Concatenation Pagel of 186

Programming in Standard ML [http://www.cs.cmu.edu/People/rwh/introsml/] Page 1

Programming in Standard ML
Robert Harper
School of Computer Science

Carnegie Mellon University

Spring, 1998

Copyright ©1997, 1998 Robert Harper. All rights reserved.

These notes are intended as a brief introduction to Standard ML (1997 dialect) for the experienced
programmer. They began as lecture note$%e212: Fundamental Principles of Computer Science

II, the second semester of the introductory sequence in the undergraduate computer science
curriculum at Carnegie Mellon University. They have subsequently been used in several other
courses at Carnegie Mellon, and at a number of universities around the world. These notes are
intended to supersede rmtroduction to Standard MLwhich has been widely circulated over the

last ten years.

The Definition of Standard ML (Revisdxny) Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen (MIT Press, 199¢¢nstitutes the official definition of the language. It is supplemented

by theStandard ML Basis Librarywhich defines a common basis of types that are shared by alll
implementations of Standard ML. The two most popular introductory programming textbooks based
on Standard ML ard:awrence PaulsofL for the Working Programmer (Second Editiavi)T

Press, 1997andJeffrey UllmanElements of ML Programmin@rentice-Hall, 1994

There are several implementations of Standard ML available for a variety of hardware and software
platforms. Standard ML of New Jerséya comprehensive research implementation, and is the most
widely used.Harlequirls MLWorksis a commercial implementation that provides a substantial set of
program development and analysis tools. Other implementations include two other research
implementationsMLKit andMoscow ML, and another commercial implementatiBoly ML, from
Abstract Hardware LtdConcurrent MLis an extension of Standard ML with primitives for

concurrent programming; it is available as part ofStedard ML of New Jersepmpiler. (For

users at Carnegie Mellon, see @MU local guidefor information about using Standard ML.)

These notesare awork in progress. | am making regular updates, so please check back for
changes. The most recent revision was made on Tuesday, May 05, 1998 12:32 PM. Corrections,
comments and suggestions are welcome.

For userswho are not able to browse this web site, | have prepared a complete draft (in Postscript

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page2 of 186
format) for downloading. Thiscopy is updated infrequently; pleaserefer to the web pagesfor the
latest revisions.

[Table of Content$ [Overview of Standard ML [Core Languagg[Module Languagé
[Programming Techniqudg Sample Programjs[Basis Library

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation

Table of Contents [http://www.cs.cmu.edu/People/rwh/introsml/tableof.htm]

Table of Contents

[Home] [Next]

Last edit Monday, April 27, 1998 03:12 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Page3 of 186

Page 2

Programming in Standard ML

e Table of Contents
e Overview of Standard ML
e Core Language

o}

O O OO0 OO0 0O O 0O O 0 0 O

o}

Types, Values, and Effects
Variables and Declarations
Functions

Products and Patterns
Clausal Function Definitions
Recursive Functions

Type Inference

Lists

Datatype Declarations
Functionals

Exceptions

References

Input & Output

Lazy Data Structures
Concurrency

e Module Language

o
o
o

Signatures and Structures
Views and Data Abstraction
Hierarchies and Parameterization

e Programming Techniques

o}

O O O 0O O O O

o}

Induction and Recursion

Structural Induction

Proof-Directed Debugging

Infinite Sequences

Representation Invariants and Data Abstraction
Persistent and Ephemeral Data Structures
Options, Exceptions, and Failure Continuations
Memoization and Laziness

Modularity and Reuse

e Sample Programs

o
o
o

samplecode/recind.sml
samplecode/structur.sml
samplecode/perseph.sml

file://C:\Users\rwh\introsml-complete.html

7/8/98

Concatenation Paged of 186

samplecode/optexccont.sml
samplecode/regexp.sml
samplecode/repinv.sml
samplecode/memo.smi
samplecode/seq.sml

o samplecode/streams.sml
e Basis Library

O O O O O

[Home] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb of 186

Overview of Standard ML [http://www.cs.cmu.edu/People/rwh/introsml/overview.htmPage 38
Overview of Standard ML
[Back] [Home] [Next]
Last edit Thursday, June 25, 1998 11:36 AM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Standard ML is a type-safe programming language that embodies many innovative ideas in
programming language design. It is a statically-typed language, with a user-extensible type system.
It supports polymorphic type inference, which all but eliminates the burden of specifying types of
variables and greatly facilitates code re-use. It provides efficient automatic storage management for
data structures and functions. It encourages functional (effect-free) programming where appropriate,
but allows imperative (effect-ful) programming where necessagy for handling I/O or

implementing mutable data structures). It facilitates programming with recursive data structures
(such as trees and lists) by encouraging the definition of functions by pattern matching. It features an
extensible exception mechanism for handling error conditions and effecting non-local transfers of
control. It provides a richly expressive and flexible module system for structuring large programs,
including mechanism for enforcing abstraction, imposing hierarchical structure, and building generic
modules. It is portable across platforms and implementations because jirbais@ definition

given by a formal operational semantics that defines both the static and dynamic semantics of the
language. It provides a portalskandard basis librathat defines a rich collection of commonly-

used types and routines.

These features are supported by all implementations of Standard ML, but many go beyond the
standard to provide experimental language features, more extensive libraries, and handy program
development tools. Details can be found with the documentation for your compiler, but here's a brief
overview of what you might expect. Most implementations provide an interactive system supporting
on-line entry and execution of ML programs and providing access to tools for compiling, linki
analyzing the behavior of programs. A few compilers are "batch only", relying on the ambient
operating system to manage the construction of large programs from compiled parts. Nearly every
compiler is capable of generating native machine code, even in the interactive system, but some
optionally generate byte codes for a portable abstract machine. Most implementations support
separate compilation and incremental recompilation based on automatically-generated or manually-
constructed component dependency specifications. Some implementations provide interactive tools
for tracing and stepping programs; many provide tools for time and space profiling. Most
implementations supplement the standard basis library with a rich collection of handy components
such as dictionaries, hash tables, or interfaces to the ambient operating system. Some
implementations support experimental language extensions, notably mechanisms for concurrent
programming (using message-passing or locking), richer forms of modularity constructs, and support
for "lazy" data structures.

To develop a feel for the language and how it is used, let us consider a small, but non-trivial,

to implement a regular expression package for checking whether a given string matches a given
regular expression. We'll structure the implementation into two modules, an implementation of

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page6 of 186

regular expressions themselves and an implementation of a matching algorithm for them. The
structure of the system is neatly expressed wsgmatureshat describe the components of these
modules.

signature REGEXP = sig

datatype regexp =
Zero | One | Char of char |
Plus of regexp * regexp | Times of regexp * regexp |
Star of regexp

exception SyntaxError of string
val parse : string -> regexp

val format : regexp -> string
end
signature MATCHER = sig
structure RegExp : REGEXP
val match : RegExp.regexp -> string -> bool

end

The signatur®EGEXRlescribes a module that implements regular expressions. It consists of a
description of the abstract syntax of regular expressions, together with operations for parsing and
unparsing (formatting) them. The definition of the abstract syntax takes the foxatatype
declarationthat is reminiscent of a context-free grammar, but which abstracts from matters of lexical
presentation (such as precedences of operators, parenthesization, conventions for naming the
operatorsetc) The abstract syntax consists of 6 clauses, corresponding to the regular expdessions

1,arl+r2,rlr2 andr. The functionparse andformat specify the parser and unparser for

regular expressions. The parser takes a string as argument and yields a regular expression; if the
string is ill-formed, the parser raises the exception SyntaxError with an associated string describing
the source of the error. The unparser takes a regular expression and yields a string that parses to that
regular expression. In general there are many strings that parse to the same regular expressions; the
unparser generally tries to choose one that is easiest to read.

The signaturé/ATCHERlescribes a module that implements a matching algorithm for regular
expressions. The matcher is a functioatch that takes a regular expression and yields a function

that takes a string and determines whether or not that string matches that regular expression.
Obviously the matcher is dependent on the implementation of regular expressions. This is expressed
by astructure specificatiothat specifies a hierarchical dependence of an implementation of a

matcher on an implementation of regular expressions --- any implementatioMATIGHER

signature must include an implementation of regular expressions as a constituent module. This
ensures that the matcher is self-contained, and does not rely on implicit conventions for determining
whichimplementation of regular expressions it employs.

Now let's look at the high-level structure of an implementation of a regular expression mat

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page7 of 186

consists of two major components: an implementation of regular expressions, and an implementation
of the matcher. Implementations of signatures are cstitadturesin ML; the implementation of th

regular expression matcher consists of two structures. Since the implementation of the matcher
depends on an implementation of regular expressions, but is independent of any particular
implementation of regular expressions, we uparameterized moduler functor, to implement it.

Here's the high-level structure we're considering:

structure RegExp :> REGEXP = ...

functor Matcher (structure RegExp : REGEXP) :> MATCHER =

structure Matcher :> MATCHER = Matcher (structure RegExp =
RegEXxp)

The structure identifieRegExp is bound to an implementation of tREGEXFsignature.

Conformance with the signature is ensured byadieeiptionof the signatur@EGEXRo the binding

of RegExp using the ":>" notation. Not only does this check that the implementation (elided here)
conforms with the requirements of the signalREESEXPbut it also ensures that subsequent code

cannot rely on any properties of the implementation other than those explicitly specified in the
signature. This helps to ensure that modules are kept separate, facilitating subsequent changes to the
code.

The functor identifieMatcher is bound to a structure that takes an implementatifEGEXRas
parameter. We may think bfatcher as a kind of function mapping structures to structures. The
result signature of the functor specifies that the implementation must conform to the requirements of
the signaturdlATCHERand ensures that only what is specified in that signature is visible of any
instance of this functor (obtained by applying it to an implementatiREGEXIP. A specific

matcher is provided by applying the fundttaitcher to the stuctur&®egExp to obtain an
implementation oMATCHER

Once the system is built, we may use it by referring to its componentgpassgrlong

identifiers The functiorMatcher.match has typeMatcher.RegExp.regexp -> string

-> bool , reflecting the fact that it takes a regular expresasoimplemented within the package

itself and yields a matching function on strings. We may build a regular expression by applying the
parserMatcher.RegEXxp.parse , to a string representing a regular expression, then passing this
to Matcher.match . Here's an example:

val regexp = Matcher.RegExp.parse "((a + %).(b + %))*"
val matches = Matcher.match regexp

matches "aabba"
matches "abac"

We use the convention tha@'stands for the empty regular expression &tdstands for the regul
expression accepting only the null string. Concatentation is indicated Byadtérnation by +",
and iteration by*".

The use of long identifiers can get tedious at times. There are two typical methods for alleviating the

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB of 186

burden. One is to introduce a synonym for a long package name. Here's an example:

structure M = Matcher
structure R = M.RegExp

val regexp = R.parse "((a + %).(b + %))*"
val matches = M.match regexp

matches "aabba"
matches "abac"

Another is to "open" the structure, incorporing its bindings into the current environment:
open Matcher Matcher.RegExp

val regexp = parse "((a + %).(b + %))*"
val matches = match regexp

matches "aabba"
matches "abac"

It is advisable to be sparing in the us®pén because it is often hard to anticipate exactly which
bindings are incorporated into the environment by its use.

Now let's look at the internals of these structures. Here's an overview of the implemen
regular expressions:

structure RegExp :> REGEXP = struct
datatype regexp =
Zero | One | Char of char |
Plus of regexp * regexp | Times of regexp * regexp |
Star of regexp
i npl enentation of the tokenizer
fun tokenize s = tokenize_exp (String.explode s)

i npl ement ati on of the parser conponents ...

fun parse s =
let
val (r, s") = parse_exp (tokenize (String.explode
s)
in
case s'
of nil =>r
| = raise SyntaxError "Unexpected input.\n"
end
handle LexicalError => raise SyntaxError "lllegal
input.\n”

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Paged of 186

i mpl enentation of the formatter

fun format r =
String.implode (format_exp r)

end

The implementation is bracketed by the keywatdsct andend. The typaegexp is

implemented precisely as specified ljadatype declaration. The parser works by "exploding"

the string into a list of characters (making it easier to process them character-by-character),
transforming the character list into a list of "tokens" (abstract symbols representing lexical atoms),
and finally parsing the resulting list of tokens. If there is remaining input after the parse, or if the
tokenizer encountered an illegal token, an appropriate syntax error is signalled. The formatter works
by calling an associated function that yields a list of characters, then "imploding" that list into a
string.

It is interesting to consider in more detail the structure of the parser since it exemplifies well the use
of pattern matching to define functions. Let's start with the tokenizer, which we presanttbtre

datatype token =
AtSign | Percent | Literal of char | PlusSign | TimesSign

Asterisk | LParen | RParen
exception LexicalError

fun tokenize nil = nil
| tokenize (#"'+" :: cs) = (PlusSign :: tokenize cs)
| tokenize (#"." :: cs) = (TimesSign :: tokenize cs)
| tokenize (#"*" :: cs) = (Asterisk :: tokenize cs)
| tokenize (#"(" :: cs) = (LParen :: tokenize cs)
| tokenize (#")" :: cs) = (RParen :: tokenize cs)
| tokenize (#'@" :: cs) = (AtSign :: tokenize cs)
| tokenize (#'%" :: cs) = (Percent :: tokenize cs)
| tokenize (#"\\" :: ¢ :: ¢s) = Literal c :: tokenize cs
| tokenize (#"\\" :: nil) = raise LexicalError
| tokenize (#" " :: cs) = tokenize cs
| tokenize (c :: cs) = Literal ¢ :: tokenize cs

We use a datatype declaration to introduce the type of tokens corresponding to the symbols of the
input language. The functidokenize has typechar list -> token list ; it transforms

list of characters into a list of tokens. It is defined by a series of clauses that dispatch on the first
character of the list of characters given as input, yielding a list of tokens. The correspondence
between characters and tokens is relatively straightforward, the only non-trivial case being to admit
the use of a backslash to "quote" a reserved symbol as a character of input. (More sophisticated
languages have more sophisticated token structures; for example, words (consecutive sequences of
letters) are often regarded as a single token of input.) Notice that it is quite natural to "look ahead" in
the input stream in the case of the backslash character, using a pattern that dispatches on the first two
characters (if there are such) of the input, and proceeding accordingly. (Itis a lexical error to have a
backslash at the end of the input.)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel0 of 186

Now here's an overview of the parser. It is a simple recursive-descent parser impleme

standard precedence conventions for regular expressions (iteration binds most tightly, then
concatentation, then alternation). The parser is defined by four mutually-recursive functions,
parse_exp ,parse_term ,parse factor ,andparse_atom . These implement a recursive

descent parser that dispatches on the head of the token list to determine how to proceed. The code is
essentially a direct transcription of the obvious LL(1) grammar for regular expressions capturing the
binding conventions described earlier.

fun parse_exp ts =
let
val (r, ts'") = parse_term ts
in
case ts'
of (PlusSign :: ts") =>
let
val (r', ts"") = parse_exp ts"
in
(Plus (r, '), ts™)
end
| _=>(r,ts)
end

and parse_term ts = ... (elided)...

and parse_factor ts =

let
val (r, ts') = parse_atom ts

in
case ts'
of (Asterisk :: ts") => (Star r, ts")
| _=>(r, ts)

end

and parse_atom nil = raise SyntaxError ("Atom expected\n")
| parse_atom (AtSign :: ts) = (Zero, ts)
| parse_atom (Percent :: ts) = (One, ts)
| parse_atom ((Literal c) :: ts) = (Char c, ts)
| parse_atom (LParen :: ts) =
let
val (r, ts') = parse_exp ts
in
case ts'
of (RParen :: ts") => (r, ts")
| _ =>raise SyntaxError ("Right-parenthesis
expected\n”)
end

Once again it is quite simple to implement "lookahead" using patterns that inspect the token list for

specified tokens. This parser makes no attempt to recover from syntax errors, but one could imagine
doing so, using standard techniques.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell of 186

This completes the implementation of regular expressions. Now for the matcher. The main idea is
to implement the matcher by a recursive analysis of the given regular expression. The main

is to account for concatenation --- to match a string against the regular exprésgiae must

match some initial segment againktthen match the corresponding final segment ageinsthis
suggests that we generalize the matcher to one that checks whether some initial segment of a string
matches a given regular expression, then passes the remaining final segraentitmation a

function that determines what to do after the initial segment has been successfully matched. This
facilitates implementation of concatentation, but how do we ensure that at the outermost call the
entire string has been matched? We achieve this by usingialncontinuationthat checks whether

the final segment is empty. Here's the code, written as a functor parametric in the regular expression
structure:

functor Matcher (structure RegExp : REGEXP) :> MATCHER =
struct

structure RegExp = RegEXxp
open RegExp

fun match_is Zero _ k = false
| match_is One cs k =k cs
| match_is (Char c) (d::cs) k = if c=d then k cs else
false
| match_is (Times (r1, r2)) cs k =
match_is rl cs (fn cs' => match_is r2 cs' k)
| match_is (Plus (r1, r2)) cs k =
match_is rl cs k orelse match_is r2 cs k
| match_is (Starr) cs k =
k cs orelse match_isr cs (fn cs' => match_is (Star
r) cs' k)

fun matchrs =
match_is r (String.explode s) (fn nil => true |
false)

end

Note that we must incorporate the parameter structure into the result structure, in accordanc
requirements of the signature. The functioaich explodes the string into a list of characters (to
facilitiate sequential processing of the input), then ca#isch_is with an initial continuation that
ensures that the remaining input is empty to determine the result. The typilofis is

RegExp.regexp -> char list -> (char list -> bool) -> bool

That is,match_is takes in succession a regular expression, a list of characters, and a continuation
of typechar list -> bool ; it yields as result a value of typeol . This is a fairly

complicated type, but notice that nowhere did we have to write this type in the code! The type
inference mechanism of ML took care of determining what that type must be based on an analysis of
the code itself.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel2 of 186

Sincematch_is takes a function as argument, it is said to bigler-order function The

simplicity of the matcher is due in large measure to the ease with which we can manipulate functions
in ML. Notice that we create a new, unnamed functions, to pass as a continuation in the case of
concatenation --- it is the function that matches the second part of the regular expression to the
characters remaining after matching an initial segment against the first part. We use a similar
technique to implement matching against an iterated regular expression --- we attempt to match the
null string, but if this fails, we match against the regular expression being iterated followed by the
iteration once again. This neatly captures the "zero or more times" interpretation of iteration of a
regular expression.

(Important asidethe code given above contains a subtle error. Can you find it? If not, see the
chapter orproof-directed debugginigr further discussion!)

This completes our brief overview of Standard ML. The remainder of these notes are structured into
three parts. The first part is a detailed introduction tatine languaggethe language in which we

write programs in ML. The second part is concerned withnibdule languagehe means by whic

we structure large programs in ML. The third is almwagramming techniquegdeas for building

reliable and robust programs. | hope you enjoy it!

Sample Code for this Chapter

[Back] [Home] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel3 of 186

Core Language [http://www.cs.cmu.edu/People/rwh/introsml/core.htm] Page 39
Core Language
[Back] [Home] [Next]
Last edit Friday, April 24, 1998 11:20 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

All Standard ML is divided into two parts. The first part, toee languagecomprises the
fundamental programming constructs of the language --- the primitive types and operations, the
means of defining and using functions, mechanisms for definining new ¢égpefhese mechanisr
are the subject of this part of the notes. The second pantotthde languagecomprises the

mechanisms for structuring programs into separate units and is describeddrtthertof these
notes.

[Types, Values, and Effeclg§ Variables and Declaratiofj§ Functions] [Products and Patteris
[Clausal Function Definitionk[Recursive Functiong[Type Inferencé [Lists]
[Datatype Declarationy Functionalq [Exceptiond [Reference$ [Input & Output]
[Lazy Data Structurels] Concurrency

[Back] [Home] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel4 of 186

Types, Values, and Effects [http://www.cs.cmu.edu/People/rwh/introsml/core/typvalefftagyg 4
Types, Values, and Effects
[Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:56 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Computation in familiar programming languages such as C is basediorp#rativemodel of
computation described in terms of an abstract machine. The meaning of a C progstateis a
transition functionthat transforms thimitial state of the abstract machine intiinal state The
transitions consist of modifications to the memory of the abstract machine (including the registers),
and having an effect on the external world (through 1/0 devices). The constructs of C have t

of commands: do something, then do something else for a while, then do something else.

Computation in ML is of an entirely different nature. In ML we computealbyulationof
expressionsrather thamexecutiorof instructions (Later in the course we will see that these two
viewpoints may be reconciled, but for the time being it is best to keep a clear distinction in mind.)
The calculation model is a direct generalization of your experience from high school algebra

you are given a polynomial in a variaklend are asked to calculate its value at a given a value of

We proceed by "plugging in" the given valuexXpand then using the ordinary rules of arithmetic to
determine the value of the polynomial. The ML model of computation is essentially just a
generalization of this idea, but rather than restrict ourselves to arithmetic operations on the reals, we
admit a richer variety of values and a richer variety of primitive operations on them. Much later we
will generalize this model a bit further to admit effects on memory and the external world, leading to
a reconciliation with the imperative model of computation with which you are familiar.

The unit of evaluation in ML is thexpression Every expression in Standard ML

1. ... has aype.
2. ... may or may not havevalue.
3. ... may or may not engender eifiect.

Roughly speaking, the type of an expression in ML is a description of the sort of value it yields,
should it yield a value at all. For example, if an expression hagtypethen its values are going to

be integers, and similarly, an expression of tga¢ has real numbers (in practice, floating point
numbers) as values. Every expression is required to have a type; otherwise, it is rejtypecs

(with a suitable explanatory message)wdll-typedexpression is evaluated (by a process of
calculation) to determine its value, if indeed it has one. An expression can fail to have a value in
several ways, one of which is to incur a run-time error (such as arithmetic overflow), and another of
which is to compute infinitely without yielding a value. Boeindnessf the ML type system ensu

that if the expression has a value, then the "shape" of that value is determined by the type of the
expression. Thus, a well-typed expression of type int cannot evaluate to a string or a floating point
number; it must be an integer. As we will see (much) later it is also possible for evaluation to
engender arffecton the computing environment, for example by writing to the window system or

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel5 of 186

requesting input from a file. For the time being we will ignore effects.

What is a type? There are many possible answers, depending on what you wish to emphasize. Here
we will emphasize the role of types as determining the set of well-formed programs. Generally
speaking, a type consists of

1. atype namestanding for that type,
2. a collection ofvaluesof that type, and
3. a collection ofoperationson values of that type.

In other words, a type consists of a name for the type, some ways to create values of that type, and
some ways for computing with values of that type.

To start off with, let's consider the type of integers. Its name is, appropriately enbuglWalues oi
typeint are thentegernumerals0, 1, ~1, 2, ~2, and so on. Notice that unary negation in SML is
written using a tilde~), rather than a minus sign)(Operations on integers include addition and
subtraction;+ and- , and the operatiordiv andmod for dividing and calculating remainders. (See
the Standard ML Basis Library chapter on integersa complete description.)

Values are one form @ettomicexpression; others will be introduced lat&€€ompoundexpressions
include atomic expressions, and also include expressions built by applying an operator to other
compound expressions. The formation of expressions is governed by &ypéaigpfulesthat define

the types of atomic expressions and determine the types of compound expressions in terms of the
types of their constituent expressions.

The typing rules are generally quite intuitive since they are consistent with our experience in
mathematics and in other languages. In their full generality the rules are somewhat involved, but we
will sneak up on them by first considering only a small fragment of SML, building up additional
machinery as we go along.

Here are some simple arithmetic expressions, written usimgnotation for the operations (meaning
that the operator comégtweerthe arguments, as is customary in mathematics):

3

3+4
4 div 3
4 mod 3

Each of these expressions is well-formed; in fact, they each havettypeWriting exp: typto
indicate that the expressiemphas the typé&p, we have

3 :int

3+4 :int

4 div 3 s int
4mod3 :int

Why? In the case of the valBethis is araxiom integer numerals have integer type, by definition.
What about the expressi@r4? Well, the addition operation takes two arguments (written on either
side of the plus sign), each of which must be an integer. Since both arguments arabf type

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel6 of 186

follows that the entire expression is of type . For more complex cases we proceed analogously,
deducing tha(3+4) div (2+3) . int , for example, by observing th@+4) :int and(2+3) :
int .

This kind of reasoning may be summarized byping derivationconsisting of a nested sequence of
typing assertions, each justified either by an axiom, or a typing rule for an operation. For example,
(3+4) div5 ;int because

1. (3+4) :int
1.13 :int
1.24 :int

2. 5:int

Implicit in this derivation is the rule for formation difv expressions: it has tyjp&t if both of its
arguments have typet . Steps (1) and (2) justify the assert{8m4) div 5 int by
demonstrating that the arguments each haveitype Recursively, we must justify thgB+4)

int , which follows from the subsidiary steps to step (1). Here we rely on the rule that the ad
two expressions has type if both of its arguments do.

Evaluation of expressions is governed by a similar set of rules, ealdichtion rulesthat determin

how the value of a compound expression is determined as a function of the values of its constituent
expressions. Implicit in this description is ttedl-by-valueprinciple, which states that the argum

to an operation are evaluateeforethe operation is applied. (While this may seem intuitively

obvious, it's worth mentioning that not all languages adhere to this principle.)

We writeexp=> val to indicate that the expressierphas valueval. Informally, it is easy to see tl

5=>5
243 =>5
(2+3) div (1+4) =>1

These assertions can be justifiedelbgluation derivationswhich are similar in form to typing
derivations. For example, we may justify the asse(Bei) div 5 =>1 by the derivation

1. (3+2) =>5
113 =>3
1.22 =2

2. 5 =>5

Some things are left implicit in this derivation. First, it is an axiom that every value (in this case, a
numeral) evaluates to itself; values are fully-evaluated expressions. Second, the rules of addition are
used to determine that addiB@gnd?2 yields5.

What other types are there? Here are few rhase typessummarized briefly by their values and
operations:

Type namereal
Values:3.14 ,~2.17 ,0.1E6 , ...

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel7 of 186

Operations:+,- ,*,/ , =, <, ...

Type namechar
Values#'a" ,#'b" , ...
Operations:ord , char , =<, ...

Type namestring
Values:"abc" ,"1234" , ...
Operations, size ,=,<, ..

Type namebool
Values:true , false
Operationsif expthen exp, else exp,

There are many, many others (in fact, infinitely many others!), but these are enough to get us started.
(See théBasis Libraryfor a complete description of the primitive types of SML, including the ones
given above.) Notice that some of the arithmetic operations for real numbers are "spelled" the same
way as for integers. For example, we may waifer2.7 to perform a floating point addition of

two floating point numbers. On the other hand division, which is properly defined for reals, is

written as3.1/2.7 to distinguish it from the integer division operatitin .

With these types in hand, we now have enough rope to hang ourselves by iibityped
expressions. For example, the following expressions are ill-typed:

size 45
#Illll + 1
#IIZII /\ II1II
3.14+2

The last expression may seem surprising, at first. The primitive arithmetic operationsravaded

in the sense that they apgligherto integersr to realsput not both at onc&.o gain some intuition,

recall that at the hardware level there are two distinct arithmetic units, the integer (or fixed pc

and the floating point unit. Each has its own separate hardware for addition, and we may not mix the
two in a single instruction. Of course the compiler might be expected to sort this out for you, but
then there are difficulties with round-off and overflow since different compilers might choose
different combinations of conversions and operations. SML leaves this to the programmer to avoid
ambiguity and problems with portability between implementations.

Theconditional expressioif expthen exp else exp, is used to discriminate on a Boolean
value. It has typgypif exphas typebool and bothexp andexp, have typeyp. Notice that both

"arms" of the conditional must have the same type! Itis evaluated by first evaéxgititen
proceeding to evaluate eithexp, or exp,, according to whether the valueexfpistrue orfalse

For example,

if 1<2 then "less" else "greater”

evaluates tdless" since the value of the expressib? is true.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel8 of 186

Notice that the expressi

if 1<2 then O else 1 div O
evaluates t®, even thoughi div0 incurs a run-time error. While it may, at first glance, appear
that this is a violation of the call-by-value principle mentioned above, the explanation is that the
conditional is not a primitive function, but rathederived formthat is explained in terms of other
constructs of the language.
A common "mistake" is to write an expression like this

if exp =true then explelse exp2
If you think about it for a moment, this expression is just a longer way of writing

if expthen explelse exp2
Similarly,

if exp =false then explelse exp2
can be abbreviated to

if not exp then explelse exp2
or, better yet, just

if expthen exp2else expl

Neither of these examples is really a mistake, but it is rarely clearer to test a Boolean
equality with true or false than to simply perform a conditional test on the value itself.

Sample Code for this Chapter

[Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel9 of 186

Variables and Declarations [http://www.cs.cmu.edu/People/rwh/introsml/core/decls.htidfge 5
Variables and Declarations
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:55 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Just as in any other programming language, values may be assigned to variables that may be used in
an expression to stand for that value. However, in sharp contrast to more familiar languages,
variables in SML do not vary). Values ardoundto variables usingalue bindingsonce a variabl

is bound to a value, it is bound for life. There is no possibility of changing the binding of a variable
after it has been bound. In this respect variables in SML are more akin to variables in mathematics
than to variables in languages such as C. Similarly, types may be bayoel variablesusingtype

bindings the type variable so defined stands for the type bound to it and can never stand for

type.

A binding (either value or type) introduces a "new" variable, distinct from all other variables of that
class, for use within its range of significancesawspe Scoping in SML igexical, meaning that the
range of significance of a variable is determined by the program text, not by the order of eval

its constituent expressions. (Languages dythamicscope adopt the opposite convention.) For the
time being variables will hawglobal scopemeaning that the range of significance of the variable is
the "rest" of the program --- the part that lexically follows the binding. We will introduce
mechanisms for delimiting the scopes of variables shortly.

Any type may be give a name usinty@e bindingAt this stage we have so few types that it is hard
to justify binding type names to identifiers, but we'll do it anyway because we'll need it later. |
some examples of type bindings:

type float = real
type count = int and average = real

The first type binding introduces the type varidldat , which subsequently is synonymous with

real . The second introducéso type variables;ount andaverage , which stand fomt and

real , respectively. In general a type binding introduces one or more new type variables
simultaneouslyn the sense that the definitions of the type variables may not involve any of the type
variables being defined. Thus a binding such as

type float = real and average = float
nonsensical (if taken in isolation) since the type varidhdes andaverage are introduced

simultaneously, and hence cannot refer to one another. The syntax for type birtgipegsvarl =
typl and ...and varn = typn, where eackari is a type variable and eaty/pi is a type expression.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page20 of 186

Similarly, value variables are bound to values usalge bindingsHere are some examples:
valm:int=3+2
val pi :real =3.14 and e : real = 2.17

The first binding introduces the variallespecifying its type to baet and its value to b&. The
second introduces two variables, ande, simultaneously, both having typeal , and withpi
having valued.14 ande having valu€.17 . Notice that a value binding specifies both the type
and the value of a variable. The syntax of value bindings isvarl: typl=expland ...and
varn: typn= expn where eachari is a variable, eadypi is a type expression, and e&cipiis an
expression.

As you have no doubt surmised, value bindings are type-checked by comparing the type of the right-
hand side with the specified type to ensure that they coincide. If a mismatch occurs, the valu

is rejected as ill-formed. Well-typed bindings are evaluated accordingliothby-valueule: the
right-hand side of the binding is evaluated, and the resulting value (if any) is bound to the given
variable.

The purpose of a binding is to make a variable available for use within its scope. In the case of a
type binding we may use the type variable introduced by that binding in type expressions occurring
within its scope. For example, in the presence of the type bindings above, we may write

val pi : float = 3.14

since the type variabfoat is bound to the typeeal , the type of the expressi@rl4 .
Similarly, we may make use of the variable introduced by a value binding in value expressions
occurring within its scope. Continuing from the preceding binding, we may use the expression

sin pi
to stand fo0.0 (approximately), and we may bind this value to a variable by writing
val x : float = sin pi

As these examples illustrate, type checking and evaluatimoarext dependeirt the presence of

type and value bindings since we must refer to these bindings to determine the types and values of
expressions. For example, to determine that the above bindingsevell-formed, we must consult

the binding fompi to determine that it has tyfleat , consult the binding fdioat to determine

that it is synonymous witteal , which is necessary for the bindingxofo have typdloat

The rough-and-ready rule for both type-checking and evaluation is that a bound variable is implicitly
replacedby its binding prior to type checking and evaluation. This is sometimes called the
substitution principldor bindings. For example, to evaluate the expressierx in the scope of

the above declarations, we first replace both occurrencebyoits value (approximatel.0), then

compute as before, yielding (approximatdly) . Later on we will have to refine this simple

principle to take account of more sophisticated language features, but it is useful nonetheless to keep
this simple idea in mind.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page21 of 186

Bindings may be combined to fomheclarations A binding is an atomic declaration, even though it
may introduce many variables simultaneously. Two declarations may be combsseghbgtial
compositionby simply writing them one after the other, optionally separated by a semicolon. T
may write the declaration

valm :int=3+2
val n:int=m*m

which bindsmto 5 andn to 25. Subsequently, we may evaluatento obtain the valug0. In
general a sequential composition of declarations has thedferin.. decn wheren is at least 2. The
scopes of these declarations aestedwithin one another: the scoped#clincludesdec? ... decn
the scope oflec2includesdec3 ... decrand so on.

One thing to keep in mind is thiainding is not assignmerithe binding of a variable never changes;
once bound to a value, it is always bound to that value (within the scope of the binding). However,
we mayshadowa binding by introducing a second binding for a variable within the scope of the first
binding. Continuing the above example, we may write

valn:real =2.17

to introduce a new variabiewith both a different type and a different value than the earlier bin

The new binding shadows the old one, which may then be discarded since it is no longer accessible.
(Later on, we will see that in the presence of higher-order functions shadowed bindings are not
always discarded, but are preserved as private data in a closure. One might say that old bindings
never die, they just fade away.)

The scope of a variable may be delimited by ukihg expressions anldcal declarations. Aet
expression has the foriet decin expend, wheredecis any declaration arekpis any
expression. The scope of the declaratlenis limited to the expressiaaxp The bindings
introduced bydecare (in effect) discarded upon completion of evaluaticaaxpf Similarly, we may
limit the scope of one declaration to another declaration by wiittay decin dec'end. The
scope of the bindings ihecis limited to the declaratiotec. After processinglec; the bindings in
decmay be discarded.

The value of et expression is determined by evaluating the declaration part, then evaluating the
expression relative to the bindings introduced by the declaration, yielding this value as the overall
value of thdet expression. An example will help clarify the idea:

let
val m:iint =3
val n:int = m*m
in
m*n
end

This expression has typg and value27, as you can readily verify by first calculating the bind
for mandn, then computing the value of*n relative to these bindings. The bindingsrfoandn are
local to the expressiam*n, and are not accessible from outside the expression.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page22 of 186

If the declaration part oflat expression shadows earlier bindings, the ambient bindings are
restored upon completion of evaluation of ligte expression. Thus the following expression
evaluates t®&4:

val m:int =2
val riint =
let
val m:int=3
val n:int=m*m
in
m*n
end *m

The binding oimis temporarily overridden during the evaluation ofléte expression, then restol
upon completion of this evaluation.

To complete this chapter, let's consider in more detail the context-sensitivity of type checking and
evaluation in the presence of variable bindings. The key ideas are:

1. Type checking must take account of the declared type of a variable.
2. Evaluation must take account of the declared value of a variable.

This is achieved by maintainimgvironmentgor type checking and evaluation. Tilgpe
environmentecords the types of variables; tredue environmerecords their values. For exam|
after processing the compound declaration

valm:int=0
val x : real = sgrt(2)
val ¢ : char = #"a",
the type environment contains the information
val m :int
val x : real

val ¢ : char

and the value environment contains the information

valm=0
valx=2.14...
val c = #"a"

In a sense the value declarations have been divided in "half", separating the type from the value
information.

Thus we see that value bindings have significance for both type checking and evaluation. In contrast

type bindings have significance only for type checking, and hence contribute only to the type
environment. A type binding such as

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page23 of 186

type float = real

is recorded in its entirety in the type environment, an no change is made to the value environment.
Subsequently, whenever we encounter the type vafiabte in a type expression, it is replaced by
real in accordance with the type binding above.

Earlier we introduced two relations, the typing relatexp: typ, and the evaluation relatioexp=>

val. These two-place relations were sufficient for variable-free expressions, but in the presence of
declarations these relations must be extended to account for the type and value environmen
achieved by expanding the typing relation into a three-place retgtenv]- exp: typ, where

typenvis a type environmengxpis an expression arngp is a type. (Theéurnstilesymbol, "|-", is a
punctuation mark separating the type environment from the expression and its type.) The type of a
variable is determined by consulting the type environment; in particular, we have the following
typing axiom:

val x : int [- x:int
Similarly, the evaluation relation is enriched to take account of the value environment. We write
valenv |- exp=> val to indicate thaéxpevaluates twal in the value environmenrtlenv Variables
are governed by the following axiom:
..valx=val..|-x=>val

There is an obvious similarity between the two relations.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page24 of 186

Functions [http://www.cs.cmu.edu/People/rwh/introsml/core/functions.htm] Page 6
Functions
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:55 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

So far Standard ML is just a glorified calculator supporting operations of various primitive types and
allowing intermediate results to be bound to identifiers. What makes it possible to do more than just
calculate the values of expressions is the possibilidypsiractthe data from the pattern of the
computation so that the same computation may be easily repeated for various data values. For
example, if we calculate the expressiti{B+4) , the data might be the valu2s3, and4, and the

pattern of calculation might be written in skeletal fornf a5 (() + ()) with "holes™"

where the data used to be. We say "might be" because it's not at all clear, given the original
expression, what is the data and what is the pattern. For example, we migh rag#né data and

() *(3+4) as the pattern, or even regardnd+ as the data arl() (3 () 4) as the

pattern! What is important here is that the original expression can be recovered by filling the holes
with the missing data items and, moreover, different expressions can be obtained by filling the same
hole with different data items. Thus, an expression with a "hole" in it is may be thought of as a
functior that, wherappliedto anargument valueletermines its result by filling the hole with the
argument.

This view of functions is similar to our experience from high school algebra. In elementary algebra
we manipulate polynomials suchx® + 2x + 1as a kind of expression denoting a real number, but
with the variablex representing an unknown quantity. We may also think of a polynomial as a
function of the real numbers: given a real numbearpolynomial determines another real nunyber
computed by some combination of arithmetic operations. In fact, we sometimes write equati
asy = x"2 + 2x + lor y(x) = x"2 + 2x + 1to denote the function determined by the polynomial. In
the univariate case we can get away with just writing the polynomial for the function, but in the
multivariate case we must be more careful since we may regard the polydd@miaxy + y*2as a
function ofx, a function ofy, or a function of botk andy. In these cases we wrf(@) = x"2 + 2xy

+ y"2whenx varies ang is held fixed, andj(y) = x"2 + 2xy + y*2vheny varies for fixedx, andh

(x,y) = x"2 + 2xy + y"2when both vary jointly.

It is usually left implicit that the variablesandy range over the real numbers, and thgtandh are
functions mapping real numbers to real numbers. To be fully explicit, we sometimes write sc
like

f:R->R: XINR|->x"2+2x+1
to indicate that is a function on the reals mapping an elemeftR to the element”"2 + 2x + 1of

R. This notation has the virtue of separating the binding of the function to a f)drom(the
description of its behaviox(n R |--> x*2 + 2x + 1. This makes clear that functions are a kind of

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page25 of 186

"value" in mathematics (namely, a set of ordered pairs satisfying the usual uniqueness and existence
conditions), and that the varialfles bound to that value by the declaration. This viewpoint is

especially important once we consider operators, such as the differential operator, that map functions
to functions. For example, fifis a differentiable function on the real line, the funcidns its first
derivative, also a function on the real line.

The treatment of functions in Standard ML is very similar to our mathematical experience, except
that we stress thadgorithmic aspects of functionhi¢wthey determine values from arguments), as
well as theextensionabspectswhatthey compute). Just as in mathematics a function in Standard
ML is a kind of value, namely a valuefahction type A function type has the fortgp-> typ’,
wheretyp is thedomain typgthe type of arguments to the function), &yl is therange typgthe

type of results). We compute with a functionapplyingit to anargumentvalue of its domain type
and calculating theesultvalue of its range type. Function valueslamsbda expressions the formr

fn var: typ=> exp the variablevar is called thgparameter and the expressiaxpis called its

body. It has typayp-> typ’, whereexphas typayp’ under the assumption thair has typdyp. The
result of applying such a function to an argument vadlies determined by temporarily adding the
bindingval var = valto the environment, and evaluatiexpto a valueval. The temporary

binding is then removed, and the result valad, is returned as the value of the application.

For examplesqrt is a (built-in) function of typeeal->real that may be applied to a real

number to obtain its square root; for example, the expresgiv2.0 evaluates td.414...

Observe that function application is written by juxtaposition: we simply write the argument next to
the function. We can, if we wish, parenthesize the argument, wsiin@.0 for the sake of

clarity; this is especially useful for expressions Bkt (sqrt 2.0) . The functiorsqrt is

special in that it is a built-in, @rimitive, operation of the language. We may also define functic
templates using a notation similar to that introduced above. For example, the fourth root function on
the reals may be written in Standard ML udargbda notatioras follows:

fn x : real => sqrt (sqrt x)
Notice that we don't (at this stage) give this function a name, rather we simply define its bel
a template specifying how it calculates its result from its argument. This template defines a function

of typereal->real since it maps real numbers to real numbers. It may be applied to an argument
by writing, for example,

(fn x : real => sqrt (sqrt x)) (4.0)
to calculate the fourth root é¢f0 . The calculation proceeds by binding the variable the
argumentt.0 , then evaluating the expressirt (sgrt x) in the presence of this binding.

When evaluation completes, we drop the binding itbm the environment, since it is no longer
needed. (There is a subtle issue about the temporary bindintyatfwe will return to later.)

We may give a function a name using the declaration forms introduced in the previous chapter. For
example, we may bind the fourth root function to the idenfifierthroot as follows:

val fourthroot : real -> real = (fn x : real => sqrt (sqrt

X))

We may then writéourthroot 4.0 to compute the fourth root d¢f0 . This notation quickly

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page26 of 186

becomes tiresome to write down, so Standard ML provides a special form of function binding that
alleviates the burden. In practice we write

fun fourthroot (x:real):real = sqrt (sqgrt x)

rather than the more verbosa declaration above. But it has (almost) precisely the same meaning:
thefun binding binds a lambda expression to an identifier.

These examples raise a few additional points about functions in Standard ML. First of all, the
general form of an application expressiopxp exp’'whereexpis an expression that evaluates to a
function, andexp’is an expression that evaluates to its argument. Standard Mhalisbg-value
language: the argument to a function is evaluated before the function is applied. (You may
reasonably wonder what is the alternative. In a so-cediikdby-namdanguage the argument is

passed in unevaluated form to the function, and is only evaluated if the function requires it to be.
This behavior is expressible in Standard ML by other means, which we shall return to later.) Thus,

when to evaluate an expression sucfoaghroot 2.0 , we proceed as follows:

1. Evaluatefourthroot to the function valuén x : real => sqrt (sqrt x)

2. Evaluate the argumeft0 to its value2.0

3. Bind x to the value.0 .

4. Evaluatesqgrt (sgrt x) by a subsidiary calculation 10189...
a. Evaluatesqrt to a function value (in this case the primitive square root function).
b. Evaluate the argument expresgisqrt X) to its value1.414... (by a subsidiary
calculation).

I. Evaluatesgrt to a function value (in this case the primitive square root function).
ii. Evaluatex to its value2.0 .
lil. Compute the square root 20 , yielding1.414... .
c. Compute the square root &f414... , yielding1.189...
5. Drop the binding for the variable

Second of all, notice that we evalubtghthe function and argument positions of an application
expression --- both the function and argument are arbitrary expressions yielding values of the
appropriate type. The value of the function position must be a value of function type, either a
primitive function or a lambda, and the value of the argument position must be a value of the domain
type of the function. In this case the result value (if any) will be of the range type of the function.
The point here is that functions dirst-class valuesmeaning that they may be obtained as the value

of an arbitrary expression; we are not limited to applying only named functions, but rather may
compute "new" functions on the fly and apply these to arguments. This is a source of considerable
expressive power, as we shall see later in these notes.

So far, we've only considered functions on the real numbers, but we may also define functions of
other types. For example,

fun pal (s:string):string = s ” (rev s)

fun double (n:int):int=n +n

fun square (n:int):int=n*n

fun halve (n:int):int = n div 2

fun is_even (n:int):bool = (n mod 2 = 0)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page27 of 186

Thuspal "ot" evaluates to the stringtto” , andis_even 4 evaluates tdrue .

There are a few subtleties that we must be aware of when thinking about functions. Théhirst is:
name of the parameter is not importan€onsequently, it may be systematically renamed without
changing the meaning of the functipmnovided thatwe don't rename it in such a way as to clash
some other name that is currently in scope. An example will illustrate the point:

fun f(x:real):real = x+x
fun g(y:real):real = y+y

These two functions are completely equivalent; they differ only in the name of the parameter (in one
casex, in the othery). The second subtlety is th&atic scope principtea use of a variable refers
thenearest enclosinginding of that variable in the text of the program. Just as one value binding
can shadow another, so can parameters of functions shadow value bindings (or other parameters).
Here's an example:

val x:real = 2.0
fun h(x:real):real = x+x
funi(y:real):real = x+y

The first functionh, introduces a parameterthat shadows the outer value binding; the value
binding has no effect on the meaning of the fundtionThe second functiom,, makes use of the
variablex introduced by theal binding; from within the body af this is the nearest enclosing
binding occurrence of in the program. (The parameteof the functiorh does not enclose the
definition of the function .) The use ok within the function introduces some constraints on the
possible renamings of the parameterr of Specifically, we may certainly renaméo z without
changing the meaning of the functionbut we may not renanyeto x without changing the meani
completely. That is, the functignhas thesamemeaning as the function but the functiork has a
differentmeaning:

fun j(z:real):real = x+z
fun k(x:real):real = x+x

While these may seem like minor technical issues, it is essential that you master these ideas now to
avoid confusion later on!

We close this section with a brief summary of function types:
Type nametyp->typ’
Values:primitives,fn var: typ=> exp

Operations:applicationexp exp’

Once we develop some additional machinery we will return to the function type to discuss recursive
functions.

Sample Code for this Chapter

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page28 of 186

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page29 of 186

Products and Patterns [http://www.cs.cmu.edu/People/rwh/introsml/core/products.htmPage 7

Products and Patterns

[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:56 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter
A characteristic feature of ML is the the ease with which we may haggdtegate data structures

such as tuples, arrays, lists, and trees. The simplest form of aggregataptetivalue ofproduct
type. Product types have the form

typ,* .. typ,,
wheren is at least 2. Values of this type ar&uplesof the form

(vall, valn) ,
whereval, is a value of typéyp. (for each 1<i<=n).

Thus the following are well-formed bindings:
val pair : int*int = (2, 3)
val triple : int * real * string = (2, 2.0, "2")
val pair_of pairs : (int * int) * (real * real) =
((2,3),(2.0,3.0))
val quadruple : int * int * real * real = (2,3,2.0,3.0)

The nesting of parentheses matters! A pair of pairs is not the same as a quadruple, so the last two
bindings are of distinct values with distinct types.

More generally, &uple expressiohas the form
(exp, ... exp) .

where eaclexp is an expression (not necessarily a value). Evaluation of tuple expressions proceeds
from left to right, yielding the tuple valueval,, ..., val) , where eaclexp evaluates toal, (for eact
1<=i<=n). Thus the binding

val pair : int * int = (1+1, 5-2)

binds the valug2, 3) to the variablgair .

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page30 of 186

Tuples may be decomposed into their constituent parts patteyn matching This is expressed
using a generalized form of value binding in which the left-hand side is not merely a variable, but a
patterr involving zero or more variables. The general form of a value binding is

val pat=exp
wherepatis apatternandexpis any expression.

What sorts of patterns are there? We've already seen the basic form of pattern, marnadiea
patterr, writtenvar: typ. Another form of pattern is theple patternwhich has the form
(pat, ..., pat) , where eacpat is a pattern. (We will introduce other forms of pattern later in i

notes.)

Just as every expression must have a type, so must every pattern. The type of a pattern is determined
by a rule governing each form of pattern. The variable patserypis of typetyp, and the tuple
pattern(pat;, ..., pat) is of typetyp,*..* typ,, wherepat is a pattern of typg/p, for each. Thus

the patterr(n:int,r:real,s:string) is of typeint*real*string , as might be expected.

A value binding of the forrmal pat= expis well-typed iffpat andexphave the same type;
otherwise the binding is ill-typed and is rejected by the compiler. Thus the following bindings are
well-typed (given the bindings above):

val (m:int, n:int) = pair

val (m:int, r:real, s:string) = triple

val ((m:int,n:int), (r:real, s:real)) = pair_of_pairs
val (m:int, n:int, r:real, s:real) = quadruple

In contrast, the following are ill-typed:

val (m:int,n:int,r:real,s:real) = pair_of_pairs

val (m:int, r:real) = pair

val (m:int, r:real) = triple
Value bindings are evaluated using lined-by-valueprinciple discussed earlier, except that the
binding process is now more complex than before. First, we evaluate the right-hand side of the
binding to a value (if indeed it has one). Then, we proceed according to the pdéswf matching
to determine the bindings for the individual variables in the pattern. This process is quite intuitive.
For example, the binding

val (m:int,r:real,s:string) = triple
bindsmto2,r t02.0 , ands to"2.0"

Formally, we go through a process of reduction to atomic value bindings, where an atomic binding is
one whose pattern is a variable pattern. The binding

val (pat, ... patn) =(vall, valn)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page31 of 186

reduces to the sequence of bindings

val pat = val

val pat = val
This decomposition is repeated until all bindings are atomic, at which point the process terminates
having arrived at the value environment determined by the original binding. Notice that we rely on
the fact that values oftuple type ar@-tuples! This is a crucial property of the type system of ML,
which determines the shapes of well-typed values based on their types.

For example, the evaluation of the binding

val ((m:int,n:int), (r:real, s:real)) = pair_of _pairs

proceeds by first evaluating the expressiaim_of pairs to ((2,3),(2.0,3.0)) , then
decomposing the patte(fm:int,n:int), (r:real, s:real)) in two major stages, as
follows:

1. Reduce the binding
val ((m:int,n:int), (r:real, s:real)) = ((2,3),(2.0,3.0))
to the sequence of bindings

val (m:int, n:int) = (2,3)
val (r:real, s:real) = (2.0,3.0)

2. Reduce the latter bindings to the sequence of atomic bindings

val m:iint =2
val niint =3
val rireal = 2.0
val s:real = 3.0

At this point we have determined the bindings for the individual variables in the pattern.

Thenull tupleis a tuple with zero elements. It is writt@n, which is consistent with thetuple
notation. Its type, however, is writtenit , indicating that it is has but a single element. The null-
tuple pattern is, of course, also writf@n. Aside from regularity, the main reason for having a null
tuple in the language is to provide a "default” value for expressions that have no interesting value
(but, presumably, an interesting effect). We'll have more to say about this later in these notes.

When tuples get large, it gets hard to remember which position is WwRestordsare tuples whose
components arabeledwith an identifier. Arecord typehas the form

{lab,: typ,, ..., lab_: typ },

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page32 of 186

wheren is at least 2. Aecord valuehas the form

{ Iablzvall, Iabn:valn} ,
whereval has typayp. A record patterrhas the form

{lab,=pat,, ..., lab_=pat } .

This pattern has tygdab;: typ, ..., lab.: typ} provided thapat has typeyp, for each. The

important thing to note about record expressions ighieabrder of the fields determines the orde
evaluation but that for record valuethe order of the fields is irrelevanOnce the fields have been
evaluated, you can write them in any order you like, but the compiler will adhere to the order you
choose to write unevaluated fields.

Some examples will help clarify the use of record types.

type hyperlink = { protocol : string, address : string,
display : string }

val mailto_rwh : hyperlink =

{ protocol="mailto", address= "rwh@cs.cmu.edu”
display="Robert Harper" }
val plcore_home : hyperlink =

{ protocol="http", address="//cs.cmu.edu/~rwh/plcore",
display="Programming Languages Core Course" }

val { protocol=port, address=addr, display=disp } =
mailto_rwh

(The over-use of strings here is quite obvious; in due course we’ll have sufficient mechanism to do a
better job.)

In practice one often wishes to select only one or two fields from a tuple or record value, the others
being irrelevant to the computation at hand. It would be tedious in the extreme to be forced to bind a
variable to each of possibly dozens of irrelevant fields, just so that you could access one of them.
Wild card patternsare used to handle these situations. The basic form of wild card is written as an
underscore, . Itis an atomic pattern that does not generate any bindings; wild card bindings are
simply eliminated (after evaluation of the right-hand side).

val (m:int, _, rireal,) = quadruple

val (_, (x:real, y:real)) = pair_of_pairs

val { protocol=port, address=_, display=_} = mailto_rwh
In each case we have elided certain fields using the wild card pattern. The matching proces:
as before, includingvaluation of the right-hand side of the bindibgt bindings whose pattern is
wild card are dropped. For example, the first binding above generates in one step the bindings

val miint=2

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page33 of 186

val_ =3
val rireal = 2.0
val =3.0

At the next step the bindings for the wild card are dropped, yielding bindingsafair alone.

It is important to remember that the right-hand side of a bindialgvesysevaluated, regardless of
use of wild card patterns! Thus a binding of the feah _ = expalways leads to the evaluation of
exp but then its value is thrown away. (This could be useful wikphas an effect, as we'll see
much later in these notes.)

You will by now have asked yourself "what is the type of a wild card pattern?". Good question. The
answer iswhatever type is necessary to ensure that the overall binding is well-typesiis

undoubtedly not a fully satisfying answer, because it doesn't tell you how this information is
determined. We will have more to say on this when we discuss type inference below.

It is quite common to encounter record types with tens of fields. In such cases even the wild card
notation doesn't help much when it comes to selecting one or two fields from such a record. For this
we often usellipsis patternsn records, as illustrated by the following example.

val { protocol = port, ... } = plcore_home

The patterr protocol = port, ... } stands for the pattefmprotocol=port,

address=_, display=_} used earlier. In effect the compiler replaces the ellipsis with

however many wild card entries are required in order to complete the record pattern. In order for this
to occurthe compiler must be able to determine unambiguously the type of the record. pdtezn

the right-hand side of the value binding determines the type of the pattern, which then determines
which additional fields to fill in. In some situations the context does not disambiguate, in which case
you must supply additional type information or eschew the use of ellipsis.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page34 of 186

Clausal Function Definitions [http://www.cs.cmu.edu/People/rwh/introsml/core/clause$laiye] 8
Clausal Function Definitions
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:54 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

A function may bind more than one argument by using a pattern, rather than a variable, in the
argument position. Function expressions may have the form

fn pat=>exp
wherepatis a pattern anexpis an expression. Application of such a function proceeds much as
before, except that the argument value is matched against the parameter pattern to determine the
bindings of zero or more variables, which are then used during the evaluation of the body of the
function.

For example, we may make the following definition of the Euclidean distance function:

val dist : real * real -> real = fn (x:real, y:real) =>
sqrt (xX*x + y*y)

This function may then be applied to a pair (two-tuple!) of arguments to yield the distance between
them. For examplealist (2.0,3.0) evaluates to (approximatel§)O .

Usingfun notation, the distance function may be defined more concisely as follows:
fun dist (x:real, y:real):real = sqrt (X*x + y*y)
The meaning is the same as the more verbasebinding given earlier.

Keyword parameter passing is supported through the use of record patterns. For example, we may
define the distance function using keyword parameters as follows:

fun dist’ {x=x:real, y=y:real} = sqrt (xX*x + y*y)
The expressiodist’ {x=2.0,y=3.0} invokes this function with the indicated x and y values.

Functions with multiple results may be thought of as functions yielding tuples (or records). For
example, we might compute two different notions of distance between two points at once as follows:

fun dist2 (x:real, y:real):real*real = (sqrt (xX*x+y*y), abs

(x-y))

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page35 of 186

Notice that the result type is a pair, which may be thought of as two |

These examples illustrate a pleasing regularity in the design of ML. Rather than in&rddhaoe
notions such as multiple arguments, multiple results, or keyword parameters, we make use of the
general mechanisms of tuples, records, and pattern matching.

It is sometimes useful to have a function to select a particular component from a tuple oetgg¢ord (
the third component or the component labeldd). Such functions may be easily defined using
pattern matching. But since they arise so frequently, they are pre-defined in Mkhasimg

notation For any record typtyp,* ..* typ,, and each between 1 and, there is a functio#i of

typetyp;*..* typ, - >typ, defined as follows:

fun#i (..., % ...,)=X

wherex occurs in theth position of the tuple (and there are underscores in therethpositions).

Thus we may refer to the second field of a three-twglby writing#2 val. It is bad style, howev:

to over-use the sharp notation; code is generally clearer and easier to maintain if you use patterns
wherever possible. Compare, for example, the following definition of the Euclidean distance
function written using sharp notation with the original.

fun dist (p:real*real):real = sqrt((#1 p)*(#1 p)+(#2 p)*(#2
p))

You can easily see that this gets out of hand very quickly, leading to unreadables®dé¢ the
sharp notation is strongly discouraged!

A similar notation is provided for record field selection. The following functiab selects the
component of a record with label lab.

fun #lab {lab=x,...} = x

Notice the use of ellipsis! Bear in mind the disambiguation requirement: any#lab must be ir
a context sufficient to determine the full record type of its argument.

Tuple types have the property that all values of that type have the same shape; they are said to be
homogeneousFor example, all values of typg*real are pairs whose first component is an

integer and whose second component is a real. Any type-correct pattern will match any value of that
type; there is no possibility of failure of pattern matching. The pgttem,y:real) is of type

int*real and hence will match any value of that type. On the other hand the pattern
(x:int,y:real,z:string) is of typeint*real*string and cannot be used to match

against values of typat*real ; it is a compile-time type error to attempt to do otherwise.

Other types have values of more than one "shape"; they are saitktetogeneoutypes. For

example, a value of typet might be0, 1, ~1, ... or a value of typehar might be#"a" or

#'z" . (Other examples of heterogeneous types will arise later on.) Corresponding to each of the
values of these types is a pattern that matches only that value. Attempting to match any other value
against that pattetfiails at execution timeFor the time being we will think of match failure as a

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page36 of 186

run-time error, but later on we will see that the extent of the failure can be controlled.

Here are some simple examples of pattern-matching against values of a heterogeneous type:

val0=1-1
val (0,x) = (1-1, 34)
val (0, #'0") = (2-1, #"0")

The first two bindings succeed, the third fails. In the case of the second, the vargbteind to
34 after the match. No variables are bound in the first or third examples.

The importance of constant patterns becomes clearer once we consider how to define functions over
heterogeneous types. This is achieved in ML usiriguwsal function definition. The general form
of a function is

fn pat =>exp | ...| pat, =>exp,

where eacipat is a pattern and eaetxy is an expression involving the variables of the pagetn
Each componergat=> expis called alauseor rule; the entire assembly of rules is calleshach

The typing rules for matches ensure consistency of the clauses. Specifically,

1. Each pattern in the match must have the sameayyppe
2. Each expression in the match must have the saméytypgiven the types of the variables in
the patterns.

The type of a function whose body is a match satisfying these requirentgpts tgp’. Note that
there is no requirement thigp andtyp' coincide!

Application of functions with multiple clauses to a valaproceeds by considering each clainse
the order written. At stagel the argument valueal is matched against the pattgeat; if the pattern

match succeeds, evaluation continues with the evaluation of expresgiosith the variables

replaced by the values determined by the pattern matching process. Otherwise we proceed to stage
i+1. If no pattern matcheg€., we reach staget+1), then the application fails with an execution
error. Here's an example.

valrecip:int->int=fn0=>0 | niint=>1divn
This defines an integer-valued reciprocal function on the integers, where the recip@osal of
arbitrarily defined to b@&. The function has two clauses, one for the argufetite other for non-
zero arguments. (Note thanh is guaranteed to be non-zero because the patterns are considered in
order: we reach the pattenrint only if the argument fails to match the pattérn

Usingfun notation we may definecip as follows:

funrecip0=0
| recip (n:int) =1 div n

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page37 of 186

One annoying thing to watch out for is that then"" form uses an equal sign to separate the pattern
from the expression in a clause, whereasftné form uses an arrow.

Heterogeneous types abound. Perhaps the must fundamental one islbeltypébooleans. Its
values arérue andfalse . Functions may be defined on booleans using clausal definitions that
dispatch ortrue andfalse . For example, the negation function is defined clausally as follows:

fun not true = false
| not false = true

In fact, this function is pre-defined in ML.

Case analysis on the values of a heterogeneous type is performed by application of a clausa
function. The notation

case expof pat =>exp | ..| pat,=>exp,
is short for the application

(fn pat, =>exp | ...| pat,=>exg) exp
Evaluation proceeds by first evaluatexp then matching its value successively against the patterns
in the match until one succeeds, and continuing with evaluation of the corresponding expres:
case expression fails if no pattern succeeds to match the value.

The conditional expression

if expthen exp, else exp,

is short-hand for the case analysis

case expof true =>exp | false =>exp,

which is itself short-hand for the application

(fn true =>exp | false =>exp,)exp

The "short-circuit" conjunction and disjunction operations are defined as follows. The expression
exp, andalso exp, is short forif exp, then exp, else false and the expressiaexp, orelse

exp, is short forif exp, then true else exp,. You should expand these into case expressions

and check that they behave as expected. Pay particular attention to the evaluation order, and observe
that the call-by-value principle is not violated by these expressions.

Conceptually, equality and comparison operations on the ityfjpeschar , andstring are defined
by infinite (or, at any rate, enormously large) matches, but in practice they are built into the language

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page38 of 186

as primitives. (The ordering ainar andstring are the lexicographic orderings.) Thus we may
write

fun is_alpha c:char =
(#"a" <= c andalso c <= #"2") orelse (#"A" <= c andalso
C <: #IIZII)

to test for alphabetic characters.

All this talk of success and failure of pattern matching brings up the issxbanistivenesand
redundancyin a match. A clause in a matchrésglundantf any value matching its pattern must have
matched the pattern of a preceding clause in the match. A redundant rule can never be reac
execution. It isalwaysan error to have a redundant clause in a match. Redundant clauses often arise
accidentally. For example, the second clause of the following function definition is redundant for
annoyingly subtle reasons:

fun not True = false
| not false = true

The mistake is to have capitaliz€due so that it is no longer the boolean-typed constant pattel

is rather a variable that matches any value of Boolean type. Hence the second clause is redundant.
Reversing the order of clauses can also lead to redundancy, as in the following mistaken definition of
recip

fun recip (n:int) =1 divn
| recip0=0

The second clause is redundant because the first clause will alwaysamatdbger value,
includingO.

A match (as a whole) sxhaustivef every possible value of the domain type of the match must
match some clause of that match. In other words, pattern matching against an exhaustive pattern
cannot fail at run-time. The clauses in the (original) definitiorecipp are exhaustive because t
cover every possible integer value. The match comprising the body of the following function is not
exhaustive:

fun is_numeric #"0" = true
| is_numeric #"1" = true
| is_numeric #"2" = true
| is_numeric #"3" = true
| is_numeric #"4" = true
| is_numeric #"5" = true
| is_numeric #"6" = true
| is_numeric #"7" = true
| is_numeric #"8" = true
| is_numeric #"9" = true

When applied to, say;'a" , this function fails.

It is often but not always, an error to have an inexhaustive match. The reason is that the type system

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page39 of 186

cannot record many invariants (such as the propertysthmimeric is only called with a

character representing a decimal digit), and hence the compiler will issue a warning about
inexhaustive matches. Itis a good idea to check each such warning to ensure that you have not
accidentally omitted a clause from the match.

Any match can be made exhaustive by the inclusiorcatch-all clause of the form
_=> €exp
whereexpis an expression of the appropriate type. Itis a bad idea to simply stick such a clat
end of every match in order to eliminate "inexhaustive pattern” warnings. By doing so you give up
the possibility that the compiler may warn you of a legitimate error (due to a forgotten case) in your

program. The compiler is your friend! Use it to your advantage!

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page40 of 186

Recursive Functions [http://www.cs.cmu.edu/People/rwh/introsml/core/recfns.htm] Page 9
Recursive Functions
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:56 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

It's time to return to function definitions. So far we've only considered very simple functions (

the reciprocal function) whose value is computed more or less directly using the primitives of the
language. You may well be wondering at this stage how to define functions that require some form
of iteration to compute. In familiar imperative languages iteration is accomplisheavirdi;g anc

for loops; in ML it is accomplished usimgcursion

Informally, a function defined by recursion is one that computes the result of a call by "callinc
To accomplish this, the function must be given a name by which it can refer to itself. This is
achieved using eecursive value bindingRecursive value bindings have almost the same form as
ordinary, non-recursive value bindings, except that the binding is qualified with the adjestive "
by writing val rec pat= exp. Here's an example:

val rec factorial : int->int=f 0=>1|niint=>n*
factorial (n-1)

This is a recursive definition of the factorial function, which is ordinarily defined in textbooks by the
recursion equations

or=1
n! = n*(n-1)! (n>=0)

Usingfun notation we may write the definition of factorial much more clearly and concisely as
follows:

fun factorial 0 = 1
| factorial (n:int) = n * factorial (n-1)

There is clearly a close correspondence between the ML notation and the mathematical notation for
the factorial function.

How are recursive value bindings type-checked? The answer may appear, at first reading, to be
paradoxicalassumehat the function has the type specified, tbleeckthat the definition is

consistent with this assumption. In the castctorial we assumehatfactorial has type
int->int , thencheckthat its definition

fn 0 => 1 | n:int => n * factorial (n-1)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page4l of 186

has typent->int . To do so we must check that each pattern hasrypeand that each
corresponding expression has tyme . This is clearly true for the first clause of the definition.
the second, we assume thdtas typent , then check that * factorial (n-1) has type

int . This is so because of the rules for the primitive arithmetic operations and because of our
assumption thagctorial has typent->int . (Be certain that you understand this reasoning!
It is essential for what follows.)

How are applications of recursive value bindings evaluated? The rules are almost the same as
before. We need only observe that the binding for the function may have to be retrieved many times
during evaluation (once for each recursive call). For example, to evidosteal 3 , we

retrieve the definition dfactorial , then pattern match the argument against the pattern of each
clause. Clearl3 does not matcf, but it does match:int , bindingn to 3 in the process. We

then evaluate * factorial (n-1) relative to this binding fon. To do so we retrieve the

binding forfactorial a second time, and to apply it2o Once again we consider each clause in
turn, failing to matcl®, but succeeding to matchint . This introduces aewbinding forn that
shadows the previous binding so thatow evaluates td. We then proceed once again to evaluate

n * factorial (n-1) , this time withn bound ta2. Once again we retrieve the binding for
factorial , then bindh to 1, shadowing the two previous bindings, then evaluatihg
factorial (n-1) with this binding fom. We retrieve the binding fdactorial one last

time, then apply it t®. This time we match the pattedrand yieldl. We then (in four steps)
compute the resulg, by completing the pending multiplications.

Thefactorial function illustrates an important point about recursive function definitions. Notice
that the recursive call in the definitionfattorial occurs as the argument of a multiplication.

This means that in order for the multiplication to complete, we must first complete the calculation of
the recursive call téactorial . In rough outline the computation faictorial 3 proceeds as
follows:

factorial 3

3 * factorial 2

3 * 2 * factorial 1
3*2*1*factorial O
3*2*1*1
3*2*1

3*2

6

ONoGhWNE

(The strings of multiplications are implicitly right-associated.) Notice that the size of the expression
first grows (in direct proportion to the argument), then shrinks as the pending multiplications are
completed. This growth in expression size corresponds directly to a growth in run-time storage
required to record the state of the pending computation.

The foregoing definition ofactorial should be contrasted with the following definition:

fun fact_helper (O,r:int) =r
| fact_helper (n:int,r:int) = fact_helper (n-1,n*r)

fun factorial n:int = fact_helper (n, 1)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page42 of 186

We definefactorial using ahelper functiorfact_helper that takes an additional parameter,
called amlaccumulatoy that records the running partial result of the computation. This correspc
reducing the prefix of the pending computations in the trace given above by "left-associating" the
multiplications. (In fact the technique is only applicable to associative binary operations for
this reason.)

The important thing to observe abdatt helper is that it istail recursive meaning that the
recursive call is the last step of evaluation of an application of it to an argument. The following
evaluation trace illustrates the point:

factorial 3
fact_helper (3, 1)
fact_helper (2, 3)
fact_helper (1, 6)
fact_helper (0, 6)
6

ounkwpnpE

Notice that there is no growth in the size of the expression because there are no pending col

to be resumed upon completion of the recursive call. Consequently, there is no growth in the space
required for an application, in contrast to the first definition given above. In this sense tail recursive
definitions are analogous to loops in imperative languages: they merely iterate a computation, and do
not require allocation of storage during execution. For this reason tail recursive procedures are
sometimes callederative.

Time and space usage are important, but what is more important is that the function compute the
intended result. The key to the correctnessretarsivefunction is arinductiveargument
establishing its correctness. The critical ingredients are these:

1. A specificationof the result of the function stated in terms of its arguments. This specif
will usually involveassumptiongibout the arguments that are sufficient to establish that the
function behaves correctly.

2. Aninduction principlethat justifies the correctness of the recursive function based on the
pattern of its recursive calls. In simple cases this is ordinary mathematical induction, but in
more complicated situations a more sophisticated approach is often required.

These ideas may be illustrated by considering the first definitifactmirial given above. A
reasonable specification ftactorial is as follows:

if n>=0 thenfactorial n evaluates to n!

Notice that the specification expresses the assumption that the argn, is non-negative, and
asserts that the applicationfattorial to n terminates with the expected answer.

To check that satisfies this specification, we apply the principteattiematical inductioon the
argumenn. Recall that this means we are to establish the specification for the=fasand,
assuming it to hold fan>=0, show that it holds fon+1. The base case:0, is trivial: by definition
factorial n evaluates to 1, which 8. Now suppose that=m+1 for somem>=0. By the
inductive hypothesis we have tliattorial m evaluates ton!, and so by the definition

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page43 of 186

factorial n evaluates to the value ofm! = (m+1)*m! = (m+1)! = n!, as required. This
completes the proof.

That was easy. What about the second definitidactbrial ? We focus on the behavior of
fact_helper . A suitable specification is

if n>=0 thenfact_helper (n,r) evaluates to nl*r

Once again we proceed by mathematical inductiom gou can easily check thiaict helper
satisfies this specification. It follows that the second definitidaabrial in terms of
fact_helper satisfies the specification tctorial given above, since we may takd. in
the specification ofact_helper

As a matter of programming style, it is usual to conceal the definitions of helper functions using a
local declaration. In practice we would make the following definition of the iterative version of
factorial

local
fun fact_helper (O,r:int) =r
| fact_helper (n:int,r:int) = fact_helper (n-1,n*r)
in
fun factorial (n:int) = fact_helper (n,1)
end

This way the helper function is not visible, only the function of interest is "exported” by the
declaration.

Here’s an example of a function defineccbynpletanduction, the Fibonacci function, defined on
integersn>=0:

(* for n>=0, fib n evaluates to the nth Fibonacci number *)
funfib0=1

|[fibl=1

| fib (n:int) = fib (n-1) + fib (n-2)

The recursive calls are made not onlyneh , but alsan-2 , which is why we must appeal to

complete induction to justify the definition. This definitionfibf is very inefficient because it
performs many redundant computations: to comfiiote requires that we compufié (n-1)

andfib (n-2) . To computdib (n-1) requires that we computi® (n-2) a second time,
andfib (n-3) . Computingib (n-2) requires computingb (n-3) again, andib (n-

4) . As you can see, there is considerable redundancy here. It can be show that the runiiting time
of is exponential in its argument, which is clearly awful for such a simple function.

Here's a better solution: for eath=0 compute not only theth Fibonacci number, but also threl)
st as well. (Fon=0 we define the "-1"st Fibonacci number to be zero). That way we can avoid
redundant recomputation, resulting in a linear-time algorithm. Here's the code:

(* for n>=0, fib n evaluates to (a, b), where a is the nth
Fibonacci number and b is the (n-1)st *)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page44 of 186

fun fibb 0 = (1, 0)
| fibb 1 =(1, 1)
| fibb (n:int) =
let
val (a:int, b:int) = fibb (n-1)
in
(athb, a)
end

You might feel satisfied with this solution since it runs in time lineax irBut in fact there's a
constant-timealgorithm to compute thath Fibonacci number! In other words the recurrence

Fo
Fy
Fn

I
T =

+F

n-1 n-2

has a closed-form solution. (See Knutb&crete Mathematiog®\ddison-Wesley 1989) for a

derivation.) However, this is an unusual case. In most instances recursively-defined functions have
no known closed-form solution, so that some form of iteration is inevitable.

It is often useful to define two functions simultaneously, each of which calls itself and/or the other to
compute its result. Such fnctions are said tonbéually recursive Here's a simple example to

illustrate the point, namely testing whether a natural number is odd or even. The most obvious
approach is to test whether the number is congruent to 0 mod 2, and indeed this is what one

in practice. But to illustrate the idea of mutual recursion we instead use the following inductive
characterization: O is even, and not adae) is even iffn-1is odd;n>0 is odd iffn-1is even. This

may be coded up using two mutually-recursive procedures as follows:

fun even O = true

| even n = odd (n-1)
and odd 0 = false

| odd n = even (n-1)

Notice thaleven callsodd andodd callseven, so they are not definable separately from one
another. We join their definitions using the keywardl to indicate that they are defined
simultaneously by mutual recursion. Later in these notes we will see more compelling examples of
mutually-recursive functions.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page45 of 186

Type Inference [http://www.cs.cmu.edu/People/rwh/introsml/core/typeinf.htm] Page 10
Type Inference
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:56 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

So far (with a few exceptions) we’ve programmed in what is knowneghaitly typedstyle. This
means that whenever we've introduced a variable, we've assigned it a type at its point of intr

In particular every variable in a pattern has a type associated with it. As you've no doubt not

gets a little tedious after a while, especially when you're using clausal function definitions. A
particularly pleasant feature of ML is that it allows you to omit this type information whenever it can
be determined from context. This process is knowy@sinferencaince the compiler is inferring

the missing type information based on contextual information.

For example, there is no need to give a type to the vadahléhe functionfn s:string => s

A"\n" . The reason is that no other typedamakes sense, sinsds used as an argument to st
concatenation. Consequently, you are allowed to writdrjust> s * "\n" , leaving ML to

insert "string " for you. When is it allowable to omit this information? It is difficult to give a
precise answer without introducing quite a lot of machinery, but we can give some hints of when you
can and when you cannot omit types. A remark fact about ML is that the answer is "almost always",
with the exception of a few trouble spots that we now discuss.

The main difficulty is with the arithmetic operators, which@rerloaded by which we mean that

the same syntax is used for integer and floating point arithmetic operations. This creates a problem
for type inference because it is not possible to unambiguously reconstruct type information for a
function such aé n => n+n because there is no way to tell whether the addition operation is
integer or floating point addition. We could equally well regard this expression as abbrdmiating
n:int => n+n , with typeint->int ~ , orfn n:real => n+n , with typereal->real . In

some cases the surrounding context determines which is meant. For example, in the exjoression

n => n+n)(0) the only sensible interpretation is to regard the paramdtehave typent . A
related source of difficulty is the (infrequently used) "sharp" notation for records. Absent info

from the context, the type of the functifonr => #name(r) cannot be determined: all that is
known of the type of is that it has aame field; neither the type of that field nor the labels and

types of the remaining fields are determined. Therefore this function will be rejected as ambiguous
because there is not enough information to determine the domain type of the function.

These examples illustrate situations where ambiguity leads to difficulties. But you shouldn't «

from this that type inference must fail unless the missing type information can be uniquely
determined! In many (indeed, most) cases there isigueway to infer omitted type information,

but there is neverthelesbastway. (The examples in the preceding paragraph merely serve t

out that sometimes there is no best way, either. But these are the exceptions, rather than the rule.)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page46 of 186

The prototypical example is the identity functibmx=>x . The body of the function places no
constraints on the type »f since it merely returns as result without performing any computation

on it. You might suspect that this expression has to be rejected since its type is ambiguous, but this
would be unfortunate since the expression makes perfectly good semsgdooice of the type of

X. This is in sharp contrast to examples such as the furfotior>x+1 , for which onlytwo

choices for the type of are possible (hamelint andreal), with no way to choose between

them. The choice oft orreal affects the behavior of the function: in one case it performs an
integer addition, in the other a floating point addition. In the case of the identity function, however,
we may choose any type at all ¥grwithout affecting the execution behavior of the function --- the
function is said to bpolymorphicbecause its execution behavior is uniform in the type of

Therefore the identity function hasinitely manytypes, one for each choice of the type of the
parametek. Choosing the type of to betyp, the type of the identity functiontgp-> typ. In other
words every type for the identity function has the foype> typ, wheretypis the type of the

argument.

Clearly there is a pattern here, which is captured by the notiotyjpé acheme A type scheme is a

type expression involving one or maype variablestanding for an unknown, but arbitrary type
expression. Type variables are writtan("alpha”),’b ("beta"),’c ("gamma"),etc. An instanceof

a type scheme is obtained by replacing each of the type variables occurring in it with a type scheme,
with the same type scheme replacing each occurrence of a given type variable. For example, the type
scheméa->'a has instancest->int |, string->string , (int*int)->(int*int) , anc
('b->'b)->('b->'b) , among infinitely many others. It doest have the typet->string

as instance, since we are constrained to replace all occurrences of a type variable by the same type
scheme. However, the type schéme’b has bothnt->int andint->string as instances

since there are different type variables occurring in the domain and range positions.

Type schemes are used to capture the polymorphic behavior of functions. For example, we

fn x:'"a=>x for the polymorphic identity function of type@>'a , meaning that the behavior of

the identity function is independent of the type pdn hence may be chosen arbitrarily. Similarly,

the behavior of the functidim (x,y)=>x+1 is independent of the type yf but constrains the

type ofx to beint . This may be expressed using type schemes by writing this function in the
explicitly-typed formfn (x:int,y:’'a)=>x+1 with typeint*'a->'a . In each of these cas

we needed only one type variable to express the polymorphic behavior of a function, but usually we
need more than one. For example, the fundtiqm,y) = x constrains neither the type»ohor

the type ofy. Consequently we may choose their types freely and independently of one another.

This may be expressed by writing this function in the forifx:’a,y:’b):’a=>x with type

'a*b->'a . Notice that while it is correct to assign the tigiéa->'a to this function, doing

so would be overly restrictive since the types of the two parameters need not be the same. Notice as
well that we couldhot assign the typ@a*'b->'c to this function because the type of the result

must be the same as the type of the first parameter since the function returns its first parameter when
invoked. The type scheme precisely captures the constraints that must be satisfied for the function to
be type correct. It is said to be thest generabr principal type schemifor the function.

It is a remarkable fact about ML theatery expressiofwith the exception of those pesky examples
involving arithmetic primitives or record selection operatidras a principal type schemédhat is,

there is always (well, with very few exceptiond)estor most generalvay to infer types for

expressions thahaximizes generalityand hencenaximizes flexibilityn the use of the expression.

Every expression "seeks its own depth" in the sense that an occurrence of that expression is assigned

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page47 of 186

a type that is an instance of its principal type scheme determined by the context of use. For example,
if we write (fn x=>x)(0) , then the context forces the type of the identity function tatbe

>int , and if we writg(fn x=>x)(fn x=>x)(0) , the context of use selects the instafie
>int)->(int->int) of the principal type scheme for the identity at the first occurrence, and the
instancant->int for the second.

How is this achieved? Type inference is a processmdtraint satisfaction First, the expression
determines a set of equations governing the relationships among the types of its subexpressions. For
example, if a function is applied to an argument, then a constraint equating the domain type of the
function with the type of the argument is generated. Second, the constraints are solved using a
process similar to Gaussian elimination, calledication The equations can be classified by their
solution sets as follows:

1. Overconstrainedthere is no solution. This corresponds to a type checking error.

2. Underconstrainedthere are many solutions. There are two sub-casgsguougdue to
overloading), opolymorphic(there is a "best" solution).

3. Uniquely determinedhere is precisely one solution. This corresponds to an unambiguous
type inference problem.

The free type variables of the system of equations determines the "degree" of polymorphism in the
expression: the constraints have a solution for any choice of types to substitute for these variables.

The characterization of type inference as a constraint satisfaction procedure suggests an explanation
for the notorious obscurity of type checking errors in ML. If a program is not type correct, then the
system of constraints associated with it will not have a solution. The type inference procedure
considers the constraints in some order, and at some point discovers an inconsistency. It is
fundamentally impossible to attribute this inconsistency to any one feature of the program: all that is
know is that the constraint set as a whole is unsatisfiable. The checker usually reports the first
unsatisfiable equation it encounters, but this may or may not correspond to the "reason” (in the mind
of the programmer) for the type error. The usual method for finding the error is to insert sufficient
type information to narrow down the source of the inconsistency until the source of the difficulty is
uncovered.

There is an important interaction between polymorphic expressions and value bindings that may be
illustrated by the following example. Suppose that we wish to bind the identity function to a variable
| so that we may refer to it by name. We've previously observed that the identity function is
polymorphic, with principal type scherfee>’a . This may be captured by ascribing this type
scheme to the variableat theval binding. That is, we may write

val | :'a->'a = fn x=>x
to ascribe the type scherae>'a to the variablé . (We may also write

fun I(x’a):’a = x
for an equivalent binding df.) Having done thisgach use of determines a distinct instance of the
ascribed type schem@>'a . Thatis, both 0 andl 10 are well-formed expressions, the f

assigning the typat->int tol, the second assigning the tyies->int)->(int->int)
andint->int to the two occurrences bf Thus the variable behaves precisely the same as its

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page48 of 186

definition,fn x=>x , in any expression where it is used.

As a convenience ML also provides a form of type inference on value bindings that eliminates the
need to ascribe a type scheme to the variable when it is bound. If no type is ascribed to a variable
introduced by aal binding, then it is implicitly ascribed the principal type scheme of the right

side. For example, we may write

val | = fn x=>x
or
fun I(x) = x

as a binding for the variable . The type checker implicitly assigns the principal type seheme,
>'a , of the binding to the variable In practice we often allow the type checker to infer the
principal type of a variable, but it is often good form to explicitly indicate the intended type as a
consistency check and for documentation purposes.

We finish this section with a technical issue that arises from time to time. As we remarked al
treatment oval bindings ensures that a bound variable has precisely the same types as its binding.
In other words the type checker behaves as though all uses of the bound variable are implicitly
replaced by its binding before type checking. Since this may involve replication of the binding, the
meaning of a program is not necessarily preserved by this transformation. (Think, for example, of
any expression that opens a window on your screen: if you replicate the expression and evaluate it
twice, it will open two windows. This is not the same as evaluating it only once, which results
window.) To ensure semantic consistency, variables introducedaby binding are allowed to be
polymorphiconly if the right-hand side is a value. (This is calledvidlee restrictionon

polymorphic declarations.) Féun bindings this restriction is always met since the right-hand side

is implicitly a lambda, which is a value. However, it might be thought that the following declaration
introduces a polymorphic variable of type>'a , but in fact it is rejected by the compiler:

valJ =11

The reason is that the right-hand side is not a value; it requires computation to determine its value. It
is therefore ruled out as inadmissible for polymorphism; the vardaimay not be used
polymorphically in the remainder of the program. In this case the difficulty may be avoided by
writing instead

fundx=11x

because now the binding &fis a lambda, which is a value. In some rare circumstances this is not
possible, and some polymorphism is lost. For example, the declaration

val | = nil @ nil

does not introduce an identifier with a polymorphic type, even though the almost equivalent
declaration

val | = nil

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page49 of 186

does do so. Since the right-hand side is a list, we cannot apply the "trick" of defioibg a

function; we are stuck with a loss of polymorphism in this case. This particular example is not very
impressive since it's hard to imagine using the former, rather than the latter, declaration in a practical
situation, but occasionally something similar does arise, with an attendant loss of polymorphism.

Why this limitation? Later on, when we study mutable storage, we'll sesmothatestriction on
polymorphism is essential if the language is to be type safe. The value restriction is an easily-
remembered sufficient condition for soundness, but as the examples above illustrate, it is by no
means necessary. The designers of ML were faced with a choice of simplildiybility; in this

case they opted for simplicity at the expense of some expressiveness in the language.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb0 of 186

Lists [http://www.cs.cmu.edu/People/rwh/introsml/core/lists.htm] Page 11

Lists

[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:55 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

We have already noted that aggregate data structures are especially easy to handle in ML. Our first
examples were tuple and record types. [Hteypes provide another example of an aggregate data
structure in ML. Informally, the values of typyplist are the finite lists of values of typg.

But what is a list? The values of tyjyplist are defined as follows:

1. nil is avalue of typgyplist

2. if his a value of typéyp, andt is a value of typgyplist , thenh:: tis a value of typé/p
list

3. Nothing else is a value of typgp list

The type expressiagplist is a postfix notation for the application of ttype constructolist

to the argumentyp. Thuslist is a kind of "function” mapping types to types: given a typewe
may applylist to it to get another type, writtéyplist . The formsil and:: are thevalue
constructorsof typetyplist . The nullary (no argument) constructdr may be thought of as the
empty list. The binary (two argument) constructorconstructs a non-empty list from a vatuef
typetyp and another valueof typetyplist ; the resulting valudy:: t, of typetyplist is
pronouncedH const” (for historical reasons). We say thatis cons'd ontd", thath is the "head" ¢
the list, and thatt is its "tail".

The definition of the values of typiyplist given above is an example of iaductivedefinition

The type is said to becursivebecause this definition is "self-referential” in the sense that the

of typetyplist are defined in terms of (other) values of the same type. This is especially clear if
we examine the types of the value constructors for thetyppist

nil : typlist
op:: : typ* typlist-> typ list
(The notatiorop :: is used taeferto the "cons" operator as a function, rather tharséat to form

a list, which requires infix notation.) Two things are notable here:

1. The "cons" operation takes an argument of typéist , and yields a result of typgp
list . This reflects the "recursive" nature of the tiyelist

2. Both operations angolymorphicin the type of the underlying elements of the list. Thus is
the empty list of typgyplist for any element typiyp, andop :: constructs a non-empty
list independently of the type of the elements of that list.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagebl of 186

A consequence of the inductive definition of the list type is that values dfyfypgt have the
form

hy=(hyo.(C hooonil) L)

for somen>=0. (Whenn s zero, this is, by convention, the empty list| .) The operator. is
right-associativeso we may omit the parentheses and just write

h_:: nil

1 3

This notation emphasizes the interpretation of lists as finite sequences of values, but it obscures the
fundamental inductive character of lists as being built up fihmusing the: operation.

How do we compute with values of list type? Since the values are defined inductively, it is natural
that functions on lists be defined recursively, using a clausal definition that analyzes the struc
list. Here's a definition of the functidength that computes the number of elements of a list:

fun length nil =0
| length (_::t) =1 + length t

The definition is given by induction on the structure of the list argument. The base case is the empty
list, nil . The inductive step is the non-empty list (notice that we do not need to give a name

to the head). Its definition is given in terms of the tail of the listhich is "smaller” than the list

_ut . Thetypdength of is’alist->int ; it is defined for lists of values of any type
whatsoever.

We may define other functions following a similar pattern. Here's the function to append two lists:

fun append (nil, I) =1
| append (h::t, I) = h :: append (t, I)

This function is built into ML; it is written using infix notation axp, @exp,. The running time of
append is proportional to the length of the first list, as should be obvious from its definition.

Here’'s a function to reverse a list.

fun rev nil = nil
| rev (h:it) =revt @ [h]

It is not tail recursive. In fact, its time complexitﬁsnz), wheren is the length of the argument
list. This can be demonstrated by writing down a recurrence that defines the runnifgnjiaieon
a list of lengtm.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb2 of 186

T(0) = O(1)
T(n+1) = T(n) + O(1)

Solving the recurrence we obtain the rei(lit):O(nz).

Can we do better? Oddly, we can take advantage obtn@ssociativityf :: to give a tail-
recursive definition ofev .

local
fun rev_helper (nil, a) = a
| rev_helper (h::t, a) = rev_helper (t, h::a)
in
fun rev | = rev_helper (I, nil)
end

The pattern is the same as before, except that by re-associating the use& aeverse the list!

The helper function reverses its first argument and prepends it to its second argument. That is,
rev_helper (I, a) evaluates trev) @ a , Where we assume here an independent
definition ofrev for the sake of the specification. Notice tteat_helper runsin time
proportional to the length of its first argument, and heaceruns in time proportional to the length
of the list.

The correctness of functions defined on lists is established using the prinaplectairal
induction We illustrate this by establishing that the functien helper satisfies the following
specification:

for every | and a of type tyst , rev_helper ([, a) evaluates to the result of
appending a to the reversal of I.

The proof is by structural induction on the listf I isnil , thenrev_helper (I, a) evaluates
to a, which is as required. Ifish:: t, then by inductive hypothesis evaluates to the result of
appendind:: ato the reversal df which is easily seen to be the result of appenaiagthe
reversal oh:: t.

The form of this argument may be summarized as follows:

1. Establish the correctness of the function for the emptynlist,
2. Assuming the correctness of the functiontfastablish its correctness tar t.

It follows that the function is correct for all lidisy the inductive definition of the list type. This is
called the principle odtructural induction on lists We will soon generalize this to other inductively-
defined types.

Sample Code for this Chapter

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb3 of 186

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb4 of 186

Datatype Declarations [http://www.cs.cmu.edu/People/rwh/introsml/core/datatypes.hifage 12
Datatype Declarations
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:55 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Lists are one example of the notion okaursive datatypeML provides a general mechanism, the
datatype declaration, for introducing recursive types. Earlier we introducegpbe

declarations as an abbreviation mechanism. Giving a type a name is useful documentation and is
convenient as an abbreviation, but is otherwise inconsequential. One could replace all uses of the
type name by its definition and not effect the behavior of the program. In contrdstatype
declaration provides a means of introducingeeartype that is distinct from all other types and that
does not merely stand for some other type. It is the means by which the ML type system may be
extended by the programmer.

The datatype declaration in ML has a number of facets. A datatype declaration introduces

1. One or more "new" type constructors. The type constructors introduced may, nor may not, be
(mutually) recursive.

2. One or more "new" value constructors for each of the type constructors introduced by the
declaration.

The type constructor may take zero or more arguments; a zero-argumeligrgy type constructor

is just a type. Each value constructor may also take zero or more arguments; a nullary value
constructor is just a constant. The type and value constructors introduced by the declaration are
"new" in the sense that they are distinct from all other type and value constructors previously
introduced; if a datatype re-defines an "old" type or value constructor, then the old definition is
shadowed by the new one, rendering the old ones inaccessible in the scope of the new definition.

Here's a simple example of a nullary type constructor with four nullary value constructors.
datatype suit = Spades | Hearts | Diamonds | Clubs

This declaration introduces a new tyqueét with four nullary value constructorSpades,

Hearts , Diamonds , andClubs . This declaration may be read as introducing asype such

that a value of typsuit is eitherSpades, orHearts , orDiamonds , orClubs . There is no

significance to the ordering of the constructors in the declaration; we could just as well have written

datatype suit = Hearts | Diamonds | Spades | Clubs

(or any other ordering, for that matter). It is conventional to capitalize the names of value
constructors, but this is not required by the language.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagebb5 of 186

Given the declaration of the type suit, we may define functions on it by case analysis on the value
constructors using a clausal function definition. For example, we may define the suit ordering in
Bridge by the function

fun outranks (Spades, Spades) = false
| outranks (Spades,) = true
| outranks (Hearts, Spades) = false
| outranks (Hearts, Hearts) = false
| outranks (Hearts,) = true
| outranks (Diamonds, Clubs) = true
| outranks (Diamonds,) = false
| outranks (Clubs,) = false

This defines a function of type
suit * suit -> bool
which determines whether or not the fggtt outranks the second.

Datatypes may also Iparameterizedby another type. For example,

datatype 'a option = NONE | SOME of 'a
introduces the unary type constructooption . The values of typg/p option are:

1. The constanONEand
2. Values of the fornsOMEval, whereval is a value of typgyp.

For example, some values of type string optiomM&d&IESOMEabc”, andSOMEdef".

The option type constructor is pre-defined in Standard ML. One common use of option types is to
handle functions with an optional argument. For example, here is a function to compute the base-
exponential function for natural number exponents that defaults to base 2:

fun expt (NONE, n) = expt (SOME 2, n)
| expt (SOME b, 0) =1
| expt (SOME b, n) =
if n mod 2 = 0 then expt (SOME b*b, n div 2) else b *
expt (SOME b, n-1)

The advantage of the option type in this sort of situation is that it avoids the need to make a special
case of a particular argumeatg, using0 as first argument to mean "use the default exponent"”.

A related use of option types is in aggregate data structures. For example, an address book entry
might have a record type with fields for various bits of data about a person. But not all data is
relevant to all people. For example, someone may not have a spouse, but they all have a name. For
this we might use a type definition of the form

type entry = { name:string, spouse:string option, ... }

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb6 of 186

so that one would create an entry for an unmarried person spthuae field of NONE

The next level of generality is the recursive type definition. For example, one may defing/p type
tree of binary trees with values of typg at the nodes using the following declaration:

datatype 'a tree = Empty | Node of 'a tree * 'a * 'a tree

This declaration corresponds directly to the informal definition of binary trees with values tyjptype
at the nodes:

1. The empty tre€Empty is a binary tree.
2. If tree; andtree, are binary trees, anal is a value of typéyp, thenNode (tree;, val, tree))

is a binary tree.
3. Nothing else is a binary tree.

The distinguishing feature of this definition is that itasursivein the sense that binary trees are
constructed out of other binary trees, with the empty tree serving as the base case.

Incidentally, deafin a binary tree is here represented as a node both of whose children are the empty
tree. Our definition of binary trees is analogous to starting the natural numbers with zero, rather than
one. In fact you can think of the children of a node in a binary tree as the "predecessors"” of |

the only difference compared to the usual definition of predecessor being that a node has two, rather
than one, predecessors.

To compute with a recursive type one ordinarily defines recursive functions. For example, he
function to compute thieightof a binary tree:

fun height Empty =0
| height (Node (Ift, _, rht)) = 1 + max (height Ift,
height rht)

Notice thaiheight is called recursively on the children of a node, and is defined outright on the
empty tree. This pattern of definition is callductural induction The functiorheight is said to

be defined by induction on the structure of its argument, a tree. The general idea is to define the
function directly for the base cases of the recursive tygevalue constructors with no argument:

whose arguments do not involve values of the type being defined), and to define it for non-base cases
in terms of its definitions for the constituent values of that type. We will see numerous examples of
this as we go along.

Here's another example. Téieeof a binary tree is the number of nodes occurring in it. Here's a
straightforward definition in ML:

fun size Empty =0
| size (Node (Ift, , rht)) = 1 + size Ift + size rht

The function size is defined by structural induction on trees.

A word of warning. One reason to capitalize value constructors is to avoid a pitfall in the ML

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb7 of 186

syntax. Suppose we gave the following definitiosioé :

fun size empty =0
| size (Node (Ift, , rht)) =1 + size Ift + size rht

What happens? The compiler will warn us that the second clause of the defiméidandant

Why? Becausempty , spelled with a lower-case "e", ivariable, not aconstructor and hence
matchesanytree whatsoever. Consequently the second clause never applies. By capitalizing
constructors we can hope to make mistakes such as these more evident, but in practice you are bound
to run into this sort of mistake.

Thetree datatype is appropriate for binary trees: those for which every node has exactly two
children. (Of course, either or both children might be the empty tree, so we may consider this to
define the type of trees witlt mosttwo children; it's a matter of terminology which interpretation

you prefer.) It should be obvious (try it) how to define the typgerofrytrees (whose nodes have

(at most) three children), and so on for other fixed arities. But what if we wished to define a type of
trees with avariable number of children? In a so-calledriadic treesome nodes might have three
children, some might have two, and so on. This can be achieved in at least two ways. One way
combines lists and trees, as follows:

datatype 'a tree = Empty | Node of 'a * 'a tree list

Each node haslst of children, so that distinct nodes may have different numbers of children.
Notice that the empty tree is distinct from the tree with one node and no children because tt
data associated with the empty tree, whereas there is a value 'af tgpeach node.

Another approach is to simultaneously define a variadic tree to be either empty, or a node collecting
together a forest to form a tree, and a forest to be either empty or a variadic tree together with another
forest. This leads to the following definition:

datatype 'a tree = Empty | Node of 'a * 'a forest
and ‘'aforest = Nil | Cons of 'a tree * 'a forest

This example illustrates the introduction of tmaitually recursive datatypewhich is why we
present it here. Mutually recursive datatypes beget mutually recursive functions defined on them.
Here's a definition of the size (number of nodes) of a variadic tree:

fun size_tree Empty =0
| size_tree (Node (_, f)) =1 + size_forest f

and size_forest Nil =0
| size_forest (Cons (t, f')) = size_tree t + size_forest

Notice that we define the size of a tree in terms of the size of a forevice versajust as the type
of trees is defined in terms of the type of forests.

Many other variations are possible. Suppose we wish to define a notion of binary tree in which data
items are associated with branches, rather than nodes. Here's datatype declaration for such trees:

datatype 'a tree = Empty | Node of 'a branch * 'a branch

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb8 of 186

and ‘'a branch = Branch of 'a * 'a tree

Notice that in contrast to our first definition of binary trees in which the branches from a noc
children weramplicit, these branches are newplicit since they are labelled with data items. For
example, we can collect up into a list the data items labelling the branches of such a tree using the
following code:

fun collect Empty = nil
| collect (Node (Branch (Id, It), Branch (rd, rt))) =
Id :: rd :: (collect It) @ (collect rt)

Returning to the original definition of binary trees (with data items at the nodes), observeti/gs the

of the data items at the nodes must be the same for every node of the tree. For example, a value of
type int tree has an integer at every node, and a value of type string tree has a string at every node.
Therefore it makes no sense to evaluate the expression

Node (Empty, 43, Node (Empty, "43", Empty))

since the result, if it were to be accepted, would be a "heterogeneous" tree with integers at some
nodes and strings at others. Such structures are ruled out in ML as type-incorrect.

In 95% of the cases this apparent restriction is no restriction at all; it is quite rare to encounter
heterogeneous data structures in real programs. For example, a dictionary with strings as keys might
be represented as a binary search tree with strings at the nodes; there is no need for heterogeneity to
represent such a data structure. But what about the other 5%7? What if one really wanted to have a
tree with integers at some nodes and strings at others? How would one represent such a thing in
ML? To see the answer, first think about how one might manipulate such a data structure. When
accessing a node, we would need to check at run-time whether the data item is an integer or a string;
otherwise we would not know whether to, say, add 1 to it, or concatenate "1" to the end of it. This
suggests that the data item mustdimlledwith sufficient information so that we may determine the

type of the item at run-time. We must also be able to recover the underlying data item itself so that
familiar operations (such as addition or string concatenation) may be applied to it. This is neatly
achieved using a datatype declaration. Suppose we wish to represent the type of integer-or-string
trees. First, we define the type of values to be integers or strings, marked with a constructor
indicating which:

datatype int_or_string = Int of int | String of string
Then we define the type of interest as follows:

type int_or_string_tree =int_or_string tree
Voila! Perfectly natural and easy --- heterogeneity is really a special case of homogeneity!
Datatype declarations and pattern matching are extremely useful for defining and manipule
abstract syntaxf a language. For example, we may define a small language of arithmetic
expressions using the following declaration:

datatype expr = Numeral of int | Plus of expr * expr |

Times of expr * expr

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pageb9 of 186

This definition has only three clauses, but one could readily imagine adding others. Here is the
definition of a function to evaluate expressions of the language of arithmetic expressions written
using pattern matching:

fun eval (Numeral n) = Numeral n
| eval (Plus (el, e2)) =
let
val Numeral n1 = eval el
val Numeral n2 = eval e2
in
Numeral (n1+n2)
end
| eval (Times (el, e2)) =
let
val Numeral n1 = eval el
val Numeral n2 = eval e2
in
Numeral (n1*n2)
end

The combination oflatatype declarations and pattern matching contributes enormously to the
readability of programs written in ML. A less obvious, but perhaps more important, benefit is the
error checking that the compiler can perform for you if you use these mechanisms in tandem. As an
example, suppose that we extend the g with a new component for the reciprocal of a

number, yielding the following revised definition:

datatype expr =
Numeral of int | Plus of expr * exp | Times of expr *
expr | Recip of expr

First, observe that the "dldiefinition ofeval is no longer applicabl® values of typexpr ! For
example, the expression

eval (Plus (Numeral 1, Numeral 2))

is ill-typed, even though it doesn't use BRexip constructor. The reason is that the re-declarati

expr introduces a "new" type that just happens to have the same name as the "old" type, but is in
fact distinct from it. This is a boon because it reminds us to recompile the old code relative to the
new definition of theexpr type.

Second, upon recompiling the definitionesfal we encounter amexhaustive matctvarning: the
old code no longer applies to every value of gyger according to its new definition! We are of
course lacking a case fRecip , which we may provide as follows:

fun eval (Numeral n) = Numeral n
| eval (Plus (el, e2)) = ... as before ...
| eval (Times (el, e2)) = ... as before ...
| eval (Recip e) =
let val Numeral n = eval e in Numeral (1 div n) end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page60 of 186

The value of the checks provided by the compiler in such cases cannot be overestimated. When
recompiling a large program after making a changedtiatype declaration the compiler will
automatically point outvery line of codéhat must be changed to conform to the new definition; it is
impossible to forget to attend to even a single case. This is a tremendous help to the developer,
especially if she is not the original author of the code being modified. This is yet another reason why
the static type discipline of ML is a positive benefit, rather than a hindrance, to programmers.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199 Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page6l of 186

Functionals [http://www.cs.cmu.edu/People/rwh/introsml/core/functionals.htm] Page 13
Functionals
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:55 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Functions (values of function type) dimst-classvalues which means that they have the same rights
and privileges as values of any other type. In particular, functions may be passed as arguments and
returned as results of other functions, and functions may be stored in and retrieved from data
structures such as lists and trees. We will see that first-class functions are an important source of
expressive power in ML.

Functions which take functions as arguments or yield functions as results are kimgheasrder
function: (or sometimes dsinctionalsor operatorg. Higher-order functions arise frequently in
mathematics. For example, the differential operator is the higher-order function that, when given a
(differentiable) function on the real line, yields its first derivative as a function on the real line. We
also encounter functionals mapping functions to real numbers, and real numbers to functions. An
example of the former is provided by the definite integral viewed as a function of its integrand, and
an example of the latter is the definite integral of a given function on the intepjaviewed as a
function ofx.

Higher-order functions are less familiar tools in programming since most well-known languac

at best rudimentary mechanisms to support their use. In contrast higher-order functions play a
prominent role in ML, with a variety of interesting applications. Their use may be classified into two
broad categories:

1. Abstracting patterns of controDesign patterns are just higher-order functions that "abstract
out" the details of a computation to lay bare the skeleton of the solution. The skeleton may be
fleshed out to form a solution of a problem by applying the general pattern to arguments that
isolate the specific problem instance.

2. Staging computationlt arises frequently that computation maystagedby expending
additional effort "early" to simplify the computation of "later” results. Staging can be used
both to improve efficiency and, as we will see later, to control sharing of computational
resources.

Before discussing these programming techniques, we will review the critically important concept of
scopeas it applies to function definitions. Recall that Standard Mlstatecally scopedanguage,
meaning that identifiers are resolved according to the static structure of the proguaeof fe
variablex is considered to be a reference tortbarest lexically enclosing declarationxaf We say
"nearest" because of the possibility of shadowing; if we re-declare a varidhén subsequent uses

of x refer to the "most recent” (lexically!) declaration of it; any "previous" declarations are
temporarily shadowed by the latest one.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page62 of 186

This principle is easy to apply when considering sequences of declarations. For example, it
clear by now that the variabjeis bound td32 after processing the following sequence of
declarations:

val x =2 (*x=27%)
val y = x*X (*y=47%
val X = y*x (* x=8 *)

val y = x*y (*y=327%)

In the presence of function definitions the situation is the same, but it can be a bit tricky to ur
at first. Here's an example to test your grasp of the lexical scoping principle:

val x =2
funfy=x+y
val x =3
valz=f4

After processing these declarations the variabfebound td&5, not to7! The reason is that the
occurrence of in the body of refers to thdirst declaration ok since it is the nearest lexically
enclosing declaration of the occureneeen thouglit has been subsequently re-declared. This
example illustrates three important points:

1. Binding is not assignment! If we were to view the second bindingagfan assignment
statement, then the valueodivould be7, not6.

2. Scope resolution ikxical, nottemporal. We sometimes refer to the "most recent" declaration
of a variable, which has a temporal flavor, but we always mean "nearest lexically enclosing at
the point of occurrence".

3. "Shadowed" bindings are not lost. The "old" binding<as still available (through calls to
f), even though a more recent binding has shadowed it.

One way to understand what's going on here is through the concegivsirg a technique for
implementing higher-order functions. When a function expression is evaluated, a copy of the
dynamic environment is attached to the function. Subsequently, all free variables of the function
(i.e. those variables not occurring as parameters) are resolved with respect to the environment
attached to the function; the function is therefore said to be "closed" with respect to the attached
environment. This is achieved at function application time by "swapping" the attached environment
of the function for the environment active at the point of the call. The swapped environment is
restored after the call is complete. Returning to the example above, the environment associated with
the functionf contains the declaratiofal x = 2 to record the fact that at the time the function

was evaluated, the variablevas bound to the valie The variables is subsequently re-bound to

3, but wherf is applied, we temporarily reinstate the binding o6 2, add a binding of to 4, then
evaluate the body of the function, yieldi®ig We then restore the bindingofand drop the binding

of y before yielding the result.

While seemingly very simple, the principle of lexical scope is the source of considerable expressive
power. We'll demonstrate this through a series of examples.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page63 of 186

To warm up let’s consider some simple examples of passing functions as arguments and yielding
functions as results. The standard example of passing a function as argumengis thection,
which applies a given function to every element of a list. It is defined as follows:

fun map’ (f, nil) = nil
| map' (f, h::it) = (f h) ;> map' (f, t)

For example, the application
map' (fn x => x+1, [1,2,3,4])
evaluates to the li$2,3,4,5]

Functions may also yield functions as results. What is surprising is that we cameveatactions
during execution, not just return functions that have been previously defined. The most basic (and
deceptively simple) example is the functmomstantly that creates constant functions: given a
valuek, the applicatiorronstantly k yields a function that yields whenever it is applied.

Here's a definition ofonstantly

val constantly = fn k => (fn a => k)

The function constantly has tyjze-> ('b ->'a) . We used thén notation for clarity, but
the declaration of the functi@monstantly =~ may also be written usirfign notation as follows:

fun constantly k a = k

Note well that awhite spaceseparates the two successive argumergsristantly ! The meanin
of this declaration is precisely the same as the earlier definitionfasingtation.

The value of the applicatiaronstantly 3 is the function that is constan@ly i.e., it always

yields3 when applied. Yet nowhere have we defined the function that always3/iel@ibe

resulting function is "created" by the applicatiortofistantly to the argumerg, rather than
merely "retrieved" off the shelf of previously-defined functions. In implementation terms the result
of the applicatiortonstantly 3 is a closure consisting of the functiomna => k with the
environmenval k = 3 attached to it. The closure is a data structure (a pair) that is created by
each application afonstantly ~ to an argument; the closure is the representation of the "new"
function yielded by the application. Notice, however, thabtiiedifference between any two

results of applying the functiamonstantly lies in the attached environment; the underlying
function isalwaysfn a =>k . If we think of the lambda as the "executable code" of the function,
then this amounts to the observation that no cedeis created at run-time, just némstancesof
existing code.

This discussion illustrates why functions in ML ag directly analogous to "code pointers™ in C.

You may be familiar with the idea of passing a pointer to a C function to another C function as a
means of passing functions as arguments or yielding functions as results. This may be considered to
be a form of "higher-order" function in C, but it must be emphasized that code pointers are
significantly less expressive than closures because in C there astatioblly manypossibilities for

a code pointer (it must point to one of the functions defined in your code), whereas in ML we may

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page64 of 186

generatelynamically manylifferent instances of a function, differing in the bindings of the variables
in its environment. The non-varying part of the closure, the code, is directly analogous to a function
pointer in C, but there is no counterpart in C of the varying part of the closure, the dynamic
environment.

The definition of the functiomap’ given above takes a function and list as arguments, yielding a
new list as result. Often it occurs that we wish to map the same function across several different
lists. Itis inconvenient (and a tad inefficient) to keep passing the same functiap’tpwith the

list argument varying each time. Instead we would prefer to create a instance of map specialized to
the given function that can then be applied to many different lists. This leads to the following
(standard) definition of the functionap:

fun map f nil = nil
| map f (h::t) = (fh) :: (map ft)

The functionmap so defined has tyg&->'b) -> 'a list -> 'b list . Ittakes a
function of typea ->'b as argument, and yields another function of tgpest -> 'b
list as result.

The passage fromap’ to mapis calledcurrying. We have changed a two-argument function (i
properly, a function taking a pair as argument) into a function that takes two arguments in su
yielding after the first a function that takes the second as its sole argument. This passage can be
codified as follows:

fun curry fxy = f (x, y)

The type oturry is('a*b->'c) -> (a-> (b ->'c)) . Observe thathap may be
alternately defined by the binding

fun map f | = curry map’ f1

Applications are implicitly left-associated, so that this definition is equivalent to the more verbose
declaration

fun map f | = ((curry map’) f) |

We turn now to the idea of abstracting patterns of control. There is an obvious similarity bet\
following two functions, one to add up the numbers in a list, the other to multiply them.

funadd_emnil=0
| add_em (h:it) =h +add_emt

funmul_emnil=1
| mul_em (h::t) =h *mul_emt

What precisely is the similarity? We will look at it from two points of view. One is that in each case
we have a binary operation and a unit element for it. The result on the empty list is the unit element,
and the result on a non-empty list is the operation applied to the head of the list and the result on the
tail. This pattern can be abstracted as the funotiduce defined as follows:

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page65 of 186

fun reduce (unit, opn, nil) = unit
| reduce (unit, opn, h::t) = opn (h, reduce (unit, opn,

0)
Here is the type akduce :
val reduce : 'b * (‘a*'b->'b) *'a list ->'b

The first argument is the unit element, the second is the operation, and the third is the list of values.
Notice that the type of the operation admits the possibility of the first argument having a ¢

type from the second argument and result. Using reduce, we may readefimen andmul_em as
follows:

fun add_em | = reduce (0, op +, I)
fun mul_em | = reduce (1, op *,)

To further check your understanding, consider the following declaration:
fun mystery | = reduce (nil, op ::,)

(Recall that bp :: " is the function of typé * 'a list -> 'a list that adds a given
value to the front of a list.) What function doagstery compute?

Another perspective on the commonality betwaeéth em andmul_em is that they are both defin

by induction on the structure of the list argument, with a base casié fpand an inductive case for

h::it , defined in terms of its behavior bn But this is really just another way of saying that the

defined in terms of a unit element and a binary operation! The difference is one of perspective:
whether we focus on the pattern part of the clauses (the inductive decomposition) or the result part of
the clauses (the unit and operation). The recursive structadeloém andmul_em is abstracted

by thereduce functional, which is then specialized to yieldd em andmul_em. Said another

way, reduce abstracts the pattern of defining a function by induction on the structure of a list.

The definition ofreduce leaves something to be desired. One thing to notice is that the arguments
unit andopn are carried unchanged through the recursion; only the list parameter changes on
recursive calls. While this might seem like a minor overhead, it's important to remember that multi-
argument functions are really single-argument functions that take a tuple as argument. This means
that each time around the loop we are constructing a new tuple whose first and second components
remain fixed, but whose third component varies. Is there a better way? Here's another definition that
isolates the "inner loop" as an auxiliary, tail-recursive function:

fun better_reduce (unit, opn, I) =
let
fun red nil = unit
| red (h::t) = opn (h, red t)
in
red |
end

Notice that each call ibetter_reduce creates aewfunctionred that uses the parameters

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page66 of 186

unit andopn of the call tabetter_reduce . This means thatd is bound to a closure

consisting of the code for the function together with the environment active at the point of definition,
which will provide bindings founit andopn arising from the application @ketter reduce to

its arguments. Furthermore, the recursive caltedo no longer carry bindings femit andopn,

saving the overhead of creating tuples on each iteration of the loop.

An interesting variation oreduce may be obtained kstagingthe computation. The motivation is
thatunit andopn often remain fixed for many different lise.§.,we may wish to sum the

elements of many different lists). In this casg& andopn are said to be "early” arguments anc

list is said to be a "late" argument. The idea of staging is to perform as much computation as
possible on the basis of the early arguments, yielding a function of the late arguments alone. In the
present case this amounts to buildiad on the basis afinit andopn, yielding it as a function

that may be later applied to many different lists. Here's the code:

fun staged_reduce (unit, opn) =
let
fun red nil = unit
| red (h::t) = opn (h, red t)
in
red
end

The definition ofstaged reduce bears a close resemblance to the definition of

better_reduce ; the only difference is that the creation of the closure bouretltamccursas

soon as unit and opare known rather than each time the list argument is supplied. Thus the
overhead of closure creation is "factored out" of multiple applications of the resulting function to list
arguments.

We could just as well have replaced the body of the let expression with the function

fnl=>red]l

but a moment's thought reveals that the meaning is precisely the same (apart from one additional
function call in the latter case).

Note well that we woulnot obtain the effect of staging were we to use the following definition:
fun curried_reduce (unit, opn) nil = unit
| curried_reduce (unit, opn) (h::t) = opn (h,
curried_reduce (unit, opn) t)

If we unravel théun notation, we see that while we are taking two arguments in succession, we are
not doing any useful work in between the arrival of the first argument (a pair) and the second (a list).
A curried function does not take significant advantage of staging. Siaged_reduce and
curried_reduce have the same iterated function type, namely

(b*(a*'b->'b))->"alist->'b

the contrast between these two examples may be summarized bynsangry function of iterated

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page67 of 186

function type is currie. Some are, and some aren't. The "interesting” examples (such as
staged_reduce) are the ones thaten’tcurried. (This directly contradicts established
terminology, but I'm afraid it is necessary to avoid misapprehension.)

The time saved by staging the computation in the definitistegled_reduce is admittedly
minor. But consider the following definition of an append function for lists that takes both arg
at once:

fun append (nil, I) =1
| append (h::t, I) = h :: append(t,l)

Suppose that we will have occasion to append many lists to the end of a given list. What we'd like is
to build a specialized appender for the first list that, when applied to a second list, appends tl
to the end of the first. Here's a naive solution that merely curries append:

fun curried_append nil | = |
| curried_append (h::t) | = h :: append t |

Unfortunately this solution doesn’t exploit the fact that the first argument is fixed for many second
arguments. In particular, each application of the result of appivimipd_append to a list

results in the first list being traversed so that the second can be appended to it. We can improve on
this by staging the computation as follows:

fun staged_append nil =fn | => |
| staged_append (h::t) =

let

val tail_appender = staged_append t
in

fn 1 =>h :: tail_appender |
end

Notice that the first list is traversoncefor all applications to a second argument. When applie
list[vl, ..,vn] ,the functiorstaged append yields a function that is equivalent to, but not
quite as efficient as, the function

fnl=>vlav2: ... :vnil

This still takes time proportional tg but a substantial savings accrues from avoiding the pattern
matching required to destructure the original list argument on each call.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page68 of 186

Exceptions [http://www.cs.cmu.edu/People/rwh/introsml/core/exceptions.htm] Page 14
Exceptions
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:55 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

In the first chapter of these notes we mentioned that expressions in Standard ML always have a type,
may have a value, and may engender an effect. So far we've concentrated on typing and evaluation.
In this chapter we will introduce the concept oeffiect While it's hard to give a precise general
definition of what we mean by an effect, the idea is that an effect is any action resulting from
evaluation of an expression other than returning a value. From this point of view we might consider
non-termination to be an effect, but we don't usually think of failure to terminate as a positive

"action" in its own right, rather as a failure to take any action. What are some other examples? The
main examples are these:

Exceptions. Evaluation may be aborted by signaling an exceptional condition.

Mutation. Storage may be allocated and modified during evaluation.

I/0. ltis possible to read from an input source and write to an output sink during evaluation.
Communication. Data may be sent to and received from communication channels.

PwbhE

This chapter is concerned with exceptions; the other forms of effects will be dealt with later in these
notes.

A basic use of exceptions in ML is to signal error conditions. MLsaf@anguage in the sense that

its execution behavior may be understood entirely in terms of the constructs of the language itself.
Behavior such as "dumping core" or incurring a "bus error" are extra-linguistic notions that may only
be explained by appeal to the underlying implementation of the language. It can be proved t

safe, from which it follows that such behaviors cannot arise (except through the failure of the
compiler to implement the language properly.) In unsafe languages (such as C) these sorts of errors
can and do arise, typically because of the (mis)use of a primitive operation on a value that dc

in its domain of definition. For example, in C we may cast an integer as a function pointer, then
invoke it by applying it to an argument. The behavior of such a program that cannot be predicted at
the level of the language itself since it relies on the details of the memory layout and the
interpretation of data as code. To ensure safety, and hence freedom from mysterious run-time faults,
ML ensures that the primitive operations may only be applied to appropriate arguments. This is
achieved in part by the static type discipline, which rules out expressions that are manifestly
inappropriate€.g, adding a string to an integer or casting an integer as a function), and partly by
dynamic checks that rule out violations that cannot be detected stagoglldiyision by zero or

arithmetic overflow). Static violations are signalled by type checking errors; dynamic violations are
signalled byraising exceptions

For example, the expressi8nt+ "3" s ill-typed, and hence cannot be evaluated. In contrast the
expressior8 div 0 is well-typed (with typént), but incurs a run-time fault that is signalled by

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page69 of 186

raising the exceptioBiv . We will indicate this by writing
3 div 0 => raise Div

Thus an exception is a form of "answer" to the question "what is the value this expression?".
implementations an exception such as this is reported by an error message of thiafaungtit
exception Div ", together with the line number (or some other indication) of the point in the
program where the exception occurred.

Exceptions have names so that we may distinguish different sources of error from one another. For
example, evaluation of the expressinaxint * maxint (wheremaxint is the largest

representable integer) causes the excefi@mrflow to be raised, indicating that an arithmetic
overflow error arose in the attempt to carry out the multiplication.

At this point you may be wondering about the overhead of checking for arithmetic faults. The
compiler must generate instructions that ensure that an overflow fault is caught before any s
operations are performed. This can be quite expensive on pipelined processors, which sacrifice
precise delivery of arithmetic faults in the interest of speeding up execution in the non-faulting case.
Unfortunately it is necessary to incur this overhead if we are to avoid having the behavior of an ML
program depend on the underlying processor on which it is implemented.

Another source of run-time exceptions is an inexhaustive match. Suppose we define thetidnction
as follows

funhd (h::_)=h

This definition is inexhaustive since it makes no provision for the possibility of the argument being
nil . What happens if we apphd tonil ? The exceptioMatch is raised, indicating the failure
of the pattern-matching process:

hd nil => raise Match

The occurrence ofldatch exception at run-time is indicative of a violation of a pre-condition t
invocation of a function somewhere in the program. Recall that it is often OK for a function to be
inexhaustive, provided that we take care to ensure that it is never applied to a value outside of its
domain. Should this occur (because of a mistake by the programmer, evidently), the result is
nevertheless well-defined because ML checks for pattern match failure, rather than leaving the
behavior of the application undefined. In other words: ML programs are implicitly "bullet-proofed”
against failures of pattern matching. The flip side is that if no inexhaustive match warnings arise
during type checking, then the exception Match can never be raised during evaluation (and hence no
run-time checking need be performed).

A related situation is the use of a pattern wak binding to destructure a value. If the pattern can

fail to match a value of this type, theBimd exception is raised at run-time. For example,
evaluation of the binding

val h::_ =nil

raises the exceptidBind since the pattern::_ does not match the valné . Here again obser

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page70 of 186

that aBind exception cannot arise unless the compiler has previously warned us of the possibility:
no warning, n@aind exception.

These are all examples of the use of pre-defined exceptions to indicate fatal error conditions. Since
the built-in exceptions have a built-in meaning, it is generally inadvisable to use these to signal
program-specific error conditions. Instead we introducevéexception using aexception

declaration, and signal it usingaise expression when a run-time violation occurs. That way we
can associate specific exceptions with specific pieces of code, easing the process of tracking
source of the error.

Here's an example. Suppose that we wish to define a "checked factorial" function that ensur
argument is non-negative. Here's a first attempt at defining such a function:

exception Factorial

fun checked_factorial n =
if n <0 then
raise Factorial
else if n=0 then
1
else n * checked_factorial (n-1)

The declaratiomxception Factorial introduces an exceptidfactorial , which we raise
in the case thathecked_factorial is applied to a negative number.
The definition ofchecked_factorial is unsatisfactory in at least two ways. One relatively

minor issue is that it does not make effective use of pattern matching, but instead relies on explicit
comparison operations. To some extent this is unavoidable since we wish to check explicitly for
negative arguments, which cannot be done using a pattern. A more significant problem is that
checked_factorial repeatedlychecks the validity of its argument on each recursive call, even
though we can prove that if the initial argument is non-negative, then so must be the argument on
each recursive call. This fact is not reflected in the code. We can improve the definition by
introducing an auxiliary function as follows:

exception Factorial

local
funfact0 =1
| fact n = n * fact (n-1)
in
fun checked_factorial n =
if n >= 0 then
fact n
else
raise Factorial
end

Notice that we perform the range check exactly once, and that the auxiliary function makes
use of pattern-matching.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pager1 of 186

The use of exceptions to signal error conditions suggests that raising an exception is fatal: execution
of the program terminates with the raised exception. But signaling an error is only one use of the
exception mechanism. More generally, exceptions can be used tameffdotal transfers of

control. By using arexception handlewe may "catch" a raised exception and continue evaluation
along some other path. A very simple example is provided by the following driver for the factorial
function that accepts numbers from the keyboard, computes their factorial, and prints the result.

fun factorial_driver () =
let
val input = read_integer ()
val result = makestring (checked_factorial input)
in
print result
end
handle Factorial => print "Out of range.\n"

The expressioexphandle matchis an exception handler. It is evaluated by attempting to ev

exp If it returns a value, then that is the value of the entire expression; the handler plays no role in
this case. If, howeveexpraises an exceptiaxn then the exception value is matched against the
clauses of the match (exactly as in the application of a clausal function to an argument) to determine
how to proceed. If the pattern of a clause matches the exceptighen evaluation resumes with

the expression part of that clause. If no pattern matches, the exeeptisne-raisedso that outer
exception handlers may dispatch on it. If no handler handles the exception, then the uncaught
exception is signaled as the final result of evaluation. That is, computation is aborted with the
uncaught exceptioexn.

In more operational terms, evaluatioregphandle matchproceeds by installing an exception

handler determined byatch then evaluatingxp The previous binding of the exception handler is
preserved so that it may be restored once the given handler is no longer needed. Raising ar
consists of passing a value of tygen to the current exception handler. Passing an exception to a
handler de-installs that handler, and re-installs the previously active handler. This ensures that if the
handler itself raises an exception, or fails to handle the given exception, then the exception is
propagated to the handler active prior to evaluation didinelle expression. If the expression

does not raise an exception, the previous handler is restored as part of completing the evaluation of
thehandle expression.

Returning to the functiofactorial_driver , We see that evaluation proceeds by attempting to
compute the factorial of a given number (read from the keyboard by an unspecified function
read_integer), printing the result if the given number is in range, and otherwise reporting that
the number is out of range. The example is trivialized to focus on the role of exceptions, but one
could easily imagine generalizing it in a number of ways that also make use of exceptions. For
example, we might repeatedly read integers until the user terminates the input stream (by typing the
end of file character). Termination of input might be signaled lynal®©fFile exception, which

is handled by the driver. Similarly, we might expect that the functiad integer raises the
exceptionSyntaxError in the case that the input is not properly formatted. Again we would

handle this exception, print a suitable message, and resume. Here's a sketch of a more complicated
factorial driver:

fun factorial_driver () =

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pager2 of 186

let
val input = read_integer ()
val result = makestring (checked_factorial input)

val _ = print result
in

factorial_driver ()
end

handle EndOfFile => print "Done.\n"
| SyntaxError =>
let val _ = print "Syntax error.\n" in
factorial_driver () end
| Factorial =>
let val _ = print "Out of range.\n" in
factorial_driver () end

We will return to a more detailed discussion of input/output later in these notes. The point to notice
here is that the code is structured with a completely uncluttered "normal path” that reads an integer,
computes its factorial, formats it, prints it, and repeats. The exception handler takes care of the
exceptional cases: end of file, syntax error, and domain error. In the latter two cases we report an
error, and resume reading. In the former we simply report completion and we are done.

The reader is encouraged to imagine how one might structure this program without the use of
exceptions. The primary benefits of the exception mechanism are thédrtlesyou to consider the
exceptional case (if you don't, you'll get an uncaught exception at run-time), and tafiothggu

to segregate the special case from the normal case in the code (rather than clutter the code with
explicit checks).

Another typical use of exceptions is to implemieatktracking a programming technique based on
exhaustive search of a state space. A very siralileit somewhat artificial, example is provided by

the following function to compute change from an arbitrary list of coin values. What is at issue is
that the obvious "greedy" algorithm for making change that proceeds by doling out as many coins as
possible in decreasing order of value does not always work. Given only a 5 cent and a 2 cent coin,
we cannot make 16 cents in change by first taking three 5's and then proceeding to dole out 2's. In
fact we must use two 5's and three 2's to make 16 cents. Here's a method that works for any set of
coins:

exception Change

fun change _ 0 = nil
| change nil _ = raise Change
| change (coin::coins) amt =
if coin > amt then
change coins amt
else
(coin :: change (coin::coins) (amt-coin))
handle Change => change coins amt

The idea is to proceed greedily, but if we get "stuck”, we undo the most recent greedy decision and

proceed again from there. Simulate evaluation of the exampleaafje [5,2] 16 to see how
the code works.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page73 of 186

Exceptions can also carry values. For example, we might associateSyitteaError exceptior
a string indicating the precise nature of the error. For example, we might write

raise SyntaxError "Integer expected"
to indicate a malformed expression in a situation where an integer is expected, and write
raise SyntaxError "ldentifier expected"
to indicate a badly-formed identifier. Such an exception is introduced by the declaration
exception SyntaxError of string
which introduces the excepti@yntaxError as an exception carrying a string as value. This
declaration introduces tlexception constructddyntaxError . Exception constructors are in
many ways similar to value constructors. In particular they can be used in patterns, as in the

following code fragment:

... handle SyntaxError msg => print "Syntax error: " * msg
/\ ll\nll

Here we specify a pattern fByntaxError exceptions that also binds the string associated with
the exception to the identifiensg and prints that string along with an error indication.

Exception constructors raise the question of the status of exceptions in the language. Recall that we
may use value constructors in two ways:

1. We may use them to create values of a datatype (perhaps by applying them to other values).
2. We may use them to match values of a datatype (perhaps also matching a constituent value).

The situation with exception constructors is symmetric.

1. We may use them to create an exception (perhaps with an associated value).
2. We may use them to match an exception (perhaps also matching the associated value).

Value constructors have types, as we previously mentioned. For example, the list consttuctors
and:: have types

‘a list
and
'a*’alist -> 'a list

respectively. What about exception constructors? A "bare" exception constructor (such as
Factorial above) has type

exn

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pager4 of 186

and a value-carrying exception constructor (sucByasaxError) has type
string -> exn

ThusFactorial is a value of typexn , andSyntaxError "Integer expected" isa
value of typeexn .

The typeexn is the type oéxception packetshe data values associated with an exception. The
primitive operatiorraise takes any value of tymxn as argument and raises an exception with

that value. The clauses of a handler may be applied to any value extypsing the rules of

pattern matching described earlier; if an exception constructor is no longer in scope, then the handler
cannot catch it (other than via a wild-card pattern).

The typeexn may be thought of as a kind of built-in datatygesept thathe constructors of this
type are not determined once and for all (as they are W#dtatype declaration), but rather are
incrementallyintroduced as needed in a program. For this reason thexypie sometimes called
anextensible datatype.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page75 of 186

References [http://www.cs.cmu.edu/People/rwh/introsml/core/refs.htm] Page 15
References
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:56 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Evaluation of an expression may terminate with a value and may along the way engender an effect
upon its environment. Our first example of an effect was the possibility of raising an exception,

which we explored in detail in the preceding chapter. The next important example of an effect is a
storage effectthe allocation or mutation of storage during evaluation. The introduction of storage
effects has profound consequences, not all of which are desirable. Indeed, storage effects are
sometimes denigrated by referring to thersids effectsby analogy with the unintended effects of

some medications. While it is surely excessive to dismiss storage effects as completely undesirable,
it is advantageous to minimize the use of storage effects except where clearly appropriate to the task.
We will explore some of the basic techniques for using storage effects later in this chapter, but first
we introduce the mechanisms for supporting mutable storage in ML.

To support mutable storage the execution model of programs is modified to include an implicit
memoryconsisting of a finite set ofiutable cellsontaining data items of a fixed type. A mutable

cell may be thought of as a kind of container in which a data value is stored. During the course of
evaluation the content of a cell may be retrieved or may be replaced by any other value of the same
type. Mutation introduces a strongly temporal aspect to evaluation: we speakwfémecontents

of a cell as the valumost recentlyassigned to it. This is to be contrasted with the bindings of values

to variables, which never change once made and hence have a permanent quality; the binding of a
variable is a uniquely-determined value that does not change during evaluation. Since cells are used
by issuing "commands" to modify and retrieve their contents, programming with cells is sometimes
calledimperative programming

Since cells may have their contents changed during evaluation it is imperative that we take careful
account of theédentity of cells. When are two cells the same? When are they different? The guiding
principle is that two cells (of the same type) are distinct if there is a program that can tell them apart;
otherwise they are equal. How can we tell cells apart? By doing the only things we can ever do with
cells: retrieve their contents or set their contents to specified values. Given two integer cells, we can
determine whether they are the same cell or not by first checking if they have distinct contents. If so,
then they are distinct cells. If not, we must distinguish between two "copies" of a single cell, or two
cells that happen to have the same content. To do this, bind the current contents of one cell to a
variable, and set that cell's value to an integer different from the saved contents. If the other cell's
value is now the newly-assigned value, then the two cells are the same, otherwise they are different.

This principle of equality is calledentity of indiscernableswo things are equal if we cannot tell
them apart. The test we just outlined extends to cells of other types, but is a rather roundabc
test for cell identity. In practice we work with a slightly conservative approximation to cell identity,
calledreference (or pointer) equality- two cells are equal iff they occupy the same address in

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page76 of 186

memory. This test is conservative in that it may distinguish two cells that are in fact indiscernable:
any two unit-valued cells are indiscernable because there is only one value of unit type, yet pointer
equality would distinguish them. To avoid such anomalies we use pointer equality to determine cell
identity, relying on the representation of cells as references to memory. For this reason mutable cells
in ML are calledeference cellsorreferences

Reference cells containing values of tyygeare themselves values of tygpref . They are "first-

class" values in the sense that reference cells may be passed as arguments, returned as results, and
even stored in other reference cells. Reference celiseated orallocated by the functiorref of

typetyp -> typref . When applied to a valual of typetyp, ref allocates a new cell, initializes

its content toval, and returns a reference to the cell. By a "new cell" we mean a cell that is distinct
from all other cells previously allocated; it does not share storage with any of therwontdrgof a

cell of typetyp s retrieved using the functidnof typetypref -> typ. Applying! to a (reference

to a) cell returns the current content of that cell. The content of a cell is modified by the opgration

= of typetyp* typref -> unit ; it is written using infix syntax with the reference cell as left-

hand argument and the new contents as right-hand argument. When applied to a cell and a value, it
replaces the content of that cell with that value, and yields the null-tuple as result. Cells may be
compared for equality using the equality operatignyhich has typgypref * typref ->

bool .

Here are some examples:

valr=ref0
vals=ref0
val a=r=s
val_=r:=3
valx=Is+Ir
valt=r
val b = s=t
val c =r=t
val =t:=5

valy=Is+1Ir
valz=1t+1Ir

Afterwards,a is bound tdalse ,b tofalse ,ctotrue ,xto3,y to5, andz to10. Be sure you
understand exactly why in each case!

The above examples illustrate the problemal@sing The variable$ andr are both bound to the
samecell, whereas is bound to aifferentcell. We say that andr arealiasesfor the same cell

because the one cell is known by two different names. Aliasing is a serious source of bugs in
programs since assigning a value to one destroys the contents of the other. Avoiding these kinds of
problems requires careful reasoning about the possibility of two variables being bound to the same
reference cell. A classic example is a program to "rotate" the contents of three cells: given reference
cellsa, b, andc, with initial content, y, andz, set their contents tg z, andx, respectively. Here's
candidate implementation:

funrot3 (a, b, ¢c) =
let
valt=la
in

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pager7 of 186

a=Ib;b:=lc;c:=t
end

This code works fine i&, b, andc are distinct reference cells. But supposedtatdc are the same
cell. Afterwards the contents afb, andc arey, y, andx! A correct implementation must work
even in the presence of aliasing. Here's a solution that works correctly in all cases:

funrot3 (a, b, ¢c) =

let

val (x,y, z) = ('a, 'b, !c)
in

a=y;b:=z,c:=x
end

Notice that we use immutable variables to temporarily hold the initial contents of the cells wh
values are being updated.

This example illustrates the use of the semicolon to sequence evaluation of expressions purely for
their effect. The expression

exp ; exp
is shorthand for

letval = exp, in exp, end

The expressioexp, is evaluated only for its effect; its return value is thrown away by the wildcard
binding. The value of the entire expression is the valexfafter evaluation oéxp, for effect.

The cumulative effect of the sequential composition is the effect of evaleapiptpllowed by the
effect of evaluatingxp,.

It is a common mistake to omit the exclamation point when referring to the content of a reference,
especially when that cell is bound to a variable. In more familiar languages such as C or Pascal all
variables are implicitly bound to reference cells, and they are imptieithgferenceadvhenever they

are used so that a variable always stands for its current contents. This is both a boon and a
obviously helpful in many common cases since it alleviates the burden of having to explicitly
dereference variables whenever their content is required. However, it shifts the burden to the
programmer in the case that the address, and not the content, is intended. In C o&& Voritde
address of (the cell bound to)in Pascal one must use reference parameters to achieve a similar
effect. Which is preferable is largely a matter of taste. The burden of explicit de-referencing is not
nearly so onerous in ML as it might be in other languages simply because reference cells are
relatively seldom used in ML, whereas they are the sole means of binding variables in more familiar
languages.

An alternative to explicitly de-referencing cells is to tefepatterns A pattern of the formef pat
matches a reference cell whose content matches the getteithis means that the cell's contents

are implicitly retrieved during pattern matching, and may be subsequently used without explicit de-
referencing. For example, the second implementatioot®f above might be written using ref

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page78 of 186

patterns as follows:

funrot3 (a, b, c) =

let

val (ref x, refy, ref z) = (a, b, ¢)
in

a=y;b:=z,c:=x
end

In practice it is common to use both explicit de-referencing and ref patterns, depending on the
situation.

Using references it is possible to mimic the style of programming used in imperative languages such
as C or C++ or Java. For example, we might define the factorial function as follows:

fun imperative_fact (n:int) =
let
val result = ref 1
vali=ref0
fun loop () =
if li = n then
0

else
(i:="+1; result := result * li; loop
0)
in
loop (); 'result
end

Notice that the functioloop is essentially just a while loop; it repeatedly executes its body until the
contents of the cell bound toreaches. The tail call tdoop is essentially just goto statement
since its argument is always the null-tuple.

It is bad style to program in this fashion. The purpose of the furicijperative fact is to

compute a simple function on the natural numbers. There is nothing about its definition that

that state must be maintained, and so it is senseless to allocate and modify storage to compi
definition we gave earlier is shorter, simpler, more efficient, and hence more suitable to the task.
This is not to suggest, however, that there are no good uses of references; quite the opposite is the
case. We will now discuss some important uses of state in ML.

The first example is the use of higher-order functions to manage shared private state. This
programming style is closely related to the use of objects to manage state in object-oriented
programming languages. Here's an example to frame the discussion:

local
val counter =ref O

in
fun tick () = (counter := !counter + 1; Icounter)
fun reset () = (counter := 0)

end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page79 of 186

This declaration introduces two functiotisk of typeunit -> int andreset of typeunit

->unit . Their definitions share @rivate variablecounter that is bound to a mutable cell
containing the current value of a shared counter.titke operation increments the counter and
returns its new value, and theset operation resets its value to zero. The types of the operations
suggest that implicit state is involved. In the absence of exceptions and implicit state, there is only
one useful function of typenit->unit , hamely the function that always returns its argument (and
it's debatable whether this is really useful!).

The declaration above defines two functiditk andreset |, that share a single private counter.
Suppose now that we wish to have several diffenstancef a counter --- different pairs of
functionstick andreset that share different state. We can achieve this by defirangraer
generato (or constructoy as follows:

fun new_counter () =

let
val counter =ref 0
fun tick () = (counter := !counter + 1; Icounter)
fun reset () = (counter := 0)

in
{ tick =tick, reset = reset }

end

The type ohew_counter isunit -> { tick : unit->int, reset : unit->unit

} . We've packaged the two operations into a record containing two functions that share privi
There is an obvious analogy with class-based object-oriented programming. The function
new_counter may be thought of ascanstructorfor a class of count@bjects Each object has a
privateinstance variableounter that is shared between tiniethodgick andreset of the
object represented as a record with two fields.

Here's how we use counters.

val c1 = new_counter ()
val c2 = new_counter ()

#tick c1; *1%
#tick c1; (*2%)
#tick c2; *1%
#reset c1,;

#tick c1; *1%
#tick c2; (*2%)

Notice thaicl andc2 aredistinctcounters that increment and reset independently of one another.

A second important use of references is to buildable data structuresThe data structures (sucl

lists and trees) we’'ve considered so faframsutablein the sense that it is impossiblecttangethe

structure of the list or tree without building a modified copy of that structure. This is both a benefit
and a drawback. The principle benefit is that immutable data structuggersistenin that

operations performed on them do not destroy the original structure --- in ML we can eat our cake and
have it too. For example, we can simultaneously maintain a dictionary both before and after

of a given word. The principle drawback is that if we aren't really relying on persistence, then it is

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB0 of 186

wasteful to make a copy of a structure if the original is going to be discarded anyway. What"
in this case is to have an "update in place" operation to budglemeralopposite of persistent)
data structure. To do this in ML we make use of references.

A simple example is the type pbssibly circular listsorpcls. Informally, a pcl is a finite graph in

which every node has at most one neighbor, callgntétdecessqrin the graph. In contrast to

ordinary lists the predecessor relation is not necessarily well-founded: there may be an infinite
sequence of nodes arranged in descending order of predecession. Since the graph is finite, this can
only happen if there is a cycle in the graph: some node has an ancestor as predecessor. Ho

a structure ever come into existence? If the predecessors of a cell are needed to construct a cell, then
the ancestor that is to serve as predecessor in the cyclic case can never be created! The "trick" is to
employbackpatchingthe predecessor is initializedl , so that the node and its ancestors can be
constructed, then it is reset to the appropriate ancestor to create the cycle.

This can be achieved in ML using the followitgtatype declaration:
datatype 'a pcl = Nil | Cons of 'a * 'a pcl ref

The "tail" of aCons node is a reference cell so that we may assign to it to implement backpatching.
Here's an example:

fun hd (Cons (h,))=nh (* auxiliary functions *)
funtl (Cons (_,t) =t

val ones = Cons (1, ref Nil) (* create a preliminary
acyclic structure *)

val _ = (tl ones) := ones (* backpatch to form the
cycle *)

Initially the variableones is bound to the acyclic pcl with one node whose head elemknt\8e

then assign that very node to the predecessor (tail) of that node, resulting in a circular pcl with one
node. Observe thad ones , hd !(tl ones) , hd !(tl !(tl ones)) , etcall evaluate to

1. Notice that we must explicitly refer to the contents of the tail of each node since it is a reference
cell!

Let us define théengthof a pcl to be the number of distinct nodes occurring in it. An interesting
exercise is to definelangth function for pcls that make® use of auxiliary storage€., no list of
previously-encountered nodes) and runs in time proportional to the number of cells in thietpcl.

think of the fable of the tortoise and the hare. If they run a long race on an oval track, what is sure to
happen, and when? Does this suggest an algorithm?

In addition to reference cells, ML also provides mutable arrays as a primitive data structure.
typarray is the type of arrays carrying values of tijyge The basic operations on arrays are these:

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB1 of 186

array : int * 'a ->'a array create array of given size with given initial value
size :’a array -> int number of elements in a given array

access element; raises Subscript exception if out
of bounds access is attempted

update : 'a array * int *'a -> change the contents of a given array element;
unit raises Subscript for out of bounds access

sub :’aarray *int ->'a

These are just the basic operations on arrays; const@age Librarydocument for further details.
Immutable arrays are also available. The tgpesctor is similar to the typ& array , excep
that vectors are immutable, whereas arrays are mutable.

One simple use of arrays is fmemoization Here's a function to compute thiéa Catalan number,
which may be thought of as the number of distinct ways to parenthesize an arithmetic expression
consisting of a sequencertonsecutive multiplication's. It makes use of an auxiliary summation
function that you can easily define for yourself. (Apphsog tof andn computes the sum 60 +

.. tfn)

funCl1=1
| C n=sum (fn k => (C k) * (C (n-k))) (n-1)

This definition ofCis hugely inefficient because a given computation may be repeated exponentially
many times. For example, to comp@d0 we must comput€ 1, C2, ...,C 9, and the

computation ofC i engenders the computation®fl , ...,C (i -1) for each 1<==9. We can do
better by caching previously-computed results in an array, leading to an enormous improvement in
execution speed. Here's the code:

local
val limit : int = 100
val memopad : int option array = Array.array (limit,

NONE)
in
funC'1=1
| C'n=sum (fn k => (C k) * (C (n-k))) (n-1)
andCn=

if n < limit then
case Array.sub (memopad, n)
of SOME r=>r
| NONE =>
let
valr=C'n
in
Array.update (memopad, n, SOME r);
r
end
else
C'n
end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB2 of 186

Note carefully the structure of the solution. The function C is a memoized version of the

number function. When called it consults the memopad to determine whether or not the required
result has already been computed. If so, the answer is simply retrieved from the memopad, otherwise
the result is computed, stored in the cache, and returned. The function C' looks superficially similar

to the earlier definition of C, with the important difference that the recursive calls are to C, rather

than C' itself. This ensures that sub-computations are properly cached and that the cache is consulted
whenever possible.

The main weakness of this solution is that we must fix an upper bound on the size of the cache. This
can be alleviated by implementing a more sophisticated cache management scheme that dynamically
adjusts the size of the cache based on the calls made to it.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB3 of 186

Input & Output [http://www.cs.cmu.edu/People/rwh/introsml/core/io.htm] Page 16
Input & Output
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:55 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Standard ML Basis Librargefines a three-layer input and output facility for Standard ML. These
modules provide a rudimentary, platform-independent text I/O facility that we summarize briefly
here. The reader is referred to lBesection of thé&Standard ML Basis Librarfor more details.

There is no standard library for graphical user interfaces; each implementation provides its own
package. See your vendor's documentation for details.

The text I/O primitives are based on the notions ahpat streamand aroutput streamwhich are

values of typenstream andoutstream , respectively. An input stream is an unbounded

sequence of characters arising from some source. The source could be a disk file, an interactive user,
or another program (to name a few choices). Any source of characters can be attached to an input
stream. An input stream may be thought of as a buffer containing zero or more characters that have
already been read from the source, together with a means of requesting more input from the source
should the program require it. Similarly, an output stream is an unbounded sequence of characters
leading to some sink. The sink could be a disk file, an interactive user, or another program (to name
a few choices). Any sink for characters can be attached to an output stream. An output stream may
be thought of as a buffer containing zero or more characters that have been produced by the program
but have yet to be flushed to the sink.

Each program comes with one input stream and one output streamstiled andstdOut
respectively. These are ordinarily connected to the user's keyboard and screen, and are used for
performing simple text 1/O in a program. The output strettarr is also pre-defined, and is used
for error reporting. It is ordinarily connected to the user's screen.

Textual input and output are performed on streams using a variety of primitives. The simplest are
inputLine andprint . To read a line of input from a stream, use the funatiputLine of
typeinstream -> string . It reads a line of input from the given stream and yields that line as
a string whose last character is the line terminator. If the source is exhausted, return the empty
string. To write a line tetdOut , use the functioprint of typestring -> unit . To write tc

a specific stream, use the functmmput of typeoutstream * string -> unit , Which

writes the given string to the specified output stream. For interactive applications it is often
important to ensure that the output stream is flushed to theesqksp that it is displayed on the
screen). This is achieved by callitgshOut of typeoutstream -> unit , Which ensures th

the output stream is flushed to the sink. The print function is a composititpoft (to

stdOut) andflushOut

A new input stream may be created by calling the funcig@min of typestring ->

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB4 of 186

instream . When applied to a string, the system attempts to open a file with that name (according
to operating system-specific naming conventions) and attaches it as a source to a new input stream.
Similarly, a new output stream may be created by calling the furog@amOut of typestring -

> outstream . When applied to a string, the system attempts to create a file with that name
(according to operating system-specific naming conventions) and attaches it as a sink for a new
output stream. An input stream may be closed using the furndtiseln of typeinstream ->

unit . A closed input stream behaves as if there is no further input available; request for input from
a closed input stream yield the empty string. An output stream may be closedass@ut of
typeoutstream -> unit . A closed output stream is unavailable for further output; an attempt

to write to a closed output stream raises the excepgatiO.10

The functioninput of typeinstream -> string is a blocking read operation that returns a
string consisting of the characters currently available from the source. If none are currently ¢

but the end of source has not been reached, then the operation blocks until at least one character is
available from the source. If the source is exhausted or the input stream isicfogedyeturns the

null string. To test whether amput operation would block, use the functicaninput of type
instream * int -> int option. Given a streasiand a bound, caninput determines

whether or not a call tmput would immediately yield up to characters. If thmput operation

would block,caninput yieldsNONEotherwise it yieldSOME, with 0<=k<=n being the number

of characters immediately available on the input streamanlihput yieldsSOME 0 the stream i

either closed or exhausted. The funconlOfStream of typeinstream -> bool tests

whether the input stream is currently at the end (no further input is available from the source). This
condition is transitive since, for example, another process might append data to an open file in
between calls tendOfStream .

The functionoutput of typeoutstream * string -> unit writes a string to an output
stream. It may block until the sink is able to accept the entire string. The fuhctio@ut of
typeoutstream -> unit forces any pending output to the sink, blocking until the sink accepts
the remaining buffered output.

This collection of primitive 1/0 operations is sufficient for performing rudimentary textual I/O. For
further information on textual I/O, and support for binary 1/0 and Posix I/O primitives, see the
Standard ML Basis Library

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB5 of 186

Lazy Data Structures [http://www.cs.cmu.edu/People/rwh/introsml/core/lazydata.htmPage 17
Lazy Data Structures
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:55 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

As we sawearlier, adatatype declaration is used to introduce a new type whose elements are
generated by a given set of value constructors. The value constructors may be used to create values
of the type (by applying them to values of suitable type), and to decompose values of the type (by
using them in patterns). Value constructors, like all other functions in ML, are evaagtaty

meaning that the arguments to the constructor are evaluated before the constructor is applied. For
example, to attach an element to the front of a list, we first determine the value of the elemer

value of the list before building a new list with that element as head and that list as tail. This

based on the intuitively appealing idea of a list as a kind of value that we manipulate by using the list
constructors as functions and as patterns.

An alternative is to view a data structure as being perpetually in the process of creation, rath

a result of a completed computation. According to this view a list may be thought of as a "pa
"suspended", computation that, when provoked, computes just far enough to determine whether the
end of the list has been reached, or, if not, to produce the next element of the list together with a
suspended computation to compute the remainder of the list. An added benefit of this viewpoint is
that it is then possible to defim&inite lists (better known astream$ that continually generate the

next element, without ever reaching the end of the list. This view of data structures as being in the
process of creation conflicts with the eager evaluation strategy just described since under the eager
approach all expressions are fully evaluated before they are used, whereas we would like to evaluate
them only as much as absolutely necessary to allow the overall computation to proceed. This is
called, appropriately enoughzy evaluation

Standard ML does not support lazy evaluation as a primitive notion; it can be implemented "t

using methods that are described later in these notes. However, Standard ML of New Jersey (from
version 110.5) does provide for lazy evaluation through an extensiondsttigpe andval

rec declaration forms. We will illustrate these mechanisms by defining datybeam of

streams of values of type . Based on the discussion above you might imagine that a stream is just

an infinite list, but it is important to keep the two concepts separate. Lists are eager types whose
values are generated by finitely-many applications d the empty lismil . Streams are lazy

types whose values are determined by suspended computations that generate the next element of the
stream (and another computation to generate the remainder). The two concepts are, and ought to be
kept separate since they serve different purposes and require different modes of reasoning.

First off, the lazy evaluation mechanisms of SML/NJ must be enabled by evaluating the following
declarations:

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB6 of 186

Compiler.Control.Lazy.enabled := true;
open Lazy;

We may then define a type of streams as follows:

datatype lazy 'a stream = Cons of 'a * ’a stream

The keyword fazy " indicates that values of typestream are suspended computations that,
when evaluated, yield a value of the fd@ons (X, c) , Wherex is a value of typ& , andc is
another value of typa stream , i.e., another computation of such a value.

How might a value of typa stream be created? Since the description of values of this type
we've just given is clearly "circular", we must employ a recursive value binding to create one. Here's
a definition of the infinite stream dfs as a value of typet stream

val rec lazy ones = Cons (1, ones)

The keyword fazy " indicates that we are defining a value of a lazy type, which means that it must
be kept as an incomplete computation, rather than fully evaluated at the time the binding is created.
What computation is bound tmes ? It's the computation that, when evaluated, yi€laiss (1,

ones) , a stream whose head elemeri end whose tail is the very same computation again. Thus

if we evaluate the tail aines we will, once again, obtain the same value, and sanfinitum

How can we take apart values of stream type? By pattern matching, of course! For example, we
may evaluate the binding

val Cons (h, t) = ones

to extract the head and tail of the streamas . To perform the pattern match we must first force the
evaluation obnes to obtainCons (1, ones) , then pattern match to birdto 1 andt to

ones . Had the pattern been "deeper", further evaluation would be forced, as in the following
binding:

val Cons (h, (Cons (h’, t')) = ones
To evaluate this binding, we evaluate oneSdos (1, ones) , bindingh to 1 in the process,
then evaluatenes again toCons (1, ones) , bindingh’ to1l andt’” toones. The general
rule ispattern matching forces evaluation of partial computations up to the depth required by the
patterr.
We may define functions to extract the head and tail of a stream as follows:
fun shd (Cons (h,))=h
funstl (Cons (,S8)) =s

Both of these functions force the computation of the stream when applied so that they may e
head and tail elements. In the case of the head element it is clear that the stream comupistaigon

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB7 of 186

forced in order to determine its value, but a moment’s thought reveals timat gtisctly necessary

to force the computation of a stream to extract it's taill Why is that? Since the tail of a stream is
itself a stream, it may be thought of as a suspended computation. But which suspended computation
is it? According to the definition just given, it is the suspended stream computation extracted from
the second component of the value of the given stream. But another definition is possible: it is the
suspended computation thatien forcedyields the second component of the result of forcing the
stream computation. Here's a definition:

fun lazy Istl (Cons (_, S)) =s

Here the keywordldzy " indicates that an applicationistl to a stream doa®timmediately
perform pattern matching (hence forcing the argument), but rather eetelypa delayed stream
computation that, when forced, forces the argument and extracts the tail of the stream.

The behavior of the two forms of tail function can be distinguished as follows:

val rec lazy s = (print "."; Cons (1, s));

val s' = stl s; (* prints ".

*

val Cons _ =5/ (* silent *)

val rec lazy s = (print "."; Cons (1, s));

val s" = Istl s; (* silent *)
val Cons _=s"; (* prints "."
)

Notice that sincstl immediately forces it's argument, the s printed when it is applied, where
it is printed only when the result of applyilstj to an argument is itself forced by another pattern
match.

It is extremely importanthat you understand the difference between these two definitions! To check
your understanding, let's define a functsomap that applies a function to every element of a stream,
yielding another stream. The typesafiap should bg’a -> ’b) -> 'a stream ->'b

stream . The thing to keep in mind is that the applicatiosrofip to a function and a stream

should set up (but not compute) another stream that, when forced, forces the argument stream to
obtain the head element, applies the given function to it, and yields this as the head of the result.
Here's the code:

fun smap f =
let
fun lazy loop (Cons (X, s)) = Cons (f x, loop s)
in
loop
end

Notice that we have "staged" the computation so that the partial applicasmap to a function

yields a function that loops over a given stream, applying the given function to each element. This
loop is a "lazy" function to ensure that an application of loop to a stream merely sets up a stream
computation, rather than forcing the evaluation of its argument at the time that the loop is applied.
This ensures that we are as lazy as possible about evaluating streams. Had we dropped the keyword

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB8 of 186

"lazy " from the definition of the loop, then an applicatiorsofap to a function and a stream

would immediately force the computation of the head element of the stream, rather than mer

a future computation of the same result. This would be a bit over-eager in the case that the result of
applyingsmap were never used in a subsequent computation. Which solution is "right"? It all
depends on what you're doing, but as a rule of thumb, it is best to be as lazy as possible when dealing
with lazy types.

To illustrate the use of smap, here's a definition of the infinite stream of natural numbers:

val one_plus = smap (fn n => n+1)
val rec lazy nats = Cons (0, one_plus nats)

It is worthwhile contemplating how and why this definition works.

Now let's define a functiosfilter of type('a -> bool) -> 'a stream ->'a
stream that filters out all elements of a stream that do not satisfy a given predicate. Here's the code:

fun sfilter pred =
let
fun lazy loop (Cons (x, S)) =
if pred x then Cons (X, loop s) else loop s
in
loop
end

We can use filter to define a functisieve that, when applied to a stream of numbers, retains only
those numbers that are not divisible by a preceding number in the stream:

funmmodn=m-n*(mdivn)
fundividesmn=nmodm=0

fun lazy sieve (Cons (x, s)) = Cons (X, sfilter (not o
(divides x)) s)

We may now define the infinite stream of primes by applgiage to the natural numbers greater
than or equal to 2:

val nats2 = stl (stl nats) (* might as well be
eager *)
val primes = sieve nats2

To inspect the values of a stream it is often useful to use the following function that rtakés"
elements from a stream and builds a list of thogalues:

fun take 0 _ =nil
| take n (Cons (X, s)) = x :: take (n-1) s

In addition to supporting demand-driven computation the lazy evaluation primitives of SML/NJ also
supportmemoizatiorof the results of a computation. The idea is that a delayed computation is
performedat most oncelf it is never forced by pattern matching, then the delayed computation is
never performed at all. If it is ever forced, then the result of forcing that computation is stored in a

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageB9 of 186

memo pad so that if it is forced again, the previous result is returned immediately,without repeating
the work that was done previously. Here's an example to illustrate the effects of memoization:

val rec lazy s = Cons ((print "."; 1), s)

val Cons (h,) =s; (* prints ".",
binds hto 1 *)
val Cons (h, _) =s; (* silent, binds
hto 1%
Replace print ".";1 " by a time-consuming operation yieldih@s result, and you will see that

the second time we foreethe result is returned instantly, taking advantage of the effort expen:
the time-consuming operation induced by the first force of

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page90 of 186

Concurrency [http://www.cs.cmu.edu/People/rwh/introsml/core/cml.htm] Page 18
Concurrency
[Back] [Home] [Up]
Last edit Monday, April 27, 1998 02:54 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Concurrent ML(CML) is a non-standard extension of Standard ML with primitives for concurrent
programming. It is available as part of 8dL/NJcompiler only. TheXene Libraryfor
programming the X windows system is based on CML. Mh#/orkssystem also includes
primitives for concurrent programming.

Sample Code for this Chapter

[Back] [Home] [Up]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagedl of 186

Module Language [http://www.cs.cmu.edu/People/rwh/introsml/modules.htm] Page 40
Module Language
[Back] [Home] [Next]
Last edit Sunday, April 05, 1998 10:45 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

The Standard Mimodule languageomprises the mechanisms for structuring programs into se
units. Program units are callsttuctures A structure consists of a collection of components,
including types and values, that constitute the unit. Composition of units to form a larger unit is
mediated by gignature which describes the components of that unit. A signature may be tho
as the type of a unit. Large units may be structured into hierarchiesubksiguctures Generic, or
parameterized, units may be definedusstors

[Signatures and Structurgg Views and Data Abstractiop] Hierarchies and Parameterizatipn

[Back] [Home] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page92 of 186

Signatures and Structures Page
[http://www.cs.cmu.edu/People/rwh/introsml/modules/sigstruct.htm] 19

Signatures and Structures
[Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:57 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

The fundamental constructs of the ML module systemsigraturesandstructures A signature

may be thought of as an interface or specification of a structure, and a structure may correspondingly
be thought of as an implementation of a signature. Many languages (such as Modula-2, Modula-3,
Ada, or Java) have similar constructs: signatures are analogous to interfaces or package spe

or class types, and structures are analogous to implementations or packages or classes. One thing to
point out right away, though, is that the relationship between signatures and structures in ML is
many-to-manywhereas in some languages (such as Modula-2) the relationshgtis-oneor

many-to-one This means that in ML a signature may serve as the interface for many different
structures, and that a structure may implement many different signatures. This provides a
considerable degree of flexibility in the use (and re-use) of components in a system. The price we
pay for this flexibility is that we must be quite careful about referrinigesignature of a structure,

since it can have more than one. As we will see, every structureritesd specificor principal,

signature, with the property that all other signatures for that structure are (in a suitable sense) more
restrictive than the principal signature.

Structures

The fundamental unit of modularity in ML is teucture A structure consists of a sequence of
declarations comprising tlttemponentsf the structure. A structure may be bound $tracture
variable using astructure binding The components of a structure are accessed losiggdentifiers
or paths A structure may also mpenedo incorporate all of its components into the environment.

Here's a simple example of a structure:

structure IntLT = struct

type t = int

val It = (op <)

val eq = (op =)
end

This structure has three components, one type and two values, each of which are functions. The type
component is namedand is bound to the typet . The value components are narttedandeq,

and are bound to the corresponding comparison operations on integers. This structure packages up
the typent with the integer comparison operatiehand= to form a module that is then bound to

the structure variabletLT .

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Paged3 of 186

We may similarly package up the tyipe with comparison operations being divisibility and
equality using the following binding:

structure IntDiv = struct
type t = int
fun It (m, n) = (n mod m = 0)
fun eq (m, n) = (op =)

end

The structures and may be thought of as two diffen¢ertpretationsof the typant as an ordered

type (.e., a type supporting a "less than" and an equality operation). In one case we interpret "less
than" as the standard ordering on integers, in the other we interpret "less than" as divisibility. The
point isthe type does not determine the interpretatigvie use the module system to package up

types with operations to provide an interpretation of that type. Many different interpretations may co-
exist, provided only that we bind them to distinct structure variables.

The components of a structure are accessed yitigs(also known akong identifiersor qualified
name$. We may only access the componentsmdraedstructure (one that has been bound to a
structure variable). A component nameaf a structure namestrid is accessed by the long name
strid. id, the structure name followed by the component name, separated by a "dot". For example,
INtLT.It designates theé operation of the structutatLT , andintDiv.lt designates thie
operation of the structutatDiv . The type ofntLT.It is

INtLT.t * IntLT.t -> bool ,
and the type aintDiv.It is

IntDiv.t * IntDiv.t -> bool

The types of these operations have been "externalized" using long identifiers to refer to the
appropriate typé for each operation. SintetLT.t andIntDiv.t are both bound to the type
int , it makes sense to write expressions sudhtaslt(3,4) andIntDiv.1t(3,4)

SincelntLT.t andIntDiv.It are both bound to the typeg , itis technically correct to
considenntLt.t to be of type

IntDiv.t * IntDiv.t -> bool
and also of type
int * int -> bool.

Were we also to have a struct@®ingLT whoset component is bound to the tygeing , then
StringLT.It would have type

StringLT.t * StringLT.t -> bool

and type

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Paged4 of 186

string * string -> bool
but not type

INtLT.t * IntLT.t -> bool

Packaging a declaration to form a structure does not affect the usual rules of type equivalence ---
transparent type definitions remain transparent.

The use of a long identifier to access a component of a structure serves to remind us of the
interpretation of the underlying type of the structure. For example, the long idemltifiett

reminds us that the comparison is the standard "less than" relation on integers, whereas the long
identifier IntDiv.It reminds us that the comparison is divisiblity. Sometimes the use of long
identifiers can get out of hand, cluttering the program text, rather than clarifying it. This can be
alleviated byopeningthe structure for use in a particular context. For example, rather than writing

IntDiv.It (expl, exp2)andalso IntDiv.eq (exp3, exp4)

we may instead write

let

open IntDiv

in

It (expl, exp2)andalso eq (exp3, exp4d)
end

This has the effect of incorporating the components of the struotuiie into the environment for
the duration of the evaluation of the body oflgte expression. Itis as if we replaagpén
INtLT " by the declarations comprising the structure boundttd™ .

Usingopen has some disadvantages. One is that we cannot simultaneously open two struct
have one or more components with the same names --- the one we open later we will shadow the
bindings of the one we open earlier. For example, if we write

let

open IntLT IntDiv (* open both structures in the
order given *)
in

end
then only the bindings of the second structln&®iv , are available in the scope of tke
because they completely shadow the bindings of the first structilrg, .

Another disadvantage is that it is difficult to determine exactly which bindings are introduced by an
open declaration. We must refer to the implementation of the opened structure (typically defined
somewhere remote from the client code) to understand the effect of the open. A typical bug is to
unwittingly shadow an identifier by opening a structure that happens to provide a binding for that
identifier, even though we did not intend that it do so. In many cases this will result in a

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Paged5 of 186

typechecking error, but in more insidious cases it can lead to subtle run-time bugs. For example,
suppose the implementation of the structure makes use of an auxiliary function as follows:

structure StringLT = struct
type t = string
fun compare (c, d) = Char.< (c, d)

fun It (s, t) = ... compare ...
fun eq (s, t) = ... compare ...
end

Opening this structure introduces not only the expected compdnéintsandeq, but also the
unexpected auxiliary functiocompare !

To avoid such problems it is usually advisable to awpieh entirely. The typical compromise is
introduce a short (typically one letter) name for the structures in question to minimize the clutter of a
long path. Thus we might write

let
_structure | =IntLT
in
LIt (expl, exp2)andalso l.eq (exp3, exp4)
end

rather than opening the structim&_ T as suggested above.

The structures and are rather simple examples of the use of the module system. A more substantial
example is provided by packaging the implementation of (ephemeral) queues into a structure.

structure PersQueue = struct
type 'a queue = 'a list * 'a list
val empty = (nil, nil)
fun insert (x, (bs, fs)) = (x::bs, fs)
exception Empty
fun remove (nil, nil) = raise Empty
| remove (bs, f::fs) = (f, (bs, fs))
| remove (bs, nil) = remove (nil, rev bs)
end

The components of this structure may be accessed by using long identifiers,

val q = PersQueue.empty

val q' = PersQueue.insert (1, q)

val q" = PersQueue.insert (2, q)

val (x",) = PersQueue.remove q" *2%
val (x', _) = PersQueue.remove (' *1%

by opening the structure,

let
open PersQueue
in

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation PageQ6 of 186

insert (1, empty)
end

or by introducing a short name for it

let

structure PQ = PersQueue
in

PQ.insert (1, PQ.empty)
end

The structurd’ersQueue may be thought of as an implementation of the abstract data type of
persistent queues. We may build and manipulate queues using the opBatsiseue.empty
PersQueue.insert , andPersQueue.remove . Structures are loosely analogous to classes in
languages such as C++ and Java; in particular, abstract types are usually implemented by structures.

Signatures

A signatureis the type of a structure. It describes a structuspéyifyingeach of its components by
giving its name and a description of it. Different sorts of components have different specifications.
A type component is specified by giving its arity (number of arguments) and (optionally) its
definition. A datatype component is specified by its declaration, which defines its value constructors
and their types. An exception component is specified by giving the type of the values it carries (if
any). A value component is specified by giving its type scheme.

Here is the signature of an ordered type, one that comes equipped with a comparison operations on it.

signature ORDERED = sig

type t

vallt: t*t-> bool

valeq:t*t->bool
end

This signature describes a structure that provides a type componenttn@siddno specified
definition) and two operationf, andeq, of typet * t -> bool . Ordinarily we expect thdt
is reflexive and transitive, and theq is an equivalence relation, but these requirements are not
formally expressible in ML.

If we wish we can specify the definition of a type component in a signature. For example, we may
define the signature

signature INT_ORDERED = sig
type t = int
val lt: t*t -> bool
val eq : t*t-> bool

end

which is similar to the signatu@RDEREDexcept that the type componénis specified to be

equivalent tant . It therefore describes only those structures that provide an interpretation of
as an ordered type. (As we mentioned earler, there can be many such interpretations.)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page97 of 186

An important consequence of having type definitions in signatures is that many superficially
signatures are equivalent. For example, the signitdreORDEREDs equivalent to the following
signature:

signature INT_ORDERED_VARIANT = sig
type t = int
val It : int * int -> bool
val eq : int * int -> bool

end

The reason is that since the type compoheastdefined to bent , we may replace it bint
anywhere that it is used to obtain an equivalent signature. For all practical purposes the signatures
INT_ORDERENdINT_ORDERED_VARIANTre indistinguishable from one another.

Here is a signature describing implementations of persistent queues:

signature QUEUE = sig
type 'a queue
val empty : 'a queue
val insert : 'a * 'a queue -> 'a queue
exception Empty
val remove : 'a queue ->'a * 'a queue
end

This signature specifies that an implementation of persistent queues provide a one-argument type
constructofa queue , the type of queues containing values of tgpean exceptiofcmpty

carrying no value, and the valumspty , insert , andremove with typesa queue ,'a*'a

gueue -> ‘'aqueue ,andaqueue -> 'a *'a queue , respectively.

Signature Matching

Thesignature matchingelation is of central importance to the ML module system. Signature
matching governs the formation of complex module expressions in the same way that type matching
governs the formation of core language expressions. For example, to determine whether a structure
bindingstructure strid : sigexp= strexpis well-formed, we must check that thencipal

signature ostrexpmatches thascribedsignaturesigexp The principal signature of a structure
expression is the signature that most accurately describes the sstretygat contains the

definitions of all of the types defined strexp and the types of all of its value components. We then
compare the principal signaturestfexpagainst thesignaturesigexpto determine whether or not
strexpsatisfies the requirements specifiedsigexp

Signature matching consists of a comparison betweandidateand aargetsignature. The target
expresses a set of requirements that the candidate must fulfill. In the case of a structure binding the
candidate is the principal signature of the structure expression, and the target is the ascribec

of the binding. Roughly speaking, to check that a candidate siganture matches a target signature it is
necessary to ensure that the following conditions hold:

1. Every type specification in the target must have a matching type specification in the candidate.
If the target specifies a definition for a type, so must the candidate specify an equivalent

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Paged8 of 186

definition.

2. Every exception specification in the target must have an equivalent exception specification in
the candidate.

3. Every value specification in the target must be matched by a value specification in the
candidate with at least as general a type.

Note that the candidate signature may Imore componenthan are required by the target, may
havemore definitionof types than are required, and may have value componentaavittgeneral

types. The target signature specifies a set of necessary conditions that must be met by the candidate,
but the candidate may well be much richer than is required by the target.

To make these ideas precise, we decompose the signature matching relation into two sub-relations,
enrichmentndrealization that are defined as follows:

1. A signaturesigexpenrichesa signaturesigexp’if sigexphas at least the components specified
in sigexp, with the types of value components being at least as gensigéxpas they are in
sigexp!

2. A signaturesigexprealizesa signatursigexp’if sigexpfulfills at least the type definitions
specified insigexp, but is otherwise identical gigexp!

In other wordsigexpenrichessigexp’if we can obtairsigexp’from sigexpby dropping components

and specializing types, astjexprealizessigexp'if we can obtairsigexp’from sigexpby "forgetting'

the definitions of some afigexps type components. It is immediate that any signature both enriches
and realizes itself, and it is not hard to see that enrichment and realization are transitive.

We then say thatigexpmatchessigexp’if there exists a signatusiggexp”’such thasigexpenriches
sigexp”andsigexp’realizessigexp. Put in more operational terms, to determine whedigexp
matchessigexp, we first drop components and specialize typesgexpto obtain aziewsigexp’of
sigexpwith the same componentssgexp, then check that the type definitions specifiediggxp’
are provided by the view. Signature matching can fail for several reasons:

1. The target contains a component not present in the candidate.

2. The target contains a value component whose type is not an instance of its type in the
candidate.

3. The target defines a type component, that is defined differently or not defined in the candidate.

The first two reasons are failures of enrichment; the third is a failure of realization.

Some examples will clarify these definitions. Let us consider realization first since it is the simpler
of the two relations. The signatuidT_ORDEREDealizes the signatu@RDEREDecause we mi
obtain the latter from the former by "forgetting" that the type compdénenthe signature
INT_ORDEREDSs defined to bent . The converse failORDERE@oes not realize
INT_ORDEREMDecaus®RDEREMoes not define the type componenb beint . Here is

another counterexample to realization. The signature

signature LESS_THAN = sig

type t = int
val lt : t *t -> bool
end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Page99 of 186

does not realize the signat@&DEREeven though it defindsto beint , simply because thex
component is missing from the signatueEeSS_THAN

That's all there is to say about realization. Enrichment is slightly more complicated. The signature
ORDERE®nNriches the signatut&eSS_THANbecause it provides all of the components required by
the latter, at precisely the required types. For a more interesting example, consider the signature of
monoids,

signature MONOID = sig

type t

val unit : t

valmult:t*t->t
end

and the signature of groups,

signature GROUP = sig

type t
val unit : t

valmult:t*t->t
valinv:t->t
end

The signatur&SROUPenriches the signaturONOIDas might be expected (since every group is a
monoid).

The enrichment relation respects signature equivalence. For example, the siifatGOieDERED
enriches the following signature:

signature INT_LESS_THAN = sig
val It : int * int -> bool
end

Here we have dropped both the@nd theeq components of the signatuidT ORDEREDand
specifiedlt to have a superficially different type than is specified in the signatlireORDERED
As was pointed out earlier, the signatid ORDEREDSs equivalent to the signature
INT_ORDERED_VARIAN;Twhich clearly enriches the signatiikd LESS THAN Since
enrichment respects signature equivalence, it followdHatORDEREDSs an enrichement of
INT_LESS THAN

The enrichment relation also allows the types of value components to be specialized by instantiating
polymorphic types. For example, the signature

sig
type t
valf:'a->'a
end

enriches the signature

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel00of 186

sig
type t
valf:t->t
end

simply because the polymorphic type> 'a may be specialized to the required typet
(by taking'a to bet).

There is one additional case of enrichment to consider. A datatype specification may be regarded as
an enrichment of a signature that specifies a type with the same name and arity (but no definition),
and zero or more value components corresponding to some (or all) of the value constructors of the
datatype. The types of the value components must match exactly the types of the correspon
constructors; no specialization is allowed in this case. For example, the signature

sig
datatype 'a rbt =
Empty | Red of 'arbt * 'a * 'a rbt | Black of 'a rbt *
'‘a*'arbt
end

is considered to be an enrichment of the signature

sig

type 'a rbt

val Empty : 'a rbt

val Red : 'arbt*'a * 'a rbt
end

which specifies two of the three value constructors of the datatype as ordinary values.
Putting these ideas together, we see that the following signature matches the SWDBRIOI®

sig
type t = int list
val unit : 'a list
val mult : 'alist * 'a list -> 'a list
val aux : 'a list
end

Why? First, we drop the componentx , and specialize the type wiult toint list * int
list -> int list and the type ainit toint list by taking'a to beint , thereby
obtaining the intermediate signature

sig

type t = int list

val unit : int list

val mult : int list * int list -> int list
end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel01of 186

This intermediate signature is equivalent to the signature

sig
type t = int list
val unit : t
valmult:t*t->t
end

By neglecting the definition of the typewe obtain the signatuMONOID Therefore the signature
match succeeds.

Signature Ascription

The point of having signatures in the language is to express the requirement that a given structure
have a given signature. This is achievedigypature ascriptionthe attachment of a target signature

to a structure binding. There are two forms of signature ascrip@émsparentandopaque differing

only in the extent to which type definitions are propagated into the scope of the binding. Trz
ascription is written as

structure strid: sigexp= strexp
Opaque ascription is written as
structure strid :> sigexp= strexp

The two are distinguished by the use of a coloh, dr the symbol:> " before the ascribed
signature.

Here is an example of transparent ascription. We may use transparent ascription on the binc
structure variabl&ntLT to express the requirement that the structure implement an ordered type.
This is achieved as follows:

structure IntLT : ORDERED = struct

type t = int

val It = (op <)

val eq = (op =)
end

Transparent ascription is so-called because the definitionildf.t is not obscured by the

ascription; the equatiomtLT.t =int remains valid in the scope of this declaration. Transparent
ascription is appropriate here because the signature merely expresses the requirement that the given
structure provide a type and two comparison operations. We do not intend that thesmbye the
operations on that type. (Had we done so the structure would be useless because there would be no
way to create a value of typeLT.t , rendering the structuietLT useless!) The structure

INtLT may be thought of asvéew of the typent as a type ordered by the standard comparison
operations. We may form another viewrdf as an ordered type, but with a different ordering, by
making the following binding:

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel02of 186

structure IntDiv : ORDERED = struct

type t = int
fun It (m, n) = (n mod m = 0)
val eq = (op =)

end

Here's an example of opaque ascription. We may use opaque ascription to specify that a structure
implement queues, and, at the same time, specifpiif\athe operations in the signature be used to
manipulate values of that type. This is achieved as follows:

structure Queue :> QUEUE = struct
type 'a queue ="alist * 'a list
val empty = (nil, nil)
fun insert (x, (bs, fs)) = (x::bs, fs)
exception Empty
fun remove (nil, nil) = raise Empty
| remove (bs, f::fs) = (f, (bs, fs))
| remove (bs, nil) = remove (nil, rev bs)
end

Opaque ascription is so-called because the definititm@tieue.queue is hidden by the

binding; the equivalence of the typaQueue.queue and'a list * 'a list is not

propagated into the scope of the binding. This is appropriate because we wish to ensure that queues
are created and manipulated only by the "official" operations in the signature, and not by any other
means. By suppressing the identity of the implementation type we preclude use of any operations on
values of that type other than the ones specified in the signature.

Type checking a structure binding proceeds as follows. First we determprenttigal signaturef

the structure expression on the right-hand side of the binding. (It is an important property of the
language that the principal signature of a structure always exists; there is always a "most accurate”
description of any structure.) We then proceed according to whether there is an ascribed signature,
and, in case there is, according to whether it is a transparent or opaque ascription. If there is no
ascribed signature, the principal signature of the right-hand side is assigned as the signature of the
structure variable. If there is an ascribed signature, we match the principal signature against it to
determine whether its requirements are met. If not, the binding is rejected as ill-typed. If so, then we
assign a signature to the structure variable according to whether the ascription is transparent or
opaque. If itis transparent, the structure variable is assigneitthef the candidate signature
determined by the matching process; if it is opaque, the structure variable is assigsedtibd
signature. This means that for a transparent ascright@definitions in the principal signature of 1

types occurring in the ascribed signature are propagated into the scope of the bimd@ngas for
opaque ascriptioanly the information explicitly appearing in the ascribed signature is propagated.

In particular if a type is specified in the ascribed signature, but no definition is provided, then the
definition of that type is hidden from the clients of that binding, rendering it opaque.

It remains to define the principal signature of a structure expression. There are two forms of
expression to be considered (at this stage): a structure variablstamct a expression. A

structure variable has as principal signature the signature assigned to it by the ascription process just
described. Arstruct expression is assigned a principal signabyra component-by-component
analysis of its constituent declarations. The rules are essentially as follows:

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel03o0f 186

1. Corresponding to a declaration of the fdgpe (a ,,...,’a Q)= t yp, the principe
signature contains the specificatigpe (a ,...,’a o t= typ.

2. Corresponding to a declaration of the form
datatype (‘a 1reer @ o t= con, of typ,[..]| con, of typ,,

the principal signature contains the specification

datatype (a Lo @ W t= con, of typ,|..]| con, of typ,.
3. Corresponding to a declaration of the farteption i d of typ, the principal signatu
contains the specificaticgxception idof typ.

4. Corresponding to a declaration of the farah i d = exp, the principal signature contains
the specificatioval i d: typ, weretyp is the principal type scheme of the expression
exp (relative to the preceding context).

The complete rules are slightly more complicated than this because they must take account of such
features as pattern-matching in value bindings, mutually recursive declarations of functions, and the
possibility of shadowing bindings by re-declaration. However, the rules given above are a rough-
and-ready approximation that will serve for most purposes; the reader is reférnedefinition of
Standard MLfor a complete account.

With these rules in mind, it is a good exercise to review the two examples of signature ascription
given above. Go through the steps of forming the principal signature, then check that the principal
signature matches the ascribed signature, and determine the signature to assign to the structure
variable in each case.

Sample Code for this Chapter

[Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel04 of 186

Views and Data Abstraction Page
[http://lwww.cs.cmu.edu/People/rwh/introsml/modules/viewabstr.htm] 20

Views and Data Abstraction
[Back] [Home] [Up] [Next]
Last edit Monday, April 27, 1998 02:57 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

It is good practice to ascribe a signature to every structure binding in a program to ensure that the
signature of the bound structure variable is apparent from the binding. In the preceding chapter we
described the elaboration and evaluation of a structure binding with an explicit signature ascription.
First the ascribed signature is used to determinevaof the principal signature of the right-hand

side of the binding, then the view is checked to ensure that it verifies the type sharing require

the ascribed signature. If both steps succeed, we assign a signature to the bound structure variable
according to whether it is a transparent or opaque ascription --- if it is transparent, we assign the view
to the variable, otherwise the ascription. Thus transparent ascription is used to form views of a
structure, and opaque ascription is used to form abstractions in which critical type information is
hidden from the rest of the program.

The formation of a view also has significance at run-time: a new structure is built consisting of only
those components of the right-hand side of the binding mentioned in the ascribed signature, perhaps
augmented by zero or more type components to ensure that the signature of the view is well-formed.
(For example, if we attempt to extract only the constructors of a datatype, and not the datatype itself,
the compiler will implicitly extract the datatype to ensure that the types of the constructors are
expressible in the signature. Any type implicitly included in the view is marked as "hidden" to
indicate that it was implicitly included as a consequence of the explicit inclusion of some other
components of the structure.) Moreover, the types of polymorphic value components may be
specialized in the view, corresponding to a form of polymorphic instantiation during signature
matching. The result is a structure whose shape is fully determined by the view; no "junk" remains
after the ascription. This ensures that access to the components of a structure is efficient (constant-
time), and that there are no "space leaks" stemming from the presence of components of a structure
that are not mentioned in its signature.

In this chapter we discuss the trade-off's between using views and abstraction in ML by offer
guidelines and examples of their use in practice. How does one decide whether to use transparent or
opaque ascription? Generally speaking, transparent ascription is appropriate if the signature is not
intended to be exhaustive, but is rather just a specification of some minimum requirements that a
module must satisfy. Opaque ascription is appropriate if the signature is intended to be exhaustive,
specifying precisely the operations that are available on the type.

Here's a common example of the use of transparent ascription in a program. When defining

it is often convenient to introduce a numberof auxiliary bindings, especially of "helper functiol

are used internally to the code of the "public" operations. Since these auxiliaries are not intended to
be used by clients of the module, it is good practice to localize them to the implementation of the

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel05o0f 186

public operations. This can be achieved by usindptted construct, as previously discussed in
these notes. An alternative is to define the auxiliaries as components of the stucture, relying on
transparent ascription to drop the auxiliary components before exporting the public components to
clients of the module. Thus we might write something like this:

structure IntListOrd : ORDERED =
struct

type t = int list

funaux|=...

val It (11, 12) = ... aux ...

val eq (11, 12) = ... aux ...
end

The effect of the signature ascription is to drop the auxiliary compangnfrom the structure

during signature matching so that afterwards the binditgtlastOrd contains only the
components in the signatuRDEREDAN added bonus of this style of programming is that during
debugging and testing we may gain access to the auxiliary by simply "commenting out" the &

by writing instead

structure IntListOrd (* : ORDERED *) =
struct

type t = int list

funaux|=...

val It (11, 12) = ... aux ...

val eq (11, 12) = ... aux ...
end

Since the ascription has been suppressed, the auxiliary compahext©Ord.aux is accessible

for testing. (It would be useful to have a compiler switch that "turns off" signature ascription, rather
than having to manually comment out each ascription in the program, but no current compilers
support such a feature.)

Now let us consider uses of opaque ascription by reconsidering the implementation of p

gueues using pairs of lists. Here it makes sense to use opaque ascription since the operations
specified in the signature are intended to be exhaustive --- the only way to create and manipulate
queues is to use the operati@nspty , insert , andremove . By using opaque signature matct

in the declaration of th@ueue structure, we ensure that the typeeue.queue is hidden from th

client. Consequently an expression sucQasue.insert (1, ([],[1)) is ill-typed, even
though queues are "really" pairs of lists, because théayise * 'a list is not equivalent
to’a Queue.queue . Were we to use transparent ascription this equation would hold, which

means that the client would not be constrained to using only the "official” queue operations on values
of type’a Queue.queue . This violates the principle afata abstractionwhich states that an
abstract type should be completely defined by the operations that may be performed on it.

Why impose such a restriction? One reason is that it ensures that the client of an abstraction is
insensitive to changes in the implementation of the abstraction. Should the client's behavior change
as a result of a change of implementation of an abstract type, we know right where to look for the
error: it canonly be because of an error in the implementation of the operations of the type. Were
abstraction not enforced, the client might (accidentally or deliberately) rely on the implementation
details of the abstraction, and would therefore need to be modified whenever the implementation of

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel06 of 186

the abstraction changes. Whenever such coupling can be avoided, it is desirable to do so, since it
allows components of a program to be managed independently of one another.

A closely related reason to employ data abstraction is that it enables us to enforce representation
invariants on a data structure. More precisely, it enables us to isolate any violations of a
representation invariant to the implementation of the abstraction itself. No client code can di:
invariant if abstraction is enforced. For example, suppose that we are implementing a dictionary
package using a binary search tree. The implementation might be defined in terms of a library of
operations for manipulating generic binary trees c&lladree . The implementation of the
dictionary might look like this:

structure Dict :> STRING_DICT =
struct
(* Rep Invariant: binary search tree *)
type t = string BinTree.tree
funinsert (k, t) = ...
fun lookup k = ...
end

Had we used transparent, rather than opaque, ascription®fRi&IG_DICT signature to th®ict

structure, the typPict.t would be known to clients to be striBgnTree.tree . But then one

could callDict.lookup with any value of typstring BinTree.tree , hot just one that

satisfies the representation invariant governing binary search trees (namely, that the strings at the
nodes descending from the left child of a node are smaller than those at the node, and those at nodes
descending from the right child are larger than those at the node). By using opaque ascripti

isolating the implementation type to thest package, which means that the only possible viole

of the representation invariant are those that arise from errorshicthepackage itself; the

invariant cannot be disrupted by any other means. The operations themselassunaghat the
representation invariant holds whenever the function is called, and are obkgetitethat the
representation invariant holds whenever a value of the representation type is returned. Therefore any
combination of calls to these operations yielding a value oflygieé must satisfy the invariant.

You might wonder whether we could equally well use run-time checks to enforce representation
invariants. The idea would be to introduce a "debug flag" that, when set, causes the operations of the
dictionary to check that the representation invariant holds of their arguments and results. In the case
of a binary search tree this is surely possible, but at considerable expense since the time required to
check the binary search tree invariant is proportional to the size of the binary search tree itself,
whereas an insert (for example) can be performed in logarithmic time. But wouldn't we turn off the
debug flag before shipping the production copy of the code? Yes, indeed, but then the benefits of
checking are lost for the code we care about most! (To paraphrase Tony Hoare, it's as if we used our
life jackets while learning to sail on a pond, then tossed them away when we set out to sea.)

the type system to enforce abstraction, we can confine the possible violations of the representation
invariant to the dictionary package itself, and, moreover, we need not turn off the check for
production code because there is no run-time penalty for doing so.

A more subtle point is that it may not always be possible to enforce data abstraction at run-time.
Efficiency considerations aside, you might think that we can always replace static localization of
representation errors by dynamic checks for violations of them. But this is false! One reason is that
the representation invariant might not be computable. As an example, consider an abstract type of
total functions on the integers, those that are guaranteed to terminate when called, without p

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel07 of 186

any 1/O or having any other computational effect. Itis a theorem of recursion theory that no run-time
check can be defined that ensures that a given integer-valued function is total. Yet we can define an
abstract type of total functions that, while not admitting ever possible total function on the int

values, provides a useful set of such functions as elements of a structure. By using these specified
operations to create a total function, we are in effect encoding a proof of totality in the code itself.

Here's a sketch of such a package:

signature TIF = sig
type tif
val apply : tif -> (int -> int)
val id : tif
val compose : tif * tif -> tif
val double : tif

end

structure Tif ;> TIF = struct
type tif = int->int
funapplytn=tn
funid x = x

fun compose (f,g) =fog
fun double x =2 * x

end

Should the application of such some value of fipéf fail to terminate, we know where to
look for the error. No run-time check can assure us that an arbitrary integer function is in fact total.

Another reason why a run-time checkto enforce data abstraction is impossible is that it may not be
possible to tell from looking at a given value whether or not it is a legitimate value of the abstact
type. Here's an example. In many operating systems processes are "named" by integer-va
identifiers. Using the process identifier we may send messages to the process, cause it to terminate,
or perform any number of other operations on it. The thing to notice here is that any integer
possible process identifier; we cannot tell by looking at the integer whether it is indeed valid. No
run-time check on the value will reveal whether a given integer is a "real" or "bogus" process
identifier. The only way to know is to consider the "history" of how that integer came into bei

what operations were performed on it. Using the abstraction mechanisms just described, we can
enforce the requirement that a value of tyjge, whose underlying representationns , is indeed
process identifier. You are invited to imagine how this might be achieved in ML.

Transparency and opacity may seem, at first glance, to be fundamentally opposed to one an
in fact transparency gpecial cas®f opacity! By using type definitions in signatures, we may
always expressxplicitly the propagation of type information that is conveyealicitly by
transparent ascription. For example, rather than write

structure IntLT : ORDERED = struct type t=int ... end

we may instead write

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel08of 186

structure IntLT :> INT_ORDERED = struct type t=int ... end

at the expense of introducing a specialized version of the sigi@RDP&REWith the type definec
to beint . This syntactic inconvenience can be ameliorated by usingvtieze type " construct,
writing

structure IntLT :> ORDERED where type t=int = struct ...
end

The signature expressio@RDERED where type t=int " is equivalent to the signature
INT_ORDEREDdefined above.

Thus transparency is a form of opacity in which we happen to publicize the identity of the underlying
types in the ascribed signature. This observation is more important than one might think at first
glance. The reason is that it is often the case that we must use a combination of opacity and
transparency in a given situation. Here's an example. Suppose that we wished to implement several
dictionary packages that differ in the type of keys. The "generic" signature of a dictionary mis

like this:

signature DICT = sig
type key
val It : key * key -> bool
val eq : key * key -> bool
type 'a dict
val empty : 'a dict
val insert : 'a dict * key * 'a -> 'a dict
val lookup : 'a dict * key -> 'a
end

Notice that we include a type component for the keys, together with operations for comparil

along with the type of dictionaries itself and the operations on it. Now consider the definition of an
integer dictionary module, one whose keys are integers ordered in the usual manner. We might use a
declaration like this:

structure IntDict :> DICT = struct
type key = int
val It : key * key -> bool = (op <)
val eq : key * key -> bool = (op =)
datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
val empty = Empty
funinsert (d, k, e) = ...
fun lookup (d, k) = ...
end

But this is wrong! The reason is that the opaque ascription, which is intended to hide the
implementation type of the abstraction, also obscures the type of keys. Since the only operations on
keys in the signature are the comparison functions, we can never insert an element into the dictionary!

What is necessary is to introduce a specialized version BA@IE signature in which we publicize

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel09of 186

the identity of thékey type, as follows:

signature INT_DICT = DICT where type key = int

structure IntDict :> INT_DICT = struct
type key = int
val It : key * key -> bool = (op <)
val eq : key * key -> bool = (op =)
datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
val empty = Empty
funinsert (d, k, e) = ...
fun lookup (d, k) = ...
end

With this declaration the type IntDict.dict is abstract, but the typetDict.key is
equivalent tant . Thus we may correctly writatDict.insert (IntDict.empty, 1,

"1") toinsert the valuél" into the empty dictionary with kely. To build a dictionary whose
keys are strings, we proceed similarly:

signature STRING_DICT = DICT where type key = string

structure StringDict :> STRING_DICT = struct
type key = string
val It : key * key -> bool = (op <)
val eq : key * key -> bool = (op =)
datatype 'a dict = Empty | Node of 'a dict * 'a * 'a dict
val empty = Empty
funinsert (d, k, e) = ...
fun lookup (d, k) = ...
end

In the next two chapters we will discuss how to buitgeaericimplementation of dictionaries that
may be instantiated for many different choices of key type.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell10o0f 186

Hierarchies and Parameterization Page
[http://www.cs.cmu.edu/People/rwh/introsml/modules/subfun.htm] 21

Hierarchies and Parameterization
[Back] [Home] [Up]
Last edit Monday, April 27, 1998 02:57 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

In the preceding chapter we considered the following signature of dictionaries with an arbitrary key
type:

signature DICT = sig
type key
val It : key * key -> bool
val eq : key * key -> bool
type 'a dict
val empty : 'a dict
val insert : 'a dict * key * 'a -> 'a dict
val lookup : 'a dict * key ->'a
end

The signatures of dictionaries with particular choices of key type were defined usin¢he "
type " construct. For example, the signature declarations

signature STRING_DICT = DICT where type key=string
signature INT_DICT = DICT where type key=int

define the signatures of dictionaries with string and integer keys, respectively. The motivation for
introducing these specialized instances ofAHET signature is that we typically wish to hold the
implementation typeéa dict , of dictionaries abstract, but leave the type of keys concrete, as
described earlier.

The signatur®ICT is a bit unsatisfactory because it mixes two different notions in one interface,
namely the typekey , of keys and its associated comparison operationandeq, and the typé&

dict of dictionaries and its associated operatemgty , insert , andlookup . It would be

cleaner to separate these two aspects of the interface, especially since we shall soon consider the key
component to be "generic", with the rest being "specific”, to the abstraction. The way to do this in

ML is with asubstructureas follows:

signature DICT = sig
structure Key : ORDERED
type 'a dict
val empty : 'a dict
val insert : 'a dict * Key.t * 'a -> 'a dict

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagelllof 186

val lookup : 'a dict * Key.t -> 'a
end

The type of keys and the operation on it are segregatedsotisauctureof the dictionary structure,

a component of a structure that is itself a structure. Correspondingly, uses of ey tyre

replaced by references to theomponent of the substructufey. This leads to &ierarchical
organization in which we consider the key structure to be subservient to the dictionary operations.

Specialized versions of the signature DICT are build essentially as before, except that we use a long
identifier to specify the type of keys:

signature STRING_DICT = DICT where type Key.t=string
signature INT_DICT = DICT where type Key.t=int

Specific implementations of these specialized instances may be defined as follows:

structure StringDict :> STRING_DICT = struct
structure Key : ORDERED = StringLT
type 'a dict = Key.t BinTree.tree
val empty = BinTree.empty

val insert = ... insert into a BST using Key.Ilt and
Key. eq. . .

val lookup = ... | ookup in a BST using Key.Ilt and
Key. eq. . .
end

structure IntDict :> INT_DICT = struct
structure Key : ORDERED = IntLT
type 'a dict = Key.t BinTree.tree
val empty = BinTree.empty

val insert = ... insert into a BST using Key.Ilt and
Key. eq. . .

val lookup = ... | ookup in a BST using Key.Ilt and
Key. eq. . .

end

The difficulty, of course, is that we are repeating the code for dictionaries in each implementz

elided parts of both structures wouldidentical Theonly difference between the two dictionary
structures lies in the implementation of keys; in one case we choose string operations and in the other
we choose integer operations. Since the bulk of the code is the same, it is a pity to have to repeat it
for reach choice of key type.

Fortunately, ML provides a convenient means of avoiding such redundancy, ¢afletba A

functor is gparameterized moduler ageneric structurgthat is defined in terms of zero or more
argument structures with a specified signature. A functor mapjtieed orinstaniated with any
structures matching the argument signatures. A functor is therefore a kind of function taking zero or
more structures as arguments and yielding a structure as result.

In the case of dictionaries we may define a generic implementation that is parameterized by the type
of keys and associated comparison operations. This is achieved by introducing a functor.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell2of 186

functor Dict (structure K : ORDERED) :> DICT where type
Key.t=K.t =
struct

structure Key : ORDERED =K

type 'a dict = Key.t BinTree.tree

val empty = BinTree.empty

val insert = ... insert into a BST using Key.lt and
Key. eq. . .

val lookup = ... | ookup in a BST using Key.Ilt and
Key. eq. . .
end

This declaration introduces a functor nanbect that takes as argument any structure impleme

the signatur©RDERE[Dand yields a structure implementing the instance of the sigiiatie

determined by taking the key type of the dictionary to be the type component of its argument, leaving
the type of dictionaries abstract. The type checker ensures that the body of the functor matches the
specified result signature, under the assumption that the argument has the stated signature. In the
case of th@®ict functor the type checker ensures that the principal signature of the body of the
functor (the part betweestruct andend) matches the signature

DICT where type Key.t=K.t,
assuming that the structufehas signatur® RDERED

TheDict functor encapsulates the implementation of dictionaries as a generic structure that is
independent of the specific choice of keys. One advantage of this encapsulation is that should we
wish to modify the implementation of dictionaries, say to fix an error or to improve performance, we
need only modify th®ict functor, rather than change every occurrence of the dictionary code
spread throughout a large system. This is obviously advantageous for both the original author of the
code, and anyone who must maintain it in the future. In fact common data structures such as
dictionaries are typically provided as part of a "shrink wrapped" library, and hence are shared among
many different programs, thereby increasing code reuse and reducing redundancy.

TheDict functor provides a generic implementation of dictionaries. Dictionaries with specific key
types may be built by instantiating thect functor as follows:

structure IntDict = Dict (structure K = IntLT)
structure StringDict = Dict (structure K = StringLT)

Notice that functor application uses keyword parameter passing --- the parameter is explicit

to a structure using a structure binding. In practice the right-hand sides of such bindings are always
(long) identifiers; if not, the compiler implicitly inserts bindings to ensure that this is the case. In our
discussions we will tacitly assume that the right-hand side of all such bindings are (long) identifiers.

What are the signatures of the structure varidbk&sct andStringDict ? Since no signatu

is ascribed to these bindings, the principal signature of the corresponding right-hand side of the
binding is assigned to each variable, in keeping with our previous policies. Since the right-hand side
in these examples is a functor application, we must answer the question: what is the principal
signature of a functor application? If --- as here --- the result signature of the functor is opaque, the

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell3of 186

principal signature is precisely the asribed signature of the functor, but with the structure parameter
replaced by its binding (which must be, by our assumption, another structure identifier). Thus the
signature assigned totDict is

DICT where type Key.t=IntLT.t

which is equivalent to the signature
DICT where type Key.t=int

sincelntLt.t =int . Similarly, the signature assignedtringDict is
DICT where type Key.t=StringLT.t

which is equivalent to the signature
DICT where type Key.t=string

What if the functor has no result signature, or its result signature is transparently ascribed? In that
case we assign the intermediate signature of the match as the result signature of the functor, and use
that signature as the implied result signature of the functor.

Dictionaries illustrate the use of the ML module system to build generic implementations of abstract
types. A generic implementation of priority queues (which suppernave_min operation that
dequeues the "least" element of the queue relative to a specified ordering) may be built in an exactly
analogous manner. Here's a suitable signature of priority queues:

signature PRIO_QUEUE = sig

structure Elt : ORDERED

type prio_queue

exception Empty

val empty : prio_queue

val insert : Elt.t * prio_queue -> prio_queue

val remove : prio_queue -> Elt.t * prio_queue
end

Notice thalprio_queue is a type, and not a type constructor, as it was in the case of "plain”
gueues. This is a reflection of the fact that the operations on a priority queue are not independent of
the type of elements (as they are with plain queues), but rely on the comparison operations that are
provided with theElt structure.

A generic implementation of priority queues is a functor taking as argument a structure conte
element type together with its associated operations:

functor PrioQueue
(structure E : ORDERED) :> PRIO_QUEUE where type
Elt.t=E.t =
struct
structure Elt : ORDERED = E
type prio_queue = ... a heap based on the ordering

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell4of 186

Elt.lIt...

exception Empty

val empty = ... t he enpty heap...

val insert = ... sift a new elenent into the heap...

val remove = ... remove the | east el enent and adjust the
heap. ..
end

Specific instances of priority queues may be built as follows:

structure IntPQ = PrioQueue (structure E = IntLT)
structure StringPQ = PrioQueue (structure E = StringLT)

with signatures

PRIO_QUEUE where type Elt.t=int

and

PRIO_QUEUE where type Elt.t=string
respectively.

The situation becomes more interesting when we wish to combine two or more abstract types to form
a third. Suppose we are to implement a (hypothetical) abstract type that employs an ordered type of
values that occur both as keys of a dictionary and elements of a priority queue. The signature of this
abstract type might look like this

signature ADT = sig
structure Val : ORDERED
type adt
operations. ..
end

The implementation should be generic in the type of values, and also in the implementation of
dictionaries and priority queues; we don’t want to build the implementation of these auxiliary data
structures into the implementationADTs. There are two approaches to building\én functor,

each with its advantages and disadvantages. Here's the first approach:

functor Adt

(structure V : ORDERED) :> ADT where type Val.t=V.t =
struct

structure Val : ORDERED =V

structure D = Dict (structure K = V)

structure Q = PrioQueue (structure E = V)

type adt = ...

end

The functorAdt instantiates th®ict andPrioQueue functors to the structure of values specified

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell50f 186

as argument to thdt functor. This ensures that the type equation
D.Key.t = Q.Elt.t = V.t

holds inside the body of the functor, so that expressions such as
D.insert (Q.remove_min ..., ...)

are well-typed. (The structurBsandQare not visible outside of the functor since they do not a|
in the result signature; they are local auxiliaries used within the functor.)

This approach works well, but if thi&ict or PrioQueue functors are changed, thAelt functor
must be recompiled to pick up the new versions. An alternative, which avoids this dependen
implementation oAdt on the implementations of tliact andPrioQueue functors, is to treat
the dictionary and priority queue structures as additional parametershid tfienctor. This leads 1
the following setup:

functor Adt’
(structure V : ORDERED and D : DICT and Q : PRIO_QUEUE)
>
ADT where type Value.t=V.t =
struct
structure Val =V
type adt = ... i npl enentation type...

i mpl ement ati on of operations...
end

To build an instance of thedt' functor we must first built appropriate instances ofdi@ and
PrioQueue functors and pass theseAdt'

structure IntDict = Dict (structure K=IntLT)

structure IntPQ = Dict (structure K=IntLT)
structure A = Adt' (structure V=IntLt and D=IntDict and

Q=IntPQ)

There is a problem, however, with this setup: the funkstitr is ill-typed! It is no longer true
within the body ofAdt that the type equation

D.Key.t = Q.Elt.t = V.t
holds in the body oAdt’ , even though the equation
IntDict.Key.t = IntPQ.EIt.t = IntLT.t = int

does hold of the arguments, for we might well choose arguments for which the required equation is
invalid. In short, the functor is "too generic", and consequently the body is not type correct.

What to do? The solution is to restrict the parameters tAdkie functor so that the only possible

instances are those that satisfy the required equation. There are two methods for doing this, both
equivalent. The first is to explicitly require that the dictionary and priority queue arguments agree on

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell6of 186

the value type passed as parameter:

functor Adt’
(structure V : ORDERED
and D : DICT where type Key.t=V.t
and Q : PRIO_QUEUE where type EIt.t=V.t) :>
ADT where type Val.t=V.t =
struct

end

The body ofAdt' is now type correct since the required type equations hold as a result of our
additional assumptions on the arguments.

An alternative is to impose the equational requirement on typgsost ioamanner using sharing
specification

functor Adt'
(structure V : ORDERED and D : DICT and Q : PRIO_QUEUE
sharing type D.Key.t = Q.Elt.t = V.t) :>
ADT where type Val.t=V.t =
struct

end

The sharing specification stipulates that the given equation must hold of any instance of this functor.
Any attempt to instantiatédt’ with structured/, D, andQ not satisfying the sharing specification is
rejected as ill-formed.

An advantage of sharing specifications is that they provide a direct, symmetric specification of the
required type equation without forcing the programmer to explicitly "thread" the common type
through the various signatures. In fact sharing specifications encourage concision since they do not
require that the common component be "factored out" as it is in the foregoing example. Here is a
more concise formulation of thedt’ functor in which we drop the first argument entirely, relying

only on asharing specification to constraint the dictionary and priority queue structures
appropriately.

functor Adt’
(structure D : DICT and Q : PRIO_QUEUE
sharing type D.Key.t = Q.Elt.t) :>
ADT where type Val.t=D.Key.t =
struct
end
Notice that the result signature changes slightly to extract the common type from or
parameters, the choice of which being arbitrary in the presencestfdiieg specification.

Sample Code for this Chapter

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell7of 186

[Back] [Home] [Up]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel18of 186

Programming Techniques [http://www.cs.cmu.edu/People/rwh/introsml/techniques.htAgge 41
Programming Techniques
[Back] [Home] [Next]
Last edit Monday, May 04, 1998 03:29 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

In this part of the book we will explore the use of Standard ML to build elegant, reliable, and
programs. The discussion takes the form of a series of worked examples illustrating various
techniques for building programs.

[Induction and Recursion[Structural Inductior) [Proof-Directed Debugginp
[Infinite Sequencel[Representation Invariants and Data Abstracfion
[Persistent and Ephemeral Data Structife®ptions, Exceptions, and Failure Continuatipns
[Memoization and Lazinedqd Modularity and Reusg

[Back] [Home] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagell19of 186

Induction and Recursion Page
[http:/www.cs.cmu.edu/People/rwh/introsml/techniques/indrec.htm] 22

Induction and Recursion
[Home] [Up] [Next]
Last edit Monday, May 04, 1998 03:29 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for This Chapter

This chapter is concerned with the close relationship betreeensiorandinductionin
programming. When defining a recursive function, be sure to write down a clear, concise
specificationof its behavior, then mentally (or on paper) givenaiuctiveproof that your code
satisfies the specification. What is a specification? It includes (at least) these ingredients:

1. Assumptions about the types and values of the arguments to the function. For example, an
integer argument might be assumed to have a non-negative value.

2. Guarantees about the result value, expressed in terms of the argument values, under the
assumptions governing the arguments.

What does it mean to prove that your program satisfies the specification? It means to give a rigorous
argument that if the arguments satisfy the assumptions on the input, then the program will terminate
with a value satisfying the guarantees stated in the specification. In the case of a recursively-defined
function the argument invariably has the form of a inductive proof basedioduation principle
such as mathematical induction for the natural numbers or, more generally, structural induction for
other recursively-defined types. The rule of thumb is this

when programming recursively, think inductively

If you keep this rule firmly in mind, you'll find that you are able to get your code right more often
without having to resort to the tedium of step-by-step debugging on test data.

Let's start with a very simple series of examples, all involving the computation of the integer

exponential function. Our first example is to comp@itéor integers>=0. We seek to define the
function

exp :int->int
satisfying the specification
if n>=0, then exp n evaluates t8.2

Theprecondition orassumptionis that the argumentis non-negative. Thegostconditionor
guarante, is that the result of applyirexpto n is the numbe2". The caller is required to establish

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel20o0f 186

the precondition before applyiexp in exchange, the caller may assume that the resilt is

Here's the code:

funexp0=1
| expn=2*exp (n-1)

Does this function satisfy the specification? It does, and we can prove this by inductioti R0,

thenexp nevaluates td (as you can see from the first line of its definition), which is, of colfse,
Otherwise, assume thatpis correct fon-1>=0, and consider the value etp n From the second
line of its definition we can see that this is the valug*pf wherep is the value oéxp (n-1)

Inductively,p=2""1, so2*p = 2*2""1 = 2" as desired. Notice that we need not consider arguments
n<0 since the precondition of the specification requires that this be so. We must, however, ensure
that each recursive call satisfies this requirement in order to apply the inductive hypothesis.

That was pretty simple. Now let us consider the running tinegméxpressed as a functionrof
Assuming that arithmetic operations are executed in constant time (they are), then we can read off a
recurrence describing its execution time as follows:

T(0) = O(1)
T(n+1) = O(1)+ T(n)

In fact this recurrence could itself be thought of as defining a function in ML simply by rewriting it
into ML syntax! However, in most cases we are interestedlinga recurrence by finding a
closed-form expression for it. In this case the solution is easily obtained:
T(n) = O(n)
Thus we have Bnear timealgorithm for computing the integer exponential function.
What about space? This is a much more subtle issue than time because it is much more difficult in a
high-level language such as ML to see where the space is used. Based on our earlier discussions of
recursion and iteration we can argue informally that the definitiewggiven above requires space
given by the following recurrence:

S(0) = O(1)
S(n+1) = O(1) + S(n)

The justification is that the implementation requires a constant amount of storage to record the
pending multiplication that must be performed upon completion of the recursive call.

Solving this simple recurrence yields the equation
S(n) = O(n)
expressing thagxpis also dinear spacealgorithm for the integer exponential function.

Can we do better? Yes, on both counts! Here's how. Rather than count down by one's, multiplying

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel21of 186

by two at each stage, we use successive squaring to achieve logarithmic time and space rec

The idea is that if the exponent is even, we square the result of tatsitnglf the given power;

otherwise, we reduce the exponent by one and double the result, ensuring that the next exponent will
be even. Here's the code:

fun square (n:int) = n*n
fun double (n:int) = n+n

funfast exp0=1
| fast expn=
if n mod 2 = 0 then
square (fast_exp (n div 2))
else
double (fast_exp (n-1))

Its specification is precisely the same as before. Does this code satisfy the specification? Yes, and
we can prove this by usirmpmplete inductiona form of mathematical induction in which we may
prove thain>0 has a desired property by assuming not only that the predecessor has it atiut that
preceding numbe have it, and arguing that thereforenust have it. Here's how it's done. Ref

the argument is exactly as before. Suppose, themxBatlf nis even, the value @&Xxp nis the

result of squaring the value exp (n div 2) Inductively this value ig(n dv2) 5o squaring it yield2
(ndiv 2} p(n div 2) - 52*(n div 2) = 5N a5 required. If, on the other hands odd, the value is the result
of doublingexp (n-1) Inductively the latter value "1 so doubling it yield®", as required.

Here's a recurrence governing the running tinfasif expas a function of its argument:

T(0) =0(1)

T(2n) = O(1) + T(n)

T(2n+1) = O(1) + T(2n) = O(1) + T(n)
Solving this recurrence using standard techniques yields the solution

T(n) = O(lg n)
You should convince yourself thaist_expalso requires logarithmic space usage.
Can we do better? Well, it's not possible to improve the time requirement (at least not
asymptotically), but we can reduce the space requir@dlfdoy putting the function into iterative
(tail recursive) form. However, this may not be achieved in this case by simply adding an

accumulator argument, without also increasing the running time! The obvious approach is to attempt
to satisfy the specification

if n>=0, then iterative_fast_exp (n, a) evaluates a2
Here's some code that achieves this specification:
fun iterative_fast exp (0, a) =a

| iterative_fast_exp (n, a) =
if n mod 2 = 0 then

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel22of 186

iterative_fast_exp (n div 2, iterative_fast_exp (n
div 2, a))
else
iterative_fast_exp (n-1, 2*a)

It is easy to see that this code works properlyf@r and forn>0 whenn is odd, but what ih>0 is

even? Then by induction we comp@fB 4V 2x2(" div 3«5 1y two recursive calls to
iterative_fast_exp This yields the desired result, but what is the running time? Here's a recurrence
to describe its running time as a functiomof

T(0) =1
T(2n) = O(1) + 2T(n)
T(2n+1) = O(1) + T(2n) = O(L) + 2T(n)

Here again we have a standard recurrence whose solution is
T(n) =0O(n g n)

Yuck! Can we do better? The key is to recall the following important fact:
2(2n) - (22)n = 4"

We can achieve a logarithmic time and exponential space bounthaynge of base Here's the
specification:

if n>=0, then generalized_iterative_fast_exp (b, n, a) evaluate%to b

Here's the code:

fun generalized_iterative_fast exp (b, 0,a) = a
| generalized_iterative_fast_exp (b, n, a) =
if n mod 2 =0 then
generalized_iterative_fast_exp (b*b, n div 2, a)
else
generalized_iterative_fast_exp (b, n-1, b*a)

Let's check its correctness by complete induction. chhe base case is obvious. Assume the
specification for arguments smaller tha¥D. If nis even, then by induction the resul(b:%b)(n div

2xq = b™a, and ifn is odd, we obtain inductively the resbl®*b*a=b™a. This completes the
proof.

The trick to achieving an efficient implementation of the exponential function was to compute

general function that can be implemented using less time and space. Since this is a trick employed
by the implementor of the exponential function, it is important to insulate the client from it. This is
easily achieved by using@cal declaration to "hide" the generalized function, making available to
the caller a function satisfying the original specification. Here's what the code looks like in this case:

local
fun generalized_iterative_fast_exp (b, 0, a) =

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel23o0f 186

| generalized_iterative_fast_exp (b, n, a) = ... as
above . ..
in
fun exp n = generalized_iterative_fast_exp (2, n, 1)
end

The point here is to see how induction and recursion go hand-in-hand, and how we used ind

only to verify programs after-the-fact, but, more importantly, to help discover the program in the first
place. If the verification is performed simultaneously with the coding, it is far more likely that the
proof will go through and the program will work the first time you run it.

It is important to notice the correspondence between strengthening the specification by adding
additional assumptions (and guarantees) and adding accumulator arguments. What we obs
apparent paradox that it is ofteasierto do something (superficiallyiarder In terms of proving, i

is often easier to push through an inductive argument for a stronger specification, precisely because
we get to assume the result as the inductive hypothesis when arguing the inductive step(s). We are
limited only by the requirement that the specification be proved outright at the base case(s); no
inductive assumption is available to help us along here. In terms of programming, it is often
compute a more complicated function involving accumulator arguments, precisely because we get to
exploit the accumulator when making recursive calls. We are limited only by the requiremen

result be defined outright for the base case(s); no recursive calls are available to help us along here.

Let's consider a more complicated example, the computation of the greatest common divisor of a pair
of non-negative integers. Recall thais a divisor of n, m|nff nis a multiple ofm, which is to say

that there is somle>=0 such thah=km. Thegreatest common divisof non-negative integers

andn is the largesp such thap|mandp|n. (By convention the g.c.d. of 0 and O is taken to be 0.)

Here's the specification of tigedfunction:

if m,n>=0, then gcd(m,n) evaluates to the g.c.d. of mand n

Euclid's algorithm for computing the g.c.d.mfaindn is defined by complete induction on the
productmn Here's the algorithm:

fun gcd (m:int, 0):int = m
| gcd (O, niint):int =n
| gcd (m:int, n:int):int =
if m>n then gcd (m mod n, n) else gcd (m, n mod m)

Why is this algorithm correct? We may prove thed satisfies the specification by complete

induction on the produehn If mnis zero, then eithenor n is zero, in which case the answer is,
correctly, the other number. Otherwise the product is positive, and we proceed according to whether
m>n or m<=n. Suppose thah>n. Observe thah mod n = m - (m div n)sp that(m mod n)n = m

- (m div n)l?r < mn, so that by induction we return the g.c.dnofmod randn. It remains to show
that this is the g.c.d. oh andn. If d divides bothm mod randn, thenkd = (m mod n) = (m - (m div
n)n)andld = n for some non-negatieandl. Consequenthkd = m - (m div n)ldsom = (k+(m di\
n)l)d, which is to say that dividesm. Now if d' is any other divisor ah andn, then it is also a
divisor of(m mod nandn, sod>d’. That is,dis the g.c.d. omandn. The other casep<=n,
follows similarly. This completes the proof.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel24of 186

At this point you may well be thinking that all this inductive reasoning is surely helpful, but it's no
replacement for good old-fashioned "bulletproofing” --- conditional tests inserted at critical junctures
to ensure that key invariants do indeed hold at execution time. Sure, you may be thinking, these
checks have a run-time cost, but they can be turned off once the code is in production, and anyway
the cost is minimal compared to, say, the time required to read and write from disk. It's hard to
complain about this attitude, provided that sufficiently cheap cleaeidse put into place and

provided that you knowvhereto put them to maximize their effectiveness. For example, there's no
use checking~0 at the start of ththenclause of a test far0. Barring compiler bugs, it can't

possibly be anything other than the case at that point in the program. Or it may be possible f

check whose computation is more expensive (or more complicated) than the one we're trying to
perform, in which case we're defeating the purpose by including them!

This raises the question of where should we put such checks, and what checks should be included to
help ensure the correct operation (or, at least, graceful malfunction) of our programs? This is an
instance of the general problem of writsgf-checking programsWe'll illustrate the idea by

elaborating on the g.c.d. example a bit further. Suppose we wish to write a self-checking g.c.d.
algorithm that computes the g.c.d., and then checks the result to ensure that it really is the greatest
common divisor of the two given non-negative integers before returning it as result. The code might
look something like this:

exception GCD_ERROR

fun checked_gcd (m, n) =
let
val d = gcd (m, n)
in
if d mod m = 0 andalso d mod n = 0 andalso ?7?7? then
d
else
raise GCD_ERROR
end

It's obviously no problem to check that putative g.d,ds in fact a common divisor ofiandn, but

how do we check that it's tiggeatestcommon divisor? Well, one choice is to simply try all num
betweerd and the smaller oh andn to ensure that no intervening number is also a divisor, refuting

the maximality ofd. But this is clearly so inefficient as to be impractical. But there's a better way,
which, it has to be emphasized, relies on the kind of mathematical reasoning we've been considering
right along. Here's an important fact:

d is the g.c.d. of m and n iff d divides m and n and can be written as a linear combination of.m and n
That is,d is the g.c.d. omandn iff m=kd for somek>=0, n=Id for somd>=0, andd=am-+bn for

some integers (possibly negativa'andb. We'll prove this constructively by giving a program to
compute not only the g.c.d.of mandn, but also the coefficieneandb such thati=am+bn Here"

the specification:

if m,n>=0, then ggcd (m, n) evaluates to (d, a, b) such that d divides m, d divides n, and
d=am+bn; consequently, d is the g.c.d. of m and n.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel25o0f 186

And here’s the code to compute it:

fun ggcd (0, n) = (n, O, 1)
| ggcd (m, 0) = (m, 1, 0)

| gged (m, n) =
if m>n then
let
val (d, a, b) = ggcd (m mod n, n)
in
(d, a, b - a*(m div n))
end
else
let
val (d, a, b) = ggcd (m, n mod m)
in
(d, a - b*(n divm), b)
end

We may easily check that this code satisfies the specification by induction on the prodlict

mn=0, then eithemornis 0, in which case the result follows immediately. Otherwise assume the
result for smaller products, and show it fion>0. Supposen>n; the other case is handled
analogously. Inductively we obtaina, andb such thatl is the g.c.d. ol mod randn, and hence

the g.c.d. omandn, andd=a(m mod n) + bn Sincem mod n = m - (m div n)it follows thatd = am

+ (b-a(m div n))nfrom which the result follows.

Now we can write a self-checking g.c.d. as follc
exception GCD_ERROR

fun checked_gcd (m, n) =
let
val (d, a, b) = ggcd (m, n)
in
if mmod d =0 andalso n mod d = 0 andalso d =
a*m+b*n then
d
else
raise GCD_ERROR
end

This algorithm takes no more time (asymptotically) than the original, and, moreover, ensures that the
result is correct. This illustrates the power of the interplay between mathematical reasoning methods
such as induction and number theory and programming methods such as bulletproofing to achieve
robust, reliable, and, what is more important, elegant programs.

Sample Code for This Chapter

[Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel26 of 186

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel27of 186

Structural Induction [http://www.cs.cmu.edu/People/rwh/introsml/techniques/structur Ragg 23
Structural Induction
[Back] [Home] [Up] [Next]
Last edit Tuesday, May 05, 1998 12:24 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

The importance of induction and recursion are not limited to functions defined over the integers.
Rather, the familiar concept ofathematical inductioover the natural numbers is an instance of the
more general notion atructural inductionover values of amductively-defined typeRather than
develop a general treatment of inductively-defined types, we will rely on a few examples to illustrate
the point.

Let's begin by considering the natural numbers as an inductively defined type. The set of natural
numbersN, may be thought of as the smallest set containing 0 and closed under the formation of
successors. In other wordasis an element afl iff eithern=0 or n=m+1 for somemin N. Still

another way of saying it is to defihgby the following clauses:

1. Ois an element dfl.
2. If mis an element d¥l, then so isn+1
3. Nothing else is an element Nf

(The third clause is sometimes called éiremalclause it ensures that we are talking abbdland
not just some superset of it.) All of these definitions are equivalent ways of saying the same thing.

SinceN is inductively defined, we may prove properties of the natural numbsteubtural
induction which in this case is just ordinary mathematical induction. Specifically, to prove that a
propertyP(n) holds of everyrin N, it suffices to demonstrate the following facts:

1. Show thatP(0) holds.
2. Assuming thaP(m)holds, show tha®(m+1) holds.

The pattern of reasoning follows exactly the structure of the inductive definition --- the base case is
handled outright, and the inductive step is handled by assuming the property for the predecessor and
show that it holds for the numbers.

The principal of structural induction also licenses the definition of functiosgribgtural recursion
To define a functiof with domainN, it suffices to proceed as follows:

1. Give the value of(0).
2. Give the value of(m+1)in terms of the value d{m).

Given this information, there is a unigue functfamith domainN satisfying these requirements.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel28of 186

Specifically, we may show by induction or=0 that the value dfis uniquely determined on all
valuesm<=n. If n=0, this is obvious sinc&O0) is defined by clause (1). nEm+1, then by
induction the value dfis determined for all valuds<=m. But the value of atn is determined as a
function off(m), and hence is uniquely determined. Thissuniquely determined for all valuesrof
in N, as was to be shown.

The natural numbers, viewed as an inductively-defined type, may be represented in ML using a
datatype declaration, as follows:

datatype nat = Zero | Succ of nat

The constructors correspond one-for-one with the clauses of the inductive definition. The extremal
clause is implicit in thelatatype declaration since the given constructors are assumedatbthe

ways of building values of typet . This assumption forms the basis for exhaustiveness checking
for clausal function definitions.

(You may object that this definition of the typat amounts to a unary (base 1) representation of
natural numbers, an unnatural and space-wasting representation. This is indeed true; in practice the
natural numbers are represented as non-negative machine integers to avoid excessive overt
however, that this representation places a fixed upper bound on the size of numbers, whereas the
unary representation does not. Hybrid representations that enjoy the benefits of both are, of course,
possible and occasionally used when enormous numbers are required.)

Functions defined by structural recursion are naturally represented by clausal function definitions, as
in the following example:

fun double Zero = Zero
| double (Succ n) = Succ (Succ (double n))

fun exp Zero = Succ(Zero)
| exp (Succ n) = double (exp n)

The type checker ensures that we have covered all cases, but it does not ensure that the pattern of
structural recursion is strictly followed --- we may accidentally défme1)in terms of itself or

somef(k) wherek>m, breaking the pattern. The reason this is admitted is that the ML compiler
cannot always follow our reasoning: we may have a clever algorithm in mind that isn't easily
expressed by a simple structural induction. To avoid restricting the programmer, the language
assumes the best and allows any form of definition.

Using the principle of structure induction for the natural numbers, we may prove properties of
functions defined over the naturals. For example, we may easily prove by structural induction over
the typenat thatfor every nin Nexp n evaluates to a positive numbéin previous chapters we
carried out proofs of more interesting program properties.)

Generalizing a bit, we may think of the typdist as inductively defined by the following
clauses:

1. nil is avalue of typ& list
2. If his a value of type 'a, ands a value of typé& list , thenh:: tis a value of typ&a

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel29of 186

list
3. Nothing else is a value of typeelist

This definition licenses the following principle of structural induction over lists. To prove that a
propertyP holds of all listd, it suffices to proceed as follows:

1. Show thatP holds fornil
2. Show thatP holds fprh:: t, assuming tha® holds fort.

Similarly, we may define functions by structural recursion over lists as follows:

1. Define the function fonil
2. Define the function foh:: tin terms of its value far

The clauses of the inductive definition of lists correspond to the following (built-in) datatype
declaration in ML:

datatype 'a list = nil | :: of 'a * 'a list
(We are neglecting the fact that is regarded as an infix operator.)

The principle of structural recursion may be applied to define the reverse function as follows:

fun reverse nil = nil
| reverse (h::t) = reverse t @ [h]

There is one clause for each constructor, and the value of revese tfiag defined in terms of its
value fort. (We have ignored questions of time and space efficiency to avoid obscuring the it
principle underlying the definition eéverse .)

Using the principle of structural induction over lists, we may prove¢iatse | evaluates to the
reversal of. First, we show thatverse nil yieldsnil , asindeed it does and ought to. Sec
we assume thaieverse tyields the reversal ¢f and argue thakverse (h:: t) yields the
reversal oh:: t, as indeed it does since it returaserse t @ h] .

Generalizing even further, we can introduesvinductively-defined types such 2s3 treesn which
interior nodes are either binary (have two children) or ternary (have three children). Here's a
definition of 2-3 trees in ML:

datatype 'a two_three_tree =
Empty |
Binary of 'a * 'a two_three_tree * 'a two_three_tree |
Ternary of 'a * 'a two_three_tree * 'a two_three tree *
'a two_three_tree

How might one define the "size" of a value of this type? Your first thought should be to write
template like the following:

fun size Empty = ??7?

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel30o0f 186

| size (Binary (_, t1, t2)) = ??2?
| size (Ternary (_, t1, t2, t3)) = ???

We have one clause per constructor, and will fill in the ellided expressions to complete the
definition. In many cases (including this one) the function is defined by structural recursion. Here's
the complete definition:

fun size Empty =0

| size (Binary (_, t1, t2)) = 1 + size t1 + size t2

| size (Ternary (_, t1, t2, t3)) = 1 + size t1 + size t2
+ size t3

Obviously this function computes the number of nodes in the tree, as you can readily verify by
structural induction over the tyfeetwo_three tree

Does this pattern apply averydatatype declaration? Yes and no. No matter what the form of the
declaration it always makes sense to define a function over it by a clausal function definition

clause per constructor. Such a definition is guaranteed to be exhaustive (cover all cases), and serves
as a valuable guide to structuring your code. (It is especially valuable if you change the datatype
declaration, because then the compiler will inform you of what clauses need to be added or removed
from functions defined over that type in order to restore it to a sensible definition.) The slogan is:

To define functions over a datatype, use a clausal definition with one clause per constructor

The catch is that not every datatype declaration supports a principle of structural induction because it
is not always clear what constitutes the predecessor(s) of a constructed value. For example, the
declaration

datatype D = Int of int | Fun of D->D

is problematic because a value of the féwum f is not constructed directly from another value of
typeD, and hence it is not clear what to regard as its predecessor. In practice this sort of definition
comes up only rarely; in most cases datatypes are naturally viewed as inductively defined.

It is interesting to observe that the pattern of structural recursion may be directly codified in ML as a
higher-order function. Specifically, we may associate with each inductively-defined type a higher-
order function that takes as arguments values that determine the base case(s) and step case(s) of the
definition, and defines a function by structural induction based on these arguments. An example will
illustrate the point. The pattern of structural induction over thertgpemay be codified by the

following function:

fun nat_recursion base step =
let
fun loop Zero = base
| loop (Succ n) = step (loop n)
in
loop
end

This function has the following type

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel31of 186

'a->('a->'a)->nat->'a

Given the first two argumentsat_recursion yields a function of typeat -> 'a whose
behavior is determined at the base case by the first argument and at the inductive step by the second.
Here's an example of the usenat_recursion to define the exponential function:

val double = nat_recursion Zero (fn result => Succ (Succ
result))
val exp = nat_recursion (Succ Zero) double

Note well the pattern! The argumentsnat_recursion are

1. The value foZero .
2. The value foiSucc n defined in terms of its value for

Similarly, the pattern of list recursion may be captured by the following functional:

fun list_recursion base step =
let
fun loop nil = base
| loop (h::t) = step (h, loop t)
in
loop
end

The type of the functiolist_recursion is
'‘a->(b*'a->'a)->'blist->'a

It may be instantiated to define tteyerse function as follows:
val reverse = list_recursion nil (fn (h, t) =>t @ [h])

Finally, the principle of structural recursion for values of tgpevo_three_tree IS given as
follows:

fun two_three_recursion base binary_step ternary_step =
let
fun loop Empty = base
| loop (Binary (v, t1, t2)) =
binary_step (v, loop t1, loop t2)
| loop (Ternary (v, t1, t2, t3)) =
ternary_step (v, loop t1, loop t2, loop t3)

Notice that we have two inductive steps, one for each form of node. The"
two_three_recursion is

'‘a->(b*a*'a->'a)->(b*'a*'a*'a->'a) ->
'b two_three_tree ->'a

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel32of 186

We may instantiate it to define the function size as follows:

val size =
two_three_recursion 0
(fn (_, s1, s2)) => 1+s1+s2)
(fn (_, s1, s2, s3)) => 1+s1+s2+s3)

Summarizing, the principle of structural induction over a recursive datatype is naturally codified in
ML using pattern matching and higher-order functions. Whenever you're programming with a
datatype, you should use the techniques outlined in this chapter to structure your code.

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel330f 186

Proof-Directed Debugging Page
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/pdd.htm] 24

Proof-Directed Debugging
[Back] [Home] [Up] [Next]
Last edit Thursday, June 25, 1998 02:57 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

It is difficult to write a program that works well. A significant part of the problem is to state pr

what it means for a program to work correctly. What assumptions do we make about the way in
which it is invoked? What guarantees does it make about its results? How much time and s

it require? Answers to these questions are calpedifications-- descriptions of the expected

behavior of a program. Checking that a particular program satisfies a given specification is called
verification There are many forms of specification and many techniques for verification of
programs. One form of specification with which you are by now very familidymeaspecification
verification of a type specification is callgghe checkingWe've seen that type specification and

type checking are useful tools for helping us to get programs right. Another form of specification is
an asymptotic time and space bound on a procedure, expressed as a function of the argument to the
procedure. For example, we may state that the funstidn int list -> int list

takes timer(n) = O(n Ig n)and spac&(n) = O(n)for an input of size. Verification of a complexit

bound is often a tricky business. Typically we define a recurrence relation governing the time or
space complexity of the program, then solve the recurrence using asymptotic methods to obtain the
result.

Type specifications and complexity specifications are useful tools, but it is important to keep in mind
that neither says very much about whether the code works properly. We might define an incorrect
sort routine (say, one that always returns its input untouched), verify that itsitydesis>

int list , and check that it runs in tin@(n Ig n) yet the code doesn't sort its input, despite its
name! Clearly more refined forms of specification are needed to state precisely the expected
behavior of a program, and some methods are needed to verify that a program satisfies a given
specification. We've explored such forms of specification and verification earlier in these notes, for
example when we checked the correctness of various forms of the integer exponential function. In
this chapter we'll put these ideas to work to help us to devise a correct version of the regular
expression matcher sketched in @eerview correcting a subtle error that may not be immediately
apparent from inspecting or even testing the code. The goal of this chapter is to demonstrate the use
of specification and verification to discover and correct an error in a program through a techr

we callproof-directed debuggingWe first devise a precise specification of the regular expression
matcher, a difficult problem in itself, then attempt to verify that the matching program satisfies this
specification. The attempt to carry out a proof breaks down, and suggests a counterexample to the
specification. We then consider various methods of handling the problem, ultimately settling on a
change of specificatiorather than ahange of implementation

Let us begin by devising a specification for the regular expression matcher. As a first cut we write
down a type specification. We seek to define a functiatch of typeregexp -> string ->

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel34of 186
bool that determines whether or not a given string matches a given regular expression. More
precisely, we wish to satisfy the following specification:

For every regular expression r and every stringiajch r s terminates, and evaluates
to true iff s in L(r).

Recall that théanguageof a regular expressaris a set of stringi(r) defined as follows:

L(O)=0
L(1) =1
L@ =a

L(r,rp) = L(ry) L(ry)
L(rytry) = L(ry) + L(ry)
L(r*) = L(O) + L(r) + L(rr) + L(rrr) + ...

where0 ={}, 1 ={"}, a={"a"}, L L, ={s;s,| s inL;andsinL,}, andL+L,={s|sinL or
sinL,}. The languagk(r*) can be characterized as the smallest languageh that=1 + L(r)

L. For ifs in L(r*) as defined above, therin L(t") for some>=0. We may show by induction on
thats in 1+L(r)L. If i=0, thens=""in 1, and ifi>0, thens=tu with t in L(r) andu in L(r"l). By
inductionu in L, and hencs in 1+L(r)L and hencs in L. Conversely, i in L, then eithes in 1, in
which cases in L(r*), ors=tuwith t in L(r) andu in L. Inductivelyu in L(r*) and hencs in L(r)L
(r*) and hencs in L

We saw in thédverviewthat a natural way to define the proceduegch is to use a technique
calledcontinuation passingWe defined an auxiliary functionatch_is with the typeegexp -

> char list -> (char list -> bool) -> bool that takes a regular expression, a list
of characters (essentially a string, but in a form suitable for incremental processing), and a
continuation, and yields a boolean. The idea isrttath_is takes a regular expressigra
character lists and a continuatiok, and determines whether or not some initial segmect of
matcheg, passing the remaining charactesdo k in the case that there is such an initial segment,
and yields false otherwise. Put more precisely,

For every regular expression r, character list cs, and continuation k, if cs=cs’@cs” with
cs’ in L(r) and k cs” evaluating to true, theatch_is r cs k evaluates true; otherwise,
match_is r cs k evaluates to false.

Unfortunately, this specification is too strong to ever be satisfied by any implementation of

match_is ! Can you see why? The difficulty is thakifs not guaranteed to terminate for all

inputs, then there is no way thmatch_is can behave as required. If there is no input on which
terminates, the specification requires that match_is return false. It should be intuitively clear that we
can never implement such a function. Formally, we can redubaltivey problento the matching
problem so defined, which suffices to show that no suatth_is procedure exists. Instead, we

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel350f 186

must restrict attention tmtal continuations, those that terminate for all inputs. This leads to the
following revised specification:

For every regular expression r, character list cs, and total continuation k, if cs=cs’@cs”
with cs’ in L(r) and k cs” evaluating to true, theatch_is r cs k evaluates to true;
otherwisematch_is r cs k evaluates to false.

Observe that the conditidif cs=cs’@cs’ with ..., then ..contains an implicit existential

quantification. Written out in full, we might sdlf there exists cs’ and ¢s” such that cs = cs’@cs”

with ..., then ..." This is an important observation because it makes clear that weeardtfor a

suitable splitting otsinto two parts such that the first part idin) and the second is acceptedckby

There may, in general, be many ways to partition the input to as to satisfy both of these requirements;
we need only find one such way. Note, however, thes # cs’ @ csWith cs’ in L(r)butk cs”

yielding false, we must reject this partitioning and search for another. In other words we cannot
simply considerny partitioning whose initial segment matches/e can consider only those that

also induce to accept the corresponding final segment.

Suppose for the moment thaatch_is satisfies this specification. Does it follow that match
satisfies the original specification? Recall that match is defined as follows:

fun matchr s =
match_is r (String.explode s) (fn nil => true | false)

Notice that the initial continuation is indeed total, and that it yields true (accepts) iff it is apj
the null string. Therefore, fhatch_is satisfies its specification, thematch satisfies the
following property obtained by plugging in the initial continuation:

For every regular expression r and character list cs, if cs in, Hfgnmatch r cs
evaluates to true, and otherwis®tch r cs evaluates to false.

This is precisely the property that we desirenfatch . Thusmatch is correct (satisfies its
specification) ifmatch_is is correct (satisfies its specification).

So far so good. But doesatch_is satisfy its specification? If so, we are done. How might we
check this? Recall the definition ofatch_is given in the overview:

fun match_is Zero _ k = false
| match_is Onecs k =k cs
| match_is (Char c) (d::cs) k = if c=d then k cs else
false
| match_is (Times (rl, r2)) cs k =
match_is rl cs (fn cs' => match_is r2 cs' k)
| match_is (Plus (r1, r2)) cs k =
match_is rl cs k orelse match_is r2 cs k
| match_is (Starr) cs k =
k cs orelse match_isr cs (fn cs' => match_is (Star
r) cs' k)

Sincematch_is is defined by a recursive analysis of the regular expressitos natural to
proceed by induction on the structure .of That is, we treat the specification as a conjecture about

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel36of 186

match_is , and attempt to prove it by structural inductiorron

We first consider the three base cases. Supposeititat Then no string is if(r), somatch_is
must returrfalse which indeed it does. Suppose thatl. Since the null string is an initial segm
of every string, and the null string islifil), we must yieldrue iff k csyieldstrue, and false
otherwise. Again, this is precisely howatch_is is defined. Suppose thais a. Then to succee
csmust have the forra cs’'with k cs’evaluating to true; otherwise we must fail. The code for
match_is checks thatshas the required form and, if so, pass2#to k to determine the outcome,
and otherwise yield&lse Thusmatch_is behaves correctly for each of the three base cases.

We now consider the three inductive steps. rEot+r,, we observe that some initial segment®f

matches and causeksto accept the corresponding final segment iff either some initial segment
matcheg, and drivek to accept or some initial segment matahgesnd drivek to accept. By

inductionmatch_is works as specified for, andr., which is sufficient to justify the correctnes:

match_is forr=r +r,. Forr=rr,, the proof is slightly more complicated. By induction

match_is behaves according to the specification if it is applied to eitherr., provided that the
continuation argument is totalNote that the continuatidk given by(fn cs’ => match_is

r2 cs’ k) is total, since by induction the inner recursive cath&ich _is always terminates.
Suppose that there exists a partitionisgcs'@cs’with ¢s’ in L(randk cs”evaluating tdrue.

Then cs'=cs,cs’, with cs’; in L(r,) andcs’, in L(r,), by definition ofL(r,r,). Consequently,
match_is r, csics” kevaluates ttrue, and hencenatch_is r, cs,csics” k'evaluates tarue, as
required. If, however, no such partitioning exists, then either no initial segmesThafches ,, in
which case the outer recursive call yidialse,as required, or foeveryinitial segment matching,,
no initial segment of the corresponding final segment matchaswhich case the inner recursive

call yieldsfalseon every call, and hence the outer call yiéddise as required, or elsverypair of
successive initial segmentse¥matchingr, andr, successively results knevaluating tdalse in

which case the inner recursive call always yi&ttss and hence the continuatikhalways yields
false, and hence the outer recursive call yiéddse as required. Be sure you understand the
reasoning involved here, it is quite tricky to get right!

We seem to be on track, with one more case to consinlq?,. This case would appear to be a

combination of the preceding two cases for alternation and concatenation, with a similar argument
sufficing to establish correctness. But there is a snag: the second recursivenatdhtds leaves

the regular expression unchanged! Consequently we cannot apply the inductive hypothesis to
establish that it behaves correctly in this case, and the obvious proof attempt breaks down. |

the argument to see where you get into trouble.) What to do? A moment's thought suggests that we
proceed by an inner induction on the length of the string, based on the theory that if some initial
segment otsmatched (r), then either that initial segment is the null string (base case), or
cs=cs’@cs'with cs’ in L(r;) andcs™ in L(r) (induction step). We then handle the base case directly,

and handle the inductive case by assumingntlaath is behaves correctly fas” and showing
that it behaves correctly fos But there is a flaw in this argument! The strisgneed not be
shorter tharcsin the case thats’is the null string! In that case the inductive hypothesis does not
apply, and we are once again unable to complete the proof. But this time we can use the fai

proof to obtain a counterexample to the specification! Ferdif, for example, thematch_is rcs

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel37of 186

k does not terminate! In generatfr 1* with ™" in L(r ,), thenmatch_is r cs kfails to terminate.

In other wordsmatch_is doesnot satisfy the specification we have derived for it! Our conjecture
is false!

We have used the failure of an attempt to proverttzth _is satisfies a reasonable specification

of its behavior to discover a bug in the code --- the matcher does not always terminate. What to do?
One approach is to explicitly check for failure to make progress when matching against an iterated
regular expression. This will work, but at the expense of cluttering the code and imposing a

run-time overhead. You should write out a version of the matcher that works this way, and ¢

it indeed satisfies the specification we've given above. An alternative is to observe that the proof of
correctness sketched above goes through, provided that the regular expression satisfies the condition

that no iterated regular expression matches the null string. Thaissidmitted as a valid regular
expression only if" is not inL(r). Call a regular expression satisfying this condigandard As

an exercise check that the proof sketched above goes through under the additional assunmption that
is a standard regular expression.

Thus the matcher behaves correctly for all standard regular expressions. But what about those non-
standard ones? A simple observation is évatry regular expression is equivalent to one in star

form. That is, we never really need to consider non-standard regular expressions. Instead we can pre-
process the regular expression to put it into standard form, then call the matcher on the standardized
regular expression. This pre-processing is based on the following definitions. First, wendifipe

to be the regular expressitif r accepts the null string, and the regular expressibnot. Then

we definenonnull(r) to be a regular expressidgnn standard form such thiafr’) = L(r) \ {""} --- that

is, I’ accepts the same stringsraexcept for the null string. Thus for every regular expressioe

have

L(r) = L(null(r)+nonnuli(r)).
Moreover, the regular expressioull(r)+nonnull(r) is in standard form.

Here is the definition afull:

null(0) =0
null(1) =1
null(@ =0

null(r,+r,) = null(r,) ++ nuli(r.)

null(ryr,) = null(ry) ** null(r ,)

null(r’) = 1
where we defin@++1=1++0=1++1=1 and0++0=0 and0**1=1**0=0**0=0 andl1**1=1.
Here is the definition afonnult

nonnull(0) =0

nonnull(1) =0

nonnull(a) = a
nonnull(r;+r,) = nonnull(r,)+nonnuli(r,)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel38of 186

nonnull(r;r,) = null(r)nonnuli(r,) + nonnull(r;)nonnuli(r,)

nonnull(r*) = null(r) + nonnull(r)*

Check that the stated properties of these regular expressions indeed hold true, and use thes
to define a pre-processor to put every regular expression into standard form.

This chapter is based on the paper ent®exbf-Directed Debuggingwvhich is scheduled to appear
as a Functional Pearl article in theurnal of Functional Programming

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199 Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel39of 186

Infinite Sequences [http://www.cs.cmu.edu/People/rwh/introsml/techniques/hof.htm] Page 25
Infinite Sequences
[Back] [Home] [Up] [Next]
Last edit Monday, May 04, 1998 03:28 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for this Chapter

Higher-order functions --- those that take functions as arguments or return functions as results --- are
powerful tools for building programs. An interesting application of higher-order functions is to
implementinfinite sequencesf values as (total) functions from the natural numbers (non-negative
integers) to the type of values of the sequence. We will develop a small package of operations for
creating and manipulating sequences, all of which are higher-order functions since they take
sequences (functions!) as arguments and/or return them as results. A natural way to define many
sequences is by recursion, or self-reference. Since sequences are functions, we may use recursive
function definitions to define such sequences. Alternatively, we may think of such a sequence as
arising from a "loopback” or "feedback" construct. We will explore both approaches.

Sequences may be used to simulate digital circuits by thinking of a "wire" as a sequence of bits
developing over time. Thiéh value of the sequence corresponds to the signal on the wire at time
For simplicity we will assume a perfect waveform: the signal is always either high or low (or is
undefined); we will not attempt to model electronic effects such as attenuation or noise.
Combinational logic elements (such as and gates or inverters) are operations on wires: they take in
one or more wires as input and yield one or more wires as results. Digital logic elements (such as
flip-flops) are obtained from combinational logic elements by feedback, or recursion --- a flip-flop is
a recursively-defined wire!

Let us begin by developing a sequence package. Here is a suitable signature defining the type of
sequences:

signature SEQUENCE = sig

type 'aseq=int->"'a

val constantly : 'a -> 'a seq (* constant
sequence *)

val alternately : 'a * 'a -> 'a seq *
alternating values *)

val insert : 'a * 'a seq -> 'a seq (* insert an

element at the front *)
val map : ('a->'b) ->"'aseq ->'b seq
val zip : 'a seq * 'b seq -> (‘'a * 'b) seq

val unzip : ('a * 'b) seq -> 'a seq * 'b seq
val merge : (‘fa * 'a) seq -> 'a seq (* fair

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel40o0f 186

merge *)

val stretch : int -> 'a seq -> 'a seq
val shrink : int -> 'a seq -> 'a seq

val take : int -> 'a seq -> 'a list
val drop : int -> 'a seq -> 'a seq
val shift : 'a seq ->'a seq

val loopback : (‘'a seq -> 'a seq) -> 'a seq
end

Observe that we expose the representation of sequences as functions. This is done to simplify the
definition of recursive sequences as recursive functions. Alternatively we could have hidden the
representation type, at the expense of making it a bit more awkward to define recursive seqt

the absence of this exposure of representation, recursive sequences may only be built using the
loopback operation which constructs a recursive sequence by "looping back" the output of a
sequence transformer to its input. Most of the other operations of the signature are adaptations of
familiar operations on lists. Two exceptions to this rule are the functicetsh andshrink

that dilate and contract the sequence by a given time parameter --- if a sequence is expartded by
value at is the value of the original sequencélgtand dually for shrinking.

Here's an implementation of sequences as functions.
structure Sequence :> SEQUENCE = struct
type 'a seq = int ->'a
fun constantly cn=c
fun alternately (c,d) n=ifnmod 2 =0thencelsed
funinsert (x, s) 0 = x
| insert (x, s) n =s (n-1)
funmapfs=fos
fun zip (s1, s2) n = (sl n, s2 n)
fun unzip (s : (a * 'b) seq) = (map #1 s, map #2 s)
fun merge (s1, s2) n =
(if n mod 2 = 0 then sl else s2) (n div 2)

fun stretch k s n =s (n div k)
fun shrink k s n =s (n * k)

fun drop k s n = s (n+k)
fun shifts=drop1s
fun take O _ = nil
| take n s = s 0 :: take (n-1) (shift s)
fun loopback loop n = loop (loopback loop) n

end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel4lof 186

Most of this implementation is entirely straightforward, given the ease with which we may
manipulate higher-order functions in ML. The only tricky functiolmdgback , which must
arrange that the output of the functionp is "looped back" to its input. This is achieved by a
simple recursive definition of a sequence whose valogsathe value at of the sequence resulting
from applying the loop to this very sequence.

The sensibility of this definition dbopback relies on two separate ideas. First, notice that we
may not simplify the definition oloopback as follows:

fun loopback loop = loop (loopback loop) (* bad
definition *)

The reason is that any applicationadpback will immediately loop forever! In contrast, the
original definition is arranged so that applicationoafpback immediately returns a function. TI
may be made more apparent by writing it in the following form, which is entirely equivalent to the
definition given above:

fun loopback loop = fn n => loop (loopback loop) n

This format makes it clear that loopback immediately returns a function when applied to a loop
functional.

Second, for an application mopback to a loop to make sense, it must be the case that the loop
returns a sequence without "touching" the argument sequenceithout applying the argument to

a natural number). Otherwise accessing the sequence resulting from an application of loopback
would immediately loop forever. Some examples will help to illustrate the point.

First, let's build a few sequences without usingdbpback function, just to get familiar with
using sequences:

val evens :int seq = fn n => 2*n
val odds : int seq = fn n => 2*n+1
val nats : int seq = merge (evens, odds)

fun fibs n =

(insert (1, insert (1, map (op +) (zip (drop 1 fibs,
fibs)))))(n)

We may "inspect"” the sequence udimige anddrop , as follows:
take 10 nats (*[0,1,2,3,4,5,6,7,8,9] %)
take 5 (drop 5 nats) (*[5,6,7,8,9] %)
take 5 fibs (*[1,1,2,3,5] %)
Now let’s consider an alternative definitiorfibs that uses the loopback operation:
fun fibs_loop s = insert (1, insert (1, map (op +) (zip

(drop 1 s, s))))
val fibs = loopback fibs_loop;

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel42of 186

The definition offibs_loop is exactly like the original definition dibs , except that the
reference tdibs itself is replaced by a reference to the argumeriotice that the application of
fibs loop to an argumerd does not inspect the argumemt

One way to understand loopback is that it solves a system of equations for an unknown sequence. In
the case of the second definition of fibs, we are solving the following system of equations for

fo=1
fi=1
f(n+2) =f (n+1) + f (n)

These equations are derived by inspecting the definitiomsaft , map, zip , anddrop given
earlier. It is obvious that the solution is the Fibonacci sequence; this is precisely the sequence
obtained by applyintpopback tofibs_loop

Here's an example of a loop that, when looped back, yields an undefined sequence --- any attempt to
access it results in an infinite loop:

funbad loopsn=sn+1
val bad = loopback bad_loop
val _=bad0 (* infinite loop!

*)

In this example we are, in effect, trying to solve the equatior s n + Ifor s, which has no
solution (except the totally undefined sequence). The problem is that the "next" element of tl
is defined in terms of the next element itself, rather than in terms of "previous" elements.
Consequently, no solution exists.

With these ideas in mind, we may apply the sequence package to build an implementation of digital
circuits. Let's start with wires, which are represented as sequences of levels:

datatype level = High | Low | Undef
type wire = level seq
type pair = (level * level) seq

val Zero : wire = constantly Low
val One : wire = constantly High

(* clock pulse with given duration of each pulse *)
fun clock (freq:int):wire = stretch freq (alternately (Low,

High))

We include the "undefined" level to account for propagation delays and settling times in circuit
elements.

Combinational logic elements (gates) may be defined as follows. We introduce an explicit unit time
propagation delay for each gate --- the output is undefined initially, and is then determined as a
function of its inputs. As we build up layers of circuit elements, it takes longer and longer
(proportional to the length of the longest path through the circuit) for the output to settle, exax

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel43of 186

"real life".

infixr **;
fun(f*g) (x,y)=(x,gy) (*apply two
functions in parallel *)

fun logical_and (Low,) = Low (* hardware logical
and *)

| logical_and (_, Low) = Low

| logical_and (High, High) = High

| logical_and _ = Undef

fun logical_not Undef = Undef
| logical_not High = Low
| logical_not Low = High

fun logical_nop | =1

val logical_nor =
logical_and o (logical_not ** logical_and) (*anorb
=not aand not b *)

type unary_gate = wire -> wire
type binary_gate = pair -> wire

fun gate f w O = Undef (* logic gate with
unit propagation delay *)
| gate fwi=f(w(i-1))

val delay : unary_gate = gate logical_nop (* unit
delay *)

val inverter : unary_gate = gate logical_not

val nor_gate : binary gate = gate logical_nor

It is a good exercise to build a one-bit adder out of these elements, then to string them together to
form ann-bit ripple-carry adder. Be sure to present the inputs to the adder with sufficient pulse
widths to ensure that the circuit has time to settle!

Combining these basic logic elements with recursive definitions allows us to define digital logic
elements such as the RS flip-flop. The propagation delay inherent in our definition of a gate is
fundamental to ensuring that the behavior of the flip-flop is well-defined! This is consistent with

"real life" --- flip-flop's depend on the existence of a hardware propagation delay for their proper
functioning. Note also that presentation of "illegal" inputs (such as setting both the R and the S leads
high results in metastable behavior of the flip-flop, here as in real life Finally, observe that the flip-
flop exhibits a momentary "glitch" in its output before settling, exactly as in the hardware case. (All
of these behaviors may be observed by usikg anddrop to inspect the values on the circuit.)

fun RS_ff (S : wire, R : wire) =
let
fun X n = nor_gate (zip (S, Y))(n)
and Y n = nor_gate (zip (X, R))(n)
in

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel44of 186

Y
end

(* generate a pulse of b's n wide, following by w *)
funpulsebOwi=wi

| pulsebnw0=Db

| pulse b nwi=pulse b (n-1) w (i-1)

val S = pulse Low 2 (pulse High 2 Zero);
val R = pulse Low 6 (pulse High 2 Zero);
val Q = RS _ff (S, R);

val _=take 20 Q;

val X = RS _ff (S, S); (* unstable! *)
val _=take 20 X;

It is a good exercise to derive a system of equations governing the RS flip-flop from the definition
we've given here, using the implementation of the sequence operations given above. Obser
delays arising from the combinational logic elements ensure that a solution exists by ensurin
"next" element of the output refers only the "previous" elements, and not the "current" element.

Finally, we consider a variant implementation of an RS flip-flop using the loopback operation:

fun loopback2 (f : wire * wire -> wire * wire) =
unzip (loopback (zip o f o unzip))

fun RS_ff' (S : wire, R : wire) =
let
fun RS_loop (X, Y) =
(nor_gate (zip (S, Y)), nor_gate (zip (X, R)))
in
loopback2 RS _loop
end

Here we must define a "binary loopback" function to implement the flip-flop. This is achieved by
reducing binary loopback to unary loopback by composingaythandunzip .

Sample Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel45of 186

Representation Invariants and Data Abstraction Page
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/repinv.htm] 26
Representation Invariants and Data
Abstraction

[Back] [Home] [Up] [Next]
Last edit Monday, May 04, 1998 03:29 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for This Chapter

An abstract data type (ADT3 a type equipped with a set of operations for manipulating values of
that type. An ADT is implemented by providingepresentation typéor the values of the ADT and

an implementation for the operations defined on values of the representation type. What makes an
ADT abstract is that the representation typadslenfrom clients of the ADT. Consequently, the

only operations that may be performed on a value of the ADT are the given ones. This ensures that
the representation may be changed without affecting the behavior of the client --- since the
representation is hidden from it, the client cannot depend on it. This also facilitates the
implementation of efficient data structures by imposing a condition, caleggte@sentation invariant

on the representation thatgeeservedy the operations of the type. Each operation that takes ¢

of the ADT as argument magsumehat the representation invariant holds. In compensation each
operation that yields a value of the ADT as result muatanteethat the representation invariant

holds of it. If the operations of the ADT preserve the representation invariant, then it must truly be
invariant --- no other code in the system could possibly disrupt it. Put another way, any violation of
the representation invariant may be localized to the implementation of one of the operations. This
significantly reduces the time required to find an error in a program.

To make these ideas concrete we will consider the abstract data tygoofiries A dictionary is

a mapping fronkeysto values For simplicity we take keys to be strings, but it is possible to de
dictionary for any ordered type; the values associated with keys are completely arbitrary. Viewed as
an ADT, a dictionary is a type dict of dictionaries mapping strings to values of tige

together witrempty , insert , andlookup operations that create a new dictionary, insert a value
with a given key, and retrieve the value associated with a key (if any). In short a dictionary is an
implementation of the following signature:

signature DICT = sig

type key = string

type 'a entry = key * 'a

type 'a dict

exception Lookup of key

val empty : 'a dict

val insert : 'a dict * 'a entry -> 'a dict

val lookup : 'a dict * key -> 'a dict
end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel46of 186

Notice that the typ’a dict is not specified in the signature, whereas the tgpgsand’a
entry are defined to bstring andstring * 'a , respectively.

A simple implementation of a dictionary idmary search tree A binary search tree is a binary tree

with values of an ordered type at the nodes arranged in such a way that for every node in the tree, the
value at that node is greater than the value at any node in the left child of that node, and smaller than
the value at any node in the right child. It follows immediately that no two nodes in a binary search
tree are labelled with the same value. The binary search tree property is an example of a
representation invariant on an underlying data structure. The underlying structure is a binary tree
with values at the nodes; the representation invariant isolates a set of structures satisfying some
additional, more stringent, conditions.

We may use a binary search tree to implement a dictionary as follows:

structure BinarySearchTree :> DICT = struct
type key = string
type 'a entry = key * 'a

(* Rep invariant: 'a tree is a binary search tree *)

datatype 'a tree = Empty | Node of 'a tree * 'a entry *
'atree

type 'a dict = 'a tree

exception Lookup of key
val empty = Empty

fun insert (Empty, entry) = Node (Empty, entry, Empty)
| insert (n as Node (I, eas (k,), r), e as (k',)) =
(case String.compare (k, k')
of LESS => Node (insert (I, "), e, 1)
| GREATER => Node (I, e, insert (r, €"))
| EQUAL =>n)

fun lookup (Empty) k = raise (Lookup k)
| lookup (Node (I, (k, v), 1) k' =
(case String.compare (k, k')
of EQUAL =>v
| LESS => lookup | k'
| GREATER => lookup r k")

end

Notice thalempty is defined to be a valid binary search tree,itie®rt yields a binary search ti
if its argument is one, and tHabkup relies on its argument being a binary search tree (if not, it
might fail to find a key that in fact occurs in the tree!). The stru@unarySearchTree is
sealed with the signatuBdCT to ensure that the representation type is held abstract.

The difficulty with binary search trees is that they may become unbalanced. In particular if we insert
keys in ascending order, the representation is essentially just a list! The left child of each node is

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel47of 186

empty; the right child is the rest of the dictionary. Consequently, it @kgsime in the worse case

to perform a lookup on a dictionary containmeements. Such a tree is said taibbalanced

because the children of a node have widely varying heights. Were it to be the case that the children
of every node had roughly equal height, then the lookup would@gen) time, a considerable
improvement.

Can we do better? Many approaches have been suggested. One that we will consider here is an
instance of what is calledsalf-adjusting tregcalled ared-black treqthe reason for the name will
apparent shortly). The general idea of a self-adjusting tree is that operations on the tree may cause a
reorganization of its structure to ensure that some invariant is maintained. In our case we wi

things so that the tree self-balancingmeaning that the children of any node have roughly the same
height. As we just remarked, this ensures that lookup is efficient.

How is this achieved? By imposing a clever representation invariant on the binary search tree, called
thered-black treecondition. A red-black tree is a binary search tree in which every node is colored
either red or black (with the empty tree being regarded as black) and such that the following
properties hold:

1. The children of a red node are black.
2. For any node in the tree, the number of black nodes on any two paths from that node t«
the same. This number is called thack heightof the node.

These two conditions ensure that a red-black tree is a balanced binary search tree. Here's\

observe that a red-black tree of black helghas at lea2"-1 nodes. We may prove this by
induction on the structure of the red-black tree. The empty tree has black-height 1 (since we

it to be black), which is at leagt-1, as required. Suppose we have a red node. The black height of
both children must b, hence each has at ma&1 nodes, yielding a total df(Zh-l)+1 =oh+lg
nodes, which is at leagf-1. If, on the other hand, we have a black node, then the black height of

both children ish-1, and each have at m&¥™-1 nodes, for a total cﬂ(2h'1-1)+1 = 2"-1 nodes.
Now, observe that a red-black tree of heh with n nodes has black height at mb&, and hence

has at leas2"2-1 nodes. Consequentlig(n+1)>=h/2, soh <= 2Ig(n+1). In other words, its heig
is logarithmic in the number of nodes, which implies that the tree is height balanced.

To ensure logarithmic behavior, all we have to do is to maintain the red-black invariant. The empty
tree is a red-black tree, so the only question is how to perform an insert operation. First, we

entry as usual for a binary search tree, with the fresh node starting out colored red. In doing so we do
not disturb the black height condition, but we might introduared violation a situation in

which a red node has a red child. We then remove the red-red violation by propagating it upwards
towards the root by a constant-time transformation on the tree (one of several possibilities, which
we'll discuss shortly). These transformations either eliminate the red-red violation outright, or, in
logarithmic time, push the violation to the root where it is neatly resolved by recoloring the ro

(which preserves the black-height invariant!).

The violation is propagated upwards by one of fotations We will maintain the invariant that

there is at most one red-red violation in the tree. The insertion may or may not create such a
violation, and each propagation step will preserve this invariant. It follows that the parent of a red-
red violation must be black. Consequently, the situation must loothlke This diagram

represents four distinct situations, according to whether the uppermost red node is a left or right child

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel48of 186

of the black node, and whether the red child of the red node is itself a left or right child. In each case
the red-red violation is propagated upwards by transforming it to loothle Notice that by

making the uppermost node red we may be introducing a red-red violation further up the tree (since
the black node's parent might have been red), and that we are preserving the black-height invariant
since the great-grand-children of the black node in the original situation will appear as childre

two black nodes in the re-organized situation. Notice as well that the binary search tree conditions
are also preserved by this transformation. As a limiting case if the red-red violation is propagated to
the root of the entire tree, we re-color the root black, which preserves the black-height condition, and
we are done re-balancing the tree.

Let's look in detail at two of the four cases of removing a red-red violation, those in which the
uppermost red node is the left child of the black node; the other two cases are handled symn

If the situation looks likehis, we reorganize the tree to look litkes. You should check that the
black-height and binary search tree invariants are preserved by this transformation. Similarly, if the
situation looks likehis, then we reorganize the tree to look likes (precisely as before). Once

again, the black-height and binary search tree invariants are preserved by this transformation, and the
red-red violation is pushed further up the tree.

Here is the ML code to implement dictionaries using a red-black tree. Notice that the tree rotations
are neatly expressed using pattern matching.

structure RedBlackTree :> DICT = struct
type key = string
type 'a entry = string * 'a

(* Representation invariant: binary search tree + red-
black conditions *)

datatype 'a dict = Empty

| Red of 'a entry * 'a dict * 'a dict

| Black of 'a entry * 'a dict * 'a dict

val empty = Empty
exception Lookup of key

fun lookup dict key =
let
fun Ik (Empty) = raise (Lookup key)
| Ik (Red tree) = IK' tree
| Ik (Black tree) = Ik’ tree
and Ik' ((keyl, datuml), left, right) =
(case String.compare(key,keyl)
of EQUAL => datum1
| LESS => Ik left
| GREATER => Ik right)
in
Ik dict
end

fun restoreLeft (Black (z, Red (y, Red (x, d1, d2), d3),
d4)) =

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel49of 186

Red (y, Black (x, d1, d2), Black (z, d3, d4))
| restoreLeft (Black (z, Red (x, d1, Red (y, d2, d3)),
d4)) =
Red (y, Black (x, d1, d2), Black (z, d3, d4))
| restorelLeft dict = dict

fun restoreRight (Black (x, d1, Red (y, d2, Red (z, d3,
d4)))) =
Red (y, Black (x, d1, d2), Black (z, d3, d4))
| restoreRight (Black (x, d1, Red (z, Red (y, d2, d3),
d4))) =
Red (y, Black (x, d1, d2), Black (z, d3, d4))
| restoreRight dict = dict

fun insert (dict, entry as (key, datum)) =
let
(* val ins : 'a dict -> 'a dict insert entry *)
(* ins (Red _) may violate color invariant at
root *)
(* ins (Black) or ins (Empty) will be red/black
tree *)
(* ins preserves black height *)
fun ins (Empty) = Red (entry, Empty, Empty)
| ins (Red (entryl as (keyl, datuml), left,
right)) =
(case String.compare (key, key1)
of EQUAL => Red (entry, left, right)
| LESS => Red (entryl, ins left, right)
| GREATER => Red (entryl, left, ins
right))
| ins (Black (entryl as (keyl, datuml), left,
right)) =
(case String.compare (key, key1)
of EQUAL => Black (entry, left, right)
| LESS => restoreLeft (Black (entryl, ins
left, right))
| GREATER => restoreRight (Black (entry1,
left, ins right)))

in
case ins dict
of Red (tas (_, Red _,))=>Blackt (* re-
color *)
| Red (tas (_, , Red))=>Blackt (* re-
color *)
| dict => dict
end
end

It is worthwhile to contemplate the role played by the red-black invariant in ensuring the correctness
of the implementation and the time complexity of the operations.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel500f 186

Sample Code for This Chapter

[Back] [Home] [Up] [Next]

Copyright © 199 Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel51of 186

Persistent and Ephemeral Data Structures Page
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/perseph.htm] 27

Persistent and Ephemeral Data Structures
[Back] [Home] [Up] [Next]
Last edit Monday, May 04, 1998 03:29 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Sample Code for This Chapter

This chapter is concerned wiplersistenandephemerabbstract types. The distinction is best

explained in terms of thegical futureof a value. Whenever a value of an abstract type is created it
may be subsequently acted upon by the operations of the type (and, since the type is abstract, by no
other operations). Each of these operations may yield (other) values of that abstract type, which may
themselves be handed off to further operations of the type. Ultimately a value of some other type,
say a string or an integer, is obtained as an observable outcome of the succession of operations on the
abstract value. The sequence of operations performed on a value of an abstract type constitutes a
logical future of that type --- a computation that starts with that value and ends with a value of some
observable type. We say that a typegkemeralff every value of that type has at most one logical
future, which is to say that it is handed off from one operation of the type to another until an
observable value is obtained from it. This is the normal case in familiar imperative programming
languages because in such languages the operations of an abstract type destructively modif

upon which they operate; its original state is irretrievably lost by the performance of an operation. It
is therefore inherent in the imperative programming model that a value have at most one logical
future. In contrast, values of an abstract type in functional languages such as ML may have many
different logical futures, precisely because the operations do not "destroy" the value upon which they
operate, but rather create fresh values of that type to yield as results. Such values are said to be
persister because they persist after application of an operation of the type, and in fact may serve as
arguments to further operations of that type.

Some examples will help to clarify the distinction. The primitive list types of ML are persistent
because the performance of an operation such as cons'ing, appending, or reversing a list does not
destroy the original list. This leads naturally to the idea of multiple logical futures for a given value,
as illustrated by the following code sequence:

val | =[1,2,3] (* original list *)

valml =hd| (* first future of | *)

val nl1 =revml

valm2 =1 @ [4,5,6] (* second future of | *)

Notice that the original list valu[1,2,3] , has two distinct logical futures, one in which we
remove its head, then reverse the tail, and the other in which we append4hg it toit. The
ability to easily handle multiple logical futures for a data structure is a tremendous source of
flexibility and expressive power, alleviating the need to perform tedious bookkeeping to manage
"versions" or "copies” of a data structure to be passed to different operations.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel52of 186

The prototypical ephemeral data structure in ML is the reference cell. Performing an assignment
operation on a reference cell changes it irrevocably; the original contents of the cell are lost, even if
we keep a handle on it.

valr=ref 0 (* original cell *)
vals=r

val _=(Is=1)

valx =1r * 1%

Notice that the contents of (the cell boundr changes as a result of performing an assignment to
the underlying cell. There is only one future for this cell; a reference to its original binding does not
yield its original contents.

More elaborate forms of ephemeral data structures are certainly possible. For example, the following
declaration defines a type of lists whose tails are mutable. It is therefore a singly-linked list, one
whose predecessor relation may be changed dynamically by assignment:

datatype 'a mutable_list = Nil | Cons of 'a * 'a
mutable_list ref

Values of this type are ephemeral in the sense that some operations on values of this type are
destructive, and hence are irreversible (so to speak!). For example, here's an implementation of a
destructive reversal of a mutable list. Given a mutablé lists function reverses the links in the

cell so that the elements occur in reverse order of their occurrence in

local

funipr (Nil, a) = a

| ipr (this as (Cons (_, r as ref next)), a) =
ipr (next, (r := a; this))

in

(* destructively reverse a list *)

fun inplace_reverse | = ipr (I, Nil)
end

As you can see, the code is quite tricky to understand! The idea is the same as the iterative reverse
function for pure lists, except that we re-use the nodes of the original list, rather than generate new
ones, when moving elements onto the accumulator argument.

The distinction between ephemeral and persistent data structures is essentially the distinctio
functional (effect-free) and imperative (effect-ful) programming --- functional data structures are
persistent; imperative data structures are ephemeral. However, this characterization is over:

in two respects. First, it is possible to implement a persistent data structure that exploits mutable
storage. Such a use of mutation is an example of what is cdlesdgn effecbecause for all

practical purposes the data structure is "purely functional,'dersistent), but is in fact implemen
using mutable storage. As we will see later the exploitation of benign effects is crucial for building
efficient implementations of persistent data structures. Second, it is possible for a persistent

to be used in such a way that persistence is not exploited --- rather, every value of the type

one future in the program. Such a type is said ®wrggde-threadedreflecting the linear, as opposed

to branching, structure of the future uses of values of that type. The significance of a single-threaded

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel530f 186

type is that it may as well have been implemented as an ephemeral data s&wgrtbyeh@ving
observable effects on values) without changing the behavior of the program.

Here is a signature of persistent queues:

signature QUEUE = sig
type 'a queue
exception Empty
val empty : 'a queue
val insert : 'a * 'a queue -> 'a queue
val remove : 'a queue ->'a * 'a queue
end

This signature describes a structure providing a representation type for queues, together with
operations to create an empty queue, insert an element onto the back of the queue, and to remove an
element from the front of the queue. It also provides an exception that is raised in response to an
attempt to remove an element from the empty queue. Notice that removing an element from a queue
yields both the element at the front of the queue, and the queue resulting from removing that
element. This is a direct reflection of the persistence of queues implemented by this signature; the
original queue remains available as an argument to further queue operations.

By asequencef queue operations we shall mean a succession of usegtf, insert , and

remove operations in such a way that the queue argument of one operation is obtained as a result of
the immediately preceding queue operation. Thus a sequence of queue operations represents a single-
threaded time-line in the life of a queue value. Here is an example of a sequence of queue operations:

val qO0 : int queue = empty

val g1 =insert (1, g0)

val g2 = insert (2, q1)

val (hl,g3)=remove g2 (*hl=1,93=q9l%
val (h2, q4) =remove g3 (*h2=2,04=q0%)

By contrast the following operations do not form a single thread, but rather a branching development
of the queue’s lifetime:

val qO : int queue = empty

val q1 = insert (1, q0)

val g2 =insert (2, q0) (* NB: g0, not q1! *)
val (h1, g3) =removeql (*h1=1,q9q3=q0%)
val (h2, g4) = remove g3 (* raise Empty *)

val (h2, g4) =remove g2 (*h2=2,,94=q0%*)

In the remainder of this chapter we will be concerned with single-threaded sequences of queue
operations.

How might we implement the sighatU@JEUER The most obvious approach is to represent the

gueue as a list with, say, the head element of the list representing the "back" (most recently enqueued
element) of the queue. With this representation enqueueing is a constant-time operation, but
dequeuing requires time proportional to the number of elements in the queue. Thus in the worst case

a sequence of enqueue and dequeue operations will take @(nr@), which is clearly excessive. \

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel54 of 186

can make dequeue simpler, at the expense of enqueue, by regarding the head of the list as the "front"
of the queue, but the time bound fooperations remains the same in the worst case.

Can we do better? A well-known "trick" achievesG(m) worst-case performance for any sequence
of n operations, which means that each operation @kEssteps if weamortizethe cost over the

entire sequence. Notice that this iwarst-casebound for thesequencgyielding anamortizedbounc

for eachoperationof the sequence. This means that some operations may be relatively expensive,
but, in compensation, many operations will be cheap.

How is this achieved? By combining the two naive solutions sketched above. The idea is to
represent the queue two lists, one for the back "half" consisting of recently inserted elements
order of arrival, and one for the front "half" consisting of soon-to-be-removed elemesrise
order of arrivalice., in order of removal). We put "half" in quotes because we will not, in general,
maintain an even split of elements between the front and the back lists. Rather, we will arrange
things so that the following representation invariant holds true:

1. The elements of the queue listed in order of removal are the elements of the front
followed by the elements of the back in reverse order.
2. The front is empty only if the back is empty.

This invariant is maintained by using a "smart constructor” that creates a queue from two lists
representing the back and front parts of the queue. This constructor ensures that the representation
invariant holds by ensuring that condition (2) is always true of the resulting queue. The constructor
proceeds by a case analysis on the back and fron parts of the queue. If the front list is non-empty, or
both the front and back are empty, the resulting queue consists of the back and front parts a:

the front is empty and the back is non-empty, the queue constructor yields the queue consisting of an
empty back part and a front part equal to the reversal of the given back part. Observe that this is
sufficient to ensure that the representation invariant holds of the resulting queue in all cases.

also that the smart constructor either runs in constant time, or in time proportional to the lenc

back part, according to whether the front part is empty or not.

Insertion of an element into a queue is achieved by cons'ing the element onto the back of the queue,
then calling the queue constructor to ensure that the result is in conformance with the representation
invariant. Thus an insert can either take constant time, or time proportional to the size of the back of
the queue, depending on whether the front part is empty. Removal of an element from a queue
requires a case analysis. If the front is empty, then by condition (2) the queue is empty, so w
exception. If the front is non-empty, we simply return the head element together with the queue
created from the original back part and the front part with the head element removed. Here again the
time required is either constant or proportional to the size of the back of the queue, according to
whether the front part becomes empty after the removal. Notice that if an insertion or removal
requires a reversal &felements, then the nekbperations are constant-time. This is the

fundamental insight as to why we achi€@@) time complexity over any sequencenaiperations.

(We will give a more rigorous analysis shortly.)

Here's the implementation of this idea in ML:
structure Queue > QUEUE = struct

type 'a queue = 'a list * 'a list
fun make_queue (g as (nil, nil)) = q

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel550f 186

| make_queue (bs, nil) = (nil, rev bs)
| make_queue (q as (bs, fs)) = q
val empty = make_queue (nil, nil)
fun insert (x, (back,front)) = make_queue (x::back,
front)
exception Empty
fun remove (_, nil) = raise Empty
| remove (bs, f.:fs) = (f, make_queue (bs, fs))
end

Notice that we call the "smart constructmake_queue whenever we wish to return a queue to

ensure that the representation invariant holds. Consequently, some queue operations are more
expensive than others, according to whether or not the queue needs to be reorganized to satisfy the
representation invariant. However, each such reorganization makes a corresponding number of
subsequent queue operations "cheap” (constant-time), so the overall effort required evens out in the
end to constant-time per operation. More precisely, the running time of a sequegce o

operations is novd(n), rather tharO(nZ), as it was in the naive implementation. Consequently, each
operation take®(1) (constant) time "on average'€., when the total effort is evenly apportioned
among each of the operations in the sequence. Note that thveistacaseime bound for each
operationamortized over the entire sequeynget anaverage-caséime bound based on assumpti
about the distribution of the operations.

How can we prove this claim? First we given an informal argument, then we tighten it up with a

more rigorous analysis. We are to account for the total work performed by a sequeoperafion

by showing that any sequencenoperations can be executectimsteps for some constamt

Dividing by n, we obtain the result that each operations talstsps when amortized over the entire
sequence. The key is to observe first that the work required to execute a sequence of queue
operations may be apportioned to the elements themselves, then that only a constant amount of work
is expended on each element. The "life" of a queue element may be divided into three stages: it's
arrival in the queue, it's transit time in the queue, and it's departure from the queue. In the worst case
each element passes through each of these stages (but may "die young", never participating in the
second or third stage). Arrival requires constant time to add the element to the back of the queue.
Transit consists of being moved from the back to the front by a reversal, which takes constant time
per element on the back. Departure takes constant time to pattern match and extract the element.
Thus at worst we require three steps per element to account for the entire effort expended to perform
a sequence of queue operations. This is in fact a conservative upper bound in the sense that we may
need less tham3steps for the sequence, but asymptotically the bound is optimal --- we cannot do
better than constant time per operation! (You might reasonably wonder whether there is a w
non-amortized constant-time implementation of persistent queues. The answer is "yes", but the code
is far more complicated than the simple implementation we are sketching here.)

This argument can be made rigorous as follows. The general idea is to introduce the notion of a
charge schemthat provides an upper bound on the actual cost of executing a sequence of
operations. An upper bound on the charge will then provide an upper bound on the actual dost. Let
(n) be the cumulative time required (in the worst case) to execute a sequeEeoé operations.

We will introduce acharge functionC(n), representing theumulative chargéor executing a

sequence afi operations and show th&fn)<=C(n)=0O(n). It is convenient to express this in terms

of a functionR(n) = C(n)-T(nyepresenting the cumulativesidual or overchargewhich is the

amount that the charge fooperations exceeds the actual cost of executing them. We will arrange
things so thaR(n)>=0 and thatC(n)=0(n), from which the result follows immediately.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel56 of 186

Down to specifics. By charging 2 for each insert operation and 1 for each remove, it follaWs that
(n)<=2n for any sequence ofinserts and removes. ThQgn)=0(n) After any sequence ab=0
operations have been performed, the queue cortaiis<=n elements on the back "half" and
O<=f<=n elements on the front "half". We claim that for eu@ry¢0, R(n)=b. We prove this by
induction onn>=0. The condition clearly holds after performing 0 operations, Ji{@e=0, C(0)=0,
and henc®(0)=C(0)-T(0)=0 Consider the+15toperation. If it is an insert, arid0, T(n+1)=T(n)

+1, C(n+1)=C(n)+2, and henc&(n+1)=R(n)+1=b+1 This is correct because an insert operation
adds one element to the back of the queue. If, on the otherffdnthenT(n+1)=T(n)+b+2

(charging one for the cons and one for creating the new pair of Géts)1)=C(n)+2, so R(n+1)=R
(n)+2-b-2=b+2-b-2=0 This is correct because the back is now empty; we have used the residual

overcharge to pay for the cost of the reversal. Ihtit operation is a remove, afweD, thenT
(n+1)=T(n)+1 andC(n+1)=C(n)+1and henc®(n+1)=R(n)=h This is correct because the remove
doesn't disturb the back in this case. Finally, if we are performing a remove@yithenT(n+1)=T
(n)+b+1, C(n+1)=C(n)+1, and henc®(n+1)=R(n)-b=b-b=0 Here again we use of the residual
overcharge to pay for the reversal of the back to the front. The result follows immediateR(s)nce
=b>=0, and henc€(n)>=T(n).

It is instructive to examine where this solution breaks down in the multi-threaded easéére
persistence is fully exploited). Suppose that we perform a sequemagseft operations on the

empty queue, resulting in a queue witelements on the back and none on the front. Call this queue
g. Let us suppose that we havandependent "futures” faj, each of which removes an element

from it, for a total o2n operations. How much time do theéseoperations take? Since each
independent future must reverseradlements onto the front of the queue before performing the

removal, the entire collection &h operations takes+n2 steps, oO(n) steps per operation, break

the amortized constant-time bound just derived for a single-threaded sequence of queue operations.
Can we recover a constant-time amortized cost in the persistent case? We can, provided that we
sharethe cost of the reversal amaoaldjfutures ofg --- as soon as one performs the reversal, they all
enjoy the benefit of its having been done. This may be achieved by using a benign side effect to
cachethe result of the reversal in a reference cell that is shared among all uses of the queue. We will
return to this once we introduogemoizatiorandlazy evaluation

Sample Code for This Chapter

[Back] [Home] [Up] [Next]

Copyright © 1997Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel57 of 186

Options, Exceptions, and Failure Continuations Page
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/optexccont.htm] 28

Options, Exceptions, and Failure Continuations
[Back] [Home] [Up] [Next]
Last edit Monday, May 04, 1998 03:29 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Code for This Chapter

In this chapter we discuss the close relationships between option types, exceptions, and
continuations. They each provide the means for handling failure to produce a value in a
computation. Option types provide the means of explicitly indicating in the type of a function the
possibility that it may fail to yield a "normal” result. The result type of the function forces the caller
to dispatch explicitly on whether or not it returned a normal value. Exceptions provide the means of
implicitly signalling failure to return a normal result value, without sacrificing the requirement
application of such a function cannot ignore failure to yield a value. Continuations provide another
means of handling failure by providing a function to invoke in the case that normal return is
impossible.

We will explore the trade-offs between these three approaches by considering three different
implementations of the-queens problem: find a way to platqueens on anxnchessboard in such

a way that no two queens attack one another. The general strategy is to place queens in successive
columns in such a way that it is not attacked by a previously placed queen. Unfortunately it's not
possible to do this in one pass; we may find that we can safelykglacgieens on the board, only
discover that there is no way to place the next one. To find a solution we must reconsider earlier
decisions, and work forward from there. If all possible reconsiderations of all previous decisions all
lead to failure, then the problem is unsolvable. For example, there is no safe placement of three
gueens on a 3x3 chessboard. This trial-and-error approach to solvimgubens problem is called
backtrackingsearch

A solution to then-queens problem consists of mmn chessboard with queens safely placed on it.
The following signature defines a chessboard abstraction:

signature BOARD = sig

type board

val new : int -> board

val complete : board -> bool

val place : board * int -> board

val safe : board * int -> bool

val size : board -> int

val positions : board -> (int * int) list
end

The operatiomew creates a new board of a given dimensisn0. The operatiomomplete
checks whether the board contains a complete safe placenmequi@éns. The functiosafe

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel58of 186

checks whether it is safe to place a queen at iovihe next free column of a boa8d The
operationplace puts a queen at romin the next available column of the board. The functiaa
returns the size of a board, and the functiositions returns the coordinates of the queens ol
board.

The board abstraction may be implemented as follows:
structure Board :> BOARD = struct

(* representation: size, next free column, number placed,
placements *)

(* rep'n invariant: size >=0, 1<=next free<=size, length
(placements) = number placed *)

type board = int * int * int * (int * int) list

funnewn=(n, 1, 0, nil)

funsize(n, , ,)=n
fun complete (n, _, k,) = (k=n)
fun positions (_, , ,Qs)=gds

fun place ((n, i, k, gs),j) = (n, i+1, k+1, (i,j)::0s)

fun threatens ((i,)), (i',)')) = i=i' orelse j=j' orelse
i+j = i'+] orelse i-j = i'-]'
fun conflicts (g, nil) = false
| conflicts (q, q"::qs) = threatens (q, q') orelse
conflicts (q, gs)
fun safe ((_, i, _, gs), j) = not (conflicts ((i,j), 9s))

end

The representation type contains "redundant” information in order to make the individual operations
more efficient. The representation invariant ensures that the components of the representation are
properly related to one anotherd, the claimed number of placements is indeed the length of t

of placed queens, and so on.)

Our goal is to define a function

val queens : int -> Board.board option

such that iih>=0, thenqueens n evaluates either tdONEf there is no safe placementrofjueens
on annxnboard, or td&SOMBB otherwise, witlB a complete board containing a safe placement of

gueens. We will consider three different solutions, one using option types, one using exceptions, and
one using a failure continuation.

Here's a solution based on option types:

(* addqueen bd evaluates to SOME bd’, where bd’ is a
complete safe placement
extending bd, if one exists, and yields NONE otherwise

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel59of 186

*

fun addqueen bd =
let
funtryj=
if j > Board.size bd then
NONE
else if Board.safe (bd, j) then
case addqueen (Board.place (bd, j))
of NONE => try (j+1)
| ras (SOME bd) =>r
else
try (j+1)
in

if Board.complete bd then
SOME bd
else
try 1
end

fun queens n = addqueen (Board.new n)

The characteristic feature of this solution is that we must explicitly check the result of each recursive
call toaddqueen to determine whether a safe placement is possible from that position. If so, we
simply return it; if not, we must reconsider the placement of a queen jnofave next available

column. If no placement is possible in the current column, the function J}elt&:-which forces
reconsideration of the placement of a queen in the preceding row. Eventually we either find a safe
placement, or yielllONEnNdicating that no solution is possible.

The explicit check on the result of each recursive call can be replaced by the use of exceptions.
Rather than havaddqueen return a value of typBoard.board option , we instead have it

return a value of typBoard.board , if possible, and otherwise raise an exception indicating

failure. The case analysis on the result is replaced by a use of an exception handler. Here's the code:

exception Fail
(* addqueen bd evaluates to bd’, where bd’ is a complete

safe placement
extending bd, if one exists, and raises Fail otherwise

*
)
fun addqueen bd =
let
funtry j=
if j > Board.size bd then
raise Fall
else if Board.safe (bd, j) then
addqueen (Board.place (bd, j))
handle Fail => try (j+1)
else
try (j+1)
in
if Board.complete bd then
bd

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel60of 186

else
try 1
end

fun queens n = SOME (addqueen (Board.new n)) handle Fail =>
NONE

The main difference between this solution and the previous one is that both adtsg@en must

handle the possibility that it raises the excepkiait . In the outermost call this corresponds to a
complete failure to find a safe placement, which meangjtlegns must returlONE If a safe
placement is indeed found, it is wrapped with the constr&@dHo indicate success. In the

recursive call withirtry , an exception handler is required to handle the possibility of there being no
safe placement starting in the current position. This check corresponds directly to the case analysis
required in the solution based on option types.

What are the trade-offs between the two solutions?

1. The solution based on option types makes explicit in the type of the fuadtiogneen the
possibility of failure. This forces the programmer to explicitly test for failure using a case
analysis on the result of the call. The type checker will ensure that one cannot use a
Board.board option where aBoard.board is expected. The solution based on
exceptions does not explicitly indicate failure in its type. However, the programmer is
nevertheless forced to handle the failure, for otherwise an uncaught exception error would be
raised at run-time, rather than compile-time.

2. The solution based on option types requires an explicit case analysis on the result of each
recursive call. If "most" results are successful, the check is redundant and therefore ex
costly. The solution based on exceptions is free of this overhead: it is biased towards the
"normal” case of returning a board, rather than the "failure” case of not returning a boal
The implementation of exceptions ensures that the use of a handler is more efficient than an
explicit case analysis in the case that failure is rare compared to success.

For then-queens problem it is not clear which solution is preferable. In general, if efficiency is
paramount, we tend to prefer exceptions if failure is a rarity, and to prefer options if failure is

relatively common. If, on the other hand, static checking is paramount, then it is advantageous to use
options since the type checker will enforce the requirement that the programmer check for failure,
rather than having the error arise only at run-time.

We turn now to a third solution based on continuation-passing. The idea is quite simple: an
exception handler is essentially a function that we invoke when we reach a blind alley. Ordir
achieve this invocation by raising an exception and relying on the caller to catch it and pass
the handler. But we can, if we wish, pass the handler around as an additional argurfalirehe
continuationof the computation. Here's how it's done in the case oftjueens problem:

(* addqueen bd evaluates to bd’, where bd’ is a complete
safe placement
extending bd, if one exists, and otherwise yields the
value of fc () *)
fun addqueen (bd, fc) =
let
funtry j=

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel61of 186

if j > Board.size bd then

fc ()
else if Board.safe (bd, j) then

_ addqueen (Board.place (bd, j), fn () => try
(+1))

else
try (j+1)
in

if Board.complete bd then
SOME bd
else
try 1
end

fun queens n = addqueen (Board.new n, fn () => NONE)

Here again the differences are small, but significant. The initial continuation simplyN(@is
reflecting the ultimate failure to find a safe placement. On a recursive call we pddgtieen a
continuation that resumes search at the next row of the current column. Should we exceed the
number of rows on the board, we invoke the failure continuation of the most recent call to
addqueen .

The solution based on continuations is very close to the solution based on exceptions, both in form
and in terms of efficiency. Which is preferable? Here again there is no easy answer, we can only
offer general advice. First off, as we've seen in the case of regular expression matching, failure
continuations are more powerful than exceptions; there is no obvious way to replace the use of a
failure continuation with a use of exceptions in the matcher. However, in the case that exceptions
would suffice, it is generally preferable to use them since one may then avoid passing an explicit
failure continuation. More significantly, the compiler ensures that an uncaught exception aborts the
program gracefully, whereas failure to invoke a continuation is not in itself a run-time fault. Using
the right tool for the right job makes life easier.

Code for This Chapter

[Back] [Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel62of 186

Memoization and Laziness Page
[http://www.cs.cmu.edu/People/rwh/introsml/techniques/memoization.htm] 29

Memoization and Laziness
[Back] [Home] [Up] [Next]
Last edit Monday, May 04, 1998 03:28 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

Code for this Chapter

In this chapter we will discussemoizationa programming technique for cacheing the results of
previous computations so that they can be quickly retrieved without repeated effort. Memoization is
fundamental to the implementation of lazy data structures, either "by hand" or using the
implementation provided by the SML/NJ compiler.

We begin with a discussion of memoization to increase the efficiency of computing a recursively-
defined function whose pattern of recursion involves a substantial amount of redundant comj
The problem is to compute the number of ways to parenthesize an expression consisting of a
sequence afi multiplications as a function of For example, the expression

2*3*4*5
can be parenthesized5mways:
((2*3)*4)*5, (2*(3*4))*5, (2*3)*(4*5), 2*(3*(4*5)), 2*((3*4)*5).
A simple recurrence expresses the number of ways of parenthesizing a sequenckiplications:

funsumf0=0
| sum fn=(fn)+sum (f (n-1))

funpl=1
| pn=sum (fn k => (p k) * (p (n-k)) (n-1)

wheresum f n computes the sum of values of a functigk) with k running froml ton. This
program iextremelyinefficient because of the redundancy in the pattern of the recursive calls.

What can we do about this problem? One solution is to be clever and solve the recurrence. As it
happens this recurrence has a closed-form solution (the Catalan numbers). But in many cas

no known closed form, and something else must be done to cut down the overhead. In this case a
simple cacheing technique proves effective. The idea is to maintain a table of values of the function
that is filled in whenever the function is applied. If the function is called on an argnntleatable

is consulted to see whether the value has already been computed; if so, it is simply returned. If not,
we compute the value and store it in the table for future use. This ensures that no redundant
computations are performed. We will maintain the table as an array so that its entries can be

in constant time. The penalty is that the array has a fixed size, so we can only record the values of

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel63of 186

the function at some pre-determined set of arguments. Once we exceed the bounds of the table, we
must compute the value the "hard way". An alternative is to use a dictiergra palanced binary
search tree) which has a@riori size limitation, but which takes logarithmic time to perform a

lookup. For simplicity we'll use a solution based on arrays.

Here's the code to implement a memoized version of the parenthesization function:

local

val limit = 100
val memopad = Array.array (100, NONE)
in
funp'1=1
| p'n=sum (fnk=>(p k) * (p (n-Kk))) (n-1)

andpn=
if n < limit then
case Array.sub of

SOME rr=>r
| NONE =>
let

valr=p'n
in

Array.update (memopad, n, SOME r);
;
end
else

p'n
end

The main idea is to modify the original definition so that the recursive calls consult and update the
memopad. The "exported" version of the function is the one that refers to the memo pad. N
the definitions op andp' are mutually recursive!

Lazy evaluation is a combination of delayed evaluation and memoization. Delayed evaluation is
implemented usinthunks functions of typeinit ->'a . To delay the evaluation of an
expressiorexpof type’a , simply writefn () => exp This is a value of typenit -> 'a ; the
expressiorexpis effectively "frozen" until the function is applied. To "thaw" the expression, simply
apply the thunk to the null tupl@, . Here's a simple example:

val thunk = fn () => print "hello\n" (* nothing
printed *)

val _ = thunk () (* prints

hello *)

While this example is especially simple-minded, remarkable effects can be achieved by combining
delayed evaluation with memoization. To do so, we will consider the following signature of
suspensions:

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel64of 186

signature SUSP = sig

type 'a susp

val force : 'asusp ->'a

val delay : (unit -> 'a) -> 'a susp
end

The functiondelay takes a suspended computation (in the form of a thunk) and yields a
suspension. It's job is to "memoize" the suspension so that the suspended computation is e\

most once --- once the result is computed, the value is stored in a reference cell so that subsequent
forces are fast. The implementation is slick. Here's the code to do it:

structure Susp :> SUSP = struct
type 'a susp = unit ->'a
fun forcet=1t()
fun delay (t : 'a susp) =
let
exception Impossible
val memo : 'a susp ref = ref (fn () => raise
Impossible)
funt' () =
letvalr=t()inmemo:=({fn()=>r);r
end
in
memo = t';
fn () => ('memo)()
end
end

It's worth discussing this code in detail because it is rather tricky. Suspensions are just thunks;
force simply applies the suspension to the null tuple to force its evaluation. Whatetmut?

When applieddelay allocates a reference cell containing a thunk that, if forced, raises an internal
exception. This can never happen for reasons that will become apparent in a moment; it is merely a
placeholder with which we initialize the reference cell. We then define anothertthuh&t, when

forced, does three things:

1. It forces the thunk to obtain its value .
2. It replaces the contents of the memopad with the constant function that immediately returns
3. lItreturnsr as result.

We then assigti to the memo pad (hence obliterating the placeholder), and return althtimk,

when forced, simply forces the contents of the memo pad. Whedteveforced, it immediately

forces the contents of the memo pad. However, the contents of the memo pad changes as a result of
forcing it so that subsequent forces exhibit different behavior. Specificalfygstiemedt is

forced, it forces the thuntk , which then forces its valuer , "zaps" the memo pad, and returns
Thesecondimedt is forced, it forces the contents of the memo pad, as before, but this time the it
contains the constant function that immediately returnaltogether we have ensured thais

forced at most once by using a form of "self-modifying" code.

Here's an example to illustrate the effect of delaying a thunk:

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel65of 186

val t = Susp.delay (fn () => print "hello\n")

val _ = Susp.force t (* prints
hello *)

val _ = Susp.force t (* silent
")

Notice that "hello™ is printed once, not twice! The reason is that the suspended compu
evaluated at most once, so the message is printed at most once on the screen.

The constructs for manipulating lazy data structures provided by the SML/NJ compiler may be
explained in terms of suspensions. For the sake of specificity we'll consider the implementation of
streams, but the same ideas apply to any lazy datatype.

The type declaration
datatype lazy 'a stream = Cons of 'a * 'a stream

expands into the following pair of type declarations

datatype 'a stream_ = Cons_ of 'a * 'a stream
withtype ’a stream = 'a stream_ Susp.susp

The first defines the type of strearalues the result of forcing a stream computation, the second
defines the type of strearomputationswhich are suspensions yielding stream values. Thus st

are represented by suspended (unevaluated, memoized) computations of stream values, which are
formed by applying the constructdons_ to a value and another stream.

The value construct@ons, when used to build a stream, automatically suspends computatiot
is achieved by regardir@ons e as shorthand faCons_ (Susp.susp (fn () => e).
When used in a pattern, the value construCtors induces a use dbrce . For example, the
binding

val Cons (h, t) = e
becomes
val Cons_ (h, t) = Susp.force e

which forces the right-hand side before performing pattern matching.

A similar transformation applies to non-lazy function definitions --- the argument is forced before
pattern matching commences. Thus the "eager" tail function

fun stl (Cons (_, 1)) =t
expands into

funstl_ (Cons_(,t) =t

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel66 of 186

and stl s = stl_ (Susp.force s)
which forces the argument as soon as it is applied.

On the other hand, lazy function definitions defer pattern matching until the result is forced. -
lazy tail function

fun Istl (Cons (_, t)) =t
expands into

funistl_(Cons_(,t)) =t
and Istl s = Susp.delay (fn () => Istl_ (Susp.force s))

which a suspension that, when forced, performs the pattern match.
Finally, the recursive stream definition

val rec lazy ones = Cons (1, ones)
expands into the following recursive function definition:

val rec ones = Susp.delay (fn () => Cons (1, ones))
Unfortunately this is not quite legal in SML since the right-hand side involves an application of a a
function to another function. This can either be provided by extending SML to admit such
definitions, or by extending tHeusp package to include an operation for building recursive
suspensions such as this one. Since it is an interesting exercise in itself, we'll explore the latter
alternative.
We seek to add a function to tBasp package with signature

val loopback : ('a susp -> 'a susp) -> 'a susp
that, when applied to a functibmapping suspensions to suspensions, yields a suspsn#imse
behavior is the same §s), the application of to the resulting suspension. In the above example the
function in question is

fun ones_loop s = Susp.delay (fn () => Cons (1, s))
We usdoopback to defineones as follows:

val ones = Susp.loopback ones_loop
The idea is thabnes should be equivalent Busp.delay (fn () => Cons (1, ones)) ,
as in the original definition and which is the result of evalugiingp.loopback ones_loop ,

assumingsusp.loopback is implemented properly.

How isloopback implemented? We use a technique knowhakpatching Here's the code

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel67 of 186

fun loopback f =

let
exception Circular
val r = ref (fn () => raise Circular)
valt=fn () => (In()

in
re=ft;t

end

First we allocate a reference cell which is initialized to a placeholder that, if forced, raises the
exceptionCircular . Then we define a thunk that, when forced, forces the contents of this
reference cell. This will be the return valudamfpback . But before returning, we assign to the
reference cell the result of applying the given function to the result thunk. This "ties the knot" to
ensure that the output is "looped back" to the input. Observe that if the loop function touches its
input suspension before yielding an output suspension, the exc€ptiatar will be raised.

Code for this Chapter

[Back] [Home] [Up] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel68of 186

Modularity and Reuse Page
[http://lwww.cs.cmu.edu/People/rwh/introsml/techniques/modmeth.htm] 30

Modularity and Reuse
[Back] [Home] [Up]
Last edit Monday, May 04, 1998 03:29 PM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

In this chapter we illustrate the use of the ML module system to build a program from re-usable
components. The main example is a generic game-tree search algorithm.

[Back] [Home] [Up]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation

[http://lwww.cs.cmu.edu/People/rwh/introsml/samplecode/recind.sml]

funexp0=1
|expn=2*exp (n-1);

fun square (n:int) = n*n
fun double (n:int) = n+n

fun fast_exp0=1
| fast_exp n =
if n mod 2 = 0 then
square (fast_exp (n div 2))
else
double (fast_exp (n-1)) ;

fun iterative_fast exp (0,a) =a
| iterative_fast_exp (n, a) =
if n mod 2 = 0 then
iterative_fast_exp (n div 2, iterative_fast_exp (n div 2, a))
else
iterative_fast_exp (n-1, 2*a) ;

fun generalized_iterative_fast _exp (b, 0,a) = a
| generalized_iterative_fast_exp (b, n, a) =
if n mod 2 = 0 then
generalized_iterative_fast_exp (b*b, n div 2, a)
else
generalized_iterative_fast_exp (b, n-1, b*a) ;

fun ged (m:int, 0):int =m
| gcd (O, n:int):int = n
| ged (m:int, n:int):int =
if m>n then gcd (m mod n, n) else gcd (m, n mod m) ;

fun gged (0, n) = (n, 0, 1)
| gged (m, 0) = (m, 1, 0)
| gged (m, n) =
if m>n then
let
val (d, a, b) = ggcd (m mod n, n)
in
(d, a, b - a*(m div n))
end
else
let
val (d, a, b) = ggcd (m, n mod m)
in
(d, a - b*(n div m), b)
end

exception GCD_ERROR

fun checked_gcd (m, n) =
let
~ val(d, a, b) =gged (m, n)
in
if m mod d = 0 andalso n mod d = 0 andalso d = a*m+b*n then
d
else
raise GCD_ERROR
end

Pagel69of 186

Page 31

file://C:\Users\rwh\introsml-complete.html

7/8/98

Concatenation

[http:/www.cs.cmu.edu/People/rwh/introsml/samplecode/structur.sml]

(* Natural numbers in unary *)
datatype nat = Zero | Succ of nat

fun add (m, Zero) = m
| add (m, Succ n) = Succ (add (m, n))

fun mul (m, Zero) = Zero
| mul (m, Succ n) = add (mul (m, n), m)

fun double Zero = Zero
| double (Succ m) = Succ (Succ (double m))

fun exp Zero = Succ Zero
| exp (Succ m) = double (exp m)
(* Lists *)
(* datatype 'a list = nil | :: of 'a * "a list *)

fun reverse nil = nil
| reverse (h:it) =t @ [h]

(* Two-three trees *)
datatype 'a two_three_tree =
Empty

| Binary of 'a * 'a two_three_tree * 'a two_three_tree

| Ternary of 'a * 'a two_three_tree * 'a two_three_tree * 'a two_three_tree
fun size Empty =0

| size (Binary (_, t1, t2)) = 1 + size t1 + size t2

| size (Ternary (_, t1, t2,t3)) = 1 + size t1 + size t2 + size t3
(* Recursion patterns *)

fun nat_recursion base step =

let
fun loop Zero = base
. | loop (Succ m) = step (m, loop m)
in
loop
end

val double = nat_recursion (Zero) (fn (_, result) => Succ (Succ result))
val exp = nat_recursion (Succ Zero) (fn (_, result) => double result)

fun list_recursion base step =

let
fun loop nil = base
. | loop (h::t) = step (h, loop t)
in
loop
end

fun reverse | = list_recursion nil (fn (h, t) =>t @ [h]) |
fun two_three_recursion base step2 step3 =

let
fun loop Empty = base

file://C:\Users\rwh\introsml-complete.html

Pagel700f 186

Page 32

7/8/98

Concatenation

| loop (Binary (v, t1, t2)) =
step2 (v, loop t1, loop t2)
| loop (Ternary (v, t1, t2, t3)) =
step3 (v, loop t1, loop t2, loop t3)
in
loop
end

fun sizet =
two_three_recursion
0
(fn (_, s1, s2) => 1+s1+s2)
(fn (, s1, s2, s3) => 1+s1+s2+s3)
t

Pagel71of 186

file://C:\Users\rwh\introsml-complete.html

7/8/98

Concatenation

[http://lwww.cs.cmu.edu/People/rwh/introsml/samplecode/perseph.sml]

(* Lists with mutable tails. *)
datatype 'a mutable_list = Nil | Cons of 'a * 'a mutable_list ref

local
fun ipr (Nil, a) = a
| ipr (this as (Cons (_, r as ref next)), a) =
ipr (next, (r := a; this))
in
(* destroys argument, yields its reversal *)
fun inplace_reverse | = ipr (I, Nil)
end

(* Queues *)

(* Signature of queues as an abstract type. *)
signature QUEUE = sig

type 'a queue
exception Empty
val new : unit -> 'a queue
val insert : 'a * 'a queue ->'a queue
val remove : 'a queue ->'a * 'a queue
end
(* Inefficient implementation of a persistent queue as a list. A sequence
of n operations takes O(n”"2) time in the worst case. *)
structure NaiveQueue :> QUEUE = struct
type 'a queue = 'a list
fun new () = nil
fun insert (x, q) = x::q
exception Empty
fun remove [x] = (x, nil)
| remove (x::xs) =
let
val (y, g) = remove xs
in
(v, x::q)
end
end
(* Persistent queues with amortized constant-time behavior for
single-threaded executions of queue operations. Rep invariant:
1. front is empty only if the back is empty
2. list of elements (in order of departure) of the queue (bs, fs)
is fs @ rev bs *)
structure AmortizedSingleThreadedQueue :> QUEUE = struct

type 'a queue ='a list * 'a list

file://C:\Users\rwh\introsml-complete.html

Pagel72of 186

Page 33

7/8/98

Concatenation

(* smart constructor to enforce rep inv *)
fun make_queue (q as (nil, nil)) = g
| make_queue (q as (bs, nil)) = (nil, rev bs)
| make_queue q=q

(* queue operations *)
fun new () = make_queue (nil, nil)

fun insert (b, (bs, fs)) = make_queue (b::bs, fs)
exception Empty

fun remove (_, nil) = raise Empty
| remove (bs, f::fs) = (f, make_queue (bs, fs))

end;

(* Amortized constant-time single-threaded queues, variant representation
in which a queue has the form (bs, sb, fs, sf) satisfying the rep inv:
1. sb = length bs, sf = length fs
2.sf>=sb

)
structure AmortizedSingleThreadedQueue?2 :> QUEUE = struct
type 'a queue ="a list * int * 'a list * int

fun make_queue (q as (bs, sb, fs, sf)) =
if sf >= sb then

q
else

(nil, 0, fs @ rev bs, sf+sb)
fun new () = make_queue (nil, O, nil, 0)
fun insert (b, (bs, sb, fs, sf)) = make_queue (b::bs, sb+1, fs, sf)
exception Empty

fun remove (_, _, _, 0) =raise Empty
| remove (bs, sb, f::fs, sf) = (f, make_queue (bs, sb, fs, sf-1))

end
(* Naive attempt to handle the multi-threaded case by memoization. Fails
to achieve an amortized constant-time bound in general. (Consider a
sequence of n inserts, followed by an n-way split consisting of one more
insert and one remove. Each remove takes O(n) time, for a total time of
O(n"2) for O(n) operations.) *)
structure NaiveMemoizedQueue :> QUEUE = struct
type 'a queue = ('a list * 'a list) ref
fun make_queue (qv as (nil, nil)) = ref qv
| make_queue (qv as (bs, nil)) = ref (nil, rev bs)
| make_queue qv = ref qv
fun new () = make_queue (nil, nil)
fun insert (b, ref (bs, fs)) = make_queue (b::bs, fs)
exception Empty

fun remove (ref (_, nil)) = raise Empty
| remove (ref (bs, f::fs)) = (f, make_queue (bs, fs))

file://C:\Users\rwh\introsml-complete.html

Pagel73o0f 186

7/8/98

Concatenation Pagel74of 186

end ;

(* Amortized constant-time multi-threaded queues. Combines specialized
representation with memoization to achieve amortized constant-time
behavior, even in the multi-threaded case. *)

structure AmortizedMultiThreadedQueue :> QUEUE = struct

(* Specialized list representations, with memoization. *)
datatype 'a special_list_value =
Nil
| Cons of 'a * 'a special_list
| Append of 'a special_list * ’a special_list
| Reverse of "a list
withtype 'a special_list = 'a special_list_value ref

(* Reverse a list, forming a special_list. *)
fun revltosl (], s) = s
| revitosl (x::xs, s) = revltosl (xs, Cons (X, ref s))

(* Force a special_list r into Nil/Cons form. *)
fun inspect (r as ref (Append (xs, ys))) =
(case inspect xs

of Nil =>
let
val s = inspect ys
in
r:=s;s
end
| Cons (x, xs’) =>
let
val s = Cons (x, ref (Append (xs’, ys)))
in
r:=s;s
end)
| inspect (r as ref (Reverse xs)) =
let
val s = revltosl (xs, Nil)
in
r:=s;s
end

| inspect (r as ref (nil_or_cons)) = nil_or_cons
type 'a queue =’a list * int * "a special_list * int

fun make_queue (q as (bs, sb, fs, sf)) =
if sf >= sb then

q
else

(nil, O, ref (Append (fs, ref (Reverse bs))), sf+sb)
fun new () = make_queue (nil, 0, ref Nil, 0)

fun insert (b, (bs, sb, fs, sf)) =
make_queue (b::bs, sb+1, fs, sf)

exception Empty

fun remove (bs, sb, fs, sf) =
case inspect fs
of Nil => raise Empty
| Cons (f, fs’) =>
(f, make_queue (bs, sb, fs’, sf-1))

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel750f 186

end;

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation

[http://lwww.cs.cmu.edu/People/rwh/introsml/samplecode/regexp.sml]

signature REGEXP = sig

datatype regexp =
Zero | One | Char of char |
Plus of regexp * regexp | Times of regexp * regexp |
Star of regexp

exception SyntaxError of string
val parse : string -> regexp

val format : regexp -> string
end
signature MATCHER = sig
structure RegExp : REGEXP
val match : RegExp.regexp -> string -> bool
end
structure RegExp :> REGEXP = struct

datatype token =
AtSign | Percent | Literal of char | PlusSign | TimesSign |
Asterisk | LParen | RParen

exception LexicalError

fun tokenize nil = nil
| tokenize (#"+" :: cs) = (PlusSign :: tokenize cs)
| tokenize (#"." :: cs) = (TimesSign :: tokenize cs)
| tokenize (#"*" :: cs) = (Asterisk :: tokenize cs)
| tokenize (#"(" :: cs) = (LParen :: tokenize cs)
| tokenize (#")" :: cs) = (RParen :: tokenize cs)
| tokenize (#'@" :: cs) = (AtSign :: tokenize cs)
| tokenize (#"%" :: cs) = (Percent :: tokenize cs)
| tokenize (#"\" :: ¢ :: cs) = Literal c :: tokenize cs
| tokenize (#"\" :: nil) = raise LexicalError
| tokenize (#" " :: cs) = tokenize cs
| tokenize (c :: cs) = Literal c :: tokenize cs

datatype regexp =
Zero | One | Char of char |
Plus of regexp * regexp | Times of regexp * regexp |
Star of regexp

exception SyntaxError of string

fun parse_exp ts =

let
- val (r, ts’) = parse_term ts
in
case ts’
of (PlusSign::ts”) =>
let
~val(r, ts™) = parse_exp ts”
in
(Plus (r, r), ts™)
end

file://C:\Users\rwh\introsml-complete.html

Pagel76of 186

Page 34

7/8/98

Concatenation

[_=>(rts)
end

and parse_term ts =

let
val (r, ts’) = parse_factor ts
in
case ts’
of (TimesSign::ts”) =>
let
val (r', ts’’) = parse_term ts”
in
(Times (r, r'), ts™)
end
|_=>(rts)
end

and parse_factor ts =

let
val (r, ts’) = parse_atom ts
in
case ts’
of (Asterisk :: ts”) => (Star r, ts”)
|_=>(rts)
end

and parse_atom nil = raise SyntaxError ("Factor expected\n")
| parse_atom (AtSign :: ts) = (Zero, ts)
| parse_atom (Percent :: ts) = (One, ts)
| parse_atom ((Literal c) :: ts) = (Char c, ts)
| parse_atom (LParen :: ts) =
let
val (r, ts’) = parse_exp ts
in
case ts’
of nil => raise SyntaxError ("Right-parenthesis expected\n™)
| (RParen :: ts”) => (r, ts”)
| _ =>raise SyntaxError ("Right-parenthesis expected\n”)

end
fun parse s =
let
val (r, ts) = parse_exp (tokenize (String.explode s))
in
case ts
of nil =>r
| _ =>raise SyntaxError "Unexpected input.\n"
end

handle LexicalError => raise SyntaxError "lllegal input.\n"

fun format_exp Zero = [#'@"]
| format_exp One = [#"%"]
| format_exp (Char c) = [c]
| format_exp (Plus (r1, r2)) =

let
val s1 = format_exp rl
val s2 = format_exp r2
in
, Fresier+es2e
en
| format_exp (Times (rl, r2)) =
let

val s1 = format_exp rl
val s2 = format_exp r2

file://C:\Users\rwh\introsml-complete.html

Pagel77of 186

7/8/98

Concatenation Pagel78of 186

in
sl @ [#*"] @ s2
end
| format_exp (Star r) =
let
val s = format_exp r
in
[#'(1@s @ [#) @ [#™]
end

fun format r = String.implode (format_exp r)
end
functor Matcher (structure RegExp : REGEXP) :> MATCHER = struct
structure RegExp = RegExp
open RegExp

fun match_is Zero cs k = false
| match_is One cs k =k cs
| match_is (Char c) nil _ = false
| match_is (Char c) (c'::cs) k = (c=c’) andalso (k cs)
| match_is (Plus (r1, r2)) cs k =
(match_is rl cs k) orelse (match_is r2 cs k)
| match_is (Times (r1, r2)) cs k =
match_is rl cs (fn cs’ => match_is r2 cs’ k)
| match_is (r as Star rl) cs k =
(k cs) orelse match_is rl cs (fn cs’ => match_is r ¢s’ k)

fun match regexp string =
match_is regexp (String.explode string)
(fn nil => true | _ => false)
end

structure Matcher = Matcher (structure RegExp = RegEXxp)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/memo.sml]

funsumf0=0
| sum fn=(fn)+sumf(n-1)

funpl=1
| pn=sum (fnk=>(p k) * (p (n-k))) (n-1)
local
val limit = 100

val memopad : int option Array.array =
Array.array (limit, NONE)

funp'l=1
| p’ n=sum (fn k => (p k) * p (n-k)) (n-1)

andpn-=
if n < limit then
case Array.sub (memopad, n) of
SOME r=>r
| NONE =>
let
valr=p'n
in
Array.update (memopad, n, SOME r);
r
end
else

p'n
end

signature SUSP = sig

type 'a susp

val force : 'a susp ->'a

val delay : (unit -> 'a) -> 'a susp
end

structure Susp :> SUSP = struct
type 'a susp = unit -> 'a
fun forcet=1()
fun delay (t : 'a susp) =
let
exception Impossible
val memo : 'a susp ref = ref (fn () => raise Impossible)
funt () =
letvalr=t() in memo :=(fn () =>r); r end

" memo =1t’;
fn () => (memo)()
end

end

val t = Susp.delay (fn () => print "hello\n™)
val _ = Susp.force t;
val _ = Susp.force t;

signature SUSP = sig

type ’a susp
val force : 'a susp ->'a

file://C:\Users\rwh\introsml-complete.html

Pagel79of 186

Page 35

7/8/98

Concatenation

val delay : (unit ->’a) ->'a susp
val loopback : ('a susp ->'a susp) -> 'a susp
end

structure Susp :> SUSP = struct
type 'a susp = unit ->’a
fun forcet=1()
fun delay (t : 'a susp) =
let
exception Impossible
val memo : 'a susp ref = ref (fn () => raise Impossible)
funt' () =
letvalr=1t() in memo :=(fn () =>r); r end

in
memo = t’;
fn () => (memo)()
end
fun loopback f =
let
exception Circular
val r = ref (fn () => raise Circular)
fun t () = force ('r)
in
r=ft;t
end

end

datatype 'a stream_ = Cons_ of 'a * 'a stream
withtype 'a stream = ’a stream_ Susp.susp

fun ones_loop s = Susp.delay (fn () => Cons_ (1, s))
val ones = Susp.loopback ones_loop

fun bad_loop s = let val r = Susp.force s in Susp.delay (fn () =>r) end

(* val bad = Susp.loopback bad_loop (* raises Circular *) *)

Pagel80of 186

file://C:\Users\rwh\introsml-complete.html

7/8/98

Concatenation Pagel81of 186

[http://www.cs.cmu.edu/People/rwh/introsml/samplecode/seq.sml] Page 36

signature SEQUENCE = sig
type 'aseq =int->'a
val constantly : 'a ->'a seq (* constant sequence *)
val alternately : 'a * 'a -> 'a seq (* alternating values *)
val insert : 'a * 'a seq -> 'a seq

val map : ('a->'b) ->'a seq ->'b seq
val filter : ("a -> bool) ->'a seq -> 'a seq

val zip : 'a seq * 'b seq -> ('a * 'b) seq
val unzip : (a *'b) seq ->'a seq *'b seq
val merge : 'a seq * 'a seq -> 'a seq

val stretch : int ->'a seq ->'a seq
val shrink : int -> 'a seq -> 'a seq

val take : int -> 'a seq -> 'a list
val drop : int ->'a seq -> 'a seq
val shift : 'a seq ->'a seq
val loopback : ('a seq ->'a seq) -> 'a seq
end
structure Sequence > SEQUENCE = struct
type 'a seq =int->'a
fun constantlycn=c
fun alternately (c,d) n=ifnmod 2 =0 then c else d
fun insert (x, s) 0 = x
| insert (X, s) n = s (n-1)

funmapfs=fos
fun filterpsn =

let

valx=sn
in

if p x then x else filter p s (n+1)
end

fun zip (s1, s2) n = (sl n, s2 n)
fun unzip (s : (a*’b) seq) = (map #1 s, map #2 s)
fun merge (s1,s2) n =

(if n mod 2 = 0 then sl else s2) (n div 2)

fun stretch k s n = s (n div k)
fun shrinkk sn=s (n*k)

fun drop k s n = s (n+k)
fun shifts=drop1s
fun take 0 _ = nil
| take n s =s 0 :: take (n-1) (shift s)
fun loopback loop n = loop (loopback loop) n
end

open Sequence

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel82of 186

val evens : int seq = fn n => 2*n
val odds : int seq = fn n => 2*n+1
val nats : int seq = merge (evens, odds)
fun fibs n =
(insert (1, insert (1, map (op +) (zip (drop 1 fibs, fibs)))))(n)

fun fibs_loop s = insert (1, insert (1, map (op +) (zip (drop 1 s, S))))
val fibs = loopback fibs_loop

funbad _loopsn=sn+1
val bad = loopback bad_loop
(*val _=bad 0%

(* wires *)

datatype level = High | Low | Undef
type wire = level seq

type pair = (level * level) seq

val Z : wire = constantly Low
val O : wire = constantly High

(* clock pulse with given duration of each pulse *)
fun clock (freq:int):wire = stretch freq (alternately (Low, High))

(* combinational logic *)

infixr **
fun (f**g) (x,y) = (fx, g V)
fun logical_and (Low,) = Low
| logical_and (_, Low) = Low
| logical_and (High, High) = High
| logical_and _ = Undef
fun logical_not Undef = Undef
| logical_not High = Low
| logical_not Low = High
fun logical_nop | =1
val logical_nor = logical_and o (logical_not ** logical_not)

type unary_gate = wire -> wire
type binary_gate = pair -> wire

fun gate f w 0 = Undef
| gate fwi=f(w (i-1))

val delay : unary_gate = gate logical_nop
val inverter : unary_gate = gate logical_not
val nor_gate : binary_gate = gate logical_nor
(* Flip-flops *)

fun RS_ff (S : wire, R : wire) =

let
fun X n = nor_gate (zip (S, Y)) n
and Y n = nor_gate (zip (X, R)) n
in
Y
end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel83o0f 186

funpulsebOwi=wi
| pulsebnwO=Db
| pulse b nwi=pulse b (n-1) w (i-1)

val S = pulse Low 2 (pulse High 2 Z)

val R = pulse Low 6 (pulse High 2 Z)

val Q = RS_ff (S, R)

val _=take 20 Q

val X = RS _ff (S, S) (* unstable! *)
val _=take 20 X

fun loopback? (f : wire * wire -> wire * wire) =
unzip (loopback (zip o f o unzip))

fun RS_ff’ (S : wire, R : wire) =
let
fun RS_loop (X, Y) =
(nor_gate (zip (S, Y)), nor_gate (zip (X, R)))
in
loopback2 RS _loop
end

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel84 of 186

[http://lwww.cs.cmu.edu/People/rwh/introsml/samplecode/streams.sml] Page 37

Compiler.Control.Lazy.enabled := true;
open Lazy;

datatype lazy 'a stream = Cons of 'a * 'a stream;
val rec lazy ones = Cons (1, ones);

fun shd (Cons (x, _)) = x;

fun stl (Cons (_, s)) =s;

funIstl (Cons (_, s)) =s;

val rec lazy s = (print "."; Cons (1, s));

val s’ = stl s; (* prints "." *)
val Cons _ =¢’; (* silent *)
val rec lazy s = (print "."; Cons (1, s));

val s” = Istl s; (* silent *)

val Cons _ =s"; (* prints "." *)

fun take 0 s = nil
| take n (Cons (%, s)) = x :: take (n-1) s;

fun smap f =
let
fun lazy loop (Cons (X, s)) = Cons (f x, loop s)
in
loop
end;

fun succ n = n+1;
val one_plus = smap succ;
val rec lazy nats = Cons (0, one_plus nats);

fun sfilter pred =

let
fun lazy loop (Cons (X, S)) =
if pred x then
Cons (x, loop s)
else
loop s
in
loop
end;

funm mod n=m - n* (m div n);
fun divides m n =n mod m = 0;

fun lazy sieve (Cons (m, s)) = Cons (m, sieve (sfilter (not o (divides m)) s));
val nats2 = stl (stl nats);
val primes = sieve nats2;

val rec lazy s = Cons ((print "."; 1), s);
val Cons (h,) =s; (* prints ".", binds h to 1 *)
val Cons (h,) =s; (* silent, binds hto 1 *)

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel85o0f 186

Sample Programs [http://www.cs.cmu.edu/People/rwh/introsml/sample.htm] Page 42
Sample Programs
[Back] [Home] [Next]
Last edit Monday, May 04, 1998 10:53 AM

Copyright© 1997, 1998 Robert Harper. All Rights Reserved.

A number of example programs illustrating the concepts discussed in the preceding chapters are
available in thesample Codélirectory.

[Back] [Home] [Next]

Copyright © 199Robert Harper All rights reserved.

file://C:\Users\rwh\introsml-complete.html 7/8/98

Concatenation Pagel86 of 186

Basis Library [http://www.cs.cmu.edu/People/rwh/introsml/basis.htm] Page 43

file://C:\Users\rwh\introsml-complete.html 7/8/98

