n-tuple
notation. Its type, however, is written unit , indicating that it is has but a single element. The null-
tuple pattern is, of course, also written () . Aside from regularity, the main reason for having a null
tuple in the language is to provide a "default" value for expressions that have no interesting value
(but, presumably, an interesting effect). We'll have more to say about this later in these notes.

When tuples get large, it gets hard to remember which position is which. Records are tuples whose
components are labeled with an identifier. A record type has the form

{ lab1: typ1, ..., labn: typn} ,

Concatenation Page 32 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

where n is at least 2. A record value has the form

{ lab1=val1, ..., labn=valn} ,

where vali has type typi. A record pattern has the form

{ lab1=pat1, ..., labn=patn} .

This pattern has type { lab1: typ1, ..., labn: typn} provided that pati has type typi for each i. The

important thing to note about record expressions is that the order of the fields determines the order of
evaluation, but that for record values, the order of the fields is irrelevant. Once the fields have been
evaluated, you can write them in any order you like, but the compiler will adhere to the order you
choose to write unevaluated fields.

Some examples will help clarify the use of record types.

type hyperlink = { protocol : string, address : string,
display : string }

val mailto_rwh : hyperlink =
 { protocol="mailto", address= "rwh@cs.cmu.edu" ,
display="Robert Harper" }
val plcore_home : hyperlink =
 { protocol="http", address="//cs.cmu.edu/~rwh/plcore",
display="Programming Languages Core Course" }

val { protocol=port, address=addr, display=disp } =
mailto_rwh

(The over-use of strings here is quite obvious; in due course we’ll have sufficient mechanism to do a
better job.)

In practice one often wishes to select only one or two fields from a tuple or record value, the others
being irrelevant to the computation at hand. It would be tedious in the extreme to be forced to bind a
variable to each of possibly dozens of irrelevant fields, just so that you could access one of them.
Wild card patterns are used to handle these situations. The basic form of wild card is written as an
underscore, _. It is an atomic pattern that does not generate any bindings; wild card bindings are
simply eliminated (after evaluation of the right-hand side).

val (m:int, _, r:real, _) = quadruple
val (_, (x:real, y:real)) = pair_of_pairs
val { protocol=port, address=_, display=_ } = mailto_rwh

In each case we have elided certain fields using the wild card pattern. The matching process proceeds
as before, including evaluation of the right-hand side of the binding, but bindings whose pattern is the
wild card are dropped. For example, the first binding above generates in one step the bindings

val m:int = 2

Concatenation Page 33 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

val _ = 3
val r:real = 2.0
val _ = 3.0

At the next step the bindings for the wild card are dropped, yielding bindings for m and r alone.

It is important to remember that the right-hand side of a binding is always evaluated, regardless of the
use of wild card patterns! Thus a binding of the form val _ = exp always leads to the evaluation of
exp, but then its value is thrown away. (This could be useful when exp has an effect, as we'll see
much later in these notes.)

You will by now have asked yourself "what is the type of a wild card pattern?". Good question. The
answer is: whatever type is necessary to ensure that the overall binding is well-typed. This is
undoubtedly not a fully satisfying answer, because it doesn't tell you how this information is
determined. We will have more to say on this when we discuss type inference below.

It is quite common to encounter record types with tens of fields. In such cases even the wild card
notation doesn't help much when it comes to selecting one or two fields from such a record. For this
we often use ellipsis patterns in records, as illustrated by the following example.

val { protocol = port, ... } = plcore_home

The pattern { protocol = port, ... } stands for the pattern { protocol=port,
address=_, display=_ } used earlier. In effect the compiler replaces the ellipsis with
however many wild card entries are required in order to complete the record pattern. In order for this
to occur the compiler must be able to determine unambiguously the type of the record pattern. Here
the right-hand side of the value binding determines the type of the pattern, which then determines
which additional fields to fill in. In some situations the context does not disambiguate, in which case
you must supply additional type information or eschew the use of ellipsis.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 34 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Clausal Function Definitions [http://www.cs.cmu.edu/People/rwh/introsml/core/clauses.htm]Page 8

Clausal Function Definitions
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:54 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

A function may bind more than one argument by using a pattern, rather than a variable, in the
argument position. Function expressions may have the form

fn pat => exp

where pat is a pattern and exp is an expression. Application of such a function proceeds much as
before, except that the argument value is matched against the parameter pattern to determine the
bindings of zero or more variables, which are then used during the evaluation of the body of the
function.

For example, we may make the following definition of the Euclidean distance function:

val dist : real * real -> real = fn (x:real, y:real) =>
sqrt (x*x + y*y)

This function may then be applied to a pair (two-tuple!) of arguments to yield the distance between
them. For example, dist (2.0,3.0) evaluates to (approximately) 4.0 .

Using fun notation, the distance function may be defined more concisely as follows:

fun dist (x:real, y:real):real = sqrt (x*x + y*y)

The meaning is the same as the more verbose val binding given earlier.

Keyword parameter passing is supported through the use of record patterns. For example, we may
define the distance function using keyword parameters as follows:

fun dist’ {x=x:real, y=y:real} = sqrt (x*x + y*y)

The expression dist’ {x=2.0,y=3.0} invokes this function with the indicated x and y values.

Functions with multiple results may be thought of as functions yielding tuples (or records). For
example, we might compute two different notions of distance between two points at once as follows:

fun dist2 (x:real, y:real):real*real = (sqrt (x*x+y*y), abs
(x-y))

Concatenation Page 35 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Notice that the result type is a pair, which may be thought of as two results.

These examples illustrate a pleasing regularity in the design of ML. Rather than introduce ad hoc
notions such as multiple arguments, multiple results, or keyword parameters, we make use of the
general mechanisms of tuples, records, and pattern matching.

It is sometimes useful to have a function to select a particular component from a tuple or record (e.g.,
the third component or the component labeled url). Such functions may be easily defined using
pattern matching. But since they arise so frequently, they are pre-defined in ML using sharp
notation. For any record type typ1* ...* typn, and each i between 1 and n, there is a function #i of

type typ1* ...* typn->typi defined as follows:

fun #i (_, ..., x, ..., _) = x

where x occurs in the ith position of the tuple (and there are underscores in the other n-1 positions).
Thus we may refer to the second field of a three-tuple val by writing #2 val. It is bad style, however,
to over-use the sharp notation; code is generally clearer and easier to maintain if you use patterns
wherever possible. Compare, for example, the following definition of the Euclidean distance
function written using sharp notation with the original.

fun dist (p:real*real):real = sqrt((#1 p)*(#1 p)+(#2 p)*(#2
p))

You can easily see that this gets out of hand very quickly, leading to unreadable code. Use of the
sharp notation is strongly discouraged!

A similar notation is provided for record field selection. The following function #lab selects the
component of a record with label lab.

fun #lab {lab=x,...} = x

Notice the use of ellipsis! Bear in mind the disambiguation requirement: any use of #lab must be in
a context sufficient to determine the full record type of its argument.

Tuple types have the property that all values of that type have the same shape; they are said to be
homogeneous. For example, all values of type int*real are pairs whose first component is an
integer and whose second component is a real. Any type-correct pattern will match any value of that
type; there is no possibility of failure of pattern matching. The pattern (x:int,y:real) is of type
int*real and hence will match any value of that type. On the other hand the pattern
(x:int,y:real,z:string) is of type int*real*string and cannot be used to match
against values of type int*real ; it is a compile-time type error to attempt to do otherwise.

Other types have values of more than one "shape"; they are said to be heterogeneous types. For
example, a value of type int might be 0, 1, ~1, ... or a value of type char might be #"a" or
#"z" . (Other examples of heterogeneous types will arise later on.) Corresponding to each of the
values of these types is a pattern that matches only that value. Attempting to match any other value
against that pattern fails at execution time. For the time being we will think of match failure as a fatal

Concatenation Page 36 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

run-time error, but later on we will see that the extent of the failure can be controlled.

Here are some simple examples of pattern-matching against values of a heterogeneous type:

val 0 = 1-1
val (0,x) = (1-1, 34)
val (0, #"0") = (2-1, #"0")

The first two bindings succeed, the third fails. In the case of the second, the variable x is bound to
34 after the match. No variables are bound in the first or third examples.

The importance of constant patterns becomes clearer once we consider how to define functions over
heterogeneous types. This is achieved in ML using a clausal function definition. The general form
of a function is

fn pat1 => exp1 | ... | patn => expn

where each pati is a pattern and each expi is an expression involving the variables of the pattern pati.

Each component pat => exp is called a clause or rule; the entire assembly of rules is called a match.

The typing rules for matches ensure consistency of the clauses. Specifically,

1. Each pattern in the match must have the same type typ.
2. Each expression in the match must have the same type typ’, given the types of the variables in

the patterns.

The type of a function whose body is a match satisfying these requirements is typ-> typ'. Note that
there is no requirement that typ and typ' coincide!

Application of functions with multiple clauses to a value val proceeds by considering each clause in
the order written. At stage i the argument value val is matched against the pattern pati; if the pattern

match succeeds, evaluation continues with the evaluation of expression expi, with the variables

replaced by the values determined by the pattern matching process. Otherwise we proceed to stage
i+1 . If no pattern matches (i.e., we reach stage n+1), then the application fails with an execution
error. Here's an example.

val recip : int -> int = fn 0 => 0 | n:int => 1 div n

This defines an integer-valued reciprocal function on the integers, where the reciprocal of 0 is
arbitrarily defined to be 0. The function has two clauses, one for the argument 0, the other for non-
zero arguments n. (Note that n is guaranteed to be non-zero because the patterns are considered in
order: we reach the pattern n:int only if the argument fails to match the pattern 0.)

Using fun notation we may define recip as follows:

fun recip 0 = 0
 | recip (n:int) = 1 div n

Concatenation Page 37 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

One annoying thing to watch out for is that the "fun " form uses an equal sign to separate the pattern
from the expression in a clause, whereas the "fn " form uses an arrow.

Heterogeneous types abound. Perhaps the must fundamental one is the type bool of booleans. Its
values are true and false . Functions may be defined on booleans using clausal definitions that
dispatch on true and false . For example, the negation function is defined clausally as follows:

fun not true = false
 | not false = true

In fact, this function is pre-defined in ML.

Case analysis on the values of a heterogeneous type is performed by application of a clausally-defined
function. The notation

case exp of pat1 => exp1 | ... | patn => expn

is short for the application

(fn pat1 => exp1 | ... | patn => expn) exp.

Evaluation proceeds by first evaluating exp, then matching its value successively against the patterns
in the match until one succeeds, and continuing with evaluation of the corresponding expression. The
case expression fails if no pattern succeeds to match the value.

The conditional expression

if exp then exp1 else exp2

is short-hand for the case analysis

case exp of true => exp1 | false => exp2

which is itself short-hand for the application

(fn true => exp1 | false => exp2) exp.

The "short-circuit" conjunction and disjunction operations are defined as follows. The expression
exp1 andalso exp2 is short for if exp1 then exp2 else false and the expression exp1 orelse

exp2 is short for if exp1 then true else exp2. You should expand these into case expressions

and check that they behave as expected. Pay particular attention to the evaluation order, and observe
that the call-by-value principle is not violated by these expressions.

Conceptually, equality and comparison operations on the types int , char , and string are defined
by infinite (or, at any rate, enormously large) matches, but in practice they are built into the language

Concatenation Page 38 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

as primitives. (The ordering on char and string are the lexicographic orderings.) Thus we may
write

fun is_alpha c:char =
 (#"a" <= c andalso c <= #"z") orelse (#"A" <= c andalso
c <= #"Z")

to test for alphabetic characters.

All this talk of success and failure of pattern matching brings up the issue of exhaustiveness and
redundancy in a match. A clause in a match is redundant if any value matching its pattern must have
matched the pattern of a preceding clause in the match. A redundant rule can never be reached during
execution. It is always an error to have a redundant clause in a match. Redundant clauses often arise
accidentally. For example, the second clause of the following function definition is redundant for
annoyingly subtle reasons:

fun not True = false
 | not false = true

The mistake is to have capitalized True so that it is no longer the boolean-typed constant pattern, but
is rather a variable that matches any value of Boolean type. Hence the second clause is redundant.
Reversing the order of clauses can also lead to redundancy, as in the following mistaken definition of
recip :

fun recip (n:int) = 1 div n
 | recip 0 = 0

The second clause is redundant because the first clause will always match any integer value,
including 0.

A match (as a whole) is exhaustive if every possible value of the domain type of the match must
match some clause of that match. In other words, pattern matching against an exhaustive pattern
cannot fail at run-time. The clauses in the (original) definition of recip are exhaustive because they
cover every possible integer value. The match comprising the body of the following function is not
exhaustive:

fun is_numeric #"0" = true
 | is_numeric #"1" = true
 | is_numeric #"2" = true
 | is_numeric #"3" = true
 | is_numeric #"4" = true
 | is_numeric #"5" = true
 | is_numeric #"6" = true
 | is_numeric #"7" = true
 | is_numeric #"8" = true
 | is_numeric #"9" = true

When applied to, say, #"a" , this function fails.

It is often, but not always, an error to have an inexhaustive match. The reason is that the type system

Concatenation Page 39 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

cannot record many invariants (such as the property that is_numeric is only called with a
character representing a decimal digit), and hence the compiler will issue a warning about
inexhaustive matches. It is a good idea to check each such warning to ensure that you have not
accidentally omitted a clause from the match.

Any match can be made exhaustive by the inclusion of a catch-all clause of the form

_ => exp

where exp is an expression of the appropriate type. It is a bad idea to simply stick such a clause at the
end of every match in order to eliminate "inexhaustive pattern" warnings. By doing so you give up
the possibility that the compiler may warn you of a legitimate error (due to a forgotten case) in your
program. The compiler is your friend! Use it to your advantage!

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 40 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Recursive Functions [http://www.cs.cmu.edu/People/rwh/introsml/core/recfns.htm] Page 9

Recursive Functions
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:56 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

It's time to return to function definitions. So far we've only considered very simple functions (such as
the reciprocal function) whose value is computed more or less directly using the primitives of the
language. You may well be wondering at this stage how to define functions that require some form
of iteration to compute. In familiar imperative languages iteration is accomplished using while and
for loops; in ML it is accomplished using recursion.

Informally, a function defined by recursion is one that computes the result of a call by "calling itself".
To accomplish this, the function must be given a name by which it can refer to itself. This is
achieved using a recursive value binding. Recursive value bindings have almost the same form as
ordinary, non-recursive value bindings, except that the binding is qualified with the adjective "rec "
by writing val rec pat = exp. Here's an example:

val rec factorial : int->int = fn 0 => 1 | n:int => n *
factorial (n-1)

This is a recursive definition of the factorial function, which is ordinarily defined in textbooks by the
recursion equations

0! = 1
n! = n*(n-1)! (n>=0)

Using fun notation we may write the definition of factorial much more clearly and concisely as
follows:

fun factorial 0 = 1
 | factorial (n:int) = n * factorial (n-1)

There is clearly a close correspondence between the ML notation and the mathematical notation for
the factorial function.

How are recursive value bindings type-checked? The answer may appear, at first reading, to be
paradoxical: assume that the function has the type specified, then check that the definition is
consistent with this assumption. In the case of factorial we assume that factorial has type
int->int , then check that its definition

fn 0 => 1 | n:int => n * factorial (n-1)

Concatenation Page 41 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

has type int->int . To do so we must check that each pattern has type int , and that each
corresponding expression has type int . This is clearly true for the first clause of the definition. For
the second, we assume that n has type int , then check that n * factorial (n-1) has type
int . This is so because of the rules for the primitive arithmetic operations and because of our
assumption that factorial has type int->int . (Be certain that you understand this reasoning!
It is essential for what follows.)

How are applications of recursive value bindings evaluated? The rules are almost the same as
before. We need only observe that the binding for the function may have to be retrieved many times
during evaluation (once for each recursive call). For example, to evaluate factorial 3 , we
retrieve the definition of factorial , then pattern match the argument against the pattern of each
clause. Clearly 3 does not match 0, but it does match n:int , binding n to 3 in the process. We
then evaluate n * factorial (n-1) relative to this binding for n. To do so we retrieve the
binding for factorial a second time, and to apply it to 2. Once again we consider each clause in
turn, failing to match 0, but succeeding to match n:int . This introduces a new binding for n that
shadows the previous binding so that n now evaluates to 2. We then proceed once again to evaluate
n * factorial (n-1) , this time with n bound to 2. Once again we retrieve the binding for
factorial , then bind n to 1, shadowing the two previous bindings, then evaluating n *
factorial (n-1) with this binding for n. We retrieve the binding for factorial one last
time, then apply it to 0. This time we match the pattern 0 and yield 1. We then (in four steps)
compute the result, 6, by completing the pending multiplications.

The factorial function illustrates an important point about recursive function definitions. Notice
that the recursive call in the definition of factorial occurs as the argument of a multiplication.
This means that in order for the multiplication to complete, we must first complete the calculation of
the recursive call to factorial . In rough outline the computation of factorial 3 proceeds as
follows:

1. factorial 3
2. 3 * factorial 2
3. 3 * 2 * factorial 1
4. 3 * 2 * 1 * factorial 0
5. 3 * 2 * 1 * 1
6. 3 * 2 * 1
7. 3 * 2
8. 6

(The strings of multiplications are implicitly right-associated.) Notice that the size of the expression
first grows (in direct proportion to the argument), then shrinks as the pending multiplications are
completed. This growth in expression size corresponds directly to a growth in run-time storage
required to record the state of the pending computation.

The foregoing definition of factorial should be contrasted with the following definition:

fun fact_helper (0,r:int) = r
 | fact_helper (n:int,r:int) = fact_helper (n-1,n*r)

fun factorial n:int = fact_helper (n, 1)

Concatenation Page 42 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

We define factorial using a helper function fact_helper that takes an additional parameter,
called an accumulator, that records the running partial result of the computation. This corresponds to
reducing the prefix of the pending computations in the trace given above by "left-associating" the
multiplications. (In fact the technique is only applicable to associative binary operations for precisely
this reason.)

The important thing to observe about fact_helper is that it is tail recursive, meaning that the
recursive call is the last step of evaluation of an application of it to an argument. The following
evaluation trace illustrates the point:

1. factorial 3
2. fact_helper (3, 1)
3. fact_helper (2, 3)
4. fact_helper (1, 6)
5. fact_helper (0, 6)
6. 6

Notice that there is no growth in the size of the expression because there are no pending computations
to be resumed upon completion of the recursive call. Consequently, there is no growth in the space
required for an application, in contrast to the first definition given above. In this sense tail recursive
definitions are analogous to loops in imperative languages: they merely iterate a computation, and do
not require allocation of storage during execution. For this reason tail recursive procedures are
sometimes called iterative.

Time and space usage are important, but what is more important is that the function compute the
intended result. The key to the correctness of a recursive function is an inductive argument
establishing its correctness. The critical ingredients are these:

1. A specification of the result of the function stated in terms of its arguments. This specification
will usually involve assumptions about the arguments that are sufficient to establish that the
function behaves correctly.

2. An induction principle that justifies the correctness of the recursive function based on the
pattern of its recursive calls. In simple cases this is ordinary mathematical induction, but in
more complicated situations a more sophisticated approach is often required.

These ideas may be illustrated by considering the first definition of factorial given above. A
reasonable specification for factorial is as follows:

if n>=0 then factorial n evaluates to n!

Notice that the specification expresses the assumption that the argument, n, is non-negative, and
asserts that the application of factorial to n terminates with the expected answer.

To check that satisfies this specification, we apply the principle of mathematical induction on the
argument n. Recall that this means we are to establish the specification for the case n=0, and,
assuming it to hold for n>=0, show that it holds for n+1. The base case, n=0, is trivial: by definition
factorial n evaluates to 1, which is 0!. Now suppose that n=m+1 for some m>=0. By the
inductive hypothesis we have that factorial m evaluates to m!, and so by the definition

Concatenation Page 43 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

factorial n evaluates to the value of n*m! = (m+1)*m! = (m+1)! = n!, as required. This
completes the proof.

That was easy. What about the second definition of factorial ? We focus on the behavior of
fact_helper . A suitable specification is

if n>=0 then fact_helper (n,r) evaluates to n!*r

Once again we proceed by mathematical induction on n; you can easily check that fact_helper
satisfies this specification. It follows that the second definition of factorial in terms of
fact_helper satisfies the specification of factorial given above, since we may take r=1 in
the specification of fact_helper .

As a matter of programming style, it is usual to conceal the definitions of helper functions using a
local declaration. In practice we would make the following definition of the iterative version of
factorial :

local
 fun fact_helper (0,r:int) = r
 | fact_helper (n:int,r:int) = fact_helper (n-1,n*r)
in
 fun factorial (n:int) = fact_helper (n,1)
end

This way the helper function is not visible, only the function of interest is "exported" by the
declaration.

Here’s an example of a function defined by complete induction, the Fibonacci function, defined on
integers n>=0:

(* for n>=0, fib n evaluates to the nth Fibonacci number *)
fun fib 0 = 1
 | fib 1 = 1
 | fib (n:int) = fib (n-1) + fib (n-2)

The recursive calls are made not only on n-1 , but also n-2 , which is why we must appeal to
complete induction to justify the definition. This definition of fib is very inefficient because it
performs many redundant computations: to compute fib n requires that we compute fib (n-1)
and fib (n-2) . To compute fib (n-1) requires that we compute fib (n-2) a second time,
and fib (n-3) . Computing fib (n-2) requires computing fib (n-3) again, and fib (n-
4) . As you can see, there is considerable redundancy here. It can be show that the running time fib
of is exponential in its argument, which is clearly awful for such a simple function.

Here's a better solution: for each n>=0 compute not only the nth Fibonacci number, but also the (n-1)
st as well. (For n=0 we define the "-1"st Fibonacci number to be zero). That way we can avoid
redundant recomputation, resulting in a linear-time algorithm. Here's the code:

(* for n>=0, fib n evaluates to (a, b), where a is the nth
Fibonacci number and b is the (n-1)st *)

Concatenation Page 44 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

fun fibb 0 = (1, 0)
 | fibb 1 = (1, 1)
 | fibb (n:int) =
 let
 val (a:int, b:int) = fibb (n-1)
 in
 (a+b, a)
 end

You might feel satisfied with this solution since it runs in time linear in n. But in fact there's a
constant-time algorithm to compute the nth Fibonacci number! In other words the recurrence

F0 = 1

F1 = 1

Fn = Fn-1 + Fn-2

has a closed-form solution. (See Knuth's Concrete Mathematics (Addison-Wesley 1989) for a
derivation.) However, this is an unusual case. In most instances recursively-defined functions have
no known closed-form solution, so that some form of iteration is inevitable.

It is often useful to define two functions simultaneously, each of which calls itself and/or the other to
compute its result. Such fnctions are said to be mutually recursive. Here's a simple example to
illustrate the point, namely testing whether a natural number is odd or even. The most obvious
approach is to test whether the number is congruent to 0 mod 2, and indeed this is what one would do
in practice. But to illustrate the idea of mutual recursion we instead use the following inductive
characterization: 0 is even, and not odd; n>0 is even iff n-1 is odd; n>0 is odd iff n-1 is even. This
may be coded up using two mutually-recursive procedures as follows:

fun even 0 = true
 | even n = odd (n-1)
and odd 0 = false
 | odd n = even (n-1)

Notice that even calls odd and odd calls even , so they are not definable separately from one
another. We join their definitions using the keyword and to indicate that they are defined
simultaneously by mutual recursion. Later in these notes we will see more compelling examples of
mutually-recursive functions.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 45 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Type Inference [http://www.cs.cmu.edu/People/rwh/introsml/core/typeinf.htm] Page 10

Type Inference
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:56 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

So far (with a few exceptions) we’ve programmed in what is known as an explicitly typed style. This
means that whenever we've introduced a variable, we've assigned it a type at its point of introduction.
In particular every variable in a pattern has a type associated with it. As you've no doubt noticed, this
gets a little tedious after a while, especially when you're using clausal function definitions. A
particularly pleasant feature of ML is that it allows you to omit this type information whenever it can
be determined from context. This process is known as type inference since the compiler is inferring
the missing type information based on contextual information.

For example, there is no need to give a type to the variable s in the function fn s:string => s
^ "\n" . The reason is that no other type for s makes sense, since s is used as an argument to string
concatenation. Consequently, you are allowed to write just fn s => s ^ "\n" , leaving ML to
insert ":string " for you. When is it allowable to omit this information? It is difficult to give a
precise answer without introducing quite a lot of machinery, but we can give some hints of when you
can and when you cannot omit types. A remark fact about ML is that the answer is "almost always",
with the exception of a few trouble spots that we now discuss.

The main difficulty is with the arithmetic operators, which are overloaded, by which we mean that
the same syntax is used for integer and floating point arithmetic operations. This creates a problem
for type inference because it is not possible to unambiguously reconstruct type information for a
function such as fn n => n+n because there is no way to tell whether the addition operation is
integer or floating point addition. We could equally well regard this expression as abbreviating fn
n:int => n+n , with type int->int , or fn n:real => n+n , with type real->real . In
some cases the surrounding context determines which is meant. For example, in the expression (fn
n => n+n)(0) the only sensible interpretation is to regard the parameter n to have type int . A
related source of difficulty is the (infrequently used) "sharp" notation for records. Absent information
from the context, the type of the function fn r => #name(r) cannot be determined: all that is
known of the type of r is that it has a name field; neither the type of that field nor the labels and
types of the remaining fields are determined. Therefore this function will be rejected as ambiguous
because there is not enough information to determine the domain type of the function.

These examples illustrate situations where ambiguity leads to difficulties. But you shouldn't conclude
from this that type inference must fail unless the missing type information can be uniquely
determined! In many (indeed, most) cases there is no unique way to infer omitted type information,
but there is nevertheless a best way. (The examples in the preceding paragraph merely serve to point
out that sometimes there is no best way, either. But these are the exceptions, rather than the rule.)

Concatenation Page 46 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

The prototypical example is the identity function, fn x=>x . The body of the function places no
constraints on the type of x , since it merely returns x as result without performing any computation
on it. You might suspect that this expression has to be rejected since its type is ambiguous, but this
would be unfortunate since the expression makes perfectly good sense for any choice of the type of
x . This is in sharp contrast to examples such as the function fn x=>x+1 , for which only two
choices for the type of x are possible (namely, int and real), with no way to choose between
them. The choice of int or real affects the behavior of the function: in one case it performs an
integer addition, in the other a floating point addition. In the case of the identity function, however,
we may choose any type at all for x , without affecting the execution behavior of the function --- the
function is said to be polymorphic because its execution behavior is uniform in the type of x .
Therefore the identity function has infinitely many types, one for each choice of the type of the
parameter x . Choosing the type of x to be typ, the type of the identity function is typ-> typ. In other
words every type for the identity function has the form typ-> typ, where typ is the type of the
argument.

Clearly there is a pattern here, which is captured by the notion of a type scheme. A type scheme is a
type expression involving one or more type variables standing for an unknown, but arbitrary type
expression. Type variables are written ’a ("alpha"), ’b ("beta"), ’c ("gamma"), etc. An instance of
a type scheme is obtained by replacing each of the type variables occurring in it with a type scheme,
with the same type scheme replacing each occurrence of a given type variable. For example, the type
scheme ’a->’a has instances int->int , string->string , (int*int)->(int*int) , and
(’b->’b)->(’b->’b) , among infinitely many others. It does not have the type int->string
as instance, since we are constrained to replace all occurrences of a type variable by the same type
scheme. However, the type scheme ’a->’b has both int->int and int->string as instances
since there are different type variables occurring in the domain and range positions.

Type schemes are used to capture the polymorphic behavior of functions. For example, we may write
fn x:’a=>x for the polymorphic identity function of type ’a->’a , meaning that the behavior of
the identity function is independent of the type of x , an hence may be chosen arbitrarily. Similarly,
the behavior of the function fn (x,y)=>x+1 is independent of the type of y , but constrains the
type of x to be int . This may be expressed using type schemes by writing this function in the
explicitly-typed form fn (x:int,y:’a)=>x+1 with type int*’a->’a . In each of these cases
we needed only one type variable to express the polymorphic behavior of a function, but usually we
need more than one. For example, the function fn (x,y) = x constrains neither the type of x nor
the type of y . Consequently we may choose their types freely and independently of one another.
This may be expressed by writing this function in the form fn (x:’a,y:’b):’a=>x with type
’a*’b->’a . Notice that while it is correct to assign the type ’a*’a->’a to this function, doing
so would be overly restrictive since the types of the two parameters need not be the same. Notice as
well that we could not assign the type ’a*’b->’c to this function because the type of the result
must be the same as the type of the first parameter since the function returns its first parameter when
invoked. The type scheme precisely captures the constraints that must be satisfied for the function to
be type correct. It is said to be the most general or principal type scheme for the function.

It is a remarkable fact about ML that every expression (with the exception of those pesky examples
involving arithmetic primitives or record selection operations) has a principal type scheme. That is,
there is always (well, with very few exceptions) a best or most general way to infer types for
expressions that maximizes generality, and hence maximizes flexibility in the use of the expression.
Every expression "seeks its own depth" in the sense that an occurrence of that expression is assigned

Concatenation Page 47 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

a type that is an instance of its principal type scheme determined by the context of use. For example,
if we write (fn x=>x)(0) , then the context forces the type of the identity function to be int-
>int , and if we write (fn x=>x)(fn x=>x)(0) , the context of use selects the instance (int-
>int)->(int->int) of the principal type scheme for the identity at the first occurrence, and the
instance int->int for the second.

How is this achieved? Type inference is a process of constraint satisfaction. First, the expression
determines a set of equations governing the relationships among the types of its subexpressions. For
example, if a function is applied to an argument, then a constraint equating the domain type of the
function with the type of the argument is generated. Second, the constraints are solved using a
process similar to Gaussian elimination, called unification. The equations can be classified by their
solution sets as follows:

1. Overconstrained: there is no solution. This corresponds to a type checking error.
2. Underconstrained: there are many solutions. There are two sub-cases: ambiguous (due to

overloading), or polymorphic (there is a "best" solution).
3. Uniquely determined: there is precisely one solution. This corresponds to an unambiguous

type inference problem.

The free type variables of the system of equations determines the "degree" of polymorphism in the
expression: the constraints have a solution for any choice of types to substitute for these variables.

The characterization of type inference as a constraint satisfaction procedure suggests an explanation
for the notorious obscurity of type checking errors in ML. If a program is not type correct, then the
system of constraints associated with it will not have a solution. The type inference procedure
considers the constraints in some order, and at some point discovers an inconsistency. It is
fundamentally impossible to attribute this inconsistency to any one feature of the program: all that is
know is that the constraint set as a whole is unsatisfiable. The checker usually reports the first
unsatisfiable equation it encounters, but this may or may not correspond to the "reason" (in the mind
of the programmer) for the type error. The usual method for finding the error is to insert sufficient
type information to narrow down the source of the inconsistency until the source of the difficulty is
uncovered.

There is an important interaction between polymorphic expressions and value bindings that may be
illustrated by the following example. Suppose that we wish to bind the identity function to a variable
I so that we may refer to it by name. We've previously observed that the identity function is
polymorphic, with principal type scheme ’a->’a . This may be captured by ascribing this type
scheme to the variable I at the val binding. That is, we may write

val I : ’a->’a = fn x=>x

to ascribe the type scheme ’a->’a to the variable I . (We may also write

fun I(x:’a):’a = x

for an equivalent binding of I .) Having done this, each use of I determines a distinct instance of the
ascribed type scheme ’a->’a . That is, both I 0 and I I 0 are well-formed expressions, the first
assigning the type int->int to I , the second assigning the types (int->int)->(int->int)
and int->int to the two occurrences of I . Thus the variable I behaves precisely the same as its

Concatenation Page 48 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

definition, fn x=>x , in any expression where it is used.

As a convenience ML also provides a form of type inference on value bindings that eliminates the
need to ascribe a type scheme to the variable when it is bound. If no type is ascribed to a variable
introduced by a val binding, then it is implicitly ascribed the principal type scheme of the right-hand
side. For example, we may write

val I = fn x=>x

or

fun I(x) = x

as a binding for the variable . The type checker implicitly assigns the principal type scheme, ’a-
>’a , of the binding to the variable I . In practice we often allow the type checker to infer the
principal type of a variable, but it is often good form to explicitly indicate the intended type as a
consistency check and for documentation purposes.

We finish this section with a technical issue that arises from time to time. As we remarked above, the
treatment of val bindings ensures that a bound variable has precisely the same types as its binding.
In other words the type checker behaves as though all uses of the bound variable are implicitly
replaced by its binding before type checking. Since this may involve replication of the binding, the
meaning of a program is not necessarily preserved by this transformation. (Think, for example, of
any expression that opens a window on your screen: if you replicate the expression and evaluate it
twice, it will open two windows. This is not the same as evaluating it only once, which results in one
window.) To ensure semantic consistency, variables introduced by a val binding are allowed to be
polymorphic only if the right-hand side is a value. (This is called the value restriction on
polymorphic declarations.) For fun bindings this restriction is always met since the right-hand side
is implicitly a lambda, which is a value. However, it might be thought that the following declaration
introduces a polymorphic variable of type ’a -> ’a , but in fact it is rejected by the compiler:

val J = I I

The reason is that the right-hand side is not a value; it requires computation to determine its value. It
is therefore ruled out as inadmissible for polymorphism; the variable J may not be used
polymorphically in the remainder of the program. In this case the difficulty may be avoided by
writing instead

fun J x = I I x

because now the binding of J is a lambda, which is a value. In some rare circumstances this is not
possible, and some polymorphism is lost. For example, the declaration

val l = nil @ nil

does not introduce an identifier with a polymorphic type, even though the almost equivalent
declaration

val l = nil

Concatenation Page 49 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

does do so. Since the right-hand side is a list, we cannot apply the "trick" of defining l to be a
function; we are stuck with a loss of polymorphism in this case. This particular example is not very
impressive since it's hard to imagine using the former, rather than the latter, declaration in a practical
situation, but occasionally something similar does arise, with an attendant loss of polymorphism.

Why this limitation? Later on, when we study mutable storage, we'll see that some restriction on
polymorphism is essential if the language is to be type safe. The value restriction is an easily-
remembered sufficient condition for soundness, but as the examples above illustrate, it is by no
means necessary. The designers of ML were faced with a choice of simplicity vs flexibility; in this
case they opted for simplicity at the expense of some expressiveness in the language.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 50 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Lists [http://www.cs.cmu.edu/People/rwh/introsml/core/lists.htm] Page 11

Lists
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

We have already noted that aggregate data structures are especially easy to handle in ML. Our first
examples were tuple and record types. The list types provide another example of an aggregate data
structure in ML. Informally, the values of type typ list are the finite lists of values of type typ.
But what is a list? The values of type typ list are defined as follows:

1. nil is a value of type typ list .
2. if h is a value of type typ, and t is a value of type typ list , then h:: t is a value of type typ

list .
3. Nothing else is a value of type typ list .

The type expression typ list is a postfix notation for the application of the type constructor list
to the argument typ. Thus list is a kind of "function" mapping types to types: given a type typ, we
may apply list to it to get another type, written typ list . The forms nil and :: are the value
constructors of type typ list . The nullary (no argument) constructor nil may be thought of as the
empty list. The binary (two argument) constructor :: constructs a non-empty list from a value h of
type typ and another value t of type typ list ; the resulting value, h:: t, of type typ list is
pronounced "h cons t" (for historical reasons). We say that "h is cons'd onto t", that h is the "head" of
the list, and that t is its "tail".

The definition of the values of type typ list given above is an example of an inductive definition.
The type is said to be recursive because this definition is "self-referential" in the sense that the values
of type typ list are defined in terms of (other) values of the same type. This is especially clear if
we examine the types of the value constructors for the type typ list :

nil : typ list
op :: : typ * typ list -> typ list

(The notation op :: is used to refer to the "cons" operator as a function, rather than to use it to form
a list, which requires infix notation.) Two things are notable here:

1. The "cons" operation takes an argument of type typ list , and yields a result of type typ
list . This reflects the "recursive" nature of the type typ list .

2. Both operations are polymorphic in the type of the underlying elements of the list. Thus nil is
the empty list of type typ list for any element type typ, and op :: constructs a non-empty
list independently of the type of the elements of that list.

Concatenation Page 51 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

A consequence of the inductive definition of the list type is that values of type typ list have the
form

h1 ::(h2 :: ... ::(hn :: nil) ...)

for some n>=0. (When n is zero, this is, by convention, the empty list, nil.) The operator :: is
right-associative, so we may omit the parentheses and just write

h1 :: h2 :: ... :: hn :: nil .

As a further convenience this list may be abbreviated using list notation:

[h1 , h2 , ... , hn]

This notation emphasizes the interpretation of lists as finite sequences of values, but it obscures the
fundamental inductive character of lists as being built up from nil using the :: operation.

How do we compute with values of list type? Since the values are defined inductively, it is natural
that functions on lists be defined recursively, using a clausal definition that analyzes the structure of a
list. Here's a definition of the function length that computes the number of elements of a list:

fun length nil = 0
 | length (_::t) = 1 + length t

The definition is given by induction on the structure of the list argument. The base case is the empty
list, nil . The inductive step is the non-empty list _::t (notice that we do not need to give a name
to the head). Its definition is given in terms of the tail of the list t , which is "smaller" than the list
_::t . The type length of is ’a list -> int ; it is defined for lists of values of any type
whatsoever.

We may define other functions following a similar pattern. Here's the function to append two lists:

fun append (nil, l) = l
 | append (h::t, l) = h :: append (t, l)

This function is built into ML; it is written using infix notation as exp1 @ exp2. The running time of

append is proportional to the length of the first list, as should be obvious from its definition.

Here’s a function to reverse a list.

fun rev nil = nil
 | rev (h::t) = rev t @ [h]

It is not tail recursive. In fact, its time complexity is O(n2), where n is the length of the argument
list. This can be demonstrated by writing down a recurrence that defines the running time T(n) of on
a list of length n.

Concatenation Page 52 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

T(0) = O(1)
T(n+1) = T(n) + O(1)

Solving the recurrence we obtain the result T(n)=O(n2).

Can we do better? Oddly, we can take advantage of the non-associativity of :: to give a tail-
recursive definition of rev .

local
 fun rev_helper (nil, a) = a
 | rev_helper (h::t, a) = rev_helper (t, h::a)
in
 fun rev l = rev_helper (l, nil)
end

The pattern is the same as before, except that by re-associating the uses of :: we reverse the list!
The helper function reverses its first argument and prepends it to its second argument. That is,
rev_helper (l, a) evaluates to (rev l) @ a , where we assume here an independent
definition of rev for the sake of the specification. Notice that rev_helper runs in time
proportional to the length of its first argument, and hence rev runs in time proportional to the length
of the list.

The correctness of functions defined on lists is established using the principle of structural
induction. We illustrate this by establishing that the function rev_helper satisfies the following
specification:

for every l and a of type typ list , rev_helper (l, a) evaluates to the result of
appending a to the reversal of l.

The proof is by structural induction on the list l. If l is nil , then rev_helper (l, a) evaluates
to a, which is as required. If l is h:: t, then by inductive hypothesis evaluates to the result of
appending h:: a to the reversal of t, which is easily seen to be the result of appending a to the
reversal of h:: t.

The form of this argument may be summarized as follows:

1. Establish the correctness of the function for the empty list, nil .
2. Assuming the correctness of the function for t, establish its correctness for h:: t.

It follows that the function is correct for all lists l, by the inductive definition of the list type. This is
called the principle of structural induction on lists. We will soon generalize this to other inductively-
defined types.

Sample Code for this Chapter

Concatenation Page 53 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 54 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Datatype Declarations [http://www.cs.cmu.edu/People/rwh/introsml/core/datatypes.htm]Page 12

Datatype Declarations
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Lists are one example of the notion of a recursive datatype. ML provides a general mechanism, the
datatype declaration, for introducing recursive types. Earlier we introduced the type
declarations as an abbreviation mechanism. Giving a type a name is useful documentation and is
convenient as an abbreviation, but is otherwise inconsequential. One could replace all uses of the
type name by its definition and not effect the behavior of the program. In contrast the datatype
declaration provides a means of introducing a new type that is distinct from all other types and that
does not merely stand for some other type. It is the means by which the ML type system may be
extended by the programmer.

The datatype declaration in ML has a number of facets. A datatype declaration introduces

1. One or more "new" type constructors. The type constructors introduced may, nor may not, be
(mutually) recursive.

2. One or more "new" value constructors for each of the type constructors introduced by the
declaration.

The type constructor may take zero or more arguments; a zero-argument, or nullary, type constructor
is just a type. Each value constructor may also take zero or more arguments; a nullary value
constructor is just a constant. The type and value constructors introduced by the declaration are
"new" in the sense that they are distinct from all other type and value constructors previously
introduced; if a datatype re-defines an "old" type or value constructor, then the old definition is
shadowed by the new one, rendering the old ones inaccessible in the scope of the new definition.

Here's a simple example of a nullary type constructor with four nullary value constructors.

datatype suit = Spades | Hearts | Diamonds | Clubs

This declaration introduces a new type suit with four nullary value constructors, Spades ,
Hearts , Diamonds , and Clubs . This declaration may be read as introducing a type suit such
that a value of type suit is either Spades , or Hearts , or Diamonds , or Clubs . There is no
significance to the ordering of the constructors in the declaration; we could just as well have written

datatype suit = Hearts | Diamonds | Spades | Clubs

(or any other ordering, for that matter). It is conventional to capitalize the names of value
constructors, but this is not required by the language.

Concatenation Page 55 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Given the declaration of the type suit, we may define functions on it by case analysis on the value
constructors using a clausal function definition. For example, we may define the suit ordering in
Bridge by the function

fun outranks (Spades, Spades) = false
 | outranks (Spades, _) = true
 | outranks (Hearts, Spades) = false
 | outranks (Hearts, Hearts) = false
 | outranks (Hearts, _) = true
 | outranks (Diamonds, Clubs) = true
 | outranks (Diamonds, _) = false
 | outranks (Clubs, _) = false

This defines a function of type

suit * suit -> bool

which determines whether or not the first suit outranks the second.

Datatypes may also be parameterized by another type. For example,

datatype ’a option = NONE | SOME of ’a

introduces the unary type constructor ’a option . The values of type typ option are:

1. The constant NONE, and
2. Values of the form SOME val, where val is a value of type typ.

For example, some values of type string option are NONE, SOME "abc", and SOME "def".

The option type constructor is pre-defined in Standard ML. One common use of option types is to
handle functions with an optional argument. For example, here is a function to compute the base-b
exponential function for natural number exponents that defaults to base 2:

fun expt (NONE, n) = expt (SOME 2, n)
 | expt (SOME b, 0) = 1
 | expt (SOME b, n) =
 if n mod 2 = 0 then expt (SOME b*b, n div 2) else b *
expt (SOME b, n-1)

The advantage of the option type in this sort of situation is that it avoids the need to make a special
case of a particular argument, e.g., using 0 as first argument to mean "use the default exponent".

A related use of option types is in aggregate data structures. For example, an address book entry
might have a record type with fields for various bits of data about a person. But not all data is
relevant to all people. For example, someone may not have a spouse, but they all have a name. For
this we might use a type definition of the form

type entry = { name:string, spouse:string option, ... }

Concatenation Page 56 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

so that one would create an entry for an unmarried person with a spouse field of NONE.

The next level of generality is the recursive type definition. For example, one may define a type typ
tree of binary trees with values of type typ at the nodes using the following declaration:

datatype ’a tree = Empty | Node of ’a tree * ’a * ’a tree

This declaration corresponds directly to the informal definition of binary trees with values of type typ
at the nodes:

1. The empty tree Empty is a binary tree.
2. If tree1 and tree2 are binary trees, and val is a value of type typ, then Node (tree1, val, tree2)

is a binary tree.
3. Nothing else is a binary tree.

The distinguishing feature of this definition is that it is recursive in the sense that binary trees are
constructed out of other binary trees, with the empty tree serving as the base case.

Incidentally, a leaf in a binary tree is here represented as a node both of whose children are the empty
tree. Our definition of binary trees is analogous to starting the natural numbers with zero, rather than
one. In fact you can think of the children of a node in a binary tree as the "predecessors" of that node,
the only difference compared to the usual definition of predecessor being that a node has two, rather
than one, predecessors.

To compute with a recursive type one ordinarily defines recursive functions. For example, here is the
function to compute the height of a binary tree:

fun height Empty = 0
 | height (Node (lft, _, rht)) = 1 + max (height lft,
height rht)

Notice that height is called recursively on the children of a node, and is defined outright on the
empty tree. This pattern of definition is called structural induction. The function height is said to
be defined by induction on the structure of its argument, a tree. The general idea is to define the
function directly for the base cases of the recursive type (i.e., value constructors with no arguments or
whose arguments do not involve values of the type being defined), and to define it for non-base cases
in terms of its definitions for the constituent values of that type. We will see numerous examples of
this as we go along.

Here's another example. The size of a binary tree is the number of nodes occurring in it. Here's a
straightforward definition in ML:

fun size Empty = 0
 | size (Node (lft, _, rht)) = 1 + size lft + size rht

The function size is defined by structural induction on trees.

A word of warning. One reason to capitalize value constructors is to avoid a pitfall in the ML

Concatenation Page 57 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

syntax. Suppose we gave the following definition of size :

fun size empty = 0
 | size (Node (lft, _, rht)) = 1 + size lft + size rht

What happens? The compiler will warn us that the second clause of the definition is redundant!
Why? Because empty , spelled with a lower-case "e", is a variable, not a constructor, and hence
matches any tree whatsoever. Consequently the second clause never applies. By capitalizing
constructors we can hope to make mistakes such as these more evident, but in practice you are bound
to run into this sort of mistake.

The tree datatype is appropriate for binary trees: those for which every node has exactly two
children. (Of course, either or both children might be the empty tree, so we may consider this to
define the type of trees with at most two children; it's a matter of terminology which interpretation
you prefer.) It should be obvious (try it) how to define the type of ternary trees (whose nodes have
(at most) three children), and so on for other fixed arities. But what if we wished to define a type of
trees with a variable number of children? In a so-called variadic tree some nodes might have three
children, some might have two, and so on. This can be achieved in at least two ways. One way
combines lists and trees, as follows:

datatype ’a tree = Empty | Node of ’a * ’a tree list

Each node has a list of children, so that distinct nodes may have different numbers of children.
Notice that the empty tree is distinct from the tree with one node and no children because there is no
data associated with the empty tree, whereas there is a value of type ’a at each node.

Another approach is to simultaneously define a variadic tree to be either empty, or a node collecting
together a forest to form a tree, and a forest to be either empty or a variadic tree together with another
forest. This leads to the following definition:

datatype ’a tree = Empty | Node of ’a * ’a forest
and 'a forest = Nil | Cons of 'a tree * 'a forest

This example illustrates the introduction of two mutually recursive datatypes, which is why we
present it here. Mutually recursive datatypes beget mutually recursive functions defined on them.
Here's a definition of the size (number of nodes) of a variadic tree:

fun size_tree Empty = 0
 | size_tree (Node (_, f)) = 1 + size_forest f
and size_forest Nil = 0
 | size_forest (Cons (t, f')) = size_tree t + size_forest
f'

Notice that we define the size of a tree in terms of the size of a forest, and vice versa, just as the type
of trees is defined in terms of the type of forests.

Many other variations are possible. Suppose we wish to define a notion of binary tree in which data
items are associated with branches, rather than nodes. Here's datatype declaration for such trees:

datatype ’a tree = Empty | Node of ’a branch * ’a branch

Concatenation Page 58 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

and 'a branch = Branch of 'a * 'a tree

Notice that in contrast to our first definition of binary trees in which the branches from a node to its
children were implicit, these branches are now explicit since they are labelled with data items. For
example, we can collect up into a list the data items labelling the branches of such a tree using the
following code:

fun collect Empty = nil
 | collect (Node (Branch (ld, lt), Branch (rd, rt))) =
 ld :: rd :: (collect lt) @ (collect rt)

Returning to the original definition of binary trees (with data items at the nodes), observe that the type
of the data items at the nodes must be the same for every node of the tree. For example, a value of
type int tree has an integer at every node, and a value of type string tree has a string at every node.
Therefore it makes no sense to evaluate the expression

Node (Empty, 43, Node (Empty, "43", Empty))

since the result, if it were to be accepted, would be a "heterogeneous" tree with integers at some
nodes and strings at others. Such structures are ruled out in ML as type-incorrect.

In 95% of the cases this apparent restriction is no restriction at all; it is quite rare to encounter
heterogeneous data structures in real programs. For example, a dictionary with strings as keys might
be represented as a binary search tree with strings at the nodes; there is no need for heterogeneity to
represent such a data structure. But what about the other 5%? What if one really wanted to have a
tree with integers at some nodes and strings at others? How would one represent such a thing in
ML? To see the answer, first think about how one might manipulate such a data structure. When
accessing a node, we would need to check at run-time whether the data item is an integer or a string;
otherwise we would not know whether to, say, add 1 to it, or concatenate "1" to the end of it. This
suggests that the data item must be labelled with sufficient information so that we may determine the
type of the item at run-time. We must also be able to recover the underlying data item itself so that
familiar operations (such as addition or string concatenation) may be applied to it. This is neatly
achieved using a datatype declaration. Suppose we wish to represent the type of integer-or-string
trees. First, we define the type of values to be integers or strings, marked with a constructor
indicating which:

datatype int_or_string = Int of int | String of string

Then we define the type of interest as follows:

type int_or_string_tree = int_or_string tree

Voila! Perfectly natural and easy --- heterogeneity is really a special case of homogeneity!

Datatype declarations and pattern matching are extremely useful for defining and manipulating the
abstract syntax of a language. For example, we may define a small language of arithmetic
expressions using the following declaration:

datatype expr = Numeral of int | Plus of expr * expr |
Times of expr * expr

Concatenation Page 59 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

This definition has only three clauses, but one could readily imagine adding others. Here is the
definition of a function to evaluate expressions of the language of arithmetic expressions written
using pattern matching:

fun eval (Numeral n) = Numeral n
 | eval (Plus (e1, e2)) =
 let
 val Numeral n1 = eval e1
 val Numeral n2 = eval e2
 in
 Numeral (n1+n2)
 end
 | eval (Times (e1, e2)) =
 let
 val Numeral n1 = eval e1
 val Numeral n2 = eval e2
 in
 Numeral (n1*n2)
 end

The combination of datatype declarations and pattern matching contributes enormously to the
readability of programs written in ML. A less obvious, but perhaps more important, benefit is the
error checking that the compiler can perform for you if you use these mechanisms in tandem. As an
example, suppose that we extend the type expr with a new component for the reciprocal of a
number, yielding the following revised definition:

datatype expr =
 Numeral of int | Plus of expr * exp | Times of expr *
expr | Recip of expr

First, observe that the "old" definition of eval is no longer applicable to values of type expr ! For
example, the expression

eval (Plus (Numeral 1, Numeral 2))

is ill-typed, even though it doesn't use the Recip constructor. The reason is that the re-declaration of
expr introduces a "new" type that just happens to have the same name as the "old" type, but is in
fact distinct from it. This is a boon because it reminds us to recompile the old code relative to the
new definition of the expr type.

Second, upon recompiling the definition of eval we encounter an inexhaustive match warning: the
old code no longer applies to every value of type expr according to its new definition! We are of
course lacking a case for Recip , which we may provide as follows:

fun eval (Numeral n) = Numeral n
 | eval (Plus (e1, e2)) = ... as before ...
 | eval (Times (e1, e2)) = ... as before ...
 | eval (Recip e) =
 let val Numeral n = eval e in Numeral (1 div n) end

Concatenation Page 60 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

The value of the checks provided by the compiler in such cases cannot be overestimated. When
recompiling a large program after making a change to a datatype declaration the compiler will
automatically point out every line of code that must be changed to conform to the new definition; it is
impossible to forget to attend to even a single case. This is a tremendous help to the developer,
especially if she is not the original author of the code being modified. This is yet another reason why
the static type discipline of ML is a positive benefit, rather than a hindrance, to programmers.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 61 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Functionals [http://www.cs.cmu.edu/People/rwh/introsml/core/functionals.htm] Page 13

Functionals
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Functions (values of function type) are first-class values, which means that they have the same rights
and privileges as values of any other type. In particular, functions may be passed as arguments and
returned as results of other functions, and functions may be stored in and retrieved from data
structures such as lists and trees. We will see that first-class functions are an important source of
expressive power in ML.

Functions which take functions as arguments or yield functions as results are known as higher-order
functions (or sometimes as functionals or operators). Higher-order functions arise frequently in
mathematics. For example, the differential operator is the higher-order function that, when given a
(differentiable) function on the real line, yields its first derivative as a function on the real line. We
also encounter functionals mapping functions to real numbers, and real numbers to functions. An
example of the former is provided by the definite integral viewed as a function of its integrand, and
an example of the latter is the definite integral of a given function on the interval [0,x], viewed as a
function of x.

Higher-order functions are less familiar tools in programming since most well-known languages have
at best rudimentary mechanisms to support their use. In contrast higher-order functions play a
prominent role in ML, with a variety of interesting applications. Their use may be classified into two
broad categories:

1. Abstracting patterns of control. Design patterns are just higher-order functions that "abstract
out" the details of a computation to lay bare the skeleton of the solution. The skeleton may be
fleshed out to form a solution of a problem by applying the general pattern to arguments that
isolate the specific problem instance.

2. Staging computation. It arises frequently that computation may be staged by expending
additional effort "early" to simplify the computation of "later" results. Staging can be used
both to improve efficiency and, as we will see later, to control sharing of computational
resources.

Before discussing these programming techniques, we will review the critically important concept of
scope as it applies to function definitions. Recall that Standard ML is a statically scoped language,
meaning that identifiers are resolved according to the static structure of the program. A use of the
variable x is considered to be a reference to the nearest lexically enclosing declaration of x . We say
"nearest" because of the possibility of shadowing; if we re-declare a variable x , then subsequent uses
of x refer to the "most recent" (lexically!) declaration of it; any "previous" declarations are
temporarily shadowed by the latest one.

Concatenation Page 62 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

This principle is easy to apply when considering sequences of declarations. For example, it should be
clear by now that the variable y is bound to 32 after processing the following sequence of
declarations:

val x = 2 (* x=2 *)
val y = x*x (* y=4 *)
val x = y*x (* x=8 *)
val y = x*y (* y=32 *)

In the presence of function definitions the situation is the same, but it can be a bit tricky to understand
at first. Here's an example to test your grasp of the lexical scoping principle:

val x = 2
fun f y = x+y
val x = 3
val z = f 4

After processing these declarations the variable z is bound to 6, not to 7! The reason is that the
occurrence of x in the body of f refers to the first declaration of x since it is the nearest lexically
enclosing declaration of the occurence, even though it has been subsequently re-declared. This
example illustrates three important points:

1. Binding is not assignment! If we were to view the second binding of x as an assignment
statement, then the value of z would be 7, not 6.

2. Scope resolution is lexical, not temporal. We sometimes refer to the "most recent" declaration
of a variable, which has a temporal flavor, but we always mean "nearest lexically enclosing at
the point of occurrence".

3. "Shadowed" bindings are not lost. The "old" binding for x is still available (through calls to
f), even though a more recent binding has shadowed it.

One way to understand what's going on here is through the concept of a closure, a technique for
implementing higher-order functions. When a function expression is evaluated, a copy of the
dynamic environment is attached to the function. Subsequently, all free variables of the function
(i.e., those variables not occurring as parameters) are resolved with respect to the environment
attached to the function; the function is therefore said to be "closed" with respect to the attached
environment. This is achieved at function application time by "swapping" the attached environment
of the function for the environment active at the point of the call. The swapped environment is
restored after the call is complete. Returning to the example above, the environment associated with
the function f contains the declaration val x = 2 to record the fact that at the time the function
was evaluated, the variable x was bound to the value 2. The variable x is subsequently re-bound to
3, but when f is applied, we temporarily reinstate the binding of x to 2, add a binding of y to 4, then
evaluate the body of the function, yielding 6. We then restore the binding of x and drop the binding
of y before yielding the result.

While seemingly very simple, the principle of lexical scope is the source of considerable expressive
power. We'll demonstrate this through a series of examples.

Concatenation Page 63 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

To warm up let’s consider some simple examples of passing functions as arguments and yielding
functions as results. The standard example of passing a function as argument is the map' function,
which applies a given function to every element of a list. It is defined as follows:

fun map’ (f, nil) = nil
 | map' (f, h::t) = (f h) :: map' (f, t)

For example, the application

map' (fn x => x+1, [1,2,3,4])

evaluates to the list [2,3,4,5] .

Functions may also yield functions as results. What is surprising is that we can create new functions
during execution, not just return functions that have been previously defined. The most basic (and
deceptively simple) example is the function constantly that creates constant functions: given a
value k , the application constantly k yields a function that yields k whenever it is applied.
Here's a definition of constantly :

val constantly = fn k => (fn a => k)

The function constantly has type ’a -> (’b -> ’a) . We used the fn notation for clarity, but
the declaration of the function constantly may also be written using fun notation as follows:

fun constantly k a = k

Note well that a white space separates the two successive arguments to constantly ! The meaning
of this declaration is precisely the same as the earlier definition using fn notation.

The value of the application constantly 3 is the function that is constantly 3; i.e., it always
yields 3 when applied. Yet nowhere have we defined the function that always yields 3. The
resulting function is "created" by the application of constantly to the argument 3, rather than
merely "retrieved" off the shelf of previously-defined functions. In implementation terms the result
of the application constantly 3 is a closure consisting of the function fn a => k with the
environment val k = 3 attached to it. The closure is a data structure (a pair) that is created by
each application of constantly to an argument; the closure is the representation of the "new"
function yielded by the application. Notice, however, that the only difference between any two
results of applying the function constantly lies in the attached environment; the underlying
function is always fn a => k . If we think of the lambda as the "executable code" of the function,
then this amounts to the observation that no new code is created at run-time, just new instances of
existing code.

This discussion illustrates why functions in ML are not directly analogous to "code pointers" in C.
You may be familiar with the idea of passing a pointer to a C function to another C function as a
means of passing functions as arguments or yielding functions as results. This may be considered to
be a form of "higher-order" function in C, but it must be emphasized that code pointers are
significantly less expressive than closures because in C there are only statically many possibilities for
a code pointer (it must point to one of the functions defined in your code), whereas in ML we may

Concatenation Page 64 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

generate dynamically many different instances of a function, differing in the bindings of the variables
in its environment. The non-varying part of the closure, the code, is directly analogous to a function
pointer in C, but there is no counterpart in C of the varying part of the closure, the dynamic
environment.

The definition of the function map’ given above takes a function and list as arguments, yielding a
new list as result. Often it occurs that we wish to map the same function across several different
lists. It is inconvenient (and a tad inefficient) to keep passing the same function to map’ , with the
list argument varying each time. Instead we would prefer to create a instance of map specialized to
the given function that can then be applied to many different lists. This leads to the following
(standard) definition of the function map:

fun map f nil = nil
 | map f (h::t) = (f h) :: (map f t)

The function map so defined has type ('a->'b) -> 'a list -> 'b list . It takes a
function of type ’a -> ’b as argument, and yields another function of type ’a list -> ’b
list as result.

The passage from map’ to map is called currying. We have changed a two-argument function (more
properly, a function taking a pair as argument) into a function that takes two arguments in succession,
yielding after the first a function that takes the second as its sole argument. This passage can be
codified as follows:

fun curry f x y = f (x, y)

The type of curry is (’a*’b->’c) -> (’a -> (’b -> ’c)) . Observe that map may be
alternately defined by the binding

fun map f l = curry map’ f l

Applications are implicitly left-associated, so that this definition is equivalent to the more verbose
declaration

fun map f l = ((curry map’) f) l

We turn now to the idea of abstracting patterns of control. There is an obvious similarity between the
following two functions, one to add up the numbers in a list, the other to multiply them.

fun add_em nil = 0
 | add_em (h::t) = h + add_em t

fun mul_em nil = 1
 | mul_em (h::t) = h * mul_em t

What precisely is the similarity? We will look at it from two points of view. One is that in each case
we have a binary operation and a unit element for it. The result on the empty list is the unit element,
and the result on a non-empty list is the operation applied to the head of the list and the result on the
tail. This pattern can be abstracted as the function reduce defined as follows:

Concatenation Page 65 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

fun reduce (unit, opn, nil) = unit
 | reduce (unit, opn, h::t) = opn (h, reduce (unit, opn,
t))

Here is the type of reduce :

val reduce : 'b * ('a*'b->'b) * 'a list -> 'b

The first argument is the unit element, the second is the operation, and the third is the list of values.
Notice that the type of the operation admits the possibility of the first argument having a different
type from the second argument and result. Using reduce, we may re-define add_em and mul_em as
follows:

fun add_em l = reduce (0, op +, l)
fun mul_em l = reduce (1, op *, l)

To further check your understanding, consider the following declaration:

fun mystery l = reduce (nil, op ::, l)

(Recall that "op :: " is the function of type ’a * ’a list -> ’a list that adds a given
value to the front of a list.) What function does mystery compute?

Another perspective on the commonality between add_em and mul_em is that they are both defined
by induction on the structure of the list argument, with a base case for nil , and an inductive case for
h::t , defined in terms of its behavior on t . But this is really just another way of saying that they are
defined in terms of a unit element and a binary operation! The difference is one of perspective:
whether we focus on the pattern part of the clauses (the inductive decomposition) or the result part of
the clauses (the unit and operation). The recursive structure of add_em and mul_em is abstracted
by the reduce functional, which is then specialized to yield add_em and mul_em. Said another
way, reduce abstracts the pattern of defining a function by induction on the structure of a list.

The definition of reduce leaves something to be desired. One thing to notice is that the arguments
unit and opn are carried unchanged through the recursion; only the list parameter changes on
recursive calls. While this might seem like a minor overhead, it's important to remember that multi-
argument functions are really single-argument functions that take a tuple as argument. This means
that each time around the loop we are constructing a new tuple whose first and second components
remain fixed, but whose third component varies. Is there a better way? Here's another definition that
isolates the "inner loop" as an auxiliary, tail-recursive function:

fun better_reduce (unit, opn, l) =
 let
 fun red nil = unit
 | red (h::t) = opn (h, red t)
 in
 red l
 end

Notice that each call to better_reduce creates a new function red that uses the parameters

Concatenation Page 66 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

unit and opn of the call to better_reduce . This means that red is bound to a closure
consisting of the code for the function together with the environment active at the point of definition,
which will provide bindings for unit and opn arising from the application of better_reduce to
its arguments. Furthermore, the recursive calls to red no longer carry bindings for unit and opn ,
saving the overhead of creating tuples on each iteration of the loop.

An interesting variation on reduce may be obtained by staging the computation. The motivation is
that unit and opn often remain fixed for many different lists (e.g., we may wish to sum the
elements of many different lists). In this case unit and opn are said to be "early" arguments and the
list is said to be a "late" argument. The idea of staging is to perform as much computation as
possible on the basis of the early arguments, yielding a function of the late arguments alone. In the
present case this amounts to building red on the basis of unit and opn , yielding it as a function
that may be later applied to many different lists. Here's the code:

fun staged_reduce (unit, opn) =
 let
 fun red nil = unit
 | red (h::t) = opn (h, red t)
 in
 red
 end

The definition of staged_reduce bears a close resemblance to the definition of
better_reduce ; the only difference is that the creation of the closure bound to red occurs as
soon as unit and opn are known, rather than each time the list argument is supplied. Thus the
overhead of closure creation is "factored out" of multiple applications of the resulting function to list
arguments.

We could just as well have replaced the body of the let expression with the function

fn l => red l

but a moment's thought reveals that the meaning is precisely the same (apart from one additional
function call in the latter case).

Note well that we would not obtain the effect of staging were we to use the following definition:

fun curried_reduce (unit, opn) nil = unit
 | curried_reduce (unit, opn) (h::t) = opn (h,
curried_reduce (unit, opn) t)

If we unravel the fun notation, we see that while we are taking two arguments in succession, we are
not doing any useful work in between the arrival of the first argument (a pair) and the second (a list).
A curried function does not take significant advantage of staging. Since staged_reduce and
curried_reduce have the same iterated function type, namely

(’b * (’a * ’b -> ’b)) -> ’a list -> ’b

the contrast between these two examples may be summarized by saying not every function of iterated

Concatenation Page 67 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

function type is curried. Some are, and some aren't. The "interesting" examples (such as
staged_reduce) are the ones that aren’t curried. (This directly contradicts established
terminology, but I'm afraid it is necessary to avoid misapprehension.)

The time saved by staging the computation in the definition of staged_reduce is admittedly
minor. But consider the following definition of an append function for lists that takes both arguments
at once:

fun append (nil, l) = l
 | append (h::t, l) = h :: append(t,l)

Suppose that we will have occasion to append many lists to the end of a given list. What we'd like is
to build a specialized appender for the first list that, when applied to a second list, appends the second
to the end of the first. Here's a naive solution that merely curries append:

fun curried_append nil l = l
 | curried_append (h::t) l = h :: append t l

Unfortunately this solution doesn’t exploit the fact that the first argument is fixed for many second
arguments. In particular, each application of the result of applying curried_append to a list
results in the first list being traversed so that the second can be appended to it. We can improve on
this by staging the computation as follows:

fun staged_append nil = fn l => l
 | staged_append (h::t) =
 let
 val tail_appender = staged_append t
 in
 fn l => h :: tail_appender l
 end

Notice that the first list is traversed once for all applications to a second argument. When applied to a
list [v1, ...,vn] , the function staged_append yields a function that is equivalent to, but not
quite as efficient as, the function

fn l => v1 :: v2 :: ... :: vn :: l.

This still takes time proportional to n, but a substantial savings accrues from avoiding the pattern
matching required to destructure the original list argument on each call.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 68 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Exceptions [http://www.cs.cmu.edu/People/rwh/introsml/core/exceptions.htm] Page 14

Exceptions
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

In the first chapter of these notes we mentioned that expressions in Standard ML always have a type,
may have a value, and may engender an effect. So far we've concentrated on typing and evaluation.
In this chapter we will introduce the concept of an effect. While it's hard to give a precise general
definition of what we mean by an effect, the idea is that an effect is any action resulting from
evaluation of an expression other than returning a value. From this point of view we might consider
non-termination to be an effect, but we don't usually think of failure to terminate as a positive
"action" in its own right, rather as a failure to take any action. What are some other examples? The
main examples are these:

1. Exceptions. Evaluation may be aborted by signaling an exceptional condition.
2. Mutation. Storage may be allocated and modified during evaluation.
3. I/O. It is possible to read from an input source and write to an output sink during evaluation.
4. Communication. Data may be sent to and received from communication channels.

This chapter is concerned with exceptions; the other forms of effects will be dealt with later in these
notes.

A basic use of exceptions in ML is to signal error conditions. ML is a safe language in the sense that
its execution behavior may be understood entirely in terms of the constructs of the language itself.
Behavior such as "dumping core" or incurring a "bus error" are extra-linguistic notions that may only
be explained by appeal to the underlying implementation of the language. It can be proved that ML is
safe, from which it follows that such behaviors cannot arise (except through the failure of the
compiler to implement the language properly.) In unsafe languages (such as C) these sorts of errors
can and do arise, typically because of the (mis)use of a primitive operation on a value that does not lie
in its domain of definition. For example, in C we may cast an integer as a function pointer, then
invoke it by applying it to an argument. The behavior of such a program that cannot be predicted at
the level of the language itself since it relies on the details of the memory layout and the
interpretation of data as code. To ensure safety, and hence freedom from mysterious run-time faults,
ML ensures that the primitive operations may only be applied to appropriate arguments. This is
achieved in part by the static type discipline, which rules out expressions that are manifestly
inappropriate (e.g., adding a string to an integer or casting an integer as a function), and partly by
dynamic checks that rule out violations that cannot be detected statically (e.g., division by zero or
arithmetic overflow). Static violations are signalled by type checking errors; dynamic violations are
signalled by raising exceptions.

For example, the expression 3 + "3" is ill-typed, and hence cannot be evaluated. In contrast the
expression 3 div 0 is well-typed (with type int), but incurs a run-time fault that is signalled by

Concatenation Page 69 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

raising the exception Div . We will indicate this by writing

3 div 0 => raise Div

Thus an exception is a form of "answer" to the question "what is the value this expression?". In most
implementations an exception such as this is reported by an error message of the form "Uncaught
exception Div ", together with the line number (or some other indication) of the point in the
program where the exception occurred.

Exceptions have names so that we may distinguish different sources of error from one another. For
example, evaluation of the expression maxint * maxint (where maxint is the largest
representable integer) causes the exception Overflow to be raised, indicating that an arithmetic
overflow error arose in the attempt to carry out the multiplication.

At this point you may be wondering about the overhead of checking for arithmetic faults. The
compiler must generate instructions that ensure that an overflow fault is caught before any subsequent
operations are performed. This can be quite expensive on pipelined processors, which sacrifice
precise delivery of arithmetic faults in the interest of speeding up execution in the non-faulting case.
Unfortunately it is necessary to incur this overhead if we are to avoid having the behavior of an ML
program depend on the underlying processor on which it is implemented.

Another source of run-time exceptions is an inexhaustive match. Suppose we define the function hd
as follows

fun hd (h::_) = h

This definition is inexhaustive since it makes no provision for the possibility of the argument being
nil . What happens if we apply hd to nil ? The exception Match is raised, indicating the failure
of the pattern-matching process:

hd nil => raise Match

The occurrence of a Match exception at run-time is indicative of a violation of a pre-condition to the
invocation of a function somewhere in the program. Recall that it is often OK for a function to be
inexhaustive, provided that we take care to ensure that it is never applied to a value outside of its
domain. Should this occur (because of a mistake by the programmer, evidently), the result is
nevertheless well-defined because ML checks for pattern match failure, rather than leaving the
behavior of the application undefined. In other words: ML programs are implicitly "bullet-proofed"
against failures of pattern matching. The flip side is that if no inexhaustive match warnings arise
during type checking, then the exception Match can never be raised during evaluation (and hence no
run-time checking need be performed).

A related situation is the use of a pattern in a val binding to destructure a value. If the pattern can
fail to match a value of this type, then a Bind exception is raised at run-time. For example,
evaluation of the binding

val h::_ = nil

raises the exception Bind since the pattern h::_ does not match the value nil . Here again observe

Concatenation Page 70 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

that a Bind exception cannot arise unless the compiler has previously warned us of the possibility:
no warning, no Bind exception.

These are all examples of the use of pre-defined exceptions to indicate fatal error conditions. Since
the built-in exceptions have a built-in meaning, it is generally inadvisable to use these to signal
program-specific error conditions. Instead we introduce a new exception using an exception
declaration, and signal it using a raise expression when a run-time violation occurs. That way we
can associate specific exceptions with specific pieces of code, easing the process of tracking down the
source of the error.

Here's an example. Suppose that we wish to define a "checked factorial" function that ensures that its
argument is non-negative. Here's a first attempt at defining such a function:

exception Factorial

fun checked_factorial n =
 if n < 0 then
 raise Factorial
 else if n=0 then
 1
 else n * checked_factorial (n-1)

The declaration exception Factorial introduces an exception Factorial , which we raise
in the case that checked_factorial is applied to a negative number.

The definition of checked_factorial is unsatisfactory in at least two ways. One relatively
minor issue is that it does not make effective use of pattern matching, but instead relies on explicit
comparison operations. To some extent this is unavoidable since we wish to check explicitly for
negative arguments, which cannot be done using a pattern. A more significant problem is that
checked_factorial repeatedly checks the validity of its argument on each recursive call, even
though we can prove that if the initial argument is non-negative, then so must be the argument on
each recursive call. This fact is not reflected in the code. We can improve the definition by
introducing an auxiliary function as follows:

exception Factorial

local
 fun fact 0 = 1
 | fact n = n * fact (n-1)
in
 fun checked_factorial n =
 if n >= 0 then
 fact n
 else
 raise Factorial
end

Notice that we perform the range check exactly once, and that the auxiliary function makes effective
use of pattern-matching.

Concatenation Page 71 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

The use of exceptions to signal error conditions suggests that raising an exception is fatal: execution
of the program terminates with the raised exception. But signaling an error is only one use of the
exception mechanism. More generally, exceptions can be used to effect non-local transfers of
control. By using an exception handler we may "catch" a raised exception and continue evaluation
along some other path. A very simple example is provided by the following driver for the factorial
function that accepts numbers from the keyboard, computes their factorial, and prints the result.

fun factorial_driver () =
 let
 val input = read_integer ()
 val result = makestring (checked_factorial input)
 in
 print result
 end
 handle Factorial => print "Out of range.\n"

The expression exp handle match is an exception handler. It is evaluated by attempting to evaluate
exp. If it returns a value, then that is the value of the entire expression; the handler plays no role in
this case. If, however, exp raises an exception exn, then the exception value is matched against the
clauses of the match (exactly as in the application of a clausal function to an argument) to determine
how to proceed. If the pattern of a clause matches the exception exn, then evaluation resumes with
the expression part of that clause. If no pattern matches, the exception exn is re-raised so that outer
exception handlers may dispatch on it. If no handler handles the exception, then the uncaught
exception is signaled as the final result of evaluation. That is, computation is aborted with the
uncaught exception exn.

In more operational terms, evaluation of exp handle match proceeds by installing an exception
handler determined by match, then evaluating exp. The previous binding of the exception handler is
preserved so that it may be restored once the given handler is no longer needed. Raising an exception
consists of passing a value of type exn to the current exception handler. Passing an exception to a
handler de-installs that handler, and re-installs the previously active handler. This ensures that if the
handler itself raises an exception, or fails to handle the given exception, then the exception is
propagated to the handler active prior to evaluation of the handle expression. If the expression
does not raise an exception, the previous handler is restored as part of completing the evaluation of
the handle expression.

Returning to the function factorial_driver , we see that evaluation proceeds by attempting to
compute the factorial of a given number (read from the keyboard by an unspecified function
read_integer), printing the result if the given number is in range, and otherwise reporting that
the number is out of range. The example is trivialized to focus on the role of exceptions, but one
could easily imagine generalizing it in a number of ways that also make use of exceptions. For
example, we might repeatedly read integers until the user terminates the input stream (by typing the
end of file character). Termination of input might be signaled by an EndOfFile exception, which
is handled by the driver. Similarly, we might expect that the function read_integer raises the
exception SyntaxError in the case that the input is not properly formatted. Again we would
handle this exception, print a suitable message, and resume. Here's a sketch of a more complicated
factorial driver:

fun factorial_driver () =

Concatenation Page 72 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 let
 val input = read_integer ()
 val result = makestring (checked_factorial input)
 val _ = print result
 in
 factorial_driver ()
 end
 handle EndOfFile => print "Done.\n"
 | SyntaxError =>
 let val _ = print "Syntax error.\n" in
factorial_driver () end
 | Factorial =>
 let val _ = print "Out of range.\n" in
factorial_driver () end

We will return to a more detailed discussion of input/output later in these notes. The point to notice
here is that the code is structured with a completely uncluttered "normal path" that reads an integer,
computes its factorial, formats it, prints it, and repeats. The exception handler takes care of the
exceptional cases: end of file, syntax error, and domain error. In the latter two cases we report an
error, and resume reading. In the former we simply report completion and we are done.

The reader is encouraged to imagine how one might structure this program without the use of
exceptions. The primary benefits of the exception mechanism are that they force you to consider the
exceptional case (if you don't, you'll get an uncaught exception at run-time), and that they allow you
to segregate the special case from the normal case in the code (rather than clutter the code with
explicit checks).

Another typical use of exceptions is to implement backtracking, a programming technique based on
exhaustive search of a state space. A very simple, albeit somewhat artificial, example is provided by
the following function to compute change from an arbitrary list of coin values. What is at issue is
that the obvious "greedy" algorithm for making change that proceeds by doling out as many coins as
possible in decreasing order of value does not always work. Given only a 5 cent and a 2 cent coin,
we cannot make 16 cents in change by first taking three 5's and then proceeding to dole out 2's. In
fact we must use two 5's and three 2's to make 16 cents. Here's a method that works for any set of
coins:

exception Change

fun change _ 0 = nil
 | change nil _ = raise Change
 | change (coin::coins) amt =
 if coin > amt then
 change coins amt
 else
 (coin :: change (coin::coins) (amt-coin))
 handle Change => change coins amt

The idea is to proceed greedily, but if we get "stuck", we undo the most recent greedy decision and
proceed again from there. Simulate evaluation of the example of change [5,2] 16 to see how
the code works.

Concatenation Page 73 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Exceptions can also carry values. For example, we might associate with a SyntaxError exception
a string indicating the precise nature of the error. For example, we might write

raise SyntaxError "Integer expected"

to indicate a malformed expression in a situation where an integer is expected, and write

raise SyntaxError "Identifier expected"

to indicate a badly-formed identifier. Such an exception is introduced by the declaration

exception SyntaxError of string

which introduces the exception SyntaxError as an exception carrying a string as value. This
declaration introduces the exception constructor SyntaxError . Exception constructors are in
many ways similar to value constructors. In particular they can be used in patterns, as in the
following code fragment:

... handle SyntaxError msg => print "Syntax error: " ^ msg
^ "\n"

Here we specify a pattern for SyntaxError exceptions that also binds the string associated with
the exception to the identifier msg and prints that string along with an error indication.

Exception constructors raise the question of the status of exceptions in the language. Recall that we
may use value constructors in two ways:

1. We may use them to create values of a datatype (perhaps by applying them to other values).
2. We may use them to match values of a datatype (perhaps also matching a constituent value).

The situation with exception constructors is symmetric.

1. We may use them to create an exception (perhaps with an associated value).
2. We may use them to match an exception (perhaps also matching the associated value).

Value constructors have types, as we previously mentioned. For example, the list constructors nil
and :: have types

’a list

and

’a * ’a list -> ’a list

respectively. What about exception constructors? A "bare" exception constructor (such as
Factorial above) has type

exn

Concatenation Page 74 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

and a value-carrying exception constructor (such as SyntaxError) has type

string -> exn

Thus Factorial is a value of type exn , and SyntaxError "Integer expected" is a
value of type exn .

The type exn is the type of exception packets, the data values associated with an exception. The
primitive operation raise takes any value of type exn as argument and raises an exception with
that value. The clauses of a handler may be applied to any value of type exn using the rules of
pattern matching described earlier; if an exception constructor is no longer in scope, then the handler
cannot catch it (other than via a wild-card pattern).

The type exn may be thought of as a kind of built-in datatype, except that the constructors of this
type are not determined once and for all (as they are with a datatype declaration), but rather are
incrementally introduced as needed in a program. For this reason the type exn is sometimes called
an extensible datatype.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 75 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

References [http://www.cs.cmu.edu/People/rwh/introsml/core/refs.htm] Page 15

References
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:56 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Evaluation of an expression may terminate with a value and may along the way engender an effect
upon its environment. Our first example of an effect was the possibility of raising an exception,
which we explored in detail in the preceding chapter. The next important example of an effect is a
storage effect, the allocation or mutation of storage during evaluation. The introduction of storage
effects has profound consequences, not all of which are desirable. Indeed, storage effects are
sometimes denigrated by referring to them as side effects, by analogy with the unintended effects of
some medications. While it is surely excessive to dismiss storage effects as completely undesirable,
it is advantageous to minimize the use of storage effects except where clearly appropriate to the task.
We will explore some of the basic techniques for using storage effects later in this chapter, but first
we introduce the mechanisms for supporting mutable storage in ML.

To support mutable storage the execution model of programs is modified to include an implicit
memory consisting of a finite set of mutable cells containing data items of a fixed type. A mutable
cell may be thought of as a kind of container in which a data value is stored. During the course of
evaluation the content of a cell may be retrieved or may be replaced by any other value of the same
type. Mutation introduces a strongly temporal aspect to evaluation: we speak of the current contents
of a cell as the value most recently assigned to it. This is to be contrasted with the bindings of values
to variables, which never change once made and hence have a permanent quality; the binding of a
variable is a uniquely-determined value that does not change during evaluation. Since cells are used
by issuing "commands" to modify and retrieve their contents, programming with cells is sometimes
called imperative programming.

Since cells may have their contents changed during evaluation it is imperative that we take careful
account of the identity of cells. When are two cells the same? When are they different? The guiding
principle is that two cells (of the same type) are distinct if there is a program that can tell them apart;
otherwise they are equal. How can we tell cells apart? By doing the only things we can ever do with
cells: retrieve their contents or set their contents to specified values. Given two integer cells, we can
determine whether they are the same cell or not by first checking if they have distinct contents. If so,
then they are distinct cells. If not, we must distinguish between two "copies" of a single cell, or two
cells that happen to have the same content. To do this, bind the current contents of one cell to a
variable, and set that cell's value to an integer different from the saved contents. If the other cell's
value is now the newly-assigned value, then the two cells are the same, otherwise they are different.

This principle of equality is called identity of indiscernables: two things are equal if we cannot tell
them apart. The test we just outlined extends to cells of other types, but is a rather roundabout way to
test for cell identity. In practice we work with a slightly conservative approximation to cell identity,
called reference (or pointer) equality --- two cells are equal iff they occupy the same address in

Concatenation Page 76 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

memory. This test is conservative in that it may distinguish two cells that are in fact indiscernable:
any two unit-valued cells are indiscernable because there is only one value of unit type, yet pointer
equality would distinguish them. To avoid such anomalies we use pointer equality to determine cell
identity, relying on the representation of cells as references to memory. For this reason mutable cells
in ML are called reference cells, or references.

Reference cells containing values of type typ are themselves values of type typ ref . They are "first-
class" values in the sense that reference cells may be passed as arguments, returned as results, and
even stored in other reference cells. Reference cells are created, or allocated, by the function ref of
type typ -> typ ref . When applied to a value val of type typ, ref allocates a new cell, initializes
its content to val, and returns a reference to the cell. By a "new cell" we mean a cell that is distinct
from all other cells previously allocated; it does not share storage with any of them. The content of a
cell of type typ is retrieved using the function ! of type typ ref -> typ. Applying ! to a (reference
to a) cell returns the current content of that cell. The content of a cell is modified by the operation op
:= of type typ * typ ref -> unit ; it is written using infix syntax with the reference cell as left-
hand argument and the new contents as right-hand argument. When applied to a cell and a value, it
replaces the content of that cell with that value, and yields the null-tuple as result. Cells may be
compared for equality using the equality operation, =, which has type typ ref * typ ref ->
bool .

Here are some examples:

val r = ref 0
val s = ref 0
val a = r=s
val _ = r := 3
val x = !s + !r
val t = r
val b = s=t
val c = r=t
val _ = t := 5
val y = !s + !r
val z = !t + !r

Afterwards, a is bound to false , b to false , c to true , x to 3, y to 5, and z to 10 . Be sure you
understand exactly why in each case!

The above examples illustrate the problem of aliasing. The variables t and r are both bound to the
same cell, whereas s is bound to a different cell. We say that t and r are aliases for the same cell
because the one cell is known by two different names. Aliasing is a serious source of bugs in
programs since assigning a value to one destroys the contents of the other. Avoiding these kinds of
problems requires careful reasoning about the possibility of two variables being bound to the same
reference cell. A classic example is a program to "rotate" the contents of three cells: given reference
cells a, b, and c, with initial contents x, y, and z, set their contents to y, z, and x, respectively. Here's a
candidate implementation:

fun rot3 (a, b, c) =
 let
 val t = !a
 in

Concatenation Page 77 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 a := !b; b := !c; c := t
 end

This code works fine if a, b, and c are distinct reference cells. But suppose that a and c are the same
cell. Afterwards the contents of a, b, and c are y, y, and x! A correct implementation must work
even in the presence of aliasing. Here's a solution that works correctly in all cases:

fun rot3 (a, b, c) =
 let
 val (x, y, z) = (!a, !b, !c)
 in
 a := y; b := z; c := x
 end

Notice that we use immutable variables to temporarily hold the initial contents of the cells while their
values are being updated.

This example illustrates the use of the semicolon to sequence evaluation of expressions purely for
their effect. The expression

exp1 ; exp2

is shorthand for

let val _ = exp1 in exp2 end

The expression exp1 is evaluated only for its effect; its return value is thrown away by the wildcard

binding. The value of the entire expression is the value of exp2 after evaluation of exp1 for effect.

The cumulative effect of the sequential composition is the effect of evaluating exp1 followed by the

effect of evaluating exp2.

It is a common mistake to omit the exclamation point when referring to the content of a reference,
especially when that cell is bound to a variable. In more familiar languages such as C or Pascal all
variables are implicitly bound to reference cells, and they are implicitly de-referenced whenever they
are used so that a variable always stands for its current contents. This is both a boon and a bane. It is
obviously helpful in many common cases since it alleviates the burden of having to explicitly
dereference variables whenever their content is required. However, it shifts the burden to the
programmer in the case that the address, and not the content, is intended. In C one writes &x for the
address of (the cell bound to) x ; in Pascal one must use reference parameters to achieve a similar
effect. Which is preferable is largely a matter of taste. The burden of explicit de-referencing is not
nearly so onerous in ML as it might be in other languages simply because reference cells are
relatively seldom used in ML, whereas they are the sole means of binding variables in more familiar
languages.

An alternative to explicitly de-referencing cells is to use ref patterns. A pattern of the form ref pat
matches a reference cell whose content matches the pattern pat. This means that the cell's contents
are implicitly retrieved during pattern matching, and may be subsequently used without explicit de-
referencing. For example, the second implementation of rot3 above might be written using ref

Concatenation Page 78 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

patterns as follows:

fun rot3 (a, b, c) =
 let
 val (ref x, ref y, ref z) = (a, b, c)
 in
 a := y; b := z; c := x
 end

In practice it is common to use both explicit de-referencing and ref patterns, depending on the
situation.

Using references it is possible to mimic the style of programming used in imperative languages such
as C or C++ or Java. For example, we might define the factorial function as follows:

fun imperative_fact (n:int) =
 let
 val result = ref 1
 val i = ref 0
 fun loop () =
 if !i = n then
 ()
 else
 (i := !i + 1; result := !result * !i; loop
())
 in
 loop (); !result
 end

Notice that the function loop is essentially just a while loop; it repeatedly executes its body until the
contents of the cell bound to i reaches n. The tail call to loop is essentially just a goto statement
since its argument is always the null-tuple.

It is bad style to program in this fashion. The purpose of the function imperative_fact is to
compute a simple function on the natural numbers. There is nothing about its definition that suggests
that state must be maintained, and so it is senseless to allocate and modify storage to compute it. The
definition we gave earlier is shorter, simpler, more efficient, and hence more suitable to the task.
This is not to suggest, however, that there are no good uses of references; quite the opposite is the
case. We will now discuss some important uses of state in ML.

The first example is the use of higher-order functions to manage shared private state. This
programming style is closely related to the use of objects to manage state in object-oriented
programming languages. Here's an example to frame the discussion:

local
 val counter = ref 0
in
 fun tick () = (counter := !counter + 1; !counter)
 fun reset () = (counter := 0)
end

Concatenation Page 79 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

This declaration introduces two functions, tick of type unit -> int and reset of type unit
-> unit . Their definitions share a private variable counter that is bound to a mutable cell
containing the current value of a shared counter. The tick operation increments the counter and
returns its new value, and the reset operation resets its value to zero. The types of the operations
suggest that implicit state is involved. In the absence of exceptions and implicit state, there is only
one useful function of type unit->unit , namely the function that always returns its argument (and
it's debatable whether this is really useful!).

The declaration above defines two functions, tick and reset , that share a single private counter.
Suppose now that we wish to have several different instances of a counter --- different pairs of
functions tick and reset that share different state. We can achieve this by defining a counter
generator (or constructor) as follows:

fun new_counter () =
 let
 val counter = ref 0
 fun tick () = (counter := !counter + 1; !counter)
 fun reset () = (counter := 0)
 in
 { tick = tick, reset = reset }
 end

The type of new_counter is unit -> { tick : unit->int, reset : unit->unit
} . We've packaged the two operations into a record containing two functions that share private state.
There is an obvious analogy with class-based object-oriented programming. The function
new_counter may be thought of as a constructor for a class of counter objects. Each object has a
private instance variable counter that is shared between the methods tick and reset of the
object represented as a record with two fields.

Here's how we use counters.

val c1 = new_counter ()
val c2 = new_counter ()
#tick c1; (* 1 *)
#tick c1; (* 2 *)
#tick c2; (* 1 *)
#reset c1;
#tick c1; (* 1 *)
#tick c2; (* 2 *)

Notice that c1 and c2 are distinct counters that increment and reset independently of one another.

A second important use of references is to build mutable data structures. The data structures (such as
lists and trees) we’ve considered so far are immutable in the sense that it is impossible to change the
structure of the list or tree without building a modified copy of that structure. This is both a benefit
and a drawback. The principle benefit is that immutable data structures are persistent in that
operations performed on them do not destroy the original structure --- in ML we can eat our cake and
have it too. For example, we can simultaneously maintain a dictionary both before and after insertion
of a given word. The principle drawback is that if we aren't really relying on persistence, then it is

Concatenation Page 80 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

wasteful to make a copy of a structure if the original is going to be discarded anyway. What we'd like
in this case is to have an "update in place" operation to build an ephemeral (opposite of persistent)
data structure. To do this in ML we make use of references.

A simple example is the type of possibly circular lists, or pcls. Informally, a pcl is a finite graph in
which every node has at most one neighbor, called its predecessor, in the graph. In contrast to
ordinary lists the predecessor relation is not necessarily well-founded: there may be an infinite
sequence of nodes arranged in descending order of predecession. Since the graph is finite, this can
only happen if there is a cycle in the graph: some node has an ancestor as predecessor. How can such
a structure ever come into existence? If the predecessors of a cell are needed to construct a cell, then
the ancestor that is to serve as predecessor in the cyclic case can never be created! The "trick" is to
employ backpatching: the predecessor is initialized to Nil , so that the node and its ancestors can be
constructed, then it is reset to the appropriate ancestor to create the cycle.

This can be achieved in ML using the following datatype declaration:

datatype ’a pcl = Nil | Cons of ’a * ’a pcl ref

The "tail" of a Cons node is a reference cell so that we may assign to it to implement backpatching.
Here's an example:

fun hd (Cons (h, _)) = h (* auxiliary functions *)
fun tl (Cons (_, t)) = t

val ones = Cons (1, ref Nil) (* create a preliminary
acyclic structure *)

val _ = (tl ones) := ones (* backpatch to form the
cycle *)

Initially the variable ones is bound to the acyclic pcl with one node whose head element is 1. We
then assign that very node to the predecessor (tail) of that node, resulting in a circular pcl with one
node. Observe that hd ones , hd !(tl ones) , hd !(tl !(tl ones)) , etc all evaluate to
1. Notice that we must explicitly refer to the contents of the tail of each node since it is a reference
cell!

Let us define the length of a pcl to be the number of distinct nodes occurring in it. An interesting
exercise is to define a length function for pcls that makes no use of auxiliary storage (i.e., no list of
previously-encountered nodes) and runs in time proportional to the number of cells in the pcl. Hint:
think of the fable of the tortoise and the hare. If they run a long race on an oval track, what is sure to
happen, and when? Does this suggest an algorithm?

In addition to reference cells, ML also provides mutable arrays as a primitive data structure. The type
typ array is the type of arrays carrying values of type typ. The basic operations on arrays are these:

Concatenation Page 81 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

array : int * ’a -> ’a array create array of given size with given initial value
size : ’a array -> int number of elements in a given array

sub : ’a array * int -> ’a access element; raises Subscript exception if out
of bounds access is attempted

update : ’a array * int * ’a ->
unit

change the contents of a given array element;
raises Subscript for out of bounds access

These are just the basic operations on arrays; consult the Basis Library document for further details.
Immutable arrays are also available. The type ’a vector is similar to the type ’a array , except
that vectors are immutable, whereas arrays are mutable.

One simple use of arrays is for memoization. Here's a function to compute the nth Catalan number,
which may be thought of as the number of distinct ways to parenthesize an arithmetic expression
consisting of a sequence of n consecutive multiplication's. It makes use of an auxiliary summation
function that you can easily define for yourself. (Applying sum to f and n computes the sum of f 0 +
... + f n.)

fun C 1 = 1
 | C n = sum (fn k => (C k) * (C (n-k))) (n-1)

This definition of C is hugely inefficient because a given computation may be repeated exponentially
many times. For example, to compute C 10 we must compute C 1 , C2, ..., C 9 , and the
computation of C i engenders the computation of C 1 , ..., C (i-1) for each 1<=i<=9. We can do
better by caching previously-computed results in an array, leading to an enormous improvement in
execution speed. Here's the code:

local
 val limit : int = 100
 val memopad : int option array = Array.array (limit,
NONE)
in
 fun C' 1 = 1
 | C' n = sum (fn k => (C k) * (C (n-k))) (n-1)
 and C n =
 if n < limit then
 case Array.sub (memopad, n)
 of SOME r => r
 | NONE =>
 let
 val r = C' n
 in
 Array.update (memopad, n, SOME r);
 r
 end
 else
 C' n
end

Concatenation Page 82 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Note carefully the structure of the solution. The function C is a memoized version of the Catalan
number function. When called it consults the memopad to determine whether or not the required
result has already been computed. If so, the answer is simply retrieved from the memopad, otherwise
the result is computed, stored in the cache, and returned. The function C' looks superficially similar
to the earlier definition of C, with the important difference that the recursive calls are to C, rather
than C' itself. This ensures that sub-computations are properly cached and that the cache is consulted
whenever possible.

The main weakness of this solution is that we must fix an upper bound on the size of the cache. This
can be alleviated by implementing a more sophisticated cache management scheme that dynamically
adjusts the size of the cache based on the calls made to it.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 83 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Input & Output [http://www.cs.cmu.edu/People/rwh/introsml/core/io.htm] Page 16

Input & Output
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Standard ML Basis Library defines a three-layer input and output facility for Standard ML. These
modules provide a rudimentary, platform-independent text I/O facility that we summarize briefly
here. The reader is referred to the IO section of the Standard ML Basis Library for more details.
There is no standard library for graphical user interfaces; each implementation provides its own
package. See your vendor's documentation for details.

The text I/O primitives are based on the notions of an input stream and an output stream, which are
values of type instream and outstream , respectively. An input stream is an unbounded
sequence of characters arising from some source. The source could be a disk file, an interactive user,
or another program (to name a few choices). Any source of characters can be attached to an input
stream. An input stream may be thought of as a buffer containing zero or more characters that have
already been read from the source, together with a means of requesting more input from the source
should the program require it. Similarly, an output stream is an unbounded sequence of characters
leading to some sink. The sink could be a disk file, an interactive user, or another program (to name
a few choices). Any sink for characters can be attached to an output stream. An output stream may
be thought of as a buffer containing zero or more characters that have been produced by the program
but have yet to be flushed to the sink.

Each program comes with one input stream and one output stream, called stdIn and stdOut ,
respectively. These are ordinarily connected to the user's keyboard and screen, and are used for
performing simple text I/O in a program. The output stream stdErr is also pre-defined, and is used
for error reporting. It is ordinarily connected to the user's screen.

Textual input and output are performed on streams using a variety of primitives. The simplest are
inputLine and print . To read a line of input from a stream, use the function inputLine of
type instream -> string . It reads a line of input from the given stream and yields that line as
a string whose last character is the line terminator. If the source is exhausted, return the empty
string. To write a line to stdOut , use the function print of type string -> unit . To write to
a specific stream, use the function output of type outstream * string -> unit , which
writes the given string to the specified output stream. For interactive applications it is often
important to ensure that the output stream is flushed to the sink (e.g., so that it is displayed on the
screen). This is achieved by calling flushOut of type outstream -> unit , which ensures that
the output stream is flushed to the sink. The print function is a composition of output (to
stdOut) and flushOut .

A new input stream may be created by calling the function openIn of type string ->

Concatenation Page 84 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

instream . When applied to a string, the system attempts to open a file with that name (according
to operating system-specific naming conventions) and attaches it as a source to a new input stream.
Similarly, a new output stream may be created by calling the function openOut of type string -
> outstream . When applied to a string, the system attempts to create a file with that name
(according to operating system-specific naming conventions) and attaches it as a sink for a new
output stream. An input stream may be closed using the function closeIn of type instream ->
unit . A closed input stream behaves as if there is no further input available; request for input from
a closed input stream yield the empty string. An output stream may be closed using closeOut of
type outstream -> unit . A closed output stream is unavailable for further output; an attempt
to write to a closed output stream raises the exception TextIO.IO .

The function input of type instream -> string is a blocking read operation that returns a
string consisting of the characters currently available from the source. If none are currently available,
but the end of source has not been reached, then the operation blocks until at least one character is
available from the source. If the source is exhausted or the input stream is closed, input returns the
null string. To test whether an input operation would block, use the function canInput of type
instream * int -> int option. Given a stream s and a bound n, canInput determines
whether or not a call to input would immediately yield up to n characters. If the input operation
would block, canInput yields NONE; otherwise it yields SOME k, with 0<=k<=n being the number
of characters immediately available on the input stream. If canInput yields SOME 0, the stream is
either closed or exhausted. The function endOfStream of type instream -> bool tests
whether the input stream is currently at the end (no further input is available from the source). This
condition is transitive since, for example, another process might append data to an open file in
between calls to endOfStream .

The function output of type outstream * string -> unit writes a string to an output
stream. It may block until the sink is able to accept the entire string. The function flushOut of
type outstream -> unit forces any pending output to the sink, blocking until the sink accepts
the remaining buffered output.

This collection of primitive I/O operations is sufficient for performing rudimentary textual I/O. For
further information on textual I/O, and support for binary I/O and Posix I/O primitives, see the
Standard ML Basis Library.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 85 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Lazy Data Structures [http://www.cs.cmu.edu/People/rwh/introsml/core/lazydata.htm]Page 17

Lazy Data Structures
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

As we saw earlier, a datatype declaration is used to introduce a new type whose elements are
generated by a given set of value constructors. The value constructors may be used to create values
of the type (by applying them to values of suitable type), and to decompose values of the type (by
using them in patterns). Value constructors, like all other functions in ML, are evaluated eagerly,
meaning that the arguments to the constructor are evaluated before the constructor is applied. For
example, to attach an element to the front of a list, we first determine the value of the element and the
value of the list before building a new list with that element as head and that list as tail. This policy is
based on the intuitively appealing idea of a list as a kind of value that we manipulate by using the list
constructors as functions and as patterns.

An alternative is to view a data structure as being perpetually in the process of creation, rather than as
a result of a completed computation. According to this view a list may be thought of as a "partial", or
"suspended", computation that, when provoked, computes just far enough to determine whether the
end of the list has been reached, or , if not, to produce the next element of the list together with a
suspended computation to compute the remainder of the list. An added benefit of this viewpoint is
that it is then possible to define infinite lists (better known as streams) that continually generate the
next element, without ever reaching the end of the list. This view of data structures as being in the
process of creation conflicts with the eager evaluation strategy just described since under the eager
approach all expressions are fully evaluated before they are used, whereas we would like to evaluate
them only as much as absolutely necessary to allow the overall computation to proceed. This is
called, appropriately enough, lazy evaluation.

Standard ML does not support lazy evaluation as a primitive notion; it can be implemented "by hand"
using methods that are described later in these notes. However, Standard ML of New Jersey (from
version 110.5) does provide for lazy evaluation through an extension of the datatype and val
rec declaration forms. We will illustrate these mechanisms by defining a type ’a stream of
streams of values of type ’a . Based on the discussion above you might imagine that a stream is just
an infinite list, but it is important to keep the two concepts separate. Lists are eager types whose
values are generated by finitely-many applications of :: to the empty list, nil . Streams are lazy
types whose values are determined by suspended computations that generate the next element of the
stream (and another computation to generate the remainder). The two concepts are, and ought to be
kept separate since they serve different purposes and require different modes of reasoning.

First off, the lazy evaluation mechanisms of SML/NJ must be enabled by evaluating the following
declarations:

Concatenation Page 86 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Compiler.Control.Lazy.enabled := true;
open Lazy;

We may then define a type of streams as follows:

datatype lazy ’a stream = Cons of ’a * ’a stream

The keyword "lazy " indicates that values of type ’a stream are suspended computations that,
when evaluated, yield a value of the form Cons (x, c) , where x is a value of type ’a , and c is
another value of type ’a stream , i.e., another computation of such a value.

How might a value of type ’a stream be created? Since the description of values of this type
we've just given is clearly "circular", we must employ a recursive value binding to create one. Here's
a definition of the infinite stream of 1's as a value of type int stream :

val rec lazy ones = Cons (1, ones)

The keyword "lazy " indicates that we are defining a value of a lazy type, which means that it must
be kept as an incomplete computation, rather than fully evaluated at the time the binding is created.
What computation is bound to ones ? It's the computation that, when evaluated, yields Cons (1,
ones) , a stream whose head element is 1 and whose tail is the very same computation again. Thus
if we evaluate the tail of ones we will, once again, obtain the same value, and so on ad infinitum.

How can we take apart values of stream type? By pattern matching, of course! For example, we
may evaluate the binding

val Cons (h, t) = ones

to extract the head and tail of the stream ones . To perform the pattern match we must first force the
evaluation of ones to obtain Cons (1, ones) , then pattern match to bind h to 1 and t to
ones . Had the pattern been "deeper", further evaluation would be forced, as in the following
binding:

val Cons (h, (Cons (h’, t’)) = ones

To evaluate this binding, we evaluate ones to Cons (1, ones) , binding h to 1 in the process,
then evaluate ones again to Cons (1, ones) , binding h’ to 1 and t’ to ones . The general
rule is pattern matching forces evaluation of partial computations up to the depth required by the
pattern.

We may define functions to extract the head and tail of a stream as follows:

fun shd (Cons (h, _)) = h

fun stl (Cons (_, s)) = s

Both of these functions force the computation of the stream when applied so that they may extract the
head and tail elements. In the case of the head element it is clear that the stream computation must be

Concatenation Page 87 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

forced in order to determine its value, but a moment’s thought reveals that it is not strictly necessary
to force the computation of a stream to extract it's tail! Why is that? Since the tail of a stream is
itself a stream, it may be thought of as a suspended computation. But which suspended computation
is it? According to the definition just given, it is the suspended stream computation extracted from
the second component of the value of the given stream. But another definition is possible: it is the
suspended computation that, when forced, yields the second component of the result of forcing the
stream computation. Here's a definition:

fun lazy lstl (Cons (_, s)) = s

Here the keyword "lazy " indicates that an application of lstl to a stream does not immediately
perform pattern matching (hence forcing the argument), but rather merely sets up a delayed stream
computation that, when forced, forces the argument and extracts the tail of the stream.

The behavior of the two forms of tail function can be distinguished as follows:

val rec lazy s = (print "."; Cons (1, s));
val s' = stl s; (* prints "."
*)
val Cons _ = s'; (* silent *)

val rec lazy s = (print "."; Cons (1, s));
val s'' = lstl s; (* silent *)
val Cons _ = s''; (* prints "."
*)

Notice that since stl immediately forces it’s argument, the ". " is printed when it is applied, whereas
it is printed only when the result of applying lstl to an argument is itself forced by another pattern
match.

It is extremely important that you understand the difference between these two definitions! To check
your understanding, let's define a function smap that applies a function to every element of a stream,
yielding another stream. The type of smap should be (’a -> ’b) -> ’a stream -> ’b
stream . The thing to keep in mind is that the application of smap to a function and a stream
should set up (but not compute) another stream that, when forced, forces the argument stream to
obtain the head element, applies the given function to it, and yields this as the head of the result.
Here's the code:

fun smap f =
 let
 fun lazy loop (Cons (x, s)) = Cons (f x, loop s)
 in
 loop
 end

Notice that we have "staged" the computation so that the partial application of smap to a function
yields a function that loops over a given stream, applying the given function to each element. This
loop is a "lazy" function to ensure that an application of loop to a stream merely sets up a stream
computation, rather than forcing the evaluation of its argument at the time that the loop is applied.
This ensures that we are as lazy as possible about evaluating streams. Had we dropped the keyword

Concatenation Page 88 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

"lazy " from the definition of the loop, then an application of smap to a function and a stream
would immediately force the computation of the head element of the stream, rather than merely set up
a future computation of the same result. This would be a bit over-eager in the case that the result of
applying smap were never used in a subsequent computation. Which solution is "right"? It all
depends on what you're doing, but as a rule of thumb, it is best to be as lazy as possible when dealing
with lazy types.

To illustrate the use of smap, here's a definition of the infinite stream of natural numbers:

val one_plus = smap (fn n => n+1)
val rec lazy nats = Cons (0, one_plus nats)

It is worthwhile contemplating how and why this definition works.

Now let's define a function sfilter of type (’a -> bool) -> ’a stream -> ’a
stream that filters out all elements of a stream that do not satisfy a given predicate. Here's the code:

fun sfilter pred =
 let
 fun lazy loop (Cons (x, s)) =
 if pred x then Cons (x, loop s) else loop s
 in
 loop
 end

We can use filter to define a function sieve that, when applied to a stream of numbers, retains only
those numbers that are not divisible by a preceding number in the stream:

fun m mod n = m - n * (m div n)
fun divides m n = n mod m = 0
fun lazy sieve (Cons (x, s)) = Cons (x, sfilter (not o
(divides x)) s)

We may now define the infinite stream of primes by applying sieve to the natural numbers greater
than or equal to 2:

val nats2 = stl (stl nats) (* might as well be
eager *)
val primes = sieve nats2

To inspect the values of a stream it is often useful to use the following function that "takes" n>=0
elements from a stream and builds a list of those n values:

fun take 0 _ = nil
 | take n (Cons (x, s)) = x :: take (n-1) s

In addition to supporting demand-driven computation the lazy evaluation primitives of SML/NJ also
support memoization of the results of a computation. The idea is that a delayed computation is
performed at most once. If it is never forced by pattern matching, then the delayed computation is
never performed at all. If it is ever forced, then the result of forcing that computation is stored in a

Concatenation Page 89 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

memo pad so that if it is forced again, the previous result is returned immediately,without repeating
the work that was done previously. Here's an example to illustrate the effects of memoization:

val rec lazy s = Cons ((print "."; 1), s)
val Cons (h, _) = s; (* prints ".",
binds h to 1 *)
val Cons (h, _) = s; (* silent, binds
h to 1 *)

Replace "print ".";1 " by a time-consuming operation yielding 1 as result, and you will see that
the second time we force s the result is returned instantly, taking advantage of the effort expended on
the time-consuming operation induced by the first force of s .

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 90 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concurrency [http://www.cs.cmu.edu/People/rwh/introsml/core/cml.htm] Page 18

Concurrency
[Back] [Home] [Up]

Last edit: Monday, April 27, 1998 02:54 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Concurrent ML (CML) is a non-standard extension of Standard ML with primitives for concurrent
programming. It is available as part of the SML/NJ compiler only. The eXene Library for
programming the X windows system is based on CML. The MLWorks system also includes
primitives for concurrent programming.

Sample Code for this Chapter

[Back] [Home] [Up]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 91 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Module Language [http://www.cs.cmu.edu/People/rwh/introsml/modules.htm] Page 40

Module Language
[Back] [Home] [Next]

Last edit: Sunday, April 05, 1998 10:45 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

The Standard ML module language comprises the mechanisms for structuring programs into separate
units. Program units are called structures. A structure consists of a collection of components,
including types and values, that constitute the unit. Composition of units to form a larger unit is
mediated by a signature, which describes the components of that unit. A signature may be thought of
as the type of a unit. Large units may be structured into hierarchies using substructures. Generic, or
parameterized, units may be defined as functors.

[Signatures and Structures] [Views and Data Abstraction] [Hierarchies and Parameterization]

[Back] [Home] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 92 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Signatures and Structures
[http://www.cs.cmu.edu/People/rwh/introsml/modules/sigstruct.htm]

Page
19

Signatures and Structures
[Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:57 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

The fundamental constructs of the ML module system are signatures and structures. A signature
may be thought of as an interface or specification of a structure, and a structure may correspondingly
be thought of as an implementation of a signature. Many languages (such as Modula-2, Modula-3,
Ada, or Java) have similar constructs: signatures are analogous to interfaces or package specifications
or class types, and structures are analogous to implementations or packages or classes. One thing to
point out right away, though, is that the relationship between signatures and structures in ML is
many-to-many, whereas in some languages (such as Modula-2) the relationship is one-to-one or
many-to-one. This means that in ML a signature may serve as the interface for many different
structures, and that a structure may implement many different signatures. This provides a
considerable degree of flexibility in the use (and re-use) of components in a system. The price we
pay for this flexibility is that we must be quite careful about referring to the signature of a structure,
since it can have more than one. As we will see, every structure has a most specific, or principal,
signature, with the property that all other signatures for that structure are (in a suitable sense) more
restrictive than the principal signature.

Structures

The fundamental unit of modularity in ML is the structure. A structure consists of a sequence of
declarations comprising the components of the structure. A structure may be bound to a structure
variable using a structure binding. The components of a structure are accessed using long identifiers,
or paths. A structure may also be opened to incorporate all of its components into the environment.

Here's a simple example of a structure:

structure IntLT = struct
 type t = int
 val lt = (op <)
 val eq = (op =)
end

This structure has three components, one type and two values, each of which are functions. The type
component is named t and is bound to the type int . The value components are named lt and eq ,
and are bound to the corresponding comparison operations on integers. This structure packages up
the type int with the integer comparison operations < and = to form a module that is then bound to
the structure variable IntLT .

Concatenation Page 93 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

We may similarly package up the type int with comparison operations being divisibility and
equality using the following binding:

structure IntDiv = struct
 type t = int
 fun lt (m, n) = (n mod m = 0)
 fun eq (m, n) = (op =)
end

The structures and may be thought of as two different interpretations of the type int as an ordered
type (i.e., a type supporting a "less than" and an equality operation). In one case we interpret "less
than" as the standard ordering on integers, in the other we interpret "less than" as divisibility. The
point is the type does not determine the interpretation. We use the module system to package up
types with operations to provide an interpretation of that type. Many different interpretations may co-
exist, provided only that we bind them to distinct structure variables.

The components of a structure are accessed using paths (also known as long identifiers or qualified
names). We may only access the components of a named structure (one that has been bound to a
structure variable). A component named id of a structure named strid is accessed by the long name
strid.id, the structure name followed by the component name, separated by a "dot". For example,
IntLT.lt designates the lt operation of the structure IntLT , and IntDiv.lt designates the lt
operation of the structure IntDiv . The type of IntLT.lt is

IntLT.t * IntLT.t -> bool ,

and the type of IntDiv.lt is

IntDiv.t * IntDiv.t -> bool .

The types of these operations have been "externalized" using long identifiers to refer to the
appropriate type t for each operation. Since IntLT.t and IntDiv.t are both bound to the type
int , it makes sense to write expressions such as IntLt.lt(3,4) and IntDiv.lt(3,4) .

Since IntLT.t and IntDiv.lt are both bound to the type int , it is technically correct to
consider IntLt.t to be of type

IntDiv.t * IntDiv.t -> bool

and also of type

int * int -> bool.

Were we also to have a structure StringLT whose t component is bound to the type string , then
StringLT.lt would have type

StringLT.t * StringLT.t -> bool

and type

Concatenation Page 94 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

string * string -> bool

but not type

IntLT.t * IntLT.t -> bool

Packaging a declaration to form a structure does not affect the usual rules of type equivalence ---
transparent type definitions remain transparent.

The use of a long identifier to access a component of a structure serves to remind us of the
interpretation of the underlying type of the structure. For example, the long identifer IntLT.lt
reminds us that the comparison is the standard "less than" relation on integers, whereas the long
identifier IntDiv.lt reminds us that the comparison is divisiblity. Sometimes the use of long
identifiers can get out of hand, cluttering the program text, rather than clarifying it. This can be
alleviated by opening the structure for use in a particular context. For example, rather than writing

IntDiv.lt (exp1, exp2) andalso IntDiv.eq (exp3, exp4)

we may instead write

let
 open IntDiv
in
 lt (exp1, exp2) andalso eq (exp3, exp4)
end

This has the effect of incorporating the components of the structure IntLT into the environment for
the duration of the evaluation of the body of the let expression. It is as if we replace "open
IntLT " by the declarations comprising the structure bound to IntLT .

Using open has some disadvantages. One is that we cannot simultaneously open two structures with
have one or more components with the same names --- the one we open later we will shadow the
bindings of the one we open earlier. For example, if we write

let
 open IntLT IntDiv (* open both structures in the
order given *)
in
 ...
end

then only the bindings of the second structure, IntDiv , are available in the scope of the let
because they completely shadow the bindings of the first structure, IntLT .

Another disadvantage is that it is difficult to determine exactly which bindings are introduced by an
open declaration. We must refer to the implementation of the opened structure (typically defined
somewhere remote from the client code) to understand the effect of the open. A typical bug is to
unwittingly shadow an identifier by opening a structure that happens to provide a binding for that
identifier, even though we did not intend that it do so. In many cases this will result in a

Concatenation Page 95 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

typechecking error, but in more insidious cases it can lead to subtle run-time bugs. For example,
suppose the implementation of the structure makes use of an auxiliary function as follows:

structure StringLT = struct
 type t = string
 fun compare (c, d) = Char.< (c, d)
 fun lt (s, t) = ... compare ...
 fun eq (s, t) = ... compare ...
end

Opening this structure introduces not only the expected components t , lt , and eq , but also the
unexpected auxiliary function compare !

To avoid such problems it is usually advisable to avoid open entirely. The typical compromise is to
introduce a short (typically one letter) name for the structures in question to minimize the clutter of a
long path. Thus we might write

let
 structure I = IntLT
in
 I.lt (exp1, exp2) andalso I.eq (exp3, exp4)
end

rather than opening the structure IntLT as suggested above.

The structures and are rather simple examples of the use of the module system. A more substantial
example is provided by packaging the implementation of (ephemeral) queues into a structure.

structure PersQueue = struct
 type 'a queue = 'a list * 'a list
 val empty = (nil, nil)
 fun insert (x, (bs, fs)) = (x::bs, fs)
 exception Empty
 fun remove (nil, nil) = raise Empty
 | remove (bs, f::fs) = (f, (bs, fs))
 | remove (bs, nil) = remove (nil, rev bs)
end

The components of this structure may be accessed by using long identifiers,

val q = PersQueue.empty
val q' = PersQueue.insert (1, q)
val q'' = PersQueue.insert (2, q)
val (x'', _) = PersQueue.remove q'' (* 2 *)
val (x', _) = PersQueue.remove q' (* 1 *)

by opening the structure,

let
 open PersQueue
in

Concatenation Page 96 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 insert (1, empty)
end

or by introducing a short name for it

let
 structure PQ = PersQueue
in
 PQ.insert (1, PQ.empty)
end

The structure PersQueue may be thought of as an implementation of the abstract data type of
persistent queues. We may build and manipulate queues using the operations PersQueue.empty ,
PersQueue.insert , and PersQueue.remove . Structures are loosely analogous to classes in
languages such as C++ and Java; in particular, abstract types are usually implemented by structures.

Signatures

A signature is the type of a structure. It describes a structure by specifying each of its components by
giving its name and a description of it. Different sorts of components have different specifications.
A type component is specified by giving its arity (number of arguments) and (optionally) its
definition. A datatype component is specified by its declaration, which defines its value constructors
and their types. An exception component is specified by giving the type of the values it carries (if
any). A value component is specified by giving its type scheme.

Here is the signature of an ordered type, one that comes equipped with a comparison operations on it.

signature ORDERED = sig
 type t
 val lt : t * t -> bool
 val eq : t * t -> bool
end

This signature describes a structure that provides a type component named t (with no specified
definition) and two operations, lt and eq , of type t * t -> bool . Ordinarily we expect that lt
is reflexive and transitive, and that eq is an equivalence relation, but these requirements are not
formally expressible in ML.

If we wish we can specify the definition of a type component in a signature. For example, we may
define the signature

signature INT_ORDERED = sig
 type t = int
 val lt : t * t -> bool
 val eq : t * t -> bool
end

which is similar to the signature ORDERED, except that the type component t is specified to be
equivalent to int . It therefore describes only those structures that provide an interpretation of int
as an ordered type. (As we mentioned earler, there can be many such interpretations.)

Concatenation Page 97 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

An important consequence of having type definitions in signatures is that many superficially different
signatures are equivalent. For example, the signature INT_ORDERED is equivalent to the following
signature:

signature INT_ORDERED_VARIANT = sig
 type t = int
 val lt : int * int -> bool
 val eq : int * int -> bool
end

The reason is that since the type component t is defined to be int , we may replace it by int
anywhere that it is used to obtain an equivalent signature. For all practical purposes the signatures
INT_ORDERED and INT_ORDERED_VARIANT are indistinguishable from one another.

Here is a signature describing implementations of persistent queues:

signature QUEUE = sig
 type 'a queue
 val empty : 'a queue
 val insert : 'a * 'a queue -> 'a queue
 exception Empty
 val remove : 'a queue -> 'a * 'a queue
end

This signature specifies that an implementation of persistent queues provide a one-argument type
constructor 'a queue , the type of queues containing values of type 'a , an exception Empty
carrying no value, and the values empty , insert , and remove with types 'a queue , 'a * 'a
queue -> 'a queue , and 'a queue -> 'a * 'a queue , respectively.

Signature Matching

The signature matching relation is of central importance to the ML module system. Signature
matching governs the formation of complex module expressions in the same way that type matching
governs the formation of core language expressions. For example, to determine whether a structure
binding structure strid : sigexp = strexp is well-formed, we must check that the principal
signature of strexp matches the ascribed signature sigexp. The principal signature of a structure
expression is the signature that most accurately describes the structure strexp; it contains the
definitions of all of the types defined in strexp, and the types of all of its value components. We then
compare the principal signature of strexp against the signature sigexp to determine whether or not
strexp satisfies the requirements specified by sigexp.

Signature matching consists of a comparison between a candidate and a target signature. The target
expresses a set of requirements that the candidate must fulfill. In the case of a structure binding the
candidate is the principal signature of the structure expression, and the target is the ascribed signature
of the binding. Roughly speaking, to check that a candidate siganture matches a target signature it is
necessary to ensure that the following conditions hold:

1. Every type specification in the target must have a matching type specification in the candidate.
If the target specifies a definition for a type, so must the candidate specify an equivalent

Concatenation Page 98 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

definition.
2. Every exception specification in the target must have an equivalent exception specification in

the candidate.
3. Every value specification in the target must be matched by a value specification in the

candidate with at least as general a type.

Note that the candidate signature may have more components than are required by the target, may
have more definitions of types than are required, and may have value components with more general
types. The target signature specifies a set of necessary conditions that must be met by the candidate,
but the candidate may well be much richer than is required by the target.

To make these ideas precise, we decompose the signature matching relation into two sub-relations,
enrichment and realization, that are defined as follows:

1. A signature sigexp enriches a signature sigexp’ if sigexp has at least the components specified
in sigexp’, with the types of value components being at least as general in sigexp as they are in
sigexp’.

2. A signature sigexp realizes a signature sigexp’ if sigexp fulfills at least the type definitions
specified in sigexp’, but is otherwise identical to sigexp’.

In other words sigexp enriches sigexp’ if we can obtain sigexp’ from sigexp by dropping components
and specializing types, and sigexp realizes sigexp’ if we can obtain sigexp’ from sigexp by "forgetting"
the definitions of some of sigexp's type components. It is immediate that any signature both enriches
and realizes itself, and it is not hard to see that enrichment and realization are transitive.

We then say that sigexp matches sigexp’ if there exists a signature sigexp’’ such that sigexp enriches
sigexp’’ and sigexp’’ realizes sigexp’. Put in more operational terms, to determine whether sigexp
matches sigexp’, we first drop components and specialize types in sigexp to obtain a view sigexp’’ of
sigexp with the same components as sigexp’, then check that the type definitions specified by sigexp’
are provided by the view. Signature matching can fail for several reasons:

1. The target contains a component not present in the candidate.
2. The target contains a value component whose type is not an instance of its type in the

candidate.
3. The target defines a type component, that is defined differently or not defined in the candidate.

The first two reasons are failures of enrichment; the third is a failure of realization.

Some examples will clarify these definitions. Let us consider realization first since it is the simpler
of the two relations. The signature INT_ORDERED realizes the signature ORDERED because we may
obtain the latter from the former by "forgetting" that the type component t in the signature
INT_ORDERED is defined to be int . The converse fails: ORDERED does not realize
INT_ORDERED because ORDERED does not define the type component t to be int . Here is
another counterexample to realization. The signature

signature LESS_THAN = sig
 type t = int
 val lt : t * t -> bool
end

Concatenation Page 99 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

does not realize the signature ORDERED, even though it defines t to be int , simply because the eq
component is missing from the signature LESS_THAN.

That's all there is to say about realization. Enrichment is slightly more complicated. The signature
ORDERED enriches the signature LESS_THAN because it provides all of the components required by
the latter, at precisely the required types. For a more interesting example, consider the signature of
monoids,

signature MONOID = sig
 type t
 val unit : t
 val mult : t * t -> t
end

and the signature of groups,

signature GROUP = sig
 type t
 val unit : t
 val mult : t * t -> t
 val inv : t -> t
end

The signature GROUP enriches the signature MONOID, as might be expected (since every group is a
monoid).

The enrichment relation respects signature equivalence. For example, the signature INT_ORDERED
enriches the following signature:

signature INT_LESS_THAN = sig
 val lt : int * int -> bool
end

Here we have dropped both the t and the eq components of the signature INT_ORDERED, and
specified lt to have a superficially different type than is specified in the signature INT_ORDERED.
As was pointed out earlier, the signature INT_ORDERED is equivalent to the signature
INT_ORDERED_VARIANT, which clearly enriches the signature INT_LESS_THAN. Since
enrichment respects signature equivalence, it follows that INT_ORDERED is an enrichement of
INT_LESS_THAN.

The enrichment relation also allows the types of value components to be specialized by instantiating
polymorphic types. For example, the signature

sig
 type t
 val f : 'a -> 'a
end

enriches the signature

Concatenation Page 100 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

sig
 type t
 val f : t -> t
end

simply because the polymorphic type 'a -> 'a may be specialized to the required type t -> t
(by taking 'a to be t).

There is one additional case of enrichment to consider. A datatype specification may be regarded as
an enrichment of a signature that specifies a type with the same name and arity (but no definition),
and zero or more value components corresponding to some (or all) of the value constructors of the
datatype. The types of the value components must match exactly the types of the corresponding value
constructors; no specialization is allowed in this case. For example, the signature

sig
 datatype 'a rbt =
 Empty | Red of 'a rbt * 'a * 'a rbt | Black of 'a rbt *
'a * 'a rbt
end

is considered to be an enrichment of the signature

sig
 type 'a rbt
 val Empty : 'a rbt
 val Red : 'a rbt * 'a * 'a rbt
end

which specifies two of the three value constructors of the datatype as ordinary values.

Putting these ideas together, we see that the following signature matches the signature MONOID:

sig
 type t = int list
 val unit : 'a list
 val mult : 'a list * 'a list -> 'a list
 val aux : 'a list
end

Why? First, we drop the component aux , and specialize the type of mult to int list * int
list -> int list and the type of unit to int list by taking ’a to be int , thereby
obtaining the intermediate signature

sig
 type t = int list
 val unit : int list
 val mult : int list * int list -> int list
end

Concatenation Page 101 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

This intermediate signature is equivalent to the signature

sig
 type t = int list
 val unit : t
 val mult : t * t -> t
end

By neglecting the definition of the type t we obtain the signature MONOID. Therefore the signature
match succeeds.

Signature Ascription

The point of having signatures in the language is to express the requirement that a given structure
have a given signature. This is achieved by signature ascription, the attachment of a target signature
to a structure binding. There are two forms of signature ascription, transparent and opaque, differing
only in the extent to which type definitions are propagated into the scope of the binding. Transparent
ascription is written as

structure strid : sigexp = strexp

Opaque ascription is written as

structure strid :> sigexp = strexp

The two are distinguished by the use of a colon, ": ", or the symbol ":> " before the ascribed
signature.

Here is an example of transparent ascription. We may use transparent ascription on the binding of the
structure variable IntLT to express the requirement that the structure implement an ordered type.
This is achieved as follows:

structure IntLT : ORDERED = struct
 type t = int
 val lt = (op <)
 val eq = (op =)
end

Transparent ascription is so-called because the definition of IntLT.t is not obscured by the
ascription; the equation IntLT.t = int remains valid in the scope of this declaration. Transparent
ascription is appropriate here because the signature merely expresses the requirement that the given
structure provide a type and two comparison operations. We do not intend that these be the only
operations on that type. (Had we done so the structure would be useless because there would be no
way to create a value of type IntLT.t , rendering the structure IntLT useless!) The structure
IntLT may be thought of as a view of the type int as a type ordered by the standard comparison
operations. We may form another view of int as an ordered type, but with a different ordering, by
making the following binding:

Concatenation Page 102 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

structure IntDiv : ORDERED = struct
 type t = int
 fun lt (m, n) = (n mod m = 0)
 val eq = (op =)
end

Here's an example of opaque ascription. We may use opaque ascription to specify that a structure
implement queues, and, at the same time, specify that only the operations in the signature be used to
manipulate values of that type. This is achieved as follows:

structure Queue :> QUEUE = struct
 type 'a queue = 'a list * 'a list
 val empty = (nil, nil)
 fun insert (x, (bs, fs)) = (x::bs, fs)
 exception Empty
 fun remove (nil, nil) = raise Empty
 | remove (bs, f::fs) = (f, (bs, fs))
 | remove (bs, nil) = remove (nil, rev bs)
end

Opaque ascription is so-called because the definition of 'a Queue.queue is hidden by the
binding; the equivalence of the types 'a Queue.queue and 'a list * 'a list is not
propagated into the scope of the binding. This is appropriate because we wish to ensure that queues
are created and manipulated only by the "official" operations in the signature, and not by any other
means. By suppressing the identity of the implementation type we preclude use of any operations on
values of that type other than the ones specified in the signature.

Type checking a structure binding proceeds as follows. First we determine the principal signatureof
the structure expression on the right-hand side of the binding. (It is an important property of the
language that the principal signature of a structure always exists; there is always a "most accurate"
description of any structure.) We then proceed according to whether there is an ascribed signature,
and, in case there is, according to whether it is a transparent or opaque ascription. If there is no
ascribed signature, the principal signature of the right-hand side is assigned as the signature of the
structure variable. If there is an ascribed signature, we match the principal signature against it to
determine whether its requirements are met. If not, the binding is rejected as ill-typed. If so, then we
assign a signature to the structure variable according to whether the ascription is transparent or
opaque. If it is transparent, the structure variable is assigned the view of the candidate signature
determined by the matching process; if it is opaque, the structure variable is assigned the ascribed
signature. This means that for a transparent ascription the definitions in the principal signature of the
types occurring in the ascribed signature are propagated into the scope of the binding, whereas for
opaque ascription only the information explicitly appearing in the ascribed signature is propagated.
In particular if a type is specified in the ascribed signature, but no definition is provided, then the
definition of that type is hidden from the clients of that binding, rendering it opaque.

It remains to define the principal signature of a structure expression. There are two forms of structure
expression to be considered (at this stage): a structure variable and a struct expression. A
structure variable has as principal signature the signature assigned to it by the ascription process just
described. An struct expression is assigned a principal signature by a component-by-component
analysis of its constituent declarations. The rules are essentially as follows:

Concatenation Page 103 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

1. Corresponding to a declaration of the form type (’a 1,...,’a n) t = typ, the principal

signature contains the specification type (’a 1,...,’a n) t = typ.

2. Corresponding to a declaration of the form

datatype (’a 1,...,’a n) t = con1 of typ1 | ... | conk of typk,

the principal signature contains the specification

datatype (’a 1,...,’a n) t = con1 of typ1 | ... | conk of typk.

3. Corresponding to a declaration of the form exception id of typ, the principal signature
contains the specification exception id of typ.

4. Corresponding to a declaration of the form val id = exp, the principal signature contains
the specification val id : typ, were typ is the principal type scheme of the expression
exp (relative to the preceding context).

The complete rules are slightly more complicated than this because they must take account of such
features as pattern-matching in value bindings, mutually recursive declarations of functions, and the
possibility of shadowing bindings by re-declaration. However, the rules given above are a rough-
and-ready approximation that will serve for most purposes; the reader is referred to The Definition of
Standard ML for a complete account.

With these rules in mind, it is a good exercise to review the two examples of signature ascription
given above. Go through the steps of forming the principal signature, then check that the principal
signature matches the ascribed signature, and determine the signature to assign to the structure
variable in each case.

Sample Code for this Chapter

[Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 104 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Views and Data Abstraction
[http://www.cs.cmu.edu/People/rwh/introsml/modules/viewabstr.htm]

Page
20

Views and Data Abstraction
[Back] [Home] [Up] [Next]

Last edit: Monday, April 27, 1998 02:57 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

It is good practice to ascribe a signature to every structure binding in a program to ensure that the
signature of the bound structure variable is apparent from the binding. In the preceding chapter we
described the elaboration and evaluation of a structure binding with an explicit signature ascription.
First the ascribed signature is used to determine a view of the principal signature of the right-hand
side of the binding, then the view is checked to ensure that it verifies the type sharing requirements of
the ascribed signature. If both steps succeed, we assign a signature to the bound structure variable
according to whether it is a transparent or opaque ascription --- if it is transparent, we assign the view
to the variable, otherwise the ascription. Thus transparent ascription is used to form views of a
structure, and opaque ascription is used to form abstractions in which critical type information is
hidden from the rest of the program.

The formation of a view also has significance at run-time: a new structure is built consisting of only
those components of the right-hand side of the binding mentioned in the ascribed signature, perhaps
augmented by zero or more type components to ensure that the signature of the view is well-formed.
(For example, if we attempt to extract only the constructors of a datatype, and not the datatype itself,
the compiler will implicitly extract the datatype to ensure that the types of the constructors are
expressible in the signature. Any type implicitly included in the view is marked as "hidden" to
indicate that it was implicitly included as a consequence of the explicit inclusion of some other
components of the structure.) Moreover, the types of polymorphic value components may be
specialized in the view, corresponding to a form of polymorphic instantiation during signature
matching. The result is a structure whose shape is fully determined by the view; no "junk" remains
after the ascription. This ensures that access to the components of a structure is efficient (constant-
time), and that there are no "space leaks" stemming from the presence of components of a structure
that are not mentioned in its signature.

In this chapter we discuss the trade-off's between using views and abstraction in ML by offering some
guidelines and examples of their use in practice. How does one decide whether to use transparent or
opaque ascription? Generally speaking, transparent ascription is appropriate if the signature is not
intended to be exhaustive, but is rather just a specification of some minimum requirements that a
module must satisfy. Opaque ascription is appropriate if the signature is intended to be exhaustive,
specifying precisely the operations that are available on the type.

Here's a common example of the use of transparent ascription in a program. When defining a module
it is often convenient to introduce a numberof auxiliary bindings, especially of "helper functions" that
are used internally to the code of the "public" operations. Since these auxiliaries are not intended to
be used by clients of the module, it is good practice to localize them to the implementation of the

Concatenation Page 105 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

public operations. This can be achieved by using the local construct, as previously discussed in
these notes. An alternative is to define the auxiliaries as components of the stucture, relying on
transparent ascription to drop the auxiliary components before exporting the public components to
clients of the module. Thus we might write something like this:

structure IntListOrd : ORDERED =
struct
 type t = int list
 fun aux l = ...
 val lt (l1, l2) = ... aux ...
 val eq (l1, l2) = ... aux ...
end

The effect of the signature ascription is to drop the auxiliary component aux from the structure
during signature matching so that afterwards the binding of IntListOrd contains only the
components in the signature ORDERED. An added bonus of this style of programming is that during
debugging and testing we may gain access to the auxiliary by simply "commenting out" the ascription
by writing instead

structure IntListOrd (* : ORDERED *) =
struct
 type t = int list
 fun aux l = ...
 val lt (l1, l2) = ... aux ...
 val eq (l1, l2) = ... aux ...
end

Since the ascription has been suppressed, the auxiliary component IntListOrd.aux is accessible
for testing. (It would be useful to have a compiler switch that "turns off" signature ascription, rather
than having to manually comment out each ascription in the program, but no current compilers
support such a feature.)

Now let us consider uses of opaque ascription by reconsidering the implementation of persistent
queues using pairs of lists. Here it makes sense to use opaque ascription since the operations
specified in the signature are intended to be exhaustive --- the only way to create and manipulate
queues is to use the operations empty , insert , and remove . By using opaque signature matching
in the declaration of the Queue structure, we ensure that the type Queue.queue is hidden from the
client. Consequently an expression such as Queue.insert (1, ([],[])) is ill-typed, even
though queues are "really" pairs of lists, because the type ’a list * ’a list is not equivalent
to ’a Queue.queue . Were we to use transparent ascription this equation would hold, which
means that the client would not be constrained to using only the "official" queue operations on values
of type ’a Queue.queue . This violates the principle of data abstraction, which states that an
abstract type should be completely defined by the operations that may be performed on it.

Why impose such a restriction? One reason is that it ensures that the client of an abstraction is
insensitive to changes in the implementation of the abstraction. Should the client's behavior change
as a result of a change of implementation of an abstract type, we know right where to look for the
error: it can only be because of an error in the implementation of the operations of the type. Were
abstraction not enforced, the client might (accidentally or deliberately) rely on the implementation
details of the abstraction, and would therefore need to be modified whenever the implementation of

Concatenation Page 106 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

the abstraction changes. Whenever such coupling can be avoided, it is desirable to do so, since it
allows components of a program to be managed independently of one another.

A closely related reason to employ data abstraction is that it enables us to enforce representation
invariants on a data structure. More precisely, it enables us to isolate any violations of a
representation invariant to the implementation of the abstraction itself. No client code can disrupt the
invariant if abstraction is enforced. For example, suppose that we are implementing a dictionary
package using a binary search tree. The implementation might be defined in terms of a library of
operations for manipulating generic binary trees called BinTree . The implementation of the
dictionary might look like this:

structure Dict :> STRING_DICT =
 struct
 (* Rep Invariant: binary search tree *)
 type t = string BinTree.tree
 fun insert (k, t) = ...
 fun lookup k = ...
 end

Had we used transparent, rather than opaque, ascription of the STRING_DICT signature to the Dict
structure, the type Dict.t would be known to clients to be string BinTree.tree . But then one
could call Dict.lookup with any value of type string BinTree.tree , not just one that
satisfies the representation invariant governing binary search trees (namely, that the strings at the
nodes descending from the left child of a node are smaller than those at the node, and those at nodes
descending from the right child are larger than those at the node). By using opaque ascription we are
isolating the implementation type to the Dict package, which means that the only possible violations
of the representation invariant are those that arise from errors in the Dict package itself; the
invariant cannot be disrupted by any other means. The operations themselves may assume that the
representation invariant holds whenever the function is called, and are obliged to ensure that the
representation invariant holds whenever a value of the representation type is returned. Therefore any
combination of calls to these operations yielding a value of type Dict.t must satisfy the invariant.

You might wonder whether we could equally well use run-time checks to enforce representation
invariants. The idea would be to introduce a "debug flag" that, when set, causes the operations of the
dictionary to check that the representation invariant holds of their arguments and results. In the case
of a binary search tree this is surely possible, but at considerable expense since the time required to
check the binary search tree invariant is proportional to the size of the binary search tree itself,
whereas an insert (for example) can be performed in logarithmic time. But wouldn't we turn off the
debug flag before shipping the production copy of the code? Yes, indeed, but then the benefits of
checking are lost for the code we care about most! (To paraphrase Tony Hoare, it's as if we used our
life jackets while learning to sail on a pond, then tossed them away when we set out to sea.) By using
the type system to enforce abstraction, we can confine the possible violations of the representation
invariant to the dictionary package itself, and, moreover, we need not turn off the check for
production code because there is no run-time penalty for doing so.

A more subtle point is that it may not always be possible to enforce data abstraction at run-time.
Efficiency considerations aside, you might think that we can always replace static localization of
representation errors by dynamic checks for violations of them. But this is false! One reason is that
the representation invariant might not be computable. As an example, consider an abstract type of
total functions on the integers, those that are guaranteed to terminate when called, without performing

Concatenation Page 107 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

any I/O or having any other computational effect. It is a theorem of recursion theory that no run-time
check can be defined that ensures that a given integer-valued function is total. Yet we can define an
abstract type of total functions that, while not admitting ever possible total function on the integers as
values, provides a useful set of such functions as elements of a structure. By using these specified
operations to create a total function, we are in effect encoding a proof of totality in the code itself.

Here's a sketch of such a package:

signature TIF = sig
 type tif
 val apply : tif -> (int -> int)
 val id : tif
 val compose : tif * tif -> tif
 val double : tif
 ...
end

structure Tif :> TIF = struct
 type tif = int->int
 fun apply t n = t n
 fun id x = x
 fun compose (f, g) = f o g
 fun double x = 2 * x
 ...
end

Should the application of such some value of type Tif.tif fail to terminate, we know where to
look for the error. No run-time check can assure us that an arbitrary integer function is in fact total.

Another reason why a run-time checkto enforce data abstraction is impossible is that it may not be
possible to tell from looking at a given value whether or not it is a legitimate value of the abstact
type. Here's an example. In many operating systems processes are "named" by integer-value process
identifiers. Using the process identifier we may send messages to the process, cause it to terminate,
or perform any number of other operations on it. The thing to notice here is that any integer at all is a
possible process identifier; we cannot tell by looking at the integer whether it is indeed valid. No
run-time check on the value will reveal whether a given integer is a "real" or "bogus" process
identifier. The only way to know is to consider the "history" of how that integer came into being, and
what operations were performed on it. Using the abstraction mechanisms just described, we can
enforce the requirement that a value of type pid , whose underlying representation is int , is indeed a
process identifier. You are invited to imagine how this might be achieved in ML.

Transparency and opacity may seem, at first glance, to be fundamentally opposed to one another. But
in fact transparency is special case of opacity! By using type definitions in signatures, we may
always express explicitly the propagation of type information that is conveyed implicitly by
transparent ascription. For example, rather than write

structure IntLT : ORDERED = struct type t=int ... end

we may instead write

Concatenation Page 108 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

structure IntLT :> INT_ORDERED = struct type t=int ... end

at the expense of introducing a specialized version of the signature ORDERED with the type t defined
to be int . This syntactic inconvenience can be ameliorated by using the "where type " construct,
writing

structure IntLT :> ORDERED where type t=int = struct ...
end

The signature expression "ORDERED where type t=int " is equivalent to the signature
INT_ORDERED defined above.

Thus transparency is a form of opacity in which we happen to publicize the identity of the underlying
types in the ascribed signature. This observation is more important than one might think at first
glance. The reason is that it is often the case that we must use a combination of opacity and
transparency in a given situation. Here's an example. Suppose that we wished to implement several
dictionary packages that differ in the type of keys. The "generic" signature of a dictionary might look
like this:

signature DICT = sig
 type key
 val lt : key * key -> bool
 val eq : key * key -> bool
 type 'a dict
 val empty : 'a dict
 val insert : 'a dict * key * 'a -> 'a dict
 val lookup : 'a dict * key -> 'a
end

Notice that we include a type component for the keys, together with operations for comparing them,
along with the type of dictionaries itself and the operations on it. Now consider the definition of an
integer dictionary module, one whose keys are integers ordered in the usual manner. We might use a
declaration like this:

structure IntDict :> DICT = struct
 type key = int
 val lt : key * key -> bool = (op <)
 val eq : key * key -> bool = (op =)
 datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
 val empty = Empty
 fun insert (d, k, e) = ...
 fun lookup (d, k) = ...
end

But this is wrong! The reason is that the opaque ascription, which is intended to hide the
implementation type of the abstraction, also obscures the type of keys. Since the only operations on
keys in the signature are the comparison functions, we can never insert an element into the dictionary!

What is necessary is to introduce a specialized version of the DICT signature in which we publicize

Concatenation Page 109 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

the identity of the key type, as follows:

signature INT_DICT = DICT where type key = int

structure IntDict :> INT_DICT = struct
 type key = int
 val lt : key * key -> bool = (op <)
 val eq : key * key -> bool = (op =)
 datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
 val empty = Empty
 fun insert (d, k, e) = ...
 fun lookup (d, k) = ...
end

With this declaration the type 'a IntDict.dict is abstract, but the type IntDict.key is
equivalent to int . Thus we may correctly write IntDict.insert (IntDict.empty, 1,
"1") to insert the value "1" into the empty dictionary with key 1. To build a dictionary whose
keys are strings, we proceed similarly:

signature STRING_DICT = DICT where type key = string

structure StringDict :> STRING_DICT = struct
 type key = string
 val lt : key * key -> bool = (op <)
 val eq : key * key -> bool = (op =)
 datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
 val empty = Empty
 fun insert (d, k, e) = ...
 fun lookup (d, k) = ...
end

In the next two chapters we will discuss how to build a generic implementation of dictionaries that
may be instantiated for many different choices of key type.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 110 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Hierarchies and Parameterization
[http://www.cs.cmu.edu/People/rwh/introsml/modules/subfun.htm]

Page
21

Hierarchies and Parameterization
[Back] [Home] [Up]

Last edit: Monday, April 27, 1998 02:57 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

In the preceding chapter we considered the following signature of dictionaries with an arbitrary key
type:

signature DICT = sig
 type key
 val lt : key * key -> bool
 val eq : key * key -> bool
 type 'a dict
 val empty : 'a dict
 val insert : 'a dict * key * 'a -> 'a dict
 val lookup : 'a dict * key -> 'a
end

The signatures of dictionaries with particular choices of key type were defined using the "where
type " construct. For example, the signature declarations

signature STRING_DICT = DICT where type key=string
signature INT_DICT = DICT where type key=int

define the signatures of dictionaries with string and integer keys, respectively. The motivation for
introducing these specialized instances of the DICT signature is that we typically wish to hold the
implementation type, ’a dict , of dictionaries abstract, but leave the type of keys concrete, as
described earlier.

The signature DICT is a bit unsatisfactory because it mixes two different notions in one interface,
namely the type, key , of keys and its associated comparison operations, lt and eq , and the type ’a
dict of dictionaries and its associated operations empty , insert , and lookup . It would be
cleaner to separate these two aspects of the interface, especially since we shall soon consider the key
component to be "generic", with the rest being "specific", to the abstraction. The way to do this in
ML is with a substructure, as follows:

signature DICT = sig
 structure Key : ORDERED
 type 'a dict
 val empty : 'a dict
 val insert : 'a dict * Key.t * 'a -> 'a dict

Concatenation Page 111 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 val lookup : 'a dict * Key.t -> 'a
end

The type of keys and the operation on it are segregated into a substructure of the dictionary structure,
a component of a structure that is itself a structure. Correspondingly, uses of the type key are
replaced by references to the t component of the substructure Key. This leads to a hierarchical
organization in which we consider the key structure to be subservient to the dictionary operations.

Specialized versions of the signature DICT are build essentially as before, except that we use a long
identifier to specify the type of keys:

signature STRING_DICT = DICT where type Key.t=string
signature INT_DICT = DICT where type Key.t=int

Specific implementations of these specialized instances may be defined as follows:

structure StringDict :> STRING_DICT = struct
 structure Key : ORDERED = StringLT
 type 'a dict = Key.t BinTree.tree
 val empty = BinTree.empty
 val insert = ... insert into a BST using Key.lt and
Key.eq...
 val lookup = ... lookup in a BST using Key.lt and
Key.eq...
end

structure IntDict :> INT_DICT = struct
 structure Key : ORDERED = IntLT
 type 'a dict = Key.t BinTree.tree
 val empty = BinTree.empty
 val insert = ... insert into a BST using Key.lt and
Key.eq...
 val lookup = ... lookup in a BST using Key.lt and
Key.eq...
end

The difficulty, of course, is that we are repeating the code for dictionaries in each implementation; the
elided parts of both structures would be identical. The only difference between the two dictionary
structures lies in the implementation of keys; in one case we choose string operations and in the other
we choose integer operations. Since the bulk of the code is the same, it is a pity to have to repeat it
for reach choice of key type.

Fortunately, ML provides a convenient means of avoiding such redundancy, called a functor. A
functor is a parameterized module, or a generic structure, that is defined in terms of zero or more
argument structures with a specified signature. A functor may be applied, or instaniated, with any
structures matching the argument signatures. A functor is therefore a kind of function taking zero or
more structures as arguments and yielding a structure as result.

In the case of dictionaries we may define a generic implementation that is parameterized by the type
of keys and associated comparison operations. This is achieved by introducing a functor.

Concatenation Page 112 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

functor Dict (structure K : ORDERED) :> DICT where type
Key.t=K.t =
struct
 structure Key : ORDERED = K
 type 'a dict = Key.t BinTree.tree
 val empty = BinTree.empty
 val insert = ... insert into a BST using Key.lt and
Key.eq...
 val lookup = ... lookup in a BST using Key.lt and
Key.eq...
end

This declaration introduces a functor named Dict that takes as argument any structure implementing
the signature ORDERED, and yields a structure implementing the instance of the signature DICT
determined by taking the key type of the dictionary to be the type component of its argument, leaving
the type of dictionaries abstract. The type checker ensures that the body of the functor matches the
specified result signature, under the assumption that the argument has the stated signature. In the
case of the Dict functor the type checker ensures that the principal signature of the body of the
functor (the part between struct and end) matches the signature

DICT where type Key.t=K.t,

assuming that the structure K has signature ORDERED.

The Dict functor encapsulates the implementation of dictionaries as a generic structure that is
independent of the specific choice of keys. One advantage of this encapsulation is that should we
wish to modify the implementation of dictionaries, say to fix an error or to improve performance, we
need only modify the Dict functor, rather than change every occurrence of the dictionary code
spread throughout a large system. This is obviously advantageous for both the original author of the
code, and anyone who must maintain it in the future. In fact common data structures such as
dictionaries are typically provided as part of a "shrink wrapped" library, and hence are shared among
many different programs, thereby increasing code reuse and reducing redundancy.

The Dict functor provides a generic implementation of dictionaries. Dictionaries with specific key
types may be built by instantiating the Dict functor as follows:

structure IntDict = Dict (structure K = IntLT)
structure StringDict = Dict (structure K = StringLT)

Notice that functor application uses keyword parameter passing --- the parameter is explicitly bound
to a structure using a structure binding. In practice the right-hand sides of such bindings are always
(long) identifiers; if not, the compiler implicitly inserts bindings to ensure that this is the case. In our
discussions we will tacitly assume that the right-hand side of all such bindings are (long) identifiers.

What are the signatures of the structure variables IntDict and StringDict ? Since no signature
is ascribed to these bindings, the principal signature of the corresponding right-hand side of the
binding is assigned to each variable, in keeping with our previous policies. Since the right-hand side
in these examples is a functor application, we must answer the question: what is the principal
signature of a functor application? If --- as here --- the result signature of the functor is opaque, the

Concatenation Page 113 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

principal signature is precisely the asribed signature of the functor, but with the structure parameter
replaced by its binding (which must be, by our assumption, another structure identifier). Thus the
signature assigned to IntDict is

DICT where type Key.t=IntLT.t

which is equivalent to the signature

DICT where type Key.t=int

since IntLt.t = int . Similarly, the signature assigned to StringDict is

DICT where type Key.t=StringLT.t

which is equivalent to the signature

DICT where type Key.t=string

What if the functor has no result signature, or its result signature is transparently ascribed? In that
case we assign the intermediate signature of the match as the result signature of the functor, and use
that signature as the implied result signature of the functor.

Dictionaries illustrate the use of the ML module system to build generic implementations of abstract
types. A generic implementation of priority queues (which support a remove_min operation that
dequeues the "least" element of the queue relative to a specified ordering) may be built in an exactly
analogous manner. Here's a suitable signature of priority queues:

signature PRIO_QUEUE = sig
 structure Elt : ORDERED
 type prio_queue
 exception Empty
 val empty : prio_queue
 val insert : Elt.t * prio_queue -> prio_queue
 val remove : prio_queue -> Elt.t * prio_queue
end

Notice that prio_queue is a type, and not a type constructor, as it was in the case of "plain"
queues. This is a reflection of the fact that the operations on a priority queue are not independent of
the type of elements (as they are with plain queues), but rely on the comparison operations that are
provided with the Elt structure.

A generic implementation of priority queues is a functor taking as argument a structure containing the
element type together with its associated operations:

functor PrioQueue
 (structure E : ORDERED) :> PRIO_QUEUE where type
Elt.t=E.t =
struct
 structure Elt : ORDERED = E
 type prio_queue = ... a heap based on the ordering

Concatenation Page 114 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Elt.lt...
 exception Empty
 val empty = ... the empty heap...
 val insert = ... sift a new element into the heap...
 val remove = ... remove the least element and adjust the
heap...
end

Specific instances of priority queues may be built as follows:

structure IntPQ = PrioQueue (structure E = IntLT)
structure StringPQ = PrioQueue (structure E = StringLT)

with signatures

PRIO_QUEUE where type Elt.t=int

and

PRIO_QUEUE where type Elt.t=string

respectively.

The situation becomes more interesting when we wish to combine two or more abstract types to form
a third. Suppose we are to implement a (hypothetical) abstract type that employs an ordered type of
values that occur both as keys of a dictionary and elements of a priority queue. The signature of this
abstract type might look like this

signature ADT = sig
 structure Val : ORDERED
 type adt
 ... operations...
end

The implementation should be generic in the type of values, and also in the implementation of
dictionaries and priority queues; we don’t want to build the implementation of these auxiliary data
structures into the implementation of ADT's. There are two approaches to building an Adt functor,
each with its advantages and disadvantages. Here's the first approach:

functor Adt
 (structure V : ORDERED) :> ADT where type Val.t=V.t =
struct
 structure Val : ORDERED = V
 structure D = Dict (structure K = V)
 structure Q = PrioQueue (structure E = V)
 type adt = ...
 ...
end

The functor Adt instantiates the Dict and PrioQueue functors to the structure of values specified

Concatenation Page 115 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

as argument to the Adt functor. This ensures that the type equation

D.Key.t = Q.Elt.t = V.t

holds inside the body of the functor, so that expressions such as

D.insert (Q.remove_min ..., ...)

are well-typed. (The structures D and Q are not visible outside of the functor since they do not appear
in the result signature; they are local auxiliaries used within the functor.)

This approach works well, but if the Dict or PrioQueue functors are changed, the Adt functor
must be recompiled to pick up the new versions. An alternative, which avoids this dependency of the
implementation of Adt on the implementations of the Dict and PrioQueue functors, is to treat
the dictionary and priority queue structures as additional parameters to the Adt functor. This leads to
the following setup:

functor Adt’
 (structure V : ORDERED and D : DICT and Q : PRIO_QUEUE)
:>
 ADT where type Value.t=V.t =
struct
 structure Val = V
 type adt = ... implementation type...
 ... implementation of operations...
end

To build an instance of the Adt' functor we must first built appropriate instances of the Dict and
PrioQueue functors and pass these to Adt' :

structure IntDict = Dict (structure K=IntLT)
structure IntPQ = Dict (structure K=IntLT)
structure A = Adt' (structure V=IntLt and D=IntDict and
Q=IntPQ)

There is a problem, however, with this setup: the functor Adt' is ill-typed! It is no longer true
within the body of Adt that the type equation

D.Key.t = Q.Elt.t = V.t

holds in the body of Adt’ , even though the equation

IntDict.Key.t = IntPQ.Elt.t = IntLT.t = int

does hold of the arguments, for we might well choose arguments for which the required equation is
invalid. In short, the functor is "too generic", and consequently the body is not type correct.

What to do? The solution is to restrict the parameters to the Adt’ functor so that the only possible
instances are those that satisfy the required equation. There are two methods for doing this, both
equivalent. The first is to explicitly require that the dictionary and priority queue arguments agree on

Concatenation Page 116 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

the value type passed as parameter:

functor Adt’
 (structure V : ORDERED
 and D : DICT where type Key.t=V.t
 and Q : PRIO_QUEUE where type Elt.t=V.t) :>
 ADT where type Val.t=V.t =
struct
 ...
end

The body of Adt' is now type correct since the required type equations hold as a result of our
additional assumptions on the arguments.

An alternative is to impose the equational requirement on types in a post hoc manner using a sharing
specification:

functor Adt'
 (structure V : ORDERED and D : DICT and Q : PRIO_QUEUE
 sharing type D.Key.t = Q.Elt.t = V.t) :>
 ADT where type Val.t=V.t =
struct
 ...
end

The sharing specification stipulates that the given equation must hold of any instance of this functor.
Any attempt to instantiate Adt’ with structures V, D, and Q not satisfying the sharing specification is
rejected as ill-formed.

An advantage of sharing specifications is that they provide a direct, symmetric specification of the
required type equation without forcing the programmer to explicitly "thread" the common type
through the various signatures. In fact sharing specifications encourage concision since they do not
require that the common component be "factored out" as it is in the foregoing example. Here is a
more concise formulation of the Adt’ functor in which we drop the first argument entirely, relying
only on a sharing specification to constraint the dictionary and priority queue structures
appropriately.

functor Adt’
 (structure D : DICT and Q : PRIO_QUEUE
 sharing type D.Key.t = Q.Elt.t) :>
 ADT where type Val.t=D.Key.t =
struct
 ...
end

Notice that the result signature changes slightly to extract the common type from one of the
parameters, the choice of which being arbitrary in the presence of the sharing specification.

Sample Code for this Chapter

Concatenation Page 117 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[Back] [Home] [Up]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 118 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Programming Techniques [http://www.cs.cmu.edu/People/rwh/introsml/techniques.htm]Page 41

Programming Techniques
[Back] [Home] [Next]

Last edit: Monday, May 04, 1998 03:29 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

In this part of the book we will explore the use of Standard ML to build elegant, reliable, and efficient
programs. The discussion takes the form of a series of worked examples illustrating various
techniques for building programs.

[Induction and Recursion] [Structural Induction] [Proof-Directed Debugging]
[Infinite Sequences] [Representation Invariants and Data Abstraction]

[Persistent and Ephemeral Data Structures] [Options, Exceptions, and Failure Continuations]
[Memoization and Laziness] [Modularity and Reuse]

[Back] [Home] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 119 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Induction and Recursion
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/indrec.htm]

Page
22

Induction and Recursion
[Home] [Up] [Next]

Last edit: Monday, May 04, 1998 03:29 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for This Chapter

This chapter is concerned with the close relationship between recursionand induction in
programming. When defining a recursive function, be sure to write down a clear, concise
specification of its behavior, then mentally (or on paper) give an inductive proof that your code
satisfies the specification. What is a specification? It includes (at least) these ingredients:

1. Assumptions about the types and values of the arguments to the function. For example, an
integer argument might be assumed to have a non-negative value.

2. Guarantees about the result value, expressed in terms of the argument values, under the
assumptions governing the arguments.

What does it mean to prove that your program satisfies the specification? It means to give a rigorous
argument that if the arguments satisfy the assumptions on the input, then the program will terminate
with a value satisfying the guarantees stated in the specification. In the case of a recursively-defined
function the argument invariably has the form of a inductive proof based on an induction principle
such as mathematical induction for the natural numbers or, more generally, structural induction for
other recursively-defined types. The rule of thumb is this

when programming recursively, think inductively

If you keep this rule firmly in mind, you'll find that you are able to get your code right more often
without having to resort to the tedium of step-by-step debugging on test data.

Let's start with a very simple series of examples, all involving the computation of the integer
exponential function. Our first example is to compute 2n for integers n>=0. We seek to define the
function

exp : int -> int

satisfying the specification

if n>=0, then exp n evaluates to 2n.

The precondition, or assumption, is that the argument n is non-negative. The postcondition, or
guarantee, is that the result of applying exp to n is the number 2n. The caller is required to establish

Concatenation Page 120 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

the precondition before applying exp; in exchange, the caller may assume that the result is 2n.

Here’s the code:

fun exp 0 = 1
 | exp n = 2 * exp (n-1)

Does this function satisfy the specification? It does, and we can prove this by induction on n. If n=0,
then exp n evaluates to 1 (as you can see from the first line of its definition), which is, of course, 20.
Otherwise, assume that exp is correct for n-1>=0, and consider the value of exp n. From the second
line of its definition we can see that this is the value of 2*p, where p is the value of exp (n-1).
Inductively, p=2n-1, so 2*p = 2*2n-1 = 2n, as desired. Notice that we need not consider arguments
n<0 since the precondition of the specification requires that this be so. We must, however, ensure
that each recursive call satisfies this requirement in order to apply the inductive hypothesis.

That was pretty simple. Now let us consider the running time of exp expressed as a function of n.
Assuming that arithmetic operations are executed in constant time (they are), then we can read off a
recurrence describing its execution time as follows:

T(0) = O(1)
T(n+1) = O(1)+ T(n)

In fact this recurrence could itself be thought of as defining a function in ML simply by rewriting it
into ML syntax! However, in most cases we are interested in solving a recurrence by finding a
closed-form expression for it. In this case the solution is easily obtained:

T(n) = O(n)

Thus we have a linear time algorithm for computing the integer exponential function.

What about space? This is a much more subtle issue than time because it is much more difficult in a
high-level language such as ML to see where the space is used. Based on our earlier discussions of
recursion and iteration we can argue informally that the definition of exp given above requires space
given by the following recurrence:

S(0) = O(1)
S(n+1) = O(1) + S(n)

The justification is that the implementation requires a constant amount of storage to record the
pending multiplication that must be performed upon completion of the recursive call.

Solving this simple recurrence yields the equation

S(n) = O(n)

expressing that exp is also a linear space algorithm for the integer exponential function.

Can we do better? Yes, on both counts! Here's how. Rather than count down by one's, multiplying

Concatenation Page 121 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

by two at each stage, we use successive squaring to achieve logarithmic time and space requirements.
The idea is that if the exponent is even, we square the result of raising 2 to half the given power;
otherwise, we reduce the exponent by one and double the result, ensuring that the next exponent will
be even. Here's the code:

fun square (n:int) = n*n
fun double (n:int) = n+n

fun fast_exp 0 = 1
 | fast_exp n =
 if n mod 2 = 0 then
 square (fast_exp (n div 2))
 else
 double (fast_exp (n-1))

Its specification is precisely the same as before. Does this code satisfy the specification? Yes, and
we can prove this by using complete induction, a form of mathematical induction in which we may
prove that n>0 has a desired property by assuming not only that the predecessor has it, but that all
preceding numbers have it, and arguing that therefore n must have it. Here's how it's done. For n=0
the argument is exactly as before. Suppose, then, that n>0. If n is even, the value of exp n is the
result of squaring the value of exp (n div 2). Inductively this value is 2(n div 2), so squaring it yields 2
(n div 2)*2(n div 2) = 22*(n div 2) = 2n, as required. If, on the other hand, n is odd, the value is the result
of doubling exp (n-1). Inductively the latter value is 2(n-1), so doubling it yields 2n, as required.

Here's a recurrence governing the running time of fast_exp as a function of its argument:

T(0) = O(1)
T(2n) = O(1) + T(n)
T(2n+1) = O(1) + T(2n) = O(1) + T(n)

Solving this recurrence using standard techniques yields the solution

T(n) = O(lg n)

You should convince yourself that fast_exp also requires logarithmic space usage.

Can we do better? Well, it's not possible to improve the time requirement (at least not
asymptotically), but we can reduce the space required to O(1) by putting the function into iterative
(tail recursive) form. However, this may not be achieved in this case by simply adding an
accumulator argument, without also increasing the running time! The obvious approach is to attempt
to satisfy the specification

if n>=0, then iterative_fast_exp (n, a) evaluates to 2n*a

Here's some code that achieves this specification:

fun iterative_fast_exp (0, a) = a
 | iterative_fast_exp (n, a) =
 if n mod 2 = 0 then

Concatenation Page 122 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 iterative_fast_exp (n div 2, iterative_fast_exp (n
div 2, a))
 else
 iterative_fast_exp (n-1, 2*a)

It is easy to see that this code works properly for n=0 and for n>0 when n is odd, but what if n>0 is
even? Then by induction we compute 2(n div 2)*2(n div 2)*a by two recursive calls to
iterative_fast_exp. This yields the desired result, but what is the running time? Here's a recurrence
to describe its running time as a function of n:

T(0) = 1
T(2n) = O(1) + 2T(n)
T(2n+1) = O(1) + T(2n) = O(1) + 2T(n)

Here again we have a standard recurrence whose solution is

T(n) = O(n lg n)

Yuck! Can we do better? The key is to recall the following important fact:

2(2n) = (22)n = 4n.

We can achieve a logarithmic time and exponential space bound by a change of base. Here's the
specification:

if n>=0, then generalized_iterative_fast_exp (b, n, a) evaluates to bn*a

Here's the code:

fun generalized_iterative_fast_exp (b, 0, a) = a
 | generalized_iterative_fast_exp (b, n, a) =
 if n mod 2 = 0 then
 generalized_iterative_fast_exp (b*b, n div 2, a)
 else
 generalized_iterative_fast_exp (b, n-1, b*a)

Let’s check its correctness by complete induction on n. The base case is obvious. Assume the
specification for arguments smaller than n>0. If n is even, then by induction the result is (b*b)(n div

2)*a = bn*a, and if n is odd, we obtain inductively the result b(n-1)*b*a=b n*a. This completes the
proof.

The trick to achieving an efficient implementation of the exponential function was to compute a more
general function that can be implemented using less time and space. Since this is a trick employed
by the implementor of the exponential function, it is important to insulate the client from it. This is
easily achieved by using a local declaration to "hide" the generalized function, making available to
the caller a function satisfying the original specification. Here's what the code looks like in this case:

local
 fun generalized_iterative_fast_exp (b, 0, a) =

Concatenation Page 123 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 | generalized_iterative_fast_exp (b, n, a) = ... as
above ...
in
 fun exp n = generalized_iterative_fast_exp (2, n, 1)
end

The point here is to see how induction and recursion go hand-in-hand, and how we used induction not
only to verify programs after-the-fact, but, more importantly, to help discover the program in the first
place. If the verification is performed simultaneously with the coding, it is far more likely that the
proof will go through and the program will work the first time you run it.

It is important to notice the correspondence between strengthening the specification by adding
additional assumptions (and guarantees) and adding accumulator arguments. What we observe is the
apparent paradox that it is often easier to do something (superficially) harder! In terms of proving, it
is often easier to push through an inductive argument for a stronger specification, precisely because
we get to assume the result as the inductive hypothesis when arguing the inductive step(s). We are
limited only by the requirement that the specification be proved outright at the base case(s); no
inductive assumption is available to help us along here. In terms of programming, it is often easier to
compute a more complicated function involving accumulator arguments, precisely because we get to
exploit the accumulator when making recursive calls. We are limited only by the requirement that the
result be defined outright for the base case(s); no recursive calls are available to help us along here.

Let's consider a more complicated example, the computation of the greatest common divisor of a pair
of non-negative integers. Recall that m is a divisor of n, m|n, iff n is a multiple of m, which is to say
that there is some k>=0 such that n=km. The greatest common divisor of non-negative integers m
and n is the largest p such that p|m and p|n. (By convention the g.c.d. of 0 and 0 is taken to be 0.)
Here's the specification of the gcd function:

if m,n>=0, then gcd(m,n) evaluates to the g.c.d. of m and n

Euclid's algorithm for computing the g.c.d. of m and n is defined by complete induction on the
product mn. Here's the algorithm:

fun gcd (m:int, 0):int = m
 | gcd (0, n:int):int = n
 | gcd (m:int, n:int):int =
 if m>n then gcd (m mod n, n) else gcd (m, n mod m)

Why is this algorithm correct? We may prove that gcd satisfies the specification by complete
induction on the product mn. If mn is zero, then either mor n is zero, in which case the answer is,
correctly, the other number. Otherwise the product is positive, and we proceed according to whether
m>n or m<=n. Suppose that m>n. Observe that m mod n = m - (m div n)n, so that (m mod n)n = mn

- (m div n)n2 < mn, so that by induction we return the g.c.d. of m mod n and n. It remains to show
that this is the g.c.d. of m and n. If d divides both m mod n and n, then kd = (m mod n) = (m - (m div
n)n) and ld = n for some non-negative k and l. Consequently, kd = m - (m div n)ld, so m = (k+(m div
n)l)d, which is to say that d divides m. Now if d' is any other divisor of m and n, then it is also a
divisor of (m mod n) and n, so d>d’. That is, d is the g.c.d. of m and n. The other case, m<=n,
follows similarly. This completes the proof.

Concatenation Page 124 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

At this point you may well be thinking that all this inductive reasoning is surely helpful, but it’s no
replacement for good old-fashioned "bulletproofing" --- conditional tests inserted at critical junctures
to ensure that key invariants do indeed hold at execution time. Sure, you may be thinking, these
checks have a run-time cost, but they can be turned off once the code is in production, and anyway
the cost is minimal compared to, say, the time required to read and write from disk. It's hard to
complain about this attitude, provided that sufficiently cheap checks can be put into place and
provided that you know where to put them to maximize their effectiveness. For example, there's no
use checking i>0 at the start of the then clause of a test for i>0 . Barring compiler bugs, it can't
possibly be anything other than the case at that point in the program. Or it may be possible to insert a
check whose computation is more expensive (or more complicated) than the one we're trying to
perform, in which case we're defeating the purpose by including them!

This raises the question of where should we put such checks, and what checks should be included to
help ensure the correct operation (or, at least, graceful malfunction) of our programs? This is an
instance of the general problem of writing self-checking programs. We'll illustrate the idea by
elaborating on the g.c.d. example a bit further. Suppose we wish to write a self-checking g.c.d.
algorithm that computes the g.c.d., and then checks the result to ensure that it really is the greatest
common divisor of the two given non-negative integers before returning it as result. The code might
look something like this:

exception GCD_ERROR

fun checked_gcd (m, n) =
 let
 val d = gcd (m, n)
 in
 if d mod m = 0 andalso d mod n = 0 andalso ??? then
 d
 else
 raise GCD_ERROR
 end

It’s obviously no problem to check that putative g.c.d., d, is in fact a common divisor of mand n, but
how do we check that it’s the greatest common divisor? Well, one choice is to simply try all numbers
between d and the smaller of m and n to ensure that no intervening number is also a divisor, refuting
the maximality of d. But this is clearly so inefficient as to be impractical. But there's a better way,
which, it has to be emphasized, relies on the kind of mathematical reasoning we've been considering
right along. Here's an important fact:

d is the g.c.d. of m and n iff d divides m and n and can be written as a linear combination of m and n.

That is, d is the g.c.d. of mand n iff m=kd for some k>=0, n=ld for some l>=0, and d=am+bn for
some integers (possibly negative!) a and b. We'll prove this constructively by giving a program to
compute not only the g.c.d. d of m and n, but also the coefficients aand b such that d=am+bn. Here's
the specification:

if m,n>=0, then ggcd (m, n) evaluates to (d, a, b) such that d divides m, d divides n, and
d=am+bn; consequently, d is the g.c.d. of m and n.

Concatenation Page 125 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

And here’s the code to compute it:

fun ggcd (0, n) = (n, 0, 1)
 | ggcd (m, 0) = (m, 1, 0)
 | ggcd (m, n) =
 if m>n then
 let
 val (d, a, b) = ggcd (m mod n, n)
 in
 (d, a, b - a*(m div n))
 end
 else
 let
 val (d, a, b) = ggcd (m, n mod m)
 in
 (d, a - b*(n div m), b)
 end

We may easily check that this code satisfies the specification by induction on the product mn. If
mn=0, then either m or n is 0, in which case the result follows immediately. Otherwise assume the
result for smaller products, and show it for mn>0. Suppose m>n; the other case is handled
analogously. Inductively we obtain d, a, and b such that d is the g.c.d. of m mod n and n, and hence is
the g.c.d. of mand n, and d=a(m mod n) + bn. Since m mod n = m - (m div n)n, it follows that d = am
+ (b-a(m div n))n, from which the result follows.

Now we can write a self-checking g.c.d. as follows:

exception GCD_ERROR

fun checked_gcd (m, n) =
 let
 val (d, a, b) = ggcd (m, n)
 in
 if m mod d = 0 andalso n mod d = 0 andalso d =
a*m+b*n then
 d
 else
 raise GCD_ERROR
 end

This algorithm takes no more time (asymptotically) than the original, and, moreover, ensures that the
result is correct. This illustrates the power of the interplay between mathematical reasoning methods
such as induction and number theory and programming methods such as bulletproofing to achieve
robust, reliable, and, what is more important, elegant programs.

Sample Code for This Chapter

[Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 126 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page 127 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Structural Induction [http://www.cs.cmu.edu/People/rwh/introsml/techniques/structur.htm]Page 23

Structural Induction
[Back] [Home] [Up] [Next]

Last edit: Tuesday, May 05, 1998 12:24 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

The importance of induction and recursion are not limited to functions defined over the integers.
Rather, the familiar concept of mathematical induction over the natural numbers is an instance of the
more general notion of structural induction over values of an inductively-defined type. Rather than
develop a general treatment of inductively-defined types, we will rely on a few examples to illustrate
the point.

Let's begin by considering the natural numbers as an inductively defined type. The set of natural
numbers, N, may be thought of as the smallest set containing 0 and closed under the formation of
successors. In other words, n is an element of N iff either n=0 or n=m+1 for some m in N. Still
another way of saying it is to define N by the following clauses:

1. 0 is an element of N.
2. If m is an element of N, then so is m+1.
3. Nothing else is an element of N.

(The third clause is sometimes called the extremal clause; it ensures that we are talking about N and
not just some superset of it.) All of these definitions are equivalent ways of saying the same thing.

Since N is inductively defined, we may prove properties of the natural numbers by structural
induction, which in this case is just ordinary mathematical induction. Specifically, to prove that a
property P(n) holds of every n in N, it suffices to demonstrate the following facts:

1. Show that P(0) holds.
2. Assuming that P(m) holds, show that P(m+1) holds.

The pattern of reasoning follows exactly the structure of the inductive definition --- the base case is
handled outright, and the inductive step is handled by assuming the property for the predecessor and
show that it holds for the numbers.

The principal of structural induction also licenses the definition of functions by structural recursion.
To define a function f with domain N, it suffices to proceed as follows:

1. Give the value of f(0).
2. Give the value of f(m+1) in terms of the value of f(m).

Given this information, there is a unique function f with domain N satisfying these requirements.

Concatenation Page 128 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Specifically, we may show by induction on n>=0 that the value of f is uniquely determined on all
values m<=n. If n=0, this is obvious since f(0) is defined by clause (1). If n=m+1, then by
induction the value of f is determined for all values k<=m. But the value of f at n is determined as a
function of f(m), and hence is uniquely determined. Thus f is uniquely determined for all values of n
in N, as was to be shown.

The natural numbers, viewed as an inductively-defined type, may be represented in ML using a
datatype declaration, as follows:

datatype nat = Zero | Succ of nat

The constructors correspond one-for-one with the clauses of the inductive definition. The extremal
clause is implicit in the datatype declaration since the given constructors are assumed to be all the
ways of building values of type nat . This assumption forms the basis for exhaustiveness checking
for clausal function definitions.

(You may object that this definition of the type nat amounts to a unary (base 1) representation of
natural numbers, an unnatural and space-wasting representation. This is indeed true; in practice the
natural numbers are represented as non-negative machine integers to avoid excessive overhead. Note,
however, that this representation places a fixed upper bound on the size of numbers, whereas the
unary representation does not. Hybrid representations that enjoy the benefits of both are, of course,
possible and occasionally used when enormous numbers are required.)

Functions defined by structural recursion are naturally represented by clausal function definitions, as
in the following example:

fun double Zero = Zero
 | double (Succ n) = Succ (Succ (double n))

fun exp Zero = Succ(Zero)
 | exp (Succ n) = double (exp n)

The type checker ensures that we have covered all cases, but it does not ensure that the pattern of
structural recursion is strictly followed --- we may accidentally define f(m+1) in terms of itself or
some f(k) where k>m, breaking the pattern. The reason this is admitted is that the ML compiler
cannot always follow our reasoning: we may have a clever algorithm in mind that isn't easily
expressed by a simple structural induction. To avoid restricting the programmer, the language
assumes the best and allows any form of definition.

Using the principle of structure induction for the natural numbers, we may prove properties of
functions defined over the naturals. For example, we may easily prove by structural induction over
the type nat that for every n in N, exp n evaluates to a positive number. (In previous chapters we
carried out proofs of more interesting program properties.)

Generalizing a bit, we may think of the type ’a list as inductively defined by the following
clauses:

1. nil is a value of type ’a list
2. If h is a value of type 'a, and t is a value of type ’a list , then h:: t is a value of type ’a

Concatenation Page 129 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

list .
3. Nothing else is a value of type ’a list .

This definition licenses the following principle of structural induction over lists. To prove that a
property P holds of all lists l, it suffices to proceed as follows:

1. Show that P holds for nil .
2. Show that P holds fpr h:: t, assuming that P holds for t.

Similarly, we may define functions by structural recursion over lists as follows:

1. Define the function for nil .
2. Define the function for h:: t in terms of its value for t.

The clauses of the inductive definition of lists correspond to the following (built-in) datatype
declaration in ML:

datatype ’a list = nil | :: of ’a * ’a list

(We are neglecting the fact that :: is regarded as an infix operator.)

The principle of structural recursion may be applied to define the reverse function as follows:

fun reverse nil = nil
 | reverse (h::t) = reverse t @ [h]

There is one clause for each constructor, and the value of reverse for h:: t is defined in terms of its
value for t. (We have ignored questions of time and space efficiency to avoid obscuring the induction
principle underlying the definition of reverse .)

Using the principle of structural induction over lists, we may prove that reverse l evaluates to the
reversal of l. First, we show that reverse nil yields nil , as indeed it does and ought to. Second,
we assume that reverse t yields the reversal of t, and argue that reverse (h:: t) yields the
reversal of h:: t, as indeed it does since it returns reverse t @ [h] .

Generalizing even further, we can introduce new inductively-defined types such as 2-3 trees in which
interior nodes are either binary (have two children) or ternary (have three children). Here's a
definition of 2-3 trees in ML:

datatype ’a two_three_tree =
 Empty |
 Binary of 'a * 'a two_three_tree * 'a two_three_tree |
 Ternary of 'a * 'a two_three_tree * 'a two_three_tree *
'a two_three_tree

How might one define the "size" of a value of this type? Your first thought should be to write down a
template like the following:

fun size Empty = ???

Concatenation Page 130 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 | size (Binary (_, t1, t2)) = ???
 | size (Ternary (_, t1, t2, t3)) = ???

We have one clause per constructor, and will fill in the ellided expressions to complete the
definition. In many cases (including this one) the function is defined by structural recursion. Here's
the complete definition:

fun size Empty = 0
 | size (Binary (_, t1, t2)) = 1 + size t1 + size t2
 | size (Ternary (_, t1, t2, t3)) = 1 + size t1 + size t2
+ size t3

Obviously this function computes the number of nodes in the tree, as you can readily verify by
structural induction over the type 'a two_three_tree .

Does this pattern apply to every datatype declaration? Yes and no. No matter what the form of the
declaration it always makes sense to define a function over it by a clausal function definition with one
clause per constructor. Such a definition is guaranteed to be exhaustive (cover all cases), and serves
as a valuable guide to structuring your code. (It is especially valuable if you change the datatype
declaration, because then the compiler will inform you of what clauses need to be added or removed
from functions defined over that type in order to restore it to a sensible definition.) The slogan is:

To define functions over a datatype, use a clausal definition with one clause per constructor

The catch is that not every datatype declaration supports a principle of structural induction because it
is not always clear what constitutes the predecessor(s) of a constructed value. For example, the
declaration

datatype D = Int of int | Fun of D->D

is problematic because a value of the form Fun f is not constructed directly from another value of
type D, and hence it is not clear what to regard as its predecessor. In practice this sort of definition
comes up only rarely; in most cases datatypes are naturally viewed as inductively defined.

It is interesting to observe that the pattern of structural recursion may be directly codified in ML as a
higher-order function. Specifically, we may associate with each inductively-defined type a higher-
order function that takes as arguments values that determine the base case(s) and step case(s) of the
definition, and defines a function by structural induction based on these arguments. An example will
illustrate the point. The pattern of structural induction over the type nat may be codified by the
following function:

fun nat_recursion base step =
 let
 fun loop Zero = base
 | loop (Succ n) = step (loop n)
 in
 loop
 end

This function has the following type

Concatenation Page 131 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

’a -> (’a -> ’a) -> nat -> ’a

Given the first two arguments, nat_recursion yields a function of type nat -> ’a whose
behavior is determined at the base case by the first argument and at the inductive step by the second.
Here's an example of the use of nat_recursion to define the exponential function:

val double = nat_recursion Zero (fn result => Succ (Succ
result))
val exp = nat_recursion (Succ Zero) double

Note well the pattern! The arguments to nat_recursion are

1. The value for Zero .
2. The value for Succ n defined in terms of its value for n.

Similarly, the pattern of list recursion may be captured by the following functional:

fun list_recursion base step =
 let
 fun loop nil = base
 | loop (h::t) = step (h, loop t)
 in
 loop
 end

The type of the function list_recursion is

'a -> ('b * 'a -> 'a) -> 'b list -> 'a

It may be instantiated to define the reverse function as follows:

val reverse = list_recursion nil (fn (h, t) => t @ [h])

Finally, the principle of structural recursion for values of type 'a two_three_tree is given as
follows:

fun two_three_recursion base binary_step ternary_step =
 let
 fun loop Empty = base
 | loop (Binary (v, t1, t2)) =
 binary_step (v, loop t1, loop t2)
 | loop (Ternary (v, t1, t2, t3)) =
 ternary_step (v, loop t1, loop t2, loop t3)

Notice that we have two inductive steps, one for each form of node. The type of
two_three_recursion is

'a -> ('b * 'a * 'a -> 'a) -> ('b * 'a * 'a * 'a -> 'a) ->
'b two_three_tree -> 'a

Concatenation Page 132 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

We may instantiate it to define the function size as follows:

val size =
 two_three_recursion 0
 (fn (_, s1, s2)) => 1+s1+s2)
 (fn (_, s1, s2, s3)) => 1+s1+s2+s3)

Summarizing, the principle of structural induction over a recursive datatype is naturally codified in
ML using pattern matching and higher-order functions. Whenever you're programming with a
datatype, you should use the techniques outlined in this chapter to structure your code.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 133 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Proof-Directed Debugging
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/pdd.htm]

Page
24

Proof-Directed Debugging
[Back] [Home] [Up] [Next]

Last edit: Thursday, June 25, 1998 02:57 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

It is difficult to write a program that works well. A significant part of the problem is to state precisely
what it means for a program to work correctly. What assumptions do we make about the way in
which it is invoked? What guarantees does it make about its results? How much time and space does
it require? Answers to these questions are called specifications --- descriptions of the expected
behavior of a program. Checking that a particular program satisfies a given specification is called
verification. There are many forms of specification and many techniques for verification of
programs. One form of specification with which you are by now very familiar is a type specification;
verification of a type specification is called type checking. We've seen that type specification and
type checking are useful tools for helping us to get programs right. Another form of specification is
an asymptotic time and space bound on a procedure, expressed as a function of the argument to the
procedure. For example, we may state that the function sort : int list -> int list
takes time T(n) = O(n lg n) and space S(n) = O(n) for an input of size n. Verification of a complexity
bound is often a tricky business. Typically we define a recurrence relation governing the time or
space complexity of the program, then solve the recurrence using asymptotic methods to obtain the
result.

Type specifications and complexity specifications are useful tools, but it is important to keep in mind
that neither says very much about whether the code works properly. We might define an incorrect
sort routine (say, one that always returns its input untouched), verify that its type is int list ->
int list , and check that it runs in time O(n lg n), yet the code doesn't sort its input, despite its
name! Clearly more refined forms of specification are needed to state precisely the expected
behavior of a program, and some methods are needed to verify that a program satisfies a given
specification. We've explored such forms of specification and verification earlier in these notes, for
example when we checked the correctness of various forms of the integer exponential function. In
this chapter we'll put these ideas to work to help us to devise a correct version of the regular
expression matcher sketched in the Overview, correcting a subtle error that may not be immediately
apparent from inspecting or even testing the code. The goal of this chapter is to demonstrate the use
of specification and verification to discover and correct an error in a program through a technique that
we call proof-directed debugging. We first devise a precise specification of the regular expression
matcher, a difficult problem in itself, then attempt to verify that the matching program satisfies this
specification. The attempt to carry out a proof breaks down, and suggests a counterexample to the
specification. We then consider various methods of handling the problem, ultimately settling on a
change of specification rather than a change of implementation.

Let us begin by devising a specification for the regular expression matcher. As a first cut we write
down a type specification. We seek to define a function match of type regexp -> string ->

Concatenation Page 134 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

bool that determines whether or not a given string matches a given regular expression. More
precisely, we wish to satisfy the following specification:

For every regular expression r and every string s, match r s terminates, and evaluates
to true iff s in L(r).

Recall that the language of a regular expresson r is a set of string L(r) defined as follows:

L(0) = 0

L(1) = 1

L(a) = a

L(r1r2) = L(r1) L(r2)

L(r1+r 2) = L(r1) + L(r2)

L(r*) = L(0) + L(r) + L(rr) + L(rrr) + ...

where 0 = {}, 1 = {""}, a= {"a"}, L 1 L2 = { s1s2 | s1 in L1 and s2 in L2 }, and L1+L2 = { s | s in L1 or

s in L2 }. The language L(r*) can be characterized as the smallest language L such that L=1 + L(r)

L. For if s in L(r*) as defined above, then s in L(ri) for some i>=0 . We may show by induction on i

that s in 1+L(r)L. If i=0 , then s="" in 1, and if i>0 , then s=tu with t in L(r) and u in L(ri-1). By
induction u in L, and hence s in 1+L(r)L and hence s in L. Conversely, if s in L, then either s in 1, in
which case s in L(r*), or s=tu with t in L(r) and u in L. Inductively u in L(r*) and hence s in L(r)L
(r*) and hence s in L.

We saw in the Overview that a natural way to define the procedure match is to use a technique
called continuation passing. We defined an auxiliary function match_is with the type regexp -
> char list -> (char list -> bool) -> bool that takes a regular expression, a list
of characters (essentially a string, but in a form suitable for incremental processing), and a
continuation, and yields a boolean. The idea is that match_is takes a regular expression r, a
character list cs, and a continuation k, and determines whether or not some initial segment of cs
matches r, passing the remaining characters cs’ to k in the case that there is such an initial segment,
and yields false otherwise. Put more precisely,

For every regular expression r, character list cs, and continuation k, if cs=cs’@cs’’ with
cs’ in L(r) and k cs’’ evaluating to true, then match_is r cs k evaluates true; otherwise,
match_is r cs k evaluates to false.

Unfortunately, this specification is too strong to ever be satisfied by any implementation of
match_is ! Can you see why? The difficulty is that if k is not guaranteed to terminate for all
inputs, then there is no way that match_is can behave as required. If there is no input on which k
terminates, the specification requires that match_is return false. It should be intuitively clear that we
can never implement such a function. Formally, we can reduce the halting problem to the matching
problem so defined, which suffices to show that no such match_is procedure exists. Instead, we

Concatenation Page 135 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

must restrict attention to total continuations, those that terminate for all inputs. This leads to the
following revised specification:

For every regular expression r, character list cs, and total continuation k, if cs=cs’@cs’’
with cs’ in L(r) and k cs’’ evaluating to true, then match_is r cs k evaluates to true;
otherwise, match_is r cs k evaluates to false.

Observe that the condition "If cs=cs’@cs’ with ..., then ..." contains an implicit existential
quantification. Written out in full, we might say "If there exists cs’ and cs’’ such that cs = cs’@cs’’
with ..., then ...". This is an important observation because it makes clear that we must search for a
suitable splitting of cs into two parts such that the first part is in L(r) and the second is accepted by k.
There may, in general, be many ways to partition the input to as to satisfy both of these requirements;
we need only find one such way. Note, however, that if cs = cs’ @ cs’’ with cs’ in L(r) but k cs’’
yielding false, we must reject this partitioning and search for another. In other words we cannot
simply consider any partitioning whose initial segment matches r; we can consider only those that
also induce k to accept the corresponding final segment.

Suppose for the moment that match_is satisfies this specification. Does it follow that match
satisfies the original specification? Recall that match is defined as follows:

fun match r s =
 match_is r (String.explode s) (fn nil => true | false)

Notice that the initial continuation is indeed total, and that it yields true (accepts) iff it is applied to
the null string. Therefore, if match_is satisfies its specification, then match satisfies the
following property obtained by plugging in the initial continuation:

For every regular expression r and character list cs, if cs in L(r), then match r cs
evaluates to true, and otherwise match r cs evaluates to false.

This is precisely the property that we desire for match . Thus match is correct (satisfies its
specification) if match_is is correct (satisfies its specification).

So far so good. But does match_is satisfy its specification? If so, we are done. How might we
check this? Recall the definition of match_is given in the overview:

fun match_is Zero _ k = false
 | match_is One cs k = k cs
 | match_is (Char c) (d::cs) k = if c=d then k cs else
false
 | match_is (Times (r1, r2)) cs k =
 match_is r1 cs (fn cs' => match_is r2 cs' k)
 | match_is (Plus (r1, r2)) cs k =
 match_is r1 cs k orelse match_is r2 cs k
 | match_is (Star r) cs k =
 k cs orelse match_is r cs (fn cs' => match_is (Star
r) cs' k)

Since match_is is defined by a recursive analysis of the regular expression r, it is natural to
proceed by induction on the structure of r. That is, we treat the specification as a conjecture about

Concatenation Page 136 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

match_is , and attempt to prove it by structural induction on r.

We first consider the three base cases. Suppose that r is 0. Then no string is in L(r), so match_is
must return false, which indeed it does. Suppose that r is 1. Since the null string is an initial segment
of every string, and the null string is in L(1), we must yield true iff k cs yields true, and false
otherwise. Again, this is precisely how match_is is defined. Suppose that r is a. Then to succeed
cs must have the form a cs’ with k cs’ evaluating to true; otherwise we must fail. The code for
match_is checks that cs has the required form and, if so, passes cs’ to k to determine the outcome,
and otherwise yields false. Thus match_is behaves correctly for each of the three base cases.

We now consider the three inductive steps. For r=r 1+r 2, we observe that some initial segment of cs

matches r and causes k to accept the corresponding final segment iff either some initial segment
matches r1 and drives k to accept or some initial segment matches r2 and drives k to accept. By

induction match_is works as specified for r1 and r2, which is sufficient to justify the correctness of

match_is for r=r 1+r 2. For r=r 1r2, the proof is slightly more complicated. By induction

match_is behaves according to the specification if it is applied to either r1 or r2, provided that the

continuation argument is total. Note that the continuation k' given by (fn cs’ => match_is
r2 cs’ k) is total, since by induction the inner recursive call to match_is always terminates.
Suppose that there exists a partitioning cs=cs’@cs’’ with cs’ in L(r)and k cs’’ evaluating to true.
Then cs’=cs'1cs’2 with cs’1 in L(r1) and cs’2 in L(r2), by definition of L(r1r2). Consequently,

match_is r2 cs’2cs’’ k evaluates to true, and hence match_is r1 cs'1cs’2cs’’ k’ evaluates to true, as

required. If, however, no such partitioning exists, then either no initial segment of cs matches r1, in

which case the outer recursive call yields false, as required, or for every initial segment matching r1,

no initial segment of the corresponding final segment matches r2, in which case the inner recursive

call yields false on every call, and hence the outer call yields false, as required, or else every pair of
successive initial segments of cs matching r1 and r2 successively results in k evaluating to false, in

which case the inner recursive call always yields false, and hence the continuation k’ always yields
false, and hence the outer recursive call yields false, as required. Be sure you understand the
reasoning involved here, it is quite tricky to get right!

We seem to be on track, with one more case to consider, r=r 1
* . This case would appear to be a

combination of the preceding two cases for alternation and concatenation, with a similar argument
sufficing to establish correctness. But there is a snag: the second recursive call to match_is leaves
the regular expression unchanged! Consequently we cannot apply the inductive hypothesis to
establish that it behaves correctly in this case, and the obvious proof attempt breaks down. (Write out
the argument to see where you get into trouble.) What to do? A moment's thought suggests that we
proceed by an inner induction on the length of the string, based on the theory that if some initial
segment of cs matches L(r), then either that initial segment is the null string (base case), or
cs=cs’@cs’’ with cs’ in L(r1) and cs’’ in L(r) (induction step). We then handle the base case directly,

and handle the inductive case by assuming that match_is behaves correctly for cs’’ and showing
that it behaves correctly for cs. But there is a flaw in this argument! The string cs’’ need not be
shorter than cs in the case that cs’ is the null string! In that case the inductive hypothesis does not
apply, and we are once again unable to complete the proof. But this time we can use the failure of the
proof to obtain a counterexample to the specification! For if r=1* , for example, then match_is r cs

Concatenation Page 137 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

k does not terminate! In general if r=r 1
* with "" in L(r 1), then match_is r cs k fails to terminate.

In other words, match_is does not satisfy the specification we have derived for it! Our conjecture
is false!

We have used the failure of an attempt to prove that match_is satisfies a reasonable specification
of its behavior to discover a bug in the code --- the matcher does not always terminate. What to do?
One approach is to explicitly check for failure to make progress when matching against an iterated
regular expression. This will work, but at the expense of cluttering the code and imposing additional
run-time overhead. You should write out a version of the matcher that works this way, and check that
it indeed satisfies the specification we've given above. An alternative is to observe that the proof of
correctness sketched above goes through, provided that the regular expression satisfies the condition
that no iterated regular expression matches the null string. That is, r* is admitted as a valid regular
expression only if "" is not in L(r). Call a regular expression satisfying this condition standard. As
an exercise check that the proof sketched above goes through under the additional assumption that r
is a standard regular expression.

Thus the matcher behaves correctly for all standard regular expressions. But what about those non-
standard ones? A simple observation is that every regular expression is equivalent to one in standard
form. That is, we never really need to consider non-standard regular expressions. Instead we can pre-
process the regular expression to put it into standard form, then call the matcher on the standardized
regular expression. This pre-processing is based on the following definitions. First, we define null(r)
to be the regular expression 1 if r accepts the null string, and the regular expression 0 if not. Then
we define nonnull(r) to be a regular expression r’ in standard form such that L(r’) = L(r) \ {""} --- that
is, r’ accepts the same strings as r, except for the null string. Thus for every regular expression r, we
have

L(r) = L(null(r)+nonnull(r)).

Moreover, the regular expression null(r)+nonnull(r) is in standard form.

Here is the definition of null:

null(0) = 0
null(1) = 1
null(a) = 0
null(r1+r 2) = null(r1) ++ null(r 2)

null(r1r2) = null(r1) ** null(r 2)

null(r*) = 1

where we define 0++1=1++0=1++1=1 and 0++0=0 and 0**1=1**0=0**0=0 and 1**1=1 .

Here is the definition of nonnull:

nonnull(0) = 0
nonnull(1) = 0
nonnull(a) = a
nonnull(r1+r 2) = nonnull(r1)+nonnull(r2)

Concatenation Page 138 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

nonnull(r1r2) = null(r1)nonnull(r2) + nonnull(r1)nonnull(r2)

nonnull(r*) = null(r) + nonnull(r)*

Check that the stated properties of these regular expressions indeed hold true, and use these equations
to define a pre-processor to put every regular expression into standard form.

This chapter is based on the paper entitled Proof-Directed Debugging, which is scheduled to appear
as a Functional Pearl article in the Journal of Functional Programming.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 139 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Infinite Sequences [http://www.cs.cmu.edu/People/rwh/introsml/techniques/hof.htm] Page 25

Infinite Sequences
[Back] [Home] [Up] [Next]

Last edit: Monday, May 04, 1998 03:28 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Higher-order functions --- those that take functions as arguments or return functions as results --- are
powerful tools for building programs. An interesting application of higher-order functions is to
implement infinite sequences of values as (total) functions from the natural numbers (non-negative
integers) to the type of values of the sequence. We will develop a small package of operations for
creating and manipulating sequences, all of which are higher-order functions since they take
sequences (functions!) as arguments and/or return them as results. A natural way to define many
sequences is by recursion, or self-reference. Since sequences are functions, we may use recursive
function definitions to define such sequences. Alternatively, we may think of such a sequence as
arising from a "loopback" or "feedback" construct. We will explore both approaches.

Sequences may be used to simulate digital circuits by thinking of a "wire" as a sequence of bits
developing over time. The ith value of the sequence corresponds to the signal on the wire at time i.
For simplicity we will assume a perfect waveform: the signal is always either high or low (or is
undefined); we will not attempt to model electronic effects such as attenuation or noise.
Combinational logic elements (such as and gates or inverters) are operations on wires: they take in
one or more wires as input and yield one or more wires as results. Digital logic elements (such as
flip-flops) are obtained from combinational logic elements by feedback, or recursion --- a flip-flop is
a recursively-defined wire!

Let us begin by developing a sequence package. Here is a suitable signature defining the type of
sequences:

signature SEQUENCE = sig

 type 'a seq = int -> 'a

 val constantly : 'a -> 'a seq (* constant
sequence *)
 val alternately : 'a * 'a -> 'a seq (*
alternating values *)
 val insert : 'a * 'a seq -> 'a seq (* insert an
element at the front *)

 val map : ('a -> 'b) -> 'a seq -> 'b seq

 val zip : 'a seq * 'b seq -> ('a * 'b) seq
 val unzip : ('a * 'b) seq -> 'a seq * 'b seq
 val merge : ('a * 'a) seq -> 'a seq (* fair

Concatenation Page 140 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

merge *)

 val stretch : int -> 'a seq -> 'a seq
 val shrink : int -> 'a seq -> 'a seq

 val take : int -> 'a seq -> 'a list
 val drop : int -> 'a seq -> 'a seq
 val shift : 'a seq -> 'a seq

 val loopback : ('a seq -> 'a seq) -> 'a seq

end

Observe that we expose the representation of sequences as functions. This is done to simplify the
definition of recursive sequences as recursive functions. Alternatively we could have hidden the
representation type, at the expense of making it a bit more awkward to define recursive sequences. In
the absence of this exposure of representation, recursive sequences may only be built using the
loopback operation which constructs a recursive sequence by "looping back" the output of a
sequence transformer to its input. Most of the other operations of the signature are adaptations of
familiar operations on lists. Two exceptions to this rule are the functions stretch and shrink
that dilate and contract the sequence by a given time parameter --- if a sequence is expanded by k, its
value at i is the value of the original sequence at i/k, and dually for shrinking.

Here's an implementation of sequences as functions.

structure Sequence :> SEQUENCE = struct

 type 'a seq = int -> 'a

 fun constantly c n = c
 fun alternately (c,d) n = if n mod 2 = 0 then c else d
 fun insert (x, s) 0 = x
 | insert (x, s) n = s (n-1)

 fun map f s = f o s

 fun zip (s1, s2) n = (s1 n, s2 n)
 fun unzip (s : ('a * 'b) seq) = (map #1 s, map #2 s)
 fun merge (s1, s2) n =
 (if n mod 2 = 0 then s1 else s2) (n div 2)

 fun stretch k s n = s (n div k)
 fun shrink k s n = s (n * k)

 fun drop k s n = s (n+k)
 fun shift s = drop 1 s
 fun take 0 _ = nil
 | take n s = s 0 :: take (n-1) (shift s)

 fun loopback loop n = loop (loopback loop) n

end

Concatenation Page 141 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Most of this implementation is entirely straightforward, given the ease with which we may
manipulate higher-order functions in ML. The only tricky function is loopback , which must
arrange that the output of the function loop is "looped back" to its input. This is achieved by a
simple recursive definition of a sequence whose value at n is the value at n of the sequence resulting
from applying the loop to this very sequence.

The sensibility of this definition of loopback relies on two separate ideas. First, notice that we
may not simplify the definition of loopback as follows:

fun loopback loop = loop (loopback loop) (* bad
definition *)

The reason is that any application of loopback will immediately loop forever! In contrast, the
original definition is arranged so that application of loopback immediately returns a function. This
may be made more apparent by writing it in the following form, which is entirely equivalent to the
definition given above:

fun loopback loop = fn n => loop (loopback loop) n

This format makes it clear that loopback immediately returns a function when applied to a loop
functional.

Second, for an application of loopback to a loop to make sense, it must be the case that the loop
returns a sequence without "touching" the argument sequence (i.e., without applying the argument to
a natural number). Otherwise accessing the sequence resulting from an application of loopback
would immediately loop forever. Some examples will help to illustrate the point.

First, let's build a few sequences without using the loopback function, just to get familiar with
using sequences:

val evens : int seq = fn n => 2*n
val odds : int seq = fn n => 2*n+1
val nats : int seq = merge (evens, odds)

fun fibs n =
 (insert (1, insert (1, map (op +) (zip (drop 1 fibs,
fibs)))))(n)

We may "inspect" the sequence using take and drop , as follows:

take 10 nats (* [0,1,2,3,4,5,6,7,8,9] *)
take 5 (drop 5 nats) (* [5,6,7,8,9] *)
take 5 fibs (* [1,1,2,3,5] *)

Now let’s consider an alternative definition of fibs that uses the loopback operation:

fun fibs_loop s = insert (1, insert (1, map (op +) (zip
(drop 1 s, s))))
val fibs = loopback fibs_loop;

Concatenation Page 142 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

The definition of fibs_loop is exactly like the original definition of fibs , except that the
reference to fibs itself is replaced by a reference to the argument s . Notice that the application of
fibs_loop to an argument s does not inspect the argument s !

One way to understand loopback is that it solves a system of equations for an unknown sequence. In
the case of the second definition of fibs, we are solving the following system of equations for f:

f 0 = 1
f 1 = 1
f (n+2) = f (n+1) + f (n)

These equations are derived by inspecting the definitions of insert , map, zip , and drop given
earlier. It is obvious that the solution is the Fibonacci sequence; this is precisely the sequence
obtained by applying loopback to fibs_loop .

Here's an example of a loop that, when looped back, yields an undefined sequence --- any attempt to
access it results in an infinite loop:

fun bad_loop s n = s n + 1
val bad = loopback bad_loop
val _ = bad 0 (* infinite loop!
*)

In this example we are, in effect, trying to solve the equation s n = s n + 1 for s, which has no
solution (except the totally undefined sequence). The problem is that the "next" element of the output
is defined in terms of the next element itself, rather than in terms of "previous" elements.
Consequently, no solution exists.

With these ideas in mind, we may apply the sequence package to build an implementation of digital
circuits. Let's start with wires, which are represented as sequences of levels:

datatype level = High | Low | Undef
type wire = level seq
type pair = (level * level) seq

val Zero : wire = constantly Low
val One : wire = constantly High

(* clock pulse with given duration of each pulse *)
fun clock (freq:int):wire = stretch freq (alternately (Low,
High))

We include the "undefined" level to account for propagation delays and settling times in circuit
elements.

Combinational logic elements (gates) may be defined as follows. We introduce an explicit unit time
propagation delay for each gate --- the output is undefined initially, and is then determined as a
function of its inputs. As we build up layers of circuit elements, it takes longer and longer
(proportional to the length of the longest path through the circuit) for the output to settle, exactly as in

Concatenation Page 143 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

"real life".

infixr **;
fun (f ** g) (x, y) = (f x, g y) (* apply two
functions in parallel *)

fun logical_and (Low, _) = Low (* hardware logical
and *)
 | logical_and (_, Low) = Low
 | logical_and (High, High) = High
 | logical_and _ = Undef

fun logical_not Undef = Undef
 | logical_not High = Low
 | logical_not Low = High

fun logical_nop l = l

val logical_nor =
 logical_and o (logical_not ** logical_and) (* a nor b
= not a and not b *)

type unary_gate = wire -> wire
type binary_gate = pair -> wire

fun gate f w 0 = Undef (* logic gate with
unit propagation delay *)
 | gate f w i = f (w (i-1))

val delay : unary_gate = gate logical_nop (* unit
delay *)
val inverter : unary_gate = gate logical_not
val nor_gate : binary_gate = gate logical_nor

It is a good exercise to build a one-bit adder out of these elements, then to string them together to
form an n-bit ripple-carry adder. Be sure to present the inputs to the adder with sufficient pulse
widths to ensure that the circuit has time to settle!

Combining these basic logic elements with recursive definitions allows us to define digital logic
elements such as the RS flip-flop. The propagation delay inherent in our definition of a gate is
fundamental to ensuring that the behavior of the flip-flop is well-defined! This is consistent with
"real life" --- flip-flop's depend on the existence of a hardware propagation delay for their proper
functioning. Note also that presentation of "illegal" inputs (such as setting both the R and the S leads
high results in metastable behavior of the flip-flop, here as in real life Finally, observe that the flip-
flop exhibits a momentary "glitch" in its output before settling, exactly as in the hardware case. (All
of these behaviors may be observed by using take and drop to inspect the values on the circuit.)

fun RS_ff (S : wire, R : wire) =
 let
 fun X n = nor_gate (zip (S, Y))(n)
 and Y n = nor_gate (zip (X, R))(n)
 in

Concatenation Page 144 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 Y
 end

(* generate a pulse of b's n wide, following by w *)
fun pulse b 0 w i = w i
 | pulse b n w 0 = b
 | pulse b n w i = pulse b (n-1) w (i-1)

val S = pulse Low 2 (pulse High 2 Zero);
val R = pulse Low 6 (pulse High 2 Zero);
val Q = RS_ff (S, R);
val _ = take 20 Q;
val X = RS_ff (S, S); (* unstable! *)
val _ = take 20 X;

It is a good exercise to derive a system of equations governing the RS flip-flop from the definition
we've given here, using the implementation of the sequence operations given above. Observe that the
delays arising from the combinational logic elements ensure that a solution exists by ensuring that the
"next" element of the output refers only the "previous" elements, and not the "current" element.

Finally, we consider a variant implementation of an RS flip-flop using the loopback operation:

fun loopback2 (f : wire * wire -> wire * wire) =
 unzip (loopback (zip o f o unzip))

fun RS_ff' (S : wire, R : wire) =
 let
 fun RS_loop (X, Y) =
 (nor_gate (zip (S, Y)), nor_gate (zip (X, R)))
 in
 loopback2 RS_loop
 end

Here we must define a "binary loopback" function to implement the flip-flop. This is achieved by
reducing binary loopback to unary loopback by composing with zip and unzip .

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 145 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Representation Invariants and Data Abstraction
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/repinv.htm]

Page
26

Representation Invariants and Data
Abstraction

[Back] [Home] [Up] [Next]

Last edit: Monday, May 04, 1998 03:29 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for This Chapter

An abstract data type (ADT) is a type equipped with a set of operations for manipulating values of
that type. An ADT is implemented by providing a representation type for the values of the ADT and
an implementation for the operations defined on values of the representation type. What makes an
ADT abstract is that the representation type is hidden from clients of the ADT. Consequently, the
only operations that may be performed on a value of the ADT are the given ones. This ensures that
the representation may be changed without affecting the behavior of the client --- since the
representation is hidden from it, the client cannot depend on it. This also facilitates the
implementation of efficient data structures by imposing a condition, called a representation invariant,
on the representation that is preserved by the operations of the type. Each operation that takes a value
of the ADT as argument may assume that the representation invariant holds. In compensation each
operation that yields a value of the ADT as result must guarantee that the representation invariant
holds of it. If the operations of the ADT preserve the representation invariant, then it must truly be
invariant --- no other code in the system could possibly disrupt it. Put another way, any violation of
the representation invariant may be localized to the implementation of one of the operations. This
significantly reduces the time required to find an error in a program.

To make these ideas concrete we will consider the abstract data type of dictionaries. A dictionary is
a mapping from keys to values. For simplicity we take keys to be strings, but it is possible to define a
dictionary for any ordered type; the values associated with keys are completely arbitrary. Viewed as
an ADT, a dictionary is a type ’a dict of dictionaries mapping strings to values of type ’a
together with empty , insert , and lookup operations that create a new dictionary, insert a value
with a given key, and retrieve the value associated with a key (if any). In short a dictionary is an
implementation of the following signature:

signature DICT = sig
 type key = string
 type 'a entry = key * 'a
 type 'a dict
 exception Lookup of key
 val empty : 'a dict
 val insert : 'a dict * 'a entry -> 'a dict
 val lookup : 'a dict * key -> 'a dict
end

Concatenation Page 146 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Notice that the type ’a dict is not specified in the signature, whereas the types key and ’a
entry are defined to be string and string * ’a , respectively.

A simple implementation of a dictionary is a binary search tree. A binary search tree is a binary tree
with values of an ordered type at the nodes arranged in such a way that for every node in the tree, the
value at that node is greater than the value at any node in the left child of that node, and smaller than
the value at any node in the right child. It follows immediately that no two nodes in a binary search
tree are labelled with the same value. The binary search tree property is an example of a
representation invariant on an underlying data structure. The underlying structure is a binary tree
with values at the nodes; the representation invariant isolates a set of structures satisfying some
additional, more stringent, conditions.

We may use a binary search tree to implement a dictionary as follows:

structure BinarySearchTree :> DICT = struct
 type key = string
 type 'a entry = key * 'a

 (* Rep invariant: 'a tree is a binary search tree *)
 datatype 'a tree = Empty | Node of 'a tree * 'a entry *
'a tree
 type 'a dict = 'a tree

 exception Lookup of key

 val empty = Empty

 fun insert (Empty, entry) = Node (Empty, entry, Empty)
 | insert (n as Node (l, e as (k,_), r), e' as (k',_)) =
 (case String.compare (k, k')
 of LESS => Node (insert (l, e'), e, r)
 | GREATER => Node (l, e, insert (r, e'))
 | EQUAL => n)

 fun lookup (Empty) k = raise (Lookup k)
 | lookup (Node (l, (k, v), r)) k' =
 (case String.compare (k, k')
 of EQUAL => v
 | LESS => lookup l k'
 | GREATER => lookup r k')

end

Notice that empty is defined to be a valid binary search tree, that insert yields a binary search tree
if its argument is one, and that lookup relies on its argument being a binary search tree (if not, it
might fail to find a key that in fact occurs in the tree!). The structure BinarySearchTree is
sealed with the signature DICT to ensure that the representation type is held abstract.

The difficulty with binary search trees is that they may become unbalanced. In particular if we insert
keys in ascending order, the representation is essentially just a list! The left child of each node is

Concatenation Page 147 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

empty; the right child is the rest of the dictionary. Consequently, it takes O(n) time in the worse case
to perform a lookup on a dictionary containing nelements. Such a tree is said to be unbalanced
because the children of a node have widely varying heights. Were it to be the case that the children
of every node had roughly equal height, then the lookup would take O(lg n) time, a considerable
improvement.

Can we do better? Many approaches have been suggested. One that we will consider here is an
instance of what is called a self-adjusting tree, called a red-black tree (the reason for the name will be
apparent shortly). The general idea of a self-adjusting tree is that operations on the tree may cause a
reorganization of its structure to ensure that some invariant is maintained. In our case we will arrange
things so that the tree is self-balancing, meaning that the children of any node have roughly the same
height. As we just remarked, this ensures that lookup is efficient.

How is this achieved? By imposing a clever representation invariant on the binary search tree, called
the red-black tree condition. A red-black tree is a binary search tree in which every node is colored
either red or black (with the empty tree being regarded as black) and such that the following
properties hold:

1. The children of a red node are black.
2. For any node in the tree, the number of black nodes on any two paths from that node to a leaf is

the same. This number is called the black height of the node.

These two conditions ensure that a red-black tree is a balanced binary search tree. Here's why. First,
observe that a red-black tree of black height h has at least 2h-1 nodes. We may prove this by
induction on the structure of the red-black tree. The empty tree has black-height 1 (since we consider
it to be black), which is at least 21-1, as required. Suppose we have a red node. The black height of
both children must be h, hence each has at most 2h-1 nodes, yielding a total of 2(2h-1)+1 = 2h+1-1

nodes, which is at least 2h-1. If, on the other hand, we have a black node, then the black height of
both children is h-1, and each have at most 2h-1-1 nodes, for a total of 2(2h-1-1)+1 = 2h-1 nodes.
Now, observe that a red-black tree of height h with n nodes has black height at most h/2, and hence
has at least 2h/2-1 nodes. Consequently, lg(n+1)>=h/2, so h <= 2lg(n+1). In other words, its height
is logarithmic in the number of nodes, which implies that the tree is height balanced.

To ensure logarithmic behavior, all we have to do is to maintain the red-black invariant. The empty
tree is a red-black tree, so the only question is how to perform an insert operation. First, we insert the
entry as usual for a binary search tree, with the fresh node starting out colored red. In doing so we do
not disturb the black height condition, but we might introduce a red-red violation, a situation in
which a red node has a red child. We then remove the red-red violation by propagating it upwards
towards the root by a constant-time transformation on the tree (one of several possibilities, which
we'll discuss shortly). These transformations either eliminate the red-red violation outright, or, in
logarithmic time, push the violation to the root where it is neatly resolved by recoloring the root black
(which preserves the black-height invariant!).

The violation is propagated upwards by one of four rotations. We will maintain the invariant that
there is at most one red-red violation in the tree. The insertion may or may not create such a
violation, and each propagation step will preserve this invariant. It follows that the parent of a red-
red violation must be black. Consequently, the situation must look like this. This diagram
represents four distinct situations, according to whether the uppermost red node is a left or right child

Concatenation Page 148 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

of the black node, and whether the red child of the red node is itself a left or right child. In each case
the red-red violation is propagated upwards by transforming it to look like this. Notice that by
making the uppermost node red we may be introducing a red-red violation further up the tree (since
the black node's parent might have been red), and that we are preserving the black-height invariant
since the great-grand-children of the black node in the original situation will appear as children of the
two black nodes in the re-organized situation. Notice as well that the binary search tree conditions
are also preserved by this transformation. As a limiting case if the red-red violation is propagated to
the root of the entire tree, we re-color the root black, which preserves the black-height condition, and
we are done re-balancing the tree.

Let's look in detail at two of the four cases of removing a red-red violation, those in which the
uppermost red node is the left child of the black node; the other two cases are handled symmetrically.
If the situation looks like this, we reorganize the tree to look like this. You should check that the
black-height and binary search tree invariants are preserved by this transformation. Similarly, if the
situation looks like this, then we reorganize the tree to look like this (precisely as before). Once
again, the black-height and binary search tree invariants are preserved by this transformation, and the
red-red violation is pushed further up the tree.

Here is the ML code to implement dictionaries using a red-black tree. Notice that the tree rotations
are neatly expressed using pattern matching.

structure RedBlackTree :> DICT = struct
 type key = string
 type 'a entry = string * 'a

 (* Representation invariant: binary search tree + red-
black conditions *)
 datatype 'a dict = Empty
 | Red of 'a entry * 'a dict * 'a dict
 | Black of 'a entry * 'a dict * 'a dict

 val empty = Empty

 exception Lookup of key

 fun lookup dict key =
 let
 fun lk (Empty) = raise (Lookup key)
 | lk (Red tree) = lk' tree
 | lk (Black tree) = lk' tree
 and lk' ((key1, datum1), left, right) =
 (case String.compare(key,key1)
 of EQUAL => datum1
 | LESS => lk left
 | GREATER => lk right)
 in
 lk dict
 end

 fun restoreLeft (Black (z, Red (y, Red (x, d1, d2), d3),
d4)) =

Concatenation Page 149 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 Red (y, Black (x, d1, d2), Black (z, d3, d4))
 | restoreLeft (Black (z, Red (x, d1, Red (y, d2, d3)),
d4)) =
 Red (y, Black (x, d1, d2), Black (z, d3, d4))
 | restoreLeft dict = dict

 fun restoreRight (Black (x, d1, Red (y, d2, Red (z, d3,
d4)))) =
 Red (y, Black (x, d1, d2), Black (z, d3, d4))
 | restoreRight (Black (x, d1, Red (z, Red (y, d2, d3),
d4))) =
 Red (y, Black (x, d1, d2), Black (z, d3, d4))
 | restoreRight dict = dict

 fun insert (dict, entry as (key, datum)) =
 let
 (* val ins : 'a dict -> 'a dict insert entry *)
 (* ins (Red _) may violate color invariant at
root *)
 (* ins (Black _) or ins (Empty) will be red/black
tree *)
 (* ins preserves black height *)
 fun ins (Empty) = Red (entry, Empty, Empty)
 | ins (Red (entry1 as (key1, datum1), left,
right)) =
 (case String.compare (key, key1)
 of EQUAL => Red (entry, left, right)
 | LESS => Red (entry1, ins left, right)
 | GREATER => Red (entry1, left, ins
right))
 | ins (Black (entry1 as (key1, datum1), left,
right)) =
 (case String.compare (key, key1)
 of EQUAL => Black (entry, left, right)
 | LESS => restoreLeft (Black (entry1, ins
left, right))
 | GREATER => restoreRight (Black (entry1,
left, ins right)))
 in
 case ins dict
 of Red (t as (_, Red _, _)) => Black t (* re-
color *)
 | Red (t as (_, _, Red _)) => Black t (* re-
color *)
 | dict => dict
 end

end

It is worthwhile to contemplate the role played by the red-black invariant in ensuring the correctness
of the implementation and the time complexity of the operations.

Concatenation Page 150 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Sample Code for This Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 151 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Persistent and Ephemeral Data Structures
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/perseph.htm]

Page
27

Persistent and Ephemeral Data Structures
[Back] [Home] [Up] [Next]

Last edit: Monday, May 04, 1998 03:29 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for This Chapter

This chapter is concerned with persistent and ephemeral abstract types. The distinction is best
explained in terms of the logical future of a value. Whenever a value of an abstract type is created it
may be subsequently acted upon by the operations of the type (and, since the type is abstract, by no
other operations). Each of these operations may yield (other) values of that abstract type, which may
themselves be handed off to further operations of the type. Ultimately a value of some other type,
say a string or an integer, is obtained as an observable outcome of the succession of operations on the
abstract value. The sequence of operations performed on a value of an abstract type constitutes a
logical future of that type --- a computation that starts with that value and ends with a value of some
observable type. We say that a type is ephemeral iff every value of that type has at most one logical
future, which is to say that it is handed off from one operation of the type to another until an
observable value is obtained from it. This is the normal case in familiar imperative programming
languages because in such languages the operations of an abstract type destructively modify the value
upon which they operate; its original state is irretrievably lost by the performance of an operation. It
is therefore inherent in the imperative programming model that a value have at most one logical
future. In contrast, values of an abstract type in functional languages such as ML may have many
different logical futures, precisely because the operations do not "destroy" the value upon which they
operate, but rather create fresh values of that type to yield as results. Such values are said to be
persistent because they persist after application of an operation of the type, and in fact may serve as
arguments to further operations of that type.

Some examples will help to clarify the distinction. The primitive list types of ML are persistent
because the performance of an operation such as cons'ing, appending, or reversing a list does not
destroy the original list. This leads naturally to the idea of multiple logical futures for a given value,
as illustrated by the following code sequence:

val l = [1,2,3] (* original list *)
val m1 = hd l (* first future of l *)
val n1 = rev m1
val m2 = l @ [4,5,6] (* second future of l *)

Notice that the original list value, [1,2,3] , has two distinct logical futures, one in which we
remove its head, then reverse the tail, and the other in which we append the list [4,5,6] to it. The
ability to easily handle multiple logical futures for a data structure is a tremendous source of
flexibility and expressive power, alleviating the need to perform tedious bookkeeping to manage
"versions" or "copies" of a data structure to be passed to different operations.

Concatenation Page 152 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

The prototypical ephemeral data structure in ML is the reference cell. Performing an assignment
operation on a reference cell changes it irrevocably; the original contents of the cell are lost, even if
we keep a handle on it.

val r = ref 0 (* original cell *)
val s = r
val _ = (!s = 1)
val x = !r (* 1! *)

Notice that the contents of (the cell bound to) r changes as a result of performing an assignment to
the underlying cell. There is only one future for this cell; a reference to its original binding does not
yield its original contents.

More elaborate forms of ephemeral data structures are certainly possible. For example, the following
declaration defines a type of lists whose tails are mutable. It is therefore a singly-linked list, one
whose predecessor relation may be changed dynamically by assignment:

datatype ’a mutable_list = Nil | Cons of ’a * ’a
mutable_list ref

Values of this type are ephemeral in the sense that some operations on values of this type are
destructive, and hence are irreversible (so to speak!). For example, here's an implementation of a
destructive reversal of a mutable list. Given a mutable list l, this function reverses the links in the
cell so that the elements occur in reverse order of their occurrence in l.

local
 fun ipr (Nil, a) = a
 | ipr (this as (Cons (_, r as ref next)), a) =
 ipr (next, (r := a; this))
in
 (* destructively reverse a list *)
 fun inplace_reverse l = ipr (l, Nil)
end

As you can see, the code is quite tricky to understand! The idea is the same as the iterative reverse
function for pure lists, except that we re-use the nodes of the original list, rather than generate new
ones, when moving elements onto the accumulator argument.

The distinction between ephemeral and persistent data structures is essentially the distinction between
functional (effect-free) and imperative (effect-ful) programming --- functional data structures are
persistent; imperative data structures are ephemeral. However, this characterization is oversimplified
in two respects. First, it is possible to implement a persistent data structure that exploits mutable
storage. Such a use of mutation is an example of what is called a benign effect because for all
practical purposes the data structure is "purely functional" (i.e., persistent), but is in fact implemented
using mutable storage. As we will see later the exploitation of benign effects is crucial for building
efficient implementations of persistent data structures. Second, it is possible for a persistent data type
to be used in such a way that persistence is not exploited --- rather, every value of the type has at most
one future in the program. Such a type is said to be single-threaded, reflecting the linear, as opposed
to branching, structure of the future uses of values of that type. The significance of a single-threaded

Concatenation Page 153 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

type is that it may as well have been implemented as an ephemeral data structure (e.g., by having
observable effects on values) without changing the behavior of the program.

Here is a signature of persistent queues:

signature QUEUE = sig
 type 'a queue
 exception Empty
 val empty : 'a queue
 val insert : 'a * 'a queue -> 'a queue
 val remove : 'a queue -> 'a * 'a queue
end

This signature describes a structure providing a representation type for queues, together with
operations to create an empty queue, insert an element onto the back of the queue, and to remove an
element from the front of the queue. It also provides an exception that is raised in response to an
attempt to remove an element from the empty queue. Notice that removing an element from a queue
yields both the element at the front of the queue, and the queue resulting from removing that
element. This is a direct reflection of the persistence of queues implemented by this signature; the
original queue remains available as an argument to further queue operations.

By a sequence of queue operations we shall mean a succession of uses of empty , insert , and
remove operations in such a way that the queue argument of one operation is obtained as a result of
the immediately preceding queue operation. Thus a sequence of queue operations represents a single-
threaded time-line in the life of a queue value. Here is an example of a sequence of queue operations:

val q0 : int queue = empty
val q1 = insert (1, q0)
val q2 = insert (2, q1)
val (h1, q3) = remove q2 (* h1 = 1, q3 = q1 *)
val (h2, q4) = remove q3 (* h2 = 2, q4 = q0 *)

By contrast the following operations do not form a single thread, but rather a branching development
of the queue’s lifetime:

val q0 : int queue = empty
val q1 = insert (1, q0)
val q2 = insert (2, q0) (* NB: q0, not q1! *)
val (h1, q3) = remove q1 (* h1 = 1, q3 = q0 *)
val (h2, q4) = remove q3 (* raise Empty *)
val (h2, q4) = remove q2 (* h2 = 2,, q4 = q0 *)

In the remainder of this chapter we will be concerned with single-threaded sequences of queue
operations.

How might we implement the signature QUEUE? The most obvious approach is to represent the
queue as a list with, say, the head element of the list representing the "back" (most recently enqueued
element) of the queue. With this representation enqueueing is a constant-time operation, but
dequeuing requires time proportional to the number of elements in the queue. Thus in the worst case
a sequence of n enqueue and dequeue operations will take time O(n2), which is clearly excessive. We

Concatenation Page 154 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

can make dequeue simpler, at the expense of enqueue, by regarding the head of the list as the "front"
of the queue, but the time bound for n operations remains the same in the worst case.

Can we do better? A well-known "trick" achieves an O(n) worst-case performance for any sequence
of n operations, which means that each operation takes O(1) steps if we amortize the cost over the
entire sequence. Notice that this is a worst-case bound for the sequence, yielding an amortized bound
for each operation of the sequence. This means that some operations may be relatively expensive,
but, in compensation, many operations will be cheap.

How is this achieved? By combining the two naive solutions sketched above. The idea is to
represent the queue by two lists, one for the back "half" consisting of recently inserted elements in the
order of arrival, and one for the front "half" consisting of soon-to-be-removed elements in reverse
order of arrival (i.e., in order of removal). We put "half" in quotes because we will not, in general,
maintain an even split of elements between the front and the back lists. Rather, we will arrange
things so that the following representation invariant holds true:

1. The elements of the queue listed in order of removal are the elements of the front
followed by the elements of the back in reverse order.

2. The front is empty only if the back is empty.

This invariant is maintained by using a "smart constructor" that creates a queue from two lists
representing the back and front parts of the queue. This constructor ensures that the representation
invariant holds by ensuring that condition (2) is always true of the resulting queue. The constructor
proceeds by a case analysis on the back and fron parts of the queue. If the front list is non-empty, or
both the front and back are empty, the resulting queue consists of the back and front parts as given. If
the front is empty and the back is non-empty, the queue constructor yields the queue consisting of an
empty back part and a front part equal to the reversal of the given back part. Observe that this is
sufficient to ensure that the representation invariant holds of the resulting queue in all cases. Observe
also that the smart constructor either runs in constant time, or in time proportional to the length of the
back part, according to whether the front part is empty or not.

Insertion of an element into a queue is achieved by cons'ing the element onto the back of the queue,
then calling the queue constructor to ensure that the result is in conformance with the representation
invariant. Thus an insert can either take constant time, or time proportional to the size of the back of
the queue, depending on whether the front part is empty. Removal of an element from a queue
requires a case analysis. If the front is empty, then by condition (2) the queue is empty, so we raise an
exception. If the front is non-empty, we simply return the head element together with the queue
created from the original back part and the front part with the head element removed. Here again the
time required is either constant or proportional to the size of the back of the queue, according to
whether the front part becomes empty after the removal. Notice that if an insertion or removal
requires a reversal of k elements, then the next k operations are constant-time. This is the
fundamental insight as to why we achieve O(n) time complexity over any sequence of n operations.
(We will give a more rigorous analysis shortly.)

Here's the implementation of this idea in ML:

structure Queue :> QUEUE = struct
 type 'a queue = 'a list * 'a list
 fun make_queue (q as (nil, nil)) = q

Concatenation Page 155 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 | make_queue (bs, nil) = (nil, rev bs)
 | make_queue (q as (bs, fs)) = q
 val empty = make_queue (nil, nil)
 fun insert (x, (back,front)) = make_queue (x::back,
front)
 exception Empty
 fun remove (_, nil) = raise Empty
 | remove (bs, f::fs) = (f, make_queue (bs, fs))
end

Notice that we call the "smart constructor" make_queue whenever we wish to return a queue to
ensure that the representation invariant holds. Consequently, some queue operations are more
expensive than others, according to whether or not the queue needs to be reorganized to satisfy the
representation invariant. However, each such reorganization makes a corresponding number of
subsequent queue operations "cheap" (constant-time), so the overall effort required evens out in the
end to constant-time per operation. More precisely, the running time of a sequence of n queue
operations is now O(n), rather than O(n2), as it was in the naive implementation. Consequently, each
operation takes O(1) (constant) time "on average", i.e., when the total effort is evenly apportioned
among each of the operations in the sequence. Note that this is a worst-case time bound for each
operation, amortized over the entire sequence, not an average-case time bound based on assumptions
about the distribution of the operations.

How can we prove this claim? First we given an informal argument, then we tighten it up with a
more rigorous analysis. We are to account for the total work performed by a sequence of n operations
by showing that any sequence of noperations can be executed in cn steps for some constant c.
Dividing by n, we obtain the result that each operations takes c steps when amortized over the entire
sequence. The key is to observe first that the work required to execute a sequence of queue
operations may be apportioned to the elements themselves, then that only a constant amount of work
is expended on each element. The "life" of a queue element may be divided into three stages: it's
arrival in the queue, it's transit time in the queue, and it's departure from the queue. In the worst case
each element passes through each of these stages (but may "die young", never participating in the
second or third stage). Arrival requires constant time to add the element to the back of the queue.
Transit consists of being moved from the back to the front by a reversal, which takes constant time
per element on the back. Departure takes constant time to pattern match and extract the element.
Thus at worst we require three steps per element to account for the entire effort expended to perform
a sequence of queue operations. This is in fact a conservative upper bound in the sense that we may
need less than 3n steps for the sequence, but asymptotically the bound is optimal --- we cannot do
better than constant time per operation! (You might reasonably wonder whether there is a worst-case,
non-amortized constant-time implementation of persistent queues. The answer is "yes", but the code
is far more complicated than the simple implementation we are sketching here.)

This argument can be made rigorous as follows. The general idea is to introduce the notion of a
charge scheme that provides an upper bound on the actual cost of executing a sequence of
operations. An upper bound on the charge will then provide an upper bound on the actual cost. Let T
(n) be the cumulative time required (in the worst case) to execute a sequence of n queue operations.
We will introduce a charge function, C(n), representing the cumulative charge for executing a
sequence of n operations and show that T(n)<=C(n)=O(n). It is convenient to express this in terms
of a function R(n) = C(n)-T(n) representing the cumulative residual, or overcharge, which is the
amount that the charge for n operations exceeds the actual cost of executing them. We will arrange
things so that R(n)>=0 and that C(n)=O(n), from which the result follows immediately.

Concatenation Page 156 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Down to specifics. By charging 2 for each insert operation and 1 for each remove, it follows that C
(n)<=2n for any sequence of n inserts and removes. Thus C(n)=O(n). After any sequence of n>=0
operations have been performed, the queue contains 0<=b<=n elements on the back "half" and
0<=f<=n elements on the front "half". We claim that for every n>=0, R(n)=b. We prove this by
induction on n>=0. The condition clearly holds after performing 0 operations, since T(0)=0, C(0)=0,
and hence R(0)=C(0)-T(0)=0. Consider the n+1st operation. If it is an insert, and f>0, T(n+1)=T(n)
+1, C(n+1)=C(n)+2, and hence R(n+1)=R(n)+1=b+1. This is correct because an insert operation
adds one element to the back of the queue. If, on the other hand, f=0, then T(n+1)=T(n)+b+2
(charging one for the cons and one for creating the new pair of lists), C(n+1)=C(n)+2, so R(n+1)=R
(n)+2-b-2=b+2-b-2=0. This is correct because the back is now empty; we have used the residual
overcharge to pay for the cost of the reversal. If the n+1st operation is a remove, and f>0, then T
(n+1)=T(n)+1 and C(n+1)=C(n)+1 and hence R(n+1)=R(n)=b. This is correct because the remove
doesn't disturb the back in this case. Finally, if we are performing a remove with f=0, then T(n+1)=T
(n)+b+1, C(n+1)=C(n)+1, and hence R(n+1)=R(n)-b=b-b=0. Here again we use of the residual
overcharge to pay for the reversal of the back to the front. The result follows immediately since R(n)
=b>=0 , and hence C(n)>=T(n).

It is instructive to examine where this solution breaks down in the multi-threaded case (i.e., where
persistence is fully exploited). Suppose that we perform a sequence of n insert operations on the
empty queue, resulting in a queue with n elements on the back and none on the front. Call this queue
q. Let us suppose that we have n independent "futures" for q, each of which removes an element
from it, for a total of 2n operations. How much time do these 2n operations take? Since each
independent future must reverse all n elements onto the front of the queue before performing the
removal, the entire collection of 2n operations takes n+n2 steps, or O(n) steps per operation, breaking
the amortized constant-time bound just derived for a single-threaded sequence of queue operations.
Can we recover a constant-time amortized cost in the persistent case? We can, provided that we
share the cost of the reversal among all futures of q --- as soon as one performs the reversal, they all
enjoy the benefit of its having been done. This may be achieved by using a benign side effect to
cache the result of the reversal in a reference cell that is shared among all uses of the queue. We will
return to this once we introduce memoization and lazy evaluation.

Sample Code for This Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 157 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Options, Exceptions, and Failure Continuations
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/optexccont.htm]

Page
28

Options, Exceptions, and Failure Continuations
[Back] [Home] [Up] [Next]

Last edit: Monday, May 04, 1998 03:29 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Code for This Chapter

In this chapter we discuss the close relationships between option types, exceptions, and
continuations. They each provide the means for handling failure to produce a value in a
computation. Option types provide the means of explicitly indicating in the type of a function the
possibility that it may fail to yield a "normal" result. The result type of the function forces the caller
to dispatch explicitly on whether or not it returned a normal value. Exceptions provide the means of
implicitly signalling failure to return a normal result value, without sacrificing the requirement that an
application of such a function cannot ignore failure to yield a value. Continuations provide another
means of handling failure by providing a function to invoke in the case that normal return is
impossible.

We will explore the trade-offs between these three approaches by considering three different
implementations of the n-queens problem: find a way to place n queens on an nxn chessboard in such
a way that no two queens attack one another. The general strategy is to place queens in successive
columns in such a way that it is not attacked by a previously placed queen. Unfortunately it's not
possible to do this in one pass; we may find that we can safely place k<n queens on the board, only to
discover that there is no way to place the next one. To find a solution we must reconsider earlier
decisions, and work forward from there. If all possible reconsiderations of all previous decisions all
lead to failure, then the problem is unsolvable. For example, there is no safe placement of three
queens on a 3x3 chessboard. This trial-and-error approach to solving the n-queens problem is called
backtracking search.

A solution to the n-queens problem consists of an nxn chessboard with n queens safely placed on it.
The following signature defines a chessboard abstraction:

signature BOARD = sig
 type board
 val new : int -> board
 val complete : board -> bool
 val place : board * int -> board
 val safe : board * int -> bool
 val size : board -> int
 val positions : board -> (int * int) list
end

The operation new creates a new board of a given dimension n>=0. The operation complete
checks whether the board contains a complete safe placement of n queens. The function safe

Concatenation Page 158 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

checks whether it is safe to place a queen at row i in the next free column of a board B. The
operation place puts a queen at row i in the next available column of the board. The function size
returns the size of a board, and the function positions returns the coordinates of the queens on the
board.

The board abstraction may be implemented as follows:

structure Board :> BOARD = struct

 (* representation: size, next free column, number placed,
placements *)
 (* rep'n invariant: size >=0, 1<=next free<=size, length
(placements) = number placed *)
 type board = int * int * int * (int * int) list

 fun new n = (n, 1, 0, nil)

 fun size (n, _, _, _) = n
 fun complete (n, _, k, _) = (k=n)
 fun positions (_, _, _, qs) = qs

 fun place ((n, i, k, qs),j) = (n, i+1, k+1, (i,j)::qs)

 fun threatens ((i,j), (i',j')) = i=i' orelse j=j' orelse
i+j = i'+j' orelse i-j = i'-j'
 fun conflicts (q, nil) = false
 | conflicts (q, q'::qs) = threatens (q, q') orelse
conflicts (q, qs)
 fun safe ((_, i, _, qs), j) = not (conflicts ((i,j), qs))

end

The representation type contains "redundant" information in order to make the individual operations
more efficient. The representation invariant ensures that the components of the representation are
properly related to one another (e.g., the claimed number of placements is indeed the length of the list
of placed queens, and so on.)

Our goal is to define a function

val queens : int -> Board.board option

such that if n>=0, then queens n evaluates either to NONE if there is no safe placement of n queens
on an nxn board, or to SOME B otherwise, with B a complete board containing a safe placement of n
queens. We will consider three different solutions, one using option types, one using exceptions, and
one using a failure continuation.

Here's a solution based on option types:

(* addqueen bd evaluates to SOME bd’, where bd’ is a
complete safe placement
 extending bd, if one exists, and yields NONE otherwise

Concatenation Page 159 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

*)
fun addqueen bd =
 let
 fun try j =
 if j > Board.size bd then
 NONE
 else if Board.safe (bd, j) then
 case addqueen (Board.place (bd, j))
 of NONE => try (j+1)
 | r as (SOME bd') => r
 else
 try (j+1)
 in
 if Board.complete bd then
 SOME bd
 else
 try 1
 end

fun queens n = addqueen (Board.new n)

The characteristic feature of this solution is that we must explicitly check the result of each recursive
call to addqueen to determine whether a safe placement is possible from that position. If so, we
simply return it; if not, we must reconsider the placement of a queen in row j of the next available
column. If no placement is possible in the current column, the function yields NONE, which forces
reconsideration of the placement of a queen in the preceding row. Eventually we either find a safe
placement, or yield NONE indicating that no solution is possible.

The explicit check on the result of each recursive call can be replaced by the use of exceptions.
Rather than have addqueen return a value of type Board.board option , we instead have it
return a value of type Board.board , if possible, and otherwise raise an exception indicating
failure. The case analysis on the result is replaced by a use of an exception handler. Here's the code:

exception Fail

(* addqueen bd evaluates to bd’, where bd’ is a complete
safe placement
 extending bd, if one exists, and raises Fail otherwise
*)
fun addqueen bd =
 let
 fun try j =
 if j > Board.size bd then
 raise Fail
 else if Board.safe (bd, j) then
 addqueen (Board.place (bd, j))
 handle Fail => try (j+1)
 else
 try (j+1)
 in
 if Board.complete bd then
 bd

Concatenation Page 160 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 else
 try 1
 end

fun queens n = SOME (addqueen (Board.new n)) handle Fail =>
NONE

The main difference between this solution and the previous one is that both calls to addqueen must
handle the possibility that it raises the exception Fail . In the outermost call this corresponds to a
complete failure to find a safe placement, which means that queens must return NONE. If a safe
placement is indeed found, it is wrapped with the constructor SOME to indicate success. In the
recursive call within try , an exception handler is required to handle the possibility of there being no
safe placement starting in the current position. This check corresponds directly to the case analysis
required in the solution based on option types.

What are the trade-offs between the two solutions?

1. The solution based on option types makes explicit in the type of the function addqueen the
possibility of failure. This forces the programmer to explicitly test for failure using a case
analysis on the result of the call. The type checker will ensure that one cannot use a
Board.board option where a Board.board is expected. The solution based on
exceptions does not explicitly indicate failure in its type. However, the programmer is
nevertheless forced to handle the failure, for otherwise an uncaught exception error would be
raised at run-time, rather than compile-time.

2. The solution based on option types requires an explicit case analysis on the result of each
recursive call. If "most" results are successful, the check is redundant and therefore excessively
costly. The solution based on exceptions is free of this overhead: it is biased towards the
"normal" case of returning a board, rather than the "failure" case of not returning a board at all.
The implementation of exceptions ensures that the use of a handler is more efficient than an
explicit case analysis in the case that failure is rare compared to success.

For the n-queens problem it is not clear which solution is preferable. In general, if efficiency is
paramount, we tend to prefer exceptions if failure is a rarity, and to prefer options if failure is
relatively common. If, on the other hand, static checking is paramount, then it is advantageous to use
options since the type checker will enforce the requirement that the programmer check for failure,
rather than having the error arise only at run-time.

We turn now to a third solution based on continuation-passing. The idea is quite simple: an
exception handler is essentially a function that we invoke when we reach a blind alley. Ordinarily we
achieve this invocation by raising an exception and relying on the caller to catch it and pass control to
the handler. But we can, if we wish, pass the handler around as an additional argument, the failure
continuation of the computation. Here's how it's done in the case of the n-queens problem:

(* addqueen bd evaluates to bd’, where bd’ is a complete
safe placement
 extending bd, if one exists, and otherwise yields the
value of fc () *)
fun addqueen (bd, fc) =
 let
 fun try j =

Concatenation Page 161 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 if j > Board.size bd then
 fc ()
 else if Board.safe (bd, j) then
 addqueen (Board.place (bd, j), fn () => try
(j+1))
 else
 try (j+1)
 in
 if Board.complete bd then
 SOME bd
 else
 try 1
 end

fun queens n = addqueen (Board.new n, fn () => NONE)

Here again the differences are small, but significant. The initial continuation simply yields NONE,
reflecting the ultimate failure to find a safe placement. On a recursive call we pass to addqueen a
continuation that resumes search at the next row of the current column. Should we exceed the
number of rows on the board, we invoke the failure continuation of the most recent call to
addqueen .

The solution based on continuations is very close to the solution based on exceptions, both in form
and in terms of efficiency. Which is preferable? Here again there is no easy answer, we can only
offer general advice. First off, as we've seen in the case of regular expression matching, failure
continuations are more powerful than exceptions; there is no obvious way to replace the use of a
failure continuation with a use of exceptions in the matcher. However, in the case that exceptions
would suffice, it is generally preferable to use them since one may then avoid passing an explicit
failure continuation. More significantly, the compiler ensures that an uncaught exception aborts the
program gracefully, whereas failure to invoke a continuation is not in itself a run-time fault. Using
the right tool for the right job makes life easier.

Code for This Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 162 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Memoization and Laziness
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/memoization.htm]

Page
29

Memoization and Laziness
[Back] [Home] [Up] [Next]

Last edit: Monday, May 04, 1998 03:28 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

Code for this Chapter

In this chapter we will discuss memoization, a programming technique for cacheing the results of
previous computations so that they can be quickly retrieved without repeated effort. Memoization is
fundamental to the implementation of lazy data structures, either "by hand" or using the
implementation provided by the SML/NJ compiler.

We begin with a discussion of memoization to increase the efficiency of computing a recursively-
defined function whose pattern of recursion involves a substantial amount of redundant computation.
The problem is to compute the number of ways to parenthesize an expression consisting of a
sequence of n multiplications as a function of n. For example, the expression

2*3*4*5

can be parenthesized in 5 ways:

((2*3)*4)*5, (2*(3*4))*5, (2*3)*(4*5), 2*(3*(4*5)), 2*((3*4)*5).

A simple recurrence expresses the number of ways of parenthesizing a sequence of n multiplications:

fun sum f 0 = 0
 | sum f n = (f n) + sum (f (n-1))

fun p 1 = 1
 | p n = sum (fn k => (p k) * (p (n-k)) (n-1)

where sum f n computes the sum of values of a function f (k) with k running from 1 to n. This
program is extremely inefficient because of the redundancy in the pattern of the recursive calls.

What can we do about this problem? One solution is to be clever and solve the recurrence. As it
happens this recurrence has a closed-form solution (the Catalan numbers). But in many cases there is
no known closed form, and something else must be done to cut down the overhead. In this case a
simple cacheing technique proves effective. The idea is to maintain a table of values of the function
that is filled in whenever the function is applied. If the function is called on an argument n, the table
is consulted to see whether the value has already been computed; if so, it is simply returned. If not,
we compute the value and store it in the table for future use. This ensures that no redundant
computations are performed. We will maintain the table as an array so that its entries can be accessed
in constant time. The penalty is that the array has a fixed size, so we can only record the values of

Concatenation Page 163 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

the function at some pre-determined set of arguments. Once we exceed the bounds of the table, we
must compute the value the "hard way". An alternative is to use a dictionary (e.g., a balanced binary
search tree) which has no a priori size limitation, but which takes logarithmic time to perform a
lookup. For simplicity we'll use a solution based on arrays.

Here's the code to implement a memoized version of the parenthesization function:

local

 val limit = 100
 val memopad = Array.array (100, NONE)

in

 fun p' 1 = 1
 | p' n = sum (fn k => (p k) * (p (n-k))) (n-1)

 and p n =
 if n < limit then
 case Array.sub of
 SOME r => r
 | NONE =>
 let
 val r = p' n
 in
 Array.update (memopad, n, SOME r);
 r
 end
 else
 p' n

end

The main idea is to modify the original definition so that the recursive calls consult and update the
memopad. The "exported" version of the function is the one that refers to the memo pad. Notice that
the definitions of p and p' are mutually recursive!

Lazy evaluation is a combination of delayed evaluation and memoization. Delayed evaluation is
implemented using thunks, functions of type unit -> ’a . To delay the evaluation of an
expression exp of type ’a , simply write fn () => exp. This is a value of type unit -> ’a ; the
expression exp is effectively "frozen" until the function is applied. To "thaw" the expression, simply
apply the thunk to the null tuple, () . Here's a simple example:

val thunk = fn () => print "hello\n" (* nothing
printed *)
val _ = thunk () (* prints
hello *)

While this example is especially simple-minded, remarkable effects can be achieved by combining
delayed evaluation with memoization. To do so, we will consider the following signature of
suspensions:

Concatenation Page 164 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

signature SUSP = sig
 type 'a susp
 val force : 'a susp -> 'a
 val delay : (unit -> 'a) -> 'a susp
end

The function delay takes a suspended computation (in the form of a thunk) and yields a
suspension. It's job is to "memoize" the suspension so that the suspended computation is evaluated at
most once --- once the result is computed, the value is stored in a reference cell so that subsequent
forces are fast. The implementation is slick. Here's the code to do it:

structure Susp :> SUSP = struct
 type 'a susp = unit -> 'a
 fun force t = t ()
 fun delay (t : 'a susp) =
 let
 exception Impossible
 val memo : 'a susp ref = ref (fn () => raise
Impossible)
 fun t' () =
 let val r = t () in memo := (fn () => r); r
end
 in
 memo := t';
 fn () => (!memo)()
 end
end

It's worth discussing this code in detail because it is rather tricky. Suspensions are just thunks;
force simply applies the suspension to the null tuple to force its evaluation. What about delay ?
When applied, delay allocates a reference cell containing a thunk that, if forced, raises an internal
exception. This can never happen for reasons that will become apparent in a moment; it is merely a
placeholder with which we initialize the reference cell. We then define another thunk t’ that, when
forced, does three things:

1. It forces the thunk t to obtain its value r .
2. It replaces the contents of the memopad with the constant function that immediately returns r .
3. It returns r as result.

We then assign t’ to the memo pad (hence obliterating the placeholder), and return a thunk dt that,
when forced, simply forces the contents of the memo pad. Whenever dt is forced, it immediately
forces the contents of the memo pad. However, the contents of the memo pad changes as a result of
forcing it so that subsequent forces exhibit different behavior. Specifically, the first time dt is
forced, it forces the thunk t’ , which then forces t its value r , "zaps" the memo pad, and returns r .
The second time dt is forced, it forces the contents of the memo pad, as before, but this time the it
contains the constant function that immediately returns r . Altogether we have ensured that t is
forced at most once by using a form of "self-modifying" code.

Here's an example to illustrate the effect of delaying a thunk:

Concatenation Page 165 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

val t = Susp.delay (fn () => print "hello\n")
val _ = Susp.force t (* prints
hello *)
val _ = Susp.force t (* silent
*)

Notice that "hello" is printed once, not twice! The reason is that the suspended computation is
evaluated at most once, so the message is printed at most once on the screen.

The constructs for manipulating lazy data structures provided by the SML/NJ compiler may be
explained in terms of suspensions. For the sake of specificity we'll consider the implementation of
streams, but the same ideas apply to any lazy datatype.

The type declaration

datatype lazy ’a stream = Cons of ’a * ’a stream

expands into the following pair of type declarations

datatype ’a stream_ = Cons_ of ’a * ’a stream
withtype ’a stream = ’a stream_ Susp.susp

The first defines the type of stream values, the result of forcing a stream computation, the second
defines the type of stream computations, which are suspensions yielding stream values. Thus streams
are represented by suspended (unevaluated, memoized) computations of stream values, which are
formed by applying the constructor Cons_ to a value and another stream.

The value constructor Cons, when used to build a stream, automatically suspends computation. This
is achieved by regarding Cons e as shorthand for Cons_ (Susp.susp (fn () => e) .
When used in a pattern, the value constructor Cons induces a use of force . For example, the
binding

val Cons (h, t) = e

becomes

val Cons_ (h, t) = Susp.force e

which forces the right-hand side before performing pattern matching.

A similar transformation applies to non-lazy function definitions --- the argument is forced before
pattern matching commences. Thus the "eager" tail function

fun stl (Cons (_, t)) = t

expands into

fun stl_ (Cons_ (_, t)) = t

Concatenation Page 166 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

and stl s = stl_ (Susp.force s)

which forces the argument as soon as it is applied.

On the other hand, lazy function definitions defer pattern matching until the result is forced. Thus the
lazy tail function

fun lstl (Cons (_, t)) = t

expands into

fun lstl_ (Cons_ (_, t)) = t
and lstl s = Susp.delay (fn () => lstl_ (Susp.force s))

which a suspension that, when forced, performs the pattern match.

Finally, the recursive stream definition

val rec lazy ones = Cons (1, ones)

expands into the following recursive function definition:

val rec ones = Susp.delay (fn () => Cons (1, ones))

Unfortunately this is not quite legal in SML since the right-hand side involves an application of a a
function to another function. This can either be provided by extending SML to admit such
definitions, or by extending the Susp package to include an operation for building recursive
suspensions such as this one. Since it is an interesting exercise in itself, we'll explore the latter
alternative.

We seek to add a function to the Susp package with signature

val loopback : (’a susp -> ’a susp) -> ’a susp

that, when applied to a function f mapping suspensions to suspensions, yields a suspension s whose
behavior is the same as f(s), the application of f to the resulting suspension. In the above example the
function in question is

fun ones_loop s = Susp.delay (fn () => Cons (1, s))

We use loopback to define ones as follows:

val ones = Susp.loopback ones_loop

The idea is that ones should be equivalent to Susp.delay (fn () => Cons (1, ones)) ,
as in the original definition and which is the result of evaluating Susp.loopback ones_loop ,
assuming Susp.loopback is implemented properly.

How is loopback implemented? We use a technique known as backpatching. Here's the code

Concatenation Page 167 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

fun loopback f =
 let
 exception Circular
 val r = ref (fn () => raise Circular)
 val t = fn () => (!r)()
 in
 r := f t ; t
 end

First we allocate a reference cell which is initialized to a placeholder that, if forced, raises the
exception Circular . Then we define a thunk that, when forced, forces the contents of this
reference cell. This will be the return value of loopback . But before returning, we assign to the
reference cell the result of applying the given function to the result thunk. This "ties the knot" to
ensure that the output is "looped back" to the input. Observe that if the loop function touches its
input suspension before yielding an output suspension, the exception Circular will be raised.

Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 168 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Modularity and Reuse
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/modmeth.htm]

Page
30

Modularity and Reuse
[Back] [Home] [Up]

Last edit: Monday, May 04, 1998 03:29 PM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

In this chapter we illustrate the use of the ML module system to build a program from re-usable
components. The main example is a generic game-tree search algorithm.

[Back] [Home] [Up]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 169 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/recind.sml] Page 31

fun exp 0 = 1
 | exp n = 2 * exp (n-1) ;

fun square (n:int) = n*n
fun double (n:int) = n+n

fun fast_exp 0 = 1
 | fast_exp n =
 if n mod 2 = 0 then
 square (fast_exp (n div 2))
 else
 double (fast_exp (n-1)) ;

fun iterative_fast_exp (0, a) = a
 | iterative_fast_exp (n, a) =
 if n mod 2 = 0 then
 iterative_fast_exp (n div 2, iterative_fast_exp (n div 2, a))
 else
 iterative_fast_exp (n-1, 2*a) ;

fun generalized_iterative_fast_exp (b, 0, a) = a
 | generalized_iterative_fast_exp (b, n, a) =
 if n mod 2 = 0 then
 generalized_iterative_fast_exp (b*b, n div 2, a)
 else
 generalized_iterative_fast_exp (b, n-1, b*a) ;

fun gcd (m:int, 0):int = m
 | gcd (0, n:int):int = n
 | gcd (m:int, n:int):int =
 if m>n then gcd (m mod n, n) else gcd (m, n mod m) ;

fun ggcd (0, n) = (n, 0, 1)
 | ggcd (m, 0) = (m, 1, 0)
 | ggcd (m, n) =
 if m>n then
 let
 val (d, a, b) = ggcd (m mod n, n)
 in
 (d, a, b - a*(m div n))
 end
 else
 let
 val (d, a, b) = ggcd (m, n mod m)
 in
 (d, a - b*(n div m), b)
 end

exception GCD_ERROR

fun checked_gcd (m, n) =
 let
 val (d, a, b) = ggcd (m, n)
 in
 if m mod d = 0 andalso n mod d = 0 andalso d = a*m+b*n then
 d
 else
 raise GCD_ERROR
 end

Concatenation Page 170 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/structur.sml] Page 32

(* Natural numbers in unary *)

datatype nat = Zero | Succ of nat

fun add (m, Zero) = m
 | add (m, Succ n) = Succ (add (m, n))

fun mul (m, Zero) = Zero
 | mul (m, Succ n) = add (mul (m, n), m)

fun double Zero = Zero
 | double (Succ m) = Succ (Succ (double m))

fun exp Zero = Succ Zero
 | exp (Succ m) = double (exp m)

(* Lists *)

(* datatype ’a list = nil | :: of ’a * ’a list *)

fun reverse nil = nil
 | reverse (h::t) = t @ [h]

(* Two-three trees *)

datatype ’a two_three_tree =
 Empty
 | Binary of ’a * ’a two_three_tree * ’a two_three_tree
 | Ternary of ’a * ’a two_three_tree * ’a two_three_tree * ’a two_three_tree

fun size Empty = 0
 | size (Binary (_, t1, t2)) = 1 + size t1 + size t2
 | size (Ternary (_, t1, t2, t3)) = 1 + size t1 + size t2 + size t3

(* Recursion patterns *)

fun nat_recursion base step =
 let

fun loop Zero = base
 | loop (Succ m) = step (m, loop m)

 in
loop

 end

val double = nat_recursion (Zero) (fn (_, result) => Succ (Succ result))
val exp = nat_recursion (Succ Zero) (fn (_, result) => double result)

fun list_recursion base step =
 let

fun loop nil = base
 | loop (h::t) = step (h, loop t)

 in
loop

 end

fun reverse l = list_recursion nil (fn (h, t) => t @ [h]) l

fun two_three_recursion base step2 step3 =
 let

fun loop Empty = base

Concatenation Page 171 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 | loop (Binary (v, t1, t2)) =
 step2 (v, loop t1, loop t2)
 | loop (Ternary (v, t1, t2, t3)) =
 step3 (v, loop t1, loop t2, loop t3)

 in
loop

 end

fun size t =
 two_three_recursion
 0
 (fn (_, s1, s2) => 1+s1+s2)
 (fn (_, s1, s2, s3) => 1+s1+s2+s3)
 t

Concatenation Page 172 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/perseph.sml] Page 33

(* Lists with mutable tails. *)

datatype ’a mutable_list = Nil | Cons of ’a * ’a mutable_list ref

local
 fun ipr (Nil, a) = a
 | ipr (this as (Cons (_, r as ref next)), a) =
 ipr (next, (r := a; this))
in
 (* destroys argument, yields its reversal *)
 fun inplace_reverse l = ipr (l, Nil)
end

(* Queues *)

(* Signature of queues as an abstract type. *)
signature QUEUE = sig

 type ’a queue

 exception Empty

 val new : unit -> ’a queue

 val insert : ’a * ’a queue -> ’a queue

 val remove : ’a queue -> ’a * ’a queue

end

(* Inefficient implementation of a persistent queue as a list. A sequence
 of n operations takes O(n^2) time in the worst case. *)
structure NaiveQueue :> QUEUE = struct

 type ’a queue = ’a list

 fun new () = nil

 fun insert (x, q) = x::q

 exception Empty

 fun remove [x] = (x, nil)
 | remove (x::xs) =

let
 val (y, q) = remove xs
in
 (y, x::q)
end

end

(* Persistent queues with amortized constant-time behavior for
 single-threaded executions of queue operations. Rep invariant:
 1. front is empty only if the back is empty
 2. list of elements (in order of departure) of the queue (bs, fs)
 is fs @ rev bs *)
structure AmortizedSingleThreadedQueue :> QUEUE = struct

 type ’a queue = ’a list * ’a list

Concatenation Page 173 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 (* smart constructor to enforce rep inv *)
 fun make_queue (q as (nil, nil)) = q
 | make_queue (q as (bs, nil)) = (nil, rev bs)
 | make_queue q = q

 (* queue operations *)
 fun new () = make_queue (nil, nil)

 fun insert (b, (bs, fs)) = make_queue (b::bs, fs)

 exception Empty

 fun remove (_, nil) = raise Empty
 | remove (bs, f::fs) = (f, make_queue (bs, fs))

end;

(* Amortized constant-time single-threaded queues, variant representation
 in which a queue has the form (bs, sb, fs, sf) satisfying the rep inv:
 1. sb = length bs, sf = length fs
 2. sf >= sb
*)
structure AmortizedSingleThreadedQueue2 :> QUEUE = struct

 type ’a queue = ’a list * int * ’a list * int

 fun make_queue (q as (bs, sb, fs, sf)) =
if sf >= sb then
 q
else
 (nil, 0, fs @ rev bs, sf+sb)

 fun new () = make_queue (nil, 0, nil, 0)

 fun insert (b, (bs, sb, fs, sf)) = make_queue (b::bs, sb+1, fs, sf)

 exception Empty

 fun remove (_, _, _, 0) = raise Empty
 | remove (bs, sb, f::fs, sf) = (f, make_queue (bs, sb, fs, sf-1))

end

(* Naive attempt to handle the multi-threaded case by memoization. Fails
 to achieve an amortized constant-time bound in general. (Consider a
 sequence of n inserts, followed by an n-way split consisting of one more
 insert and one remove. Each remove takes O(n) time, for a total time of
 O(n^2) for O(n) operations.) *)
structure NaiveMemoizedQueue :> QUEUE = struct

 type ’a queue = (’a list * ’a list) ref

 fun make_queue (qv as (nil, nil)) = ref qv
 | make_queue (qv as (bs, nil)) = ref (nil, rev bs)
 | make_queue qv = ref qv

 fun new () = make_queue (nil, nil)

 fun insert (b, ref (bs, fs)) = make_queue (b::bs, fs)

 exception Empty

 fun remove (ref (_, nil)) = raise Empty
 | remove (ref (bs, f::fs)) = (f, make_queue (bs, fs))

Concatenation Page 174 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

end ;

(* Amortized constant-time multi-threaded queues. Combines specialized
 representation with memoization to achieve amortized constant-time
 behavior, even in the multi-threaded case. *)
structure AmortizedMultiThreadedQueue :> QUEUE = struct

 (* Specialized list representations, with memoization. *)
 datatype ’a special_list_value =

Nil
 | Cons of ’a * ’a special_list
 | Append of ’a special_list * ’a special_list
 | Reverse of ’a list
 withtype ’a special_list = ’a special_list_value ref

 (* Reverse a list, forming a special_list. *)
 fun revltosl ([], s) = s
 | revltosl (x::xs, s) = revltosl (xs, Cons (x, ref s))

 (* Force a special_list r into Nil/Cons form. *)
 fun inspect (r as ref (Append (xs, ys))) =

(case inspect xs
 of Nil =>
 let

 val s = inspect ys
 in

 r := s; s
 end
 | Cons (x, xs’) =>
 let

 val s = Cons (x, ref (Append (xs’, ys)))
 in

 r := s; s
 end)

 | inspect (r as ref (Reverse xs)) =
let
 val s = revltosl (xs, Nil)
in
 r := s; s
end

 | inspect (r as ref (nil_or_cons)) = nil_or_cons

 type ’a queue = ’a list * int * ’a special_list * int

 fun make_queue (q as (bs, sb, fs, sf)) =
if sf >= sb then
 q
else
 (nil, 0, ref (Append (fs, ref (Reverse bs))), sf+sb)

 fun new () = make_queue (nil, 0, ref Nil, 0)

 fun insert (b, (bs, sb, fs, sf)) =
make_queue (b::bs, sb+1, fs, sf)

 exception Empty

 fun remove (bs, sb, fs, sf) =
case inspect fs
 of Nil => raise Empty
 | Cons (f, fs’) =>
 (f, make_queue (bs, sb, fs’, sf-1))

Concatenation Page 175 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

end;

Concatenation Page 176 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/regexp.sml] Page 34

signature REGEXP = sig

 datatype regexp =
 Zero | One | Char of char |
 Plus of regexp * regexp | Times of regexp * regexp |
 Star of regexp

 exception SyntaxError of string
 val parse : string -> regexp

 val format : regexp -> string

end

signature MATCHER = sig

 structure RegExp : REGEXP

 val match : RegExp.regexp -> string -> bool

end

structure RegExp :> REGEXP = struct

 datatype token =
 AtSign | Percent | Literal of char | PlusSign | TimesSign |
 Asterisk | LParen | RParen

 exception LexicalError

 fun tokenize nil = nil
 | tokenize (#"+" :: cs) = (PlusSign :: tokenize cs)
 | tokenize (#"." :: cs) = (TimesSign :: tokenize cs)
 | tokenize (#"*" :: cs) = (Asterisk :: tokenize cs)
 | tokenize (#"(" :: cs) = (LParen :: tokenize cs)
 | tokenize (#")" :: cs) = (RParen :: tokenize cs)
 | tokenize (#"@" :: cs) = (AtSign :: tokenize cs)
 | tokenize (#"%" :: cs) = (Percent :: tokenize cs)
 | tokenize (#"\\" :: c :: cs) = Literal c :: tokenize cs
 | tokenize (#"\\" :: nil) = raise LexicalError
 | tokenize (#" " :: cs) = tokenize cs
 | tokenize (c :: cs) = Literal c :: tokenize cs

 datatype regexp =
 Zero | One | Char of char |
 Plus of regexp * regexp | Times of regexp * regexp |
 Star of regexp

 exception SyntaxError of string

 fun parse_exp ts =
 let
 val (r, ts’) = parse_term ts
 in
 case ts’
 of (PlusSign::ts’’) =>
 let
 val (r’, ts’’’) = parse_exp ts’’
 in
 (Plus (r, r’), ts’’’)
 end

Concatenation Page 177 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 | _ => (r, ts’)
 end

 and parse_term ts =
 let
 val (r, ts’) = parse_factor ts
 in
 case ts’
 of (TimesSign::ts’’) =>
 let
 val (r’, ts’’’) = parse_term ts’’
 in
 (Times (r, r’), ts’’’)
 end
 | _ => (r, ts’)
 end

 and parse_factor ts =
 let

 val (r, ts’) = parse_atom ts
 in

 case ts’
 of (Asterisk :: ts’’) => (Star r, ts’’)
 | _ => (r, ts’)

 end

 and parse_atom nil = raise SyntaxError ("Factor expected\n")
 | parse_atom (AtSign :: ts) = (Zero, ts)
 | parse_atom (Percent :: ts) = (One, ts)
 | parse_atom ((Literal c) :: ts) = (Char c, ts)
 | parse_atom (LParen :: ts) =
 let
 val (r, ts’) = parse_exp ts
 in
 case ts’
 of nil => raise SyntaxError ("Right-parenthesis expected\n")
 | (RParen :: ts’’) => (r, ts’’)
 | _ => raise SyntaxError ("Right-parenthesis expected\n")
 end

 fun parse s =
 let

 val (r, ts) = parse_exp (tokenize (String.explode s))
 in

 case ts
 of nil => r
 | _ => raise SyntaxError "Unexpected input.\n"

 end
 handle LexicalError => raise SyntaxError "Illegal input.\n"

 fun format_exp Zero = [#"@"]
 | format_exp One = [#"%"]
 | format_exp (Char c) = [c]
 | format_exp (Plus (r1, r2)) =
 let

 val s1 = format_exp r1
 val s2 = format_exp r2

 in
 [#"("] @ s1 @ [#"+"] @ s2 @ [#")"]

 end
 | format_exp (Times (r1, r2)) =
 let

 val s1 = format_exp r1
 val s2 = format_exp r2

Concatenation Page 178 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 in
 s1 @ [#"*"] @ s2

 end
 | format_exp (Star r) =
 let

 val s = format_exp r
 in

 [#"("] @ s @ [#")"] @ [#"*"]
 end

 fun format r = String.implode (format_exp r)

end

functor Matcher (structure RegExp : REGEXP) :> MATCHER = struct

 structure RegExp = RegExp

 open RegExp

 fun match_is Zero cs k = false
 | match_is One cs k = k cs
 | match_is (Char c) nil _ = false
 | match_is (Char c) (c’::cs) k = (c=c’) andalso (k cs)
 | match_is (Plus (r1, r2)) cs k =

(match_is r1 cs k) orelse (match_is r2 cs k)
 | match_is (Times (r1, r2)) cs k =

match_is r1 cs (fn cs’ => match_is r2 cs’ k)
 | match_is (r as Star r1) cs k =

(k cs) orelse match_is r1 cs (fn cs’ => match_is r cs’ k)

 fun match regexp string =
match_is regexp (String.explode string)
(fn nil => true | _ => false)

end

structure Matcher = Matcher (structure RegExp = RegExp)

Concatenation Page 179 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/memo.sml] Page 35

fun sum f 0 = 0
 | sum f n = (f n) + sum f (n-1)

fun p 1 = 1
 | p n = sum (fn k => (p k) * (p (n-k))) (n-1)

local

 val limit = 100
 val memopad : int option Array.array =

Array.array (limit, NONE)

in

 fun p’ 1 = 1
 | p’ n = sum (fn k => (p k) * p (n-k)) (n-1)

 and p n =
if n < limit then
 case Array.sub (memopad, n) of

 SOME r => r
 | NONE =>

 let
 val r = p’ n
 in
 Array.update (memopad, n, SOME r);
 r
 end

else
 p’ n

end

signature SUSP = sig
 type ’a susp
 val force : ’a susp -> ’a
 val delay : (unit -> ’a) -> ’a susp
end

structure Susp :> SUSP = struct
 type ’a susp = unit -> ’a
 fun force t = t ()
 fun delay (t : ’a susp) =
 let
 exception Impossible
 val memo : ’a susp ref = ref (fn () => raise Impossible)
 fun t’ () =
 let val r = t () in memo := (fn () => r); r end
 in
 memo := t’;
 fn () => (!memo)()
 end
end

val t = Susp.delay (fn () => print "hello\n")
val _ = Susp.force t;
val _ = Susp.force t;

signature SUSP = sig
 type ’a susp
 val force : ’a susp -> ’a

Concatenation Page 180 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

 val delay : (unit -> ’a) -> ’a susp
 val loopback : (’a susp -> ’a susp) -> ’a susp
end

structure Susp :> SUSP = struct
 type ’a susp = unit -> ’a
 fun force t = t ()
 fun delay (t : ’a susp) =
 let
 exception Impossible
 val memo : ’a susp ref = ref (fn () => raise Impossible)
 fun t’ () =
 let val r = t () in memo := (fn () => r); r end
 in
 memo := t’;
 fn () => (!memo)()
 end
 fun loopback f =
 let

 exception Circular
 val r = ref (fn () => raise Circular)
 fun t () = force (!r)

 in
 r := f t ; t

 end
end

datatype ’a stream_ = Cons_ of ’a * ’a stream
withtype ’a stream = ’a stream_ Susp.susp

fun ones_loop s = Susp.delay (fn () => Cons_ (1, s))
val ones = Susp.loopback ones_loop

fun bad_loop s = let val r = Susp.force s in Susp.delay (fn () => r) end
(* val bad = Susp.loopback bad_loop (* raises Circular *) *)

Concatenation Page 181 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/seq.sml] Page 36

signature SEQUENCE = sig

 type ’a seq = int -> ’a

 val constantly : ’a -> ’a seq (* constant sequence *)
 val alternately : ’a * ’a -> ’a seq (* alternating values *)
 val insert : ’a * ’a seq -> ’a seq

 val map : (’a -> ’b) -> ’a seq -> ’b seq
 val filter : (’a -> bool) -> ’a seq -> ’a seq

 val zip : ’a seq * ’b seq -> (’a * ’b) seq
 val unzip : (’a * ’b) seq -> ’a seq * ’b seq
 val merge : ’a seq * ’a seq -> ’a seq

 val stretch : int -> ’a seq -> ’a seq
 val shrink : int -> ’a seq -> ’a seq

 val take : int -> ’a seq -> ’a list
 val drop : int -> ’a seq -> ’a seq
 val shift : ’a seq -> ’a seq

 val loopback : (’a seq -> ’a seq) -> ’a seq

end

structure Sequence :> SEQUENCE = struct

 type ’a seq = int -> ’a

 fun constantly c n = c
 fun alternately (c,d) n = if n mod 2 = 0 then c else d
 fun insert (x, s) 0 = x
 | insert (x, s) n = s (n-1)

 fun map f s = f o s
 fun filter p s n =

let
 val x = s n
in
 if p x then x else filter p s (n+1)
end

 fun zip (s1, s2) n = (s1 n, s2 n)
 fun unzip (s : (’a * ’b) seq) = (map #1 s, map #2 s)
 fun merge (s1, s2) n =

(if n mod 2 = 0 then s1 else s2) (n div 2)

 fun stretch k s n = s (n div k)
 fun shrink k s n = s (n * k)

 fun drop k s n = s (n+k)
 fun shift s = drop 1 s
 fun take 0 _ = nil
 | take n s = s 0 :: take (n-1) (shift s)

 fun loopback loop n = loop (loopback loop) n

end

open Sequence

Concatenation Page 182 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

val evens : int seq = fn n => 2*n
val odds : int seq = fn n => 2*n+1
val nats : int seq = merge (evens, odds)
fun fibs n =
 (insert (1, insert (1, map (op +) (zip (drop 1 fibs, fibs)))))(n)

fun fibs_loop s = insert (1, insert (1, map (op +) (zip (drop 1 s, s))))
val fibs = loopback fibs_loop

fun bad_loop s n = s n + 1
val bad = loopback bad_loop
(* val _ = bad 0 *)

(* wires *)

datatype level = High | Low | Undef
type wire = level seq
type pair = (level * level) seq

val Z : wire = constantly Low
val O : wire = constantly High

(* clock pulse with given duration of each pulse *)
fun clock (freq:int):wire = stretch freq (alternately (Low, High))

(* combinational logic *)

infixr **
fun (f ** g) (x, y) = (f x, g y)

fun logical_and (Low, _) = Low
 | logical_and (_, Low) = Low
 | logical_and (High, High) = High
 | logical_and _ = Undef

fun logical_not Undef = Undef
 | logical_not High = Low
 | logical_not Low = High

fun logical_nop l = l

val logical_nor = logical_and o (logical_not ** logical_not)

type unary_gate = wire -> wire
type binary_gate = pair -> wire

fun gate f w 0 = Undef
 | gate f w i = f (w (i-1))

val delay : unary_gate = gate logical_nop
val inverter : unary_gate = gate logical_not
val nor_gate : binary_gate = gate logical_nor

(* Flip-flops *)

fun RS_ff (S : wire, R : wire) =
 let

fun X n = nor_gate (zip (S, Y)) n
and Y n = nor_gate (zip (X, R)) n

 in
Y

 end

Concatenation Page 183 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

fun pulse b 0 w i = w i
 | pulse b n w 0 = b
 | pulse b n w i = pulse b (n-1) w (i-1)

val S = pulse Low 2 (pulse High 2 Z)
val R = pulse Low 6 (pulse High 2 Z)
val Q = RS_ff (S, R)
val _ = take 20 Q
val X = RS_ff (S, S) (* unstable! *)
val _ = take 20 X

fun loopback2 (f : wire * wire -> wire * wire) =
 unzip (loopback (zip o f o unzip))

fun RS_ff’ (S : wire, R : wire) =
 let

fun RS_loop (X, Y) =
 (nor_gate (zip (S, Y)), nor_gate (zip (X, R)))

 in
loopback2 RS_loop

 end

Concatenation Page 184 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/streams.sml] Page 37

Compiler.Control.Lazy.enabled := true;
open Lazy;

datatype lazy ’a stream = Cons of ’a * ’a stream;

val rec lazy ones = Cons (1, ones);

fun shd (Cons (x, _)) = x;
fun stl (Cons (_, s)) = s;
fun lstl (Cons (_, s)) = s;

val rec lazy s = (print "."; Cons (1, s));
val s’ = stl s; (* prints "." *)
val Cons _ = s’; (* silent *)

val rec lazy s = (print "."; Cons (1, s));
val s’’ = lstl s; (* silent *)
val Cons _ = s’’; (* prints "." *)

fun take 0 s = nil
 | take n (Cons (x, s)) = x :: take (n-1) s;

fun smap f =
 let

fun lazy loop (Cons (x, s)) = Cons (f x, loop s)
 in

loop
 end;

fun succ n = n+1;
val one_plus = smap succ;
val rec lazy nats = Cons (0, one_plus nats);

fun sfilter pred =
 let

fun lazy loop (Cons (x, s)) =
 if pred x then
 Cons (x, loop s)
 else
 loop s

 in
loop

 end;

fun m mod n = m - n * (m div n);
fun divides m n = n mod m = 0;

fun lazy sieve (Cons (m, s)) = Cons (m, sieve (sfilter (not o (divides m)) s));
val nats2 = stl (stl nats);
val primes = sieve nats2;

val rec lazy s = Cons ((print "."; 1), s);
val Cons (h, _) = s; (* prints ".", binds h to 1 *)
val Cons (h, _) = s; (* silent, binds h to 1 *)

Concatenation Page 185 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Sample Programs [http://www.cs.cmu.edu/People/rwh/introsml/sample.htm] Page 42

Sample Programs
[Back] [Home] [Next]

Last edit: Monday, May 04, 1998 10:53 AM

Copyright © 1997, 1998 Robert Harper. All Rights Reserved.

A number of example programs illustrating the concepts discussed in the preceding chapters are
available in the Sample Code directory.

[Back] [Home] [Next]

Copyright © 1997 Robert Harper. All rights reserved.

Concatenation Page 186 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Basis Library [http://www.cs.cmu.edu/People/rwh/introsml/basis.htm] Page 43

