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These notes are intended as a brief introduction to Standard ML (1997 dialect) for the experienced 
programmer.  They began as lecture notes for 15-212: Fundamental Principles of Computer Science 
II , the second semester of the introductory sequence in the undergraduate computer science 
curriculum at Carnegie Mellon University.   They have subsequently been used in several other 
courses at Carnegie Mellon, and at a number of universities around the world.  These notes are 
intended to supersede my Introduction to Standard ML, which has been widely circulated over the 
last ten years.

The Definition of Standard ML (Revised) by Robin Milner, Mads Tofte, Robert Harper, and David 
MacQueen (MIT Press, 1997) constitutes the official definition of the language.   It is supplemented 
by the Standard ML Basis Library, which defines a common basis of types that are shared by all 
implementations of Standard ML.  The two most popular introductory programming textbooks based 
on Standard ML are: Lawrence Paulson, ML for the Working Programmer (Second Edition), MIT 
Press, 1997, and Jeffrey Ullman, Elements of ML Programming, Prentice-Hall, 1994.

There are several implementations of Standard ML available for a variety of hardware and software 
platforms.  Standard ML of New Jersey is a comprehensive research implementation, and is the most 
widely used.  Harlequin's MLWorks is a commercial implementation that provides a substantial set of 
program development and analysis tools. Other implementations include two other research 
implementations, MLKit and Moscow ML, and another commercial implementation, Poly ML, from 
Abstract Hardware Ltd.  Concurrent ML is an extension of Standard ML with primitives for 
concurrent programming; it is available as part of the Standard ML of New Jersey compiler.  (For 
users at Carnegie Mellon, see the CMU local guide for information about using Standard ML.)

These notes are a work in progress.  I am making regular updates, so please check back for 
changes.  The most recent revision was made on Tuesday, May 05, 1998 12:32 PM.   Corrections, 
comments and suggestions are welcome.

For users who are not able to browse this web site, I have prepared a complete draft (in Postscript 
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format) for downloading.   This copy is updated infrequently; please refer to the web pages for the 
latest revisions.

  [ Table of Contents ] [ Overview of Standard ML ] [ Core Language ] [ Module Language ]
[ Programming Techniques ] [ Sample Programs ] [ Basis Library ]
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$ samplecode/optexccont.sml
% samplecode/regexp.sml
& samplecode/repinv.sml
' samplecode/memo.sml
( samplecode/seq.sml
) samplecode/streams.sml

* Basis Library

[ Home ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

Standard ML is a type-safe programming language that embodies many innovative ideas in 
programming language design.  It is a statically-typed language, with a user-extensible type system.  
It supports polymorphic type inference, which all but eliminates the burden of specifying types of 
variables and greatly facilitates code re-use.  It provides efficient automatic storage management for 
data structures and functions.  It encourages functional (effect-free) programming where appropriate, 
but allows imperative (effect-ful) programming where necessary (e.g., for handling I/O or 
implementing mutable data structures).  It facilitates programming with recursive data structures 
(such as trees and lists) by encouraging the definition of functions by pattern matching.  It features an 
extensible exception mechanism for handling error conditions and effecting non-local transfers of 
control.   It provides a richly expressive and flexible module system for structuring large programs, 
including mechanism for enforcing abstraction, imposing hierarchical structure, and building generic 
modules.  It is portable across platforms and implementations because it has a precise definition
given by a formal operational semantics that defines both the static and dynamic semantics of the 
language.  It provides a portable standard basis library that defines a rich collection of commonly-
used types and routines.

These features are supported by all implementations of Standard ML, but many go beyond the 
standard to provide experimental language features, more extensive libraries, and handy program 
development tools.  Details can be found with the documentation for your compiler, but here's a brief 
overview of what you might expect.  Most implementations provide an interactive system supporting 
on-line entry and execution of ML programs and providing access to tools for compiling, linking, and 
analyzing the behavior of programs.  A few compilers are "batch only", relying on the ambient 
operating system to manage the construction of large programs from compiled parts.   Nearly every 
compiler is capable of generating native machine code, even in the interactive system, but some 
optionally generate byte codes for a portable abstract machine.  Most implementations support 
separate compilation and incremental recompilation based on automatically-generated or manually-
constructed component dependency specifications.  Some implementations provide interactive tools 
for tracing and stepping programs; many provide tools for time and space profiling.  Most 
implementations supplement the standard basis library with a rich collection of handy components 
such as dictionaries, hash tables, or interfaces to the ambient operating system.  Some 
implementations support experimental language extensions, notably mechanisms for concurrent 
programming (using message-passing or locking), richer forms of modularity constructs, and support 
for "lazy" data structures.

To develop a feel for the language and how it is used, let us consider a small, but non-trivial, program 
to implement a regular expression package for checking whether a given string matches a given 
regular expression.  We'll structure the implementation into two modules, an implementation of 
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regular expressions themselves and an implementation of a matching algorithm for them.  The 
structure of the system is neatly expressed using signatures that describe the components of these two 
modules.

signature REGEXP = sig

  datatype regexp =
    Zero | One | Char of char | 
    Plus of regexp * regexp | Times of regexp * regexp |
    Star of regexp

  exception SyntaxError of string
  val parse : string -> regexp

  val format : regexp -> string
  
end
  
signature MATCHER = sig

  structure RegExp : REGEXP

  val match : RegExp.regexp -> string -> bool

end

The signature REGEXP describes a module that implements regular expressions.  It consists of a 
description of the abstract syntax of regular expressions, together with operations for parsing and 
unparsing (formatting) them.   The definition of the abstract syntax takes the form of a datatype
declaration that is reminiscent of a context-free grammar, but which abstracts from matters of lexical 
presentation (such as precedences of operators, parenthesization, conventions for naming the 
operators, etc.)  The abstract syntax consists of 6 clauses, corresponding to the regular expressions 0, 

1, a, r1 + r2, r1 r2, and r* .  The functions parse  and format  specify the parser and unparser for 
regular expressions.  The parser takes a string as argument and yields a regular expression; if the 
string is ill-formed, the parser raises the exception SyntaxError with an associated string describing 
the source of the error.  The unparser takes a regular expression and yields a string that parses to that 
regular expression.  In general there are many strings that parse to the same regular expressions; the 
unparser generally tries to choose one that is easiest to read.

The signature MATCHER describes a module that implements a matching algorithm for regular 
expressions.  The matcher is a function match  that takes a regular expression and yields a function 
that takes a string and determines whether or not that string matches that regular expression.  
Obviously the matcher is dependent on the implementation of regular expressions.  This is expressed 
by a structure specification that specifies a hierarchical dependence of an implementation of a 
matcher on an implementation of regular expressions --- any implementation of the MATCHER
signature must include an implementation of regular expressions as a constituent module.   This 
ensures that the matcher is self-contained, and does not rely on implicit conventions for determining 
which implementation of regular expressions it employs.

Now let's look at the high-level structure of an implementation of a regular expression matcher.  It 
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consists of two major components: an implementation of regular expressions, and an implementation 
of the matcher.  Implementations of signatures are called structures in ML; the implementation of the 
regular expression matcher consists of two structures.  Since the implementation of the matcher 
depends on an implementation of regular expressions, but is independent of any particular 
implementation of regular expressions, we use a parameterized module, or functor, to implement it.  
Here's the high-level structure we're considering:

structure RegExp :> REGEXP = ...

functor Matcher (structure RegExp : REGEXP) :> MATCHER = 
...

structure Matcher :> MATCHER = Matcher (structure RegExp = 
RegExp)

The structure identifier RegExp is bound to an implementation of the REGEXP signature.  
Conformance with the signature is ensured by the ascription of the signature REGEXP to the binding 
of RegExp using the ":>" notation.  Not only does this check that the implementation (elided here) 
conforms with the requirements of the signature REGEXP, but it also ensures that subsequent code 
cannot rely on any properties of the implementation other than those explicitly specified in the 
signature.  This helps to ensure that modules are kept separate, facilitating subsequent changes to the 
code.

The functor identifier Matcher  is bound to a structure that takes an implementation of REGEXP as 
parameter.  We may think of Matcher  as a kind of function mapping structures to structures.  The 
result signature of the functor specifies that the implementation must conform to the requirements of 
the signature MATCHER, and ensures that only what is specified in that signature is visible of any 
instance of this functor (obtained by applying it to an implementation of REGEXP).  A specific 
matcher is provided by applying the functor Matcher  to the stucture RegExp to obtain an 
implementation of MATCHER.

Once the system is built, we may use it by referring to its components using paths, or long 
identifiers.  The function Matcher.match  has type Matcher.RegExp.regexp -> string 
-> bool , reflecting the fact that it takes a regular expression as implemented within the package 
itself and yields a matching function on strings.   We may build a regular expression by applying the 
parser, Matcher.RegExp.parse , to a string representing a regular expression, then passing this 
to Matcher.match .   Here's an example:

val regexp = Matcher.RegExp.parse "((a + %).(b + %))*"
val matches = Matcher.match regexp

matches "aabba"
matches "abac"

We use the convention that "@" stands for the empty regular expression and "%" stands for the regular 
expression accepting only the null string.  Concatentation is indicated by a ". ", alternation by "+", 
and iteration by "* ".

The use of long identifiers can get tedious at times.  There are two typical methods for alleviating the 
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burden.  One is to introduce a synonym for a long package name.  Here's an example:

structure M = Matcher
structure R = M.RegExp

val regexp = R.parse "((a + %).(b + %))*"
val matches = M.match regexp

matches "aabba"
matches "abac"

Another is to "open" the structure, incorporing its bindings into the current environment:

open Matcher Matcher.RegExp

val regexp = parse "((a + %).(b + %))*"
val matches = match regexp

matches "aabba"
matches "abac"

It is advisable to be sparing in the use of open  because it is often hard to anticipate exactly which 
bindings are incorporated into the environment by its use.

Now let's look at the internals of these structures.  Here's an overview of the implementation of 
regular expressions:

structure RegExp :> REGEXP = struct

  datatype regexp =
    Zero | One | Char of char | 
    Plus of regexp * regexp | Times of regexp * regexp |
    Star of regexp

  ... implementation of the tokenizer ...

  fun tokenize s = tokenize_exp (String.explode s)

  ... implementation of the parser components ...

  fun parse s =
      let
          val (r, s') = parse_exp (tokenize (String.explode 
s))
      in
          case s'
            of nil => r
             | _ => raise SyntaxError "Unexpected input.\n"
      end
      handle LexicalError => raise SyntaxError "Illegal 
input.\n"
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  ... implementation of the formatter ...

  fun format r =
      String.implode (format_exp r)

end

The implementation is bracketed by the keywords struct  and end .   The type regexp  is 
implemented precisely as specified by a datatype  declaration.  The parser works by "exploding" 
the string into a list of characters (making it easier to process them character-by-character), 
transforming the character list into a list of "tokens" (abstract symbols representing lexical atoms), 
and finally parsing the resulting list of tokens.  If there is remaining input after the parse, or if the 
tokenizer encountered an illegal token, an appropriate syntax error is signalled.  The formatter works 
by calling an associated function that yields a list of characters, then "imploding" that list into a 
string.

It is interesting to consider in more detail the structure of the parser since it exemplifies well the use 
of pattern matching to define functions.  Let's start with the tokenizer, which we present here in toto:

datatype token =
  AtSign | Percent | Literal of char | PlusSign | TimesSign 
|
  Asterisk | LParen | RParen

exception LexicalError

fun tokenize nil = nil
  | tokenize (#"+" :: cs) = (PlusSign :: tokenize cs)
  | tokenize (#"." :: cs) = (TimesSign :: tokenize cs)
  | tokenize (#"*" :: cs) = (Asterisk :: tokenize cs)
  | tokenize (#"(" :: cs) = (LParen :: tokenize cs)
  | tokenize (#")" :: cs) = (RParen :: tokenize cs)
  | tokenize (#"@" :: cs) = (AtSign :: tokenize cs)
  | tokenize (#"%" :: cs) = (Percent :: tokenize cs)
  | tokenize (#"\\" :: c :: cs) = Literal c :: tokenize cs
  | tokenize (#"\\" :: nil) = raise LexicalError
  | tokenize (#" " :: cs) = tokenize cs
  | tokenize (c :: cs) = Literal c :: tokenize cs

We use a datatype declaration to introduce the type of tokens corresponding to the symbols of the 
input language.  The function tokenize  has type char list -> token list ; it transforms a 
list of characters into a list of tokens.   It is defined by a series of clauses that dispatch on the first 
character of the list of characters given as input, yielding a list of tokens.  The correspondence 
between characters and tokens is relatively straightforward, the only non-trivial case being to admit 
the use of a backslash to "quote" a reserved symbol as a character of input.  (More sophisticated 
languages have more sophisticated token structures; for example, words (consecutive sequences of 
letters) are often regarded as a single token of input.)  Notice that it is quite natural to "look ahead" in 
the input stream in the case of the backslash character, using a pattern that dispatches on the first two 
characters (if there are such) of the input, and proceeding accordingly.   (It is a lexical error to have a 
backslash at the end of the input.)
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Now here's an overview of the parser.  It is a simple recursive-descent parser implementing the 
standard precedence conventions for regular expressions (iteration binds most tightly, then 
concatentation, then alternation).  The parser is defined by four mutually-recursive functions, 
parse_exp , parse_term , parse_factor , and parse_atom .  These implement a recursive 
descent parser that dispatches on the head of the token list to determine how to proceed.   The code is 
essentially a direct transcription of the obvious LL(1) grammar for regular expressions capturing the 
binding conventions described earlier.

fun parse_exp ts =
    let
        val (r, ts') = parse_term ts
    in
        case ts'
          of (PlusSign :: ts'') =>
             let
                 val (r', ts''') = parse_exp ts''
             in
                 (Plus (r, r'), ts''')
             end
           | _ => (r, ts')
    end

and parse_term ts = ... (elided) ...

and parse_factor ts =
    let
        val (r, ts') = parse_atom ts
    in
        case ts'
        of (Asterisk :: ts'') => (Star r, ts'')
         | _ => (r, ts')
    end

and parse_atom nil = raise SyntaxError ("Atom expected\n")
  | parse_atom (AtSign :: ts) = (Zero, ts)
  | parse_atom (Percent :: ts) = (One, ts)
  | parse_atom ((Literal c) :: ts) = (Char c, ts)
  | parse_atom (LParen :: ts) =
    let
        val (r, ts') = parse_exp ts
    in
        case ts'
          of (RParen :: ts'') => (r, ts'')
           | _ => raise SyntaxError ("Right-parenthesis 
expected\n")
    end

Once again it is quite simple to implement "lookahead" using patterns that inspect the token list for 
specified tokens.  This parser makes no attempt to recover from syntax errors, but one could imagine 
doing so, using standard techniques.
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This completes the implementation of regular expressions.  Now for the matcher.   The main idea is 
to implement the matcher by a recursive analysis of the given regular expression.  The main difficulty 
is to account for concatenation --- to match a string against the regular expression r1 r2 we must 
match some initial segment against r1, then match the corresponding final segment against r2.  This 
suggests that we generalize the matcher to one that checks whether some initial segment of a string 
matches a given regular expression, then passes the remaining final segment to a continuation, a 
function that determines what to do after the initial segment has been successfully matched.  This 
facilitates implementation of concatentation, but how do we ensure that at the outermost call the 
entire string has been matched?  We achieve this by using an initial continuation that checks whether 
the final segment is empty.   Here's the code, written as a functor parametric in the regular expression 
structure:

functor Matcher (structure RegExp : REGEXP) :> MATCHER = 
struct

  structure RegExp = RegExp

  open RegExp

  fun match_is Zero _ k = false
    | match_is One cs k = k cs
    | match_is (Char c) (d::cs) k = if c=d then k cs else 
false
    | match_is (Times (r1, r2)) cs k =
      match_is r1 cs (fn cs' => match_is r2 cs' k)
    | match_is (Plus (r1, r2)) cs k =
      match_is r1 cs k  orelse  match_is r2 cs k
    | match_is (Star r) cs k =
      k cs  orelse  match_is r cs (fn cs' => match_is (Star 
r) cs' k)

  fun match r s =
      match_is r (String.explode s) (fn nil => true | 
false)

end

Note that we must incorporate the parameter structure into the result structure, in accordance with the 
requirements of the signature.  The function match  explodes the string into a list of characters (to 
facilitiate sequential processing of the input), then calls match_is  with an initial continuation that 
ensures that the remaining input is empty to determine the result.  The type of match_is  is

RegExp.regexp -> char list -> (char list -> bool) -> bool .

That is, match_is  takes in succession a regular expression, a list of characters, and a continuation 
of type char list -> bool ; it yields as result a value of type bool .  This is a fairly 
complicated type, but notice that nowhere did we have to write this type in the code!  The type 
inference mechanism of ML took care of determining what that type must be based on an analysis of 
the code itself.
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Since match_is  takes a function as argument, it is said to be a higher-order function.  The 
simplicity of the matcher is due in large measure to the ease with which we can manipulate functions 
in ML.  Notice that we create a new, unnamed functions, to pass as a continuation in the case of 
concatenation --- it is the function that matches the second part of the regular expression to the 
characters remaining after matching an initial segment against the first part.  We use a similar 
technique to implement matching against an iterated regular expression --- we attempt to match the 
null string, but if this fails, we match against the regular expression being iterated followed by the 
iteration once again.  This neatly captures the "zero or more times" interpretation of iteration of a 
regular expression.

(Important aside: the code given above contains a subtle error.  Can you find it?  If not, see the 
chapter on proof-directed debugging for further discussion!)

This completes our brief overview of Standard ML.  The remainder of these notes are structured into 
three parts.  The first part is a detailed introduction to the core language, the language in which we 
write programs in ML.   The second part is concerned with the module language, the means by which 
we structure large programs in ML.  The third is about programming techniques, ideas for building 
reliable and robust programs.  I hope you enjoy it!

Sample Code for this Chapter

[ Back ] [ Home ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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All Standard ML is divided into two parts.  The first part, the core language, comprises the 
fundamental programming constructs of the language --- the primitive types and operations, the 
means of defining and using functions, mechanisms for definining new types, etc.  These mechanisms 
are the subject of this part of the notes.   The second part, the module language, comprises the 
mechanisms for structuring programs into separate units and is described in the next part of these 
notes.

[ Types, Values, and Effects ] [ Variables and Declarations ] [ Functions ] [ Products and Patterns ]
[ Clausal Function Definitions ] [ Recursive Functions ] [ Type Inference ] [ Lists ]

[ Datatype Declarations ] [ Functionals ] [ Exceptions ] [ References ] [ Input & Output ]
[ Lazy Data Structures ] [ Concurrency ]

[ Back ] [ Home ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

Computation in familiar programming languages such as C is based on the imperative model of 
computation described in terms of an abstract machine.  The meaning of a C program is a state 
transition function that transforms the initial state of the abstract machine into a final state.  The 
transitions consist of modifications to the memory of the abstract machine (including the registers), 
and having an effect on the external world (through I/O devices).  The constructs of C have the flavor 
of commands: do something, then do something else for a while, then do something else.

Computation in ML is of an entirely different nature.  In ML we compute by calculation of 
expressions, rather than execution of instructions.  (Later in the course we will see that these two 
viewpoints may be reconciled, but for the time being it is best to keep a clear distinction in mind.)   
The calculation model is a direct generalization of your experience from high school algebra in which 
you are given a polynomial in a variable x and are asked to calculate its value at a given a value of x.  
We proceed by "plugging in" the given value for x, and then using the ordinary rules of arithmetic to 
determine the value of the polynomial.  The ML model of computation is essentially just a 
generalization of this idea, but rather than restrict ourselves to arithmetic operations on the reals, we 
admit a richer variety of values and a richer variety of primitive operations on them.  Much later we 
will generalize this model a bit further to admit effects on memory and the external world, leading to 
a reconciliation with the imperative model of computation with which you are familiar.

The unit of evaluation in ML is the expression.  Every expression in Standard ML 

1. … has a type. 
2. … may or may not have a value. 
3. … may or may not engender an effect.

Roughly speaking, the type of an expression in ML is a description of the sort of value it yields, 
should it yield a value at all.  For example, if an expression has type int , then its values are going to 
be integers, and similarly, an expression of type real  has real numbers (in practice, floating point 
numbers) as values.  Every expression is required to have a type; otherwise, it is rejected as ill-typed
(with a suitable explanatory message).  A well-typed expression is evaluated (by a process of 
calculation) to determine its value, if indeed it has one.  An expression can fail to have a value in 
several ways, one of which is to incur a run-time error (such as arithmetic overflow), and another of 
which is to compute infinitely without yielding a value. The soundness of the ML type system ensures 
that if the expression has a value, then the "shape" of that value is determined by the type of the 
expression.  Thus, a well-typed expression of type int cannot evaluate to a string or a floating point 
number; it must be an integer.  As we will see (much) later it is also possible for evaluation to 
engender an effect on the computing environment, for example by writing to the window system or 
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requesting input from a file.  For the time being we will ignore effects.

What is a type? There are many possible answers, depending on what you wish to emphasize. Here 
we will emphasize the role of types as determining the set of well-formed programs. Generally 
speaking, a type consists of 

1. a type name standing for that type, 
2. a collection of values of that type, and 
3. a collection of operations on values of that type. 

In other words, a type consists of a name for the type, some ways to create values of that type, and 
some ways for computing with values of that type.

To start off with, let's consider the type of integers. Its name is, appropriately enough, int . Values of 
type int  are the integer numerals 0, 1, ~1, 2, ~2, and so on. Notice that unary negation in SML is 
written using a tilde (~), rather than a minus sign (- ). Operations on integers include addition and 
subtraction, + and - , and the operations div  and mod for dividing and calculating remainders.  (See 
the Standard ML Basis Library chapter on integers for a complete description.)

Values are one form of atomic expression; others will be introduced later.   Compound expressions 
include atomic expressions, and also include expressions built by applying an operator to other 
compound expressions.  The formation of expressions is governed by a set of typing rules that define 
the types of atomic expressions and determine the types of compound expressions in terms of the 
types of their constituent expressions.

The typing rules are generally quite intuitive since they are consistent with our experience in 
mathematics and in other languages. In their full generality the rules are somewhat involved, but we 
will sneak up on them by first considering only a small fragment of SML, building up additional 
machinery as we go along.

Here are some simple arithmetic expressions, written using infix notation for the operations (meaning 
that the operator comes between the arguments, as is customary in mathematics):

3 
3 + 4 
4 div 3 
4 mod 3

Each of these expressions is well-formed; in fact, they each have type int .   Writing exp : typ to 
indicate that the expression exp has the type typ, we have 

3 : int 
3 + 4 : int 
4 div 3 : int 
4 mod 3 : int

Why?  In the case of the value 3, this is an axiom: integer numerals have integer type, by definition. 
What about the expression 3+4? Well, the addition operation takes two arguments (written on either 
side of the plus sign), each of which must be an integer. Since both arguments are of type int , it 
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follows that the entire expression is of type int . For more complex cases we proceed analogously, 
deducing that (3+4) div (2+3) : int , for example, by observing that (3+4) : int  and (2+3) : 
int .

This kind of reasoning may be summarized by a typing derivation consisting of a nested sequence of 
typing assertions, each justified either by an axiom, or a typing rule for an operation.  For example, 
(3+4) div 5  : int  because 

1. (3+4) : int
1.1 3 : int
1.2 4 : int

2. 5 : int

Implicit in this derivation is the rule for formation of div  expressions: it has type int  if both of its 
arguments have type int .   Steps (1) and (2) justify the assertion (3+4) div 5  : int  by 
demonstrating that the arguments each have type int .  Recursively, we must justify that  (3+4) : 
int , which follows from the subsidiary steps to step (1).  Here we rely on the rule that the addition of 
two expressions has type int  if both of its arguments do.

Evaluation of expressions is governed by a similar set of rules, called evaluation rules, that determine 
how the value of a compound expression is determined as a function of the values of its constituent 
expressions.  Implicit in this description is the call-by-value principle, which states that the arguments 
to an operation are evaluated before the operation is applied.  (While this may seem intuitively 
obvious, it's worth mentioning that not all languages adhere to this principle.)

We write exp => val to indicate that the expression exp has value val.  Informally, it is easy to see that 

5 => 5 
2+3  => 5
(2+3) div (1+4)  => 1

These assertions can be justified by evaluation derivations, which are similar in form to typing 
derivations. For example, we may justify the assertion (3+2) div 5  => 1 by the derivation 

1. (3+2) => 5
1.1 3 => 3
1.2 2 => 2

2. 5 => 5

Some things are left implicit in this derivation.  First, it is an axiom that every value (in this case, a 
numeral) evaluates to itself; values are fully-evaluated expressions.  Second, the rules of addition are 
used to determine that adding 3 and 2 yields 5.

What other types are there?  Here are few more base types, summarized briefly by their values and 
operations: 

Type name: real
Values: 3.14 , ~2.17 , 0.1E6 , ...



Concatenation Page 17 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Operations: +,- , * ,/ , =, <, ... 

Type name: char
Values: #"a" , #"b" , ... 
Operations: ord , char , =, <, ... 

Type name: string
Values: "abc" , "1234" , ... 
Operations: ̂ , size , =, <, ...

Type name: bool
Values: true , false
Operations: if  exp then  exp1 else  exp2

There are many, many others (in fact, infinitely many others!), but these are enough to get us started.  
(See the Basis Library for a complete description of the primitive types of SML, including the ones 
given above.)  Notice that some of the arithmetic operations for real numbers are "spelled" the same 
way as for integers.  For example, we may write 3.1+2.7  to perform a floating point addition of 
two floating point numbers.  On the other hand division, which is properly defined for reals, is 
written as 3.1/2.7  to distinguish it from the integer division operation div .

With these types in hand, we now have enough rope to hang ourselves by forming ill-typed
expressions. For example, the following expressions are ill-typed: 

size 45 
#"1" + 1 
#"2" ^ "1" 
3.14 + 2

The last expression may seem surprising, at first. The primitive arithmetic operations are overloaded
in the sense that they apply either to integers or to reals, but not both at once. To gain some intuition, 
recall that at the hardware level there are two distinct arithmetic units, the integer (or fixed point) unit 
and the floating point unit. Each has its own separate hardware for addition, and we may not mix the 
two in a single instruction.  Of course the compiler might be expected to sort this out for you, but 
then there are difficulties with round-off and overflow since different compilers might choose 
different combinations of conversions and operations.   SML leaves this to the programmer to avoid 
ambiguity and problems with portability between implementations.

The conditional expression if  exp then  exp1 else  exp2 is used to discriminate on a Boolean 

value.   It has type typ if exp has type bool  and both exp1 and exp2 have type typ.  Notice that both 

"arms" of the conditional must have the same type!  It is evaluated by first evaluating exp, then 
proceeding to evaluate either exp1 or exp2, according to whether the value of exp is true  or false .  

For example,

if 1<2 then "less" else "greater"

evaluates to "less"  since the value of the expression 1<2  is true.
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Notice that the expression

if 1<2 then 0 else 1 div 0

evaluates to 0, even though 1 div 0  incurs a run-time error.   While it may, at first glance, appear 
that this is a violation of the call-by-value principle mentioned above, the explanation is that the 
conditional is not a primitive function, but rather a derived form that is explained in terms of other 
constructs of the language.

A common "mistake" is to write an expression like this

if exp = true then exp1 else exp2

If you think about it for a moment, this expression is just a longer way of writing

if exp then exp1 else exp2

Similarly, 

if exp = false then exp1 else exp2

can be abbreviated to

if not exp then exp1 else exp2

or, better yet, just

if exp then exp2 else exp1

Neither of these examples is really a mistake, but it is rarely clearer to test a Boolean value for 
equality with true or false than to simply perform a conditional test on the value itself. 

Sample Code for this Chapter

[ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

Just as in any other programming language, values may be assigned to variables that may be used in 
an expression to stand for that value.  However, in sharp contrast to more familiar languages, 
variables in SML do not vary (!).  Values are bound to variables using value bindings; once a variable 
is bound to a value, it is bound for life.  There is no possibility of changing the binding of a variable 
after it has been bound.  In this respect variables in SML are more akin to variables in mathematics 
than to variables in languages such as C.  Similarly, types may be bound to type variables using type 
bindings; the type variable so defined stands for the type bound to it and can never stand for any other 
type.

A binding (either value or type) introduces a "new" variable, distinct from all other variables of that 
class, for use within its range of significance, or scope.   Scoping in SML is lexical, meaning that the 
range of significance of a variable is determined by the program text, not by the order of evaluation of 
its constituent expressions.  (Languages with dynamic scope adopt the opposite convention.)  For the 
time being variables will have global scope, meaning that the range of significance of the variable is 
the "rest" of the program --- the part that lexically follows the binding.  We will introduce 
mechanisms for delimiting the scopes of variables shortly.

Any type may be give a name using a type binding. At this stage we have so few types that it is hard 
to justify binding type names to identifiers, but we'll do it anyway because we'll need it later. Here are 
some examples of type bindings: 

type float = real

type count = int  and average = real

The first type binding introduces the type variable float , which subsequently is synonymous with 
real .  The second introduces two type variables, count  and average , which stand for int  and 
real , respectively.  In general a type binding introduces one or more new type variables 
simultaneously in the sense that the definitions of the type variables may not involve any of the type 
variables being defined.  Thus a binding such as 

type float = real and average = float

nonsensical (if taken in isolation) since the type variables float  and average  are introduced 
simultaneously, and hence cannot refer to one another.  The syntax for type bindings is type  var1 =
typ1 and  ... and  varn = typn, where each vari is a type variable and each typi is a type expression.
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Similarly, value variables are bound to values using value bindings. Here are some examples: 

val m : int = 3+2

val pi : real = 3.14 and e : real = 2.17

The first binding introduces the variable m, specifying its type to be int  and its value to be 5.  The 
second introduces two variables, pi  and e, simultaneously, both having type real , and with pi
having value 3.14  and e having value 2.17 .   Notice that a value binding specifies both the type 
and the value of a variable.   The syntax of value bindings is val var1 : typ1 = exp1 and  ... and
varn : typn = expn, where each vari is a variable, each typi is a type expression, and each expi is an  
expression.

As you have no doubt surmised, value bindings are type-checked by comparing the type of the right-
hand side with the specified type to ensure that they coincide. If a mismatch occurs, the value binding 
is rejected as ill-formed. Well-typed bindings are evaluated according to the bind-by-value rule: the 
right-hand side of the binding is evaluated, and the resulting value (if any) is bound to the given 
variable.

The purpose of a binding is to make a variable available for use within its scope.   In the case of a 
type binding we may use the type variable introduced by that binding in type expressions occurring 
within its scope.  For example, in the presence of the type bindings above, we may write

val pi : float = 3.14

since the type variable float  is bound to the type real , the type of the expression 3.14 .  
Similarly, we may make use of the variable introduced by a value binding in value expressions 
occurring within its scope.   Continuing from the preceding binding, we may use the expression

sin pi

to stand for 0.0  (approximately), and we may bind this value to a variable by writing

val x : float = sin pi

As these examples illustrate, type checking and evaluation are context dependent in the presence of 
type and value bindings since we must refer to these bindings to determine the types and values of 
expressions.  For example, to determine that the above binding for x  is well-formed, we must consult 
the binding for pi  to determine that it has type float , consult the binding for float  to determine 
that it is synonymous with real , which is necessary for the binding of x  to have type float .

The rough-and-ready rule for both type-checking and evaluation is that a bound variable is implicitly 
replaced by its binding prior to type checking and evaluation.   This is sometimes called the 
substitution principle for bindings.    For example, to evaluate the expression cos x  in the scope of 
the above declarations, we first replace both occurrences of x  by its value (approximately 0.0 ), then 
compute as before, yielding (approximately) 1.0 .   Later on we will have to refine this simple 
principle to take account of more sophisticated language features, but it is useful nonetheless to keep 
this simple idea in mind.
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Bindings may be combined to form declarations.  A binding is an atomic declaration, even though it 
may introduce many variables simultaneously.  Two declarations may be combined by sequential 
composition by simply writing them one after the other, optionally separated by a semicolon. Thus we 
may write the declaration 

val m : int = 3+2
val n : int = m*m

which binds m to 5 and n to 25 . Subsequently, we may evaluate m+n to obtain the value 30 .   In 
general a sequential composition of declarations has the form dec1 ... decn, where n is at least 2.  The 
scopes of these declarations are nested within one another: the scope of dec1 includes dec2 ... decn, 
the scope of dec2 includes dec3 ... decn, and so on.

One thing to keep in mind is that binding is not assignment. The binding of a variable never changes; 
once bound to a value, it is always bound to that value (within the scope of the binding). However, 
we may shadow a binding by introducing a second binding for a variable within the scope of the first 
binding.  Continuing the above example, we may write 

val n : real = 2.17

to introduce a new variable n with both a different type and a different value than the earlier binding.  
The new binding shadows the old one, which may then be discarded since it is no longer accessible.  
(Later on, we will see that in the presence of higher-order functions shadowed bindings are not 
always discarded, but are preserved as private data in a closure.  One might say that old bindings 
never die, they just fade away.)

The scope of a variable may be delimited by using let  expressions and local  declarations. A let
expression has the form let  dec in  exp end , where dec is any declaration and exp is any 
expression. The scope of the declaration dec is limited to the expression exp.   The bindings 
introduced by dec are (in effect) discarded upon completion of evaluation of exp.  Similarly, we may 
limit the scope of one declaration to another declaration by writing local  dec in  dec' end .  The 
scope of the bindings in dec is limited to the declaration dec’.  After processing dec’, the bindings in 
dec may be discarded.

The value of a let  expression is determined by evaluating the declaration part, then evaluating the 
expression relative to the bindings introduced by the declaration, yielding this value as the overall 
value of the let  expression. An example will help clarify the idea: 

let
    val m:int = 3
    val n:int = m*m
in
    m*n
end

This expression has type int  and value 27 , as you can readily verify by first calculating the bindings 
for m and n, then computing the value of m*n relative to these bindings. The bindings for m and n are 
local to the expression m*n, and are not accessible from outside the expression.
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If the declaration part of a let  expression shadows earlier bindings, the ambient bindings are 
restored upon completion of evaluation of the let  expression. Thus the following expression 
evaluates to 54 : 

val m:int = 2
val r:int =
    let
        val m:int=3
        val n:int=m*m
    in
        m*n
    end * m

The binding of m is temporarily overridden during the evaluation of the let  expression, then restored 
upon completion of this evaluation.

To complete this chapter, let’s consider in more detail the context-sensitivity of type checking and 
evaluation in the presence of variable bindings.  The key ideas are: 

1. Type checking must take account of the declared type of a variable. 
2. Evaluation must take account of the declared value of a variable. 

This is achieved by maintaining environments for type checking and evaluation. The type 
environment records the types of variables; the value environment records their values.   For example, 
after processing the compound declaration 

val m : int = 0
val x : real = sqrt(2)
val c : char = #"a",

the type environment contains the information

val m : int
val x : real
val c : char

and the value environment contains the information

val m = 0
val x = 2.14…
val c = #"a" .

In a sense the value declarations have been divided in "half", separating the type from the value 
information.

Thus we see that value bindings have significance for both type checking and evaluation.  In contrast 
type bindings have significance only for type checking, and hence contribute only to the type 
environment.  A type binding such as
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type float = real

is recorded in its entirety in the type environment, an no change is made to the value environment.  
Subsequently, whenever we encounter the type variable float  in a type expression, it is replaced by 
real  in accordance with the type binding above.

Earlier we introduced two relations, the typing relation, exp :  typ, and the evaluation relation, exp =>
val.  These two-place relations were sufficient for variable-free expressions, but in the presence of 
declarations these relations must be extended to account for the type and value environments.  This is 
achieved by expanding the typing relation into a three-place relation typenv |-  exp :  typ, where 
typenv is a type environment, exp is an expression and typ is a type.   (The turnstile symbol, "|-", is a 
punctuation mark separating the type environment from the expression and its type.)  The type of a 
variable is determined by consulting the type environment; in particular, we have the following 
typing axiom:

... val x : int  ... |-  x : int

Similarly, the evaluation relation is enriched to take account of the value environment.  We write 
valenv |- exp => val to indicate that exp evaluates to val in the value environment valenv.  Variables 
are governed by the following axiom:

... val x = val ... |- x => val

There is an obvious similarity between the two relations.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

So far Standard ML is just a glorified calculator supporting operations of various primitive types and 
allowing intermediate results to be bound to identifiers.  What makes it possible to do more than just 
calculate the values of expressions is the possibility to abstract the data from the pattern of the 
computation so that the same computation may be easily repeated for various data values.  For 
example, if we calculate the expression 2*(3+4) , the data might be the values 2, 3, and 4, and the 
pattern of calculation might be written in skeletal form as ( ) * ( ( ) + ( ))  with "holes" 
where the data used to be.  We say "might be" because it's not at all clear, given the original 
expression, what is the data and what is the pattern.  For example, we might regard 2 as the data and 
( ) * (3+4)  as the pattern, or even regard *  and + as the data and 2 ( ) (3 ( ) 4)  as the 
pattern!  What is important here is that the original expression can be recovered by filling the holes 
with the missing data items and, moreover, different expressions can be obtained by filling the same 
hole with different data items.  Thus, an expression with a "hole" in it is may be thought of as a 
function that, when applied to an argument value determines its result by filling the hole with the 
argument.

This view of functions is similar to our experience from high school algebra.  In elementary algebra 
we manipulate polynomials such as x^2 + 2x + 1 as a kind of expression denoting a real number, but 
with the variable x representing an unknown quantity.  We may also think of a polynomial as a 
function of the real numbers: given a real number x, a polynomial determines another real number y
computed by some combination of arithmetic operations.  In fact, we sometimes write equations such 
as y = x^2 + 2x + 1 or  y(x) = x^2 + 2x + 1 to denote the function determined by the polynomial.  In 
the univariate case we can get away with just writing the polynomial for the function, but in the 
multivariate case we must be more careful since we may regard the polynomial x^2 + 2xy + y^2 as a 
function of x, a function of y, or a function of both x and y.   In these cases we write f(x) = x^2 + 2xy 
+ y^2 when x varies and y is held fixed, and g(y) = x^2 + 2xy + y^2 when y varies for fixed x, and h
(x,y) = x^2 + 2xy + y^2, when both vary jointly.

It is usually left implicit that the variables x and y range over the real numbers, and that f, g, and h are 
functions mapping real numbers to real numbers.  To be fully explicit, we sometimes write something 
like

f : R -> R  :  x in R |--> x^2 + 2x + 1

to indicate that f is a function on the reals mapping an element x of R to the element x^2 + 2x + 1 of 
R.  This notation has the virtue of separating the binding of the function to a name (f) from the 
description of its behavior (x in R |--> x^2 + 2x + 1).  This makes clear that functions are a kind of 
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"value" in mathematics (namely, a set of ordered pairs satisfying the usual uniqueness and existence 
conditions), and that the variable f is bound to that value by the declaration.  This viewpoint is 
especially important once we consider operators, such as the differential operator, that map functions 
to functions.  For example, if f is a differentiable function on the real line, the function Df is its first 
derivative, also a function on the real line.

The treatment of functions in Standard ML is very similar to our mathematical experience, except 
that we stress the algorithmic aspects of functions (how they determine values from arguments), as 
well as the extensional aspects (what they compute).  Just as in mathematics a function in Standard 
ML is a kind of value, namely a value of function type.  A function type has the form typ-> typ’, 
where typ is the domain type (the type of arguments to the function), and typ’ is the range type (the 
type of results).  We compute with a function by applying it to an argument value of its domain type 
and calculating the result value of its range type.  Function values are lambda expressions of the form 
fn  var :  typ => exp; the variable var is called the parameter, and the expression exp is called its 
body. It has type typ-> typ’, where exp has type typ’ under the assumption that var has type typ.  The 
result of applying such a function to an argument value val is determined by temporarily adding the 
binding val  var = val to the environment, and evaluating exp to a value val’.   The temporary 
binding is then removed, and the result value, val, is returned as the value of the application.

For example, sqrt  is a (built-in) function of type real->real  that may be applied to a real 
number to obtain its square root; for example, the expression sqrt 2.0  evaluates to 1.414... .  
Observe that function application is written by juxtaposition: we simply write the argument next to 
the function.  We can, if we wish, parenthesize the argument, writing sqrt 2.0  for the sake of 
clarity; this is especially useful for expressions like sqrt (sqrt 2.0) .  The function sqrt  is 
special in that it is a built-in, or primitive, operation of the language.  We may also define functions as 
templates using a notation similar to that introduced above.  For example, the fourth root function on 
the reals may be written in Standard ML using lambda notation as follows:

fn x : real => sqrt (sqrt x)

Notice that we don't (at this stage) give this function a name, rather we simply define its behavior by 
a template specifying how it calculates its result from its argument.  This template defines a function 
of type real->real  since it maps real numbers to real numbers.  It may be applied to an argument 
by writing, for example,

(fn x : real => sqrt (sqrt x)) (4.0)

to calculate the fourth root of 4.0 .  The calculation proceeds by binding the variable x  to the 
argument 4.0 , then evaluating the expression sqrt (sqrt x)  in the presence of this binding.  
When evaluation completes, we drop the binding of x  from the environment, since it is no longer 
needed.   (There is a subtle issue about the temporary binding of x  that we will return to later.)

We may give a function a name using the declaration forms introduced in the previous chapter.  For 
example, we may bind the fourth root function to the identifer fourthroot  as follows:

val fourthroot : real -> real = (fn x : real => sqrt (sqrt 
x))

We may then write fourthroot 4.0  to compute the fourth root of 4.0 .   This notation quickly 
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becomes tiresome to write down, so Standard ML provides a special form of function binding that 
alleviates the burden.  In practice we write

fun fourthroot (x:real):real = sqrt (sqrt x)

rather than the more verbose val  declaration above.  But it has (almost) precisely the same meaning: 
the fun  binding binds a lambda expression to an identifier.

These examples raise a few additional points about functions in Standard ML.   First of all, the 
general form of an application expression is exp exp’, where exp is an expression that evaluates to a 
function, and exp’ is an expression that evaluates to its argument.  Standard ML is a call-by-value
language: the argument to a function is evaluated before the function is applied.   (You may 
reasonably wonder what is the alternative.  In a so-called call-by-name language the argument is 
passed in unevaluated form to the function, and is only evaluated if the function requires it to be.  
This behavior is expressible in Standard ML by other means, which we shall return to later.)  Thus, 
when to evaluate an expression such as fourthroot 2.0 , we proceed as follows: 

1. Evaluate fourthroot  to the function value fn x : real => sqrt (sqrt x) . 
2. Evaluate the argument 2.0  to its value 2.0
3. Bind x  to the value 2.0 . 
4. Evaluate sqrt (sqrt x)  by a subsidiary calculation to 1.189... .

a. Evaluate sqrt  to a function value (in this case the primitive square root function).
b. Evaluate the argument expression (sqrt x)  to its value, 1.414...  (by a subsidiary 
calculation).
    i. Evaluate sqrt  to a function value (in this case the primitive square root function).
    ii. Evaluate x  to its value, 2.0 .
    iii. Compute the square root of 2.0 , yielding 1.414... .
c. Compute the square root of  1.414... , yielding 1.189... . 

5. Drop the binding for the variable x . 

Second of all, notice that we evaluate both the function and argument positions of an application 
expression --- both the function and argument are arbitrary expressions yielding values of the 
appropriate type.  The value of the function position must be a value of function type, either a 
primitive function or a lambda, and the value of the argument position must be a value of the domain 
type of the function.   In this case the result value (if any) will be of the range type of the function.   
The point here is that functions are first-class values, meaning that they may be obtained as the value 
of an arbitrary expression; we are not limited to applying only named functions, but rather may 
compute "new" functions on the fly and apply these to arguments.  This is a source of considerable 
expressive power, as we shall see later in these notes.

So far, we've only considered functions on the real numbers, but we may also define functions of 
other types.  For example,

fun pal (s:string):string = s ^ (rev s)
fun double (n:int):int = n + n
fun square (n:int):int = n * n
fun halve (n:int):int = n div 2
fun is_even (n:int):bool = (n mod 2 = 0)
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Thus pal "ot"  evaluates to the string "otto" , and is_even 4  evaluates to true .

There are a few subtleties that we must be aware of when thinking about functions.   The first is: the 
name of the parameter is not important.   Consequently, it may be systematically renamed without 
changing the meaning of the function, provided that we don't rename it in such a way as to clash with 
some other name that is currently in scope.  An example will illustrate the point:

fun f(x:real):real = x+x
fun g(y:real):real = y+y

These two functions are completely equivalent; they differ only in the name of the parameter (in one 
case, x , in the other, y ).  The second subtlety is the static scope principle: a use of a variable refers to 
the nearest enclosing binding of that variable in the text of the program.  Just as one value binding 
can shadow another, so can parameters of functions shadow value bindings (or other parameters).  
Here's an example:

val x:real = 2.0
fun h(x:real):real = x+x
fun i(y:real):real = x+y

The first function, h, introduces a parameter x  that shadows the outer value binding; the value 
binding has no effect on the meaning of the function h.   The second function, i , makes use of the 
variable x  introduced by the val  binding; from within the body of i  this is the nearest enclosing 
binding occurrence of x  in the program.  (The parameter x  of the function h does not enclose the 
definition of the function i .)  The use of x  within the function i  introduces some constraints on the 
possible renamings of the parameter of i .   Specifically, we may certainly rename y  to z  without 
changing the meaning of the function i , but we may not rename y  to x  without changing the meaning 
completely.  That is, the function j  has the same meaning as the function i , but the function k  has a 
different meaning:

fun j(z:real):real = x+z
fun k(x:real):real = x+x

While these may seem like minor technical issues, it is essential that you master these ideas now to 
avoid confusion later on!

We close this section with a brief summary of function types:

Type name: typ->typ’
Values: primitives, fn  var :  typ => exp
Operations: application exp exp’

Once we develop some additional machinery we will return to the function type to discuss recursive 
functions. 

Sample Code for this Chapter
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[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

A characteristic feature of ML is the the ease with which we may handle aggregate data structures
such as tuples, arrays, lists, and trees.  The simplest form of aggregate is the tuple, value of product 
type.  Product types have the form 

typ1*...*typn,

where n is at least 2. Values of this type are n-tuples of the form

( val1, ..., valn) ,

where vali is a value of type typi (for each 1<=i<=n).

Thus the following are well-formed bindings:

val pair : int * int = (2, 3)
val triple : int * real * string = (2, 2.0, "2")
val pair_of_pairs : (int * int) * (real * real) = 
((2,3),(2.0,3.0))
val quadruple : int * int * real * real = (2,3,2.0,3.0)

The nesting of parentheses matters!  A pair of pairs is not the same as a quadruple, so the last two 
bindings are of distinct values with distinct types.

More generally, a tuple expression has the form

( exp1, ..., expn) ,

where each expi is an expression (not necessarily a value).   Evaluation of tuple expressions proceeds 

from left to right, yielding the tuple value ( val1, ..., valn) , where each expi evaluates to vali (for each 

1<=i<=n).   Thus the binding

val pair : int * int = (1+1, 5-2)

binds the value (2, 3)  to the variable pair .
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Tuples may be decomposed into their constituent parts using pattern matching.   This is expressed 
using a generalized form of value binding in which the left-hand side is not merely a variable, but a 
pattern involving zero or more variables.   The general form of a value binding is

val pat = exp,

where pat is a pattern and exp is any expression.

What sorts of patterns are there?  We've already seen the basic form of pattern, namely a variable 
pattern, written var: typ.  Another form of pattern is the tuple pattern, which has the form 
( pat1, ..., patn) , where each pati is a pattern.  (We will introduce other forms of pattern later in these 

notes.)

Just as every expression must have a type, so must every pattern.  The type of a pattern is determined 
by a rule governing each form of pattern.  The variable pattern var: typ is of type typ, and the tuple 
pattern ( pat1, ..., patn)  is of type typ1*...*typn, where pati is a pattern of type typi for each i.   Thus 

the pattern (n:int,r:real,s:string)  is of type int*real*string , as might be expected.

A value binding of the form val pat = exp is well-typed iff pat and exp have the same type; 
otherwise the binding is ill-typed and is rejected by the compiler.  Thus the following bindings are 
well-typed (given the bindings above):

val (m:int, n:int) = pair
val (m:int, r:real, s:string) = triple
val ((m:int,n:int), (r:real, s:real)) = pair_of_pairs
val (m:int, n:int, r:real, s:real) = quadruple

In contrast, the following are ill-typed:

val (m:int,n:int,r:real,s:real) = pair_of_pairs
val (m:int, r:real) = pair
val (m:int, r:real) = triple

Value bindings are evaluated using the bind-by-value principle discussed earlier, except that the 
binding process is now more complex than before.  First, we evaluate the right-hand side of the 
binding to a value (if indeed it has one).  Then, we proceed according to the rules of pattern matching
to determine the bindings for the individual variables in the pattern.  This process is quite intuitive.   
For example, the binding

val (m:int,r:real,s:string) = triple

binds m to 2, r  to 2.0 , and s  to "2.0" .

Formally, we go through a process of reduction to atomic value bindings, where an atomic binding is 
one whose pattern is a variable pattern.  The binding

val ( pat1, ..., patn) = ( val1, ..., valn)
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reduces to the sequence of bindings

val pat1 = val1
...
val patn = valn

This decomposition is repeated until all bindings are atomic, at which point the process terminates 
having arrived at the value environment determined by the original binding.  Notice that we rely on 
the fact that values of n-tuple type are n-tuples!   This is a crucial property of the type system of ML, 
which determines the shapes of well-typed values based on their types.

For example, the evaluation of the binding

val ((m:int,n:int), (r:real, s:real)) = pair_of_pairs

proceeds by first evaluating the expression pair_of_pairs  to ((2,3),(2.0,3.0)) , then 
decomposing the pattern ((m:int,n:int), (r:real, s:real))  in two major stages, as 
follows: 

1. Reduce the binding 

val ((m:int,n:int), (r:real, s:real)) = ((2,3),(2.0,3.0))

to the sequence of bindings

val (m:int, n:int) = (2,3)
val (r:real, s:real) = (2.0,3.0) .

2. Reduce the latter bindings to the sequence of atomic bindings 

val m:int = 2
val n:int = 3
val r:real = 2.0
val s:real = 3.0

At this point we have determined the bindings for the individual variables in the pattern.

The null tuple is a tuple with zero elements.  It is written () , which is consistent with the n-tuple 
notation.  Its type, however, is written unit , indicating that it is has but a single element.  The null-
tuple pattern is, of course, also written () .  Aside from regularity, the main reason for having a null 
tuple in the language is to provide a "default" value for expressions that have no interesting value 
(but, presumably, an interesting effect).  We'll have more to say about this later in these notes.

When tuples get large, it gets hard to remember which position is which.  Records are tuples whose 
components are labeled with an identifier.  A record type has the form

{ lab1: typ1, ..., labn: typn} ,
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where n is at least 2.  A record value has the form

{ lab1=val1, ..., labn=valn} ,

where vali has type typi.  A record pattern has the form

{ lab1=pat1, ..., labn=patn} .

This pattern has type { lab1: typ1, ..., labn: typn}  provided that pati has type typi for each i.   The 

important thing to note about record expressions is that the order of the fields determines the order of 
evaluation, but that for record values, the order of the fields is irrelevant.  Once the fields have been 
evaluated, you can write them in any order you like, but the compiler will adhere to the order you 
choose to write unevaluated fields.

Some examples will help clarify the use of record types.

type hyperlink = { protocol : string, address : string, 
display : string }

val mailto_rwh : hyperlink =
    { protocol="mailto", address= "rwh@cs.cmu.edu" , 
display="Robert Harper" }
val plcore_home : hyperlink =
    { protocol="http", address="//cs.cmu.edu/~rwh/plcore", 
display="Programming Languages Core Course" }

val { protocol=port, address=addr, display=disp } = 
mailto_rwh

(The over-use of strings here is quite obvious; in due course we’ll have sufficient mechanism to do a 
better job.)

In practice one often wishes to select only one or two fields from a tuple or record value, the others 
being irrelevant to the computation at hand.  It would be tedious in the extreme to be forced to bind a 
variable to each of possibly dozens of irrelevant fields, just so that you could access one of them.  
Wild card patterns are used to handle these situations.  The basic form of wild card is written as an 
underscore, _.  It is an atomic pattern that does not generate any bindings; wild card bindings are 
simply eliminated (after evaluation of the right-hand side).

val (m:int, _, r:real, _) = quadruple
val (_, (x:real, y:real)) = pair_of_pairs
val { protocol=port, address=_, display=_ } = mailto_rwh

In each case we have elided certain fields using the wild card pattern.  The matching process proceeds 
as before, including evaluation of the right-hand side of the binding, but bindings whose pattern is the 
wild card are dropped.  For example, the first binding above generates in one step the bindings

val m:int = 2
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val _ = 3
val r:real = 2.0
val _ = 3.0

At the next step the bindings for the wild card are dropped, yielding bindings for m and r  alone.

It is important to remember that the right-hand side of a binding is always evaluated, regardless of the 
use of wild card patterns!  Thus a binding of the form val  _ = exp always leads to the evaluation of 
exp, but then its value is thrown away.  (This could be useful when exp has an effect, as we'll see 
much later in these notes.)

You will by now have asked yourself "what is the type of a wild card pattern?".  Good question.  The 
answer is: whatever type is necessary to ensure that the overall binding is well-typed.  This is 
undoubtedly not a fully satisfying answer, because it doesn't tell you how this information is 
determined.   We will have more to say on this when we discuss type inference below.

It is quite common to encounter record types with tens of fields.  In such cases even the wild card 
notation doesn't help much when it comes to selecting one or two fields from such a record.  For this 
we often use ellipsis patterns in records, as illustrated by the following example.

val { protocol = port, ... } = plcore_home

The pattern { protocol = port, ... } stands for the pattern { protocol=port, 
address=_, display=_ }  used earlier.  In effect the compiler replaces the ellipsis with 
however many wild card entries are required in order to complete the record pattern.  In order for this 
to occur the compiler must be able to determine unambiguously the type of the record pattern.  Here 
the right-hand side of the value binding determines the type of the pattern, which then determines 
which additional fields to fill in.  In some situations the context does not disambiguate, in which case 
you must supply additional type information or eschew the use of ellipsis.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

A function may bind more than one argument by using a pattern, rather than a variable, in the 
argument position.  Function expressions may have the form 

fn  pat => exp

where pat is a pattern and exp is an expression.  Application of such a function proceeds much as 
before, except that the argument value is matched against the parameter pattern to determine the 
bindings of zero or more variables, which are then used during the evaluation of the body of the 
function.

For example, we may make the following definition of the Euclidean distance function:

val dist : real * real -> real = fn (x:real, y:real) => 
sqrt (x*x + y*y)

This function may then be applied to a pair (two-tuple!) of arguments to yield the distance between 
them.  For example, dist (2.0,3.0)  evaluates to (approximately) 4.0 .

Using fun  notation, the distance function may be defined more concisely as follows:

fun dist (x:real, y:real):real = sqrt (x*x + y*y)

The meaning is the same as the more verbose val  binding given earlier.

Keyword parameter passing is supported through the use of record patterns.  For example, we may 
define the distance function using keyword parameters as follows:

fun dist’ {x=x:real, y=y:real} = sqrt (x*x + y*y)

The expression dist’ {x=2.0,y=3.0}  invokes this function with the indicated x and y values.

Functions with multiple results may be thought of as functions yielding tuples (or records).  For 
example, we might compute two different notions of distance between two points at once as follows:

fun dist2 (x:real, y:real):real*real = (sqrt (x*x+y*y), abs
(x-y))
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Notice that the result type is a pair, which may be thought of as two results.

These examples illustrate a pleasing regularity in the design of ML.  Rather than introduce ad hoc
notions such as multiple arguments, multiple results, or keyword parameters, we make use of the 
general mechanisms of tuples, records, and pattern matching.

It is sometimes useful to have a function to select a particular component from a tuple or record (e.g., 
the third component or the component labeled url ).   Such functions may be easily defined using 
pattern matching.  But since they arise so frequently, they are pre-defined in ML using sharp 
notation.  For any record type typ1* ...* typn, and each i between 1 and n, there is a function #i  of 

type typ1* ...* typn->typi defined as follows:

fun #i (_, ..., x, ..., _) = x

where x  occurs in the ith position of the tuple (and there are underscores in the other n-1 positions).  
Thus we may refer to the second field of a three-tuple val by writing #2 val.  It is bad style, however, 
to over-use the sharp notation; code is generally clearer and easier to maintain if you use patterns 
wherever possible.  Compare, for example, the following definition of the Euclidean distance 
function written using sharp notation with the original.

fun dist (p:real*real):real = sqrt((#1 p)*(#1 p)+(#2 p)*(#2 
p))

You can easily see that this gets out of hand very quickly, leading to unreadable code.  Use of the 
sharp notation is strongly discouraged!

A similar notation is provided for record field selection.  The following function #lab  selects the 
component of a record with label lab.

fun #lab {lab=x,...} = x

Notice the use of ellipsis!  Bear in mind the disambiguation requirement: any use of #lab  must be in 
a context sufficient to determine the full record type of its argument.

Tuple types have the property that all values of that type have the same shape; they are said to be 
homogeneous.  For example, all values of type int*real  are pairs whose first component is an 
integer and whose second component is a real.  Any type-correct pattern will match any value of that 
type; there is no possibility of failure of pattern matching.  The pattern (x:int,y:real)  is of type 
int*real  and hence will match any value of that type.  On the other hand the pattern 
(x:int,y:real,z:string)  is of type int*real*string  and cannot be used to match 
against values of type int*real ; it is a compile-time type error to attempt to do otherwise.

Other types have values of more than one "shape"; they are said to be heterogeneous types.  For 
example, a value of type int  might be 0, 1, ~1, ... or a value of type char  might be #"a"  or 
#"z" .  (Other examples of heterogeneous types will arise later on.)  Corresponding to each of the 
values of these types is a pattern that matches only that value.  Attempting to match any other value 
against that pattern fails at execution time.  For the time being we will think of match failure as a fatal 



Concatenation Page 36 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

run-time error, but later on we will see that the extent of the failure can be controlled.

Here are some simple examples of pattern-matching against values of a heterogeneous type:

val 0 = 1-1
val (0,x) = (1-1, 34)
val (0, #"0") = (2-1, #"0")

The first two bindings succeed, the third fails.  In the case of the second, the variable x  is bound to 
34  after the match.  No variables are bound in the first or third examples.

The importance of constant patterns becomes clearer once we consider how to define functions over 
heterogeneous types.  This is achieved in ML using a clausal function definition.   The general form 
of a function is

fn  pat1 => exp1 | ... | patn => expn

where each pati is a pattern and each expi is an expression involving the variables of the pattern pati.  

Each component pat => exp is called a clause or rule; the entire assembly of rules is called a match.

The typing rules for matches ensure consistency of the clauses.  Specifically, 

1. Each pattern in the match must have the same type typ. 
2. Each expression in the match must have the same type typ’, given the types of the variables in 

the patterns. 

The type of a function whose body is a match satisfying these requirements is typ-> typ'.   Note that 
there is no requirement that typ and typ' coincide!

Application of functions with multiple clauses to a value val proceeds by considering each clause in 
the order written.  At stage i the argument value val is matched against the pattern pati; if the pattern 

match succeeds, evaluation continues with the evaluation of expression expi, with the variables 

replaced by the values determined by the pattern matching process.   Otherwise we proceed to stage 
i+1 .  If no pattern matches (i.e., we reach stage n+1), then the application fails with an execution 
error.   Here's an example.

val recip : int -> int = fn 0 => 0 | n:int => 1 div n

This defines an integer-valued reciprocal function on the integers, where the reciprocal of 0 is 
arbitrarily defined to be 0.  The function has two clauses, one for the argument 0, the other for non-
zero arguments n.  (Note that n is guaranteed to be non-zero because the patterns are considered in 
order: we reach the pattern n:int  only if the argument fails to match the pattern 0.)

Using fun  notation we may define recip  as follows:

fun recip 0 = 0
  | recip (n:int) = 1 div n
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One annoying thing to watch out for is that the "fun " form uses an equal sign to separate the pattern 
from the expression in a clause, whereas the "fn " form uses an arrow.

Heterogeneous types abound.  Perhaps the must fundamental one is the type bool  of booleans.  Its 
values are true  and false .   Functions may be defined on booleans using clausal definitions that 
dispatch on true  and false .  For example, the negation function is defined clausally as follows:

fun not true = false
  | not false = true

In fact, this function is pre-defined in ML.

Case analysis on the values of a heterogeneous type is performed by application of a clausally-defined 
function.  The notation

case exp of pat1 => exp1 | ... | patn => expn

is short for the application

(fn pat1 => exp1 | ... | patn => expn) exp.

Evaluation proceeds by first evaluating exp, then matching its value successively against the patterns 
in the match until one succeeds, and continuing with evaluation of the corresponding expression.  The 
case  expression fails if no pattern succeeds to match the value.

The conditional expression

if  exp then  exp1 else  exp2

is short-hand for the case analysis

case  exp of  true  => exp1 |  false  => exp2

which is itself short-hand for the application

(fn  true  => exp1 |  false  => exp2) exp.

The "short-circuit" conjunction and disjunction operations are defined as follows.  The expression 
exp1 andalso  exp2 is short for if  exp1 then  exp2 else  false  and the expression exp1 orelse

exp2 is short for if  exp1 then  true  else  exp2.  You should expand these into case expressions 

and check that they behave as expected.  Pay particular attention to the evaluation order, and observe 
that the call-by-value principle is not violated by these expressions.

Conceptually, equality and comparison operations on the types int , char , and string  are defined 
by infinite (or, at any rate, enormously large) matches, but in practice they are built into the language 
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as primitives.  (The ordering on char and string  are the lexicographic orderings.)  Thus we may 
write

fun is_alpha c:char =
    (#"a" <= c andalso c <= #"z") orelse (#"A" <= c andalso 
c <= #"Z")

to test for alphabetic characters.

All this talk of success and failure of pattern matching brings up the issue of exhaustiveness and 
redundancy in a match.  A clause in a match is redundant if any value matching its pattern must have 
matched the pattern of a preceding clause in the match.  A redundant rule can never be reached during 
execution.  It is always an error to have a redundant clause in a match.  Redundant clauses often arise 
accidentally.  For example, the second clause of the following function definition is redundant for 
annoyingly subtle reasons:

fun not True = false
  | not false = true

The mistake is to have capitalized True  so that it is no longer the boolean-typed constant pattern, but 
is rather a variable that matches any value of Boolean type.  Hence the second clause is redundant.  
Reversing the order of clauses can also lead to redundancy, as in the following mistaken definition of 
recip :

fun recip (n:int) = 1 div n
  | recip 0 = 0

The second clause is redundant because the first clause will always match any integer value, 
including 0.

A match (as a whole) is exhaustive if every possible value of the domain type of the match must 
match some clause of that match.  In other words, pattern matching against an exhaustive pattern 
cannot fail at run-time.  The clauses in the (original) definition of recip  are exhaustive because they 
cover every possible integer value.  The match comprising the body of the following function is not 
exhaustive:

fun is_numeric #"0" = true
  | is_numeric #"1" = true
  | is_numeric #"2" = true
  | is_numeric #"3" = true
  | is_numeric #"4" = true
  | is_numeric #"5" = true
  | is_numeric #"6" = true
  | is_numeric #"7" = true
  | is_numeric #"8" = true
  | is_numeric #"9" = true

When applied to, say, #"a" , this function fails.

It is often, but not always, an error to have an inexhaustive match.  The reason is that the type system 
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cannot record many invariants (such as the property that is_numeric is only called with a 
character representing a decimal digit), and hence the compiler will issue a warning about 
inexhaustive matches.  It is a good idea to check each such warning to ensure that you have not 
accidentally omitted a clause from the match.

Any match can be made exhaustive by the inclusion of a catch-all clause of the form

_ => exp

where exp is an expression of the appropriate type.  It is a bad idea to simply stick such a clause at the 
end of every match in order to eliminate "inexhaustive pattern" warnings.  By doing so you give up 
the possibility that the compiler may warn you of a legitimate error (due to a forgotten case) in your 
program.  The compiler is your friend!  Use it to your advantage!

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

It's time to return to function definitions.  So far we've only considered very simple functions (such as 
the reciprocal function) whose value is computed more or less directly using the primitives of the 
language.  You may well be wondering at this stage how to define functions that require some form 
of iteration to compute.   In familiar imperative languages iteration is accomplished using while  and 
for  loops; in ML it is accomplished using recursion.

Informally, a function defined by recursion is one that computes the result of a call by "calling itself".  
To accomplish this, the function must be given a name by which it can refer to itself.  This is 
achieved using a recursive value binding.  Recursive value bindings have almost the same form as 
ordinary, non-recursive value bindings, except that the binding is qualified with the adjective "rec " 
by writing val rec pat = exp.   Here's an example:

val rec factorial : int->int = fn 0 => 1 | n:int => n * 
factorial (n-1)

This is a recursive definition of the factorial function, which is ordinarily defined in textbooks by the 
recursion equations

0! = 1
n! = n*(n-1)!  (n>=0)

Using fun  notation we may write the definition of factorial much more clearly and concisely as 
follows:

fun factorial 0 = 1
  | factorial (n:int) = n * factorial (n-1)

There is clearly a close correspondence between the ML notation and the mathematical notation for 
the factorial function.

How are recursive value bindings type-checked?  The answer may appear, at first reading, to be 
paradoxical: assume that the function has the type specified, then check that the definition is 
consistent with this assumption.  In the case of factorial  we assume that factorial  has type 
int->int , then check that its definition

fn 0 => 1 | n:int => n * factorial (n-1)
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has type int->int .  To do so we must check that each pattern has type int , and that each 
corresponding expression has type int .   This is clearly true for the first clause of the definition.  For 
the second, we assume that n has type int , then check that n * factorial (n-1)  has type 
int .  This is so because of the rules for the primitive arithmetic operations and because of our 
assumption that factorial  has type int->int .  (Be certain that you understand this reasoning!   
It is essential for what follows.)

How are applications of recursive value bindings evaluated?  The rules are almost the same as 
before.  We need only observe that the binding for the function may have to be retrieved many times 
during evaluation (once for each recursive call).  For example, to evaluate factorial 3 , we 
retrieve the definition of factorial , then pattern match the argument against the pattern of each 
clause.  Clearly 3 does not match 0, but it does match n:int , binding n to 3 in the process.  We 
then evaluate n * factorial (n-1)  relative to this binding for n.  To do so we retrieve the 
binding for factorial  a second time, and to apply it to 2.  Once again we consider each clause in 
turn, failing to match 0, but succeeding to match n:int .   This introduces a new binding for n that 
shadows the previous binding so that n now evaluates to 2.  We then proceed once again to evaluate 
n * factorial (n-1) , this time with n bound to 2.  Once again we retrieve the binding for 
factorial , then bind n to 1, shadowing the two previous bindings, then evaluating n * 
factorial (n-1)  with this binding for n.  We retrieve the binding for factorial  one last 
time, then apply it to 0.   This time we match the pattern 0 and yield 1.  We then (in four steps) 
compute the result, 6, by completing the pending multiplications.

The factorial  function illustrates an important point about recursive function definitions.  Notice 
that the recursive call in the definition of factorial  occurs as the argument of a multiplication.  
This means that in order for the multiplication to complete, we must first complete the calculation of 
the recursive call to factorial .  In rough outline the computation of factorial 3  proceeds as 
follows: 

1. factorial 3
2. 3 * factorial 2
3. 3 * 2 * factorial 1
4. 3 * 2 * 1 * factorial 0
5. 3 * 2 * 1 * 1
6. 3 * 2 * 1
7. 3 * 2
8. 6

(The strings of multiplications are implicitly right-associated.)  Notice that the size of the expression 
first grows (in direct proportion to the argument), then shrinks as the pending multiplications are 
completed.  This growth in expression size corresponds directly to a growth in run-time storage 
required to record the state of the pending computation.

The foregoing definition of factorial  should be contrasted with the following definition:

fun fact_helper (0,r:int) = r
  | fact_helper (n:int,r:int) = fact_helper (n-1,n*r)

fun factorial n:int = fact_helper (n, 1)
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We define factorial  using a helper function fact_helper  that takes an additional parameter, 
called an accumulator, that records the running partial result of the computation.  This corresponds to 
reducing the prefix of the pending computations in the trace given above by "left-associating" the 
multiplications.  (In fact the technique is only applicable to associative binary operations for precisely 
this reason.)

The important thing to observe about fact_helper  is that it is tail recursive, meaning that the 
recursive call is the last step of evaluation of an application of it to an argument.  The following 
evaluation trace illustrates the point: 

1. factorial 3
2. fact_helper (3, 1)
3. fact_helper (2, 3)
4. fact_helper (1, 6)
5. fact_helper (0, 6)
6. 6

Notice that there is no growth in the size of the expression because there are no pending computations 
to be resumed upon completion of the recursive call.   Consequently, there is no growth in the space 
required for an application, in contrast to the first definition given above.  In this sense tail recursive 
definitions are analogous to loops in imperative languages: they merely iterate a computation, and do 
not require allocation of storage during execution.  For this reason tail recursive procedures are 
sometimes called iterative.

Time and space usage are important, but what is more important is that the function compute the 
intended result.  The key to the correctness of a recursive function is an inductive argument 
establishing its correctness.  The critical ingredients are these: 

1. A specification of the result of the function stated in terms of its arguments.   This specification 
will usually involve assumptions about the arguments that are sufficient to establish that the 
function behaves correctly. 

2. An induction principle that justifies the correctness of the recursive function based on the 
pattern of its recursive calls.  In simple cases this is ordinary mathematical induction, but in 
more complicated situations a more sophisticated approach is often required. 

These ideas may be illustrated by considering the first definition of factorial  given above.  A 
reasonable specification for factorial  is as follows:

if n>=0 then factorial  n evaluates to n!

Notice that the specification expresses the assumption that the argument, n, is non-negative, and 
asserts that the application of factorial  to n terminates with the expected answer.

To check that  satisfies this specification, we apply the principle of mathematical induction on the 
argument n.  Recall that this means we are to establish the specification for the case n=0, and, 
assuming it to hold for n>=0, show that it holds for n+1.  The base case, n=0, is trivial: by definition 
factorial  n evaluates to 1, which is 0!.   Now suppose that n=m+1 for some m>=0.  By the 
inductive hypothesis we have that factorial  m evaluates to m!, and so by the definition 



Concatenation Page 43 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

factorial  n evaluates to the value of n*m! = (m+1)*m! = (m+1)! = n!, as required.  This 
completes the proof.

That was easy.  What about the second definition of factorial ?  We focus on the behavior of 
fact_helper .  A suitable specification is

if n>=0 then fact_helper  (n,r) evaluates to n!*r

Once again we proceed by mathematical induction on n; you can easily check that fact_helper 
satisfies this specification.  It follows that the second definition of factorial  in terms of 
fact_helper  satisfies the specification of factorial  given above, since we may take r=1  in 
the specification of fact_helper .

As a matter of programming style, it is usual to conceal the definitions of helper functions using a 
local  declaration.  In practice we would make the following definition of the iterative version of 
factorial :

local
      fun fact_helper (0,r:int) = r
        | fact_helper (n:int,r:int) = fact_helper (n-1,n*r)
in
      fun factorial (n:int) = fact_helper (n,1)
end

This way the helper function is not visible, only the function of interest is "exported" by the 
declaration.

Here’s an example of a function defined by complete induction, the Fibonacci function, defined on 
integers n>=0:

(* for n>=0, fib n evaluates to the nth Fibonacci number *)
fun fib 0 = 1
  | fib 1 = 1
  | fib (n:int) = fib (n-1) + fib (n-2)

The recursive calls are made not only on n-1 , but also n-2 , which is why we must appeal to 
complete induction to justify the definition.  This definition of fib  is very inefficient because it 
performs many redundant computations: to compute fib n  requires that we compute fib (n-1)
and fib (n-2) .  To compute fib (n-1)  requires that we compute fib (n-2)  a second time, 
and fib (n-3) .   Computing fib (n-2)  requires computing fib (n-3)  again, and fib (n-
4) .  As you can see, there is considerable redundancy here.  It can be show that the running time fib
of  is exponential in its argument, which is clearly awful for such a simple function.

Here's a better solution: for each n>=0 compute not only the nth Fibonacci number, but also the (n-1)
st as well.  (For n=0 we define the "-1"st Fibonacci number to be zero).  That way we can avoid 
redundant recomputation, resulting in a linear-time algorithm.  Here's the code:

(* for n>=0, fib n evaluates to (a, b), where a is the nth 
Fibonacci number and b is the (n-1)st *)
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fun fibb 0 = (1, 0)
  | fibb 1 = (1, 1)
  | fibb (n:int) =
    let
        val (a:int, b:int) = fibb (n-1)
    in
        (a+b, a)
    end

You might feel satisfied with this solution since it runs in time linear in n.   But in fact there's a 
constant-time algorithm to compute the nth Fibonacci number!  In other words the recurrence

F0 = 1

F1 = 1

Fn = Fn-1 + Fn-2

has a closed-form solution.  (See Knuth's Concrete Mathematics (Addison-Wesley 1989) for a 
derivation.)  However, this is an unusual case.  In most instances recursively-defined functions have 
no known closed-form solution, so that some form of iteration is inevitable. 

It is often useful to define two functions simultaneously, each of which calls itself and/or the other to 
compute its result.  Such fnctions are said to be mutually recursive.  Here's a simple example to 
illustrate the point, namely testing whether a natural number is odd or even.  The most obvious 
approach is to test whether the number is congruent to 0 mod 2, and indeed this is what one would do 
in practice.  But to illustrate the idea of mutual recursion we instead use the following inductive 
characterization: 0 is even, and not odd; n>0 is even iff n-1 is odd; n>0 is odd iff n-1 is even.  This 
may be coded up using two mutually-recursive procedures as follows:

fun even 0 = true
  | even n = odd (n-1)
and odd 0 = false
  | odd n = even (n-1)

Notice that even  calls odd  and odd  calls even , so they are not definable separately from one 
another.  We join their definitions using the keyword and  to indicate that they are defined 
simultaneously by mutual recursion.  Later in these notes we will see more compelling examples of 
mutually-recursive functions.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

So far (with a few exceptions) we’ve programmed in what is known as an explicitly typed style.  This 
means that whenever we've introduced a variable, we've assigned it a type at its point of introduction.  
In particular every variable in a pattern has a type associated with it.  As you've no doubt noticed, this 
gets a little tedious after a while, especially when you're using clausal function definitions.   A 
particularly pleasant feature of ML is that it allows you to omit this type information whenever it can 
be determined from context.   This process is known as type inference since the compiler is inferring 
the missing type information based on contextual information.

For example, there is no need to give a type to the variable s  in the function fn s:string => s 
^ "\n" .  The reason is that no other type for s  makes sense, since s  is used as an argument to string 
concatenation.  Consequently, you are allowed to write just fn s => s ^ "\n" , leaving ML to 
insert ":string " for you.   When is it allowable to omit this information?  It is difficult to give a 
precise answer without introducing quite a lot of machinery, but we can give some hints of when you 
can and when you cannot omit types.  A remark fact about ML is that the answer is "almost always", 
with the exception of a few trouble spots that we now discuss.

The main difficulty is with the arithmetic operators, which are overloaded, by which we mean that 
the same syntax is used for integer and floating point arithmetic operations.  This creates a problem 
for type inference because it is not possible to unambiguously reconstruct type information for a 
function such as fn n => n+n because there is no way to tell whether the addition operation is 
integer or floating point addition.  We could equally well regard this expression as abbreviating fn 
n:int => n+n , with type int->int , or fn n:real => n+n , with type real->real .  In 
some cases the surrounding context determines which is meant.  For example, in the expression (fn 
n => n+n)(0) the only sensible interpretation is to regard the parameter n to have type int .   A 
related source of difficulty is the (infrequently used) "sharp" notation for records.  Absent information 
from the context, the type of the function fn r => #name(r) cannot be determined: all that is 
known of the type of r  is that it has a name field; neither the type of that field nor the labels and 
types of the remaining fields are determined.  Therefore this function will be rejected as ambiguous 
because there is not enough information to determine the domain type of the function.

These examples illustrate situations where ambiguity leads to difficulties.  But you shouldn't conclude 
from this that type inference must fail unless the missing type information can be uniquely 
determined!  In many (indeed, most) cases there is no unique way to infer omitted type information, 
but there is nevertheless a best way.   (The examples in the preceding paragraph merely serve to point 
out that sometimes there is no best way, either.  But these are the exceptions, rather than the rule.)
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The prototypical example is the identity function, fn x=>x .  The body of the function places no 
constraints on the type of x , since it merely returns x  as result without performing any computation 
on it.  You might suspect that this expression has to be rejected since its type is ambiguous, but this 
would be unfortunate since the expression makes perfectly good sense for any choice of the type of 
x .  This is in sharp contrast to examples such as the function fn x=>x+1 , for which only two
choices for the type of x  are possible (namely, int  and real ), with no way to choose between 
them.  The choice of int  or real  affects the behavior of the function: in one case it performs an 
integer addition, in the other a floating point addition.  In the case of the identity function, however, 
we may choose any type at all for x , without affecting the execution behavior of the function --- the 
function is said to be polymorphic because its execution behavior is uniform in the type of x .  
Therefore the identity function has infinitely many types, one for each choice of the type of the 
parameter x .   Choosing the type of x  to be typ, the type of the identity function is typ-> typ.  In other 
words every type for the identity function has the form typ-> typ, where typ is the type of the 
argument.

Clearly there is a pattern here, which is captured by the notion of a type scheme.   A type scheme is a 
type expression involving one or more type variables standing for an unknown, but arbitrary type 
expression.  Type variables are written ’a  ("alpha"), ’b  ("beta"), ’c  ("gamma"),  etc.  An instance of 
a type scheme is obtained by replacing each of the type variables occurring in it with a type scheme, 
with the same type scheme replacing each occurrence of a given type variable.  For example, the type 
scheme ’a->’a  has instances int->int , string->string , (int*int)->(int*int) , and 
(’b->’b)->(’b->’b) , among infinitely many others.  It does not have the type int->string
as instance, since we are constrained to replace all occurrences of a type variable by the same type 
scheme.  However, the type scheme ’a->’b  has both int->int  and int->string  as instances 
since there are different type variables occurring in the domain and range positions.

Type schemes are used to capture the polymorphic behavior of functions.  For example, we may write 
fn x:’a=>x  for the polymorphic identity function of type ’a->’a , meaning that the behavior of 
the identity function is independent of the type of x , an hence may be chosen arbitrarily.   Similarly, 
the behavior of the function fn (x,y)=>x+1  is independent of the type of y , but constrains the 
type of x  to be int .  This may be expressed using type schemes by writing this function in the 
explicitly-typed form fn (x:int,y:’a)=>x+1  with type int*’a->’a .   In each of these cases 
we needed only one type variable to express the polymorphic behavior of a function, but usually we 
need more than one.  For example, the function fn (x,y) = x  constrains neither the type of x  nor 
the type of y .   Consequently we may choose their types freely and independently of one another.   
This may be expressed by writing this function in the form fn (x:’a,y:’b):’a=>x  with type 
’a*’b->’a .  Notice that while it is correct to assign the type ’a*’a->’a  to this function, doing 
so would be overly restrictive since the types of the two parameters need not be the same.   Notice as 
well that we could not assign the type ’a*’b->’c  to this function because the type of the result 
must be the same as the type of the first parameter since the function returns its first parameter when 
invoked.  The type scheme precisely captures the constraints that must be satisfied for the function to 
be type correct.  It is said to be the most general or principal type scheme for the function.

It is a remarkable fact about ML that every expression (with the exception of those pesky examples 
involving arithmetic primitives or record selection operations) has a principal type scheme.  That is, 
there is always (well, with very few exceptions) a best or most general way to infer types for 
expressions that maximizes generality, and hence maximizes flexibility in the use of the expression.  
Every expression "seeks its own depth" in the sense that an occurrence of that expression is assigned 
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a type that is an instance of its principal type scheme determined by the context of use.  For example, 
if we write (fn x=>x)(0) , then the context forces the type of the identity function to be int-
>int , and if we write (fn x=>x)(fn x=>x)(0) , the context of use selects the instance (int-
>int)->(int->int)  of the principal type scheme for the identity at the first occurrence, and the 
instance int->int  for the second.

How is this achieved?  Type inference is a process of constraint satisfaction.   First, the expression 
determines a set of equations governing the relationships among the types of its subexpressions.  For 
example, if a function is applied to an argument, then a constraint equating the domain type of the 
function with the type of the argument is generated.  Second, the constraints are solved using a 
process similar to Gaussian elimination, called unification.  The equations can be classified by their 
solution sets as follows: 

1. Overconstrained: there is no solution.  This corresponds to a type checking error. 
2. Underconstrained: there are many solutions.  There are two sub-cases: ambiguous (due to 

overloading), or polymorphic (there is a "best" solution). 
3. Uniquely determined: there is precisely one solution.  This corresponds to an unambiguous 

type inference problem. 

The free type variables of the system of equations determines the "degree" of polymorphism in the 
expression: the constraints have a solution for any choice of types to substitute for these variables.

The characterization of type inference as a constraint satisfaction procedure suggests an explanation 
for the notorious obscurity of type checking errors in ML.  If a program is not type correct, then the 
system of constraints associated with it will not have a solution.  The type inference procedure 
considers the constraints in some order, and at some point discovers an inconsistency.  It is 
fundamentally impossible to attribute this inconsistency to any one feature of the program: all that is 
know is that the constraint set as a whole is unsatisfiable.  The checker usually reports the first 
unsatisfiable equation it encounters, but this may or may not correspond to the "reason" (in the mind 
of the programmer) for the type error.  The usual method for finding the error is to insert sufficient 
type information to narrow down the source of the inconsistency until the source of the difficulty is 
uncovered.

There is an important interaction between polymorphic expressions and value bindings that may be 
illustrated by the following example.  Suppose that we wish to bind the identity function to a variable 
I  so that we may refer to it by name.   We've previously observed that the identity function is 
polymorphic, with principal type scheme ’a->’a .  This may be captured by ascribing this type 
scheme to the variable I  at the val  binding.  That is, we may write

val I : ’a->’a = fn x=>x

to ascribe the type scheme ’a->’a  to the variable I .   (We may also write

fun I(x:’a):’a = x

for an equivalent binding of I .)  Having done this, each use of I  determines a distinct instance of the 
ascribed type scheme ’a->’a .   That is, both I 0  and I I 0  are well-formed expressions, the first 
assigning the type int->int  to I , the second assigning the types (int->int)->(int->int)
and int->int  to the two occurrences of I .  Thus the variable I  behaves precisely the same as its 
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definition, fn x=>x , in any expression where it is used.

As a convenience ML also provides a form of type inference on value bindings that eliminates the 
need to ascribe a type scheme to the variable when it is bound.  If no type is ascribed to a variable 
introduced by a val  binding, then it is implicitly ascribed the principal type scheme of the right-hand 
side.  For example, we may write

val I = fn x=>x

or

fun I(x) = x

as a binding for the variable .  The type checker implicitly assigns the principal type scheme, ’a-
>’a , of the binding to the variable I .   In practice we often allow the type checker to infer the 
principal type of a variable, but it is often good form to explicitly indicate the intended type as a 
consistency check and for documentation purposes.

We finish this section with a technical issue that arises from time to time.  As we remarked above, the 
treatment of val  bindings ensures that a bound variable has precisely the same types as its binding.  
In other words the type checker behaves as though all uses of the bound variable are implicitly 
replaced by its binding before type checking.  Since this may involve replication of the binding, the 
meaning of a program is not necessarily preserved by this transformation.  (Think, for example, of 
any expression that opens a window on your screen: if you replicate the expression and evaluate it 
twice, it will open two windows.  This is not the same as evaluating it only once, which results in one 
window.)  To ensure semantic consistency, variables introduced by a val  binding are allowed to be 
polymorphic only if the right-hand side is a value.  (This is called the value restriction on 
polymorphic declarations.)  For fun  bindings this restriction is always met since the right-hand side 
is implicitly a lambda, which is a value.  However, it might be thought that the following declaration 
introduces a polymorphic variable of type ’a -> ’a , but in fact it is rejected by the compiler:

val J = I I

The reason is that the right-hand side is not a value; it requires computation to determine its value.  It 
is therefore ruled out as inadmissible for polymorphism; the variable J  may not be used 
polymorphically in the remainder of the program.   In this case the difficulty may be avoided by 
writing instead

fun J x = I I x

because now the binding of J  is a lambda, which is a value.  In some rare circumstances this is not 
possible, and some polymorphism is lost.  For example, the declaration

val l = nil @ nil

does not introduce an identifier with a polymorphic type, even though the almost equivalent 
declaration

val l = nil
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does do so.  Since the right-hand side is a list, we cannot apply the "trick" of defining l  to be a 
function; we are stuck with a loss of polymorphism in this case.  This particular example is not very 
impressive since it's hard to imagine using the former, rather than the latter, declaration in a practical 
situation, but occasionally something similar does arise, with an attendant loss of polymorphism.

Why this limitation?  Later on, when we study mutable storage, we'll see that some restriction on 
polymorphism is essential if the language is to be type safe.  The value restriction is an easily-
remembered sufficient condition for soundness, but as the examples above illustrate, it is by no 
means necessary.  The designers of ML were faced with a choice of simplicity vs flexibility; in this 
case they opted for simplicity at the expense of some expressiveness in the language. 

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Lists
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Sample Code for this Chapter

We have already noted that aggregate data structures are especially easy to handle in ML.  Our first 
examples were tuple and record types.  The list types provide another example of an aggregate data 
structure in ML.  Informally, the values of type typ list  are the finite lists of values of type typ.   
But what is a list?  The values of type typ list  are defined as follows: 

1. nil  is a value of type typ list . 
2. if h is a value of type typ, and t is a value of type typ list , then h:: t is a value of type typ 

list . 
3. Nothing else is a value of type typ list . 

The type expression typ list  is a postfix notation for the application of the type constructor list
to the argument typ.   Thus list  is a kind of "function" mapping types to types: given a type typ, we 
may apply list  to it to get another type, written typ list .  The forms nil  and ::  are the value 
constructors of type typ list .  The nullary (no argument) constructor nil  may be thought of as the 
empty list.   The binary (two argument) constructor ::  constructs a non-empty list from a value h of 
type typ and another value t of type typ list ; the resulting value, h:: t, of type typ list  is 
pronounced "h cons t" (for historical reasons).  We say that "h is cons'd onto t", that h is the "head" of 
the list, and that t is its "tail".

The definition of the values of type  typ list  given above is an example of an inductive definition.   
The type  is said to be recursive because this definition is "self-referential" in the sense that the values 
of type typ list  are defined in terms of (other) values of the same type.  This is especially clear if 
we examine the types of the value constructors for the type typ list :

nil : typ list
op :: : typ * typ list -> typ list

(The notation op ::  is used to refer to the "cons" operator as a function, rather than to use it to form 
a list, which requires infix notation.)  Two things are notable here: 

1. The "cons" operation takes an argument of type typ list , and yields a result of type typ 
list .  This reflects the "recursive" nature of the type typ list . 

2. Both operations are polymorphic in the type of the underlying elements of the list.  Thus nil  is 
the empty list of type typ list  for any element type typ, and op ::  constructs a non-empty 
list independently of the type of the elements of that list. 
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A consequence of the inductive definition of the list type is that values of type typ list  have the 
form

h1 ::(  h2 ::  ... ::(  hn ::  nil) ...)

for some n>=0.  (When n is zero, this is, by convention, the empty list, nil.)  The operator ::  is 
right-associative, so we may omit the parentheses and just write

h1 ::  h2 ::  ... ::  hn ::  nil .

As a further convenience this list may be abbreviated using list notation:

[  h1 ,  h2 ,  ... ,  hn ]

This notation emphasizes the interpretation of lists as finite sequences of values, but it obscures the 
fundamental inductive character of lists as being built up from nil  using the ::  operation.

How do we compute with values of list type?  Since the values are defined inductively, it is natural 
that functions on lists be defined recursively, using a clausal definition that analyzes the structure of a 
list.  Here's a definition of the function length  that computes the number of elements of a list:

fun length nil = 0
  | length (_::t) = 1 + length t

The definition is given by induction on the structure of the list argument.  The base case is the empty 
list, nil .  The inductive step is the non-empty list _::t  (notice that we do not need to give a name 
to the head).   Its definition is given in terms of the tail of the list t , which is "smaller" than the list 
_::t .  The type length  of  is ’a list -> int ; it is defined for lists of values of any type 
whatsoever.

We may define other functions following a similar pattern.  Here's the function to append two lists:

fun append (nil, l) = l
  | append (h::t, l) = h :: append (t, l)

This function is built into ML; it is written using infix notation as exp1 @ exp2.  The running time of 

append  is proportional to the length of the first list, as should be obvious from its definition.

Here’s a function to reverse a list.

fun rev nil = nil
  | rev (h::t) = rev t @ [h]

It is not tail recursive.  In fact, its time complexity is O(n2), where n is the length of the argument 
list.  This can be demonstrated by writing down a recurrence that defines the running time T(n) of  on 
a list of length n.
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T(0) = O(1)
T(n+1) = T(n) + O(1)

Solving the recurrence we obtain the result T(n)=O(n2).

Can we do better?  Oddly, we can take advantage of the non-associativity of ::  to give a tail-
recursive definition of rev .

local
      fun rev_helper (nil, a) = a
        | rev_helper (h::t, a) = rev_helper (t, h::a)
in
      fun rev l = rev_helper (l, nil)
end

The pattern is the same as before, except that by re-associating the uses of ::  we reverse the list!  
The helper function reverses its first argument and prepends it to its second argument.  That is, 
rev_helper (l, a)  evaluates to (rev l) @ a , where we assume here an independent 
definition of rev  for the sake of the specification.  Notice that rev_helper  runs in time 
proportional to the length of its first argument, and hence rev  runs in time proportional to the length 
of the list.

The correctness of functions defined on lists is established using the principle of structural 
induction.  We illustrate this by establishing that the function rev_helper  satisfies the following 
specification:

for every l and a of type typ list , rev_helper ( l, a)  evaluates to the result of 
appending a to the reversal of l.

The proof is by structural induction on the list l.  If l is nil , then rev_helper ( l, a)  evaluates 
to a, which is as required.  If l is h:: t, then by inductive hypothesis  evaluates to the result of 
appending h:: a to the reversal of t, which is easily seen to be the result of appending a to the 
reversal of h:: t.

The form of this argument may be summarized as follows: 

1. Establish the correctness of the function for the empty list, nil . 
2. Assuming the correctness of the function for t, establish its correctness for h:: t. 

It follows that the function is correct for all lists l, by the inductive definition of the list type.  This is 
called the principle of structural induction on lists.  We will soon generalize this to other inductively-
defined types.

Sample Code for this Chapter
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Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

Lists are one example of the notion of a recursive datatype.  ML provides a general mechanism, the 
datatype  declaration, for introducing recursive types.   Earlier we introduced the type
declarations as an abbreviation mechanism.  Giving a type a name is useful documentation and is 
convenient as an abbreviation, but is otherwise inconsequential.  One could replace all uses of the 
type name by its definition and not effect the behavior of the program.  In contrast the datatype
declaration provides a means of introducing a new type that is distinct from all other types and that 
does not merely stand for some other type.   It is the means by which the ML type system may be 
extended by the programmer. 

The datatype declaration in ML has a number of facets.  A datatype declaration introduces 

1. One or more "new" type constructors.  The type constructors introduced may, nor may not, be 
(mutually) recursive. 

2. One or more "new" value constructors for each of the type constructors introduced by the 
declaration. 

The type constructor may take zero or more arguments; a zero-argument, or nullary, type constructor 
is just a type.  Each value constructor may also take zero or more arguments; a nullary value 
constructor is just a constant.  The type and value constructors introduced by the declaration are 
"new" in the sense that they are distinct from all other type and value constructors previously 
introduced; if a datatype re-defines an "old" type or value constructor, then the old definition is 
shadowed by the new one, rendering the old ones inaccessible in the scope of the new definition.

Here's a simple example of a nullary type constructor with four nullary value constructors.

datatype suit = Spades | Hearts | Diamonds | Clubs

This declaration introduces a new type suit  with four nullary value constructors, Spades , 
Hearts , Diamonds , and Clubs .   This declaration may be read as introducing a type suit  such 
that a value of type suit  is either Spades , or Hearts , or Diamonds , or Clubs .  There is no 
significance to the ordering of the constructors in the declaration; we could just as well have written

datatype suit = Hearts | Diamonds | Spades | Clubs

(or any other ordering, for that matter).  It is conventional to capitalize the names of value 
constructors, but this is not required by the language.
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Given the declaration of the type suit, we may define functions on it by case analysis on the value 
constructors using a clausal function definition.  For example, we may define the suit ordering in 
Bridge by the function

fun outranks (Spades, Spades) = false
  | outranks (Spades, _) = true
  | outranks (Hearts, Spades) = false
  | outranks (Hearts, Hearts) = false
  | outranks (Hearts, _) = true
  | outranks (Diamonds, Clubs) = true
  | outranks (Diamonds, _) = false
  | outranks (Clubs, _) = false

This defines a function of type

suit * suit -> bool

which determines whether or not the first suit  outranks the second.

Datatypes may also be parameterized by another type.  For example, 

datatype ’a option = NONE | SOME of ’a

introduces the unary type constructor ’a option .  The values of type typ option  are: 

1. The constant NONE, and 
2. Values of the form SOME val, where val is a value of type typ. 

For example, some values of type string option are NONE, SOME "abc", and SOME "def".

The option type constructor is pre-defined in Standard ML.  One common use of option types is to 
handle functions with an optional argument.  For example, here is a function to compute the base-b 
exponential function for natural number exponents that defaults to base 2:

fun expt (NONE, n) = expt (SOME 2, n)
  | expt (SOME b, 0) = 1
  | expt (SOME b, n) =
    if n mod 2 = 0 then expt (SOME b*b, n div 2) else b * 
expt (SOME b, n-1)

The advantage of the option type in this sort of situation is that it avoids the need to make a special 
case of a particular argument, e.g., using 0 as first argument to mean "use the default exponent".

A related use of option types is in aggregate data structures.  For example, an address book entry 
might have a record type with fields for various bits of data about a person.  But not all data is 
relevant to all people.  For example, someone may not have a spouse, but they all have a name.  For 
this we might use a type definition of the form

type entry = { name:string, spouse:string option, ... }
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so that one would create an entry for an unmarried person with a spouse  field of NONE.

The next level of generality is the recursive type definition.  For example, one may define a type typ 
tree  of binary trees with values of type typ at the nodes using the following declaration:

datatype ’a tree = Empty | Node of ’a tree * ’a * ’a tree

This declaration corresponds directly to the informal definition of binary trees with values of type typ
at the nodes: 

1. The empty tree Empty  is a binary tree. 
2. If tree1 and tree2 are binary trees, and val is a value of type typ, then Node ( tree1, val, tree2)

is a binary tree. 
3. Nothing else is a binary tree. 

The distinguishing feature of this definition is that it is recursive in the sense that binary trees are 
constructed out of other binary trees, with the empty tree serving as the base case.

Incidentally, a leaf in a binary tree is here represented as a node both of whose children are the empty 
tree.  Our definition of binary trees is analogous to starting the natural numbers with zero, rather than 
one.  In fact you can think of the children of a node in a binary tree as the "predecessors" of that node, 
the only difference compared to the usual definition of predecessor being that a node has two, rather 
than one, predecessors.

To compute with a recursive type one ordinarily defines recursive functions.  For example, here is the 
function to compute the height of a binary tree:

fun height Empty = 0
  | height (Node (lft, _, rht)) = 1 + max (height lft, 
height rht)

Notice that height  is called recursively on the children of a node, and is defined outright on the 
empty tree.  This pattern of definition is called structural induction.  The function height  is said to 
be defined by induction on the structure of its argument, a tree.  The general idea is to define the 
function directly for the base cases of the recursive type (i.e., value constructors with no arguments or 
whose arguments do not involve values of the type being defined), and to define it for non-base cases 
in terms of its definitions for the constituent values of that type.  We will see numerous examples of 
this as we go along.

Here's another example.  The size of a binary tree is the number of nodes occurring in it.  Here's a 
straightforward definition in ML:

fun size Empty = 0
  | size (Node (lft, _, rht)) = 1 + size lft + size rht

The function size is defined by structural induction on trees.

A word of warning.  One reason to capitalize value constructors is to avoid a pitfall in the ML 
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syntax.  Suppose we gave the following definition of size :

fun size empty = 0
  | size (Node (lft, _, rht)) = 1 + size lft + size rht

What happens?  The compiler will warn us that the second clause of the definition is redundant!  
Why?  Because empty , spelled with a lower-case "e", is a variable, not a constructor, and hence 
matches any tree whatsoever.  Consequently the second clause never applies.   By capitalizing 
constructors we can hope to make mistakes such as these more evident, but in practice you are bound 
to run into this sort of mistake.

The tree  datatype is appropriate for binary trees: those for which every node has exactly two 
children.  (Of course, either or both children might be the empty tree, so we may consider this to 
define the type of trees with at most two children; it's a matter of terminology which interpretation 
you prefer.)  It should be obvious (try it) how to define the type of ternary trees (whose nodes have 
(at most) three children), and so on for other fixed arities.  But what if we wished to define a type of 
trees with a variable number of children?  In a so-called variadic tree some nodes might have three 
children, some might have two, and so on.  This can be achieved in at least two ways.  One way 
combines lists and trees, as follows:

datatype ’a tree = Empty | Node of ’a * ’a tree list

Each node has a list of children, so that distinct nodes may have different numbers of children.  
Notice that the empty tree is distinct from the tree with one node and no children because there is no 
data associated with the empty tree, whereas there is a value of type ’a  at each node.

Another approach is to simultaneously define a variadic tree to be either empty, or a node collecting 
together a forest to form a tree, and a forest to be either empty or a variadic tree together with another 
forest.  This leads to the following definition:

datatype ’a tree = Empty | Node of ’a * ’a forest
and      'a forest = Nil | Cons of 'a tree * 'a forest

This example illustrates the introduction of two mutually recursive datatypes, which is why we 
present it here.  Mutually recursive datatypes beget mutually recursive functions defined on them.  
Here's a definition of the size (number of nodes) of a variadic tree:

fun size_tree Empty = 0
  | size_tree (Node (_, f)) = 1 + size_forest f
and size_forest Nil = 0
  | size_forest (Cons (t, f')) = size_tree t + size_forest 
f'

Notice that we define the size of a tree in terms of the size of a forest, and vice versa, just as the type 
of trees is defined in terms of the type of forests.

Many other variations are possible.  Suppose we wish to define a notion of binary tree in which data 
items are associated with branches, rather than nodes.  Here's datatype declaration for such trees:

datatype ’a tree = Empty | Node of ’a branch * ’a branch
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and      'a branch = Branch of 'a * 'a tree

Notice that in contrast to our first definition of binary trees in which the branches from a node to its 
children were implicit, these branches are now explicit since they are labelled with data items.  For 
example, we can collect up into a list the data items labelling the branches of such a tree using the 
following code:

fun collect Empty = nil
  | collect (Node (Branch (ld, lt), Branch (rd, rt))) =
    ld :: rd :: (collect lt) @ (collect rt)

Returning to the original definition of binary trees (with data items at the nodes), observe that the type
of the data items at the nodes must be the same for every node of the tree.  For example, a value of 
type int tree has an integer at every node, and a value of type string tree has a string at every node.  
Therefore it makes no sense to evaluate the expression

Node (Empty, 43, Node (Empty, "43", Empty))

since the result, if it were to be accepted, would be a "heterogeneous" tree with integers at some 
nodes and strings at others.  Such structures are ruled out in ML as type-incorrect.

In 95% of the cases this apparent restriction is no restriction at all; it is quite rare to encounter 
heterogeneous data structures in real programs.  For example, a dictionary with strings as keys might 
be represented as a binary search tree with strings at the nodes; there is no need for heterogeneity to 
represent such a data structure.  But what about the other 5%?  What if one really wanted to have a 
tree with integers at some nodes and strings at others?  How would one represent such a thing in 
ML?  To see the answer, first think about how one might manipulate such a data structure.  When 
accessing a node, we would need to check at run-time whether the data item is an integer or a string; 
otherwise we would not know whether to, say, add 1 to it, or concatenate "1" to the end of it.  This 
suggests that the data item must be labelled with sufficient information so that we may determine the 
type of the item at run-time.  We must also be able to recover the underlying data item itself so that 
familiar operations (such as addition or string concatenation) may be applied to it.  This is neatly 
achieved using a datatype declaration.  Suppose we wish to represent the type of integer-or-string 
trees.  First, we define the type of values to be integers or strings, marked with a constructor 
indicating which:

datatype int_or_string = Int of int | String of string

Then we define the type of interest as follows:

type int_or_string_tree = int_or_string tree

Voila!  Perfectly natural and easy --- heterogeneity is really a special case of homogeneity!

Datatype  declarations and pattern matching are extremely useful for defining and manipulating the 
abstract syntax of a language.  For example, we may define a small language of arithmetic 
expressions using the following declaration:

datatype expr = Numeral of int | Plus of expr * expr | 
Times of expr * expr
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This definition has only three clauses, but one could readily imagine adding others.   Here is the 
definition of a function to evaluate expressions of the language of arithmetic expressions written 
using pattern matching:

fun eval (Numeral n) = Numeral n
  | eval (Plus (e1, e2)) =
    let
        val Numeral n1 = eval e1
        val Numeral n2 = eval e2
    in
        Numeral (n1+n2)
    end
  | eval (Times (e1, e2)) =
    let
        val Numeral n1 = eval e1
        val Numeral n2 = eval e2
    in
        Numeral (n1*n2)
    end

The combination of datatype  declarations and pattern matching contributes enormously to the 
readability of programs written in ML.  A less obvious, but perhaps more important, benefit is the 
error checking that the compiler can perform for you if you use these mechanisms in tandem.  As an 
example, suppose that we extend the type expr  with a new component for the reciprocal of a 
number, yielding the following revised definition:

datatype expr = 
  Numeral of int | Plus of expr * exp | Times of expr * 
expr | Recip of expr

First, observe that the "old" definition of eval  is no longer applicable to values of type expr !  For 
example, the expression

eval (Plus (Numeral 1, Numeral 2))

is ill-typed, even though it doesn't use the Recip  constructor.  The reason is that the re-declaration of 
expr  introduces a "new" type that just happens to have the same name as the "old" type, but is in 
fact distinct from it.  This is a boon because it reminds us to recompile the old code relative to the 
new definition of the expr  type.

Second, upon recompiling the definition of eval  we encounter an inexhaustive match warning: the 
old code no longer applies to every value of type expr  according to its new definition!  We are of 
course lacking a case for Recip , which we may provide as follows:

fun eval (Numeral n) = Numeral n
  | eval (Plus (e1, e2)) = ... as before ...
  | eval (Times (e1, e2)) = ... as before ...
  | eval (Recip e) = 
    let val Numeral n = eval e in Numeral (1 div n) end



Concatenation Page 60 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

The value of the checks provided by the compiler in such cases cannot be overestimated.   When 
recompiling a large program after making a change to a datatype  declaration the compiler will 
automatically point out every line of code that must be changed to conform to the new definition; it is 
impossible to forget to attend to even a single case.  This is a tremendous help to the developer, 
especially if she is not the original author of the code being modified.  This is yet another reason why 
the static type discipline of ML is a positive benefit, rather than a hindrance, to programmers.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

Functions (values of function type) are first-class values, which means that they have the same rights 
and privileges as values of any other type.  In particular, functions may be passed as arguments and 
returned as results of other functions, and functions may be stored in and retrieved from data 
structures such as lists and trees.  We will see that first-class functions are an important source of 
expressive power in ML.

Functions which take functions as arguments or yield functions as results are known as higher-order 
functions (or sometimes as functionals or operators).   Higher-order functions arise frequently in 
mathematics.  For example, the differential operator is the higher-order function that, when given a 
(differentiable) function on the real line, yields its first derivative as a function on the real line.  We 
also encounter functionals mapping functions to real numbers, and real numbers to functions.  An 
example of the former is provided by the definite integral viewed as a function of its integrand, and 
an example of the latter is the definite integral of a given function on the interval [0,x], viewed as a 
function of x.

Higher-order functions are less familiar tools in programming since most well-known languages have 
at best rudimentary mechanisms to support their use.  In contrast higher-order functions play a 
prominent role in ML, with a variety of interesting applications.  Their use may be classified into two 
broad categories: 

1. Abstracting patterns of control.  Design patterns are just higher-order functions that "abstract 
out" the details of a computation to lay bare the skeleton of the solution.  The skeleton may be 
fleshed out to form a solution of a problem by applying the general pattern to arguments that 
isolate the specific problem instance. 

2. Staging computation.  It arises frequently that computation may be staged by expending 
additional effort "early" to simplify the computation of "later" results.  Staging can be used 
both to improve efficiency and, as we will see later, to control sharing of computational 
resources. 

Before discussing these programming techniques, we will review the critically important concept of 
scope as it applies to function definitions.   Recall that Standard ML is a statically scoped language, 
meaning that identifiers are resolved according to the static structure of the program.  A use of the 
variable x  is considered to be a reference to the nearest lexically enclosing declaration of x .  We say 
"nearest" because of the possibility of shadowing; if we re-declare a variable x , then subsequent uses 
of x  refer to the "most recent" (lexically!) declaration of it; any "previous" declarations are 
temporarily shadowed by the latest one.
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This principle is easy to apply when considering sequences of declarations.  For example, it should be 
clear by now that the variable y  is bound to 32  after processing the following sequence of 
declarations:

val x = 2            (* x=2 *)
val y = x*x          (* y=4 *)
val x = y*x          (* x=8 *)
val y = x*y          (* y=32 *)

In the presence of function definitions the situation is the same, but it can be a bit tricky to understand 
at first.  Here's an example to test your grasp of the lexical scoping principle:

val x = 2
fun f y = x+y
val x = 3
val z = f 4

After processing these declarations the variable z  is bound to 6, not to 7!   The reason is that the 
occurrence of x  in the body of f  refers to the first declaration of x  since it is the nearest lexically 
enclosing declaration of the occurence, even though it has been subsequently re-declared.  This 
example illustrates three important points: 

1. Binding is not assignment!  If we were to view the second binding of x  as an assignment 
statement, then the value of z  would be 7, not 6.

2. Scope resolution is lexical, not temporal.  We sometimes refer to the "most recent" declaration 
of a variable, which has a temporal flavor, but we always mean "nearest lexically enclosing at 
the point of occurrence".

3. "Shadowed"  bindings are not lost.  The "old" binding for x  is still available (through calls to 
f ), even though a more recent binding has shadowed it.

One way to understand what's going on here is through the concept of a closure, a technique for 
implementing higher-order functions.  When a function expression is evaluated, a copy of the 
dynamic environment is attached to the function.   Subsequently, all free variables of the function 
(i.e., those variables not occurring as parameters) are resolved with respect to the environment 
attached to the function; the function is therefore said to be "closed" with respect to the attached 
environment.  This is achieved at function application time by "swapping" the attached environment 
of the function for the environment active at the point of the call.  The swapped environment is 
restored after the call is complete.  Returning to the example above, the environment associated with 
the function f  contains the declaration val x = 2  to record the fact that at the time the function 
was evaluated, the variable x  was bound to the value 2.   The variable x  is subsequently re-bound to 
3, but when f  is applied, we temporarily reinstate the binding of x  to 2, add a binding of y  to 4, then 
evaluate the body of the function, yielding 6.  We then restore the binding of x  and drop the binding 
of y  before yielding the result.

While seemingly very simple, the principle of lexical scope is the source of considerable expressive 
power.  We'll demonstrate this through a series of examples.
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To warm up let’s consider some simple examples of passing functions as arguments and yielding 
functions as results.  The standard example of passing a function as argument is the map' function, 
which applies a given function to every element of a list.  It is defined as follows:

fun map’ (f, nil) = nil
  | map' (f, h::t) = (f h) :: map' (f, t)

For example, the application

map' (fn x => x+1, [1,2,3,4])

evaluates to the list [2,3,4,5] .

Functions may also yield functions as results.  What is surprising is that we can create new functions 
during execution, not just return functions that have been previously defined.  The most basic (and 
deceptively simple) example is the function constantly  that creates constant functions: given a 
value k , the application constantly k yields a function that yields k  whenever it is applied.  
Here's a definition of constantly :

val constantly = fn k => (fn a => k)

The function constantly has type ’a -> (’b -> ’a) .   We used the fn  notation for clarity, but 
the declaration of the function constantly  may also be written using fun  notation as follows:

fun constantly k a = k

Note well that a white space separates the two successive arguments to constantly !  The meaning 
of this declaration is precisely the same as the earlier definition using fn  notation.

The value of the application constantly 3  is the function that is constantly 3; i.e., it always 
yields 3 when applied.  Yet nowhere have we defined the function that always yields 3.   The 
resulting function is "created" by the application of constantly  to the argument 3, rather than 
merely "retrieved" off the shelf of previously-defined functions.  In implementation terms the result 
of the application constantly 3  is a closure consisting of the function fn a => k  with the 
environment val k = 3  attached to it.  The closure is a data structure (a pair) that is created by 
each application of constantly  to an argument; the closure is the representation of the "new" 
function yielded by the application.  Notice, however, that the only difference between any two 
results of applying the function constantly  lies in the attached environment; the underlying 
function is always fn a => k .  If we think of the lambda as the "executable code" of the function, 
then this amounts to the observation that no new code is created at run-time, just new instances of 
existing code.

This discussion illustrates why functions in ML are not directly analogous to "code pointers" in C.  
You may be familiar with the idea of passing a pointer to a C function to another C function as a 
means of passing functions as arguments or yielding functions as results.  This may be considered to 
be a form of "higher-order" function in C, but it must be emphasized that code pointers are 
significantly less expressive than closures because in C there are only statically many possibilities for 
a code pointer (it must point to one of the functions defined in your code), whereas in ML we may 



Concatenation Page 64 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

generate dynamically many different instances of a function, differing in the bindings of the variables 
in its environment.  The non-varying part of the closure, the code, is directly analogous to a function 
pointer in C, but there is no counterpart in C of the varying part of the closure, the dynamic 
environment.

The definition of the function map’  given above takes a function and list as arguments, yielding a 
new list as result.  Often it occurs that we wish to map the same function across several different 
lists.  It is inconvenient (and a tad inefficient) to keep passing the same function to map’ , with the 
list argument varying each time.  Instead we would prefer to create a instance of map specialized to 
the given function that can then be applied to many different lists.   This leads to the following 
(standard) definition of the function map:

fun map f nil = nil
  | map f (h::t) = (f h) :: (map f t)

The function map so defined has type ('a->'b) -> 'a list -> 'b list .  It takes a 
function of type ’a -> ’b  as argument, and yields another function of type ’a list -> ’b 
list  as result.

The passage from map’  to map is called currying.  We have changed a two-argument function (more 
properly, a function taking a pair as argument) into a function that takes two arguments in succession, 
yielding after the first a function that takes the second as its sole argument.  This passage can be 
codified as follows:

fun curry f x y = f (x, y)

The type of curry  is (’a*’b->’c) -> (’a -> (’b -> ’c)) .  Observe that map may be 
alternately defined by the binding

fun map f l = curry map’ f l

Applications are implicitly left-associated, so that this definition is equivalent to the more verbose 
declaration

fun map f l = ((curry map’) f) l

We turn now to the idea of abstracting patterns of control.  There is an obvious similarity between the 
following two functions, one to add up the numbers in a list, the other to multiply them.

fun add_em nil = 0
  | add_em (h::t) = h + add_em t

fun mul_em nil = 1
  | mul_em (h::t) = h * mul_em t

What precisely is the similarity?  We will look at it from two points of view.  One is that in each case 
we have a binary operation and a unit element for it.  The result on the empty list is the unit element, 
and the result on a non-empty list is the operation applied to the head of the list and the result on the 
tail.   This pattern can be abstracted as the function reduce  defined as follows:
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fun reduce (unit, opn, nil) = unit
  | reduce (unit, opn, h::t) = opn (h, reduce (unit, opn, 
t))

Here is the type of reduce :

val reduce : 'b * ('a*'b->'b) * 'a list -> 'b

The first argument is the unit element, the second is the operation, and the third is the list of values.  
Notice that the type of the operation admits the possibility of the first argument having a different 
type from the second argument and result.  Using reduce, we may re-define add_em and mul_em as 
follows:

fun add_em l = reduce (0, op +, l)
fun mul_em l = reduce (1, op *, l)

To further check your understanding, consider the following declaration:

fun mystery l = reduce (nil, op ::, l)

(Recall that "op :: " is the function of type ’a * ’a list -> ’a list  that adds a given 
value to the front of a list.)  What function does mystery  compute?

Another perspective on the commonality between add_em and mul_em is that they are both defined 
by induction on the structure of the list argument, with a base case for nil , and an inductive case for 
h::t , defined in terms of its behavior on t .  But this is really just another way of saying that they are 
defined in terms of a unit element and a binary operation!  The difference is one of perspective: 
whether we focus on the pattern part of the clauses (the inductive decomposition) or the result part of 
the clauses (the unit and operation).   The recursive structure of add_em and mul_em is abstracted 
by the reduce  functional, which is then specialized to yield add_em and mul_em.  Said another 
way, reduce abstracts the pattern of defining a function by induction on the structure of a list.

The definition of reduce  leaves something to be desired.  One thing to notice is that the arguments 
unit  and opn  are carried unchanged through the recursion; only the list parameter changes on 
recursive calls.  While this might seem like a minor overhead, it's important to remember that multi-
argument functions are really single-argument functions that take a tuple as argument.  This means 
that each time around the loop we are constructing a new tuple whose first and second components 
remain fixed, but whose third component varies.  Is there a better way?  Here's another definition that 
isolates the "inner loop" as an auxiliary, tail-recursive function:

fun better_reduce (unit, opn, l) =
    let
        fun red nil = unit
          | red (h::t) = opn (h, red t)
    in
        red l
    end

Notice that each call to better_reduce  creates a new function red  that uses the parameters 
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unit  and opn  of the call to better_reduce .  This means that red  is bound to a closure 
consisting of the code for the function together with the environment active at the point of definition, 
which will provide bindings for unit  and opn  arising from the application of better_reduce  to 
its arguments.  Furthermore, the recursive calls to red  no longer carry bindings for unit  and opn , 
saving the overhead of creating tuples on each iteration of the loop.

An interesting variation on reduce  may be obtained by staging the computation.  The motivation is 
that unit  and opn  often remain fixed for many different lists (e.g., we may wish to sum the 
elements of many different lists).  In this case unit  and opn  are said to be "early" arguments and the 
list is said to be a "late" argument.   The idea of staging is to perform as much computation as 
possible on the basis of the early arguments, yielding a function of the late arguments alone.  In the 
present case this amounts to building red  on the basis of unit  and opn , yielding it as a function 
that may be later applied to many different lists.  Here's the code:

fun staged_reduce (unit, opn) =
    let
        fun red nil = unit
          | red (h::t) = opn (h, red t)
    in
        red
    end

The definition of staged_reduce  bears a close resemblance to the definition of 
better_reduce ; the only difference is that the creation of the closure bound to red  occurs as 
soon as unit and opn are known, rather than each time the list argument is supplied.  Thus the 
overhead of closure creation is "factored out" of multiple applications of the resulting function to list 
arguments.

We could just as well have replaced the body of the let expression with the function

fn l => red l

but a moment's thought reveals that the meaning is precisely the same (apart from one additional 
function call in the latter case).

Note well that we would not obtain the effect of staging were we to use the following definition:

fun curried_reduce (unit, opn) nil = unit
  | curried_reduce (unit, opn) (h::t) = opn (h, 
curried_reduce (unit, opn) t)

If we unravel the fun  notation, we see that while we are taking two arguments in succession, we are 
not doing any useful work in between the arrival of the first argument (a pair) and the second (a list).  
A curried function does not take significant advantage of staging.  Since staged_reduce  and 
curried_reduce  have the same iterated function type, namely

(’b * (’a * ’b -> ’b)) -> ’a list -> ’b

the contrast between these two examples may be summarized by saying not every function of iterated 
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function type is curried. Some are, and some aren't.   The "interesting" examples (such as 
staged_reduce ) are the ones that aren’t curried.  (This directly contradicts established 
terminology, but I'm afraid it is necessary to avoid misapprehension.)

The time saved by staging the computation in the definition of staged_reduce  is admittedly 
minor.  But consider the following definition of an append function for lists that takes both arguments 
at once:

fun append (nil, l) = l
  | append (h::t, l) = h :: append(t,l)

Suppose that we will have occasion to append many lists to the end of a given list.  What we'd like is 
to build a specialized appender for the first list that, when applied to a second list, appends the second 
to the end of the first.  Here's a naive solution that merely curries append:

fun curried_append nil l = l
  | curried_append (h::t) l = h :: append t l

Unfortunately this solution doesn’t exploit the fact that the first argument is fixed for many second 
arguments.  In particular, each application of the result of applying curried_append  to a list 
results in the first list being traversed so that the second can be appended to it.  We can improve on 
this by staging the computation as follows:

fun staged_append nil = fn l => l
  | staged_append (h::t) =
    let
        val tail_appender = staged_append t
    in
        fn l => h :: tail_appender l
    end

Notice that the first list is traversed once for all applications to a second argument.  When applied to a 
list [v1, ...,vn] , the function staged_append  yields a function that is equivalent  to, but not 
quite as efficient as, the function

fn l => v1 :: v2 :: ... :: vn :: l.

This still takes time proportional to n, but a substantial savings accrues from avoiding the pattern 
matching required to destructure the original list argument on each call.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

In the first chapter of these notes we mentioned that expressions in Standard ML always have a type, 
may have a value, and may engender an effect.  So far we've concentrated on typing and evaluation.  
In this chapter we will introduce the concept of an effect.   While it's hard to give a precise general 
definition of what we mean by an effect, the idea is that an effect is any action resulting from 
evaluation of an expression other than returning a value.  From this point of view we might consider 
non-termination to be an effect, but we don't usually think of failure to terminate as a positive 
"action" in its own right, rather as a failure to take any action.  What are some other examples?  The 
main examples are these: 

1. Exceptions.  Evaluation may be aborted by signaling an exceptional condition. 
2. Mutation.  Storage may be allocated and modified during evaluation. 
3. I/O.  It is possible to read from an input source and write to an output sink during evaluation. 
4. Communication.  Data may be sent to and received from communication channels. 

This chapter is concerned with exceptions; the other forms of effects will be dealt with later in these 
notes.

A basic use of exceptions in ML is to signal error conditions.  ML is a safe language in the sense that 
its execution behavior may be understood entirely in terms of the constructs of the language itself.  
Behavior such as "dumping core" or incurring a "bus error" are extra-linguistic notions that may only 
be explained by appeal to the underlying implementation of the language.  It can be proved that ML is 
safe, from which it follows that such behaviors cannot arise (except through the failure of the 
compiler to implement the language properly.)  In unsafe languages (such as C) these sorts of errors 
can and do arise, typically because of the (mis)use of a primitive operation on a value that does not lie 
in its domain of definition.  For example, in C we may cast an integer as a function pointer, then 
invoke it by applying it to an argument.  The behavior of such a program that cannot be predicted at 
the level of the language itself since it relies on the details of the memory layout and the 
interpretation of data as code.  To ensure safety, and hence freedom from mysterious run-time faults, 
ML ensures that the primitive operations may only be applied to appropriate arguments.  This is 
achieved in part by the static type discipline, which rules out expressions that are manifestly 
inappropriate (e.g., adding a string to an integer or casting an integer as a function), and partly by 
dynamic checks that rule out violations that cannot be detected statically (e.g., division by zero or 
arithmetic overflow).  Static violations are signalled by type checking errors; dynamic violations are 
signalled by raising exceptions.

For example, the expression 3 + "3"  is ill-typed, and hence cannot be evaluated.  In contrast the 
expression 3 div 0  is well-typed (with type int ), but incurs a run-time fault that is signalled by 
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raising the exception Div .  We will indicate this by writing

3 div 0 => raise Div

Thus an exception is a form of  "answer" to the question "what is the value this expression?".  In most 
implementations an exception such as this is reported by an error message of the form "Uncaught 
exception Div ", together with the line number (or some other indication) of the point in the 
program where the exception occurred.

Exceptions have names so that we may distinguish different sources of error from one another.  For 
example, evaluation of the expression maxint * maxint  (where maxint  is the largest 
representable integer) causes the exception Overflow  to be raised, indicating that an arithmetic 
overflow error arose in the attempt to carry out the multiplication.

At this point you may be wondering about the overhead of checking for arithmetic faults.  The 
compiler must generate instructions that ensure that an overflow fault is caught before any subsequent 
operations are performed.  This can be quite expensive on pipelined processors, which sacrifice 
precise delivery of arithmetic faults in the interest of speeding up execution in the non-faulting case.  
Unfortunately it is necessary to incur this overhead if we are to avoid having the behavior of an ML 
program depend on the underlying processor on which it is implemented.

Another source of run-time exceptions is an inexhaustive match.  Suppose we define the function hd
as follows

fun hd (h::_) = h

This definition is inexhaustive since it makes no provision for the possibility of the argument being 
nil .  What happens if we apply hd  to nil ?   The exception Match  is raised, indicating the failure 
of the pattern-matching process:

hd nil => raise Match

The occurrence of a Match  exception at run-time is indicative of a violation of a pre-condition to the 
invocation of a function somewhere in the program.   Recall that it is often OK for a function to be 
inexhaustive, provided that we take care to ensure that it is never applied to a value outside of its 
domain.  Should this occur (because of a mistake by the programmer, evidently), the result is 
nevertheless well-defined because ML checks for pattern match failure, rather than leaving the 
behavior of the application undefined.  In other words: ML programs are implicitly "bullet-proofed" 
against failures of pattern matching.  The flip side is that if no inexhaustive match warnings arise 
during type checking, then the exception Match can never be raised during evaluation (and hence no 
run-time checking need be performed).

A related situation is the use of a pattern in a val  binding to destructure a value.  If the pattern can 
fail to match a value of this type, then a Bind  exception is raised at run-time.  For example, 
evaluation of the binding

val h::_ = nil

raises the exception Bind  since the pattern h::_  does not match the value nil .  Here again observe 
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that a Bind  exception cannot arise unless the compiler has previously warned us of the possibility: 
no warning, no Bind  exception.

These are all examples of the use of pre-defined exceptions to indicate fatal error conditions.  Since 
the built-in exceptions have a built-in meaning, it is generally inadvisable to use these to signal 
program-specific error conditions.  Instead we introduce a new exception using an exception
declaration, and signal it using a raise  expression when a run-time violation occurs.  That way we 
can associate specific exceptions with specific pieces of code, easing the process of tracking down the 
source of the error.

Here's an example.  Suppose that we wish to define a "checked factorial" function that ensures that its 
argument is non-negative.  Here's a first attempt at defining such a function:

exception Factorial

fun checked_factorial n =
    if n < 0 then
       raise Factorial
    else if n=0 then
       1
    else n * checked_factorial (n-1)

The declaration exception Factorial  introduces an exception Factorial , which we raise 
in the case that checked_factorial  is applied to a negative number.

The definition of checked_factorial  is unsatisfactory in at least two ways.  One relatively 
minor issue is that it does not make effective use of pattern matching, but instead relies on explicit 
comparison operations.  To some extent this is unavoidable since we wish to check explicitly for 
negative arguments, which cannot be done using a pattern.  A more significant problem is that 
checked_factorial  repeatedly checks the validity of its argument on each recursive call, even 
though we can prove that if the initial argument is non-negative, then so must be the argument on 
each recursive call.   This fact is not reflected in the code.  We can improve the definition by 
introducing an auxiliary function as follows:

exception Factorial

local
      fun fact 0 = 1
        | fact n = n * fact (n-1)
in
      fun checked_factorial n =
          if n >= 0 then
             fact n
          else
             raise Factorial
end    

Notice that we perform the range check exactly once, and that the auxiliary function makes effective 
use of pattern-matching.
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The use of exceptions to signal error conditions suggests that raising an exception is fatal: execution 
of the program terminates with the raised exception.  But signaling an error is only one use of the 
exception mechanism.  More generally, exceptions can be used to effect non-local transfers of 
control.  By using an exception handler we may "catch" a raised exception and continue evaluation 
along some other path.  A very simple example is provided by the following driver for the factorial 
function that accepts numbers from the keyboard, computes their factorial, and prints the result.

fun factorial_driver () =
    let
        val input = read_integer ()
        val result = makestring (checked_factorial input)
    in
        print result
    end
    handle Factorial => print "Out of range.\n"

The expression exp handle  match is an exception handler.   It is evaluated by attempting to evaluate 
exp.  If it returns a value, then that is the value of the entire expression; the handler plays no role in 
this case.  If, however, exp raises an exception exn, then the exception value is matched against the 
clauses of the match (exactly as in the application of a clausal function to an argument) to determine 
how to proceed.  If the pattern of a clause matches the exception exn, then evaluation resumes with 
the expression part of that clause.  If no pattern matches, the exception exn is re-raised so that outer 
exception handlers may dispatch on it.  If no handler handles the exception, then the uncaught 
exception is signaled as the final result of evaluation.   That is, computation is aborted with the 
uncaught exception exn.

In more operational terms, evaluation of exp handle  match proceeds by installing an exception 
handler determined by match, then evaluating exp.   The previous binding of the exception handler is 
preserved so that it may be restored once the given handler is no longer needed.  Raising an exception 
consists of passing a value of type exn  to the current exception handler.   Passing an exception to a 
handler de-installs that handler, and re-installs the previously active handler.  This ensures that if the 
handler itself raises an exception, or fails to handle the given exception, then the exception is 
propagated to the handler active prior to evaluation of the handle  expression.  If the expression 
does not raise an exception, the previous handler is restored as part of completing the evaluation of 
the handle  expression.

Returning to the function factorial_driver , we see that evaluation proceeds by attempting to 
compute the factorial of a given number (read from the keyboard by an unspecified function 
read_integer ), printing the result if the given number is in range, and otherwise reporting that 
the number is out of range.  The example is trivialized to focus on the role of exceptions, but one 
could easily imagine generalizing it in a number of ways that also make use of exceptions.  For 
example, we might repeatedly read integers until the user terminates the input stream (by typing the 
end of file character).  Termination of input might be signaled by an EndOfFile  exception, which 
is handled by the driver.  Similarly, we might expect that the function read_integer  raises the 
exception SyntaxError  in the case that the input is not properly formatted.  Again we would 
handle this exception, print a suitable message, and resume.  Here's a sketch of a more complicated 
factorial driver:

fun factorial_driver () =
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    let
        val input = read_integer ()
        val result = makestring (checked_factorial input)
        val _ = print result
    in
        factorial_driver ()
    end
    handle EndOfFile => print "Done.\n"
         | SyntaxError =>
           let val _ = print "Syntax error.\n" in 
factorial_driver () end
         | Factorial =>
           let val _ = print "Out of range.\n" in 
factorial_driver () end

We will return to a more detailed discussion of input/output later in these notes.   The point to notice 
here is that the code is structured with a completely uncluttered "normal path" that reads an integer, 
computes its factorial, formats it, prints it, and repeats.  The exception handler takes care of the 
exceptional cases: end of file, syntax error, and domain error.  In the latter two cases we report an 
error, and resume reading.  In the former we simply report completion and we are done.

The reader is encouraged to imagine how one might structure this program without the use of 
exceptions.  The primary benefits of the exception mechanism are that they force you to consider the 
exceptional case (if you don't, you'll get an uncaught exception at run-time), and that they allow you 
to segregate the special case from the normal case in the code (rather than clutter the code with 
explicit checks).

Another typical use of exceptions is to implement backtracking, a programming technique based on 
exhaustive search of a state space.  A very simple, albeit somewhat artificial, example is provided by 
the following function to compute change from an arbitrary list of coin values.  What is at issue is 
that the obvious "greedy" algorithm for making change that proceeds by doling out as many coins as 
possible in decreasing order of value does not always work.  Given only a 5 cent and a 2 cent coin, 
we cannot make 16 cents in change by first taking three 5's and then proceeding to dole out 2's.  In 
fact we must use two 5's and three 2's to make 16 cents.  Here's a method that works for any set of 
coins:

exception Change

fun change _ 0 = nil
  | change nil _ = raise Change
  | change (coin::coins) amt =
    if coin > amt then
       change coins amt
    else
       (coin :: change (coin::coins) (amt-coin))
       handle Change => change coins amt

The idea is to proceed greedily, but if we get "stuck", we undo the most recent greedy decision and 
proceed again from there.  Simulate evaluation of the example of change [5,2] 16  to see how 
the code works.
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Exceptions can also carry values.  For example, we might associate with a SyntaxError  exception 
a string indicating the precise nature of the error.  For example, we might write

raise SyntaxError "Integer expected"

to indicate a malformed expression in a situation where an integer is expected, and write

raise SyntaxError "Identifier expected"

to indicate a badly-formed identifier.  Such an exception is introduced by the declaration

exception SyntaxError of string

which introduces the exception SyntaxError  as an exception carrying a string as value.  This 
declaration introduces the exception constructor SyntaxError .   Exception constructors are in 
many ways similar to value constructors.  In particular they can be used in patterns, as in the 
following code fragment:

... handle SyntaxError msg => print "Syntax error: " ^ msg 
^ "\n"

Here we specify a pattern for SyntaxError  exceptions that also binds the string associated with 
the exception to the identifier msg and prints that string along with an error indication.

Exception constructors raise the question of the status of exceptions in the language.   Recall that we 
may use value constructors in two ways: 

1. We may use them to create values of a datatype (perhaps by applying them to other values). 
2. We may use them to match values of a datatype (perhaps also matching a constituent value). 

The situation with exception constructors is symmetric. 

1. We may use them to create an exception (perhaps with an associated value). 
2. We may use them to match an exception (perhaps also matching the associated value). 

Value constructors have types, as we previously mentioned.  For example, the list constructors nil
and ::  have types

’a list

and

’a * ’a list -> ’a list

respectively.  What about exception constructors?  A "bare" exception constructor (such as 
Factorial  above) has type

exn
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and a value-carrying exception constructor (such as SyntaxError ) has type

string -> exn

Thus Factorial  is a value of type exn , and SyntaxError "Integer expected"  is a 
value of type exn .

The type exn  is the type of exception packets, the data values associated with an exception.  The 
primitive operation raise  takes any value of type exn  as argument and raises an exception with 
that value.  The clauses of a handler may be applied to any value of type exn  using the rules of 
pattern matching described earlier; if an exception constructor is no longer in scope, then the handler 
cannot catch it (other than via a wild-card pattern).

The type exn  may be thought of as a kind of built-in datatype, except that the constructors of this 
type are not determined once and for all (as they are with a datatype  declaration), but rather are 
incrementally introduced as needed in a program.  For this reason the type exn  is sometimes called 
an extensible datatype.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

Evaluation of an expression may terminate with a value and may along the way engender an effect 
upon its environment.  Our first example of an effect was the possibility of raising an exception, 
which we explored in detail in the preceding chapter.  The next important example of an effect is a 
storage effect, the allocation or mutation of storage during evaluation.  The introduction of storage 
effects has profound consequences, not all of which are desirable.  Indeed, storage effects are 
sometimes denigrated by referring to them as side effects, by analogy with the unintended effects of 
some medications.  While it is surely excessive to dismiss storage effects as completely undesirable, 
it is advantageous to minimize the use of storage effects except where clearly appropriate to the task.  
We will explore some of the basic techniques for using storage effects later in this chapter, but first 
we introduce the mechanisms for supporting mutable storage in ML. 

To support mutable storage the execution model of programs is modified to include an implicit 
memory consisting of a finite set of mutable cells containing data items of a fixed type.  A mutable 
cell may be thought of as a kind of container in which a data value is stored.  During the course of 
evaluation the content of a cell may be retrieved or may be replaced by any other value of the same 
type.   Mutation introduces a strongly temporal aspect to evaluation: we speak of the current contents 
of a cell as the value most recently assigned to it.  This is to be contrasted with the bindings of values 
to variables, which never change once made and hence have a permanent quality; the binding of a 
variable is a uniquely-determined value that does not change during evaluation.  Since cells are used 
by issuing "commands" to modify and retrieve their contents, programming with cells is sometimes 
called imperative programming.

Since cells may have their contents changed during evaluation it is imperative that we take careful 
account of the identity of cells. When are two cells the same?   When are they different?  The guiding 
principle is that two cells (of the same type) are distinct if there is a program that can tell them apart; 
otherwise they are equal.  How can we tell cells apart?  By doing the only things we can ever do with 
cells: retrieve their contents or set their contents to specified values.  Given two integer cells, we can 
determine whether they are the same cell or not by first checking if they have distinct contents.  If so, 
then they are distinct cells.   If not, we must distinguish between two "copies" of a single cell, or two 
cells that happen to have the same content.  To do this, bind the current contents of one cell to a 
variable, and set that cell's value to an integer different from the saved contents.  If the other cell's 
value is now the newly-assigned value, then the two cells are the same, otherwise they are different.

This principle of equality is called identity of indiscernables: two things are equal if we cannot tell 
them apart.  The test we just outlined extends to cells of other types, but is a rather roundabout way to 
test for cell identity.  In practice we work with a slightly conservative approximation to cell identity, 
called reference (or pointer) equality --- two cells are equal iff they occupy the same address in 
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memory.  This test is conservative in that it may distinguish two cells that are in fact indiscernable: 
any two unit-valued cells are indiscernable because there is only one value of unit type, yet pointer 
equality would distinguish them.  To avoid such anomalies we use pointer equality to determine cell 
identity, relying on the representation of cells as references to memory.  For this reason mutable cells 
in ML are called reference cells, or references.

Reference cells containing values of type typ are themselves values of type typ ref .  They are "first-
class" values in the sense that reference cells may be passed as arguments, returned as results, and 
even stored in other reference cells.  Reference cells are created, or allocated, by the function ref  of 
type typ -> typ ref .  When applied to a value val of type typ, ref  allocates a new cell, initializes 
its content to val, and returns a reference to the cell.   By a "new cell" we mean a cell that is distinct 
from all other cells previously allocated; it does not share storage with any of them.  The content of a 
cell of type typ is retrieved using the function !  of type typ ref ->  typ.  Applying !  to a (reference 
to a) cell returns the current content of that cell.  The content of a cell is modified by the operation op 
:=  of type typ *  typ ref -> unit ; it is written using infix syntax with the reference cell as left-
hand argument and the new contents as right-hand argument.  When applied to a cell and a value, it 
replaces the content of that cell with that value, and yields the null-tuple as result.  Cells may be 
compared for equality using the equality operation, =, which has type typ ref *  typ ref -> 
bool .

Here are some examples:

val r = ref 0
val s = ref 0
val a = r=s
val _ = r := 3
val x = !s + !r
val t = r
val b = s=t
val c = r=t
val _ = t := 5
val y = !s + !r
val z = !t + !r

Afterwards, a is bound to false , b to false , c  to true , x  to 3, y  to 5, and z  to 10 .  Be sure you 
understand exactly why in each case!

The above examples illustrate the problem of aliasing.  The variables t  and r  are both bound to the 
same cell, whereas s  is bound to a different cell.  We say that t  and r  are aliases for the same cell 
because the one cell is known by two different names.  Aliasing is a serious source of bugs in 
programs since assigning a value to one destroys the contents of the other.  Avoiding these kinds of 
problems requires careful reasoning about the possibility of two variables being bound to the same 
reference cell.  A classic example is a program to "rotate" the contents of three cells: given reference 
cells a, b, and c, with initial contents x, y, and z, set their contents to y, z, and x, respectively.  Here's a 
candidate implementation:

fun rot3 (a, b, c) =
    let
        val t = !a
    in
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        a := !b; b := !c; c := t
    end

This code works fine if a, b, and c are distinct reference cells.  But suppose that a and c are the same 
cell.   Afterwards the contents of a, b, and c are y, y, and x!  A correct implementation must work 
even in the presence of aliasing.   Here's a solution that works correctly in all cases:

fun rot3 (a, b, c) =
    let
        val (x, y, z) = (!a, !b, !c)
    in
        a := y; b := z; c := x
    end

Notice that we use immutable variables to temporarily hold the initial contents of the cells while their 
values are being updated.

This example illustrates the use of the semicolon to sequence evaluation of expressions purely for 
their effect.  The expression

exp1 ;  exp2

is shorthand for

let val _ = exp1 in  exp2 end

The expression exp1 is evaluated only for its effect; its return value is thrown away by the wildcard 

binding.  The value of the entire expression is the value of exp2 after evaluation of exp1 for effect.  

The cumulative effect of the sequential composition is the effect of evaluating exp1 followed by the 

effect of evaluating exp2.

It is a common mistake to omit the exclamation point when referring to the content of a reference, 
especially when that cell is bound to a variable.  In more familiar languages such as C or Pascal all 
variables are implicitly bound to reference cells, and they are implicitly de-referenced whenever they 
are used so that a variable always stands for its current contents.  This is both a boon and a bane.  It is 
obviously helpful in many common cases since it alleviates the burden of having to explicitly 
dereference variables whenever their content is required.  However, it shifts the burden to the 
programmer in the case that the address, and not the content, is intended.  In C one writes &x for the 
address of (the cell bound to) x ; in Pascal one must use reference parameters to achieve a similar 
effect.   Which is preferable is largely a matter of taste.  The burden of explicit de-referencing is not 
nearly so onerous in ML as it might be in other languages simply because reference cells are 
relatively seldom used in ML, whereas they are the sole means of binding variables in more familiar 
languages.

An alternative to explicitly de-referencing cells is to use ref patterns.   A pattern of the form ref  pat
matches a reference cell whose content matches the pattern pat.  This means that the cell's contents 
are implicitly retrieved during pattern matching, and may be subsequently used without explicit de-
referencing.  For example, the second implementation of rot3  above might be written using ref 
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patterns as follows:

fun rot3 (a, b, c) =
    let
        val (ref x, ref y, ref z) = (a, b, c)
    in
        a := y; b := z; c := x
    end

In practice it is common to use both explicit de-referencing and ref patterns, depending on the 
situation.

Using references it is possible to mimic the style of programming used in imperative languages such 
as C or C++ or Java.  For example, we might define the factorial function as follows:

fun imperative_fact (n:int) =
    let
        val result = ref 1
        val i = ref 0
        fun loop () =
            if !i = n then
               ()
            else
               (i := !i + 1; result := !result * !i; loop 
())
    in
        loop (); !result
    end

Notice that the function loop  is essentially just a while loop; it repeatedly executes its body until the 
contents of the cell bound to i  reaches n.  The tail call to loop  is essentially just a goto  statement 
since its argument is always the null-tuple.

It is bad style to program in this fashion.  The purpose of the function imperative_fact  is to 
compute a simple function on the natural numbers.  There is nothing about its definition that suggests 
that state must be maintained, and so it is senseless to allocate and modify storage to compute it.  The 
definition we gave earlier is shorter, simpler, more efficient, and hence more suitable to the task.  
This is not to suggest, however, that there are no good uses of references; quite the opposite is the 
case.  We will now discuss some important uses of state in ML.

The first example is the use of higher-order functions to manage shared private state.   This 
programming style is closely related to the use of objects to manage state in object-oriented 
programming languages.  Here's an example to frame the discussion:

local
      val counter = ref 0
in
      fun tick () = (counter := !counter + 1; !counter)
      fun reset () = (counter := 0)
end
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This declaration introduces two functions, tick  of type unit -> int  and reset  of type unit 
-> unit .  Their definitions share a private variable counter  that is bound to a mutable cell 
containing the current value of a shared counter.  The tick  operation increments the counter and 
returns its new value, and the reset  operation resets its value to zero.  The types of the operations 
suggest that implicit state is involved.   In the absence of exceptions and implicit state, there is only 
one useful function of type unit->unit , namely the function that always returns its argument (and 
it's debatable whether this is really useful!).

The declaration above defines two functions, tick  and reset , that share a single private counter.  
Suppose now that we wish to have several different instances of a counter --- different pairs of 
functions tick  and reset  that share different state.  We can achieve this by defining a counter 
generator (or constructor) as follows:

fun new_counter () =
    let
        val counter = ref 0
        fun tick () = (counter := !counter + 1; !counter)
        fun reset () = (counter := 0)
    in
        { tick = tick, reset = reset }
    end

The type of new_counter  is unit -> { tick : unit->int, reset : unit->unit 
} .  We've packaged the two operations into a record containing two functions that share private state.  
There is an obvious analogy with class-based object-oriented programming.  The function 
new_counter  may be thought of as a constructor for a class of counter objects.  Each object has a 
private instance variable counter  that is shared between the methods tick  and reset  of the 
object represented as a record with two fields.

Here's how we use counters.

val c1 = new_counter ()
val c2 = new_counter ()
#tick c1;                 (* 1 *)
#tick c1;                 (* 2 *)
#tick c2;                 (* 1 *)
#reset c1;
#tick c1;                 (* 1 *)
#tick c2;                 (* 2 *)

Notice that c1  and c2  are distinct counters that increment and reset independently of one another.

A second important use of references is to build mutable data structures.  The data structures (such as 
lists and trees) we’ve considered so far are immutable in the sense that it is impossible to change the 
structure of the list or tree without building a modified copy of that structure.  This is both a benefit 
and a drawback.  The principle benefit is that immutable data structures are persistent in that 
operations performed on them do not destroy the original structure --- in ML we can eat our cake and 
have it too.  For example, we can simultaneously maintain a dictionary both before and after insertion 
of a given word.  The principle drawback is that if we aren't really relying on persistence, then it is 
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wasteful to make a copy of a structure if the original is going to be discarded anyway.  What we'd like 
in this case is to have an "update in place" operation to build an ephemeral (opposite of persistent) 
data structure.  To do this in ML we make use of references.

A simple example is the type of possibly circular lists, or pcls.   Informally, a pcl is a finite graph in 
which every node has at most one neighbor, called its predecessor, in the graph.  In contrast to 
ordinary lists the predecessor relation is not necessarily well-founded: there may be an infinite 
sequence of nodes arranged in descending order of predecession.  Since the graph is finite, this can 
only happen if there is a cycle in the graph: some node has an ancestor as predecessor.  How can such 
a structure ever come into existence?  If the predecessors of a cell are needed to construct a cell, then 
the ancestor that is to serve as predecessor in the cyclic case can never be created!  The "trick" is to 
employ backpatching: the predecessor is initialized to Nil , so that the node and its ancestors can be 
constructed, then it is reset to the appropriate ancestor to create the cycle.

This can be achieved in ML using the following datatype  declaration:

datatype ’a pcl = Nil | Cons of ’a * ’a pcl ref

The "tail" of a Cons node is a reference cell so that we may assign to it to implement backpatching.  
Here's an example:

fun hd (Cons (h, _)) = h          (* auxiliary functions *)
fun tl (Cons (_, t)) = t

val ones = Cons (1, ref Nil)     (* create a preliminary 
acyclic structure *)

val _ = (tl ones) := ones        (* backpatch to form the 
cycle *)

Initially the variable ones  is bound to the acyclic pcl with one node whose head element is 1.   We 
then assign that very node to the predecessor (tail) of that node, resulting in a circular pcl with one 
node.  Observe that hd ones , hd !(tl ones) , hd !(tl !(tl ones)) , etc all evaluate to 
1.  Notice that we must explicitly refer to the contents of the tail of each node since it is a reference 
cell!

Let us define the length of a pcl to be the number of distinct nodes occurring in it.  An interesting 
exercise is to define a length  function for pcls that makes no use of auxiliary storage (i.e., no list of 
previously-encountered nodes) and runs in time proportional to the number of cells in the pcl.  Hint:
think of the fable of the tortoise and the hare.  If they run a long race on an oval track, what is sure to 
happen, and when?  Does this suggest an algorithm?

In addition to reference cells, ML also provides mutable arrays as a primitive data structure.  The type 
typ array  is the type of arrays carrying values of type typ.  The basic operations on arrays are these:
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array : int * ’a -> ’a array create array of given size with given initial value
size : ’a array -> int number of elements in a given array

sub : ’a array * int -> ’a access element; raises Subscript exception if out 
of bounds access is attempted

update : ’a array * int * ’a -> 
unit

change the contents of a given array element; 
raises Subscript for out of bounds access

These are just the basic operations on arrays; consult the Basis Library document for further details.  
Immutable arrays are also available.  The type ’a vector  is similar to the type ’a array , except 
that vectors are immutable, whereas arrays are mutable.

One simple use of arrays is for memoization.  Here's a function to compute the nth Catalan number, 
which may be thought of as the number of distinct ways to parenthesize an arithmetic expression 
consisting of a sequence of n consecutive multiplication's.  It makes use of an auxiliary summation 
function that you can easily define for yourself.  (Applying sum to f and n computes the sum  of f 0 + 
... + f n.)

fun C 1 = 1
  | C n = sum (fn k => (C k) * (C (n-k))) (n-1)

This definition of C is hugely inefficient because a given computation may be repeated exponentially 
many times.  For example, to compute C 10  we must compute C 1 , C2, ..., C 9 , and the 
computation of C i engenders the computation of C 1 , ..., C ( i-1)  for each 1<=i<=9.  We can do 
better by caching previously-computed results in an array, leading to an enormous improvement in 
execution speed.  Here's the code:

local
       val limit : int = 100
       val memopad : int option array = Array.array (limit, 
NONE)
in
       fun C' 1 = 1
         | C' n = sum (fn k => (C k) * (C (n-k))) (n-1)
       and C n =
           if n < limit then
              case Array.sub (memopad, n)
                of SOME r => r
                 | NONE =>
                   let
                       val r = C' n
                   in
                       Array.update (memopad, n, SOME r);
                       r
                   end
            else
               C' n
end
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Note carefully the structure of the solution.  The function C is a memoized version of the Catalan 
number function.  When called it consults the memopad to determine whether or not the required 
result has already been computed.  If so, the answer is simply retrieved from the memopad, otherwise 
the result is computed, stored in the cache, and returned.  The function C' looks superficially similar 
to the earlier definition of C, with the important difference that the recursive calls are to C, rather 
than C' itself.  This ensures that sub-computations are properly cached and that the cache is consulted 
whenever possible.

The main weakness of this solution is that we must fix an upper bound on the size of the cache.  This 
can be alleviated by implementing a more sophisticated cache management scheme that dynamically 
adjusts the size of the cache based on the calls made to it.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Input & Output
[ Back ] [ Home ] [ Up ] [ Next ]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

Sample Code for this Chapter

Standard ML Basis Library defines a three-layer input and output facility for Standard ML.   These 
modules provide a rudimentary, platform-independent text I/O facility that we summarize briefly 
here.  The reader is referred to the IO section of the Standard ML Basis Library for more details.  
There is no standard library for graphical user interfaces; each implementation provides its own 
package.  See your vendor's documentation for details.

The text I/O primitives are based on the notions of an input stream and an output stream, which are 
values of type instream  and outstream , respectively.  An input stream is an unbounded 
sequence of characters arising from some source.  The source could be a disk file, an interactive user, 
or another program (to name a few choices).  Any source of characters can be attached to an input 
stream.  An input stream may be thought of as a buffer containing zero or more characters that have 
already been read from the source, together with a means of requesting more input from the source 
should the program require it.  Similarly, an output stream is an unbounded sequence of characters 
leading to some sink.  The sink could be a disk file, an interactive user, or another program (to name 
a few choices).  Any sink for characters can be attached to an output stream.  An output stream may 
be thought of as a buffer containing zero or more characters that have been produced by the program 
but have yet to be flushed to the sink.

Each program comes with one input stream and one output stream, called stdIn  and stdOut , 
respectively. These are ordinarily connected to the user's keyboard and screen, and are used for 
performing simple text I/O in a program.  The output stream stdErr  is also pre-defined, and is used 
for error reporting.   It is ordinarily connected to the user's screen.

Textual input and output are performed on streams using a variety of primitives.   The simplest are 
inputLine  and print .  To read a line of input from a stream, use the function inputLine  of 
type instream -> string .  It reads a line of input from the given stream and yields that line as 
a string whose last character is the line terminator.  If the source is exhausted, return the empty 
string.  To write a line to stdOut , use the function print  of type string -> unit .  To write to 
a specific stream, use the function output  of type outstream * string -> unit , which 
writes the given string to the specified output stream.  For interactive applications it is often 
important to ensure that the output stream is flushed to the sink (e.g., so that it is displayed on the 
screen).  This is achieved by calling flushOut  of type outstream -> unit , which ensures that 
the output stream is flushed to the sink.  The print function is a composition of output  (to 
stdOut ) and flushOut .

A new input stream may be created by calling the function openIn  of type string -> 
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instream .  When applied to a string, the system attempts to open a file with that name (according 
to operating system-specific naming conventions) and attaches it as a source to a new input stream.  
Similarly, a new output stream may be created by calling the function openOut  of type string -
> outstream .   When applied to a string, the system attempts to create a file with that name 
(according to operating system-specific naming conventions) and attaches it as a sink for a new 
output stream.  An input stream may be closed using the function closeIn  of type instream -> 
unit .  A closed input stream behaves as if there is no further input available; request for input from 
a closed input stream yield the empty string.  An output stream may be closed using closeOut  of 
type outstream -> unit .  A closed output stream is unavailable for further output; an attempt 
to write to a closed output stream raises the exception TextIO.IO .

The function input  of type instream -> string  is a blocking read operation that returns a 
string consisting of the characters currently available from the source.  If none are currently available, 
but the end of source has not been reached, then the operation blocks until at least one character is 
available from the source.  If the source is exhausted or the input stream is closed, input  returns the 
null string.  To test whether an input  operation would block, use the function canInput  of type 
instream * int -> int  option.  Given a stream s and a bound n, canInput  determines 
whether or not a call to input  would immediately yield up to n characters.  If the input  operation 
would block, canInput  yields NONE; otherwise it yields SOME k, with 0<=k<=n being the number 
of characters immediately available on the input stream.  If canInput  yields SOME 0, the stream is 
either closed or exhausted.  The function endOfStream  of type instream -> bool  tests 
whether the input stream is currently at the end (no further input is available from the source).  This 
condition is transitive since, for example, another process might append data to an open file in 
between calls to endOfStream .

The function output  of type outstream * string -> unit  writes a string to an output 
stream.  It may block until the sink is able to accept the entire string.  The function flushOut  of 
type outstream -> unit  forces any pending output to the sink, blocking until the sink accepts 
the remaining buffered output.

This collection of primitive I/O operations is sufficient for performing rudimentary textual I/O.  For 
further information on textual I/O, and support for binary I/O and Posix I/O primitives, see the 
Standard ML Basis Library.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Lazy Data Structures
[ Back ] [ Home ] [ Up ] [ Next ]

Last edit: Monday, April 27, 1998 02:55 PM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

Sample Code for this Chapter

As we saw earlier, a datatype  declaration is used to introduce a new type whose elements are 
generated by a given set of value constructors.  The value constructors may be used to create values 
of the type (by applying them to values of suitable type), and to decompose values of the type (by 
using them in patterns).  Value constructors, like all other functions in ML, are evaluated eagerly, 
meaning that the arguments to the constructor are evaluated before the constructor is applied.  For 
example, to attach an element to the front of a list, we first determine the value of the element and the 
value of the list before building a new list with that element as head and that list as tail.  This policy is 
based on the intuitively appealing idea of a list as a kind of value that we manipulate by using the list 
constructors as functions and as patterns.

An alternative is to view a data structure as being perpetually in the process of creation, rather than as 
a result of a completed computation.  According to this view a list may be thought of as a "partial", or 
"suspended", computation that, when provoked, computes just far enough to determine whether the 
end of the list has been reached, or , if not, to produce the next element of the list together with a 
suspended computation to compute the remainder of the list.  An added benefit of this viewpoint is 
that it is then possible to define infinite lists (better known as streams) that continually generate the 
next element, without ever reaching the end of the list.   This view of data structures as being in the 
process of creation conflicts with the eager evaluation strategy just described since under the eager 
approach all expressions are fully evaluated before they are used, whereas we would like to evaluate 
them only as much as absolutely necessary to allow the overall computation to proceed.  This is 
called, appropriately enough, lazy evaluation.

Standard ML does not support lazy evaluation as a primitive notion; it can be implemented "by hand" 
using methods that are described later in these notes.   However, Standard ML of New Jersey (from 
version 110.5) does provide for lazy evaluation through an extension of the datatype  and val 
rec  declaration forms.  We will illustrate these mechanisms by defining a type ’a stream  of 
streams of values of type ’a .  Based on the discussion above you might imagine that a stream is just 
an infinite list, but it is important to keep the two concepts separate.  Lists are eager types whose 
values are generated by finitely-many applications of ::  to the empty list, nil .   Streams are lazy 
types whose values are determined by suspended computations that generate the next element of the 
stream (and another computation to generate the remainder).  The two concepts are, and ought to be 
kept separate since they serve different purposes and require different modes of reasoning.

First off, the lazy evaluation mechanisms of SML/NJ must be enabled by evaluating the following 
declarations:
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Compiler.Control.Lazy.enabled := true;
open Lazy;

We may then define a type of streams as follows:

datatype lazy ’a stream = Cons of ’a * ’a stream

The keyword "lazy " indicates that values of type ’a stream  are suspended computations that, 
when evaluated, yield a value of the form Cons (x, c) , where x  is a value of type ’a , and c  is 
another value of type ’a stream , i.e., another computation of such a value.

How might a value of type ’a stream  be created?  Since the description of values of this type 
we've just given is clearly "circular", we must employ a recursive value binding to create one.  Here's 
a definition of the infinite stream of 1's as a value of type int stream :

val rec lazy ones = Cons (1, ones)

The keyword "lazy " indicates that we are defining a value of a lazy type, which means that it must 
be kept as an incomplete computation, rather than fully evaluated at the time the binding is created.  
What computation is bound to ones ?   It's the computation that, when evaluated, yields Cons (1, 
ones) , a stream whose head element is 1 and whose tail is the very same computation again.  Thus 
if we evaluate the tail of ones  we will, once again, obtain the same value, and so on ad infinitum.

How can we take apart values of stream type?  By pattern matching, of course!   For example, we 
may evaluate the binding

val Cons (h, t) = ones

to extract the head and tail of the stream ones .  To perform the pattern match we must first force the 
evaluation of ones  to obtain Cons (1, ones) , then pattern match to bind h to 1 and t  to 
ones .  Had the pattern been "deeper", further evaluation would be forced, as in the following 
binding:

val Cons (h, (Cons (h’, t’)) = ones

To evaluate this binding, we evaluate ones to Cons (1, ones) , binding h to 1 in the process, 
then evaluate ones  again to Cons (1, ones) , binding h’  to 1 and t’  to ones .   The general 
rule is pattern matching forces evaluation of partial computations up to the depth required by the 
pattern.

We may define functions to extract the head and tail of a stream as follows:

fun shd (Cons (h, _)) = h

fun stl (Cons (_, s)) = s

Both of these functions force the computation of the stream when applied so that they may extract the 
head and tail elements.  In the case of the head element it is clear that the stream computation must be 
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forced in order to determine its value, but a moment’s thought reveals that it is not strictly necessary 
to force the computation of a stream to extract it's tail!  Why is that?  Since the tail of a stream is 
itself a stream, it may be thought of as a suspended computation.  But which suspended computation 
is it?  According to the definition just given, it is the suspended stream computation extracted from 
the second component of the value of the given stream.  But another definition is possible: it is the 
suspended computation that, when forced, yields the second component of the result of forcing the 
stream computation.   Here's a definition:

fun lazy lstl (Cons (_, s)) = s

Here the keyword "lazy " indicates that an application of lstl  to a stream does not immediately 
perform pattern matching (hence forcing the argument), but rather merely sets up a delayed stream 
computation that, when forced, forces the argument and extracts the tail of the stream.

The behavior of the two forms of tail function can be distinguished as follows:

val rec lazy s = (print "."; Cons (1, s));
val s' = stl s;                               (* prints "." 
*)
val Cons _ = s';                              (* silent *)

val rec lazy s = (print "."; Cons (1, s));
val s'' = lstl s;                             (* silent *)
val Cons _ = s'';                             (* prints "." 
*)

Notice that since stl  immediately forces it’s argument, the ". " is printed when it is applied, whereas 
it is printed only when the result of applying lstl  to an argument is itself forced by another pattern 
match.

It is extremely important that you understand the difference between these two definitions!  To check 
your understanding, let's define a function smap that applies a function to every element of a stream, 
yielding another stream.  The type of smap should be (’a -> ’b) -> ’a stream -> ’b 
stream .   The thing to keep in mind is that the application of smap to a function and a stream 
should set up (but not compute) another stream that, when forced, forces the argument stream to 
obtain the head element, applies the given function to it, and yields this as the head of the result.  
Here's the code:

fun smap f =
    let
        fun lazy loop (Cons (x, s)) = Cons (f x, loop s)
    in
        loop
    end

Notice that we have "staged" the computation so that the partial application of smap to a function 
yields a function that loops over a given stream, applying the given function to each element.  This 
loop is a "lazy" function to ensure that an application of loop to a stream merely sets up a stream 
computation, rather than forcing the evaluation of its argument at the time that the loop is applied.  
This ensures that we are as lazy as possible about evaluating streams.   Had we dropped the keyword 
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"lazy " from the definition of the loop, then an application of smap to a function and a stream 
would immediately force the computation of the head element of the stream, rather than merely set up 
a future computation of the same result.  This would be a bit over-eager in the case that the result of 
applying smap were never used in a subsequent computation.  Which solution is "right"?  It all 
depends on what you're doing, but as a rule of thumb, it is best to be as lazy as possible when dealing 
with lazy types.

To illustrate the use of smap, here's a definition of the infinite stream of natural numbers:

val one_plus = smap (fn n => n+1)
val rec lazy nats = Cons (0, one_plus nats)

It is worthwhile contemplating how and why this definition works.

Now let's define a function sfilter  of type (’a -> bool) -> ’a stream -> ’a 
stream  that filters out all elements of a stream that do not satisfy a given predicate.  Here's the code:

fun sfilter pred =
    let
        fun lazy loop (Cons (x, s)) =
            if pred x then Cons (x, loop s) else loop s
    in
        loop
    end

We can use filter to define a function sieve  that, when applied to a stream of numbers, retains only 
those numbers that are not divisible by a preceding number in the stream:

fun m mod n = m - n * (m div n)
fun divides m n = n mod m = 0
fun lazy sieve (Cons (x, s)) = Cons (x, sfilter (not o 
(divides x)) s)

We may now define the infinite stream of primes by applying sieve  to the natural numbers greater 
than or equal to 2:

val nats2 = stl (stl nats)          (* might as well be 
eager *)
val primes = sieve nats2

To inspect the values of a stream it is often useful to use the following function that "takes" n>=0
elements from a stream and builds a list of those n values:

fun take 0 _ = nil
  | take n (Cons (x, s)) = x :: take (n-1) s

In addition to supporting demand-driven computation the lazy evaluation primitives of SML/NJ also 
support memoization of the results of a computation.  The idea is that a delayed computation is 
performed at most once.  If it is never forced by pattern matching, then the delayed computation is 
never performed at all.   If it is ever forced, then the result of forcing that computation is stored in a 
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memo pad so that if it is forced again, the previous result is returned immediately,without repeating 
the work that was done previously.  Here's an example to illustrate the effects of memoization:

val rec lazy s = Cons ((print "."; 1), s)
val Cons (h, _) = s;                       (* prints ".", 
binds h to 1 *)
val Cons (h, _) = s;                       (* silent, binds 
h to 1 *)

Replace "print ".";1 " by a time-consuming operation yielding 1 as result, and you will see that 
the second time we force s  the result is returned instantly, taking advantage of the effort expended on 
the time-consuming operation induced by the first force of s .

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Concurrency [http://www.cs.cmu.edu/People/rwh/introsml/core/cml.htm] Page 18

Concurrency
[ Back ] [ Home ] [ Up ]

Last edit: Monday, April 27, 1998 02:54 PM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

Sample Code for this Chapter

Concurrent ML (CML) is a non-standard extension of Standard ML with primitives for concurrent 
programming.   It is available as part of the SML/NJ compiler only.  The eXene Library for 
programming the X windows system is based on CML.  The MLWorks system also includes 
primitives for concurrent programming.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Module Language [http://www.cs.cmu.edu/People/rwh/introsml/modules.htm] Page 40

Module Language
[ Back ] [ Home ] [ Next ]

Last edit: Sunday, April 05, 1998 10:45 PM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

The Standard ML module language comprises the mechanisms for structuring programs into separate 
units.  Program units are called structures.  A structure consists of a collection of components, 
including types and values, that constitute the unit.  Composition of units to form a larger unit is 
mediated by a signature, which describes the components of that unit.  A signature may be thought of 
as the type of a unit.  Large units may be structured into hierarchies using substructures.   Generic, or 
parameterized, units may be defined as functors.

[ Signatures and Structures ] [ Views and Data Abstraction ] [ Hierarchies and Parameterization ]

[ Back ] [ Home ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Signatures and Structures 
[http://www.cs.cmu.edu/People/rwh/introsml/modules/sigstruct.htm]

Page 
19

Signatures and Structures
[ Home ] [ Up ] [ Next ]

Last edit: Monday, April 27, 1998 02:57 PM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

Sample Code for this Chapter

The fundamental constructs of the ML module system are signatures and structures.   A signature 
may be thought of as an interface or specification of a structure, and a structure may correspondingly 
be thought of as an implementation of a signature.   Many languages (such as Modula-2, Modula-3, 
Ada, or Java) have similar constructs: signatures are analogous to interfaces or package specifications 
or class types, and structures are analogous to implementations or packages or classes.  One thing to 
point out right away, though, is that the relationship between signatures and structures in ML is 
many-to-many, whereas in some languages (such as Modula-2) the relationship is one-to-one or 
many-to-one.  This means that in ML a signature may serve as the interface for many different 
structures, and that a structure may implement many different signatures.  This provides a 
considerable degree of flexibility in the use (and re-use) of components in a system.  The price we 
pay for this flexibility is that we must be quite careful about referring to the signature of a structure, 
since it can have more than one.  As we will see, every structure has a most specific, or principal, 
signature, with the property that all other signatures for that structure are (in a suitable sense) more 
restrictive than the principal signature.

Structures

The fundamental unit of modularity in ML is the structure.  A structure consists of a sequence of 
declarations comprising the components of the structure.  A structure may be bound to a structure 
variable using a structure binding.  The components of a structure are accessed using long identifiers, 
or paths.  A structure may also be opened to incorporate all of its components into the environment.

Here's a simple example of a structure:

structure IntLT = struct
  type t = int
  val lt = (op <)
  val eq = (op =)
end

This structure has three components, one type and two values, each of which are functions.  The type 
component is named t  and is bound to the type int .   The value components are named lt  and eq , 
and are bound to the corresponding comparison operations on integers.  This structure packages up 
the type int  with the integer comparison operations < and = to form a module that is then bound to 
the structure variable IntLT .
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We may similarly package up the type int  with comparison operations being divisibility and 
equality using the following binding:

structure IntDiv = struct
  type t = int
  fun lt (m, n) = (n mod m = 0)
  fun eq (m, n) = (op =)
end

The structures  and  may be thought of as two different interpretations of the type int  as an ordered 
type (i.e., a type supporting a "less than" and an equality operation).  In one case we interpret "less 
than" as the standard ordering on integers, in the other we interpret "less than" as divisibility.  The 
point is the type does not determine the interpretation.  We use the module system to package up 
types with operations to provide an interpretation of that type.  Many different interpretations may co-
exist, provided only that we bind them to distinct structure variables.

The components of a structure are accessed using  paths (also known as long identifiers or qualified 
names).  We may only access the components of a named structure (one that has been bound to a 
structure variable).  A component named id of a structure named strid is accessed by the long name 
strid.id, the structure name followed by the component name, separated by a "dot".  For example, 
IntLT.lt  designates the lt  operation of the structure IntLT , and IntDiv.lt  designates the lt
operation of the structure IntDiv .  The type of IntLT.lt  is

IntLT.t * IntLT.t -> bool ,

and the type of IntDiv.lt  is

IntDiv.t * IntDiv.t -> bool .

The types of these operations have been "externalized" using long identifiers to refer to the 
appropriate type t  for each operation.  Since IntLT.t  and IntDiv.t  are both bound to the type 
int , it makes sense to write expressions such as IntLt.lt(3,4)  and IntDiv.lt(3,4) .

Since IntLT.t  and IntDiv.lt  are both bound to the type int ,   it is technically correct to 
consider IntLt.t  to be of type

IntDiv.t * IntDiv.t -> bool

and also of type

int * int -> bool.

Were we also to have a structure StringLT  whose t  component is bound to the type string , then 
StringLT.lt  would have type

StringLT.t * StringLT.t -> bool

and type
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string * string -> bool

but not type

IntLT.t * IntLT.t -> bool

Packaging a declaration to form a structure does not affect the usual rules of type equivalence --- 
transparent type definitions remain transparent.

The use of a long identifier to access a component of a structure serves to remind us of the 
interpretation of the underlying type of the structure.  For example, the long identifer IntLT.lt
reminds us that the comparison is the standard "less than" relation on integers, whereas the long 
identifier IntDiv.lt  reminds us that the comparison is divisiblity.  Sometimes the use of long 
identifiers can get out of hand, cluttering the program text, rather than clarifying it.  This can be 
alleviated by opening the structure for use in a particular context.  For example, rather than writing

IntDiv.lt ( exp1, exp2) andalso IntDiv.eq ( exp3, exp4)

we may instead write

let
  open IntDiv
in
  lt ( exp1, exp2) andalso eq ( exp3, exp4)
end

This has the effect of incorporating the components of the structure IntLT  into the environment for 
the duration of the evaluation of the body of the let  expression.  It is as if we replace "open 
IntLT " by the declarations comprising the structure bound to IntLT .

Using open  has some disadvantages.  One is that we cannot simultaneously open two structures with 
have one or more components with the same names --- the one we open later we will shadow the 
bindings of the one we open earlier.  For example, if we write

let
  open IntLT IntDiv        (* open both structures in the 
order given *)
in
  ...
end

then only the bindings of the second structure, IntDiv , are available in the scope of the let
because they completely shadow the bindings of the first structure, IntLT .

Another disadvantage is that it is difficult to determine exactly which bindings are introduced by an 
open  declaration.  We must refer to the implementation of the opened structure (typically defined 
somewhere remote from the client code) to understand the effect of the open.  A typical bug is to 
unwittingly shadow an identifier by opening a structure that happens to provide a binding for that 
identifier, even though we did not intend that it do so.  In many cases this will result in a 
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typechecking error, but in more insidious cases it can lead to subtle run-time bugs.  For example, 
suppose the implementation of the structure  makes use of an auxiliary function as follows:

structure StringLT = struct
  type t = string
  fun compare (c, d) = Char.< (c, d)
  fun lt (s, t) = ... compare ...
  fun eq (s, t) = ... compare ...
end

Opening this structure introduces not only the expected components t , lt , and eq , but also the 
unexpected auxiliary function compare !

To avoid such problems it is usually advisable to avoid open  entirely.   The typical compromise is to 
introduce a short (typically one letter) name for the structures in question to minimize the clutter of a 
long path.  Thus we might write

let
  structure I = IntLT
in
  I.lt ( exp1, exp2) andalso I.eq ( exp3, exp4)
end

rather than opening the structure IntLT  as suggested above.

The structures  and  are rather simple examples of the use of the module system.  A more substantial 
example is provided by packaging the implementation of (ephemeral) queues into a structure.

structure PersQueue = struct
  type 'a queue = 'a list * 'a list
  val empty = (nil, nil)
  fun insert (x, (bs, fs)) = (x::bs, fs)
  exception Empty
  fun remove (nil, nil) = raise Empty
    | remove (bs, f::fs) = (f, (bs, fs))
    | remove (bs, nil) = remove (nil, rev bs)
end

The components of this structure may be accessed by using long identifiers,

val q = PersQueue.empty
val q' = PersQueue.insert (1, q)
val q'' = PersQueue.insert (2, q)
val (x'', _) = PersQueue.remove q''        (* 2 *)
val (x', _) = PersQueue.remove q'          (* 1 *)

by opening the structure,

let
  open PersQueue
in
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  insert (1, empty)
end

or by introducing a short name for it

let
  structure PQ = PersQueue
in
  PQ.insert (1, PQ.empty)
end

The structure PersQueue  may be thought of as an implementation of the abstract data type of 
persistent queues.  We may build and manipulate queues using the operations PersQueue.empty , 
PersQueue.insert , and PersQueue.remove .  Structures are loosely analogous to classes in 
languages such as C++ and Java; in particular, abstract types are usually implemented by structures.

Signatures

A signature is the type of a structure.  It describes a structure by specifying each of its components by 
giving its name and a description of it.  Different sorts of components have different specifications.   
A type component is specified by giving its arity (number of arguments) and (optionally) its 
definition.  A datatype component is specified by its declaration, which defines its value constructors 
and their types.  An exception component is specified by giving the type of the values it carries (if 
any).  A value component is specified by giving its type scheme.

Here is the signature of an ordered type, one that comes equipped with a comparison operations on it.

signature ORDERED = sig
  type t
  val lt : t * t -> bool
  val eq : t * t -> bool
end

This signature describes a structure that provides a type component named t  (with no specified 
definition) and two operations, lt  and eq , of type t * t -> bool .  Ordinarily we expect that lt
is reflexive and transitive, and that eq  is an equivalence relation, but these requirements are not 
formally expressible in ML.

If we wish we can specify the definition of a type component in a signature.  For example, we may 
define the signature

signature INT_ORDERED = sig
  type t = int
  val lt : t * t -> bool
  val eq : t * t -> bool
end

which is similar to the signature ORDERED, except that the type component t  is specified to be 
equivalent to int .  It therefore describes only those structures that provide an interpretation of int
as an ordered type.   (As we mentioned earler, there can be many such interpretations.)
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An important consequence of having type definitions in signatures is that many superficially different 
signatures are equivalent.  For example, the signature INT_ORDERED is equivalent to the following 
signature:

signature INT_ORDERED_VARIANT = sig
  type t = int
  val lt : int * int -> bool
  val eq : int * int -> bool
end

The reason is that since the type component t  is defined to be int , we may replace it by int
anywhere that it is used to obtain an equivalent signature.  For all practical purposes the signatures 
INT_ORDERED and INT_ORDERED_VARIANT are indistinguishable from one another.

Here is a signature describing implementations of persistent queues:

signature QUEUE = sig
  type 'a queue
  val empty : 'a queue
  val insert : 'a * 'a queue -> 'a queue
  exception Empty
  val remove : 'a queue -> 'a * 'a queue
end

This signature specifies that an implementation of persistent queues provide a one-argument type 
constructor 'a queue , the type of queues containing values of type 'a , an exception Empty
carrying no value, and the values empty , insert , and remove  with types 'a queue , 'a * 'a 
queue ->  'a queue , and 'a queue ->  'a * 'a queue , respectively.

Signature Matching

The signature matching relation is of central importance to the ML module system.   Signature 
matching governs the formation of complex module expressions in the same way that type matching 
governs the formation of core language expressions.   For example, to determine whether a structure 
binding structure  strid :  sigexp = strexp is well-formed, we must check that the principal 
signature of strexp matches the ascribed signature sigexp.  The principal signature of a structure 
expression is the signature that most accurately describes the structure strexp; it contains the 
definitions of all of the types defined in strexp, and the types of all of its value components. We then 
compare the principal signature of strexp against the signature sigexp to determine whether or not 
strexp satisfies the requirements specified by sigexp.

Signature matching consists of a comparison between a candidate and a target signature.  The target 
expresses a set of requirements that the candidate must fulfill.  In the case of a structure binding the 
candidate is the principal signature of the structure expression, and the target is the ascribed signature 
of the binding. Roughly speaking, to check that a candidate siganture matches a target signature it is 
necessary to ensure that the following conditions hold: 

1. Every type specification in the target must have a matching type specification in the candidate.  
If the target specifies a definition for a type, so must the candidate specify an equivalent 
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definition. 
2. Every exception specification in the target must have an equivalent exception specification in 

the candidate. 
3. Every value specification in the target must be matched by a value specification in the 

candidate with at least as general a type. 

Note that the candidate signature may have more components than are required by the target, may 
have more definitions of types than are required, and may have value components with more general
types.  The target signature specifies a set of necessary conditions that must be met by the candidate, 
but the candidate may well be much richer than is required by the target.

To make these ideas precise, we decompose the signature matching relation into two sub-relations, 
enrichment and realization, that are defined as follows: 

1. A signature sigexp enriches a signature sigexp’ if sigexp has at least the components specified 
in sigexp’, with the types of value components being at least as general in sigexp as they are in 
sigexp’. 

2. A signature sigexp realizes a signature sigexp’ if sigexp fulfills at least the type definitions 
specified in sigexp’, but is otherwise identical to sigexp’. 

In other words sigexp enriches sigexp’ if we can obtain sigexp’ from sigexp by dropping components 
and specializing types, and sigexp realizes sigexp’ if we can obtain sigexp’ from sigexp by "forgetting" 
the definitions of some of sigexp's type components.  It is immediate that any signature both enriches 
and realizes itself, and it is not hard to see that enrichment and realization are transitive.

We then say that sigexp matches sigexp’ if there exists a signature sigexp’’ such that sigexp enriches 
sigexp’’ and sigexp’’ realizes sigexp’.  Put in more operational terms, to determine whether sigexp
matches sigexp’, we first drop components and specialize types in sigexp to obtain a view sigexp’’ of 
sigexp with the same components as sigexp’, then check that the type definitions specified by sigexp’
are provided by the view.  Signature matching can fail for several reasons: 

1. The target contains a component not present in the candidate. 
2. The target contains a value component whose type is not an instance of its type in the 

candidate. 
3. The target defines a type component, that is defined differently or not defined in the candidate. 

The first two reasons are failures of enrichment; the third is a failure of realization.

Some examples will clarify these definitions.  Let us consider realization first since it is the simpler 
of the two relations.  The signature INT_ORDERED realizes the signature ORDERED because we may 
obtain the latter from the former by "forgetting" that the type component t  in the signature 
INT_ORDERED is defined to be int .  The converse fails: ORDERED does not realize 
INT_ORDERED because ORDERED does not define the type component t  to be int .  Here is 
another counterexample to realization.  The signature

signature LESS_THAN = sig
  type t = int
  val lt : t * t -> bool
end
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does not realize the signature ORDERED, even though it defines t  to be int , simply because the eq
component is missing from the signature LESS_THAN.

That's all there is to say about realization.  Enrichment is slightly more complicated.  The signature 
ORDERED enriches the signature LESS_THAN because it provides all of the components required by 
the latter, at precisely the required types.  For a more interesting example, consider the signature of 
monoids,

signature MONOID = sig
  type t
  val unit : t
  val mult : t * t -> t
end

and the signature of groups,

signature GROUP = sig
  type t
  val unit : t
  val mult : t * t -> t
  val inv : t -> t
end

The signature GROUP  enriches the signature MONOID, as might be expected (since every group is a 
monoid).

The enrichment relation respects signature equivalence.  For example, the signature INT_ORDERED
enriches the following signature:

signature INT_LESS_THAN = sig
  val lt : int * int -> bool
end

Here we have dropped both the t  and the eq  components of the signature INT_ORDERED, and 
specified lt  to have a superficially different type than is specified in the signature INT_ORDERED.  
As was pointed out earlier, the signature INT_ORDERED is equivalent to the signature 
INT_ORDERED_VARIANT, which clearly enriches the signature INT_LESS_THAN.   Since 
enrichment respects signature equivalence, it follows that INT_ORDERED is an enrichement of 
INT_LESS_THAN.

The enrichment relation also allows the types of value components to be specialized by instantiating 
polymorphic types.  For example, the signature

sig
  type t
  val f : 'a -> 'a
end

enriches the signature
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sig
  type t
  val f : t -> t
end

simply because the polymorphic type 'a -> 'a  may be specialized to the required type t -> t
(by taking 'a  to be t ).

There is one additional case of enrichment to consider.  A datatype specification may be regarded as 
an enrichment of a signature that specifies a type with the same name and arity (but no definition), 
and zero or more value components corresponding to some (or all) of the value constructors of the 
datatype.  The types of the value components must match exactly the types of the corresponding value 
constructors; no specialization is allowed in this case.  For example, the signature

sig
  datatype 'a rbt =
    Empty | Red of 'a rbt * 'a * 'a rbt | Black of 'a rbt * 
'a * 'a rbt
end

is considered to be an enrichment of the signature

sig
  type 'a rbt
  val Empty : 'a rbt
  val Red : 'a rbt * 'a * 'a rbt
end

which specifies two of the three value constructors of the datatype as ordinary values.

Putting these ideas together, we see that the following signature matches the signature MONOID:

sig
  type t = int list
  val unit : 'a list
  val mult : 'a list * 'a list -> 'a list
  val aux : 'a list
end

Why?  First, we drop the component aux , and specialize the type of mult  to int list * int 
list -> int list  and the type of unit  to int list  by taking ’a   to be int , thereby 
obtaining the intermediate signature

sig
  type t = int list
  val unit : int list
  val mult : int list * int list -> int list
end
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This intermediate signature is equivalent to the signature

sig
  type t = int list
  val unit : t
  val mult : t * t -> t
end

By neglecting the definition of the type t  we obtain the signature MONOID.   Therefore the signature 
match succeeds.

Signature Ascription

The point of having signatures in the language is to express the requirement that a given structure 
have a given signature.  This is achieved by signature ascription, the attachment of a target signature 
to a structure binding.  There are two forms of signature ascription, transparent and opaque, differing 
only in the extent to which type definitions are propagated into the scope of the binding.   Transparent 
ascription is written as

structure  strid :  sigexp = strexp

Opaque ascription is written as

structure  strid :>  sigexp = strexp

The two are distinguished by the use of a colon, ": ", or the symbol ":> " before the ascribed 
signature.

Here is an example of transparent ascription.  We may use transparent ascription on the binding of the 
structure variable IntLT  to express the requirement that the structure implement an ordered type.  
This is achieved as follows:

structure IntLT : ORDERED = struct
  type t = int
  val lt = (op <)
  val eq = (op =)
end

Transparent ascription is so-called because the definition of IntLT.t  is not obscured by the 
ascription; the equation IntLT.t  = int  remains valid in the scope of this declaration.  Transparent 
ascription is appropriate here because the signature   merely expresses the requirement that the given 
structure provide a type and two comparison operations.  We do not intend that these be the only
operations on that type.  (Had we done so the structure would be useless because there would be no 
way to create a value of type IntLT.t , rendering the structure IntLT  useless!)  The structure 
IntLT  may be thought of as a view of the type int  as a type ordered by the standard comparison 
operations.   We may form another view of int  as an ordered type, but with a different ordering, by 
making the following binding:
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structure IntDiv : ORDERED = struct
  type t = int
  fun lt (m, n) = (n mod m = 0)
  val eq = (op =)
end

Here's an example of opaque ascription.  We may use opaque ascription to specify that a structure 
implement queues, and, at the same time, specify that only the operations in the signature be used to 
manipulate values of that type.  This is achieved as follows:

structure Queue :> QUEUE = struct
  type 'a queue = 'a list * 'a list
  val empty = (nil, nil)
  fun insert (x, (bs, fs)) = (x::bs, fs)
  exception Empty
  fun remove (nil, nil) = raise Empty
    | remove (bs, f::fs) = (f, (bs, fs))
    | remove (bs, nil) = remove (nil, rev bs)
end

Opaque ascription is so-called because the definition of 'a Queue.queue  is hidden by the 
binding; the equivalence of the types 'a Queue.queue  and 'a list * 'a list  is not 
propagated into the scope of the binding.  This is appropriate because we wish to ensure that queues 
are created and manipulated only by the "official" operations in the signature, and not by any other 
means.  By suppressing the identity of the implementation type we preclude use of any operations on 
values of that type other than the ones specified in the signature.

Type checking a structure binding proceeds as follows.  First we determine the principal signatureof 
the structure expression on the right-hand side of the binding.  (It is an important property of the 
language that the principal signature of a structure always exists; there is always a "most accurate" 
description of any structure.)  We then proceed according to whether there is an ascribed signature, 
and, in case there is, according to whether it is a transparent or opaque ascription.   If there is no 
ascribed signature, the principal signature of the right-hand side is assigned as the signature of the 
structure variable.  If there is an ascribed signature, we match the principal signature against it to 
determine whether its requirements are met.  If not, the binding is rejected as ill-typed.  If so, then we 
assign a signature to the structure variable according to whether the ascription is transparent or 
opaque.  If it is transparent, the structure variable is assigned the view of the candidate signature 
determined by the matching process; if it is opaque, the structure variable is assigned the ascribed
signature.  This means that for a transparent ascription the definitions in the principal signature of the 
types occurring in the ascribed signature are propagated into the scope of the binding, whereas for 
opaque ascription only the information explicitly appearing in the ascribed signature is propagated.  
In particular if a type is specified in the ascribed signature, but no definition is provided, then the 
definition of that type is hidden from the clients of that binding, rendering it opaque.

It remains to define the principal signature of a structure expression.  There are two forms of structure 
expression to be considered (at this stage): a structure variable and a struct  expression.  A 
structure variable has as principal signature the signature assigned to it by the ascription process just 
described.  An struct  expression is assigned a principal signature by a component-by-component 
analysis of its constituent declarations.  The rules are essentially as follows: 
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1. Corresponding to a declaration of the form type (’a 1,...,’a n) t = typ, the principal 

signature contains the specification type (’a 1,...,’a n) t = typ. 

2. Corresponding to a declaration of the form 

datatype (’a 1,...,’a n) t = con1 of typ1 | ... | conk of typk, 

the principal signature contains the specification

datatype (’a 1,...,’a n) t = con1 of typ1 | ... | conk of typk.

3. Corresponding to a declaration of the form exception id of typ, the principal signature 
contains the specification exception id of typ. 

4. Corresponding to a declaration of the form val id = exp, the principal signature contains 
the specification val id : typ, were typ is the principal type scheme of the expression 
exp (relative to the preceding context). 

The complete rules are slightly more complicated than this because they must take account of such 
features as pattern-matching in value bindings, mutually recursive declarations of functions, and the 
possibility of shadowing bindings by re-declaration.   However, the rules given above are a rough-
and-ready approximation that will serve for most purposes; the reader is referred to The Definition of 
Standard ML for a complete account.

With these rules in mind, it is a good exercise to review the two examples of signature ascription 
given above.  Go through the steps of forming the principal signature, then check that the principal 
signature matches the ascribed signature, and determine the signature to assign to the structure 
variable in each case.

Sample Code for this Chapter

[ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Views and Data Abstraction
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Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

Sample Code for this Chapter

It is good practice to ascribe a signature to every structure binding in a program to ensure that the 
signature of the bound structure variable is apparent from the binding.   In the preceding chapter we 
described the elaboration and evaluation of a structure binding with an explicit signature ascription.  
First the ascribed signature is used to determine a view of the principal signature of the right-hand 
side of the binding, then the view is checked to ensure that it verifies the type sharing requirements of 
the ascribed signature.  If both steps succeed, we assign a signature to the bound structure variable 
according to whether it is a transparent or opaque ascription --- if it is transparent, we assign the view 
to the variable, otherwise the ascription.  Thus transparent ascription is used to form views of a 
structure, and opaque ascription is used to form abstractions in which critical type information is 
hidden from the rest of the program.

The formation of a view also has significance at run-time: a new structure is built consisting of only 
those components of the right-hand side of the binding mentioned in the ascribed signature, perhaps 
augmented by zero or more type components to ensure that the signature of the view is well-formed.  
(For example, if we attempt to extract only the constructors of a datatype, and not the datatype itself, 
the compiler will implicitly extract the datatype to ensure that the types of the constructors are 
expressible in the signature.  Any type implicitly included in the view is marked as "hidden" to 
indicate that it was implicitly included as a consequence of the explicit inclusion of some other 
components of the structure.)  Moreover, the types of polymorphic value components may be 
specialized in the view, corresponding to a form of polymorphic instantiation during signature 
matching.  The result is a structure whose shape is fully determined by the view; no "junk" remains 
after the ascription.  This ensures that access to the components of a structure is efficient (constant-
time), and that there are no "space leaks" stemming from the presence of components of a structure 
that are not mentioned in its signature.

In this chapter we discuss the trade-off's between using views and abstraction in ML by offering some 
guidelines and examples of their use in practice.  How does one decide whether to use transparent or 
opaque ascription?  Generally speaking, transparent ascription is appropriate if the signature is not 
intended to be exhaustive, but is rather just a specification of some minimum requirements that a 
module must satisfy.  Opaque ascription is appropriate if the signature is intended to be exhaustive, 
specifying precisely the operations that are available on the type.

Here's a common example of the use of transparent ascription in a program.  When defining a module 
it is often convenient to introduce a numberof auxiliary bindings, especially of "helper functions" that 
are used internally to the code of the "public" operations.   Since these auxiliaries are not intended to 
be used by clients of the module, it is good practice to localize them to the implementation of the 
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public operations.  This can be achieved by using the local  construct, as previously discussed in 
these notes.  An alternative is to define the auxiliaries as components of the stucture, relying on 
transparent ascription to drop the auxiliary components before exporting the public components to 
clients of the module.  Thus we might write something like this:

structure IntListOrd : ORDERED =
struct
  type t = int list
  fun aux l = ...
  val lt (l1, l2) = ... aux ...
  val eq (l1, l2) = ... aux ...
end

The effect of the signature ascription is to drop the auxiliary component aux  from the structure 
during signature matching so that afterwards the binding of IntListOrd  contains only the 
components in the signature ORDERED.  An added bonus of this style of programming is that during 
debugging and testing we may gain access to the auxiliary by simply "commenting out" the ascription 
by writing instead

structure IntListOrd (* : ORDERED *) =
struct
  type t = int list
  fun aux l = ...
  val lt (l1, l2) = ... aux ...
  val eq (l1, l2) = ... aux ...
end

Since the ascription has been suppressed, the auxiliary component IntListOrd.aux  is accessible 
for testing.  (It would be useful to have a compiler switch that "turns off" signature ascription, rather 
than having to manually comment out each ascription in the program, but no current compilers 
support such a feature.)

Now let us consider uses of opaque ascription by reconsidering the implementation of persistent 
queues using pairs of lists.  Here it makes sense to use opaque ascription since the operations 
specified in the signature are intended to be exhaustive --- the only way to create and manipulate 
queues is to use the operations empty , insert , and remove .  By using opaque signature matching 
in the declaration of the Queue structure, we ensure that the type Queue.queue  is hidden from the 
client.  Consequently an expression such as Queue.insert (1, ([],[]))  is ill-typed, even 
though queues are "really" pairs of lists, because the type ’a list * ’a list  is not equivalent 
to ’a Queue.queue .   Were we to use transparent ascription this equation would hold, which 
means that the client would not be constrained to using only the "official" queue operations on values 
of type ’a Queue.queue .  This violates the principle of data abstraction, which states that an 
abstract type should be completely defined by the operations that may be performed on it.

Why impose such a restriction?  One reason is that it ensures that the client of an abstraction is 
insensitive to changes in the implementation of the abstraction.   Should the client's behavior change 
as a result of a change of implementation of an abstract type, we know right where to look for the 
error: it can only be because of an error in the implementation of the operations of the type.  Were 
abstraction not enforced, the client might (accidentally or deliberately) rely on the implementation 
details of the abstraction, and would therefore need to be modified whenever the implementation of 
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the abstraction changes. Whenever such coupling can be avoided, it is desirable to do so, since it 
allows components of a program to be managed independently of one another.

A closely related reason to employ data abstraction is that it enables us to enforce representation 
invariants on a data structure.  More precisely, it enables us to isolate any violations of a 
representation invariant to the implementation of the abstraction itself.  No client code can disrupt the 
invariant if abstraction is enforced.  For example, suppose that we are implementing a dictionary 
package using a binary search tree.  The implementation might be defined in terms of a library of 
operations for manipulating generic binary trees called BinTree .  The implementation of the 
dictionary might look like this:

structure Dict :> STRING_DICT =
  struct
    (* Rep Invariant: binary search tree *)
    type t = string BinTree.tree
    fun insert (k, t) = ...
    fun lookup k = ...
  end

Had we used transparent, rather than opaque, ascription of the STRING_DICT signature to the Dict
structure, the type Dict.t  would be known to clients to be string BinTree.tree .  But then one 
could call Dict.lookup  with any value of type string BinTree.tree , not just one that 
satisfies the representation invariant governing binary search trees (namely, that the strings at the 
nodes descending from the left child of a node are smaller than those at the node, and those at nodes 
descending from the right child are larger than those at the node).   By using opaque ascription we are 
isolating the implementation type to the Dict  package, which means that the only possible violations 
of the representation invariant are those that arise from errors in the Dict  package itself; the 
invariant cannot be disrupted by any other means.  The operations themselves may assume that the 
representation invariant holds whenever the function is called, and are obliged to ensure that the 
representation invariant holds whenever a value of the representation type is returned.  Therefore any 
combination of calls to these operations yielding a value of type Dict.t  must satisfy the invariant.

You might wonder whether we could equally well use run-time checks to enforce representation 
invariants.  The idea would be to introduce a "debug flag" that, when set, causes the operations of the 
dictionary to check that the representation invariant holds of their arguments and results.  In the case 
of a binary search tree this is surely possible, but at considerable expense since the time required to 
check the binary search tree invariant is proportional to the size of the binary search tree itself, 
whereas an insert (for example) can be performed in logarithmic time.  But wouldn't we turn off the 
debug flag before shipping the production copy of the code?  Yes, indeed, but then the benefits of 
checking are lost for the code we care about most!  (To paraphrase Tony Hoare, it's as if we used our 
life jackets while learning to sail on a pond, then tossed them away when we set out to sea.)  By using 
the type system to enforce abstraction, we can confine the possible violations of the representation 
invariant to the dictionary package itself, and, moreover, we need not turn off the check for 
production code because there is no run-time penalty for doing so.

A more subtle point is that it may not always be possible to enforce data abstraction at run-time.  
Efficiency considerations aside, you might think that we can always replace static localization of 
representation errors by dynamic checks for violations of them.  But this is false!  One reason is that 
the representation invariant might not be computable.  As an example, consider an abstract type of 
total functions on the integers, those that are guaranteed to terminate when called, without performing 
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any I/O or having any other computational effect.  It is a theorem of recursion theory that no run-time 
check can be defined that ensures that a given integer-valued function is total.  Yet we can define an 
abstract type of total functions that, while not admitting ever possible total function on the integers as 
values, provides a useful set of such functions as elements of a structure.  By using these specified 
operations to create a total function, we are in effect encoding a proof of totality in the code itself.

Here's a sketch of such a package:

signature TIF = sig
  type tif
  val apply : tif -> (int -> int)
  val id : tif
  val compose : tif * tif -> tif
  val double : tif
  ...
end

structure Tif :> TIF = struct
  type tif = int->int
  fun apply t n = t n
  fun id x = x
  fun compose (f, g) = f o g
  fun double x = 2 * x
  ...
end

Should the application of such some value of type Tif.tif  fail to terminate, we know where to 
look for the error.  No run-time check can assure us that an arbitrary integer function is in fact total.

Another reason why a run-time checkto enforce data abstraction is impossible is that it may not be 
possible to tell from looking at a given value whether or not it is a legitimate value of the abstact 
type.   Here's an example.  In many operating systems processes are "named" by integer-value process 
identifiers.  Using the process identifier we may send messages to the process, cause it to terminate, 
or perform any number of other operations on it.  The thing to notice here is that any integer at all is a 
possible process identifier; we cannot tell by looking at the integer whether it is indeed valid.  No 
run-time check on the value will reveal whether a given integer is a "real" or   "bogus" process 
identifier.  The only way to know is to consider the "history" of how that integer came into being, and 
what operations were performed on it.  Using the abstraction mechanisms just described, we can 
enforce the requirement that a value of type pid , whose underlying representation is int , is indeed a 
process identifier.  You are invited to imagine how this might be achieved in ML.

Transparency and opacity may seem, at first glance, to be fundamentally opposed to one another.  But 
in fact transparency is special case of opacity!  By using type definitions in signatures, we may 
always express explicitly the propagation of type information that is conveyed implicitly by 
transparent ascription.  For example, rather than write

structure IntLT : ORDERED = struct type t=int ... end

we may instead write
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structure IntLT :> INT_ORDERED = struct type t=int ... end

at the expense of introducing a specialized version of the signature ORDERED with the type t  defined 
to be int .  This syntactic inconvenience can be ameliorated by using the "where type " construct, 
writing

structure IntLT :> ORDERED where type t=int = struct ... 
end

The signature expression "ORDERED where type t=int " is equivalent to the signature 
INT_ORDERED defined above.

Thus transparency is a form of opacity in which we happen to publicize the identity of the underlying 
types in the ascribed signature.  This observation is more important than one might think at first 
glance.  The reason is that it is often the case that we must use a combination of opacity and 
transparency in a given situation.  Here's an example.  Suppose that we wished to implement several 
dictionary packages that differ in the type of keys.  The "generic" signature of a dictionary might look 
like this:

signature DICT = sig
  type key
  val lt : key * key -> bool
  val eq : key * key -> bool
  type 'a dict
  val empty : 'a dict
  val insert : 'a dict * key * 'a -> 'a dict
  val lookup : 'a dict * key -> 'a
end

Notice that we include a type component for the keys, together with operations for comparing them, 
along with the type of dictionaries itself and the operations on it.   Now consider the definition of an 
integer dictionary module, one whose keys are integers ordered in the usual manner.  We might use a 
declaration like this:

structure IntDict :> DICT = struct
  type key = int
  val lt : key * key -> bool = (op <)
  val eq : key * key -> bool = (op =)
  datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
  val empty = Empty
  fun insert (d, k, e) = ...
  fun lookup (d, k) = ...
end

But this is wrong!  The reason is that the opaque ascription, which is intended to hide the 
implementation type of the abstraction, also obscures the type of keys.   Since the only operations on 
keys in the signature are the comparison functions, we can never insert an element into the dictionary!

What is necessary is to introduce a specialized version of the DICT signature in which we publicize 
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the identity of the key  type, as follows:

signature INT_DICT = DICT where type key = int

structure IntDict :> INT_DICT = struct
  type key = int
  val lt : key * key -> bool = (op <)
  val eq : key * key -> bool = (op =)
  datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
  val empty = Empty
  fun insert (d, k, e) = ...
  fun lookup (d, k) = ...
end

With this declaration the type 'a IntDict.dict  is abstract, but the type IntDict.key  is 
equivalent to int .  Thus we may correctly write IntDict.insert (IntDict.empty, 1, 
"1") to insert the value "1"  into the empty dictionary with key 1.  To build a dictionary whose 
keys are strings, we proceed similarly:

signature STRING_DICT = DICT where type key = string

structure StringDict :> STRING_DICT = struct
  type key = string
  val lt : key * key -> bool = (op <)
  val eq : key * key -> bool = (op =)
  datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
  val empty = Empty
  fun insert (d, k, e) = ...
  fun lookup (d, k) = ...
end

In the next two chapters we will discuss how to build a generic implementation of dictionaries that 
may be instantiated for many different choices of key type.

Sample Code for this Chapter
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Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for this Chapter

In the preceding chapter we considered the following signature of dictionaries with an arbitrary key 
type:

signature DICT = sig
  type key
  val lt : key * key -> bool
  val eq : key * key -> bool
  type 'a dict
  val empty : 'a dict
  val insert : 'a dict * key * 'a -> 'a dict
  val lookup : 'a dict * key -> 'a
end

The signatures of dictionaries with particular choices of key type were defined using the "where 
type " construct.  For example, the signature declarations

signature STRING_DICT = DICT where type key=string
signature INT_DICT = DICT where type key=int

define the signatures of dictionaries with string and integer keys, respectively.   The motivation for 
introducing these specialized instances of the DICT signature is that we typically wish to hold the 
implementation type, ’a dict , of dictionaries abstract, but leave the type of keys concrete, as 
described earlier.

The signature DICT is a bit unsatisfactory because it mixes two different notions in one interface, 
namely the type, key , of keys and its associated comparison operations, lt  and eq , and the type ’a 
dict  of dictionaries and its associated operations empty , insert , and lookup .  It would be 
cleaner to separate these two aspects of the interface, especially since we shall soon consider the key 
component to be "generic", with the rest being "specific", to the abstraction.   The way to do this in 
ML is with a substructure, as follows:

signature DICT = sig
  structure Key : ORDERED
  type 'a dict
  val empty : 'a dict
  val insert : 'a dict * Key.t * 'a -> 'a dict
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  val lookup : 'a dict * Key.t -> 'a
end

The type of keys and the operation on it are segregated into a substructure of the dictionary structure, 
a component of a structure that is itself a structure.   Correspondingly, uses of the type key  are 
replaced by references to the t  component of the substructure Key.  This leads to a hierarchical
organization in which we consider the key structure to be subservient to the dictionary operations.

Specialized versions of the signature DICT are build essentially as before, except that we use a long 
identifier to specify the type of keys:

signature STRING_DICT = DICT where type Key.t=string
signature INT_DICT = DICT where type Key.t=int

Specific implementations of these specialized instances may be defined as follows:

structure StringDict :> STRING_DICT = struct
  structure Key : ORDERED = StringLT
  type 'a dict = Key.t BinTree.tree
  val empty = BinTree.empty
  val insert = ... insert into a BST using Key.lt and 
Key.eq...
  val lookup = ... lookup in a BST using Key.lt and 
Key.eq...
end

structure IntDict :> INT_DICT = struct
  structure Key : ORDERED = IntLT
  type 'a dict = Key.t BinTree.tree
  val empty = BinTree.empty
  val insert = ... insert into a BST using Key.lt and 
Key.eq...
  val lookup = ... lookup in a BST using Key.lt and 
Key.eq...
end

The difficulty, of course, is that we are repeating the code for dictionaries in each implementation; the 
elided parts of both structures would be identical.  The only difference between the two dictionary 
structures lies in the implementation of keys; in one case we choose string operations and in the other 
we choose integer operations.   Since the bulk of the code is the same, it is a pity to have to repeat it 
for reach choice of key type.

Fortunately, ML provides a convenient means of avoiding such redundancy, called a functor.   A 
functor is a parameterized module, or a generic structure, that is defined in terms of zero or more 
argument structures with a specified signature.  A functor may be applied, or instaniated, with any 
structures matching the argument signatures.  A functor is therefore a kind of function taking zero or 
more structures as arguments and yielding a structure as result.

In the case of dictionaries we may define a generic implementation that is parameterized by the type 
of keys and associated comparison operations.  This is achieved by introducing a functor.
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functor Dict (structure K : ORDERED) :> DICT where type 
Key.t=K.t =
struct
   structure Key : ORDERED = K
   type 'a dict = Key.t BinTree.tree
   val empty = BinTree.empty
   val insert = ... insert into a BST using Key.lt and 
Key.eq...
   val lookup = ... lookup in a BST using Key.lt and 
Key.eq...
end

This declaration introduces a functor named Dict  that takes as argument any structure implementing 
the signature ORDERED, and yields a structure implementing the instance of the signature DICT
determined by taking the key type of the dictionary to be the type component of its argument, leaving 
the type of dictionaries abstract.  The type checker ensures that the body of the functor matches the 
specified result signature, under the assumption that the argument has the stated signature.  In the 
case of the Dict  functor the type checker ensures that the principal signature of the body of the 
functor (the part between struct  and end ) matches the signature

DICT where type Key.t=K.t,

assuming that the structure K has signature ORDERED.

The Dict  functor encapsulates the implementation of dictionaries as a generic structure that is 
independent of the specific choice of keys.  One advantage of this encapsulation is that should we 
wish to modify the implementation of dictionaries, say to fix an error or to improve performance, we 
need only modify the Dict  functor, rather than change every occurrence of the dictionary code 
spread throughout a large system.  This is obviously advantageous for both the original author of the 
code, and anyone who must maintain it in the future.  In fact common data structures such as 
dictionaries are typically provided as part of a "shrink wrapped" library, and hence are shared among 
many different programs, thereby increasing code reuse and reducing redundancy.

The Dict  functor provides a generic implementation of dictionaries.   Dictionaries with specific key 
types may be built by instantiating the Dict  functor as follows:

structure IntDict = Dict (structure K = IntLT)
structure StringDict = Dict (structure K = StringLT)

Notice that functor application uses keyword parameter passing --- the parameter is explicitly bound 
to a structure using a structure binding.  In practice the right-hand sides of such bindings are always 
(long) identifiers; if not, the compiler implicitly inserts bindings to ensure that this is the case.  In our 
discussions we will tacitly assume that the right-hand side of all such bindings are (long) identifiers.

What are the signatures of the structure variables IntDict  and StringDict ?   Since no signature 
is ascribed to these bindings, the principal signature of the corresponding right-hand side of the 
binding is assigned to each variable, in keeping with our previous policies.  Since the right-hand side 
in these examples is a functor application, we must answer the question: what is the principal 
signature of a functor application?  If --- as here --- the result signature of the functor is opaque, the 
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principal signature is precisely the asribed signature of the functor, but with the structure parameter 
replaced by its binding (which must be, by our assumption, another structure identifier).  Thus the 
signature assigned to IntDict  is

DICT where type Key.t=IntLT.t

which is equivalent to the signature

DICT where type Key.t=int

since IntLt.t  = int .  Similarly, the signature assigned to StringDict  is

DICT where type Key.t=StringLT.t

which is equivalent to the signature

DICT where type Key.t=string

What if the functor has no result signature, or its result signature is transparently ascribed?  In that 
case we assign the intermediate signature of the match as the result signature of the functor, and use 
that signature as the implied result signature of the functor.

Dictionaries illustrate the use of the ML module system to build generic implementations of abstract 
types.  A generic implementation of priority queues (which support a remove_min  operation that 
dequeues the "least" element of the queue relative to a specified ordering) may be built in an exactly 
analogous manner.  Here's a suitable signature of priority queues:

signature PRIO_QUEUE = sig
  structure Elt : ORDERED
  type prio_queue
  exception Empty
  val empty : prio_queue
  val insert : Elt.t * prio_queue -> prio_queue
  val remove : prio_queue -> Elt.t * prio_queue
end

Notice that prio_queue  is a type, and not a type constructor, as it was in the case of "plain" 
queues.  This is a reflection of the fact that the operations on a priority queue are not independent of 
the type of elements (as they are with plain queues), but rely on the comparison operations that are 
provided with the Elt  structure.

A generic implementation of priority queues is a functor taking as argument a structure containing the 
element type together with its associated operations:

functor PrioQueue
  (structure E : ORDERED) :> PRIO_QUEUE where type 
Elt.t=E.t =
struct
  structure Elt : ORDERED = E
  type prio_queue = ... a heap based on the ordering 
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Elt.lt...
  exception Empty
  val empty = ... the empty heap...
  val insert = ... sift a new element into the heap...
  val remove = ... remove the least element and adjust the 
heap...
end

Specific instances of priority queues may be built as follows:

structure IntPQ = PrioQueue (structure E = IntLT)
structure StringPQ = PrioQueue (structure E = StringLT)

with signatures

PRIO_QUEUE where type Elt.t=int

and

PRIO_QUEUE where type Elt.t=string

respectively.

The situation becomes more interesting when we wish to combine two or more abstract types to form 
a third.  Suppose we are to implement a (hypothetical) abstract type that employs an ordered type of 
values that occur both as keys of a dictionary and elements of a priority queue.  The signature of this 
abstract type might look like this

signature ADT = sig
  structure Val : ORDERED
  type adt
  ... operations...
end

The implementation should be generic in the type of values, and also in the implementation of 
dictionaries and priority queues; we don’t want to build the implementation of these auxiliary data 
structures into the implementation of ADT's.   There are two approaches to building an Adt  functor, 
each with its advantages and disadvantages.  Here's the first approach:

functor Adt 
  (structure V : ORDERED) :> ADT where type Val.t=V.t =
struct
  structure Val : ORDERED = V
  structure D = Dict (structure K = V)
  structure Q = PrioQueue (structure E = V)
  type adt = ...
  ...
end

The functor Adt  instantiates the Dict  and PrioQueue  functors to the structure of values specified 
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as argument to the Adt  functor.   This ensures that the type equation

D.Key.t = Q.Elt.t = V.t

holds inside the body of the functor, so that expressions such as

D.insert (Q.remove_min ..., ...)

are well-typed.  (The structures D and Q are not visible outside of the functor since they do not appear 
in the result signature; they are local auxiliaries used within the functor.)

This approach works well, but if the Dict  or PrioQueue  functors are changed, the Adt  functor 
must be recompiled to pick up the new versions.  An alternative, which avoids this dependency of the 
implementation of Adt  on the implementations of the Dict  and PrioQueue  functors, is to treat 
the dictionary and priority queue structures as additional parameters to the Adt  functor.  This leads to 
the following setup:

functor Adt’
  (structure V : ORDERED and D : DICT and Q : PRIO_QUEUE) 
:> 
    ADT where type Value.t=V.t =
struct
  structure Val = V
  type adt = ... implementation type...
  ... implementation of operations...
end

To build an instance of the Adt'  functor we must first built appropriate instances of the Dict  and 
PrioQueue  functors and pass these to Adt' :

structure IntDict = Dict (structure K=IntLT)
structure IntPQ = Dict (structure K=IntLT)
structure A = Adt' (structure V=IntLt and D=IntDict and 
Q=IntPQ)

There is a problem, however, with this setup: the functor Adt'  is ill-typed!  It is no longer true 
within the body of Adt  that the type equation

D.Key.t = Q.Elt.t = V.t

holds in the body of Adt’ , even though the equation

IntDict.Key.t = IntPQ.Elt.t = IntLT.t = int

does hold of the arguments, for we might well choose arguments for which the required equation is 
invalid.  In short, the functor  is "too generic", and consequently the body is not type correct.

What to do?  The solution is to restrict the parameters to the Adt’  functor so that the only possible 
instances are those that satisfy the required equation.   There are two methods for doing this, both 
equivalent.  The first is to explicitly require that the dictionary and priority queue arguments agree on 
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the value type passed as parameter:

functor Adt’
  (structure V : ORDERED
   and D : DICT where type Key.t=V.t
   and Q : PRIO_QUEUE where type Elt.t=V.t) :>
    ADT where type Val.t=V.t =
struct
  ...
end

The body of Adt'  is now type correct since the required type equations hold as a result of our 
additional assumptions on the arguments.

An alternative is to impose the equational requirement on types in a post hoc manner using a sharing 
specification:

functor Adt'
  (structure V : ORDERED and D : DICT and Q : PRIO_QUEUE
   sharing type D.Key.t = Q.Elt.t = V.t) :>
    ADT where type Val.t=V.t =
struct
  ...
end

The sharing specification stipulates that the given equation must hold of any instance of this functor.  
Any attempt to instantiate Adt’  with structures V, D, and Q not satisfying the sharing specification is 
rejected as ill-formed.

An advantage of sharing specifications is that they provide a direct, symmetric specification of the 
required type equation without forcing the programmer to explicitly "thread" the common type 
through the various signatures.  In fact sharing specifications encourage concision since they do not 
require that the common component be "factored out" as it is in the foregoing example.  Here is a 
more concise formulation of the Adt’  functor in which we drop the first argument entirely, relying 
only on a sharing  specification to constraint the dictionary and priority queue structures 
appropriately.

functor Adt’
  (structure D : DICT and Q : PRIO_QUEUE
   sharing type D.Key.t = Q.Elt.t) :> 
    ADT where type Val.t=D.Key.t =
struct
  ...
end

Notice that the result signature changes slightly to extract the common type from one of the 
parameters, the choice of which being arbitrary in the presence of the sharing  specification.

Sample Code for this Chapter
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In this part of the book we will explore the use of Standard ML to build elegant, reliable, and efficient 
programs.  The discussion takes the form of a series of worked examples illustrating various 
techniques for building programs.

[ Induction and Recursion ] [ Structural Induction ] [ Proof-Directed Debugging ]
[ Infinite Sequences ] [ Representation Invariants and Data Abstraction ]

[ Persistent and Ephemeral Data Structures ] [ Options, Exceptions, and Failure Continuations ]
[ Memoization and Laziness ] [ Modularity and Reuse ]
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Sample Code for This Chapter

This chapter is concerned with the close relationship between recursionand induction in 
programming.  When defining a recursive function, be sure to write down a clear, concise 
specification of its behavior, then mentally (or on paper) give an inductive proof that your code 
satisfies the specification.  What is a specification?   It includes (at least) these ingredients: 

1. Assumptions about the types and values of the arguments to the function.  For example, an 
integer argument might be assumed to have a non-negative value. 

2. Guarantees about the result value, expressed in terms of the argument values, under the 
assumptions governing the arguments. 

What does it mean to prove that your program satisfies the specification?  It means to give a rigorous 
argument that if the arguments satisfy the assumptions on the input, then the program will terminate 
with a value satisfying the guarantees stated in the specification.  In the case of a recursively-defined 
function the argument invariably has the form of a inductive proof based on an induction principle
such as mathematical induction for the natural numbers or, more generally, structural induction for 
other recursively-defined types.  The rule of thumb is this

when programming recursively, think inductively

If you keep this rule firmly in mind, you'll find that you are able to get your code right more often 
without having to resort to the tedium of step-by-step debugging on test data.

Let's start with a very simple series of examples, all involving the computation of the integer 
exponential function.  Our first example is to compute 2n for integers n>=0.  We seek to define the 
function

exp : int -> int

satisfying the specification

if n>=0, then exp n evaluates to 2n.

The precondition, or assumption, is that the argument n is non-negative.  The postcondition, or 
guarantee, is that the result of applying exp to n is the number 2n.  The caller is required to establish 
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the precondition before applying exp; in exchange, the caller may assume that the result is 2n.

Here’s the code:

fun exp 0 = 1
  | exp n = 2 * exp (n-1)

Does this function satisfy the specification?  It does, and we can prove this by induction on n.  If n=0, 
then exp n evaluates to 1 (as you can see from the first line of its definition), which is, of course, 20.   
Otherwise, assume that exp is correct for n-1>=0, and consider the value of exp n.  From the second 
line of its definition we can see that this is the value of 2*p, where p is the value of exp (n-1).  
Inductively, p=2n-1, so 2*p = 2*2n-1 = 2n, as desired.  Notice that we need not consider arguments 
n<0 since the precondition of the specification requires that this be so.  We must, however, ensure 
that each recursive call satisfies this requirement in order to apply the inductive hypothesis.

That was pretty simple.  Now let us consider the running time of exp expressed as a function of n.  
Assuming that arithmetic operations are executed in constant time (they are), then we can read off a 
recurrence describing its execution time as follows:

T(0) = O(1)
T(n+1) = O(1)+ T(n)

In fact this recurrence could itself be thought of as defining a function in ML simply by rewriting it 
into ML syntax!  However, in most cases we are interested in solving a recurrence by finding a 
closed-form expression for it.  In this case the solution is easily obtained:

T(n) = O(n)

Thus we have a linear time algorithm for computing the integer exponential function.

What about space?  This is a much more subtle issue than time because it is much more difficult in a 
high-level language such as ML to see where the space is used.   Based on our earlier discussions of 
recursion and iteration we can argue informally that the definition of exp given above requires space 
given by the following recurrence:

S(0) = O(1)
S(n+1) = O(1) + S(n)

The justification is that the implementation requires a constant amount of storage to record the 
pending multiplication that must be performed upon completion of the recursive call.

Solving this simple recurrence yields the equation

S(n) = O(n)

expressing that exp is also a linear space algorithm for the integer exponential function.

Can we do better?  Yes, on both counts!  Here's how.  Rather than count down by one's, multiplying 
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by two at each stage, we use successive squaring to achieve logarithmic time and space requirements.  
The idea is that if the exponent is even, we square the result of raising 2 to half the given power; 
otherwise, we reduce the exponent by one and double the result, ensuring that the next exponent will 
be even.   Here's the code:

fun square (n:int) = n*n
fun double (n:int) = n+n

fun fast_exp 0 = 1
  | fast_exp n =
    if n mod 2 = 0 then
       square (fast_exp (n div 2))
    else
       double (fast_exp (n-1))

Its specification is precisely the same as before.  Does this code satisfy the specification?  Yes, and 
we can prove this by using complete induction, a form of mathematical induction in which we may 
prove that n>0 has a desired property by assuming not only that the predecessor has it, but that all 
preceding numbers have it, and arguing that therefore n must have it.  Here's how it's done.  For n=0
the argument is exactly as before.  Suppose, then, that n>0.  If n is even, the value of exp n is the 
result of squaring the value of exp (n div 2).  Inductively this value is 2(n div 2), so squaring it yields  2
(n div 2)*2(n div 2) = 22*(n div 2) = 2n, as required.  If, on the other hand, n is odd, the value is the result 
of doubling exp (n-1).  Inductively the latter value is 2(n-1), so doubling it yields 2n, as required.

Here's a recurrence governing the running time of fast_exp as a function of its argument:

T(0) = O(1)
T(2n) = O(1) + T(n)
T(2n+1) = O(1) + T(2n) = O(1) + T(n)

Solving this recurrence using standard techniques yields the solution

T(n) = O(lg n)

You should convince yourself that fast_exp also requires logarithmic space usage.

Can we do better?  Well, it's not possible to improve the time requirement (at least not 
asymptotically), but we can reduce the space required to O(1) by putting the function into iterative 
(tail recursive) form.  However, this may not be achieved in this case by simply adding an 
accumulator argument, without also increasing the running time!  The obvious approach is to attempt 
to satisfy the specification

if n>=0, then iterative_fast_exp (n, a) evaluates to 2n*a

Here's some code that achieves this specification:

fun iterative_fast_exp (0, a) = a
  | iterative_fast_exp (n, a) =
    if n mod 2 = 0 then
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       iterative_fast_exp (n div 2, iterative_fast_exp (n 
div 2, a))
    else
       iterative_fast_exp (n-1, 2*a)

It is easy to see that this code works properly for n=0 and for n>0 when n is odd, but what if n>0 is 
even?  Then by induction we compute 2(n div 2)*2(n div 2)*a by two recursive calls to 
iterative_fast_exp.   This yields the desired result, but what is the running time?  Here's a recurrence 
to describe its running time as a function of n:

T(0) = 1
T(2n) = O(1) + 2T(n)
T(2n+1) = O(1) + T(2n) = O(1) + 2T(n)

Here again we have a standard recurrence whose solution is

T(n) = O(n lg n)

Yuck!  Can we do better?  The key is to recall the following important fact:

2(2n) = (22)n = 4n.

We can achieve a logarithmic time and exponential space bound by a change of base.   Here's the 
specification:

if n>=0, then generalized_iterative_fast_exp (b, n, a) evaluates to bn*a

Here's the code:

fun generalized_iterative_fast_exp (b, 0, a) = a
  | generalized_iterative_fast_exp (b, n, a) =
    if n mod 2 = 0 then
       generalized_iterative_fast_exp (b*b, n div 2, a)
    else
       generalized_iterative_fast_exp (b, n-1, b*a)

Let’s check its correctness by complete induction on n.  The base case is obvious.  Assume the 
specification for arguments smaller than n>0.   If n is even, then by induction the result is (b*b)(n div 

2)*a = bn*a, and if n is odd, we obtain inductively the result b(n-1)*b*a=b n*a.   This completes the 
proof.

The trick to achieving an efficient implementation of the exponential function was to compute a more 
general function that can be implemented using less time and space.    Since this is a trick employed 
by the implementor of the exponential function, it is important to insulate the client from it.  This is 
easily achieved by using a local  declaration to "hide" the generalized function, making available to 
the caller a function satisfying the original specification.   Here's what the code looks like in this case:

local
  fun generalized_iterative_fast_exp (b, 0, a) =
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    | generalized_iterative_fast_exp (b, n, a) = ... as 
above ...
in
  fun exp n = generalized_iterative_fast_exp (2, n, 1)
end

The point here is to see how induction and recursion go hand-in-hand, and how we used induction not 
only to verify programs after-the-fact, but, more importantly, to help discover the program in the first 
place.  If the verification is performed simultaneously with the coding, it is far more likely that the 
proof will go through and the program will work the first time you run it.

It is important to notice the correspondence between strengthening the specification by adding 
additional assumptions (and guarantees) and adding accumulator arguments.   What we observe is the 
apparent paradox that it is often easier to do something (superficially) harder!  In terms of proving, it 
is often easier to push through an inductive argument for a stronger specification, precisely because 
we get to assume the result as the inductive hypothesis when arguing the inductive step(s).   We are 
limited only by the requirement that the specification be proved outright at the base case(s); no 
inductive assumption is available to help us along here.  In terms of programming, it is often easier to 
compute a more complicated function involving accumulator arguments, precisely because we get to 
exploit the accumulator when making recursive calls.  We are limited only by the requirement that the 
result be defined outright for the base case(s); no recursive calls are available to help us along here.

Let's consider a more complicated example, the computation of the greatest common divisor of a pair 
of non-negative integers.  Recall that m is a divisor of n, m|n, iff n is a multiple of m, which is to say 
that there is some k>=0 such that n=km.  The greatest common divisor of non-negative integers m
and n is the largest p such that p|m and p|n.   (By convention the g.c.d. of 0 and 0 is taken to be 0.)  
Here's the specification of the gcd function:

if m,n>=0, then gcd(m,n) evaluates to the g.c.d. of m and n

Euclid's algorithm for computing the g.c.d. of m and n is defined by complete induction on the 
product mn.  Here's the algorithm:

fun gcd (m:int, 0):int = m
  | gcd (0, n:int):int = n
  | gcd (m:int, n:int):int =
    if m>n then gcd (m mod n, n) else gcd (m, n mod m)

Why is this algorithm correct?  We may prove that gcd satisfies the specification by complete 
induction on the product mn.  If mn is zero, then either mor n is zero, in which case the answer is, 
correctly, the other number.  Otherwise the product is positive, and we proceed according to whether 
m>n or m<=n.  Suppose that m>n.   Observe that m mod n = m - (m div n)n, so that (m mod n)n = mn 

- (m div n)n2 < mn, so that by induction we return the g.c.d. of m mod n and n.  It remains to show 
that this is the g.c.d. of m and n.   If d divides both m mod n and n, then kd = (m mod n) = (m - (m div 
n)n) and ld = n for some non-negative k and l.   Consequently, kd = m - (m div n)ld, so m = (k+(m div 
n)l)d, which is to say that d divides m.  Now if d' is any other divisor of m and n, then it is also a 
divisor of (m mod n) and n, so d>d’.  That is, d is the g.c.d. of m and n.   The other case, m<=n, 
follows similarly.  This completes the proof.
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At this point you may well be thinking that all this inductive reasoning is surely helpful, but it’s no 
replacement for good old-fashioned "bulletproofing" --- conditional tests inserted at critical junctures 
to ensure that key invariants do indeed hold at execution time.  Sure, you may be thinking, these 
checks have a run-time cost, but they can be turned off once the code is in production, and anyway 
the cost is minimal compared to, say, the time required to read and write from disk.  It's hard to 
complain about this attitude, provided that sufficiently cheap checks can be put into place and 
provided that you know where to put them to maximize their effectiveness.  For example, there's no 
use checking i>0  at the start of the then clause of a test for i>0 .  Barring compiler bugs, it can't 
possibly be anything other than the case at that point in the program.  Or it may be possible to insert a 
check whose computation is more expensive (or more complicated) than the one we're trying to 
perform, in which case we're defeating the purpose by including them!

This raises the question of where should we put such checks, and what checks should be included to 
help ensure the correct operation (or, at least, graceful malfunction) of our programs?  This is an 
instance of the general problem of writing self-checking programs.  We'll illustrate the idea by 
elaborating on the g.c.d. example a bit further.  Suppose we wish to write a self-checking g.c.d. 
algorithm that computes the g.c.d., and then checks the result to ensure that it really is the greatest 
common divisor of the two given non-negative integers before returning it as result.  The code might 
look something like this:

exception GCD_ERROR

fun checked_gcd (m, n) =
    let
        val d = gcd (m, n)
    in
        if d mod m = 0 andalso d mod n = 0 andalso ??? then
           d
        else
           raise GCD_ERROR
    end

It’s obviously no problem to check that putative g.c.d., d, is in fact a common divisor of mand n, but 
how do we check that it’s the greatest common divisor?  Well, one choice is to simply try all numbers 
between d and the smaller of m and n to ensure that no intervening number is also a divisor, refuting 
the maximality of d.  But this is clearly so inefficient as to be impractical.  But there's a better way, 
which, it has to be emphasized, relies on the kind of mathematical reasoning we've been considering 
right along.   Here's an important fact:

d is the g.c.d. of m and n iff d divides m and n and can be written as a linear combination of m and n.

That is, d is the g.c.d. of mand n iff m=kd for some k>=0, n=ld for some l>=0, and d=am+bn for 
some integers (possibly negative!) a and b.  We'll prove this constructively by giving a program to 
compute not only the g.c.d. d of m and n, but also the coefficients aand b such that d=am+bn.   Here's 
the specification:

if m,n>=0, then ggcd (m, n) evaluates to (d, a, b) such that d divides m, d divides n, and 
d=am+bn; consequently, d is the g.c.d. of m and n.
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And here’s the code to compute it:

fun ggcd (0, n) = (n, 0, 1)
  | ggcd (m, 0) = (m, 1, 0)
  | ggcd (m, n) =
    if m>n then
       let
           val (d, a, b) = ggcd (m mod n, n)
       in
           (d, a, b - a*(m div n))
       end
    else
       let
           val (d, a, b) = ggcd (m, n mod m)
       in
           (d, a - b*(n div m), b)
       end

We may easily check that this code satisfies the specification by induction on the product mn.  If 
mn=0, then either m or n is 0, in which case the result follows immediately.  Otherwise assume the 
result for smaller products, and show it for mn>0.  Suppose m>n; the other case is handled 
analogously.  Inductively we obtain d, a, and b such that d is the g.c.d. of m mod n and n, and hence is 
the g.c.d. of mand n, and d=a(m mod n) + bn.  Since m mod n = m - (m div n)n, it follows that d = am 
+ (b-a(m div n))n, from which the result follows.

Now we can write a self-checking g.c.d. as follows:

exception GCD_ERROR

fun checked_gcd (m, n) =
    let
        val (d, a, b) = ggcd (m, n)
    in
        if m mod d = 0 andalso n mod d = 0 andalso d = 
a*m+b*n then
           d
        else
           raise GCD_ERROR
    end

This algorithm takes no more time (asymptotically) than the original, and, moreover, ensures that the 
result is correct.  This illustrates the power of the interplay between mathematical reasoning methods 
such as induction and number theory and programming methods such as bulletproofing to achieve 
robust, reliable, and, what is more important, elegant programs. 

Sample Code for This Chapter
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Sample Code for this Chapter

The importance of induction and recursion are not limited to functions defined over the integers.  
Rather, the familiar concept of mathematical induction over the natural numbers is an instance of the 
more general notion of structural induction over values of an inductively-defined type.  Rather than 
develop a general treatment of inductively-defined types, we will rely on a few examples to illustrate 
the point.

Let's begin by considering the natural numbers as an inductively defined type.   The set of natural 
numbers, N, may be thought of as the smallest set containing 0 and closed under the formation of 
successors.  In other words, n is an element of N iff either n=0 or n=m+1 for some m in N.  Still 
another way of saying it is to define N by the following clauses: 

1. 0 is an element of N. 
2. If m is an element of N, then so is m+1. 
3. Nothing else is an element of N. 

(The third clause is sometimes called the extremal clause; it ensures that we are talking about N and 
not just some superset of it.) All of these definitions are equivalent ways of saying the same thing.

Since N is inductively defined, we may prove properties of the natural numbers by structural 
induction, which in this case is just ordinary mathematical induction.  Specifically, to prove that a 
property P(n) holds of every n in N, it suffices to demonstrate the following facts: 

1. Show that P(0) holds. 
2. Assuming that P(m) holds, show that P(m+1) holds. 

The pattern of reasoning follows exactly the structure of the inductive definition --- the base case is 
handled outright, and the inductive step is handled by assuming the property for the predecessor and 
show that it holds for the numbers.

The principal of structural induction also licenses the definition of functions by structural recursion.  
To define a function f with domain N, it suffices to proceed as follows: 

1. Give the value of f(0). 
2. Give the value of f(m+1) in terms of the value of f(m). 

Given this information, there is a unique function f with domain N satisfying these requirements.  
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Specifically, we may show by induction on n>=0 that the value of f is uniquely determined on all 
values m<=n.   If n=0, this is obvious since f(0) is defined by clause (1).   If n=m+1, then by 
induction the value of f is determined for all values k<=m.  But the value of f at n is determined as a 
function of f(m), and hence is uniquely determined.  Thus f is uniquely determined for all values of n
in N, as was to be shown.

The natural numbers, viewed as an inductively-defined type, may be represented in ML using a 
datatype  declaration, as follows:

datatype nat = Zero | Succ of nat

The constructors correspond one-for-one with the clauses of the inductive definition.   The extremal 
clause is implicit in the datatype  declaration since the given constructors are assumed to be all the 
ways of building values of type nat .   This assumption forms the basis for exhaustiveness checking 
for clausal function definitions.

(You may object that this definition of the type nat  amounts to a unary (base 1) representation of 
natural numbers, an unnatural and space-wasting representation.   This is indeed true; in practice the 
natural numbers are represented as non-negative machine integers to avoid excessive overhead.  Note, 
however, that this representation places a fixed upper bound on the size of numbers, whereas the 
unary representation does not.  Hybrid representations that enjoy the benefits of both are, of course, 
possible and occasionally used when enormous numbers are required.)

Functions defined by structural recursion are naturally represented by clausal function definitions, as 
in the following example:

fun double Zero = Zero
  | double (Succ n) = Succ (Succ (double n))

fun exp Zero = Succ(Zero)
  | exp (Succ n) = double (exp n)

The type checker ensures that we have covered all cases, but it does not ensure that the pattern of 
structural recursion is strictly followed --- we may accidentally define f(m+1) in terms of itself or 
some f(k) where k>m, breaking the pattern.  The reason this is admitted is that the ML compiler 
cannot always follow our reasoning: we may have a clever algorithm in mind that isn't easily 
expressed by a simple structural induction.  To avoid restricting the programmer, the language 
assumes the best and allows any form of definition.

Using the principle of structure induction for the natural numbers, we may prove properties of 
functions defined over the naturals.  For example, we may easily prove by structural induction over 
the type nat  that for every n in N, exp  n evaluates to a positive number.  (In previous chapters we 
carried out proofs of more interesting program properties.)

Generalizing a bit, we may think of the type ’a list  as inductively defined by the following 
clauses: 

1. nil  is a value of type ’a list
2. If h is a value of type 'a, and t is a value of type ’a list , then h:: t is a value of type ’a 
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list . 
3. Nothing else is a value of type ’a list . 

This definition licenses the following principle of structural induction over lists.   To prove that a 
property P holds of all lists l, it suffices to proceed as follows: 

1. Show that P holds for nil . 
2. Show that P holds fpr h:: t, assuming that P holds for t. 

Similarly, we may define functions by structural recursion over lists as follows: 

1. Define the function for nil . 
2. Define the function for h:: t in terms of its value for t. 

The clauses of the inductive definition of lists correspond to the following (built-in) datatype 
declaration in ML:

datatype ’a list = nil | :: of ’a * ’a list

(We are neglecting the fact that ::  is regarded as an infix operator.)

The principle of structural recursion may be applied to define the reverse function as follows:

fun reverse nil = nil
  | reverse (h::t) = reverse t @ [h]

There is one clause for each constructor, and the value of reverse for h:: t is defined in terms of its 
value for t.  (We have ignored questions of time and space efficiency to avoid obscuring the induction 
principle underlying the definition of reverse .)

Using the principle of structural induction over lists, we may prove that reverse  l evaluates to the 
reversal of l.  First, we show that reverse  nil  yields nil , as indeed it does and ought to.  Second, 
we assume that reverse  t yields the reversal of t, and argue that reverse  ( h:: t)  yields the 
reversal of h:: t, as indeed it does since it returns reverse  t @ [ h] .

Generalizing even further, we can introduce new inductively-defined types such as 2-3 trees in which 
interior nodes are either binary (have two children) or ternary (have three children).  Here's a 
definition of 2-3 trees in ML:

datatype ’a two_three_tree =
  Empty |
  Binary of 'a * 'a two_three_tree * 'a two_three_tree |
  Ternary of 'a * 'a two_three_tree * 'a two_three_tree * 
'a two_three_tree

How might one define the "size" of a value of this type?  Your first thought should be to write down a 
template like the following:

fun size Empty = ???
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  | size (Binary (_, t1, t2)) = ???
  | size (Ternary (_, t1, t2, t3)) = ???

We have one clause per constructor, and will fill in the ellided expressions to complete the 
definition.  In many cases (including this one) the function is defined by structural recursion.  Here's 
the complete definition:

fun size Empty = 0
  | size (Binary (_, t1, t2)) = 1 + size t1 + size t2
  | size (Ternary (_, t1, t2, t3)) = 1 + size t1 + size t2 
+ size t3

Obviously this function computes the number of nodes in the tree, as you can readily verify by 
structural induction over the type 'a two_three_tree .

Does this pattern apply to every datatype declaration?  Yes and no.   No matter what the form of the 
declaration it always makes sense to define a function over it by a clausal function definition with one 
clause per constructor.   Such a definition is guaranteed to be exhaustive (cover all cases), and serves 
as a valuable guide to structuring your code.  (It is especially valuable if you change the datatype 
declaration, because then the compiler will inform you of what clauses need to be added or removed 
from functions defined over that type in order to restore it to a sensible definition.)  The slogan is:

To define functions over a datatype, use a clausal definition with one clause per constructor

The catch is that not every datatype declaration supports a principle of structural induction because it 
is not always clear what constitutes the predecessor(s) of a constructed value.  For example, the 
declaration

datatype D = Int of int | Fun of D->D

is problematic because a value of the form Fun f is not constructed directly from another value of 
type D, and hence it is not clear what to regard as its predecessor.  In practice this sort of definition 
comes up only rarely; in most cases datatypes are naturally viewed as inductively defined.

It is interesting to observe that the pattern of structural recursion may be directly codified in ML as a 
higher-order function.  Specifically, we may associate with each inductively-defined type a higher-
order function that takes as arguments values that determine the base case(s) and step case(s) of the 
definition, and defines a function by structural induction based on these arguments.  An example will 
illustrate the point.   The pattern of structural induction over the type nat  may be codified by the 
following function:

fun nat_recursion base step =
    let
        fun loop Zero = base
          | loop (Succ n) = step (loop n)
    in
        loop
    end

This function has the following type
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’a -> (’a -> ’a) -> nat -> ’a

Given the first two arguments, nat_recursion  yields a function of type nat -> ’a  whose 
behavior is determined at the base case by the first argument and at the inductive step by the second.  
Here's an example of the use of nat_recursion  to define the exponential function:

val double = nat_recursion Zero (fn result => Succ (Succ 
result))
val exp = nat_recursion (Succ Zero) double

Note well the pattern!  The arguments to nat_recursion  are 

1. The value for Zero . 
2. The value for Succ  n defined in terms of its value for n. 

Similarly, the pattern of list recursion may be captured by the following functional:

fun list_recursion base step =
    let
        fun loop nil = base
          | loop (h::t) = step (h, loop t)
    in
        loop
    end

The type of the function list_recursion  is

'a -> ('b * 'a -> 'a) -> 'b list -> 'a

It may be instantiated to define the reverse  function as follows:

val reverse = list_recursion nil (fn (h, t) => t @ [h])

Finally, the principle of structural recursion for values of type 'a two_three_tree  is given as 
follows:

fun two_three_recursion base binary_step ternary_step =
    let
        fun loop Empty = base
          | loop (Binary (v, t1, t2)) =
            binary_step (v, loop t1, loop t2)
          | loop (Ternary (v, t1, t2, t3)) =
            ternary_step (v, loop t1, loop t2, loop t3)

Notice that we have two inductive steps, one for each form of node.  The type of 
two_three_recursion  is

'a -> ('b * 'a * 'a -> 'a) -> ('b * 'a * 'a * 'a -> 'a) -> 
'b two_three_tree -> 'a
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We may instantiate it to define the function size as follows:

val size =
    two_three_recursion 0
                        (fn (_, s1, s2)) => 1+s1+s2)
                        (fn (_, s1, s2, s3)) => 1+s1+s2+s3)

Summarizing, the principle of structural induction over a recursive datatype is naturally codified in 
ML using pattern matching and higher-order functions.  Whenever you're programming with a 
datatype, you should use the techniques outlined in this chapter to structure your code.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Proof-Directed Debugging
[ Back ] [ Home ] [ Up ] [ Next ]

Last edit: Thursday, June 25, 1998 02:57 PM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

Sample Code for this Chapter

It is difficult to write a program that works well.  A significant part of the problem is to state precisely 
what it means for a program to work correctly.  What assumptions do we make about the way in 
which it is invoked?  What guarantees does it make about its results?  How much time and space does 
it require?  Answers to these questions are called specifications --- descriptions of the expected 
behavior of a program.  Checking that a particular program satisfies a given specification is called 
verification.  There are many forms of specification and many techniques for verification of 
programs.  One form of specification with which you are by now very familiar is a type specification; 
verification of a type specification is called type checking.  We've seen that type specification and 
type checking are useful tools for helping us to get programs right.   Another form of specification is 
an asymptotic time and space bound on a procedure, expressed as a function of the argument to the 
procedure.  For example, we may state that the function sort : int list -> int list
takes time T(n) = O(n lg n) and space S(n) = O(n) for an input of size n.  Verification of a complexity 
bound is often a tricky business.  Typically we define a recurrence relation governing the time or 
space complexity of the program, then solve the recurrence using asymptotic methods to obtain the 
result.

Type specifications and complexity specifications are useful tools, but it is important to keep in mind 
that neither says very much about whether the code works properly.  We might define an incorrect 
sort routine (say, one that always returns its input untouched), verify that its type is int list -> 
int list , and check that it runs in time O(n lg n), yet the code doesn't sort its input, despite its 
name!  Clearly more refined forms of specification are needed to state precisely the expected 
behavior of a program, and some methods are needed to verify that a program satisfies a given 
specification.  We've explored such forms of specification and verification earlier in these notes, for 
example when we checked the correctness of various forms of the integer exponential function.  In 
this chapter we'll put these ideas to work to help us to devise a correct version of the regular 
expression matcher sketched in the Overview, correcting a subtle error that may not be immediately 
apparent from inspecting or even testing the code.  The goal of this chapter is to demonstrate the use 
of specification and verification to discover and correct an error in a program through a technique that 
we call proof-directed debugging.  We first devise a precise specification of the regular expression 
matcher, a difficult problem in itself, then attempt to verify that the matching program satisfies this 
specification.  The attempt to carry out a proof breaks down, and suggests a counterexample to the 
specification.  We then consider various methods of handling the problem, ultimately settling on a 
change of specification rather than a change of implementation.

Let us begin by devising a specification for the regular expression matcher.  As a first cut we write 
down a type specification.  We seek to define a function match  of type regexp -> string -> 



Concatenation Page 134 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

bool  that determines whether or not a given string matches a given regular expression.  More 
precisely, we wish to satisfy the following specification:

For every regular expression r and every string s, match  r s terminates, and evaluates 
to true iff s in L(r).

Recall that the language of a regular expresson r is a set of string L(r) defined as follows:

L(0) = 0

L(1) = 1

L(a) = a

L(r1r2) = L(r1) L(r2)

L(r1+r 2) = L(r1) + L(r2)

L(r*) = L(0) + L(r) + L(rr) + L(rrr) + ...

where 0 = {}, 1 = {""}, a= {"a"}, L 1 L2 = { s1s2 | s1 in L1 and s2 in L2 }, and L1+L2 = { s | s in L1 or 

s in L2 }.  The language L(r*)  can be characterized as the smallest language L such that L=1 + L(r) 

L.  For if s in L(r*) as defined above, then s in L(ri) for some i>=0 .  We may show by induction on i

that s in 1+L(r)L.  If i=0 , then s="" in 1, and if i>0 , then s=tu with t in L(r) and u in L(ri-1).   By 
induction u in L, and hence s in 1+L(r)L and hence s in L.   Conversely, if s in L, then either s in 1, in 
which case s in L(r*), or s=tu with t in L(r) and u in L.   Inductively u in L(r*) and hence s in L(r)L
(r*)  and hence s in L.

We saw in the Overview that a natural way to define the procedure match  is to use a technique 
called continuation passing.  We defined an auxiliary function match_is  with the type regexp -
> char list -> (char list -> bool) -> bool  that takes a regular expression, a list 
of characters (essentially a string, but in a form suitable for incremental processing), and a 
continuation, and yields a boolean.  The idea is that match_is  takes a regular expression r, a 
character list cs, and a continuation k, and determines whether or not some initial segment of cs
matches r, passing the remaining characters cs’ to k in the case that there is such an initial segment, 
and yields false otherwise.  Put more precisely,

For every regular expression r, character list cs, and continuation k, if cs=cs’@cs’’ with 
cs’ in L(r) and k cs’’ evaluating to true, then match_is  r cs k evaluates true; otherwise, 
match_is  r cs k evaluates to false.

Unfortunately, this specification is too strong to ever be satisfied by any implementation of 
match_is !  Can you see why?  The difficulty is that if k is not guaranteed to terminate for all 
inputs, then there is no way that match_is  can behave as required.  If there is no input on which k
terminates, the specification requires that match_is return false.  It should be intuitively clear that we 
can never implement such a function.  Formally, we can reduce the halting problem to the matching 
problem so defined, which suffices to show that no such match_is  procedure exists.  Instead, we 
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must restrict attention to total continuations, those that terminate for all inputs.  This leads to the 
following revised specification:

For every regular expression r, character list cs, and total continuation k, if cs=cs’@cs’’ 
with cs’ in L(r) and k cs’’ evaluating to true, then match_is  r cs k evaluates to true; 
otherwise, match_is  r cs k evaluates to false.

Observe that the condition "If cs=cs’@cs’ with ..., then ..." contains an implicit existential 
quantification.  Written out in full, we might say "If there exists cs’ and cs’’ such that cs = cs’@cs’’ 
with ..., then ...".  This is an important observation because it makes clear that we must search for a 
suitable splitting of cs into two parts such that the first part is in L(r) and the second is accepted by k.  
There may, in general, be many ways to partition the input to as to satisfy both of these requirements; 
we need only find one such way.  Note, however, that if cs = cs’ @ cs’’ with cs’ in L(r) but k cs’’
yielding false, we must reject this partitioning and search for another.  In other words we cannot 
simply consider any partitioning whose initial segment matches r; we can consider only those that 
also induce k to accept the corresponding final segment.

Suppose for the moment that match_is  satisfies this specification.  Does it follow that match 
satisfies the original specification?   Recall that match is defined as follows:

fun match r s =
    match_is r (String.explode s) (fn nil => true | false)

Notice that the initial continuation is indeed total, and that it yields true (accepts) iff it is applied to 
the null string.  Therefore, if match_is  satisfies its specification, then match  satisfies the 
following property obtained by plugging in the initial continuation:

For every regular expression r and character list cs, if cs in L(r), then match  r cs 
evaluates to true, and otherwise match  r cs evaluates to false.

This is precisely the property that we desire for match .   Thus match  is correct (satisfies its 
specification) if match_is  is correct (satisfies its specification).

So far so good.  But does match_is  satisfy its specification?  If so, we are done.  How might we 
check this?  Recall the definition of match_is  given in the overview:

fun match_is Zero _ k = false
    | match_is One cs k = k cs
    | match_is (Char c) (d::cs) k = if c=d then k cs else 
false
    | match_is (Times (r1, r2)) cs k =
      match_is r1 cs (fn cs' => match_is r2 cs' k)
    | match_is (Plus (r1, r2)) cs k =
      match_is r1 cs k  orelse  match_is r2 cs k
    | match_is (Star r) cs k =
      k cs  orelse  match_is r cs (fn cs' => match_is (Star 
r) cs' k)

Since match_is  is defined by a recursive analysis of the regular expression r, it is natural to 
proceed by induction on the structure of r.   That is, we treat the specification as a conjecture about 
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match_is , and attempt to prove it by structural induction on r.

We first consider the three base cases.  Suppose that r is 0.   Then no string is in L(r), so match_is
must return false, which indeed it does.  Suppose that r is 1.  Since the null string is an initial segment 
of every string, and the null string is in L(1), we must yield true iff k cs yields true, and false 
otherwise.   Again, this is precisely how match_is  is defined.  Suppose that r is a.  Then to succeed 
cs must have the form a cs’ with k cs’ evaluating to true; otherwise we must fail.  The code for 
match_is  checks that cs has the required form and, if so, passes cs’ to k to determine the outcome, 
and otherwise yields false.  Thus match_is  behaves correctly for each of the three base cases.

We now consider the three inductive steps.  For r=r 1+r 2, we observe that some initial segment of cs

matches r and causes k to accept the corresponding final segment iff either some initial segment 
matches r1 and drives k to accept or some initial segment matches r2 and drives k to accept.  By 

induction match_is  works as specified for r1 and r2, which is sufficient to justify the correctness of 

match_is  for r=r 1+r 2.  For r=r 1r2, the proof is slightly more complicated.  By induction 

match_is  behaves according to the specification if it is applied to either r1 or r2, provided that the 

continuation argument is total.  Note that the continuation k' given by (fn cs’ => match_is 
r2 cs’ k)  is total, since by induction the inner recursive call to match_is  always terminates.  
Suppose that there exists a partitioning cs=cs’@cs’’ with cs’ in L(r)and k cs’’ evaluating to true.   
Then  cs’=cs'1cs’2 with cs’1 in L(r1) and cs’2 in L(r2), by definition of L(r1r2).  Consequently, 

match_is  r2 cs’2cs’’ k evaluates to true, and hence match_is  r1 cs'1cs’2cs’’ k’ evaluates to true, as 

required.  If, however, no such partitioning exists, then either no initial segment of cs matches r1, in 

which case the outer recursive call yields false, as required, or for every initial segment matching r1, 

no initial segment of the corresponding final segment matches r2, in which case the inner recursive 

call yields false on every call, and hence the outer call yields false, as required, or else every pair of 
successive initial segments of cs matching r1 and r2 successively results in k evaluating to false, in 

which case the inner recursive call always yields false, and hence the continuation k’ always yields 
false, and hence the outer recursive call yields false, as required.  Be sure you understand the 
reasoning involved here, it is quite tricky to get right!

We seem to be on track, with one more case to consider, r=r 1
* .   This case would appear to be a 

combination of the preceding two cases for alternation and concatenation, with a similar argument 
sufficing to establish correctness.   But there is a snag: the second recursive call to match_is  leaves 
the regular expression unchanged!  Consequently we cannot apply the inductive hypothesis to 
establish that it behaves correctly in this case, and the obvious proof attempt breaks down.  (Write out 
the argument to see where you get into trouble.)  What to do?   A moment's thought suggests that we 
proceed by an inner induction on the length of the string, based on the theory that if some initial 
segment of cs matches L(r), then either that initial segment is the null string (base case), or 
cs=cs’@cs’’ with cs’ in L(r1) and cs’’ in L(r) (induction step).  We then handle the base case directly, 

and handle the inductive case by assuming that match_is  behaves correctly for cs’’ and showing 
that it behaves correctly for cs.   But there is a flaw in this argument!  The string cs’’ need not be 
shorter than cs in the case that cs’ is the null string!  In that case the inductive hypothesis does not 
apply, and we are once again unable to complete the proof.  But this time we can use the failure of the 
proof to obtain a counterexample to the specification!  For if r=1* , for example, then match_is  r cs 
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k does not terminate!  In general if r=r 1
*  with "" in L(r 1), then match_is  r cs k fails to terminate.  

In other words, match_is  does not satisfy the specification we have derived for it!  Our conjecture 
is false!

We have used the failure of an attempt to prove that match_is  satisfies a reasonable specification 
of its behavior to discover a bug in the code --- the matcher does not always terminate.  What to do?  
One approach is to explicitly check for failure to make progress when matching against an iterated 
regular expression.   This will work, but at the expense of cluttering the code and imposing additional 
run-time overhead.  You should write out a version of the matcher that works this way, and check that 
it indeed satisfies the specification we've given above.  An alternative is to observe that the proof of 
correctness sketched above goes through, provided that the regular expression satisfies the condition 
that no iterated regular expression matches the null string.  That is, r*  is admitted as a valid regular 
expression only if ""  is not in L(r).  Call a regular expression satisfying this condition standard.  As 
an exercise check that the proof sketched above goes through under the additional assumption that r
is a standard regular expression.

Thus the matcher behaves correctly for all standard regular expressions.   But what about those non-
standard ones?  A simple observation is that every regular expression is equivalent to one in standard 
form.  That is, we never really need to consider non-standard regular expressions.  Instead we can pre-
process the regular expression to put it into standard form, then call the matcher on the standardized 
regular expression.  This pre-processing is based on the following definitions.  First, we define null(r)
to be the regular expression 1 if r accepts the null string, and the regular expression 0 if not.   Then 
we define nonnull(r) to be a regular expression r’ in standard form such that L(r’) = L(r) \ {""}  --- that 
is, r’ accepts the same strings as r, except for the null string.  Thus for every regular expression r, we 
have

L(r) = L(null(r)+nonnull(r)).

Moreover, the regular expression null(r)+nonnull(r) is in standard form.

Here is the definition of null:

null(0) = 0
null(1) = 1
null(a) = 0
null(r1+r 2) = null(r1) ++ null(r 2)

null(r1r2) = null(r1) ** null(r 2)

null(r*) = 1

where we define 0++1=1++0=1++1=1 and 0++0=0 and 0**1=1**0=0**0=0  and 1**1=1 .

Here is the definition of nonnull:

nonnull(0) = 0
nonnull(1) = 0
nonnull(a) = a
nonnull(r1+r 2) = nonnull(r1)+nonnull(r2)
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nonnull(r1r2) = null(r1)nonnull(r2) + nonnull(r1)nonnull(r2)

nonnull(r*) = null(r) + nonnull(r)*

Check that the stated properties of these regular expressions indeed hold true, and use these equations 
to define a pre-processor to put every regular expression into standard form.

This chapter is based on the paper entitled Proof-Directed Debugging, which is scheduled to appear 
as a Functional Pearl article in the Journal of Functional Programming.

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Infinite Sequences
[ Back ] [ Home ] [ Up ] [ Next ]

Last edit: Monday, May 04, 1998 03:28 PM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

Sample Code for this Chapter

Higher-order functions --- those that take functions as arguments or return functions as results --- are 
powerful tools for building programs.  An interesting application of higher-order functions is to 
implement infinite sequences of values as (total) functions from the natural numbers (non-negative 
integers) to the type of values of the sequence.  We will develop a small package of operations for 
creating and manipulating sequences, all of which are higher-order functions since they take 
sequences (functions!) as arguments and/or return them as results.  A natural way to define many 
sequences is by recursion, or self-reference.  Since sequences are functions, we may use recursive 
function definitions to define such sequences.  Alternatively, we may think of such a sequence as 
arising from a "loopback" or "feedback" construct.  We will explore both approaches.

Sequences may be used to simulate digital circuits by thinking of a "wire" as a sequence of bits 
developing over time.  The ith value of the sequence corresponds to the signal on the wire at time i.  
For simplicity we will assume a perfect waveform: the signal is always either high or low (or is 
undefined); we will not attempt to model electronic effects such as attenuation or noise.   
Combinational logic elements (such as and gates or inverters) are operations on wires: they take in 
one or more wires as input and yield one or more wires as results.   Digital logic elements (such as 
flip-flops) are obtained from combinational logic elements by feedback, or recursion --- a flip-flop is 
a recursively-defined wire!

Let us begin by developing a sequence package.  Here is a suitable signature defining the type of 
sequences:

signature SEQUENCE = sig

  type 'a seq = int -> 'a

  val constantly : 'a -> 'a seq                (* constant 
sequence *)
  val alternately : 'a * 'a -> 'a seq          (* 
alternating values *)
  val insert : 'a * 'a seq -> 'a seq           (* insert an 
element at the front *)

  val map : ('a -> 'b) -> 'a seq -> 'b seq
  
  val zip : 'a seq * 'b seq -> ('a * 'b) seq
  val unzip : ('a * 'b) seq -> 'a seq * 'b seq
  val merge : ('a * 'a) seq -> 'a seq          (* fair 
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merge *)

  val stretch : int -> 'a seq -> 'a seq
  val shrink : int -> 'a seq -> 'a seq

  val take : int -> 'a seq -> 'a list
  val drop : int -> 'a seq -> 'a seq
  val shift : 'a seq -> 'a seq

  val loopback : ('a seq -> 'a seq) -> 'a seq

end

Observe that we expose the representation of sequences as functions.  This is done to simplify the 
definition of recursive sequences as recursive functions.   Alternatively we could have hidden the 
representation type, at the expense of making it a bit more awkward to define recursive sequences.  In 
the absence of this exposure of representation, recursive sequences may only be built using the 
loopback  operation which constructs a recursive sequence by "looping back" the output of a 
sequence transformer to its input.  Most of the other operations of the signature are adaptations of 
familiar operations on lists.  Two exceptions to this rule are the functions stretch  and shrink
that dilate and contract the sequence by a given time parameter --- if a sequence is expanded by k, its 
value at i is the value of the original sequence at i/k, and dually for shrinking.

Here's an implementation of sequences as functions.

structure Sequence :> SEQUENCE = struct

  type 'a seq = int -> 'a

  fun constantly c n = c
  fun alternately (c,d) n = if n mod 2 = 0 then c else d
  fun insert (x, s) 0 = x
    | insert (x, s) n = s (n-1)

  fun map f s = f o s

  fun zip (s1, s2) n = (s1 n, s2 n)
  fun unzip (s : ('a * 'b) seq) = (map #1 s, map #2 s)
  fun merge (s1, s2) n =
      (if n mod 2 = 0 then s1 else s2) (n div 2)

  fun stretch k s n = s (n div k)
  fun shrink k s n = s (n * k)

  fun drop k s n = s (n+k)
  fun shift s = drop 1 s
  fun take 0 _ = nil
    | take n s = s 0 :: take (n-1) (shift s)

  fun loopback loop n = loop (loopback loop) n

end
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Most of this implementation is entirely straightforward, given the ease with which we may 
manipulate higher-order functions in ML.  The only tricky function is loopback , which must 
arrange that the output of the function loop  is "looped back" to its input.  This is achieved by a 
simple recursive definition of a sequence whose value at n is the value at n of the sequence resulting 
from applying the loop to this very sequence.

The sensibility of this definition of loopback  relies on two separate ideas.  First, notice that we 
may not simplify the definition of loopback  as follows:

fun loopback loop = loop (loopback loop)     (* bad 
definition *)

The reason is that any application of loopback  will immediately loop forever!  In contrast, the 
original definition is arranged so that application of loopback  immediately returns a function.  This 
may be made more apparent by writing it in the following form, which is entirely equivalent to the 
definition given above:

fun loopback loop = fn n => loop (loopback loop) n

This format makes it clear that loopback immediately returns a function when applied to a loop 
functional.  

Second, for an application of loopback  to a loop to make sense, it must be the case that the loop 
returns a sequence without "touching" the argument sequence (i.e., without applying the argument to 
a natural number).   Otherwise accessing the sequence resulting from an application of loopback 
would immediately loop forever.  Some examples will help to illustrate the point.

First, let's build a few sequences without using the loopback  function, just to get familiar with 
using sequences:

val evens : int seq = fn n => 2*n
val odds : int seq = fn n => 2*n+1
val nats : int seq = merge (evens, odds)

fun fibs n =
    (insert (1, insert (1, map (op +) (zip (drop 1 fibs, 
fibs)))))(n)

We may "inspect" the sequence using take  and drop , as follows:

take 10 nats           (* [0,1,2,3,4,5,6,7,8,9] *)
take 5 (drop 5 nats)   (* [5,6,7,8,9] *)
take 5 fibs            (* [1,1,2,3,5] *)

Now let’s consider an alternative definition of fibs  that uses the loopback operation:

fun fibs_loop s = insert (1, insert (1, map (op +) (zip 
(drop 1 s, s))))
val fibs = loopback fibs_loop;
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The definition of fibs_loop  is exactly like the original definition of fibs , except that the 
reference to fibs  itself is replaced by a reference to the argument s .  Notice that the application of 
fibs_loop  to an argument s  does not inspect the argument s !

One way to understand loopback is that it solves a system of equations for an unknown sequence.  In 
the case of the second definition of fibs, we are solving the following system of equations for f:

f 0 = 1
f 1 = 1
f (n+2) = f (n+1) + f (n)

These equations are derived by inspecting the definitions of insert , map, zip , and drop  given 
earlier.  It is obvious that the solution is the Fibonacci sequence; this is precisely the sequence 
obtained by applying loopback  to fibs_loop .

Here's an example of a loop that, when looped back, yields an undefined sequence --- any attempt to 
access it results in an infinite loop:

fun bad_loop s n = s n + 1
val bad = loopback bad_loop
val _ = bad 0                            (* infinite loop! 
*)

In this example we are, in effect, trying to solve the equation s n = s n + 1 for s, which has no 
solution (except the totally undefined sequence).  The problem is that the "next" element of the output 
is defined in terms of the next element itself, rather than in terms of "previous" elements.  
Consequently, no solution exists.

With these ideas in mind, we may apply the sequence package to build an implementation of digital 
circuits.  Let's start with wires, which are represented as sequences of levels:

datatype level = High | Low | Undef
type wire = level seq
type pair = (level * level) seq

val Zero : wire = constantly Low
val One : wire = constantly High

(* clock pulse with given duration of each pulse *)
fun clock (freq:int):wire = stretch freq (alternately (Low, 
High))

We include the "undefined" level to account for propagation delays and settling times in circuit 
elements.

Combinational logic elements (gates) may be defined as follows.  We introduce an explicit unit time 
propagation delay for each gate --- the output is undefined initially, and is then determined as a 
function of its inputs.  As we build up layers of circuit elements, it takes longer and longer 
(proportional to the length of the longest path through the circuit) for the output to settle, exactly as in 
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"real life".

infixr **;
fun (f ** g) (x, y) = (f x, g y)        (* apply two 
functions in parallel *)

fun logical_and (Low, _) = Low          (* hardware logical 
and *)
  | logical_and (_, Low) = Low
  | logical_and (High, High) = High
  | logical_and _ = Undef

fun logical_not Undef = Undef
  | logical_not High = Low
  | logical_not Low = High

fun logical_nop l = l

val logical_nor =
    logical_and o (logical_not ** logical_and)  (* a nor b 
= not a and not b *)

type unary_gate = wire -> wire
type binary_gate = pair -> wire

fun gate f w 0 = Undef                   (* logic gate with 
unit propagation delay *)
  | gate f w i = f (w (i-1))

val delay : unary_gate = gate logical_nop          (* unit 
delay *)
val inverter : unary_gate = gate logical_not
val nor_gate : binary_gate = gate logical_nor

It is a good exercise to build a one-bit adder out of these elements, then to string them together to 
form an n-bit ripple-carry adder.  Be sure to present the inputs to the adder with sufficient pulse 
widths to ensure that the circuit has time to settle!

Combining these basic logic elements with recursive definitions allows us to define digital logic 
elements such as the RS flip-flop.  The propagation delay inherent in our definition of a gate is 
fundamental to ensuring that the behavior of the flip-flop is well-defined!  This is consistent with 
"real life" --- flip-flop's depend on the existence of a hardware propagation delay for their proper 
functioning.  Note also that presentation of "illegal" inputs (such as setting both the R and the S leads 
high results in metastable behavior of the flip-flop, here as in real life   Finally, observe that the flip-
flop exhibits a momentary "glitch" in its output before settling, exactly as in the hardware case.  (All 
of these behaviors may be observed by using take  and drop  to inspect the values on the circuit.)

fun RS_ff (S : wire, R : wire) =
    let
        fun X n = nor_gate (zip (S, Y))(n)
        and Y n = nor_gate (zip (X, R))(n)
    in
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        Y
    end

(* generate a pulse of b's n wide, following by w *)
fun pulse b 0 w i = w i
  | pulse b n w 0 = b
  | pulse b n w i = pulse b (n-1) w (i-1)

val S = pulse Low 2 (pulse High 2 Zero);
val R = pulse Low 6 (pulse High 2 Zero);
val Q = RS_ff (S, R);
val _ = take 20 Q;
val X = RS_ff (S, S);            (* unstable! *)
val _ = take 20 X;

It is a good exercise to derive a system of equations governing the RS flip-flop from the definition 
we've given here, using the implementation of the sequence operations given above.  Observe that the 
delays arising from the combinational logic elements ensure that a solution exists by ensuring that the 
"next" element of the output refers only the "previous" elements, and not the "current" element.

Finally, we consider a variant implementation of an RS flip-flop using the loopback operation:

fun loopback2 (f : wire * wire -> wire * wire) =
    unzip (loopback (zip o f o unzip))

fun RS_ff' (S : wire, R : wire) =
    let
        fun RS_loop (X, Y) =
            (nor_gate (zip (S, Y)), nor_gate (zip (X, R)))
    in
        loopback2 RS_loop
    end

Here we must define a "binary loopback" function to implement the flip-flop.   This is achieved by 
reducing binary loopback to unary loopback by composing with zip  and unzip .

Sample Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for This Chapter

An abstract data type (ADT) is a type equipped with a set of operations for manipulating values of 
that type.  An ADT is implemented by providing a representation type for the values of the ADT and 
an implementation for the operations defined on values of the representation type.  What makes an 
ADT abstract is that the representation type is hidden from clients of the ADT.  Consequently, the 
only operations that may be performed on a value of the ADT are the given ones.  This ensures that 
the representation may be changed without affecting the behavior of the client --- since the 
representation is hidden from it, the client cannot depend on it.   This also facilitates the 
implementation of efficient data structures by imposing a condition, called a representation invariant, 
on the representation that is preserved by the operations of the type.  Each operation that takes a value 
of the ADT as argument may assume that the representation invariant holds.  In compensation each 
operation that yields a value of the ADT as result must guarantee that the representation invariant 
holds of it.  If the operations of the ADT preserve the representation invariant, then it must truly be 
invariant --- no other code in the system could possibly disrupt it.  Put another way, any violation of 
the representation invariant may be localized to the implementation of one of the operations.   This 
significantly reduces the time required to find an error in a program.

To make these ideas concrete we will consider the abstract data type of dictionaries.   A dictionary is 
a mapping from keys to values.  For simplicity we take keys to be strings, but it is possible to define a 
dictionary for any ordered type; the values associated with keys are completely arbitrary.  Viewed as 
an ADT, a dictionary is a type ’a dict  of dictionaries mapping strings to values of type ’a
together with empty , insert , and lookup  operations that create a new dictionary, insert a value 
with a given key, and retrieve the value associated with a key (if any).  In short a dictionary is an 
implementation of the following signature:

signature DICT = sig
  type key = string
  type 'a entry = key * 'a
  type 'a dict
  exception Lookup of key
  val empty : 'a dict
  val insert : 'a dict * 'a entry -> 'a dict
  val lookup : 'a dict * key -> 'a dict
end
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Notice that the type ’a dict  is not specified in the signature, whereas the types key  and ’a 
entry  are defined to be string  and string * ’a , respectively.

A simple implementation of a dictionary is a binary search tree.  A binary search tree is a binary tree 
with values of an ordered type at the nodes arranged in such a way that for every node in the tree, the 
value at that node is greater than the value at any node in the left child of that node, and smaller than 
the value at any node in the right child.  It follows immediately that no two nodes in a binary search 
tree are labelled with the same value.  The binary search tree property is an example of a 
representation invariant on an underlying data structure.  The underlying structure is a binary tree 
with values at the nodes; the representation invariant isolates a set of structures satisfying some 
additional, more stringent, conditions.

We may use a binary search tree to implement a dictionary as follows:

structure BinarySearchTree :> DICT = struct
  type key = string
  type 'a entry = key * 'a

  (* Rep invariant: 'a tree is a binary search tree *)
  datatype 'a tree = Empty | Node of 'a tree * 'a entry * 
'a tree
  type 'a dict = 'a tree

  exception Lookup of key

  val empty = Empty

  fun insert (Empty, entry) = Node (Empty, entry, Empty)
    | insert (n as Node (l, e as (k,_), r), e' as (k',_)) =
      (case String.compare (k, k')
         of LESS => Node (insert (l, e'), e, r)
          | GREATER => Node (l, e, insert (r, e'))
          | EQUAL => n)

  fun lookup (Empty) k = raise (Lookup k)
    | lookup (Node (l, (k, v), r)) k' =
      (case String.compare (k, k')
         of EQUAL => v
          | LESS => lookup l k'
          | GREATER => lookup r k')

end

Notice that empty  is defined to be a valid binary search tree, that insert  yields a binary search tree 
if its argument is one, and that lookup  relies on its argument being a binary search tree (if not, it 
might fail to find a key that in fact occurs in the tree!).  The structure BinarySearchTree  is 
sealed with the signature DICT to ensure that the representation type is held abstract.

The difficulty with binary search trees is that they may become unbalanced.  In particular if we insert 
keys in ascending order, the representation is essentially just a list!  The left child of each node is 
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empty; the right child is the rest of the dictionary.  Consequently, it takes O(n) time in the worse case 
to perform a lookup on a dictionary containing nelements.  Such a tree is said to be unbalanced
because the children of a node have widely varying heights.  Were it to be the case that the children 
of every node had roughly equal height, then the lookup would take O(lg n) time, a considerable 
improvement.

Can we do better?  Many approaches have been suggested.  One that we will consider here is an 
instance of what is called a self-adjusting tree, called a red-black tree (the reason for the name will be 
apparent shortly).  The general idea of a self-adjusting tree is that operations on the tree may cause a 
reorganization of its structure to ensure that some invariant is maintained.  In our case we will arrange 
things so that the tree is self-balancing, meaning that the children of any node have roughly the same 
height.  As we just remarked, this ensures that lookup is efficient.

How is this achieved?  By imposing a clever representation invariant on the binary search tree, called 
the red-black tree condition.  A red-black tree is a binary search tree in which every node is colored 
either red or black (with the empty tree being regarded as black) and such that the following 
properties hold: 

1. The children of a red node are black. 
2. For any node in the tree, the number of black nodes on any two paths from that node to a leaf is 

the same.  This number is called the black height of the node. 

These two conditions ensure that a red-black tree is a balanced binary search tree.   Here's why.  First, 
observe that a red-black tree of black height h has at least 2h-1 nodes.  We may prove this by 
induction on the structure of the red-black tree.  The empty tree has black-height 1 (since we consider 
it to be black), which is at least 21-1, as required.   Suppose we have a red node.  The black height of 
both children must be h, hence each has at most 2h-1 nodes, yielding a total of 2(2h-1)+1 = 2h+1-1

nodes, which is at least 2h-1.  If, on the other hand, we have a black node, then the black height of 
both children is h-1, and each have at most 2h-1-1 nodes, for a total of 2(2h-1-1)+1 = 2h-1 nodes.   
Now, observe that a red-black tree of height h with n nodes has black height at most h/2, and hence 
has at least 2h/2-1 nodes.  Consequently, lg(n+1)>=h/2, so h <= 2lg(n+1).   In other words, its height 
is logarithmic in the number of nodes, which implies that the tree is height balanced.

To ensure logarithmic behavior, all we have to do is to maintain the red-black invariant.  The empty 
tree is a red-black tree, so the only question is how to perform an insert operation.  First, we insert the 
entry as usual for a binary search tree, with the fresh node starting out colored red.  In doing so we do 
not disturb the black height condition, but we might introduce a red-red violation, a situation in 
which a red node has a red child.  We then remove the red-red violation by propagating it upwards 
towards the root by a constant-time transformation on the tree (one of several possibilities, which 
we'll discuss shortly).  These transformations either eliminate the red-red violation outright, or, in 
logarithmic time, push the violation to the root where it is neatly resolved by recoloring the root black 
(which preserves the black-height invariant!).

The violation is propagated upwards by one of four rotations.  We will maintain the invariant that 
there is at most one red-red violation in the tree.  The insertion may or may not create such a 
violation, and each propagation step will preserve this invariant.  It follows that the parent of a red-
red violation must be black.   Consequently, the situation must look like this.   This diagram 
represents four distinct situations, according to whether the uppermost red node is a left or right child 
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of the black node, and whether the red child of the red node is itself a left or right child.  In each case 
the red-red violation is propagated upwards by transforming it to look like this.   Notice that by 
making the uppermost node red we may be introducing a red-red violation further up the tree (since 
the black node's parent might have been red), and that we are preserving the black-height invariant 
since the great-grand-children of the black node in the original situation will appear as children of the 
two black nodes in the re-organized situation.  Notice as well that the binary search tree conditions 
are also preserved by this transformation.  As a limiting case if the red-red violation is propagated to 
the root of the entire tree, we re-color the root black, which preserves the black-height condition, and 
we are done re-balancing the tree.

Let's look in detail at two of the four cases of removing a red-red violation, those in which the 
uppermost red node is the left child of the black node; the other two cases are handled symmetrically.  
If the situation looks like this, we reorganize the tree to look like this.  You should check that the 
black-height and binary search tree invariants are preserved by this transformation.   Similarly, if the 
situation looks like this, then we reorganize the tree to look like this (precisely as before).  Once 
again, the black-height and binary search tree invariants are preserved by this transformation, and the 
red-red violation is pushed further up the tree.

Here is the ML code to implement dictionaries using a red-black tree.  Notice that the tree rotations 
are neatly expressed using pattern matching.

structure RedBlackTree :> DICT = struct
  type key = string
  type 'a entry = string * 'a

  (* Representation invariant: binary search tree + red-
black conditions *)
  datatype 'a dict = Empty
  | Red of 'a entry * 'a dict * 'a dict
  | Black of 'a entry * 'a dict * 'a dict

  val empty = Empty

  exception Lookup of key

  fun lookup dict key =
      let
          fun lk (Empty) = raise (Lookup key)
            | lk (Red tree) = lk' tree
            | lk (Black tree) = lk' tree
          and lk' ((key1, datum1), left, right) =
              (case String.compare(key,key1)
                 of EQUAL => datum1
                  | LESS => lk left
                  | GREATER => lk right)
      in
         lk dict
      end

  fun restoreLeft (Black (z, Red (y, Red (x, d1, d2), d3), 
d4)) =
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      Red (y, Black (x, d1, d2), Black (z, d3, d4))
    | restoreLeft (Black (z, Red (x, d1, Red (y, d2, d3)), 
d4)) =
      Red (y, Black (x, d1, d2), Black (z, d3, d4))
    | restoreLeft dict = dict
  
  fun restoreRight (Black (x, d1, Red (y, d2, Red (z, d3, 
d4)))) =
      Red (y, Black (x, d1, d2), Black (z, d3, d4))
    | restoreRight (Black (x, d1, Red (z, Red (y, d2, d3), 
d4))) =
      Red (y, Black (x, d1, d2), Black (z, d3, d4))
    | restoreRight dict = dict
  
  fun insert (dict, entry as (key, datum)) =
      let
          (* val ins : 'a dict -> 'a dict insert entry *)
          (* ins (Red _) may violate color invariant at 
root *)
          (* ins (Black _) or ins (Empty) will be red/black 
tree *)
          (* ins preserves black height *)
          fun ins (Empty) = Red (entry, Empty, Empty)
            | ins (Red (entry1 as (key1, datum1), left, 
right)) =
              (case String.compare (key, key1)
                 of EQUAL => Red (entry, left, right)
                  | LESS => Red (entry1, ins left, right)
                  | GREATER => Red (entry1, left, ins 
right))
            | ins (Black (entry1 as (key1, datum1), left, 
right)) =
              (case String.compare (key, key1)
                 of EQUAL => Black (entry, left, right)
                  | LESS => restoreLeft (Black (entry1, ins 
left, right))
                  | GREATER => restoreRight (Black (entry1, 
left, ins right)))
      in
         case ins dict
           of Red (t as (_, Red _, _)) => Black t (* re-
color *)
            | Red (t as (_, _, Red _)) => Black t (* re-
color *)
            | dict => dict
      end

end

It is worthwhile to contemplate the role played by the red-black invariant in ensuring the correctness 
of the implementation and the time complexity of the operations.
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Sample Code for This Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Sample Code for This Chapter

This chapter is concerned with persistent and ephemeral abstract types.  The distinction is best 
explained in terms of the logical future of a value.  Whenever a value of an abstract type is created it 
may be subsequently acted upon by the operations of the type (and, since the type is abstract, by no 
other operations).  Each of these operations may yield (other) values of that abstract type, which may 
themselves be handed off to further operations of the type.   Ultimately a value of some other type, 
say a string or an integer, is obtained as an observable outcome of the succession of operations on the 
abstract value.  The sequence of operations performed on a value of an abstract type constitutes a 
logical future of that type --- a computation that starts with that value and ends with a value of some 
observable type.  We say that a type is ephemeral iff every value of that type has at most one logical 
future, which is to say that it is handed off from one operation of the type to another until an 
observable value is obtained from it.  This is the normal case in familiar imperative programming 
languages because in such languages the operations of an abstract type destructively modify the value 
upon which they operate; its original state is irretrievably lost by the performance of an operation.  It 
is therefore inherent in the imperative programming model that a value have at most one logical 
future.  In contrast, values of an abstract type in functional languages such as ML may have many 
different logical futures, precisely because the operations do not "destroy" the value upon which they 
operate, but rather create fresh values of that type to yield as results.  Such values are said to be 
persistent because they persist after application of an operation of the type, and in fact may serve as 
arguments to further operations of that type.

Some examples will help to clarify the distinction.  The primitive list types of ML are persistent 
because the performance of an operation such as cons'ing, appending, or reversing a list does not 
destroy the original list.  This leads naturally to the idea of multiple logical futures for a given value, 
as illustrated by the following code sequence:

val l = [1,2,3]               (* original list *)
val m1 = hd l                 (* first future of l *)
val n1 = rev m1
val m2 = l @ [4,5,6]         (* second future of l *)

Notice that the original list value, [1,2,3] , has two distinct logical futures, one in which we 
remove its head, then reverse the tail, and the other in which we append the list [4,5,6]  to it.  The 
ability to easily handle multiple logical futures for a data structure is a tremendous source of 
flexibility and expressive power, alleviating the need to perform tedious bookkeeping to manage 
"versions" or "copies" of a data structure to be passed to different operations.
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The prototypical ephemeral data structure in ML is the reference cell.  Performing an assignment 
operation on a reference cell changes it irrevocably; the original contents of the cell are lost, even if 
we keep a handle on it.

val r = ref 0                  (* original cell *)
val s = r
val _ = (!s = 1)
val x = !r                     (* 1! *)

Notice that the contents of (the cell bound to) r  changes as a result of performing an assignment to 
the underlying cell.  There is only one future for this cell; a reference to its original binding does not 
yield its original contents.

More elaborate forms of ephemeral data structures are certainly possible.  For example, the following 
declaration defines a type of lists whose tails are mutable.   It is therefore a singly-linked list, one 
whose predecessor relation may be changed dynamically by assignment:

datatype ’a mutable_list = Nil | Cons of ’a * ’a 
mutable_list ref

Values of this type are ephemeral in the sense that some operations on values of this type are 
destructive, and hence are irreversible (so to speak!).  For example, here's an implementation of a 
destructive reversal of a mutable list.  Given a mutable list l, this function reverses the links in the 
cell so that the elements occur in reverse order of their occurrence in l.

local
   fun ipr (Nil, a) = a
     | ipr (this as (Cons (_, r as ref next)), a) =
       ipr (next, (r := a; this))
in
   (* destructively reverse a list *)
   fun inplace_reverse l = ipr (l, Nil)
end    

As you can see, the code is quite tricky to understand!  The idea is the same as the iterative reverse 
function for pure lists, except that we re-use the nodes of the original list, rather than generate new 
ones, when moving elements onto the accumulator argument.

The distinction between ephemeral and persistent data structures is essentially the distinction between 
functional (effect-free) and imperative (effect-ful) programming --- functional data structures are 
persistent; imperative data structures are ephemeral.  However, this characterization is oversimplified 
in two respects.  First, it is possible to implement a persistent data structure that exploits mutable 
storage.   Such a use of mutation is an example of what is called a benign effect because for all 
practical purposes the data structure is "purely functional" (i.e., persistent), but is in fact implemented 
using mutable storage.  As we will see later the exploitation of benign effects is crucial for building 
efficient implementations of persistent data structures.  Second, it is possible for a persistent data type 
to be used in such a way that persistence is not exploited --- rather, every value of the type has at most 
one future in the program.  Such a type is said to be single-threaded, reflecting the linear, as opposed 
to branching, structure of the future uses of values of that type.  The significance of a single-threaded 
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type is that it may as well have been implemented as an ephemeral data structure (e.g., by having 
observable effects on values) without changing the behavior of the program.

Here is a signature of persistent queues:

signature QUEUE = sig
  type 'a queue
  exception Empty
  val empty : 'a queue
  val insert : 'a * 'a queue -> 'a queue
  val remove : 'a queue -> 'a * 'a queue
end

This signature describes a structure providing a representation type for queues, together with 
operations to create an empty queue, insert an element onto the back of the queue, and to remove an 
element from the front of the queue.  It also provides an exception that is raised in response to an 
attempt to remove an element from the empty queue.  Notice that removing an element from a queue 
yields both the element at the front of the queue, and the queue resulting from removing that 
element.  This is a direct reflection of the persistence of queues implemented by this signature; the 
original queue remains available as an argument to further queue operations.

By a sequence of queue operations we shall mean a succession of uses of empty , insert , and 
remove  operations in such a way that the queue argument of one operation is obtained as a result of 
the immediately preceding queue operation.  Thus a sequence of queue operations represents a single-
threaded time-line in the life of a queue value.  Here is an example of a sequence of queue operations:

val q0 : int queue = empty
val q1 = insert (1, q0)
val q2 = insert (2, q1)
val (h1, q3) = remove q2     (* h1 = 1, q3 = q1 *)
val (h2, q4) = remove q3     (* h2 = 2, q4 = q0 *)

By contrast the following operations do not form a single thread, but rather a branching development 
of the queue’s lifetime:

val q0 : int queue = empty
val q1 = insert (1, q0)
val q2 = insert (2, q0)     (* NB: q0, not q1! *)
val (h1, q3) = remove q1    (* h1 = 1, q3 = q0 *)
val (h2, q4) = remove q3    (* raise Empty *)
val (h2, q4) = remove q2    (* h2 = 2,, q4 = q0 *)

In the remainder of this chapter we will be concerned with single-threaded sequences of queue 
operations.

How might we implement the signature QUEUE?  The most obvious approach is to represent the 
queue as a list with, say, the head element of the list representing the "back" (most recently enqueued 
element) of the queue.   With this representation enqueueing is a constant-time operation, but 
dequeuing requires time proportional to the number of elements in the queue.  Thus in the worst case 
a sequence of n enqueue and dequeue operations will take time O(n2), which is clearly excessive.  We 
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can make dequeue simpler, at the expense of enqueue, by regarding the head of the list as the "front" 
of the queue, but the time bound for n operations remains the same in the worst case.

Can we do better?  A well-known "trick" achieves an O(n) worst-case performance for any sequence 
of n operations, which means that each operation takes O(1) steps if we amortize the cost over the 
entire sequence.  Notice that this is a worst-case bound for the sequence, yielding an amortized bound 
for each operation of the sequence.  This means that some operations may be relatively expensive, 
but, in compensation, many operations will be cheap.

How is this achieved?  By combining the two naive solutions sketched above.   The idea is to 
represent the queue by two lists, one for the back "half" consisting of recently inserted elements in the 
order of arrival, and one for the front "half" consisting of soon-to-be-removed elements in reverse
order of arrival (i.e., in order of removal).  We put "half" in quotes because we will not, in general, 
maintain an even split of elements between the front and the back lists.  Rather, we will arrange 
things so that the following representation invariant holds true:

1. The elements of the queue listed in order of removal are the elements of the front 
followed by the elements of the back in reverse order.

2. The front is empty only if the back is empty.

This invariant is maintained by using a "smart constructor" that creates a queue from two lists 
representing the back and front parts of the queue.  This constructor ensures that the representation 
invariant holds by ensuring that condition (2) is always true of the resulting queue.  The constructor 
proceeds by a case analysis on the back and fron parts of the queue.  If the front list is non-empty, or 
both the front and back are empty, the resulting queue consists of the back and front parts as given.  If 
the front is empty and the back is non-empty, the queue constructor yields the queue consisting of an 
empty back part and a front part equal to the reversal of the given back part.  Observe that this is 
sufficient to ensure that the representation invariant holds of the resulting queue in all cases.  Observe 
also that the smart constructor either runs in constant time, or in time proportional to the length of the 
back part, according to whether the front part is empty or not.

Insertion of an element into a queue is achieved by cons'ing the element onto the back of the queue, 
then calling the queue constructor to ensure that the result is in conformance with the representation 
invariant.  Thus an insert can either take constant time, or time proportional to the size of the back of 
the queue, depending on whether the front part is empty.  Removal of an element from a queue 
requires a case analysis.  If the front is empty, then by condition (2) the queue is empty, so we raise an 
exception.  If the front is non-empty, we simply return the head element together with the queue 
created from the original back part and the front part with the head element removed.  Here again the 
time required is either constant or proportional to the size of the back of the queue, according to 
whether the front part becomes empty after the removal.  Notice that if an insertion or removal 
requires a reversal of k elements, then the next k operations are constant-time.   This is the 
fundamental insight as to why we achieve O(n) time complexity over any sequence of n operations.  
(We will give a more rigorous analysis shortly.)

Here's the implementation of this idea in ML:

structure Queue :> QUEUE = struct
  type 'a queue = 'a list * 'a list
  fun make_queue (q as (nil, nil)) = q
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    | make_queue (bs, nil) = (nil, rev bs)
    | make_queue (q as (bs, fs)) = q
  val empty = make_queue (nil, nil)
  fun insert (x, (back,front)) = make_queue (x::back, 
front)
  exception Empty
  fun remove (_, nil) = raise Empty
    | remove (bs, f::fs) = (f, make_queue (bs, fs))
end

Notice that we call the "smart constructor" make_queue  whenever we wish to return a queue to 
ensure that the representation invariant holds.   Consequently, some queue operations are more 
expensive than others, according to whether or not the queue needs to be reorganized to satisfy the 
representation invariant.   However, each such reorganization makes a corresponding number of 
subsequent queue operations "cheap" (constant-time), so the overall effort required evens out in the 
end to constant-time per operation.  More precisely, the running time of a sequence of n queue 
operations is now O(n), rather than O(n2), as it was in the naive implementation.  Consequently, each 
operation takes O(1) (constant) time "on average", i.e., when the total effort is evenly apportioned 
among each of the operations in the sequence.  Note that this is a worst-case time bound for each 
operation, amortized over the entire sequence, not an average-case time bound based on assumptions 
about the distribution of the operations.

How can we prove this claim?  First we given an informal argument, then we tighten it up with a 
more rigorous analysis.  We are to account for the total work performed by a sequence of n operations 
by showing that any sequence of noperations can be executed in cn steps for some constant c.  
Dividing by n, we obtain the result that each operations takes c steps when amortized over the entire 
sequence.  The key is to observe first that the work required to execute a sequence of queue 
operations may be apportioned to the elements themselves, then that only a constant amount of work 
is expended on each element.  The "life" of a queue element may be divided into three stages: it's 
arrival in the queue, it's transit time in the queue, and it's departure from the queue.  In the worst case 
each element passes through each of these stages (but may "die young", never participating in the 
second or third stage).  Arrival requires constant time to add the element to the back of the queue.  
Transit consists of being moved from the back to the front by a reversal, which takes constant time 
per element on the back.  Departure takes constant time to pattern match and extract the element.  
Thus at worst we require three steps per element to account for the entire effort expended to perform 
a sequence of queue operations.  This is in fact a conservative upper bound in the sense that we may 
need less than 3n steps for the sequence, but asymptotically the bound is optimal --- we cannot do 
better than constant time per operation!  (You might reasonably wonder whether there is a worst-case, 
non-amortized constant-time implementation of persistent queues.  The answer is "yes", but the code 
is far more complicated than the simple implementation we are sketching here.)

This argument can be made rigorous as follows.  The general idea is to introduce the notion of a 
charge scheme that provides an upper bound on the actual cost of executing a sequence of 
operations.  An upper bound on the charge will then provide an upper bound on the actual cost.  Let T
(n) be the cumulative time required (in the worst case) to execute a sequence of n queue operations.  
We will introduce a charge function, C(n), representing the cumulative charge for executing a 
sequence of n operations and show that T(n)<=C(n)=O(n).    It is convenient to express this in terms 
of a function R(n) = C(n)-T(n) representing the cumulative residual, or overcharge, which is the 
amount that the charge for n operations exceeds the actual cost of executing them.  We will arrange 
things so that R(n)>=0 and that C(n)=O(n), from which the result follows immediately.
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Down to specifics.  By charging 2 for each insert operation and 1 for each remove, it follows that C
(n)<=2n for any sequence of n inserts and removes.   Thus C(n)=O(n).  After any sequence of n>=0
operations have been performed, the queue contains 0<=b<=n  elements on the back "half" and 
0<=f<=n  elements on the front "half".   We claim that for every n>=0, R(n)=b.  We prove this by 
induction on n>=0.  The condition clearly holds after performing 0 operations, since T(0)=0, C(0)=0, 
and hence R(0)=C(0)-T(0)=0.   Consider the n+1st operation.  If it is an insert, and f>0, T(n+1)=T(n)
+1, C(n+1)=C(n)+2, and hence R(n+1)=R(n)+1=b+1.  This is correct because an insert operation 
adds one element to the back of the queue.   If, on the other hand, f=0, then T(n+1)=T(n)+b+2
(charging one for the cons and one for creating the new pair of lists), C(n+1)=C(n)+2, so R(n+1)=R
(n)+2-b-2=b+2-b-2=0.  This is correct because the back is now empty; we have used the residual 
overcharge to pay for the cost of the reversal.  If the n+1st operation is a remove, and f>0, then T
(n+1)=T(n)+1 and C(n+1)=C(n)+1 and hence R(n+1)=R(n)=b.  This is correct because the remove 
doesn't disturb the back in this case.  Finally, if we are performing a remove with f=0, then T(n+1)=T
(n)+b+1, C(n+1)=C(n)+1, and hence R(n+1)=R(n)-b=b-b=0.  Here again we use of the residual 
overcharge to pay for the reversal of the back to the front.   The result follows immediately since R(n)
=b>=0 , and hence C(n)>=T(n).

It is instructive to examine where this solution breaks down in the multi-threaded case (i.e., where 
persistence is fully exploited).  Suppose that we perform a sequence of n insert operations on the 
empty queue, resulting in a queue with n elements on the back and none on the front.  Call this queue 
q.   Let us suppose that we have n independent "futures" for q, each of which removes an element 
from it, for a total of 2n operations.  How much time do these 2n operations take?  Since each 
independent future must reverse all n elements onto the front of the queue before performing the 
removal, the entire collection of 2n operations takes n+n2 steps, or O(n) steps per operation, breaking 
the amortized constant-time bound just derived for a single-threaded sequence of queue operations.  
Can we recover a constant-time amortized cost in the persistent case?  We can, provided that we 
share the cost of the reversal among all futures of q --- as soon as one performs the reversal, they all 
enjoy the benefit of its having been done.  This may be achieved by using a benign side effect to 
cache the result of the reversal in a reference cell that is shared among all uses of the queue.  We will 
return to this once we introduce memoization and lazy evaluation. 

Sample Code for This Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Code for This Chapter

In this chapter we discuss the close relationships between option types, exceptions, and 
continuations.  They each provide the means for handling failure to produce a value in a 
computation.  Option types provide the means of explicitly indicating in the type of a function the 
possibility that it may fail to yield a "normal" result.  The result type of the function forces the caller 
to dispatch explicitly on whether or not it returned a normal value.  Exceptions provide the means of 
implicitly signalling failure to return a normal result value, without sacrificing the requirement that an 
application of such a function cannot ignore failure to yield a value.   Continuations provide another 
means of handling failure by providing a function to invoke in the case that normal return is 
impossible.

We will explore the trade-offs between these three approaches by considering three different 
implementations of the n-queens problem: find a way to place n queens on an nxn chessboard in such 
a way that no two queens attack one another.   The general strategy is to place queens in successive 
columns in such a way that it is not attacked by a previously placed queen.  Unfortunately it's not 
possible to do this in one pass; we may find that we can safely place k<n queens on the board, only to 
discover that there is no way to place the next one.  To find a solution we must reconsider earlier 
decisions, and work forward from there.  If all possible reconsiderations of all previous decisions all 
lead to failure, then the problem is unsolvable.  For example, there is no safe placement of three 
queens on a 3x3 chessboard.  This trial-and-error approach to solving the n-queens problem is called 
backtracking search.

A solution to the n-queens problem consists of an nxn chessboard with n queens safely placed on it.  
The following signature defines a chessboard abstraction:

signature BOARD = sig
  type board
  val new : int -> board
  val complete : board -> bool
  val place : board * int -> board
  val safe : board * int -> bool
  val size : board -> int
  val positions : board -> (int * int) list
end

The operation new creates a new board of a given dimension n>=0.   The operation complete
checks whether the board contains a complete safe placement of n queens.  The function safe
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checks whether it is safe to place a queen at row i in the next free column of a board B.   The 
operation place  puts a queen at row i in the next available column of the board.  The function size
returns the size of a board, and the function positions  returns the coordinates of the queens on the 
board.

The board abstraction may be implemented as follows:

structure Board :> BOARD = struct

  (* representation: size, next free column, number placed, 
placements *)
  (* rep'n invariant: size >=0, 1<=next free<=size, length
(placements) = number placed *)
  type board = int * int * int * (int * int) list

  fun new n = (n, 1, 0, nil)

  fun size (n, _, _, _) = n
  fun complete (n, _, k, _) = (k=n)
  fun positions (_, _, _, qs) = qs

  fun place ((n, i, k, qs),j) = (n, i+1, k+1, (i,j)::qs)

  fun threatens ((i,j), (i',j')) = i=i' orelse j=j' orelse 
i+j = i'+j' orelse i-j = i'-j'
  fun conflicts (q, nil) = false
    | conflicts (q, q'::qs) = threatens (q, q') orelse 
conflicts (q, qs)
  fun safe ((_, i, _, qs), j) = not (conflicts ((i,j), qs))

end

The representation type contains "redundant" information in order to make the individual operations 
more efficient.  The representation invariant ensures that the components of the representation are 
properly related to one another (e.g., the claimed number of placements is indeed the length of the list 
of placed queens, and so on.)

Our goal is to define a function

val queens : int -> Board.board option

such that if n>=0, then queens  n evaluates either to NONE if there is no safe placement of n queens 
on an nxn board, or to SOME B otherwise, with B a complete board containing a safe placement of n
queens.  We will consider three different solutions, one using option types, one using exceptions, and 
one using a failure continuation.

Here's a solution based on option types:

(* addqueen bd evaluates to SOME bd’, where bd’ is a 
complete safe placement
   extending bd, if one exists, and yields NONE otherwise 
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*)
fun addqueen bd =
    let
        fun try j =
            if j > Board.size bd then
               NONE
            else if Board.safe (bd, j) then
               case addqueen (Board.place (bd, j))
                 of NONE => try (j+1)
                  | r as (SOME bd') => r
            else
               try (j+1)
    in
        if Board.complete bd then
           SOME bd
        else
           try 1
    end

fun queens n = addqueen (Board.new n)

The characteristic feature of this solution is that we must explicitly check the result of each recursive 
call to addqueen  to determine whether a safe placement is possible from that position.  If so, we 
simply return it; if not, we must reconsider the placement of a queen in row j of the next available 
column.  If no placement is possible in the current column, the function yields NONE, which forces 
reconsideration of the placement of a queen in the preceding row.  Eventually we either find a safe 
placement, or yield NONE indicating that no solution is possible.

The explicit check on the result of each recursive call can be replaced by the use of exceptions.  
Rather than have addqueen  return a value of type Board.board option , we instead have it 
return a value of type Board.board , if possible, and otherwise raise an exception indicating 
failure.  The case analysis on the result is replaced by a use of an exception handler.  Here's the code:

exception Fail

(* addqueen bd evaluates to bd’, where bd’ is a complete 
safe placement
   extending bd, if one exists, and raises Fail otherwise 
*)
fun addqueen bd =
    let
        fun try j =
            if j > Board.size bd then
               raise Fail
            else if Board.safe (bd, j) then
               addqueen (Board.place (bd, j))
               handle Fail => try (j+1)
            else
               try (j+1)
    in
        if Board.complete bd then
           bd
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        else
           try 1
    end

fun queens n = SOME (addqueen (Board.new n)) handle Fail => 
NONE

The main difference between this solution and the previous one is that both calls to addqueen  must 
handle the possibility that it raises the exception Fail .  In the outermost call this corresponds to a 
complete failure to find a safe placement, which means that queens  must return NONE.  If a safe 
placement is indeed found, it is wrapped with the constructor SOME to indicate success.  In the 
recursive call within try , an exception handler is required to handle the possibility of there being no 
safe placement starting in the current position.  This check corresponds directly to the case analysis 
required in the solution based on option types.

What are the trade-offs between the two solutions? 

1. The solution based on option types makes explicit in the type of the function addqueen  the 
possibility of failure.  This forces the programmer to explicitly test for failure using a case 
analysis on the result of the call.  The type checker will ensure that one cannot use a 
Board.board option  where a Board.board  is expected.  The solution based on 
exceptions does not explicitly indicate failure in its type.  However, the programmer is 
nevertheless forced to handle the failure, for otherwise an uncaught exception error would be 
raised at run-time, rather than compile-time. 

2. The solution based on option types requires an explicit case analysis on the result of each 
recursive call.  If "most" results are successful, the check is redundant and therefore excessively 
costly.  The solution based on exceptions is free of this overhead: it is biased towards the 
"normal" case of returning a board, rather than the "failure" case of not returning a board at all.  
The implementation of exceptions ensures that the use of a handler is more efficient than an 
explicit case analysis in the case that failure is rare compared to success. 

For the n-queens problem it is not clear which solution is preferable.   In general, if efficiency is 
paramount, we tend to prefer exceptions if failure is a rarity, and to prefer options if failure is 
relatively common.  If, on the other hand, static checking is paramount, then it is advantageous to use 
options since the type checker will enforce the requirement that the programmer check for failure, 
rather than having the error arise only at run-time.

We turn now to a third solution based on continuation-passing.  The idea is quite simple: an 
exception handler is essentially a function that we invoke when we reach a blind alley.  Ordinarily we 
achieve this invocation by raising an exception and relying on the caller to catch it and pass control to 
the handler.  But we can, if we wish, pass the handler around as an additional argument, the failure
continuation of the computation.  Here's how it's done in the case of the n-queens problem:

(* addqueen bd evaluates to bd’, where bd’ is a complete 
safe placement
   extending bd, if one exists, and otherwise yields the 
value of fc () *)
fun addqueen (bd, fc) =
    let
        fun try j =
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            if j > Board.size bd then
               fc ()
            else if Board.safe (bd, j) then
               addqueen (Board.place (bd, j), fn () => try 
(j+1))
            else
               try (j+1)
    in
        if Board.complete bd then
           SOME bd
        else
           try 1
    end

fun queens n = addqueen (Board.new n, fn () => NONE)

Here again the differences are small, but significant.  The initial continuation simply yields NONE, 
reflecting the ultimate failure to find a safe placement.   On a recursive call we pass to addqueen  a 
continuation that resumes search at the next row of the current column.  Should we exceed the 
number of rows on the board, we invoke the failure continuation of the most recent call to 
addqueen .

The solution based on continuations is very close to the solution based on exceptions, both in form 
and in terms of efficiency.  Which is preferable?  Here again there is no easy answer, we can only 
offer general advice.  First off, as we've seen in the case of  regular expression matching, failure 
continuations are more powerful than exceptions; there is no obvious way to replace the use of a 
failure continuation with a use of exceptions in the matcher.  However, in the case that exceptions 
would suffice, it is generally preferable to use them since one may then avoid passing an explicit 
failure continuation.  More significantly, the compiler ensures that an uncaught exception aborts the 
program gracefully, whereas failure to invoke a continuation is not in itself a run-time fault.  Using 
the right tool for the right job makes life easier.

Code for This Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Code for this Chapter

In this chapter we will discuss memoization, a programming technique for cacheing the results of 
previous computations so that they can be quickly retrieved without repeated effort.  Memoization is 
fundamental to the implementation of lazy data structures, either "by hand" or using the 
implementation provided by the SML/NJ compiler.

We begin with a discussion of memoization to increase the efficiency of computing a recursively-
defined function whose pattern of recursion involves a substantial amount of redundant computation.  
The problem is to compute the number of ways to parenthesize an expression consisting of a 
sequence of n multiplications as a function of n.   For example, the expression

2*3*4*5

can be parenthesized in 5 ways:

((2*3)*4)*5, (2*(3*4))*5, (2*3)*(4*5), 2*(3*(4*5)), 2*((3*4)*5).

A simple recurrence expresses the number of ways of parenthesizing a sequence of n multiplications:

fun sum f 0 = 0
  | sum f n = (f n) + sum (f (n-1))

fun p 1 = 1
  | p n = sum (fn k => (p k) * (p (n-k)) (n-1)

where sum f n computes the sum of values of a function f (k) with k running from 1 to n.  This 
program is extremely inefficient because of the redundancy in the pattern of the recursive calls.

What can we do about this problem?  One solution is to be clever and solve the recurrence.  As it 
happens this recurrence has a closed-form solution (the Catalan numbers).  But in many cases there is 
no known closed form, and something else must be done to cut down the overhead.  In this case a 
simple cacheing technique proves effective.  The idea is to maintain a table of values of the function 
that is filled in whenever the function is applied.  If the function is called on an argument n, the table 
is consulted to see whether the value has already been computed; if so, it is simply returned.  If not, 
we compute the value and store it in the table for future use.  This ensures that no redundant 
computations are performed.  We will maintain the table as an array so that its entries can be accessed 
in constant time.   The penalty is that the array has a fixed size, so we can only record the values of 
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the function at some pre-determined set of arguments.  Once we exceed the bounds of the table, we 
must compute the value the "hard way".  An alternative is to use a dictionary (e.g., a balanced binary 
search tree) which has no a priori size limitation, but which takes logarithmic time to perform a 
lookup.  For simplicity we'll use a solution based on arrays.

Here's the code to implement a memoized version of the parenthesization function:

local

  val limit = 100
  val memopad = Array.array (100, NONE)

in

  fun p' 1 = 1
    | p' n = sum (fn k => (p k) * (p (n-k))) (n-1)

  and p n =
      if n < limit then
         case Array.sub of
              SOME r => r
            | NONE =>
              let
                  val r = p' n
              in
                  Array.update (memopad, n, SOME r); 
                  r
              end
      else
         p' n

end

The main idea is to modify the original definition so that the recursive calls consult and update the 
memopad.  The "exported" version of the function is the one that refers to the memo pad.  Notice that 
the definitions of p and p'  are mutually recursive!

Lazy evaluation is a combination of delayed evaluation and memoization.  Delayed evaluation is 
implemented using thunks, functions of type unit -> ’a .   To delay the evaluation of an 
expression exp of type ’a , simply write fn () =>  exp.  This is a value of type unit -> ’a ; the 
expression exp is effectively "frozen" until the function is applied.  To "thaw" the expression, simply 
apply the thunk to the null tuple, () .  Here's a simple example:

val thunk = fn () => print "hello\n"             (* nothing 
printed *)
val _ = thunk ()                                 (* prints 
hello *)

While this example is especially simple-minded, remarkable effects can be achieved by combining 
delayed evaluation with memoization.  To do so, we will consider the following signature of 
suspensions:
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signature SUSP = sig
  type 'a susp
  val force : 'a susp -> 'a
  val delay : (unit -> 'a) -> 'a susp
end

The function delay  takes a suspended computation (in the form of a thunk) and yields a 
suspension.  It's job is to "memoize" the suspension so that the suspended computation is evaluated at 
most once --- once the result is computed, the value is stored in a reference cell so that subsequent 
forces are fast.  The implementation is slick.  Here's the code to do it:

structure Susp :> SUSP = struct
  type 'a susp = unit -> 'a
  fun force t = t ()
  fun delay (t : 'a susp) =
      let
          exception Impossible
          val memo : 'a susp ref = ref (fn () => raise 
Impossible)
          fun t' () =
              let val r = t () in memo := (fn () => r); r 
end
      in
          memo := t';
          fn () => (!memo)()
      end
end

It's worth discussing this code in detail because it is rather tricky.   Suspensions are just thunks; 
force  simply applies the suspension to the null tuple to force its evaluation.  What about delay ?  
When applied, delay  allocates a reference cell containing a thunk that, if forced, raises an internal 
exception.  This can never happen for reasons that will become apparent in a moment; it is merely a 
placeholder with which we initialize the reference cell.   We then define another thunk t’  that, when 
forced, does three things: 

1. It forces the thunk t  to obtain its value r . 
2. It replaces the contents of the memopad with the constant function that immediately returns r . 
3. It returns r  as result. 

We then assign t’  to the memo pad (hence obliterating the placeholder), and return a thunk dt  that, 
when forced, simply forces the contents of the memo pad.  Whenever dt  is forced, it immediately 
forces the contents of the memo pad.  However, the contents of the memo pad changes as a result of 
forcing it so that subsequent forces exhibit different behavior.  Specifically, the first time dt  is 
forced, it forces the thunk t’ , which then forces t  its value r , "zaps" the memo pad, and returns r .  
The second time dt  is forced, it forces the contents of the memo pad, as before, but this time the it 
contains the constant function that immediately returns r .  Altogether we have ensured that t  is 
forced at most once by using a form of "self-modifying" code.

Here's an example to illustrate the effect of delaying a thunk:
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val t = Susp.delay (fn () => print "hello\n")
val _ = Susp.force t                             (* prints 
hello *)
val _ = Susp.force t                             (* silent 
*)

Notice that "hello" is printed once, not twice!  The reason is that the suspended computation is 
evaluated at most once, so the message is printed at most once on the screen.

The constructs for manipulating lazy data structures provided by the SML/NJ compiler may be 
explained in terms of suspensions.  For the sake of specificity we'll consider the implementation of 
streams, but the same ideas apply to any lazy datatype.

The type declaration

datatype lazy ’a stream = Cons of ’a * ’a stream

expands into the following pair of type declarations

datatype ’a stream_ = Cons_ of ’a * ’a stream
withtype ’a stream = ’a stream_ Susp.susp

The first defines the type of stream values, the result of forcing a stream computation, the second 
defines the type of stream computations, which are suspensions yielding stream values.  Thus streams 
are represented by suspended (unevaluated, memoized) computations of stream values, which are 
formed by applying the constructor Cons_  to a value and another stream.

The value constructor Cons, when used to build a stream, automatically suspends computation.  This 
is achieved by regarding Cons e as shorthand for Cons_ (Susp.susp (fn () => e) .  
When used in a pattern, the value constructor Cons induces a use of force .   For example, the 
binding

val Cons (h, t) = e

becomes

val Cons_ (h, t) = Susp.force e

which forces the right-hand side before performing pattern matching.

A similar transformation applies to non-lazy function definitions --- the argument is forced before 
pattern matching commences.  Thus the "eager" tail function

fun stl (Cons (_, t)) = t

expands into

fun stl_ (Cons_ (_, t)) = t
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and stl s = stl_ (Susp.force s)

which forces the argument as soon as it is applied.

On the other hand, lazy function definitions defer pattern matching until the result is forced.  Thus the 
lazy tail function

fun lstl (Cons (_, t)) = t

expands into

fun lstl_ (Cons_ (_, t)) = t
and lstl s = Susp.delay (fn () => lstl_ (Susp.force s))

which a suspension that, when forced, performs the pattern match.

Finally, the recursive stream definition

val rec lazy ones = Cons (1, ones)

expands into the following recursive function definition:

val rec ones = Susp.delay (fn () => Cons (1, ones))

Unfortunately this is not quite legal in SML since the right-hand side involves an application of a a 
function to another function.  This can either be provided by extending SML to admit such 
definitions, or by extending the Susp  package to include an operation for building recursive 
suspensions such as this one.  Since it is an interesting exercise in itself, we'll explore the latter 
alternative.

We seek to add a function to the Susp  package with signature

val loopback : (’a susp -> ’a susp) -> ’a susp

that, when applied to a function f mapping suspensions to suspensions, yields a suspension s whose 
behavior is the same as f(s), the application of f to the resulting suspension.  In the above example the 
function in question is

fun ones_loop s = Susp.delay (fn () => Cons (1, s))

We use loopback  to define ones  as follows:

val ones = Susp.loopback ones_loop

The idea is that ones  should be equivalent to Susp.delay (fn () => Cons (1, ones)) , 
as in the original definition and which is the result of evaluating Susp.loopback ones_loop , 
assuming Susp.loopback  is implemented properly.

How is loopback  implemented?  We use a technique known as backpatching.   Here's the code



Concatenation Page 167 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

fun loopback f =
    let
        exception Circular
        val r = ref (fn () => raise Circular)
        val t = fn () => (!r)()
    in
        r := f t ; t
    end

First we allocate a reference cell which is initialized to a placeholder that, if forced, raises the 
exception Circular .  Then we define a thunk that, when forced, forces the contents of this 
reference cell.  This will be the return value of loopback .  But before returning, we assign to the 
reference cell the result of applying the given function to the result thunk.  This "ties the knot" to 
ensure that the output is "looped back" to the input.   Observe that if the loop function touches its 
input suspension before yielding an output suspension, the exception Circular  will be raised.

Code for this Chapter

[ Back ] [ Home ] [ Up ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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Modularity and Reuse 
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/modmeth.htm]

Page 
30

Modularity and Reuse
[ Back ] [ Home ] [ Up ]

Last edit: Monday, May 04, 1998 03:29 PM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

In this chapter we illustrate the use of the ML module system to build a program from re-usable 
components.  The main example is a generic game-tree search algorithm.

[ Back ] [ Home ] [ Up ]

Copyright © 1997 Robert Harper.  All rights reserved.
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[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/recind.sml] Page 31

fun exp 0 = 1
  | exp n = 2 * exp (n-1) ;

fun square (n:int) = n*n
fun double (n:int) = n+n

fun fast_exp 0 = 1
  | fast_exp n =
    if n mod 2 = 0 then
       square (fast_exp (n div 2))
    else
       double (fast_exp (n-1)) ;

fun iterative_fast_exp (0, a) = a
  | iterative_fast_exp (n, a) =
    if n mod 2 = 0 then
       iterative_fast_exp (n div 2, iterative_fast_exp (n div 2, a))
    else
       iterative_fast_exp (n-1, 2*a) ;

fun generalized_iterative_fast_exp (b, 0, a) = a
  | generalized_iterative_fast_exp (b, n, a) =
    if n mod 2 = 0 then
       generalized_iterative_fast_exp (b*b, n div 2, a)
    else
       generalized_iterative_fast_exp (b, n-1, b*a) ;

fun gcd (m:int, 0):int = m
  | gcd (0, n:int):int = n
  | gcd (m:int, n:int):int =
    if m>n then gcd (m mod n, n) else gcd (m, n mod m) ;

fun ggcd (0, n) = (n, 0, 1)
  | ggcd (m, 0) = (m, 1, 0)
  | ggcd (m, n) =
    if m>n then
       let
           val (d, a, b) = ggcd (m mod n, n)
       in
           (d, a, b - a*(m div n))
       end
    else
       let
           val (d, a, b) = ggcd (m, n mod m)
       in
           (d, a - b*(n div m), b)
       end

exception GCD_ERROR

fun checked_gcd (m, n) =
    let
        val (d, a, b) = ggcd (m, n)
    in
        if m mod d = 0 andalso n mod d = 0 andalso d = a*m+b*n then
           d
        else
           raise GCD_ERROR
    end
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[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/structur.sml] Page 32

(* Natural numbers in unary *)

datatype nat = Zero | Succ of nat

fun add (m, Zero) = m
  | add (m, Succ n) = Succ (add (m, n))

fun mul (m, Zero) = Zero
  | mul (m, Succ n) = add (mul (m, n), m)

fun double Zero = Zero
  | double (Succ m) = Succ (Succ (double m))

fun exp Zero = Succ Zero
  | exp (Succ m) = double (exp m)

(* Lists *)

(* datatype ’a list = nil | :: of ’a * ’a list *)

fun reverse nil = nil
  | reverse (h::t) = t @ [h]

(* Two-three trees *)

datatype ’a two_three_tree =
    Empty
  | Binary of ’a * ’a two_three_tree * ’a two_three_tree
  | Ternary of ’a * ’a two_three_tree * ’a two_three_tree * ’a two_three_tree

fun size Empty = 0
  | size (Binary (_, t1, t2)) = 1 + size t1 + size t2
  | size (Ternary (_, t1, t2, t3)) = 1 + size t1 + size t2 + size t3

(* Recursion patterns *)

fun nat_recursion base step =
    let

fun loop Zero = base
  | loop (Succ m) = step (m, loop m)

    in
loop

    end

val double = nat_recursion (Zero) (fn (_, result) => Succ (Succ result))
val exp = nat_recursion (Succ Zero) (fn (_, result) => double result)

fun list_recursion base step =
    let

fun loop nil = base
  | loop (h::t) = step (h, loop t)

    in
loop

    end

fun reverse l = list_recursion nil (fn (h, t) => t @ [h]) l

fun two_three_recursion base step2 step3 =
    let

fun loop Empty = base
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  | loop (Binary (v, t1, t2)) =
    step2 (v, loop t1, loop t2)
  | loop (Ternary (v, t1, t2, t3)) =
    step3 (v, loop t1, loop t2, loop t3)

    in
loop

    end

fun size t =
    two_three_recursion
    0
    (fn (_, s1, s2) => 1+s1+s2)
    (fn (_, s1, s2, s3) => 1+s1+s2+s3)
    t
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[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/perseph.sml] Page 33

(* Lists with mutable tails. *)

datatype ’a mutable_list = Nil | Cons of ’a * ’a mutable_list ref

local
   fun ipr (Nil, a) = a
     | ipr (this as (Cons (_, r as ref next)), a) =
       ipr (next, (r := a; this))
in
   (* destroys argument, yields its reversal *)
   fun inplace_reverse l = ipr (l, Nil)
end

(* Queues *)

(* Signature of queues as an abstract type. *)
signature QUEUE = sig

  type ’a queue

  exception Empty

  val new : unit -> ’a queue

  val insert : ’a * ’a queue -> ’a queue

  val remove : ’a queue -> ’a * ’a queue

end

(* Inefficient implementation of a persistent queue as a list.  A sequence
   of n operations takes O(n^2) time in the worst case. *)
structure NaiveQueue :> QUEUE = struct

    type ’a queue = ’a list

    fun new () = nil

    fun insert (x, q) = x::q

    exception Empty

    fun remove [x] = (x, nil)
      | remove (x::xs) =

let
    val (y, q) = remove xs
in
    (y, x::q)
end

end

(* Persistent queues with amortized constant-time behavior for
   single-threaded executions of queue operations.  Rep invariant:
   1. front is empty only if the back is empty
   2. list of elements (in order of departure) of the queue (bs, fs)
      is fs @ rev bs *)
structure AmortizedSingleThreadedQueue :> QUEUE = struct

    type ’a queue = ’a list * ’a list
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    (* smart constructor to enforce rep inv *)
    fun make_queue (q as (nil, nil)) = q
      | make_queue (q as (bs, nil)) = (nil, rev bs)
      | make_queue q = q

    (* queue operations *)
    fun new () = make_queue (nil, nil)

    fun insert (b, (bs, fs)) = make_queue (b::bs, fs)

    exception Empty

    fun remove (_, nil) = raise Empty
      | remove (bs, f::fs) = (f, make_queue (bs, fs))

end;

(* Amortized constant-time single-threaded queues, variant representation
   in which a queue has the form (bs, sb, fs, sf) satisfying the rep inv:
   1. sb = length bs, sf = length fs
   2. sf >= sb
*)
structure AmortizedSingleThreadedQueue2 :> QUEUE = struct

    type ’a queue = ’a list * int * ’a list * int

    fun make_queue (q as (bs, sb, fs, sf)) =
if sf >= sb then
    q
else
    (nil, 0, fs @ rev bs, sf+sb)

    fun new () = make_queue (nil, 0, nil, 0)

    fun insert (b, (bs, sb, fs, sf)) = make_queue (b::bs, sb+1, fs, sf)

    exception Empty

    fun remove (_, _, _, 0) = raise Empty
      | remove (bs, sb, f::fs, sf) = (f, make_queue (bs, sb, fs, sf-1))

end

(* Naive attempt to handle the multi-threaded case by memoization.  Fails
   to achieve an amortized constant-time bound in general. (Consider a
   sequence of n inserts, followed by an n-way split consisting of one more
   insert and one remove.  Each remove takes O(n) time, for a total time of
   O(n^2) for O(n) operations.) *)
structure NaiveMemoizedQueue :> QUEUE = struct

    type ’a queue = (’a list * ’a list) ref

    fun make_queue (qv as (nil, nil)) = ref qv
      | make_queue (qv as (bs, nil)) = ref (nil, rev bs)
      | make_queue qv = ref qv

    fun new () = make_queue (nil, nil)

    fun insert (b, ref (bs, fs)) = make_queue (b::bs, fs)

    exception Empty

    fun remove (ref (_, nil)) = raise Empty
      | remove (ref (bs, f::fs)) = (f, make_queue (bs, fs))
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end ;

(* Amortized constant-time multi-threaded queues.  Combines specialized
   representation with memoization to achieve amortized constant-time
   behavior, even in the multi-threaded case. *)
structure AmortizedMultiThreadedQueue :> QUEUE = struct

   (* Specialized list representations, with memoization. *)
    datatype ’a special_list_value =

Nil
      | Cons of ’a * ’a special_list
      | Append of ’a special_list * ’a special_list
      | Reverse of ’a list
    withtype ’a special_list = ’a special_list_value ref

    (* Reverse a list, forming a special_list. *)
    fun revltosl ([], s) = s
      | revltosl (x::xs, s) = revltosl (xs, Cons (x, ref s))

    (* Force a special_list r into Nil/Cons form. *)
    fun inspect (r as ref (Append (xs, ys))) =

(case inspect xs
   of Nil =>
       let

   val s = inspect ys
       in

   r := s; s
       end
    | Cons (x, xs’) =>
       let

   val s = Cons (x, ref (Append (xs’, ys)))
       in

   r := s; s
       end)

      | inspect (r as ref (Reverse xs)) =
let
    val s = revltosl (xs, Nil)
in
    r := s; s
end

      | inspect (r as ref (nil_or_cons)) = nil_or_cons

    type ’a queue = ’a list * int * ’a special_list * int

    fun make_queue (q as (bs, sb, fs, sf)) =
if sf >= sb then
    q
else
    (nil, 0, ref (Append (fs, ref (Reverse bs))), sf+sb)

    fun new () = make_queue (nil, 0, ref Nil, 0)

    fun insert (b, (bs, sb, fs, sf)) =
make_queue (b::bs, sb+1, fs, sf)

    exception Empty

    fun remove (bs, sb, fs, sf) =
case inspect fs
  of Nil => raise Empty
   | Cons (f, fs’) =>
     (f, make_queue (bs, sb, fs’, sf-1))
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end;
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[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/regexp.sml] Page 34

signature REGEXP = sig

  datatype regexp =
    Zero | One | Char of char | 
    Plus of regexp * regexp | Times of regexp * regexp |
    Star of regexp

  exception SyntaxError of string
  val parse : string -> regexp

  val format : regexp -> string

end
  
signature MATCHER = sig

  structure RegExp : REGEXP

  val match : RegExp.regexp -> string -> bool

end

structure RegExp :> REGEXP = struct

  datatype token =
    AtSign | Percent | Literal of char | PlusSign | TimesSign |
    Asterisk | LParen | RParen

  exception LexicalError

  fun tokenize nil = nil
    | tokenize (#"+" :: cs) = (PlusSign :: tokenize cs)
    | tokenize (#"." :: cs) = (TimesSign :: tokenize cs)
    | tokenize (#"*" :: cs) = (Asterisk :: tokenize cs)
    | tokenize (#"(" :: cs) = (LParen :: tokenize cs)
    | tokenize (#")" :: cs) = (RParen :: tokenize cs)
    | tokenize (#"@" :: cs) = (AtSign :: tokenize cs)
    | tokenize (#"%" :: cs) = (Percent :: tokenize cs)
    | tokenize (#"\\" :: c :: cs) = Literal c :: tokenize cs
    | tokenize (#"\\" :: nil) = raise LexicalError
    | tokenize (#" " :: cs) = tokenize cs
    | tokenize (c :: cs) = Literal c :: tokenize cs

  datatype regexp =
    Zero | One | Char of char | 
    Plus of regexp * regexp | Times of regexp * regexp |
    Star of regexp

  exception SyntaxError of string

  fun parse_exp ts =
      let
          val (r, ts’) = parse_term ts
      in
          case ts’
            of (PlusSign::ts’’) =>
               let
                   val (r’, ts’’’) = parse_exp ts’’
               in
                   (Plus (r, r’), ts’’’)
               end
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             | _ => (r, ts’)
      end

  and parse_term ts =
      let
          val (r, ts’) = parse_factor ts
      in
          case ts’
            of (TimesSign::ts’’) =>
               let
                   val (r’, ts’’’) = parse_term ts’’
               in
                   (Times (r, r’), ts’’’)
               end
             | _ => (r, ts’)
      end

  and parse_factor ts =
      let

  val (r, ts’) = parse_atom ts
      in

  case ts’
    of (Asterisk :: ts’’) => (Star r, ts’’)
     | _ => (r, ts’)

      end

  and parse_atom nil = raise SyntaxError ("Factor expected\n")
    | parse_atom (AtSign :: ts) = (Zero, ts)
    | parse_atom (Percent :: ts) = (One, ts)
    | parse_atom ((Literal c) :: ts) = (Char c, ts)
    | parse_atom (LParen :: ts) =
      let
          val (r, ts’) = parse_exp ts
      in
          case ts’
            of nil => raise SyntaxError ("Right-parenthesis expected\n")
             | (RParen :: ts’’) => (r, ts’’)
             | _ => raise SyntaxError ("Right-parenthesis expected\n")
      end
      
  fun parse s =
      let

  val (r, ts) = parse_exp (tokenize (String.explode s))
      in

  case ts
    of nil => r
     | _ => raise SyntaxError "Unexpected input.\n"

      end
      handle LexicalError => raise SyntaxError "Illegal input.\n"
      
  fun format_exp Zero = [#"@"]
    | format_exp One = [#"%"]
    | format_exp (Char c) = [c]
    | format_exp (Plus (r1, r2)) =
      let

  val s1 = format_exp r1
  val s2 = format_exp r2

      in
  [#"("] @ s1 @ [#"+"] @ s2 @ [#")"]

      end
    | format_exp (Times (r1, r2)) =
      let

  val s1 = format_exp r1
  val s2 = format_exp r2
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      in
  s1 @ [#"*"] @ s2

      end
    | format_exp (Star r) =
      let

  val s = format_exp r
      in

  [#"("] @ s @ [#")"] @ [#"*"]
      end

  fun format r = String.implode (format_exp r)

end

functor Matcher (structure RegExp : REGEXP) :> MATCHER = struct

    structure RegExp = RegExp

    open RegExp

    fun match_is Zero cs k = false
      | match_is One cs k = k cs
      | match_is (Char c) nil _ = false
      | match_is (Char c) (c’::cs) k = (c=c’) andalso (k cs)
      | match_is (Plus (r1, r2)) cs k =

(match_is r1 cs k) orelse (match_is r2 cs k)
      | match_is (Times (r1, r2)) cs k =

match_is r1 cs (fn cs’ => match_is r2 cs’ k)
      | match_is (r as Star r1) cs k =

(k cs) orelse match_is r1 cs (fn cs’ => match_is r cs’ k)

    fun match regexp string =
match_is regexp (String.explode string)
(fn nil => true | _ => false)

end

structure Matcher = Matcher (structure RegExp = RegExp)
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[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/memo.sml] Page 35

fun sum f 0 = 0
  | sum f n = (f n) + sum f (n-1)

fun p 1 = 1
  | p n = sum (fn k => (p k) * (p (n-k))) (n-1)

local

    val limit = 100
    val memopad : int option Array.array =

Array.array (limit, NONE)

in

    fun p’ 1 = 1
      | p’ n = sum (fn k => (p k) * p (n-k)) (n-1)

    and p n =
if n < limit then
    case Array.sub (memopad, n) of

 SOME r => r
       | NONE =>

 let
     val r = p’ n
 in
     Array.update (memopad, n, SOME r);
     r
 end

else
    p’ n

end

signature SUSP = sig
  type ’a susp
  val force : ’a susp -> ’a
  val delay : (unit -> ’a) -> ’a susp
end

structure Susp :> SUSP = struct
  type ’a susp = unit -> ’a
  fun force t = t ()
  fun delay (t : ’a susp) =
      let
          exception Impossible
          val memo : ’a susp ref = ref (fn () => raise Impossible)
          fun t’ () =
              let val r = t () in memo := (fn () => r); r end
      in
          memo := t’;
          fn () => (!memo)()
      end
end

val t = Susp.delay (fn () => print "hello\n")
val _ = Susp.force t;
val _ = Susp.force t;

signature SUSP = sig
    type ’a susp
    val force : ’a susp -> ’a
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    val delay : (unit -> ’a) -> ’a susp
    val loopback : (’a susp -> ’a susp) -> ’a susp
end

structure Susp :> SUSP = struct
  type ’a susp = unit -> ’a
  fun force t = t ()
  fun delay (t : ’a susp) =
      let
          exception Impossible
          val memo : ’a susp ref = ref (fn () => raise Impossible)
          fun t’ () =
              let val r = t () in memo := (fn () => r); r end
      in
          memo := t’;
          fn () => (!memo)()
      end
  fun loopback f =
      let

  exception Circular
  val r = ref (fn () => raise Circular)
  fun t () = force (!r)

      in
  r := f t ; t

      end
end

datatype ’a stream_ = Cons_ of ’a * ’a stream
withtype ’a stream = ’a stream_ Susp.susp

fun ones_loop s = Susp.delay (fn () => Cons_ (1, s))
val ones = Susp.loopback ones_loop

fun bad_loop s = let val r = Susp.force s in Susp.delay (fn () => r) end
(* val bad = Susp.loopback bad_loop   (* raises Circular *) *)
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[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/seq.sml] Page 36

signature SEQUENCE = sig

  type ’a seq = int -> ’a

  val constantly : ’a -> ’a seq               (* constant sequence *)
  val alternately : ’a * ’a -> ’a seq         (* alternating values *)
  val insert : ’a * ’a seq -> ’a seq

  val map : (’a -> ’b) -> ’a seq -> ’b seq
  val filter : (’a -> bool) -> ’a seq -> ’a seq

  val zip : ’a seq * ’b seq -> (’a * ’b) seq
  val unzip : (’a * ’b) seq -> ’a seq * ’b seq
  val merge : ’a seq * ’a seq -> ’a seq

  val stretch : int -> ’a seq -> ’a seq
  val shrink : int -> ’a seq -> ’a seq

  val take : int -> ’a seq -> ’a list
  val drop : int -> ’a seq -> ’a seq
  val shift : ’a seq -> ’a seq

  val loopback : (’a seq -> ’a seq) -> ’a seq

end

structure Sequence :> SEQUENCE = struct

    type ’a seq = int -> ’a

    fun constantly c n = c
    fun alternately (c,d) n = if n mod 2 = 0 then c else d
    fun insert (x, s) 0 = x
      | insert (x, s) n = s (n-1)

    fun map f s = f o s
    fun filter p s n =

let
    val x = s n
in
    if p x then x else filter p s (n+1)
end

    fun zip (s1, s2) n = (s1 n, s2 n)
    fun unzip (s : (’a * ’b) seq) = (map #1 s, map #2 s)
    fun merge (s1, s2) n =

(if n mod 2 = 0 then s1 else s2) (n div 2)

    fun stretch k s n = s (n div k)
    fun shrink k s n = s (n * k)

    fun drop k s n = s (n+k)
    fun shift s = drop 1 s
    fun take 0 _ = nil
      | take n s = s 0 :: take (n-1) (shift s)

    fun loopback loop n = loop (loopback loop) n

end

open Sequence
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val evens : int seq = fn n => 2*n
val odds : int seq = fn n => 2*n+1
val nats : int seq = merge (evens, odds)
fun fibs n =
    (insert (1, insert (1, map (op +) (zip (drop 1 fibs, fibs)))))(n)

fun fibs_loop s = insert (1, insert (1, map (op +) (zip (drop 1 s, s))))
val fibs = loopback fibs_loop

fun bad_loop s n = s n + 1
val bad = loopback bad_loop
(* val _ = bad 0 *)

(* wires *)

datatype level = High | Low | Undef
type wire = level seq
type pair = (level * level) seq

val Z : wire = constantly Low
val O : wire = constantly High

(* clock pulse with given duration of each pulse *)
fun clock (freq:int):wire = stretch freq (alternately (Low, High))

(* combinational logic *)

infixr **
fun (f ** g) (x, y) = (f x, g y)

fun logical_and (Low, _) = Low
  | logical_and (_, Low) = Low
  | logical_and (High, High) = High
  | logical_and _ = Undef

fun logical_not Undef = Undef
  | logical_not High = Low
  | logical_not Low = High

fun logical_nop l = l

val logical_nor = logical_and o (logical_not ** logical_not)

type unary_gate = wire -> wire
type binary_gate = pair -> wire

fun gate f w 0 = Undef
  | gate f w i = f (w (i-1))

val delay : unary_gate = gate logical_nop
val inverter : unary_gate = gate logical_not
val nor_gate : binary_gate = gate logical_nor

(* Flip-flops *)

fun RS_ff (S : wire, R : wire) =
    let

fun X n = nor_gate (zip (S, Y)) n
and Y n = nor_gate (zip (X, R)) n

    in
Y

    end
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fun pulse b 0 w i = w i
  | pulse b n w 0 = b
  | pulse b n w i = pulse b (n-1) w (i-1)

val S = pulse Low 2 (pulse High 2 Z)
val R = pulse Low 6 (pulse High 2 Z)
val Q = RS_ff (S, R)
val _ = take 20 Q
val X = RS_ff (S, S) (* unstable! *)
val _ = take 20 X

fun loopback2 (f : wire * wire -> wire * wire) =
    unzip (loopback (zip o f o unzip))

fun RS_ff’ (S : wire, R : wire) =
    let

fun RS_loop (X, Y) =
    (nor_gate (zip (S, Y)), nor_gate (zip (X, R)))

    in
loopback2 RS_loop

    end
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Compiler.Control.Lazy.enabled := true;
open Lazy;

datatype lazy ’a stream = Cons of ’a * ’a stream;

val rec lazy ones = Cons (1, ones);

fun shd (Cons (x, _)) = x;
fun stl (Cons (_, s)) = s;
fun lstl (Cons (_, s)) = s;

val rec lazy s = (print "."; Cons (1, s));
val s’ = stl s;                              (* prints "." *)
val Cons _ = s’;                             (* silent *)

val rec lazy s = (print "."; Cons (1, s));
val s’’ = lstl s;                            (* silent *)
val Cons _ = s’’;                            (* prints "." *)

fun take 0 s = nil
  | take n (Cons (x, s)) = x :: take (n-1) s;

fun smap f =
    let

fun lazy loop (Cons (x, s)) = Cons (f x, loop s)
    in

loop
    end;

fun succ n = n+1;
val one_plus = smap succ;
val rec lazy nats = Cons (0, one_plus nats);

fun sfilter pred =
    let

fun lazy loop (Cons (x, s)) =
    if pred x then
       Cons (x, loop s)
    else
       loop s

    in
loop

    end;

fun m mod n = m - n * (m div n);
fun divides m n = n mod m = 0;

fun lazy sieve (Cons (m, s)) = Cons (m, sieve (sfilter (not o (divides m)) s));
val nats2 = stl (stl nats);
val primes = sieve nats2;

val rec lazy s = Cons ((print "."; 1), s);
val Cons (h, _) = s;                      (* prints ".", binds h to 1 *)
val Cons (h, _) = s;                      (* silent, binds h to 1 *)
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Sample Programs
[ Back ] [ Home ] [ Next ]

Last edit: Monday, May 04, 1998 10:53 AM

Copyright © 1997, 1998 Robert Harper.  All Rights Reserved.

A number of example programs illustrating the concepts discussed in the preceding chapters are 
available in the Sample Code directory.

[ Back ] [ Home ] [ Next ]

Copyright © 1997 Robert Harper.  All rights reserved.
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