Distributed Usage Control*

Alexander Pretschner, Manuel Hilty, David Basin

1 Introduction

Computer systems play an increasingly prominent role in our daily lives.
Interacting with these systems often involves disclosing personal data, i.e.,
data that can be traced back to particular individuals, collected in different
contexts. For example, healthcare providers, insurance companies, and tax
offices collect personal data explicitly. The use of credit or loyalty cards,
as well as Internet shopping, leave implicitly created digital footprints. So
does the use of mobile phones (traffic data) and the coming generation of
motor vehicles (location data and sensed driving behavior). Moreover, pub-
lic security concerns have led to increased monitoring of public spaces where
personal data (images and contexts) is gathered without direct interaction
with computerized services. The looming reality of ubiquitous computing
will further increase the amount of personal data collected, and enhanced
network capabilities give rise to potentially uncontrolled distribution.

These technologies improve, for the most part, the quality of our lives.
Still, the question arises how all this potentially sensitive data can be pro-
tected. Two of the main technical challenges here are controlling data access
and usage. While the fundamentals of access control appear to be well-
understood, this is not the case for usage control. Promising research has
been carried out in the areas of both usage control specification [1, 7] and
enforcement mechanisms [5, 8]. Missing though is a conceptual framework
that encompasses both specification and enforcement. In this article, we
close this gap.

To this end, we assume that personal and other kinds of sensitive data
are stored at trustworthy places called data providers. Third parties, called
data consumers, request access to the data. Assuming that some form of
access control is in place, our concern is what happens to the data once it
has been released to the data consumer, i.e., how the data consumer may,
must, and must not use it. Clearly, the scope of this problem extends beyond
privacy concerns about personal data and is also related to the management
of intellectual property rights.

*To appear in Communications of the ACM, September 2006.

In the following, we first describe the fundamentals of usage control; in
particular, the notions of provisions, obligations, and compensations in the
context of controllability and observability. This takes into account possible
enforcement mechanisms like those provided by rights management mecha-
nisms. However, many requirements on the consumer’s behavior cannot be
directly enforced. We therefore present a transformation-based approach to
tackling this problem whereby non-enforceable requirements are transformed
into requirements whose satisfaction can at least be observed. We proceed by
sketching a two-level policy language that is rich enough to express all these
concepts, and conclude by presenting a generic server-side architecture for
implementing usage control. This architecture is compatible with different
client-side enforcement mechanisms, such as dedicated client-side software
architectures, trusted platform technologies, and other digital rights man-
agement (DRM) mechanisms. Overall, we see this server-side architecture
as providing the missing link between specialized enforcement mechanisms
on one side and usage control requirements and policies on the other.

2 Abstract System Model

We consider a distributed system consisting of a set of actors. An actor is an
information system or information processing device, and each actor has an
owner who is responsible for the actor’s behavior. Actors can take actions
consisting of:

e operations on data such as storage, distribution, different forms of read
access (including playing music or videos), modification of payload and
metadata, and processing such as the computation of statistics; and

e communication, which is the sending and receiving of messages that
are not subject to usage control, for example, requests for data or
notifications of some kind.

Actors also have encapsulated states, that is, they cannot observe the states
and operations of each other.

Actors can assume different roles. One actor can send (a copy of) data
to another actor. In this case, the former is the data provider and the latter
the data consumer. These roles can change dynamically. Each data item
has a data owner who possesses the rights to the data.

An example of dynamically changing roles is found in mobile computing
and is depicted in Figure 1. Consider a location-based service with location
information d coming from a GPS receiver in a mobile phone. To provide
the service, the network infrastructure requests location data from the mo-
bile phone. In this transaction, the mobile phone is the data provider and
the network infrastructure is the data consumer. Then d is sent to a service

provider, possibly with other data d’, for further processing. Now the net-
work infrastructure is the data provider and the service provider is the data
consumer.

The subscriber, who is the owner of the mobile phone, might want to
restrict what happens to this data once it is given to the network infrastruc-
ture. The respective requirements can either be specified globally (via a
subscriber agreement) or on a per-transaction basis. If the subscriber re-
quires the service provider to delete the data after processing it, then the
network infrastructure must stipulate this requirement when giving the lo-
cation data to the service provider.

Data Consumer Data Provider
i Data Consumer
Mobile Phone Data Provider

Figure 1: Roles of Actors

3 Usage Control Requirements

In order to control how data is used, the owner of a data provider must
define a usage control policy that specifies the requirements that must be
satisfied by a data consumer who receives a copy of the provider’s data. The
requirements expressed in the policy can come from four different kinds of
sources: (1) the data provider’s (owner’s) own interests, (2) the data owner’s
preferences, (3) governing laws and regulations, or (4) from an agreement
with another actor who has previously sent the data.

Provisions and Obligations. We distinguish two basic classes of us-
age control requirements [2, 3]: provisions and obligations. Provisions are
concerned with the past and present and, as such, represent access control
requirements only. In contrast, obligations are concerned with requirements
on the future that the data consumer must adhere to. The specification and
enforcement of provisions is fairly well studied and understood in the access
control community, and hence we focus on obligations.

Examples of obligations are “data d must not be stored for more than
30 days,” “data d must not be further distributed,” and “data d must not
be processed for purposes other than p.” Obligations impose constraints on
operations on data, which can relate to:

e time, e.g., data may have to be stored at least, or at most, 30 days;

e cardinality, e.g., data may be copied at most three times;

e the occurrence of certain events, e.g., data may be used until its owner
explicitly states otherwise;

e actions to be taken by the data consumer, e.g., notifying the data
owner each time the data is used;

e the purpose for which the data may be used, e.g., for scientific purposes
only;

e technical or governance restrictions, e.g., encrypted storage or adher-
ence to governance standards; or

e the necessity of updates, e.g., the freshness and correctness of personal
data is often required by data protection regulations.

For both requirements and policies, we define notions of enforceability
and violation. A requirement is enforceable if mechanisms can be employed
such that all executions of the system satisfy the requirement. A requirement
is enforced in a system when these mechanisms are actually employed. A
policy is enforceable if all its requirements are enforceable, and enforced if
all its requirements are enforced. A requirement is wviolated with respect to
a system execution if the execution does not satisfy it. A policy is violated
with respect to a system execution if at least one of its requirements is
violated.

Controllability and Observability. Enforceability is tightly bound to
the notions of controllability and observability. Controllable obligations are
obligations for which the data provider can ensure that the data consumer
executes respective operations only under the specified restrictions. Con-
trollability only exists with respect to a given set of mechanisms. Trusted
platform technology can be used as a mechanism to control certain obliga-
tions as, for example, within DRM, where such technologies are already in
use. Alternatively, the data provider can use trusted systems in a more gen-
eral sense, namely systems for which the data provider is certain that they
will behave in predefined ways. This is, for example, the case for dedicated
software infrastructures in trustworthy environments. In such environments,
the main concern is often to prevent unintentional, rather than deliberate,
violations of obligations.

In many cases, full controllability is not achievable. Therefore, we also
introduce the notion of observability, which is a weaker notion than control-
lability. In some cases, the data provider can observe whether obligations
are adhered to. We call such obligations observable obligations. Recall that
actors cannot observe each other’s states and local actions. However, by
receiving messages that describe parts of what is otherwise unobservable,
they can acquire partial knowledge about the states and actions of other

actors. Mechanisms for observing the fulfillment of obligations range from
non-technical mechanisms like audits to technical mechanisms like the use
of trusted systems that inform data providers about actions taken by data
consumers (e.g., trusted logging mechanisms) or the use of watermarks to
identify the source of illegal copies. If an obligation is not observable, there
may be an approximation of it that can be observed. For instance, it is
difficult to see if data is actually deleted, but there may be technical means
to show that the respective commands have been executed. Obviously, there
also is a similar notion of approximation for controllability, but for the sake
of simplicity, we ignore it here.

Observability can be exploited for enforcement purposes [2]: the data
provider can observe whether an (approximation of an) obligation is violated
and take a compensating action when this is the case. The compensating
action can rectify the violation, it can be a penalty such as lowering a trust or
credibility rating of the data consumer, or it can be some form of legal action.
This is similar to enforcing a law that prohibits crossing a red light. It is
not possible to prevent car drivers from crossing red lights, but by installing
cameras, the police can fine those who do so. We call a requirement of
the form “if a violation of obligation o is detected, then the compensating
action a must be triggered” a compensation. Compensations are enforceable.
Because full controllability is not achievable in general, we suggest a hybrid
approach employing two mechanisms: one for controllability, and the other
for observability, when controllability cannot be achieved.

Obligations that are neither controllable nor transformable into observ-
able ones can only be trusted to be adhered to by the data consumer. The
best that the data provider can do here is to get a commitment to the oblig-
ation from the data consumer, and perhaps remind the data consumer of its
duties later.

4 Policies

We have three types of enforceable requirements: provisions, controllable
obligations, and compensations. To reflect the fact that some obligations
are not enforceable, we define two policy levels. The intuition behind these
two levels is as follows. A high-level policy is about what ideally should be en-
forced, and it directly reflects applicable laws, regulations, and agreements.
It may thus contain requirements that are not enforceable. A low-level pol-
icy is a policy that can actually be enforced; it contains both references to
what is stipulated by the high-level policy (including non-controllable oblig-
ations) and what will actually be enforced (including compensations). Note
that for observable obligations, we enforce the compensation associated with
the obligation and not the obligation itself.

High-Level Policies. A high-level policy specifies obligations as well as
provisions, which encompass access control requirements and provisional
actions. Provisional actions [4] are actions the requester is required to take
in the time-span between access request and data release, e.g., gather the
data owner’s consent or sign an agreement.

From High-Level to Low-Level Policies. We now describe the process
of transforming a high-level policy into a low-level policy. In doing so, we
derive the structure of a low-level policy language. As this structure is
more complex than that of high-level policies, we also sketch a simplified
meta-model of low-level policies. A prerequisite for this transformation is
a description of the available enforcement and observation mechanisms and
their capabilities. Such descriptions are provided in dedicated vocabularies.
The transformation then consists of four steps.

1. Obligations are partitioned into controllable and non-controllable oblig-
ations. This is done with respect to a set of available control mecha-
nisms such as the use of trusted systems as defined above. This requires
that the available mechanisms are known and well-understood. Con-
trollable obligations are annotated with the applicable mechanisms.
For obligations that are not fully controllable, a mechanism is spec-
ified as well, but the obligation is still considered in the next steps.
This results in a combination of control and observation mechanisms.

2. Non-controllable obligations are partitioned into observable and non-
observable obligations.

3. As many remaining obligations as possible are transformed into ob-
servable obligations by weakening them as much as necessary, as the
previous example of data deletion shows. A minimum requirement
here is that the violation of a newly created observable obligation im-
plies the violation of the respective non-observable obligation.

4. Each observable obligation is annotated with an applicable observa-
tion mechanism capable of observing a violation of the obligation, and
associated with compensating actions. In this way, compensations are
specified.

The fulfillment of remaining non-observable and non-controllable oblig-
ations must be trusted. This trust must be established outside the policies
and before access is granted.

Low-Level Policies. We now introduce the structure of low-level policies.
Figure 2 shows the simplified meta-model of this policy language. A policy
consists of a set of rules. In this article, we take a simplistic approach to

combining rules: a request is permitted if at least one of the rules applies,
and is denied otherwise. This restriction could be liberalized by employing
different rule combination algorithms such as in XACML [6].

A rule has an access control part that defines its applicability, which
basically is a predicate over requester attributes, object attributes, and en-
vironment attributes. Further, a rule contains provisional actions and con-
tracts. The applicability part and the provisional actions together cover all
provisions as defined above. Contracts reflect obligations in the high-level
policy. They contain both the original obligation (what the policy maker
wants) and what actually is enforced and how. In this sense, a controllable
contract contains a controllable obligation (both its logical representation
and a human-readable description) plus information about the enforcement
mechanism (or a combination of mechanisms) and how it should be config-
ured. It can also contain a compensation to back up the control mechanism.
An observable contract contains an observable obligation and the compen-
sation that will be enforced. To describe the compensation, we must specify
the formula to observe (which can be the original obligation or an approxi-
mation thereof), an observation mechanism and a compensating action. A
trusted contract contains a non-controllable and non-observable obligation.

1

Rule

ProvisionalAction

‘ Applicability ‘

Controllable
Contract
[ils

‘o 1
! h
1 AR 1
0.1
Control Obligation Compensation
1 B 1 1 1 1
01 10 1 1 1

Control Compensating
Mechanism Action

TrustedContract

Observable
Contract

o [oa

‘ Formula ‘ ‘ Observation

—

Observation

[rome] | =

[

Configuration ‘ Formula ‘

[

Configuration

Figure 2: Policy Language Meta-Model

The semantics of a rule is as follows. If the applicability part evaluates to
true, then the entire set of provisional actions and contracts must be satisfied
for the data to be delivered. How the provisional actions and contracts are
processed is explained in the architecture description below.

For the sake of brevity, our definition of policies omits the description of
attributes, actions (including provisional actions and compensating actions),
control mechanisms, observation mechanisms, and purposes. Purposes are

accept

obligations,
perform
provisional ag:']erf' to
i obligations
| actions |
[[>
request access grant access time

Figure 3: Request, Provisional Actions and Access

needed to specify obligations of the form “this data may only be used for
purpose p”. Similar to EPAL [1], such definitions are contained in a vocab-
ulary, which we do not consider in more detail in this article.

5 Architecture

We are now ready to sketch a generic architecture for data providers. It
encompasses access control, contract negotiation, observation mechanisms,
compensations, and the configuration of data with regard to trusted sys-
tems on the client side (e.g., the issuing of rights objects for trusted plat-
form technology, or attaching policies that are comprehensible to the trusted
system). Since monitoring and enforcement are difficult in the context of
open infrastructures such as the Internet, we envision first implementations
in more controlled infrastructures including mobile phones or data servers
of banks, supermarket chains, military organizations, and national adminis-
trations. On the one hand, this is because the information systems in these
contexts are easier to control than systems in, say, public P2P networks. On
the other hand, for some of the actors in these contexts, it can be assumed
that they unintentionally, rather than deliberately, violate obligations.

In order to understand the general layout of the architecture, we start
by considering a generic process for obtaining data (cf. Figure 3).

Process. First of all, a potential data consumer C' requests data d. Upon
receiving this request, the data provider P performs traditional access con-
trol. This involves evaluating the applicability part of each rule. The result
of this step is a set of rules that associate C' with d in the current state of
the environment. If there is more than one applicable rule, P must choose
one of them. P then sends the contracts and the descriptions of provisional
actions contained in this rule to C.
This guarantees access to d under the following conditions:

1. the attributes relevant for the applicability part have not changed,
2. evidence of having taken the provisional actions is sent by C,

3. C' commits to the obligations, and

external compensation

<
observations
start) <
R monitoring | Compensation
revoke Management penalty N
e L
q A E
u N
e user/object T
s decision P attributes T V
requests request | h
evidence of 7t e environment
provisional actions Rule P attributes
H provisional Filter
P a |, actons
) n)
contracts contracts policies ..
d < Policies
possibly l
protected data e protected - -
N P Obligation | data
))
ighis | ENforcement Database
<

data

Figure 4: Data provider architecture

4. C' accepts possible compensations.

If C agrees with the provisional actions as well as the obligations and
compensations as set forth in the contracts, C' performs the provisional ac-
tions and gathers evidence for this. C' sends this evidence to P, together
with a statement that C accepts the other elements of the contract, and
requests d. Finally, P checks whether the provisional actions have been
performed, if all access control requirements are still satisfied, and if C has
agreed with the contracts. If this is the case, P starts monitoring possible
violations of the events that lead to compensating actions. For all control-
lable obligations, P wraps d into a DRM container or issues respective rights
objects or policies for trusted systems, and releases a copy of d.

Structure. This procedure can be implemented using a generic architec-
ture for data providers, as depicted in Figure 4. Boxes represent functional
units and arrows represent the main data flows. The request handler re-
ceives requests and forwards them to the rule filter. The rule filter retrieves
all rules for which the respective access control conditions are met (which
may include consulting external attribute databases or the environment),
and returns a set of provisional actions and contracts for each rule, of which
one set is selected. This data is sent to the consumer who, in turn, provides
the necessary information. In case the request can be granted, a compen-
sation management component is triggered to monitor whether obligations

are violated and possibly take actions when they are. In case controllable
obligations are involved, the data object is modified or augmented so that
trusted systems can handle the respective requirements.

6 Perspective

With the ever-increasing availability of digital personal data, we firmly be-
lieve that usage control will be an enabler of future technologies, particularly
in the context of mobile and ubiquitous computing. We have sketched here
first steps towards a general solution, focusing on the fundamentals of usage
control. Of course, any technical solution will likely come in conjunction
with organizational, legal, and methodological support.

There are a number of challenges remaining. To date, it is unclear how to
describe the general capabilities of existing control and observation mech-
anisms, and there certainly is scope here for new technologies. Because
most privacy regulations incorporate the notion of “purpose”, this must be
catered for in the policy language, possibly based on dedicated ontologies
like those defined by XrML [9] in the DRM context. Heterogeneous systems
pose particular problems; it is unclear, for example, how an RFID tag can
control the usage of the signals it emits.

While we believe there are no fundamental differences between usage
control in the context of privacy and intellectual property management,
this claim clearly needs to be substantiated. Other important problems
to address concern usability, the propagation of rights, and controlling the
ways that data can be combined and distilled. We expect some time to pass
before solutions are found.

References

[1] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit for managing
enterprise privacy policies. In Proc. ESORICS, pages 162-180. 2003.

[2] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Provisions and
obligations in policy rule management. J. Network and System Mgmdt.,
11(3):351-372, 2003.

[3] M. Hilty, D. Basin, and A. Pretschner. On obligations. In Proc. ES-
ORICS, pages 98-117, 2005.

[4] S. Jajodia, M. Kudo, and V. Subrahmanian. Provisional authorizations.
In E-Commerce Security and Privacy, pages 133—159. Kluwer, 2001.

[5] Q. Liu, R. Safavi-Naini, and N. Sheppard. Digital Rights Management
for Content Distribution. In Proc. Australasian Information Security
Workshop, pages 49-58, 2003.

10

[6] OASIS. eXtensible Access Control Markup Language (XACML), 2005.
V 2.0.

[7] J. Park and R. Sandhu. The UCON ABC Usage Control Model. ACM
Transactions on Information and Systems Security, 7:128-174, 2004.

[8] S. W. Smith. Trusted Computing. Springer, 2005.

[9] X. Wang, G. Lao, T. DeMartini, H. Reddy, M. Nguyen, and E. Valen-
zuela. XrML — eXtensible rights Markup Language. In XMLSEC 02,
pages 71-79. ACM Press, 2002.

11

