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Public Key Cryptosystem

1976, invented by Ditfie and Hellman

1973, also invented by Cocks, the British cryptographer. It
is only release in December 1997 by British government’s
Communications Services Electronics Security Group

(CESG)

Main applications are the digital signature and secret key
establishment over public communications channels

This is a two keys system, that is, public key and private
key

i
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RSA Public Key Cryptosystem

= 1978, invented by R. L. Rivest, A. Shamir and L. Adleman
= This is a first to realize the public key encryption

= This cryptosystem is based on the difficulty of
factorization of large number
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RSA

Key generation
Encryption/Decryption

Digital signature generation/verification
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i RSA: Key Generation

1 Choose two distinct prime numbers p and g randomly.
2.  Compute the product n=p-gand ®(n)=(p-1)(g-1).
3

Choose an integer e randomly such that O<e<®(n) and
gcd (e, d(n))=1.

4.  Compute d such that 0<d<®d(n) and e-d=1 (mod D(n)).
5. Publish (n, e), keep (p, g, d) secret.
Note: e — public key (or encryption key) of Alice

d - private key (or decryption key) of Alice
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i RSA

Encryption : c=E(m, e)=me mod n

Decryption : D(c, d)=c9 =m mod n
Signature Generation : ¢ = H(m)9 mod n,

where H Is a hash function

Signature Verification : ¢ = H(m) mod n
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i Security of RSA

= Factoring of n is hard
= Knowing d or ®(n), n can be factor easily
= Share modulo n with different e, and e,

= Discrete logarithm problem is also hard, that is, given m
and c to find d such that m = ¢ mod n
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i Factorization of Number

Year Number of digits
1964 20 (~64bits)
1974 45 (~128bits)
1984 71 (~256bits)
1994 129 (~384bits)
1999 155 (~512bits)
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Factoring RSA-129 (1)

This challenge was made in public in 1977 and offered a $100
to anyone who could decipher the message before 1 April, 1982.
e=9007
n =
1143816257578858076692357T79976146612010218296721242362
3625618{29357069352457338978530597123568958705058989075
147599290026879545541

The ciphertext is

[ fpfp—
9666961375462206147714092225435585829057599911245743198
746951209308162952251457083569314766225559896280153919
90551829945157815154.

Find the plaintext?
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i Factoring RSA-129 (2)

= 1994, Atkin, Graff, Lenstra and Leyland succeded In
factoring RSA-129

= Involved six hundred people, with a total 1600 computers
working in spare time and store the result in a large matrix

s After 7 months, a matrix with 524339 columns and
569466 rows. This matrix is spare and by Gaussian
elimination reduced to the matrix with 188160 columns
and 188614 rows which took 12 hours.

= After 45 hours of computation, it found the factorization of
RSA-129.
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‘L Factoring RSA-129 (3)

p =
349052951084765094914784961990389813341776463849338784
3980820577,

q:
327691329932667095499619881908344614131776429673929425
39708288533.
d—=
106698614368578024442868771328920154780709906633937862
801226224496631063125911774470873340168597462306553968
544513277109053606095.

Plaintext is

200805001301070903002315180419000118050019172105011309
190800151919090618010705,

Plaintext is : the magic words are squeamish ossifrage
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Factoring RSA-155 (1)

This is one of the challenge of RSA

RSA-155 =
11894 17386415705274218097073220403576120037329454492059000138421314763499842889)
3478471700725 780]1 267332497625 752899781833707076537244027146743531593354333897

Find the factor of RSA-155?

p:
10263950282974T1 108772054 19657300167580071656780R0380668033419335217907113077749

q:
10660348838016345482092722036001287867920795857508020152227060823719330628058643,

p and q are 78 digits.
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Factoring RSA-155 (2)

= August, 1999, Cavallar, Dodson, Lenstra and Lioen,
Mogntgomery, Murphy, Tiele, Aradal, Gilchrist, Guillerm,
Leyland, Marchand, Morain, Muffett, Putnam,
Zimmermann, succeded in factoring 155 digits (512 bits)

= Initiate state take 3.7 month, on 160 SGI and Sun
workstation, eight R10000 processors, 120 Pentium Il PC
and four DEC computer (500MHz). Total CPU time is
35.7 CPU years.

= A matrix with 6,711,336 columns and 6,699,191 rows.
Finding dependencies of this matrix by Lanczos
algorithm on Cray C916 took 224 hours.

= After 61.6 hours on three SGI Origin 2000 computer, it
found the factorization of 155 digits.
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Factoring n for given ®(n)

We have | :
b=(p-Ng-1)=N-(p+g)+1L

Hence, if we set § = N + 1 — ¢, we obtain

S=p+4q.

So we need to determine p and g from their sum § and product N. Define the
polynomial
FX)=(X-p)-(X—-g) =X’ —SX +X\.

So we can find p and g by solving f(X) = 0 using the standard formulae for extracting
the roots of a quadratic polynomial,

S+ /52 — 4N
p = 2 1
S —+/SZT 4N
q = 2 -
Q.E.D.
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Factoring n for given ®(n) (Con’t)

As an example consider the RSA public modulus N = 18923, Assume that we are
given & = p(N) = 18 648. We then compute

S=p+g=N+1-¢ =276,
Using this we compute the polynomiai
FIX)=X2-SX+N=X?_276X + 18923
and find that its roots over the real numbers are
p=149,9 = 127

which are indeed the factors of N.
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Factoring n for given d

| ed—1=g(p~1)(g—-1).
We pick an integer x # 0, this is guaranteed to satisfy
= 1 (mod A,
We now compute a square root ) of one modulo N,
Yy = Vxed-1 = x(ed-1)2
which we can do since ed — 1 is known and will be even. We will then have the identity
v1¢ -1 =0 (mod N),

which we can use to recover a factor of N via computing

ged{y: — 1, N).
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Share modulo with different e, and e,

(N,er)and (N, e2),
i.e. N; = Nv = N Eve, the external attacker, sees the messages ¢; and ¢» where

oy = m* (mod N),
oy = m*" (mod N).

Eve can now compute

t; = e;”! (mod e3),
b= (t1er —1)/ex,

and can recover the message # from
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Share modulo with different e; and e,

As an example of this external attack, take the public keys as
N=Ny=N»=18923,¢, =11 and e> =5,
Now suppose Eve sees the ciphertexts
c1 = 1514 and ¢> = 81895

corresponding to the same plaintext ». Then Eve computes {; = 1 and {: = 2, and
recovers the message
m =cle;" =100 (mod N).
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i ElGamal Signature Scheme

= Invented by ElIGamal in 1985.

= This is based on the difficult of discrete logarithm
problem over prime field

= He also invented a encryption based on discrete
logarithm problem

= This scheme later modified to digital signature standard

IMT4101-- Network Security(TCH)
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i Discrete Logarithm Problem

Let p be a prime, g be a primitive element of
Z,={1,2,..,p-1} (i.e., Z,*={1,0,9%,...,74}).

Discrete logarithm problem: Given ye Z* find the
Integer x such that

y=g* modp

Such x is called the discrete logarithm of y over base g
and denoted as x=log,y.
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i ElGamal : Key Generation

Choose a large prime p and let Z;*={1,2, ...,p-1}

Choose a primitive element g of Z*

Randomly choose x such that 1< x <p-1 and compute
y=0¢ modp

(X, y) Is a pair of private and public key.

Note: (p, g) may be chosen and published by a trusted
third party for common use.

IMT4101-- Network Security(TCH)
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i ElGamal : Signature Generation

Signing a message m such that 0< m <p-1 with the
private key x

Randomly choose a k such that 0< k <p-2 and gcd(k,
p-1)=1.
Compute the inverse k' of k such that
k-tek=1 mod p-1

Compute

r=g modp

s = k*(m-xer) mod p-1
Digital signature on m is (r,s).
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i ElGamal : Signature Verification

Verifying the digital signature (r,s) on
the message m with the public key y

Compute
u=rsey"modp
v=g™ modp

Check whether u=v or not. If u=v, then (r,s) is genuine
digital signature on m. Otherwise, it is invalid.

IMT4101-- Network Security(TCH)
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i ElGamal : Verification Equation

Prove that rs « y'=g™ mod p
Proof:
As r=g<mod p, s=k1(m-xer) mod p-1
Then,
Sek = (m-xer) mod p-1
= (m-xer) + i+(p-1)
Sek+xer=m + I¢(p-1),
We have
gs-k+x-r mod p = gm+i-(p-1) mod P
(9¥)%(g*)" mod p =gm(g~t)’ mod p
rSey"mod p =g™ mod p
(by Fermat Theorem: gr-1=1 mod p)
IMT4101-- Network Security(TCH)
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i Security of Signhature Scheme

= Existential forgery : An adversary is able to forge the
signhature of at least one message, not necessarily the
one of his/her choice

= Selective forgery : An adversary succeeds in forging the
signature of some message of his/her choice

= Universal forgery : An adversary is able to forge the
signhature of any message without knowing the secret key

= Retrieval of secret key : Adversary finds out the signer’s
secret key
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i Security of ElGamal Scheme

Knowing (p,g,y) such that y=g* mod p, it is hard for the
adversary to solve the discrete logarithm problem to get

the private key x of the user.
Knowing (p,g,y,r,s), it is hard for an adversary to obtain

k from r=gX mod p and then extract the private key x of
the user from s=k* (m-xer) mod p-1.

The security of EIGamal signature scheme depends on
the difficulty of computing discrete logarithm over Z,,.
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Existential Forgery Attack to ElGamal
Scheme

ithout knowing the private key x of Alice, a forger
chooses u, v such that gcd(v,p-1)=1 and computes

r=yvg¥ mod p

s=-rv-i mod p-1

m=su mod p-1

Then, the forged signature on m is (s, r). It can be checked
that this Is a valid signature as follows:

V]_ — yI’rS mod p — yr (ngU)-I’VA(-l) mod p — (gU)-I’VA(-l) mod p
V,=gm™mod p=g** mod p = (g")"™* Y mod p
It is obvious that v,=v, mod p
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i Schnorr Signature Scheme

= Invented by Schnorr in 1989
= Suitable for smart card application

= Schnorr scheme is more efficient than EIGamal scheme
In term of computation

= Signature size is shorter than that of EIGamal scheme
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i Schnorr : Parameter set up

= Let g and p are two large prime such that g divides p-1
(normally p is of 1024 bit, g is 160 bits)

= Let g be an element of Z," of order ¢

= LetH be a hash function : {0,1}* — Z,

= Choose x < gand compute y =g*mod p

= Alice’s public key is (p,q, vy, H); her secret key is x

IMT4101-- Network Security(TCH)
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i Schnorr : Signature Generation

= Let m be a message in {0,1}*

= Alice picks a random k < g and computes a sighature pair
(e,s) where

= r=g<mod p
me=H(m|lr)
= S=k+xemodq

= The signature of m is (e,s)
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i Schnorr : Signature Verification

= Given a message-signature pair (m, (e,s)). Bod verify the
following

= '=0g%y°emodp
m e =H(m||r)
= Check e=¢’
= If e=e’ then the signature is a valid one, otherwise invalid
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i Schnorr Signature Scheme (Example)

= p=607, =101, g=601

= Let x= 3 as a scret key, y=g* mod p = 391 as a public key
= Let k=65, then r=gk mod p=223

= e=H(m || r) mod q. Let e=93

= Then, s=k+xe mod g =65+ 3.93 mod 101 =41

= Hence, the signature is (41, 93)

= Verification: g*ly23=r mod p
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i Digital Signature Standard (DSS)

FIPS PUB 186
Digital Signature Standard

Federal Information Processing Standards Publications
U. S. Department of Commerce/N.1.S.T.
May 1994

IMT4101-- Network Security(TCH)
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i Digital Signature Standard

= Key generation:

generate a large random prime p
such that 2511 <p< 21024

Choose a prime factor q of p-1 such that 2159<qg<
2160

Choose an integer h such that 1<h<p-1 and
g = he-D/a (mod p) > 1

H is a secure hash function (SHA)

select a random integer x, 1 < x < p-2
compute y = g mod p

public key: (p, g, V)

private key: x

IMT4101-- Network Security(TCH)
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i DSS (Cont'd)

= Sighature generation;

select a random integer k, 0 <k < g
compute r = (gk mod p) mod g
compute k- mod q

compute s = k=t (H(m) + x r) mod g
the signature is the pair (r, s)

IMT4101-- Network Security(TCH)
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i DSS (Cont'd)

= Signhature verification:

obtain authentic public key (p, g, 9, y)
verifythat 1 <r<gand 1l <s<q

computeu=stH(m)modgandv=s"1r
mod q

compute z = (g¥y¥ mod p) mod ¢
accept the signature if z =r

IMT4101-- Network Security(TCH)

36



i DSS : Verification Equation

Prove (QUey mod p ) modg=r

Proof:
As r=(gk mod p) mod g, s=k1 (H(M)+xer) mod g
and u=steH(M) mod q, v=ser mod g

k = s1(H(M)+xer)=u+vex mod g
K=u+vex +1eQ

r = (gkmod p) mod g
— (gU+V'X+i‘C| mod p) mod q
= (9" *(g¥)"+(9%)' mod p) mod ¢
= (gY*y¥ mod p) mod g

IMT4101-- Network Security(TCH)
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i Security of DSS

Knowing (p,g,y) such that y=g* (mod p), it is hard for
the adversary to solve the discrete logarithm over G to
get the private key x of the user.

Knowing (p,g,y,r,s), it is hard for an adversary to obtain
k from r=(gk mod p) mod g and then extract the private
key x of the user from s=k* (m+xer) mod q.

The security of DSS depends on the difficulty of
computing discrete logarithm over G.
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i Identity Based Cryptosystem

IS proposed by Shamir in 1984.

The first ID-based signature is by Guillou and
Quisquater in 1988.

The first ID-based encryption are by Boneh and
Franklin in 2001, and Cook in 2001, Sakai et al in
2000, independently.

ldea is used user identity for encryption and signature
verification.

Does not require to have public key infrastructure.
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i GQ ID-based Signature

Master key generation: choose two primes p and q, let
n=pqg, choose e and d such that e.d=1 mod (p-1)(g-1).

d is a secret mater key, public key is (n, e).
Private key generation: Given an ID, compute
x=H(ID)4 mod n, give X to the user with ID.

Signature generation: To sigh a message m, choose a
random r < n, compute c=H(r¢ mod n, m), s=r.x¢mod n

signature is (m, c, S).
Signature verification: Given signature (m, c, s) of ID,
verify ¢c=H(s®*H(ID)¢ mod n, m).

IMT4101-- Network Security(TCH)
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i Elliptic Curve Cryptosystem

Discovered independently by Koblitz and Miller in
1985.

Miller presented at the Crypto’85 Conference.

Security Is based on the hardness of Elliptic curve
discrete logarithm problem (ECDLP).

Any protocol based on DLP can be converted to one
based on ECDLP.

IMT4101-- Network Security(TCH)
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i Elliptic Curve E over Z,

y:=x3+ax+Db
Where a, b € Z;and 4a’+ 27b2= 0 mod p

E(Z,) consists of all the point (x, y) plusa O point.

IMT4101-- Network Security(TCH)
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i Addition of Points

= P+O=0+P=PforalP e E(Z)
= I P=(X,y) € E(Zp), then —P=(x,-y) and (x,y) + (X,-y) =

O

R
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i Adding points on an elliptic curve
@/l

-4
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Formula for adding points

Let P=(xy3n) € Fi2,) and O = (x27) € B{2,) where P2 - Then P+() = (xa,v3), where
5= it X = X3
= A (n-n)- W,

27 it P2Q
X2 — Xi

3xt +a

if P=0.
2y 1 ¢
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An Example

1. LetP=(3,10)and Q = (9, 7). Then P + Q = (x3, y3)1s computed as follows:

7-10 -3 -1

= =—=—=11€eZn.
A 9_3 p > el
%=11-3-9=6-3-9=-6=17 (mod 23), and

3 =11(3 - (-6)) -10 = 11(9) 10 = 89 = 20 (mod 23).

Hence P + Q = (17, 20).

2. Let P=(3,10). Then 2P = P + P = (x3, y3)1S computed as follows:

333)+1 5 1

ﬂ: = :_:6 Z 5

20 20 4 057
x3=6"-6=30=7 (mod 23), and

¥3=6(3-7)-10 = -24 -10 =-11 = 12 (mod 23).

Hence 2P = (7,12).

IMT4101-- Network Security(TCH)
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Elliptic Curves

Weierstrall equation:
E o 4 ajzy + agy = 7 + apz’ + a4z + ag over K

(1) O is the dentity element: P+ O = P.

(ii) The inverse of P = (z1,3) 18 —P = (z1, —y1 — az, — a3).

(i) f Q= —P,then P+Q =O.

(iv) Let P = (1, 3) and Q = (z3,y) with Q # —P. Then P+ Q =
(23,93)

where
z3=M +ad—ay -z —zoand yy = —(A+ay)zy — p—ay

with

i if P#Q

A _ Iy—T3

3.7:%+2¢12I1+ﬁ4—a|y1 . .
Zn+ay T +as lt P - Q

and p =1y — Az
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Elliptic Curves over binary fields

If char(K)=2, then the elliptic curve is of the form

E:y*+ay =2+ az* + b over GF(2™)

,

(atie)2 L W 4 g 4y +a fP#Q

Z1+T3 T1+T2
L3 == 3
2t + if P=0Q
. |
(B) (@ +as) +as+y EP#Q
Y38 =1
:E%—i—(:vl—l—%)xg{—a:g if P=@Q
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48



Correspondence between Z’;; and E(Z,) notation.

Group

Group
elements
Group
operation
Notation

Discrete
Logarithm
Problem

Z;

Integers
{1,2,..,p-1}
multiplication
modulo p
Elements: g, A
Multiplication; g e /
Inverse: g']
Division: g/ h
Exponentiation: g
Giveng e Z3

and h = g" mod p,
find a

E(z,)

Points (x, yyon £
plus O

addition

of points
Elements: P, ¢
Addition; P+ Q
Negative: -P
Subtraction: P - ¢
Multiple: aP
Given P € E(Z))
and 0 = aP,

find a.
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Elliptic Curve Digital Signature Algorithm

(ECDSA)
1999 Jan. ANSIE X9.62
2000 Jan. FIPS 186-2
2000 Aug. I[EEE Std 1363-2000
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i ECDSA : Key Generation

e Domain parameters: L, F;, G € E(IF,.I), n = ord((5),
h =#E(Fq)/n.
e Each entity A does the following:

1. Select a random integer d in the interval [1,n — 1].
2. Compute () = dG.
3. A's public key is (); A's private key is d.

IMT4101-- Network Security(TCH)
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ECDSA : Signhature Generation

To sign a message m, A does the following:

1.
2.

Select a random integer k, 1 < k <n — 1.

Compute kG = (x,y1) and r = 1 mod n.
If r = 0 then go to step 1.

. Compute £~ mod n.
. Compute e = SHA-1(m).
. Compute s = k~{e + dr} mod n.

If s =0 then go to step 1.

. A’s signature for the message m is (r, s).

IMT4101-- Network Security(TCH)
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ECDSA : Signature Verification

To verity A’s signature (7, s) on m, B should do the following:

1.
. Compute e = SHA-1(m).

S O W N

. Compute w = s~

Verify that » and s are integers in the interval [1,n — 1].

L' mod n.

. Compute u; = ew mod n and uy = rw mod n.
. Compute u G + u9@Q) = (x1,y1) and v = x1 mod n.

. Accept the signature if and only if v = r.
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Comparable Key Sizes

Symmetric cipher| Example |ECC key|RSA/DL key
key lengths algorithm | length length
80 SKIPJACK 160 1024
112 Triple-DES | 224 2048
128 128-bit AES| 256 3072
192 192-bit AES| 384 7680
256 256-bit AES| 512 15360
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i Computing power (Pollard rho-method)

Field size  Sizeofn  fzn/2  MIPS years
(in bits) (m bits)
163 160 2% 9.6x 10"
191 186 27 7.9x 10"
239 234 ph 1.6 x 10%
359 354 27 1.5 x 10"
431 426 2 1.0x 107
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Elliptic Curve Key Size (by NIST)

Symmetric cipher Example Bitlength of p Dimension m of
key length algorithm in prime field I, binary field Fom

30 SKIPJACK 192 163

112 Triple-DES 224 233

128 AES Small {25] 256 283

192 AES Medium (23] 384 409

256 AES Large [25] 521 571
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NIST-recommended elliptic curve over

prime fields

P-192: p=2192 2% _{ o= -3 h=1,

b = 0x 64210519 EG9C80ET OFA7EOAB 72243049 FEBSDEEC C146B9BL

n = Ox FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831

P-224: p=22 _ 9% 1 { g= 3 h=1,

b = Ox B4050485 OCO4B3AB F5413256 5044B0OB7 D7BFD8BA 270B3943 2355FFB4

r = Ox FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 ECB8FQ3E 13DD2945 5C5C243D

P-256: p=2°% — 271 4 292 4. 2% 1 a=-3, h =1,

b = Ox 5AC635D8 AA3A93E7 B3EBBDES 769886BC 651D06BO CC53BOFS 3BCE3C3E
27D2604B

n = 0Ox FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCEGFAAD A7179E84 F3BOCAC2
FC632551

P-384: p= 238 _ 2138 _ 2% 4 932 _1 a=-3,h=1,

b = 0x B3312FAT7 E23EE7E4 98B8E0L6R E3F82D19 181DSCEE FE814112 0314088F
50138754 C656398D BA2ED19D 2485C8ED D3EC2AEF

nt = Ox FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF (7634081
F4372DDF 681A0DB2 48BOAT7A ECEC1964 CCChE2973

P52l:ip=2"—1 a=-3,h=1,

b = 0x 00000051 953ER961 S8E1CIAIF 929A21A0 B6S854OEE A2DA725B 99B315F3
B8B48991 BEF109E1 56193951 ECTES37B 1652C0BD 3BB1BFOT 3573DF88
3D2C34F1 EF451FD4 6BS03F00

1 = 0x O00001FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFA 51868783 BF2F966B TFCC(148 F709A6DC 3BBHCOBS

899C4ATAE BBGFB71E 91386409

Y=z’ +azx+b

The number of points on E is nh
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NIST-recommended elliptic curve over
binary fields

B-163:a=1k=2 flz)=2'"8 + 27 + 28 + 2* 4 1

b = 0x 00000002 0A601907 BBCSS3CA 1481EB10 512F7874 4A3205FD

n = 0x 00000004 00000000 00000000 0Q0292FE TTETOC12 A4234C33

B-23%:a=1 k=2 flx)=2*¥ +2™ 41

b = 0x 00000066 647EDE6C 332CTFBC 0923BB58 213B333B 20EY9CE42 81FE115F
TDBFI0AD

n = 0x 00000100 00000000 00000000 00000000 OO13E9T4 ET2F8AG9 22031D26
03CFEQD7 R y2 + oy = :B3 + a$2 iy

B-283:a=1,h=2 fl&)=2" +x 42" +2° +1

b = 0x 027B6B0A C8B8596D ASA4AF8A 19A0303F CA9YFDT6 45309FA2 ABB14854
F6263E31 3B7942F5

n = Qx 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFEF90 399660FC 93849016
5B04247C EFADB307

B-409:a=1h=2, f(z) =2 +2% +1

b = 0x 021AbC2 CS8EESFEB 5C4BOA7S 3B7B476B TFD6422E FIF3DDET 4761FA99
DBAC27C8 A9A197B2 T2822F6C D5TABHAA 4FS50AE31 TB13545F

n = 0x 01000000 00000000 COO0CO00 00000000 00000000 00000000 000001E2
AADGAG12 F33307BE SFA47C3C SE0B2F83 B8164CD37T D9A21173

B-57lia=1h=2 flz)=2"" + 2+ 2% + 2% +1

b = 0x 02F40ETE 2221F295 DE297117 BTF3D62F 5C6AYTFF CBS8CEFF1 CD6BASCE
4A9A18AD 84FFABBD BEFA5933 2BETADG7 bB6A66E29 4AFD185A T78FF1244
520E4DET 39BACAQC T7FFEFFTF 2955727A

n = Ox Q3FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF E661CE18 FF559873 08059818 6823851E C7DDSCA1

161DES3D 6174DGEE 8382E9BB 2FEB4E4T R
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NIST-recommended elliptic curve over
binary fields

Pty =1+ az’+b

The number of points on E is nh

K-163:a=1,b=1h=2, flz) =22 +2" + 28 +2* +1

n = Ox 00000004 00000000 00000000 00020108 A2EOCCOD 9SFBASEF

K-233:a=0,b=1h=4, fz) =23 +2™ +1

= 0Ox 00000080 00000000 00000000 00000000 00069D5B B915BCD4 6EFB1ADS

F173ABDF

K-283:a=0,b=1h=4, fle) =2 +22 +27+2°+1

n = Ox O1FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFESAE 2EDO7577 26BDFF7F
265DFF7F 94451E06 1E163C61

K-409: a=0,b=1h=4, fz) =2 + 25 +1

n = 0Ox QOTFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFEBF
83B2D4EA 20400EC4 557DSED3 E3ETCASB 4B5C83B8 EO1ESFCF

K-571:a=0,b=1h=4, fz) =2 + 2%+ 25+ £* +1

n = 0x 02000000 00000000 0000000 00000000 00000000 00000000 00000000
00000000 00000000 131850E1 F19463E4 B391A8DB 917F4138 B630D84B
ESD63938 1E91DEB4 5CFE778F 63701001
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Software Timing for ECDSA

In 2000, M. Aydos, T. Tank, and C. K. Koc implemented ECDSA over Zp
iIn 80MHz 32-bits ARM7TDMI

ECDSA |160 176 192 208 256

Signing |46.4ms |65.4ms |/1.3ms |96.2ms |153.5ms

Verifying | 92.4ms | 131.3ms | 148.3ms |194.3ms | 313.4ms
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Software Timing for ECDSA (Cont’d)

Curve type NIST Curve Signing (ms) | Verification (ms)
Prime P-192 0.28 0.938
P-224 0.41 1.38
P-256 0.686 2.25
Binary B-163 0.48 1.47
B-233 1.18 3.58
B-283 1.80 5.385
Koblitz K-163 0.385 0.79
Binary K-233 0.842 1.73
K-283 1.23 2.55
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Timing for A.P on FPGA implementation

| Target Platform Key Size | &P Qperations
per second
FPGA Hardware [12] 155 148
(XCV300, 36 MHz) _ _
FPGA Hardware [12] 281 70 Over binary field
(XCV300, 33 MHz)
FPGA CryptoProcessor 155 175
{XC4085XLA, 37 MHz)
FPGA CryptoProcessor 191 431
(XC4085XLA, 36 MHz)
FPGA CryptoProcessor 270 146
(XC4085XLA, 34 MHz)
ASIC CryptoProcessor 270 2300
(AWP, | GHz) (estimated)
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Core ECC Standards

Standard Schemes included

ANSI X9.62 ECDSA

ANSI X9.63 | ECIES, ECDH, ECMQV
FIPS 186-2 ECDSA

IEEE P1363 | ECDSA, ECDH, ECMQV
IEEE P1363A ECIES

IPSec ECDSA, ECDH

ISO 14888-3 ECDSA

ISO 15946 | ECDSA, ECDH, ECMQV
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ECDSA vs RSA (ms)

Elliptic curve over Fy233

RIM pager | PalmPilot | Pentium II
Key Generation 1,552 2,673 3.11
ECDSA Signing 1,910 3,080 4.03
ECDSA Veritying 3,701 5,878 7.87

2048-bit modulus

RIM pager | PalmPilot | Pentium II
RSA Key Generation 26,442
RSA Signing 111,956 288,236 440.69
RSA Verifying (e = 3) 1,087 2,392 4.2
RSA Verifying (e = 216 + 1) 3,608 7,973 13.45
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ECC — Patent Situation

The general idea to use elliptic curve for public key
cryptosystem is not patented

All the relevant public key based security services are
patent free, digital signature, key exchange,
authentication

Some elliptic curve analogues cryptographic schemes
are patented, example, Menezes-Qu-Vanstone,
Nyberg-Rurppel, Schnorr, etc

There are a large number of patents on special
Implementation technigues.
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Some Patents

J.L Messay and J.K. Omura. Computational method and apparatus
for finite field arithmetic. US Patent 4,587,627, May, 1986.

R.C. Mullin, I.M. Onyszchuk, and S.A. Vanstone. Computational
Method and apparatus for finite field multiplication, US Patent
4,745,568, May, 1988.

R.C. Mullin. Multiple bit multiplier. US Patent 5,787,028, Jul, 1998.

P. Ning and Y.L. Yin Efficienct software implementation for finite field
multiplication in normal basis. Pending US Patent application. filed in
Dec 1997.

R.J. Lambert and A. Vadekar. Method and apparatus for finite field
multiplication. US Patent 6,049,815, April 2000.

C. K. Koc, E. Savas, and A. F. Tenca. A Scalable and Unified
Multiplier for Finite Fields. US Patent Application, February, 2000.

C. K. Koc, A. F. Tenca, and G. Todorov. An high-radix scalable
modular multiplier. US Patent Application, April, 2001.
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RSA BSAFE Crypto-C Functional Layers

Cipher selection
Multiple key type generation

g R ) Padding selaction
] Code reusable after algorithm info type selection
Flexible AP
- RSA; DSA
Diffie-Heliman
{ Public-Key Algorithms ECC odd, even

DES, 3DES, DESX

- RC2°, RC4°, AC5°, RC6, AES
Message Digests § MD2, MD5
b T SHA1

; Key Generation : Automated key generation
Services ‘ Advanced random number generation

e Key seeding routines

Symmetric Ciphers

Cryptographic Syntax o1 PKCS #1 RSA formatting
' S PKCS #1 with OAEP

; RS PKCS #5 PBE
= PKCS #8 private key formatting
] and Protection Services PKCS #11 hardware support
| High-Speed Math E Replaceable memory calls

Processing : Sensitive memory control
B s | Memory use optimization

Cryptographic multi-precision (CMP) library

T PEM encoding
Mardware interfaces for 5 BER encodmg‘
Acceleration, Key Storage, b Baseb4 encoding
and Key Retrieval : PKCS #11

BHAPI—RSA BSAFE hardware API

PARN Vg



i Notions of Cryptographic Security

= Unconditional Security: There is no bound place on the
amount of computation that an adversary Is allowed to carry
out.

= Computational Security: This measure concerns the
computational effort to break a cryptosystem.

= Provable Security: Provide evidence of security by reducing
the security of cryptosystem to well-studies mathematical
problem that is believed to be difficult to solve. This is also
refer to reductionist security.
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