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Public Key Cryptosystem

1976, invented by Diffie and Hellman
1973, also invented by Cocks, the British cryptographer. It 
is only release in December 1997 by British government’s 
Communications Services Electronics Security Group 
(CESG)
Main applications are the digital signature and secret key 
establishment over public communications channels
This is a two keys system, that is, public key and private 
key
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RSA Public Key Cryptosystem

1978, invented by R. L. Rivest, A. Shamir and L. Adleman
This is a first to realize the public key encryption
This cryptosystem is based on the difficulty of 
factorization of large number
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RSA

1. Key generation  

2. Encryption/Decryption   

3. Digital signature generation/verification
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RSA: Key Generation

1. Choose two distinct prime numbers p and q randomly.  

2. Compute the product n= p·q and   Φ(n)=(p-1)(q-1). 

3. Choose an integer e randomly such that 0<e<Φ(n) and 
gcd (e, Φ(n))=1.

4. Compute d such that 0<d<Φ(n) and    e·d=1 (mod Φ(n)).

5. Publish (n, e), keep (p, q, d) secret.

Note: e – public key (or encryption key) of Alice
d - private key (or decryption key) of Alice
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RSA

Encryption : c=E(m, e)=me mod n

Decryption : D(c, d)=cd =m mod n

Signature Generation :  σ = H(m)d mod n,

where H is a hash function

Signature Verification : σe = H(m) mod n



IMT4101-- Network Security(TCH) 7

Security of RSA

Factoring of n is hard
Knowing d or Φ(n), n can be factor easily
Share modulo n with different e1 and e2
Discrete logarithm problem is also hard, that is, given m 
and c to find d such that  m = cd mod n 
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Factorization of Number

Year Number of digits
1964 20 (~64bits)

1974 45 (~128bits)

1984 71 (~256bits)

1994 129 (~384bits)

1999 155 (~512bits)
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Factoring RSA-129 (1)

This challenge was made in public in 1977 and offered a $100
to anyone who could decipher the message before 1 April, 1982.
e=9007

The ciphertext is

Find the plaintext?
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Factoring RSA-129 (2)

1994, Atkin, Graff, Lenstra and Leyland succeded in 
factoring RSA-129
Involved six hundred people, with a total 1600 computers 
working in spare time and store the result in a large matrix
After 7 months, a matrix with 524339 columns and 
569466 rows. This matrix is spare and by Gaussian 
elimination reduced to the matrix with 188160 columns 
and 188614 rows which took 12 hours.
After 45 hours of computation, it found the factorization of 
RSA-129.
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Factoring RSA-129 (3)

Plaintext is

Plaintext is : the magic words are squeamish ossifrage
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Factoring RSA-155 (1)

This is one of the challenge of RSA

Find the factor of RSA-155?

p and q are 78 digits.
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Factoring RSA-155 (2)

August, 1999, Cavallar, Dodson, Lenstra and Lioen, 
Mogntgomery, Murphy, Tiele, Aradal, Gilchrist, Guillerm, 
Leyland, Marchand, Morain, Muffett, Putnam, 
Zimmermann,  succeded in factoring 155 digits (512 bits)
Initiate state take 3.7 month, on 160 SGI and Sun 
workstation, eight R10000 processors, 120 Pentium II PC 
and four DEC computer (500MHz). Total CPU time is 
35.7 CPU years.
A matrix with 6,711,336 columns and 6,699,191 rows. 
Finding dependencies of this matrix by Lanczos
algorithm on Cray C916 took 224 hours.
After 61.6 hours on three SGI Origin 2000 computer, it 
found the factorization of 155 digits.
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Factoring n for given Φ(n)
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Factoring n for given Φ(n) (Con’t)
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Factoring n for given d
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Share modulo with different e1 and e2
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Share modulo with different e1 and e2
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ElGamal Signature Scheme

Invented by ElGamal in 1985. 
This is based on the difficult of  discrete logarithm 
problem over prime field
He also invented a encryption based on discrete 
logarithm problem
This scheme later modified to digital signature standard



IMT4101-- Network Security(TCH) 20

Discrete Logarithm Problem

Let p be a prime, g be a primitive element of 
Zp*={1,2,..,p-1} (i.e., Zp*={1,g,g2,…,gp-2}). 

Discrete logarithm problem: Given  y∈ Zp*, find the 
integer x such that 

y = gx mod p

Such x is called the discrete logarithm of y over base g 
and denoted as x=loggy.
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ElGamal : Key Generation

•• Choose a large prime p and let Zp*={1,2, …,p-1} 
• Choose a primitive element g of Zp* 
• Randomly choose x such that 1< x <p-1 and compute

y = gx mod p

(x, y) is a pair of private and public key.

Note: (p, g) may be chosen and published by a trusted 
third party for common use. 
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ElGamal : Signature Generation

Signing a message m such that 0< m <p-1 with the 
private key x

• Randomly choose a k such that 0< k <p-2  and gcd(k, 
p-1)=1.

• Compute the inverse k-1 of k such that 
k-1•k=1 mod p-1

• Compute
r = gk mod p
s = k-1(m-x•r)  mod p-1

• Digital signature on m is (r,s).
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ElGamal : Signature Verification

Verifying the digital signature (r,s) on
the message m with the public key y

• Compute               
u = rs • yr mod p
v = gm mod p

• Check whether u=v or not. If u=v, then (r,s) is genuine 
digital signature on m. Otherwise, it is invalid.
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ElGamal : Verification Equation

Prove that rs • yr=gm mod p
Proof:
As r=gk mod p,    s=k-1 (m-x•r)  mod p-1
Then, 

s•k = (m-x•r) mod p-1
= (m-x•r) + i•(p-1)

s•k+x•r=m + i•(p-1),
We have

gs•k + x•r mod p = gm+i•(p-1) mod p
(gk)s(gx)r mod p = gm(gp-1)i mod p
rs • yr mod p =gm mod p 

(by Fermat Theorem: gp-1=1 mod p)
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Security of Signature Scheme

Existential forgery : An adversary is able to forge the 
signature of at least one message, not necessarily the 
one of his/her choice
Selective forgery : An adversary succeeds in forging the 
signature of some message of his/her choice
Universal forgery : An adversary is able to forge the 
signature of any message without knowing the secret key
Retrieval of secret key : Adversary finds out the signer’s 
secret key 
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Security of ElGamal Scheme

• Knowing (p,g,y) such that y=gx mod p, it  is hard for the 
adversary to solve the discrete logarithm problem to get 
the private key x of the user.

• Knowing (p,g,y,r,s), it is hard for an adversary to obtain 
k from r=gk mod p and then extract the private key x of 
the user from s=k-1 (m-x•r)  mod p-1.

The security of ElGamal signature scheme depends on 
the difficulty of computing discrete logarithm over Zp.
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Existential Forgery Attack to ElGamal
Scheme

Without knowing the private key x of Alice, a forger 
chooses u, v such that gcd(v,p-1)=1 and computes

r=yvgu mod p
s= -rv-1 mod p-1
m=su mod p-1

Then, the forged signature on m is (s, r). It can be checked 
that this is a valid signature as follows:

v1 = yrrs mod p = yr (yvgu)-rv^(-1) mod p =  (gu)-rv^(-1) mod p
v2 = gm mod p =gsu mod p = (gu)-rv^(-1) mod p
It is obvious that v1=v2 mod p
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Schnorr Signature Scheme

Invented by Schnorr in 1989
Suitable for smart card application
Schnorr scheme is more efficient than ElGamal scheme 
in term of computation
Signature size is shorter than that of ElGamal scheme
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Schnorr : Parameter set up

Let q and p are two large prime such that q divides p-1 
(normally p is of 1024 bit, q is 160 bits)
Let g be an element of Zp

* of order q
Let H be a hash function : {0,1} *  → Zq
Choose x < q and compute y = gx mod p
Alice’s public key is (p,q, y, H); her secret key is x
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Schnorr : Signature Generation

Let m be a message in {0,1}*
Alice picks a random k < q and computes a signature pair 
(e,s) where

r = gk mod p
e = H(m || r)
s = k + xe mod q

The signature of m is (e,s)
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Schnorr : Signature Verification

Given a message-signature pair (m, (e,s)). Bod verify the 
following

r’ = gs y-e mod p
e’ = H(m || r’)
Check e=e’

If e=e’ then the signature is a valid one, otherwise invalid
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Schnorr Signature Scheme (Example)

p=607, q =101, g=601
Let x= 3 as a scret key, y=gx mod p = 391 as a public key
Let k=65, then r=gk mod p=223
e=H(m || r) mod q.  Let e=93
Then, s=k+xe mod q = 65 + 3 . 93 mod 101 = 41
Hence, the signature is (41, 93)
Verification: g41y-93=r mod p
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Digital Signature Standard (DSS)

FIPS PUB 186

Digital Signature Standard

Federal Information Processing Standards Publications

U. S. Department of Commerce/N.I.S.T.

May 1994
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Digital Signature Standard

Key generation:
generate a large random prime p 
such that 2511 <p< 21024

Choose a prime factor q of p-1 such that 2159<q< 
2160

Choose an integer h such that 1<h<p-1 and                  
g = h(p-1)/q (mod p) > 1
H is a secure hash function (SHA)
select a random integer x, 1 ≤ x ≤ p–2
compute y = gx mod p 
public key: (p, g, y)
private key: x
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DSS (Cont’d)

Signature generation:
select a random integer k, 0 < k < q
compute r = (gk mod p) mod q
compute k–1 mod q
compute s = k–1 (H(m) + x r) mod q
the signature is the pair (r, s)
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DSS (Cont’d)

Signature verification:
obtain authentic public key (p, q, g, y)
verify that 1 ≤ r < q and 1 ≤ s < q
compute u = s–1 H(m) mod q and v = s–1 r 
mod q
compute z = (gu yv mod p) mod q
accept the signature if z = r
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DSS : Verification Equation

Prove (gu • yv mod p ) mod q = r
Proof:
As r=(gk mod p) mod q,     s=k-1 (H(M)+x•r) mod q

and u=s-1•H(M) mod q,     v=s-1•r mod q

k = s-1(H(M)+x•r)=u+v•x  mod q
k=u+v•x + i • q

r = (gk mod p) mod q 
= (gu+v•x+i•q mod p) mod q
= (gu •(gx)v •(gq)i mod p) mod q
= (gu •yv mod p) mod q
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Security of DSS

• Knowing (p,g,y) such that y=gx (mod p), it  is hard for 
the adversary to solve the discrete logarithm over G to 
get the private key x of the user.

• Knowing (p,g,y,r,s), it is hard for an adversary to obtain 
k from r=(gk mod p) mod q and then extract the private 
key x of the user from s=k-1 (m+x•r) mod q.

The security of DSS depends on the difficulty of 
computing discrete logarithm over G.
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Identity Based Cryptosystem

is proposed by Shamir in 1984.
The first ID-based signature is by Guillou and 
Quisquater in 1988.
The first ID-based encryption are by Boneh and 
Franklin in 2001, and Cook in 2001, Sakai et al in 
2000, independently. 
Idea is used user identity for encryption and signature 
verification.
Does not require to have public key infrastructure.
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GQ ID-based Signature

Master key generation: choose two primes p and q, let 
n=pq, choose e and d such that e.d=1 mod (p-1)(q-1).
d is a secret mater key, public key is (n, e).
Private key generation: Given an ID, compute 
x=H(ID)d mod n, give x to the user with ID. 
Signature generation: To sign a message m, choose a 
random r < n, compute c=H(re mod n, m),  s=r.x-c mod n
signature is (m, c, s).
Signature verification: Given signature (m, c, s) of ID, 
verify    c=H(seH(ID)c mod n, m).
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Elliptic Curve Cryptosystem

Discovered independently by Koblitz and Miller in 
1985.
Miller presented at the Crypto’85 Conference.
Security is based on the hardness of Elliptic curve 
discrete logarithm problem (ECDLP).
Any protocol based on DLP can be converted to one 
based on ECDLP.
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Elliptic Curve E over Zp

y2 = x3 + ax + b 

Where a, b ∈ Zp and  4a3 + 27b2 ≠ 0 mod p

E(Zp) consists of all the point (x, y) plus a  O  point.
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Addition of Points

P + O = O + P = P for all P  ∈ E(Zp)
if P=(x,y) ∈ E(Zp), then –P=(x,-y) and (x,y) + (x,-y) = 
O
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Adding points on an elliptic curve
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Formula for adding points
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An Example
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Elliptic Curves 
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Elliptic Curves over binary fields
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Elliptic Curve Digital Signature Algorithm 
(ECDSA)
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ECDSA : Key Generation
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ECDSA : Signature Generation
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ECDSA : Signature Verification
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Comparable Key Sizes
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Computing power (Pollard rho-method)
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Elliptic Curve Key Size (by NIST)
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NIST-recommended elliptic curve over 
prime fields
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NIST-recommended elliptic curve over 
binary fields
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NIST-recommended elliptic curve over 
binary fields
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Software Timing for ECDSA

ECDSA 160 176 192 208 256
Signing 46.4ms 65.4ms 71.3ms 96.2ms 153.5ms

Verifying 92.4ms 131.3ms 148.3ms 194.3ms 313.4ms

In 2000,  M. Aydos, T. Tank, and C. K. Koc implemented ECDSA over Zp
in 80MHz 32-bits ARM7TDMI 
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Software Timing for ECDSA (Cont’d)

Curve type NIST Curve Signing (ms) Verification (ms)

Prime P-192 0.28 0.938

P-224 0.41 1.38

P-256 0.686 2.25

Binary B-163 0.48 1.47

B-233 1.18 3.58

B-283 1.80 5.385

Koblitz K-163 0.385 0.79

Binary K-233 0.842 1.73

K-283 1.23 2.55
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Timing for k.P on FPGA implementation

Over binary field
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Core ECC Standards
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ECDSA vs RSA (ms)
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ECC – Patent Situation

The general idea to use elliptic curve for public key 
cryptosystem is not patented
All the relevant public key based security services  are 
patent free, digital signature, key exchange, 
authentication
Some elliptic curve analogues cryptographic schemes 
are patented, example, Menezes-Qu-Vanstone, 
Nyberg-Rurppel, Schnorr, etc
There are a large number of patents on special 
implementation techniques.
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Some Patents

J.L Messay and J.K. Omura. Computational method and apparatus 
for finite field arithmetic. US Patent 4,587,627, May, 1986.
R.C. Mullin, I.M. Onyszchuk, and S.A. Vanstone. Computational 
Method and apparatus for finite field multiplication, US Patent 
4,745,568, May, 1988.
R.C. Mullin. Multiple bit multiplier. US Patent 5,787,028, Jul, 1998.
P. Ning and Y.L. Yin Efficienct software implementation for finite field 
multiplication in normal basis. Pending US Patent application. filed in 
Dec 1997. 
R.J. Lambert and A. Vadekar.  Method and apparatus for finite field 
multiplication.  US Patent 6,049,815, April 2000.
C. K. Koc, E. Savas, and A. F. Tenca. A Scalable and Unified 
Multiplier for Finite Fields.  US Patent Application, February, 2000.
C. K. Koc, A. F. Tenca, and G. Todorov. An high-radix scalable 
modular multiplier. US  Patent Application, April, 2001.
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RSA BSAFE Crypto-C Functional Layers
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Notions of Cryptographic Security

Unconditional Security: There is no bound place on the 
amount of computation that an adversary is allowed to carry 
out. 
Computational Security: This measure concerns the 
computational effort to break a cryptosystem. 
Provable Security: Provide evidence of security by reducing 
the security of cryptosystem to well-studies mathematical 
problem that is believed to be difficult to solve.  This is also
refer to reductionist security.
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